
A Domain-Specific Language for Ubiquitous Healthcare

Jennifer Munnelly Siobhán Clarke

Trinity College Dublin

munnelj, sclarke @cs.tcd.ie

Abstract

The development of ubiquitous healthcare applica-

tions has proved to be significantly more complex than

traditional healthcare applications. In software engi-

neering research, there are two approaches of inter-

est to us for handling the kind of complexity that

emerges. The first is the use of domain-specific lan-

guages, which abstracts the low-level domain knowledge

required when using general-purpose programming lan-

guages into more expressive domain-specific constructs.

The second is advanced modularity techniques, such as

aspect-oriented programming, that provide for modu-

larisation of concerns that complicate code by cutting

across a broad code base and tangling with other con-

cerns. In this paper, we identify a set of ubiquitous

healthcare concerns that complicate their software de-

velopment. We use advanced modularity techniques to

provide good separation of these concerns and encapsu-

late their behaviour within a new domain-specific lan-

guage, ALPH that provides the application developer

with a high level of abstraction. The result is a means

to develop ubiquitous healthcare applications more eas-

ily and in a more timely fashion, while improving soft-

ware quality by increasing modularity in the code.

Keywords: Programming Languages, Domain-

Specific Languages, Ubiquitous Healthcare

c©2008 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for ad-
vertising or promotional purposes or for creating new collective
works for resale or redistribution to servers or lists, or to reuse
any copyrighted component of this work in other works must be
obtained from the IEEE. This material is presented to ensure
timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copy-
right holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each author’s
copyright. In most cases, these works may not be reposted with-
out the explicit permission of the copyright holder.

1 Introduction

The emerging discipline of ubiquitous healthcare ap-
plies ubiquitous computing features to applications de-
ployed in the healthcare domain. However, advances
in ubiquitous computing e.g., mobile devices and net-
work technologies, have not been matched with a cor-
responding proliferation of ubiquitous healthcare ap-
plications. These applications must support not only
the information management associated with health-
care applications, but must also incorporate ubiqui-
tous computing concerns to enable distributed, adap-
tive applications. The development of such applica-
tions has proved significantly more complex than tra-
ditional healthcare applications due to the number of
complex components and their interconnections.

To address the difficulties in ubiquitous healthcare
application development, we tackle two sources of com-
plexity and provide solutions to resolve difficulties in
development. Many ubiquitous healthcare concerns
cut across the entire system compromising the encap-
sulation of concerns. These concerns are referred to
as “crosscutting concerns” and are difficult to modu-
larise using traditional programming models. The lack
of modularisation leads to complicated, unmanageable
code. Complexity in such applications can be man-
aged by the software engineering principle of “separa-
tion of concerns”. The aspect-oriented programming
(AOP) [6] paradigm exhibits modularisation capabil-
ities that resolve traditional difficulties, enabling the
clean encapsulation of crosscutting concerns.

Complexity is also aggravated by the implementa-
tion of applications using general purpose languages
(GPL) whose constructs tend to be at a low-level of ab-
straction. This means that developers need significant
domain knowledge to produce the required verbose,
low-level code that is neither expressive nor semanti-
cally intuitive. Domain-specific languages (DSLs) ad-
dress the issues of low-level syntax and lacking ex-
pressiveness by enabling application developers to pro-
gramme at a high-level of abstraction using constructs

1

that encapsulate domain knowledge.
We identify a set of ubiquitous healthcare concerns

that reoccur in applications and that have exhibited
crosscutting characteristics. We make these encapsu-
lated concerns available by means of a domain-specific
language, ALPH [10]. ALPH defines a set of domain-
specific constructs that model tasks and entities in the
ubiquitous healthcare domain. These semantically in-
tuitive constructs trigger the inclusion of ubiquitous
healthcare behaviour throughout the application by
means of construct compilation, generative program-
ming and aspect-oriented programming techniques.
The result is a means to develop ubiquitous health-
care applications more easily and in a more timely
fashion, while improving software quality by increas-
ing modularity in the code. The proposed approach
is evaluated by the comparison of a case study ubiqui-
tous healthcare application, MedHCP, which has been
implemented in two ways; using traditional GPL de-
velopmental techniques and using the proposed ALPH
approach. The application was deployed on the Motion
C5 mobile clinical assistant (MCA) by Intel. Modu-
larity and abstractness are measured using the Goal-
Question-Metric (GQM) [3] approach to evaluate the
effectiveness of the proposed approach.

