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ABSTRACT

Energy continues to be the key constraint in wireless sensor
networks. We review existing methods for estimating soft-
ware power consumption and battery modelling, as applied
to embedded systems such as Wireless Sensor Networks.
We consider current developments in hardware and soft-
ware technology, in particular the availability of high-fidelity
simulators. Once such simulator, TOSSIM for TinyOS 1.x,
models power consumption via a plugin, PowerTOSSIM. We
complete the port of PowerTOSSIM to TinyOS 2.0 for the
latest model of sensor node, the MICAz. Finally, we extend
the simulator to model non-linear battery effects.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques;
1.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete Event

General Terms
Design

Keywords

TinyOS 2, TOSSIM, PowerTOSSIM, energy model, MICAz,
wireless sensor networks, non-linear battery model

1. INTRODUCTION

Applications that make use of wireless sensor networks
have multiplied in recent years. Power consumption is per-
haps the key issue in wireless sensor network design, and
much current hardware and software research is devoted
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to increasing the lifetime of sensor motes. Hardware ad-
vances have seen the development of a new family of motes,
the MICAz [11] model, which has better performance and
lower radio battery consumption than its predecessor, the
MICA2 [10].

From the software point of view, an event-based model
that avoids busy-waiting is at the heart of the design of
TinyOS [24]; the first and most popular operating system
in this environment. Thus the design of this operating sys-
tem has been directly influenced by power considerations.
Another issue that affects power consumption is the posi-
tioning of the motes and the environment in which they act.
For example, the impact of network topology on routing al-
gorithm performance may show that a specific routing algo-
rithm overstresses the battery in some configurations while
performing well in others. Testing the relationship between
the individual mote’s battery discharging rate and its effec-
tive environment is therefore of fundamental importance.

To perform these tests on physical hardware poses a range
of problems including financial investment, the reproducibil-
ity of the environment, and the potential impact of hardware
failure. Simulators are a cheap, reliable and effective alter-
native. To this end, TinyOS has a simulation environment
TOSSIM [26]. The previous version of TOSSIM included
PowerTOSSIM [16], a dedicated plugin which models power
consumption. However this plugin has not been fully ported
to the new TOSSIM v2. In particular, it does not simulate
MICAz motes.

The format of this paper is as follows: A general overview
of wireless sensor networks is given, including a brief his-
tory of their origins. Next the the current state of the
art in sensor node hardware is outlined and TinyOS, TOS-
SIM and PowerTOSSIM are described. Our modifications of
TOSSIM for TinyOS 2.0 are then detailed. Finally, a brief
overview of current research into non-linear battery effects
in embedded devices and our integration of this research into
PowerTOSSIM z is provided.

2. WIRELESS SENSOR NETWORKS

Research into wireless sensor networks began in the 1980s
under the Distributed Sensor Networks program of DARPA
(Defense Advanced Research Project Agency) [5]. Such a



Figure 1: MICAz mote

network consists of sensor nodes and optionally, a base sta-
tion. A sensor node [9] comprises a microprocessor, data
storage, sensors, analog-to-digital converters, a data trans-
ceiver (radio), and an energy source. Each node is small,
lightweight and portable.

2.1 Energy Limitations

The small size and long operational life requirements of
the sensor nodes lead to energy limitations. Radio commu-
nication is the primary source of energy consumption. To
save energy, and to minimize power consumption, devices
should be turned off or set to sleep mode when possible.

Power management is essential to the future success of
wireless sensor networks. A key principle for low power con-
sumption and better power management is to use sleep mode
here possible. The current drawn by a device in sleep mode
can be reduced by:

e isolating and turning off the individual circuits

e waking up when required

quickly starting processing and active mode
e minimizing the work to be done
e returning to sleep after the work is done.

2.2 Hardware Devices

The MICA family of WSN motes was introduced in 2001.
The original MICA motes were designed by the Depart-
ment of Electrical Engineering and Computer Sciences at
UC Berkeley, California. Manufacturing and marketing was
handled by Crossbow, a private company also based in Cal-
ifornia. The followups, MICADot2 and MICA2, first ap-
peared in 2002. They featured increased power and func-
tionality without sacrificing power consumption. The full-
sized motes use 2 AA batteries which can provide power
for upwards of one year depending on the application. The
MICA range support sensor and data acquisition boards; the
boards are connected to the motes using a 51-pin expansion
connector.

