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Abstract

We present the Curry–Howard correspondence for constructive logic via
natural deduction, typed λ-calculus and cartesian closed categories. We
then examine how the correspondence may be extended to classical logic
and non-constructive proofs, and discuss some of the problems and ques-
tions that then arise.
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1 Constructive Logic

1.1 Introduction

The question of the constructiveness of proofs lies at the intersection of logic,
computer science and the philosophy of mathematics. In philosophy, we ask for
the meaning of an existential formula, that is, one of the form ∃x.Fx. In par-
ticular, we ask what a proof of such a formula consists of. Constructivists argue
that such a proof must construct an object a such that Fa, while classically it
is enough to prove that it is impossible for no such a to exist. Constructivists
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must for this reason reject certain principles of classical logic, such as the ex-
cluded middle P ∨ ¬P and the double-negation rule ¬¬P → P . Constructive
logic, therefore, is a proper subsystem of classical logic, and an object worthy
of study in its own right.

In computer science, the Curry–Howard correspondence, and generaliza-
tions1 of it known as ‘realizability interpretations’, give a remarkably elegant
way to extract from a constructive formal proof an algorithm that justifies that
proof. In particular, a proof of an existential theorem ∃x.Fx yields an algorithm
that computes a witness for that theorem — namely an object a such that Fa.
This means, for example, that a formula like ∀~x.(F (~x) → ∃y.G(~x, y)) can be
interpreted as a specification, with the predicate F as precondition and G as
postcondition. A constructive formal proof of this formula will yield a program
that, given (representations of) objects ~a satisfying F (~a) (together with a proof
of this fact) will return an object b such that (and a proof that) G(~a, b).

For a long time, this correspondence between constructive proofs and algo-
rithms was thought to bolster the position of the constructivists. While con-
structive proofs had a concrete meaning expressed in terms of computations, it
seemed that classical proofs did not, and thus that their meaning was unclear.
This picture has changed in the last fifteen years or so with the discovery of
a Curry–Howard correspondence for classical logic, which is the subject of this
report.

To begin, we will present the Curry–Howard correspondence for construc-
tive (minimal and intuitionistic) logic, expressed in terms of natural deduction.
There follows a discussion of intuitionistic sequent calculus LJ and two term
calculi for it, which leads, via a natural generalization, to a consideration of
classical sequent calculus LK. We then present various equivalent term calculi
for LK, and conclude with an examination of the outstanding problems and
issues with this interpretation of classical logic. In particular, we will see that
while there is a very neat three-legged correspondence linking minimal logic,
typed λ-calculi and cartesian closed categories, and while there are λ-calculi
that correspond closely to classical logic, the problem of giving sufficiently gen-
eral categorical models of classical logic is very much open. This is closely
related to the familiar problem of giving an appropriate notion of equality for
non-deterministic rewrite systems.

Sections 1.5 and 2.5 require some knowledge of basic category theory. See
e.g. [Mac98] (the standard reference) or [BW95].

We conclude this section with some notation and basic definitions.

1.1.1 Definition. The language of propositional logic is generated by the fol-
lowing grammar, where P ranges over a countably infinite set of proposition
letters P = {p1, p2, . . .}.

F ::= P | ⊥ | F → F | F ∧ F | F ∨ F | ¬F

Strings of the language are called propositional formulas, or just formulas. The
four connectives bind increasingly tightly from left to right, so that e.g. A →
¬B ∧C is parsed as A→ ((¬B)∧C). The connectives ∧,∨ are associative, and
→ associates to the right.

1Actually, realizability was formulated nearly twenty-five years before the Curry–Howard
correspondence became widely known — 1945 [Kle45] versus 1969 [How80] — and over a
decade before the latter’s first appearance in print in 1958 [CF68].
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The language of implicative propositional logic is that generated by the first
three clauses. The last clause may be eliminated by defining ¬F as F → ⊥.
The metavariables A,B,C, . . . will be used to range over formulas.

1.1.2 Definition. A morphism f : A → B between objects A and B is an
isomorphism if there exists a morphism f̃ : B → A such that f̃ is a left and
right inverse to f , i.e. f̃ ◦ f = 1A and f ◦ f̃ = 1B , where 1 is the identity
morphism. We write f : A ∼= B when this holds. In general, the inverse to an
isomorphism f will be denoted f̃ (rather than f−1).

1.1.3 Definition. A partial order is a relation ≤ on a set S that satisfies the
following properties for all x, y, z ∈ S.

• Reflexivity:
x ≤ x

• Transitivity
x ≤ y and y ≤ z implies x ≤ z

• Antisymmetry
x ≤ y and y ≤ x implies x = y

A structure 〈S,≤S〉 where S is a set and ≤S a partial order is called a poset, and
is usually referred to simply as S. A homomorphism between posets S and T ,
i.e. a function f : S → T that respects the orders, is called a monotone function.

A preorder is a relation v that is reflexive and transitive. A preordered set
can be viewed as a category where each hom set has at most one element, with
hom(a, b) = {∗} iff a v b. Monotone functions are then simply functors.