2 Ubiquitous Healthcare Concerns

We performed a comprehensive domain analysis to
identify functionality that increased complexity when
incorporated in applications. A literature study, appli-
cation development and the examination of codebases
enabled the identification of a set of concerns classified
as “crosscutting” i.e., affecting multiple implementa-
tion modules. The resulting comprehensive list of con-
cerns takes into consideration many varied applications
making use of a subset of the identified concerns.

2.1 Ubiquitous Computing Concerns

During our domain analysis of ubiquitous health-
care applications it emerged that concerns relating to
mobility [7], context-awareness [12] and infrastruc-
ture [11] were most significant.

Mobility

Mobility requires that applications deal with the
inherent unreliability of wireless communications and
the possibility of disconnected operation. We have
identified eight primary mobility concerns that require
support by developers. They are distribution, roaming,
service discovery, device discovery, ad-hoc networking,
limited connectivity, location, proximity and quality

of service. Distribution addresses the geographical
and technical dispersion of nodes and the underlying
communication mechanisms used to support the
transfer of data between nodes. Roaming refers to the
movement of a user involving changes in network or
devices. Discovery handles the location and knowledge
management of other nodes and services. Ad-hoc
networking addresses the routing of data between
nodes in an ad-hoc environment. Limited connectivity
deals with the unreliability of network connections in
distributed mobile environments and the contingency
plans required on disconnection. Location addresses
node position and the technologies used to acquire
such information. Proximity is closely linked with
location with a focus on communication with nodes in
the immediate vicinity. Quality of service refers to the
capabilities and resources associated with particular
networks and the management of application quality
of service requirements.

Context-Awareness

Context-awareness enables applications to adapt their
behaviour in response to changes in the deployment
environment, enabling transparent self-adaptive
personalisation to take place. Following the study
of context-aware applications, we identify the re-
quirement for support of different types of context
information [7]. We divided the overall context space
into eight sub-categories: device, location, user, social,
environmental, system, temporal, and application-
specific context.

Infrastructure

The infrastructure required by ubiquitous healthcare
applications below the application layer entails the pro-
vision of fundamental communication mechanisms, sys-
tems software and resource and network management.
It also considers adaptations that may occur in re-
sponse to changes in system context i.e., performance,
hardware availability and network conditions [12]. The
identified concerns of roaming, discovery, ad-hoc net-
working, limited connectivity, quality of service and
system context adaptation provide the fundamental in-
frastructural architecture required by applications in a
ubiquitous healthcare environment.

2.2 Healthcare Concerns

In analysis, we encountered a number of health-
care specific crosscutting concerns common to ubiqui-
tous healthcare applications. The Health Level Seven
(HL7)1 international standards institution promotes

1http://www.hl7.org/

2

and enforces the standardisation of electronic health-
care information to facilitate its exchange and manage-
ment. Incorporation throughout the application intro-
duces a large amount of crosscutting code related to
messaging formats that are applied. Information man-
agement practices should also be considered such as
the use of Electronic Health Records (EHRs) i.e., full
patient records consisting of data from various hospital
and healthcare systems. EHR management is intrinsi-
cally embedded in the routine functionality of ubiqui-
tous healthcare applications i.e., the manipulation of
patient records. The provision of new EHR opportu-
nities such as Google Health and Microsoft’s Health-
Vault reinforces the requirement for modular inclusion
enabling EHR systems to be pluggable components.
Persistence related functionality is also a prevalent con-
cern in healthcare systems affecting multiple modules.
In ubiquitous healthcare applications, remote connec-
tions are required throughout the application to per-
sist this data. Context reasoning has also emerged as
a frequent crosscutting concern in ubiquitous health-
care applications e.g., cross-checking prescribed medi-
cines with medicines administered and inferring diag-
nosis from symptoms.

3 Separation of Concerns

Management of complexity in software has tradi-
tionally been influenced by the software engineering
principle of “separation of concerns”. However, many
ubiquitous computing applications’ challenges will cut
across the entire system, compromising encapsulation
of concerns. Current development technologies lack
the necessary support to allow the developer to reason
about crosscutting concerns separately from the rest of
the system, resulting in software that is poorly modu-
larised and therefore inherently more complex. Poorly
modularised code reduces the quality of the software,
as evident by its negative affects on software quali-
ties such as maintainability, comprehensibility, man-
ageability, scalability and reusability. These software
quality factors are a concrete measurement of how com-
plexity directly affects the developer, underlining the
causes of untimely, deficient implementations.

