
 

 

 

Abstract—Public transport vehicles often share a road 

network with other road users making their journeys 

susceptive to changing road conditions and especially to 

congestion. Travelers using such public transport increasingly 

depend on real-time information to plan their journeys. While 

such information can be provided by Automatic Vehicle 

Location (AVL) systems, AVLs depend heavily on large-scale 

deployment of designated sensory equipment, which may 

prevent their pervasive adoption. This paper presents a system 

for estimating vehicle location based on information generated 

by data sources typically integrated within existing ITS 

platforms. This enables location estimation for public transport 

vehicles without the need for deploying a designated sensor 

infrastructure in each vehicle, thereby reducing deployment 

and maintenance cost significantly. A prototypical vehicle 

location estimation system has been realized as part of and 

using data provided by the iTransIT ITS framework. Initial 

evaluation results show that such a system is feasible in a 

distributed manner and that estimated results are within 20% 

compared to empirical data.  

I. INTRODUCTION 

ith the price of transportation rising people start to 

rediscover the advantages of public transport. Public 

transport can provide fast, reliable, and ‘eco’-friendly 

transportation at reasonable cost. However, when public 

transport vehicles, such as buses, are sharing the road 

network with other road users, their travel speed and 

reliability can decrease significantly due to varying traffic 

conditions and congestion. 

To ease the impact of varying travel times, public 

transport providers are inclined to provide up-to-date 

journey information to travelers using Real-Time Passenger 

Information (RTPI) systems. Such systems may provide 

information on the current location of vehicles, estimated 

travel times of vehicles and passenger waiting times at stops. 

Travelers can then use this up-to-date information to adjust 
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their travel plans accordingly and ultimately to plan their 

journey more effectively. 

Information on vehicle positions is at the heart of RTPI 

systems and used to calculate travel times and to present 

useful information to travelers. Data on vehicle location is 

traditionally gathered using an Automatic Vehicle Location 

(AVL) system that tracks each individual vehicle and 

collects the location information in a central depository. 

Although the cost of radio location technologies, such as 

GPS, has significantly decreased over the last decade, the 

cost of deploying and maintaining an AVL system is often 

immense. Public transport fleets of several hundred vehicles 

are not uncommon and designated location technology needs 

be deployed in every vehicle. 

This paper presents iTranSIM, an estimation-based 

approach to obtaining information on vehicle location that 

does not depend on the deployment of designated sensory 

equipment in each vehicle. Our approach uses statistical 

information derived from existing Intelligent Transportation 

Systems (ITSs) rather than depending on sensors and radio 

communication equipment installed in vehicles. Contextual 

information describing the environment of public transport 

vehicles as well as journey specific information is used to 

estimate vehicle locations. Information on the environment 

may include the road network and prevailing congestions 

levels while journey information may include journey start 

times and routes. We argue that this information is typically 

available from existing ITS infrastructures and hence, we 

propose a system that extends ITS architectures thereby 

leveraging existing data sources and the information sharing 

capabilities inherent to these architectures. 

A prototypical version of the vehicle location estimation 

system has been realized as part of the iTransIT ITS 

framework [1]. Relevant contextual transport information 

from a prototypical realization of iTransIT is used to 

simulate traffic in a real-time, online simulation. From that 

simulation we can extract location data for public transport 

vehicles, which can then be used as part of a RTPI system 

providing information to travelers. The evaluation shows 

that such a system is feasible in that it can be realized as part 

of an ITS framework using existing ITS data and in that it 

can support metropolitan scale transportation systems. 

Furthermore, initial evaluation results show that estimated 

results are within a 20% margin of empirical measurements. 

Hence, we expect that given the necessary contextual data is 
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available, the system can be realized and deployed on a large 

scale at a low cost compared to traditional approaches. 

The remainder of this paper is structured as follows: 

Section II gives an overview of existing AVL technologies. 

Section III introduces the iTransIT ITS framework for 

integrating individual transportation systems and related user 

services. Section IV describes the vehicle location 

estimation system and its integration into the iTransIT ITS 

framework. Section V presents our evaluation of this work. 

Finally, section VI concludes this paper by summarizing our 

work. 