The latest addition to the MICA range is the MICAz,
featuring an improved radio module and hardware AES en-
cryption. It uses the ATmega 128L MCU (MicroController
Unit). Its Chipcon CC2420 wideband radio supports the
new 802.15.4 / ZigBee protocols. The data rate is increased
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to 250Kbps which is an improvement on the 19Kbps data
rate of the MICA2. The power consumption of the MICA2
motes have been accurately measured [19] [2].

2.3 TinyOS

TinyOS is the most commonly used operating systems on
WSN motes. From the architectural point of view, it is
an event-driven, component-based framework: independent
components are linked together to build the final application
to load on the mote and higher level components communi-
cate with lower level ones by issuing commands and wait-
ing for events to be signaled. Commands and events are
decoupled and non-blocking, so that the command returns
immediately and the response is signalled afterwards.This
behaviour is usually defined as split-phase: the invocation
(call) and the completion (signal) of an operation are dis-
tinct with two different execution times.

Long term operations, or tasks, form a third abstract com-
putational unit and are scheduled on a FIFO basis. A task
can be posted on the runqueue by a command, an event or
another task (a task can repost itself). This design allows
for very long computations to be split into multiple tasks
that will post by themselves the following task. The cur-
rent version of TinyOS is 2.x. This includes some significant
improvements over the 1.x, especially in task handling.

2.4 TOSSIM

TOSSIM, the TinyOS Simulator, exploits TinyOS’s hi-
erarchical model by replacing lower level hardware compo-
nents with software emulated ones. TOSSIM maps directly
to the TinyOS code: compiling an application for the simu-
lation environment is as simple as compiling it for the real
mote (make micaz sim vs. make micaz). This approach
reduces the gap between the simulator and the real envi-
ronment. By replacing low level components, high fidelity
between the simulation environment and reality is achieved.

Good scalability is a natural consequence of the TinyOS
design: mote based applications are usually small in size
and each internal component has its own private and static
frame, thus simplifying simulation overhead needed to keep
hundreds of simulated nodes in memory.

In TOSSIM, transitions from an event to another happen
instantaneously and so there is no tracking of the execution
time. This design model and the lack of simulation code
for some low level devices have been the major challenges
to be addressed by those wishing to add power estimation
primitives to TOSSIM.

So far, two projects have tried to reach this goal: Pow-
er'TOSSIM, written for TinyOS/TOSSIM 1.x and for the
MICAZ2 family of motes and PowerTOSSIM 2 [17], a port of
the former to work inside TinyOS/TOSSIM 2.x.

3. BATTERY MODELLING

3.1 Nonlinear effects

Modern batteries are analogue, chemical devices. There
are several competing chemistries; the most appropriate for
a given application depends on the desired tradeoff between
such factors as capacity, weight, volume, self-discharge rate,
rechargeability, cycle life, safety, etc. Batteries are rated in
ampere-hours (Ahr), but this rating is nominal, and in prac-
tice the capacity varies according to a number of usage fac-
tors. Additionally, the capacity of cells manufactured within
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Figure 2: The rate capacity effect: AA battery life at
different constant currents. Manufacturer’s figures
from [7]

the same batch can vary considerably (by up to 20% in some
cases).

There are several characteristics of batteries that should
be incorporated into an accurate model [18]:

e The voltage of a cell decreases monotonically with time.

This relationship is non-linear and depends on the par-
ticular chemistry used. Eventually the voltage drops
too low for the battery to be usable and the remaining
capacity is not accessible.

e Higher discharge rates lead to lower capacity (the Rate
Capacity Effect).

e The same total energy load can have a different effect
on remaining battery capacity, depending on the shape
of the curve of current versus time.

e Batteries recover some of their charge when in the idle
state (the Recovery Capacity Effect).

In practical applications, batteries are connected to cir-
cuits using a DC-DC converter that ensures the voltage de-
livered to the circuit is constant. This converter is a source
of losses, typically 10 — 20% of the delivered power.

3.2 Modelling approaches

The modelling of batteries can be performed at a high or
low level. Circuit-level models, such as SPICE [21], oper-
ate at the analogue physical hardware level. In this model
continuous-time partial differential equations are solved by
numerical analysis. This is a highly accurate method, but
a major drawback is that the load model must also be sim-
ulated at this level - this is a non-trivial task for modern
integrated circuits, requiring intricate knowledge of the pro-
cessor subsystems. It is also very computationally intensive,
and hence does not scale to simulations of a large numbers
of nodes.