Aspect-oriented programming (AOP) provides ad-
vanced modularity techniques to address the separation
of crosscutting concerns. Concerns are modularised
into “aspects” whose behaviours are triggered at vari-
ous points in the application. We exploit the modular-
isation capabilities of AOP to encapsulate ubiquitous
healthcare concerns to improve modularity, therefore
reducing application complexity. In previous work we
have established the positive increase in software qual-

ity using AOP in the modularisation of context adap-
tation [12] and infrastructure [11]. A library of aspects
which provide the behaviour of ubiquitous healthcare
concerns is implemented in an aspect language, provid-
ing the developer with reusable components for ubiq-
uitous computing and healthcare functionality. The
library of modularised concerns is made available to
the developer via a domain-specific language.

4 ALPH

DSLs provide the means to program efficiently
within a particular domain by addressing the issues of
low-level syntax and lack of expressiveness that arise
when using GPLs. Domain-specific constructs encap-
sulate domain knowledge to provide high-level abstrac-
tions aiding the development of domain-specific tasks
and entities in a concise manner. The result is more
expressive, semantically representative code that eases
application development and reduces the amount of
domain-specific knowledge required by the developer.

ALPH , “Aspect Language for Pervasive Health-
care”, provides a domain-specific aspect language
(DSAL) that includes a comprehensive set of extensible
high-level constructs. Use of any construct by a pro-
grammer initiates the inclusion of ubiquitous health-
care concern implementations from a library. ALPH is
a declarative language implemented as a pre-processor
to an existing aspect language, in this implementation
AspectJ [1]. This section describes how ALPH is im-
plemented, and how the semantic, high-level constructs
are mapped to lower-level application code.

4.1 Language

The constructs provided in the ALPH language
model concerns specific to the ubiquitous healthcare
domain, and are terms from common domain termi-
nology. The application developer creates an ALPH
file by using the available constructs as required. The
constructs are parsed by the ALPH compiler and the
generative compilation process triggers the use of code
from the library of aspects that provide ubiquitous
healthcare functionality.

1 discover (device , device , . new) .
2 discover (s e r v i c e , s e r v i c e , PRINTING SERVICE) .

Discovery Construct

As an example of how an ALPH construct can be
used, we describe the use of the discover construct
which represents the concerns of service and device
discovery. The discover construct prompts discovery

3

Figure 1. Application Development

functionality to be included in the application. Para-
meterisation enables the choice of discovery protocol,
specification of services and indication of naming con-
ventions required for the selection of points in the base
code where crosscutting behaviour must be inserted.
Listing 1 illustrates the use of the discover construct
in two ways: to include device functionality at the con-
struction of each new object, and to include service dis-
covery at each method that has “service” in the dec-
laration and to search for the service named PRINT-
ING SERVICE.

4.2 Application Development

The application developer implements the base ap-
plication in a GPL. Ubiquitous healthcare concerns
and the trigger points in the base application are de-
fined using the provided domain-specific constructs in
an ALPH program. The developer’s ALPH program is
then translated into an aspect language by the ALPH
compiler. The result is one or more aspects containing
the ubiquitous healthcare behaviour from the library
of concern implementations, which are weaved into the
base application using the aspect language weaver. The
result is a complete compiled and executable ubiqui-
tous healthcare application as illustrated in Figure 1.

4.3 Extensibility

Few domains remain static over time leaving DSLs
susceptible to becoming obsolete. ALPH addresses
extensibility in three ways to ensure new constructs
can be added as the domain of ubiquitous healthcare
widens and advances. The language, and its compiler,
can be extended by adding new functionality to the for-
mal definition of the language syntax and semantics.
The aspect library must then be extended with code
to support the new construct. Construct parameteri-
sation also provides a means to customise a construct’s
behaviour e.g., distribution (RMI, JMS, Sockets). Fi-
nally, the translation of ALPH to a concrete GPL is
defined in the formal definition provided to the com-
piler generator. To allow a choice of base languages

Figure 2. Goal-Question-Metric Model

for application developers, definitions can be provided
to translate ALPH into multiple GPLs e.g., implemen-
tations provided in a C based aspect language would
allow for the use of C as a base language.

5 Evaluation

The goals of this work are the separation of ubiq-
uitous healthcare concerns to increase modularity and
hence decrease complexity, and to provide the devel-
oper with a higher-level of abstraction resulting in con-
cise, expressive code. Both goals contribute to the
objective of reducing development effort in ubiquitous
healthcare applications, which would encourage their
proliferation.