II. AUTOMATIC VEHICLE LOCATION 

In 1977, Riter and McCoy [2] presented an overview of 

automatic vehicle location. At the time, the main purpose of 

automatic vehicle location was to help law enforcement 

agencies to dispatch their vehicles rather than passenger 

information. They identified three major categories of 

approaches and these approaches are still applied in today's 

AVL systems. These include: 

• Dead-Reckoning  

• Proximity based 

• Radiolocation 

Unlike the vehicle location estimation system described in 

this paper, the approaches called out above all depend 

heavily on designated equipment deployed in each vehicle. 

The individual approaches are introduced and discussed 

below. Using statistical vehicle location estimation based on 

existing ITS data as proposed in this paper is, to the best 

knowledge of the authors, a novel approach that has not been 

proposed thus far. 

A. Dead-Reckoning 

The Dead-Reckoning approach is based on recording the 

direction a vehicle travels and the distance covered. This 

information is then used to follow the path of the vehicle in 

order to deduce its location. The main problem with Dead-

Reckoning is that errors caused by external influences and 

internal imprecision accumulate over time because any 

position calculation depends on previous calculations. 

Dead-Reckoning is mainly in use for tracking track bound 

vehicles and is often combined with other AVL systems as a 

backup. For example, Zaho et. al [3] describe a system 

where GPS data is enhanced with Dead-Reckoning data to 

compensate decreased reception of GPS signals in build up 

areas. 

B. Proximity based AVL 

Proximity-based approaches depend on signal receivers 

strategically placed at locations along the routes of the 

tracked vehicles. Vehicles are equipped with senders 

transmitting a beacon that identifies the vehicle with the 

receiver. An advantage of proximity-based approaches is 

that the actual position of the vehicle is captured at the 

receiver rather than in the vehicle eliminating the need for 

transferring the location information from the vehicle using 

wireless communication. However, in order to gain a 

sufficiently fine grained resolution of vehicle locations the 

number of deployed receivers needs to be significant. Also, 

the number of receivers depends on the area and routes used 

by the vehicles, which may increase their number further, 

especially, when used in large urban environments. 

Although mainly used for track bound vehicles, new 

sensor technologies, such as camera-based license plate 

recognition systems, have recently increased interest in 

proximity-based AVL systems for freely moving vehicles 

[4]. 

C. Radiolocation 

The Radiolocation-based approach uses triangulation, 

where a sensor receives radio signals from different 

transmitting stations and uses the delay of the different 

signals to calculate its position. Currently, the NAVSTAR 

Global Positioning System (GPS) is the main source of 

signals for Radiolocation. Satellite-based Radiolocation 

systems have replaced many of the other AVL systems since 

the GPS signals can be used free of charge. For example, the 

RTPI system Q-Time [5] uses GPS as the main source of 

vehicle location.  

III. ITRANSIT FRAMEWORK 

The iTranSIM vehicle location estimation system has 

been designed based on the iTransIT ITS framework. As 

illustrated in Figure 1, the iTransIT ITS architecture 

structures legacy systems, iTransIT systems, and context-

aware, end-user applications into three tiers. These tiers 

define the relationships between systems and applications, 

and provide a scalable approach for integrating systems, in 

that individual components can be added to a specific tier 

without direct consequences to the components in the 

remaining tiers.  

A. Tier Architecture 

The iTransIT system architecture supports the integration 

of legacy systems, and supports future systems that conform 

to the overall architecture and data-layer. 

The purpose of the iTransIT tier is to integrate 

transportation systems that model spatial information and 

implement the Spatial Application Programming Interface 

(Spatial API) [6]. Therefore, this tier comprises of a 

federation of transportation systems that implement the 

spatial data layer. The data layer is distributed across these 

iTransIT systems, with each system implementing the subset 

of the overall layer that is relevant to its operation. iTransIT 

systems maintain their individual information, which is often 

gathered by sensors or provided to actuators, by populating 

the relevant part of the spatial data layer. However, some of 

the information maintained in an iTransIT system specific 

part of the data layer may actually be provided by 

underlying legacy systems. Most significantly, traffic 

information captured in this tier is maintained with its 

primary-context, and persistently stored data is geo-coded 



 

 

typically by systems exploiting a database with spatial 

extensions. The iTranSIM vehicle location estimation 

system exists in the iTransIT layer and implements its part 

of the spatial data layer, namely, the vehicle locations. It 

implements the Spatial API to enable access to vehicle 

location data and queries information from other relevant 

iTransIT Systems. 