An alternate discrete-time approach is taken in [13] and
extended in [18]. The battery’s state is simulated by stochas-
tic modelling of its remaining charge. Broadly speaking, the
battery is considered to have a certain number of charge
units, and during each time unit the battery’s stock is de-
pleted by a quantity conistent with the demand placed on
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the device. Simultaneously, it has a certain probably of re-
covering a charge unit. This method is fast and therefore
scales well to large numbers of nodes.

4. POWERTOSSIM Z

In this section we describe how hardware power consump-
tion has been incorporated into our implemenation of Power
TOSSIM z. Capturing the power consumption of an appli-
cation running on a given mote necessitates tracking of the
behaviour of the mote’s low level components, such as the
microcontroller and the radio chip. An energy estimator
must also take into account the interfaces that TinyOS ex-
ports to manage them, and their support within TOSSIM.

4.1 TinyOS interfaces

The TinyOS 2.x power management interfaces are a ma-
jor improvement over those implemented in TinyOS 1.x. As
stated in TEP 112 [22], TinyOS 1.x essentially relied on the
application itself to handle the power on/power off states of
all the devices. This was accomplished through the use of
the StdControl interface, which exports a start and a stop
command that any component can call over a given periph-
eral. This approach simplified the design of PowerTOSSIM
1.x, since most of the calls could then be placed where this
interface was implemented, to gain a complete view of the
mote’s power state.

TinyOS 2.x operates differently in that it divides the de-
vices in two classes:

e the microcontroller, which fundamentally has enough
information to independently calculate the power state
to use, and

e the peripherals, which have simpler semantics (with
the partial exception of the CC2420 Radio Chip, as
we will see later on) and two basic power states, on
and off.

The relevant power management interfaces and their asso-
ciated hardware are described in more detail below.Only the
devices relevant to our PowerTOSSIM z implementation will
be analyzed, with particular emphasis on TOSSIM support
and its limitations. This description is at the heart of the
design goals and implementation of PowerTOSSIM z, and
any future improvements.

4.2 Microcontroller Power Management: The
ATM128 MCU

“The Atmegal28 is a low-power CMOS 8-bit microcon-
troller based on the AVR enhanced RISC architecture” [1].
It features six software selectable power-save states (shown
in Table 1) which range from the IDLE state, which stops the
CPU while leaving all the other components active, down to
the POWERDOWN state, which disables all the components until
the next interrupt or hardware reset. TinyOS exports one
interface for the handling of the microcontroller, which is
called McuSleep, which exposes a single asynchronous com-
mand, sleep(), that is called inside the TinyOS scheduler
when the FIFO taskqueue is empty.

The job of the sleep() command is to calculate the cor-
rect power state in which to put the microcontroller. The
task requires analysis of the state of different registers. This
is illustrated in the code snippet from the atm128 imple-
mentation in Figure 4.2.



Table 1: Atmegal28 Power states

Power State Current
Active 8mA
Idle 4mA
Standby 1mA
ADC Noise Reduction | 1mA
Extended Standby 160pA
Power-save IuA
Power-down 0.3uA

< tos/chips/atm128/McuSleep.nc >

[...]

if (TIMSK & ~(1 << OCIEO | 1 << TOIEO |

1 << TOIE1 | 1 << TOIE2) ||
ETIMSK & ~(1 << TOIE3)) {

return ATM128_POWER_IDLE;

¥

// SPI (Radio stack on mica/micaZ

else if (bit_is_set(SPCR, SPE)) {
return ATM128_POWER_IDLE;

}

// A UART is active

else if ((UCSROB | UCSR1B) &

(1 << TXCIE | 1 << RXCIE)) { // UART

return ATM128_POWER_IDLE;

}

// I2C (Two-wire) is active

else if (bit_is_set(TWCR, TWEN)){
return ATM128_POWER_IDLE;

¥

// ADC is enabled

else if (bit_is_set(ADCSR, ADEN)) {
return ATM128_POWER_ADC_NR;

¥

else {
return ATM128_POWER_DOWN;

¥

</ >

Figure 3: Atmegal28 Power State calculator code

This result is compared to the actual lowest possible state
to which the MCU is allowed to go. Since some external
peripherals may require the MCU to not go below a given
power state (for example if it will require the CPU soon
and the tradeoff between time spent in a low-power state
and wake-up latency is not favorable), TinyOS allows them
to specify the lowest acceptable power state through the
McuPowerQOverride.lowestState() command.