5.1 Goal-Question-Metric

The goal-question-metric (GQM) [3] approach en-
ables the quantitative evaluation of high-level concep-
tual characteristics e.g., our goals of increased mod-
ularity and high-level abstraction. Using GQM we
map measurable quantitative-level metrics to opera-
tional level questions, which in turn map to conceptual
level goals.

Figure 2 illustrates the GQM approach applied to
modularity and abstractness. Modularity involves the
breaking up of an application into smaller, more inde-
pendent elements known as modules. The operational
level questions we use to model our goal of modular-
ity are based on Parnas’ benefits of modular program-
ming [13] namely manageability and maintainability.
Maintainability relates to the modifiability of the code
base and is negatively affected by dependencies be-
tween modules i.e., coupling 2. Manageability is mea-
sured by metrics that can identify the level of auton-
omy of a module, enabling the module to be developed
and modified in isolation e.g., independence metrics
3.Abstractness is achieved by providing the developer

2Coupling on method call (CMC), afferent/efferent (Ca)(Ce)
3Response for a module (RFM) and instability (I)

4

with concise, expressive constructs which shield low-
level functionality. The goal of abstractness is there-
fore modeled by the operational level questions of ex-
pressiveness and conciseness. The question of concise-
ness is answered by straightforward size metric, lines
of code (LOC). We define expressiveness in a program-
ming language as the ability of a language to allow
the developer to perform tasks using natural, semanti-
cally intuitive syntax. The syntactic expressiveness of
a language can be defined as its ability to provide con-
structs that enable the developer to adequately fulfill
the requirements of an application [5]. Fabbrini [8] sug-
gests a relationship between the language used in the
requirements and the ability of people to understand
the language. We use a quantitative level metric based
on Zipf’s law [15] to measure syntactic expressiveness.

5.2 Case Study

To evaluate the contribution of the library of ubiq-
uitous healthcare concerns and the DSL that enables
their incorporation, we implemented a case study ap-
plication known as MedHCP based on a scenario from
the ubiquitous healthcare domain [14]. The scenario
was conceived by the Centre for Pervasive Computing
and staff at a collaborating hospital in Aarhus county,
Denmark. The scenario depicts an ideal use for mo-
bile and pervasive computing devices in the medication
of patients in a hospital setting and requires support
for many of our identified ubiquitous healthcare con-
cerns. The MedHCP application was implemented us-
ing a traditional object-oriented approach and also us-
ing the proposed ALPH approach. The object-oriented
approach used a general purpose language, Java, for
the implementation of all functionality. The ALPH ap-
proach was implemented using ALPH to define the in-
corporation of the required ubiquitous healthcare func-
tionality and Java for the base application function-
ality. The application was deployed on the Motion
C5, the mobile clinical assistant created by the Dig-
ital Health Group (DHG) at Intel Health.

5.3 Results

This section summarises results of the evaluation us-
ing the GQM approach to deduce empirical measure-
ments for our goals of modularity and abstractness.

Modularity

Maintainability: Coupling was reduced by the ALPH
approach by 33-75% in modules most influenced by
crosscutting code. 5 modules were found to be cou-
pled with aspects after modularisation indicating that
significant crosscutting code existed that profited from

Figure 3. Mobile Clinical Assistant

modularisation. Dependencies on external modules
were reduced by up to 40% by the ALPH approach.
These illustrate the beneficial effect of modularising
these concerns away from base functionality as modules
are more easily maintained when coupled with fewer
modules. Inward dependencies were increased by the
ALPH approach due to the aspect’s dependencies on
the syntax of base code, but in our opinion are offset
by the modularisation achieved.

Manageability: Dependencies were reduced by 20%
in one module and 60% in two modules using ALPH.
Fewer dependencies indicate that modules can be de-
veloped and managed in isolation more easily. Stability
is also an indicator of manageability and was increased
in all modules using the ALPH approach, indicating a
reduction in the modules’ resilience to change.

Abstractness

Conciseness: ALPH reduces application size experi-
enced by the application developer i.e., before compi-
lation, by 25%. This is achieved by the conciseness of
domain-specific constructs and their ability to produce
domain-specific behaviour through declarative, gener-
ative constructs.

Expressiveness: Constructs in ALPH can fulfill 50%
of domain-specific requirements by only 20% of action
terms from the domain. The demonstration that by
including the most frequently used terms in the do-
main in ALPH, the expressiveness of the language is
increased as according to Ziph’s law, a large amount
of behaviour in the domain is likely to use these few
terms. We can also conclude that from the achieve-
ment of a more concise language, expressiveness is also
achieved as the same semantics can be expressed by a
shorter body of material.