 

 
 

The application tier includes pervasive value added 

services that provide context-aware user access to traffic 

information. These services use the distributed data layer 

and associated context to access information potentially 

provided by multiple systems. They could include a wide 

range of interactive (Internet-based) and embedded control 

services, ranging from the monitoring of live and historical 

traffic information to the display of waiting times at bus 

stops or tram stops. 

B. Common Spatial Data Layer 

The spatial data layer, common to all iTransIT systems, is 

comprised of a set of potentially distributed sub-layers and 

represents the central component of these systems. 

Individual iTransIT systems implement one or more of these 

sub-layers (or parts of sub-layers) and maintain the static, 

dynamic, live, or historical traffic data available in that sub-

layer. For example, a system might implement a sub-layer 

describing the current weather conditions, while another 

sub-layer capturing intersection-based traffic volumes might 

be maintained by a different system. This allows the 

iTranSIM system to query all necessary data using a 

common mechanism, the Spatial API. Furthermore, other 

iTransIT systems can use the same common interface to 

access and retrieve the data generated by iTranSIM. 

IV. THE ITRANSIM LOCATION ESTIMATION SYSTEM 

The iTranSIM vehicle location estimation system uses the 

data sharing capabilities of the iTransIT architecture to 

access contextual information from a range of legacy ITS 

systems. The information derived from these systems is then 

used to estimate the location of public transport vehicles and 

the resulting data is provided as part of the overall spatial 

data layer. 

A. Architecture 

To estimate the vehicle locations we will fetch the 

existing contextual data from the ITS architecture and use it 

to create an online traffic simulation. Traditionally, traffic 

simulations are run in batch mode, i.e. a dataset is provided 

to the simulation, the simulation is run and the results are 

analyzed once the simulation has finished. An online 

simulation on the other hand runs synchronized with the real 

world, i.e. in real time. Information such as congestion 

levels are fed into the simulation constantly to recreate 

traffic patterns that match the real world at any point in time. 

By simulating public transport vehicles in the online 

simulation we are able to gather location information for 

those vehicles within the simulation environment. With a 

sufficiently accurate online simulation the measured 

locations are expected to correspond to the vehicle locations 

in the real world. The data can then be used by other 

services, for example to provide real time passenger 

information to travelers. 

 

 

Figure 2. The iTranSIM architecture 

Figure 2 illustrates the architecture of the iTranSIM 

vehicle location estimation system. It consists of three 

components, two are located in the iTransIT system tier and 

one resides in the legacy system tier. The iTranSIM-In 

component provides the input required by the traffic 

simulation by gathering relevant information from other 

iTransIT systems using the Spatial API. This data is then 

used to model traffic using the Simulation of Urban Mobility 
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(SUMO) traffic simulator [7]. The output of the traffic 

simulation is processed by the iTranSIM-Out component. 

This component retrieves the vehicle location information 

estimated in the traffic simulator and makes it available to 

other iTransIT systems and services through its realization 

of the Spatial API. 

B. Data Model 

To create an accurate online simulation it is vital to create 

a precise model of a vehicle’s journey. The model is then 

populated with information from other ITS components, and 

used in the traffic simulator. To build this model we have 

identified and modeled three components. First, the 

environment, i.e. the road network, second, the traffic 

including all vehicles and their behavior and finally, the 

journey of public transport vehicles with their specific routes 

and timings.  