Despite first appearances, TOSSIM does not offer support
for fine tracking of the behaviour of the microcontroller. A
port of the McuSleep components exists, together with a
representation of the hardware registers as entries in a global
array of uint8_t entries. However, these registers are never
modified, and the McuSleep component itself is not wired
inside the TOSSIM scheduler (which is missing a call to the
sleep() command when there are no tasks available).

The power state of the microcontroller is of some impor-
tance to our battery model: we assume that battery re-
covery can only take place with the MCU in POWERSAVE or
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POWERDOWN modes. Therefore the TOSSIM scheduler is ex-
tended to call McuSleep.sleep() and we basic tracking of
some of the components’ state is performed to allow Power-
TOSSIM 2 to report meaningful values for the MCU state.

The atm128 implementation also tracks the use of the
LED and other ports. LEDs are connected to Port G of
the atm128 microcontroller, a 5 bit port. Bits 0, 1 and 2
are used to directly manipulate the LED state, while bit 4
acts as a broadcast bit (controlling all the three LEDs at the
same time).

The state of the SPI bus can be derived from the use
of the flash and the radio stack (which both use the SPI
bus). TOSSIM uses the SimpleFcfsArbiter to emulate the
atm128 SPI bus (which allows some tracking of the resources
requiring and releasing the SPI bus).

4.3 Peripheral Power Management

TinyOS 2.x divides the power management interfaces into
two distinct classes, the microcontroller and the peripher-
als. A richer set of interfaces (with respect to TinyOS 1.x)
is offered for power management of peripherals, described
in TEP 115 [8] which can be categorized into two differ-
ent models: explicit power management and implicit power
management. Our work does not focus on the latter (as used
by the at45db flash memory components); simplistically, it
can be understood as powering on or off a given device with
the explicit power management interface once the resource
has been granted (in the case of the at45db interface, the
SPI bus). A more detailed description is available in [8].

4.4 Asynchronous interfaces and AT45DB
Flash memory

In addition to the StdControl (used for peripherals with
negligible power-down and power-up times) and Split-Control
(for peripherals whose power-on/power-down time is of the
order of a few milliseconds) interfaces, from TinyOS 1.x,
TinyOS 2.x also includes the AsyncStdControl interface.
This is designed for devices that need to be powered up or
down asynchronously, for example inside an interrupt service
routine.

All the above interfaces offer a start () and a stop() com-
mand. The SplitControl interface, with its split phase de-
sign, exposes a startDone() and a stopDone () event, which
signals the success of the power up/down call to the compo-
nent that required it. The calls to those commands happen
at a level high enough to be easily tracked inside TOSSIM;
thus PowerTOSSIM z can produce a precise trace of the pe-
riod of use of the peripherals. A detailed description of the
impact of peripheral on power use can be gathered from our
energy model.

Thanks to the design of TinyOS (especially to the HPL/
HAL/ HIL architecture), PowerTOSSIM z can track a re-
quest to perform one of those operations at a relatively high
level. We adapt the AT45DB HPL TOSSIM porting code
from the one provided by Venkatesh [17] in his port of Pow-
erTOSSIM and incorporate tracking of the erase and CRC
operations.

4.5 Chipcon CC2420 radio stack

The most frequently used and energy-intensive peripheral
on a mote is the radio. As stated in the TEP 126 - “CC2420
Radio stack” [12] : “The T1/Chipcon CC2420 radio is a com-
plex device, taking care of many of the low-level details of



transmitting and receiving packets through hardware. Spec-
ifying the proper behavior of that hardware requires a well
defined radio stack implementation. Although much of the
functionality is available within the radio chip itself, there
are still many factors to consider when implementing a flex-
ible, general radio stack.”