5

6 Related Work

MUMPS [4] is a DSL developed to enable health-
care applications manage information. However, it did
not support healthcare functionality and was used as
a database DSL. Middleware has been proposed for
clinical based applications that address many ubiqui-
tous computing concerns including mobility, heteroge-
neous devices, discovery and security [9]. However, it
does not provide any higher level constructs with intu-
itive semantic meaning for the application developer.
YABS [2] is a DSL for pervasive computing that pro-
vides means for defining and coordinating the behav-
iour of entities in pervasive environments. YABS fo-
cuses on the composition of components in pervasive
environments rather than the provision of a domain-
specific language for crosscutting concerns. Context-
awareness, propositioning and non-intrusiveness are
design principles that are suggested to be requirements
for ubiquitous application development. This supports
our domain analysis but lacks the progression to higher
level abstractions. The World Health Organisation’s
International Classification of Functioning, Disability
and Health (ICF) provides a common language for dis-
ability description but is specific to medical terminol-
ogy and does not address any technological issues.

7 Conclusions

In this paper we present ALPH, a language for ubiq-
uitous healthcare. As a DSAL, ALPH exhibits both
the modularisation benefits of AOP and the abstract-
ness, and resulting expressiveness and conciseness, of
DSLs. Domain crosscutting behaviour is encapsulated
as concerns in a library of aspects and made available
through domain-specific constructs. Evaluation using
the GQM model is based on a case study application,
MedHCP, implemented using the proposed approach
and traditional object-oriented techniques. Results il-
lustrate that ALPH exhibits the benefits of improved
modularity and a higher-level of abstraction due to the
use of AOP and DSL principles.

Acknowledgments

The work described is funded by Science Foundation
Ireland under the Research Frontiers Program.

References

[1] Aspectj. http://www.eclipse.org/aspectj/.

[2] P. Barron and V. Cahill. Yabs:: a domain-specific
language for pervasive computing based on stig-
mergy. In International conference on Generative

programming and component engineering, 2006.

[3] V. R. Basili, G. Caldiera, and H. D. Rombach. The
goal question metric approach. In Encyclopedia of

Software Engineering. 1994.

[4] J. Bowie and G. O. Barnett. Mumps–an econom-
ical and efficient time-sharing system for infor-
mation management. Comput Programs Biomed,
1976.

[5] S. Boyd, D. Zowghi, and A. Farroukh. Measuring
the expressiveness of a constrained natural lan-
guage: An empirical study. In International Con-

ference on Requirements Engineering. IEEE, 2005.

[6] G. Kiczales et al. Aspect-oriented programming.
In European Conference on Object-Oriented Pro-

gramming, 1997.

[7] N. Loughran et al. A domain analysis of key con-
cerns - known and new candidates. AOSD-Europe,

Deliverable D43, 2006.

[8] F. Fabbrini, M. Fusani, V. Gervasi, S. Gnesi, and
S. Ruggieri. Achieving quality in natural lan-
guage requirements. In 11th International Soft-

ware Quality Week, 1998.

[9] H. B. Christensen J. E. Bardram. Middleware for
pervasive healthcare. In Middleware for Mobile

Computing, 2001.

[10] J. Munnelly and S. Clarke. Alph: a domain-
specific language for crosscutting pervasive health-
care concerns. In AOSD Workshop on Domain

specific aspect languages, 2007.

[11] J. Munnelly and S. Clarke. Infrastructure for ubiq-
uitous computing: Improving quality with modu-
larisation. In AOSD Workshop on Aspects, Com-

ponents, and Patterns for Infrastructure Software.
ACM Press, 2008.

[12] J. Munnelly, S. Fritsch, and S. Clarke. An aspect-
oriented approach to the modularisation of con-
text. In International Conference on Pervasive

Computing and Communications, 2007.

[13] D. L. Parnas. On the criteria to be used in de-
composing systems into modules. Commun. ACM,
1972.

6

[14] K. Raatikainen, H. B.Christensen, and T. Naka-
jima. Application requirements for middleware for
mobile and pervasive systems. SIGMOBILE Mob.

Comput. Commun. Rev., 2002.

[15] George K. Zipf. Human Behavior and the Prin-

ciple of Least Effort. Addison-Wesley (Reading
MA), 1949.

7