Modeling the road network accurately is essential because 

this part of the model defines the possible flows of active 

vehicles in the simulation and therefore has a significant 

impact on the journey times of individual vehicles. The two 

main components of the road network modeled for this 

approach are junctions and links. Junctions have the 

following properties: 

• Physical location (geo coordinates)  

• Type (traffic lights, priority based or roundabout) 

• Traffic Light sequences or priorities for incoming links 

Links connect the junctions and consist of a start and an 

end junction and a number of lanes. Lanes have the 

following properties: 

• Speed limit 

• Exclusions (e.g. no HGVs) 

• Exclusivity (e.g. bus lanes) 

• Condition (e.g. slower than usual due to snow) 

• Induction loops and their positions 

• Induction loop counts 

• Bus stops and their positions 

• Legal turning maneuvers on exiting the lane 

• Turning rations on exiting the lane 

To model the traffic we used a microscopic car-following 

model. In this model every vehicle is modeled as a single 

entity and its behavior is influenced by the vehicle in front 

of it. A minimum distance between two vehicles is to be 

kept at all times depending on the velocity of the leading car. 

Additionally, the reaction time needed by a driver to respond 

to actions taken by the leading vehicle is taken into account.  

To enable the car-following model we have added 

vehicles with following properties to our data model: 

 

 

• Acceleration 

• Deceleration 

• Maximum speed 

• Driver imprecision 

The above properties determine how the vehicles pass 

through the simulation, their routes are determined by the 

turning ratios stored for each lane, i.e., once they reach the 

end of a lane they will turn to the next lane with the given 

percentage. These ratios can be determined from traffic 

count data for the adjacent lanes which eliminates the need 

for detailed journey information of individual vehicles. 

The journey of a public transport vehicle, such as a bus, is 

basically the same as a journey of an ordinary vehicle in the 

microscopic simulation, but with a few notable exceptions. 

The routes of a bus trip are predetermined, so are the starting 

times. Using this information, we have modeled a public 

transport journey with the following properties: 

• Route (list of lanes and bus stops served) 

• Starting time 

• Average passenger numbers per stop 

With the given information we are able to represent the 

journey of a public transport vehicle within its environment 

which in turn can be used to create the online simulation. 

C. ITranSIM-In 

To create an accurate online simulation it is necessary to 

provide all the required data in a timely manner to the 

simulation. The iTranSIM-In component collects and stores 

the data to populate the data model and provides it to the 

traffic simulator. It also manages the simulation to guarantee 

the synchronization between the incoming data and the 

simulation. To gather the necessary information other ITS 

components are queried using the iTransIT Spatial API. The 

data collected by the iTranSIM-In component can be divided 

into two categories: static and dynamic data. Static data is 

data that is not expected to change regularly and includes 

road layouts, bus routes and timetables. Dynamic data 

typically changes frequently and includes traffic counts 

provided by induction loops. 

After retrieving the data from other iTransIT components 

it is stored in the data model by the Data Model Population 

component. The data is then processed so it can be used as 

input data for the simulation. The SUMO traffic simulator 

requires a number of configuration files to run. These are 

generated from the static data and provisioned through the 

Static Data Update component. The Dynamic Data Update 

component updates the traffic simulator at runtime with the 

data needed to adopt the simulation to changes in the real 

world. 

The last element is the Simulation Control. It ensures that 

the simulation stays ‘in sync’ with the incoming data and 

handles any critical errors that may occur during the 

simulation. 



 

 

D. Online simulation 

The traffic simulator creates a model of the environment 

and the traffic based on the data provided by the iTranSIM-

In component. For our experiments we have chosen the open 

source traffic simulator SUMO and integrated it into 

iTranSIM as a legacy system. SUMO uses a microscopic 

simulation model, which allows us to track individual 

vehicles and extract location data for them. 

By constantly updating the simulation with live traffic 

data we create a reflection of the traffic situation in the real 

world. This approach requires more resources than a purely 

statistical approach based on historical data but it will adapt 

to changes in the traffic situation immediately which will 

yield more accurate results in extreme situations such as 

very long journey times due to unusually high congestion. 