The radio stack is divided into multiple layers, each one
of these exports, and can use, up to three interfaces: Send,
Receive and SplitControl. This is advantageous for track-
ing the general behaviour of the radio inside TinyOS/ TOS-
SIM, because even at a very high level, one still has a clear
view of the general send and receive commands issued and
their relative success. Another advantage is that TOSSIM’s
radio model is based on the CC2420’s values and behaviour
[6]. That allowed us to track the radio on, off, send and
receive operations directly inside the tos/1ib/tossim/ code
(more precisely inside TossimPacketModelC.nc), and to ben-
efit from TOSSIM’s noise modelling for a more realistic sim-
ulation.

Set against this was our difficulty with the CC2420 ra-
dio stack’s support for a different range of output power
transmission levels. An on-mote application can set this by
modifying the TXCTRL.PA_LEVEL register. Values range from
level 3 (-25 dBm) up to level 31 (0 dBm). These have quite
different rates of power consumption, from 8.5 mA up to
17.4 mA respectively. Unfortunately there is no support for
tracking this change within TOSSIM and this is a major
omission for a power consumption simulator. In our imple-
mentation, we consider the PA_LEVEL to be static and we
gather it from the value of CC2420_DEFAULT_RFPOWER inside
the TinyOS code. If the -DCC2420_DEFAULT_POWER flag is
not specified at compile time, the default power is set to 31,
the maximum. The post-processor behaves similarly.

The CC2420 radio stack implementation features another
set of power saving approaches, which are implemented in
the Low Power Listening layer. This layer is not compiled in
by default and has to be explicitly turned on by setting the
LOW_POWER_LISTENING variable at compile time. There is no
support in TOSSIM (and thus in PowerTOSSIM z) for this
layer, though it is of interest for future work on maximizing
battery life in applications that do not make heavy use of
the radio.

The final issue in PowerTOSSIM z’s implementation of
the CC2420 radio stack was the device’s idle mode. Accord-
ingly to the CC2420 datasheet [3] the chip can enter an IDLE
mode, where the crystal oscillator is active, but the chip is
neither receiving nor sending (Fig 4). There is no support
for the idle mode in TinyOS, since, (from post [14]): “No,
that state is not implemented in the CC2420 radio stack. It
was a conscious decision because the idle state of the CC2420
hardware makes almost no sense from a power management
standpoint. You can’t do anything in that state and you’re
burning away almost a milliamp of power.”

4.6 Extensibility

The inclusion of support for different physical motes (e.g.
mica2 or the newer Telos) would depend on two factors:

e support of their hardware in TOSSIM, and

e the use of correct energy model values (component
power consumption, etc.) in the post-processor

The second is just a matter of obtaining the appropriate
information from the datasheets and using it in the post-
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Figure 4: Chipcon CC2420 state diagram (from
datasheet). Its IDLE state is not used in TinyOS

processor, while the first depends on the porting of TinyOS
code into TOSSIM. The design of PowerTOSSIM v2.0 is
flexible enough to be quickly extended to support new code:
it is sufficient to add dbg statements any time a specific
component behaviour changes. The lower the level at which
TinyOS code is ported into TOSSIM, the most accurate the
simulation will be.

5. POWERTOSSIM Z:
THE NON-LINEAR ENERGY MODEL

Having described the various devices that PowerTOSSIM
z deals with and the details of their implementation, we now
present the ideas underlying the design of PowerTOSSIM
z and its non-linear energy model. PowerTOSSIM z’s ar-
chitecture resembles that of its MICA2-based TinyOS 1.x
predecessor and is divided into two parts, the core and the
post-processor. A third module, called PowerCurses, com-
pletes the project and offers a ncurses based interface to
monitor the state of the motes in the simulation.

Like PowerTOSSIM 1, PowerTOSSIM z is based on a
trace model. A number of calls to a central module have
been placed in the TOSSIM code (together with some patches
to TOSSIM) in the places described in the preceding section.
At the lowest level, those calls translate to calls to the dbg()
debug function of TOSSIM. It is just a matter of connecting
the ENERGY_HANDLER channel either to the standard output
or a file at the start of the python simulation code. The
module then generates the traces which capture power us-
age of the various devices.

The trace in Table 2 shows a mote booting and, later,

B T =
) \ All RX states D

Preamble and SFD
is transmitted



Table 2: Sample trace for use by post-processor
DEBUG (0): 23542399,LED_STATE,LED2,0N
DEBUG (0): 23542399,LED_STATE,LED1,0N
DEBUG (0): 23542399,LED_STATE,LEDO,ON
DEBUG (0): 23542399,LED_STATE,LEDO,QOFF
DEBUG (0): 23542399,LED_STATE,LED1,0FF
DEBUG (0): 23542399,LED_STATE,LED2,0FF
DEBUG (0): 23542399,CPU_STATE,CPU_POWER_DOWN
DEBUG (0): 23542399,RADIO_STATE,ON
DEBUG (0): 23542399,CPU_STATE,CPU_ACTIVE
DEBUG (0): 23542399,CPU_STATE,CPU_IDLE
[...]