To create the online representation of the current traffic 

situation it is necessary to adjust the number of vehicles in 

the simulation according to the induction loop counts 

provided through the Dynamic Data Update. Traffic can be 

adjusted by adapting either the flow or the density. We based 

our design on flow calibration which, despite being the 

simpler approach, has been proven to generate realistic 

online simulations, such as the simulation of the city of 

Duisburg, Germany, presented by Wahle et. al [8]. The flow 

describes the number of vehicles that pass a point in a 

specific amount of time. To regulate the flow the number of 

vehicles that pass over an induction loop in the simulation 

has to be adapted according to the readings of the 

corresponding induction loops in the real world. Granular 

induction loop data, consisting of individual numbers for 

different vehicles classes, can be used to adapt the number of 

vehicles individually for each vehicle class. 

In addition to the general traffic we model each individual 

public transport vehicle based on its route and scheduled 

departure time. Thus the location information for each of 

these vehicles can be extracted at every simulation step and 

is then processed by the iTranSIM-Out component which 

makes it accessible to other systems. 

E. Data provision 

The iTranSIM-Out component implements the Spatial 

API to make the vehicle location data estimated by the 

simulation available to end-user services in the application 

tier as well as to other iTransIT systems. The vehicle 

location information generated by the simulation is stored in 

a spatial data layer. A record for each vehicle is captured 

that contains vehicle identification, vehicle location and a 

timestamp indicating the last update to the record. We 

envisage that a variety of end-user services, possibly as part 

of an RTPI system, accesses the estimated vehicle location 

information to deliver it to travelers and controllers. Likely 

applications might include real time monitoring of the 

vehicles, using location data to organize and to schedule 

connection services, for example, to request one vehicle to 

wait for another vehicle so passengers can change over, or to 

display estimated waiting times at stops.  

V. EVALUATION 

A prototype of the iTranSIM vehicle location estimation 

systems has been realized as an extension of an existing 

prototype of the iTransIT ITS architecture. The iTransIT 

system prototype integrates various contextual information 

derived from a range of ITS currently deployed in Dublin 

City in the Republic of Ireland. The captured information is 

real data from legacy systems that has been integrated using 

emulations of the real legacy system interfaces. The notable 

exception to using data from the real systems is the data 

describing the detector loop counts. Although this data is 

available, its integration into the iTransIT system prototype 

has not been completed in time for this evaluation. Instead, a 

batch of empirical loop counts for the part of the road 

network modeled for this evaluation has been used which 

allowed us to make observations for average traffic 

conditions. Furthermore, the prototype was specifically 

designed so that once the live data becomes available 

experiments can be run using that data without any further 

alterations.  

All iTranSIM components, as well as the iTransIT system 

were hosted on a laptop computer with a single core, 2.5 

GHz, Pentium 4 processor and 512 MB RAM running 

Windows XP Professional. 

For our experiments we have modeled a section of the 

Dublin road network, consisting of 100 junctions and 146 

links with a total of 288 lanes, 36 of which are bus lanes. 

Figure 3 shows a high level overview of the section which 

stretches along one of Dublin’s major bus corridors. 

 

 

Figure 3. An overview of the modeled road network 

A. Traffic Simulation 

For the evaluation of the online simulation we have used 

empirical loop count data that was supplied via the Spatial 

API. The data was taken at a day with average traffic levels, 

for 20 induction loops spread across the road network that 

was modeled for our experiment. We used this data to 

simulate the traffic over the course of one day and in this 

environment simulated all journeys of a Route 15 bus in 



 

 

Dublin city center, starting with the first bus at 6:55am up 

until the last bus at 10:50pm adding up to a total of 43 bus 

journeys over the day. During the same time a total of 80000 

vehicles were simulated, up to 750 being active 

simultaneously. 

Figure 4 shows the travel times for individual buses 

within the simulation. The average vehicle density is split 

into 3 groups, high, medium and low, which are also 

presented in the chart (indicated by congestion levels 1-3).  

 

Figure 4. Bus travel times in the simulation  

The graph shows that the travel time for buses is longer 

with heavier traffic. Also, a comparison to empirically 

collected bus journey times illustrates that overall the 

simulated journey times deviate less than 20% from the 

average journey times measured on these bus trips, as shown 

in Table 1. The journey times were measured over three 

weeks and the median of those measurements was taken to 

find an average journey time corresponding to the empirical 

traffic data we have used. Once live induction loop count 

data becomes available in iTransIT we intend to repeat these 

experiments to further validate the accuracy of our approach.  

Table 1. Difference simulated and measured travel times 

Start 

Time 

Simulated 

Journey Time 

[s] 

Measured 

Journey Time 

[s] 

Deviation 

09:25 1006 928 -8.41% 

15:40 794 768 -3.39% 

18:15 795 991 19.78% 

22:10 555 689 19.45% 

 

B. Performance and Scalability 

Performance and scalability are vital for an estimation-

based system because ultimately, the estimated vehicle 

locations need to be made available in real-time for large 

vehicle fleets to be of use to passengers. This implies that a 

simulation step has to be completed before the next step is 

due. In the SUMO simulator we used for our experiments 

the length of a simulation step is one second, implying that 

all data input and output as well as all processing has to 

happen within one second. The length of a step could 

however be extended to account for larger networks where 

more processing capacity is needed to complete a single 

simulation step. We have identified three possible 

bottlenecks that might impact on the performance of our 

system. Two of those are related to the communication 

between the components, the third is the processing time 

needed for the simulation. 

The first bottleneck is the data retrieval from iTransIT 

systems using the Spatial API. The retrieval of the induction 

loop data has to happen continuously to keep the traffic flow 

calibration up-to-date. With the current implementation the 

data has to be requested for each induction loop individually, 

which leads to a considerable overhead even for our small 

scenario. The issue was flagged during our evaluation and a 

revised version of the Spatial API is planned. For evaluation 

purposes we also used a JDBC interface to access the spatial 

database directly. The retrieval of 4000 induction loop 

counts, the amount necessary to cover Dublin’s inner city 

completely, was achieved in approximately 500ms. This 

shows that once performance improvements are 

implemented in the Spatial API the data retrieval time will 

meet required deadline with an adequate buffer. 

The second potential bottleneck is the data 

communication to and from the traffic simulation. In our 

prototype the data updates were fed into the simulator in 

binary format using a TCP socket, the output from the 

SUMO simulator was also over a TCP socket, but in XML 

format. The messages necessary to transmit 4000 vehicle 

counts to the simulator added up to a total of approximately 

120kB which can be transferred in well under 100ms. On the 

output side experiments were conducted with 1000 vehicles 

reporting their position at the same time, which equals 

approximately the number of buses in the bus fleet in 

Dublin. Transfer and parsing of this data took about 500ms. 

From the results we see that the data transfer to and from the 

simulation can be achieved in the required timeframe while 

the components can be distributed over the network.  

The computation of the simulation is considered another 

possible bottleneck as it is very CPU intensive. The main 

influence on the time needed for the computation of the next 

step is the number of active vehicles in the simulation. The 

time can be approximated to be a linear function of the 

number of active vehicles, because for every vehicle the 

calculation of its new position is independent of the other 

calculations. In a simulation of Dublin’s inner city, which 

represents approximately 200 miles of road network with up 

to 20000 active vehicles, the time required to calculate a 

single step was about 700ms. 

Although a simulation step length of one second was used 

for our simulation the impact on the accuracy is expected to 

be minimal should the simulation step be extended to a few 

seconds. This would widen the timeframe required to meet 
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the real time requirements which in turn would allow to 

perform the simulation with fewer resources. 

Taking into account the above measurements and the 

potential for distributing the different components we 

conclude that, with the current state of hardware, it should 

be feasible to realise an estimation-based vehicle location 

system on a metropolitan scale.   

VI. CONCLUSION 

This paper presented a system for estimating the location 

of public transport vehicles based on contextual information 

commonly available in existing ITS infrastructure thereby 

eliminating the need to deploy and maintain sensory 

equipment in every tracked vehicle. We have shown how 

such a system can be realized as part of the ITS 

infrastructure of Dublin. Our initial evaluation shows the 

feasibility of such an approach based on a prototypical 

implementation that extends the iTransIT ITS framework. 

We envisage our work leading towards an advanced 

public transport system providing real-time passenger 

information to travelers. We are planning to further evaluate 

our approach by increasing the scale of the public transport 

network and with a special focus on the accuracy of the 

estimated vehicle locations. 
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