DEBUG (0): 5455507245954 ,RADI0_STATE, SEND_MESSAGE,
ON,DEST:65535,SIZE:35,DB:0

DEBUG (0): 5455521894306 ,RADI0_STATE,SEND_MESSAGE,
OFF ,DEST:65535,SIZE:35

DEBUG (2): 5455521894306 ,RADI0_STATE,RECV_MESSAGE,
DONE,DEST: 65535

DEBUG (1): 5455521894306 ,RADI0_STATE,RECV_MESSAGE,
DONE,DEST: 65535

DEBUG (3): 5455521894306 ,RADI0_STATE,RECV_MESSAGE,
DONE,DEST:65535

DEBUG (4): 5455521894306 ,RADI0_STATE,RECV_MESSAGE,
DONE,DEST:65535

DEBUG (4): 5455521894406 ,CPU_STATE,CPU_ACTIVE
DEBUG (1): 5455521894406 ,CPU_STATE,CPU_ACTIVE
DEBUG (2): 5455521894406 ,CPU_STATE,CPU_ACTIVE
DEBUG (3): 5455521894406 ,CPU_STATE,CPU_ACTIVE
[...]

sending a broadcast message that three other motes receive.
The booting up section of this trace provides a good example
of TOSSIM’s property of executing scheduled events in im-
mediate time. The generated trace can then be passed to the
post-processor to estimate the battery energy consumed by
the application. This decoupling between trace generation
and the battery analysis has several advantages: (i) reduc-
ing the amount of changes to the TOSSIM code (essentially
just placing command calls at the appropriate position), (ii)
simplifying testing with different battery models, (iii) per-
mitting collection of a range of different simulation results
and parsing them multiple times with different options with-
out running the simulation every time.

5.1 Battery model post-processor

The post-processor can also work at runtime during the
TOSSIM simulation, either receiving the input from stdin
or, since it is written in python, merging its code with the
simulation code and directly connecting the channels. The
post-processor has two modes: silent or verbose. In silent
mode the whole trace file is analyzed and the final state of
the battery is reported at the end. In verbose mode the post-
processor outputs a line describing the current state of the
battery every time it encounters a line in the trace. Verbose
mode is useful if one wants to connect the post-processor to
a display application, for example PowerCurses.

PowerCurses can be used to run a graphic simulation re-
motely without the need of proxying an X Server connection
over ssh, or locally without the need of a X based or Win-
dows based system.
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Figure 5: PowerCurses. The ncurses interface shows
the actual battery state of the mote on the left
and the application name with the actual simulation
time on the right

To model the non-linearity of the discharging rate of the
battery, additional information is required. We assume the
recovery probability varies according to the battery’s re-
maining charge. Following the stochastic approach in [13],
we model the probability of recovering a single charge unit
per time unit as:

f=0

p; (f) :{ F=1,0 frmas

where qo is the probability that no current is drawn, N is
the battery’s total number of charge units, j is the present
charge level of the battery in units, dy is the number of
charge units that have been already drained, and the bat-
tery’s discharge is divided into discrete phases f with f =
0, ..., fmaz. Per [13], g~ is a constant (corresponding to the
inverse of the internal resistance of the battery) and g¢ is a
piecewise constant function of dy (i.e. the number of charge
units already drawn).

The rate capacity effect is also read from a lookup table.
This table is interpolated from manufacturer battery mea-
surements [7]. Current demanded is scaled up by a factor
that depends on the current itself.

qoeng(N>J)*gc(f)
e~ IN(N=j)=gc(f)dy

(1)

qo

6. EVALUATION

6.1 Known TOSSIM limitations

TOSSIM is a useful simulator, but it was not designed
with power tracking in mind. Despite the lack of low level
component implementations (which can be fixed by writing
additional code), there are a some design issues that affect
power estimation for some kind of applications. In particular
i) TOSSIM is a simulator, not and emulator and (ii) within
TOSSIM all tasks execute instantaneously.

TOSSIM is a simulator, not an emulator (unlike Avrora [25]
or Atemu [15]). It does not capture the behaviour of the
mote at the instruction level. Thus, if an application is
CPU intensive, it is very hard to capture the exact amount
of time the MCU spends in ACTIVE state. PowerTOSSIM

—



1 tried to solve this problem using a basic block accounting
mechanism [23]: the application binary is divided into basic
blocks (sequences of instructions without a branch), each oc-
currence of each basic block is counted and then CPU cycle
calculations are applied to each basic block and multiplied
by the times it was executed.

Occasionally this method can lead to inaccurate results [20].

If precise energy estimation is needed for a CPU intensive
application the best solution may be to use one of the pre-
vious cited emulators and merge the results. Moreover, the
energy model described herein can be relatively easily used
in conjunction with other power consumption analyzers, es-
pecially if they use a trace based system.

Within TOSSIM, all the tasks execute in instantaneous
time. Thus, for example, interrupts can not fire at an arbi-
trary time and preempt a running task. While this is indeed
a minor issue, it can lead to incorrect results for some appli-
cations. Once again, if this is the case, the solution is to use
an emulator and forsake the speed advantages of TOSSIM.

Based on the discussion so far, emulators appear to be
the a best solution for tracking a mote’s power consump-
tion, so why still use TOSSIM and create a port of Pow-
erTOSSIM? First of all, TOSSIM is fast and highly scal-
able, a desired characteristic if one wants to repeat multiple
test changing some configuration. Moreover, TOSSIM maps
directly inside TinyOS code and is simple. Testing code
can be rapidly developed in Python. All these properties
have made it the testing environment of choice for TinyOS
applications. Having a common testing environment per-
mits users to share their results and, as many open source
projects demonstrate, increases the number of patches and
extensions arriving from the community, thus improving the
overall quality of the code.

6.2 Results

In this section we contrast results obtained from Power-
TOSSIM vl.x for CntToLedsAndRfm from TinyOS 1 (on a
MICA2 mote) and from PowerTOSSIM Z for the function-
ally similar application RadioCountToLeds from TinyOS 2
(on a MICAz). The application periodically emits a packet
while cycling through the LEDs.
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Figure 6: Trace of TinyOS application CntToLed-
sAndRfm for PowerTOSSIM v1.x
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Figs. 6 and 7 show a trace of the current, in which the in-
creased peak power consumption of the MICAz’s new radio
stack is visible.

The radio receive current is now higher than the transmit
current, seen as periodic short drops in the radio current in
Fig. 7.
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Figure 7: Trace of TinyOS application RadioCount-
ToLeds for PowerTOSSIM Z

The increased power consumption of the MICAz mote in
this case further emphasises the importance of using the
hardware’s low-power modes when appropriate. The MI-
CAz’s radio has a lower per-bit power rate, but the gain is
not realized if the radio is left in receive mode when not
transmitting.
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Figure 8: Recovery effect. Shaded area indicates

mote is powered down

To illustrate the recovery effect of the model, it is not
possible to use the CntToLedsAndRfm application, since its
current demand never drops low enough to allow recovery.
Instead we simulate a custom application, adding periods of
‘dead time’ in which the mote is powered down. This allows
the current to drop to zero and hence the battery to recover.
Fig 8 shows, in a qualitative way, how the inclusion of three



short, ten second periods of “recovery time” in an 90 second
time interval impacts on the remaining battery capacity.

7. CONCLUSION

The energy-constrained nature of wireless sensor networks
makes the simulation of power consumption an important
and active research topic. The continuing development of
sensor mote technology, with new models regularly coming
to market, means that any simulator must be flexible and
easily extensible. TinyOS and TOSSIM look set to continue
their popularity as the platform of choice for sensor net-
works. PowerTOSSIM was a successful implementation of
power simulation of TinyOS v1.x; we have extended the port
of PowerTOSSIM v2.0 for the MICAz mote. We have imple-
mented a flexible battery model that captures the non-linear
behaviour of modern batteries.

Possible future adaptions to be made to TOSSIM include
the completion of support for low power states and the pass-
ing of radio transmission power information to the post-
processor. Calibration of the battery model for different bat-
tery types and inclusion of the kinetic battery model of [18]
would also give rise to improved performance.
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