1.1.4 Definition. A Galois connection is given by two posets S and T together
with two monotone functions f∗ : S → T (lower adjoint) and f∗ : T → S (upper
adjoint) such that for all s ∈ S, t ∈ T

f∗(s) ≤T t iff s ≤S f∗(t)

or equivalently
s ≤S (f∗ ◦ f∗)(s) and (f∗ ◦ f∗)(t) ≤T t

When S and T are viewed as categories as above, this states exactly that f∗ a f∗.

1.1.5 Definition. Given sets S, T of trees, a strong isomorphism φ : S ≡ T
is a bijection φ : S ∼= T such that for all s ∈ S, s ∼= φ(s) (and thus φ̃(t) ∼= t
for t ∈ T ). If such an isomorphism exists, we say that S and T are strongly
isomorphic.

This terminology is not standard.

1.2 The BHK Interpretation

Although several varieties of constructivism were promulgated during the twen-
tieth century, we will consider only the most influential — the school of intu-
itionism, founded by Brouwer. Intuitionism had its roots (see [AR01]) in the
late-nineteenth-century reaction, exemplified by Kronecker, against the increas-
ing use of transfinite, non-constructive methods of proof. Just as Kronecker,
according to folklore, had declared that
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God made the integers — all the rest is the work of man,

Brouwer developed his philosophy as an extension of Kant’s characterization of
the natural numbers as given by the ‘forms of intuition’, and thus primordial.
The rest of mathematics was to be reconstructed on this basis using purely
constructive techniques (see e.g. [Dum00]).

Brouwer’s doctrines, and the work by Heyting and Kolmogorov [Kol67]
on intuitionistic logic, gave rise to a constructive interpretation of the logical
connectives that has become standard. It is known as the Brouwer–Heyting–
Kolmogorov (BHK) interpretation, and spells out inductively the conditions
intuitionistically necessary for an object to be considered a proof of or to ‘real-
ize’ a given formula (see e.g. [Hey66]):

• The form of a proof of an atomic formula is taken as known. For example,
in Heyting arithmetic, a direct computation will serve as a proof of t = u.

• A proof of A∧B is a pair 〈a, b〉 consisting of a proof a of A and a proof b
of B.

• A proof of A ∨ B is a either a proof of A or a proof of B, together with
an indication of which it is (i.e. disjoint union).

• A proof of A→ B is a ‘construction’ c that turns any proof a of A into a
proof c(a) of B.

• There is no proof of ⊥.

These notions of ordered pair, union etc. should be familiar to any computer
scientist. Notice that the clause for implication means that a system of realizers
for intuitionistic logic must include higher-order functions.

In predicate logic, the quantifiers are interpreted as follows, where S is one
of a set of given ‘sorts’ (and usually omitted in the one-sort case).

• A proof of ∀x : S.A[x] is a construction c that turns any object s ∈ S into
a proof c(s) of A[s].

• A proof of ∃x : S.A[x] is a pair 〈s, p(s)〉 consisting of an object s ∈ S and
a proof p(s) of A[s].

From this one can see that, as mentioned above, a constructive proof of a Π2

formula ∀x.(F (x) → ∃y.G(x, y)) must take an object a and a proof of F (a) and
return a pair containing an object b and a proof of G(a, b).

This interpretation of the connectives and quantifiers is obviously useful for
deriving provably correct programs. A notable example is the proof assistant
Coq2, which, as well as helping the user to derive constructive formal proofs, can
extract the algorithmic content of those proofs, yielding programs in e.g. ML or
Haskell.3

2http://coq.inria.fr
3One particularly impressive case is the CompCert compiler — a C compiler for MacOS X

entirely verified in Coq. See http://compcert.inria.fr.
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1.3 Natural Deduction

In the past, formal proofs were usually given in the traditional linear style
due (or attributed) to Euclid, where a derivation would begin with axioms and
proceed line by line, with each line derived from those preceding it by means of
some inference rule. Nowadays such logics are known as ‘Hilbert systems’. This
format can be somewhat cumbersome and inelegant, both because it does not
follow the reasoning-patterns of ordinary mathematics and because it is itself
not especially suited to mathematization.

In the 1930s, the logician Gerhard Gentzen introduced4 a formalism called
‘natural deduction’ [Gen69], which instead of axioms uses a tree-like layout that
proceeds from hypotheses to conclusion via inference rules, one or more for each
connective. These systems are more elegant and better suited to the needs of
proof theory than Hilbert systems.

1.3.1 Definition (Adapted from [TS00]). A natural deduction derivation is a
finite tree, where leaves are labelled with a formula, a name and a discharged
flag, and nodes are labelled with the name of an inference rule and a formula
(the conclusion of the rule). The conclusion of a leaf with formula A is A.
Derivations are thus generated by the following grammar, where x ranges over
a countable set of names, ρ over a set of inference rules and A over formulas.

D ::=
x

A |
x

A | D · · · D ρ
A

The overlining of the second form indicates that the discharged flag is set. The
leaves of derivations are intended to represent hypotheses, each having a name
x, written as Ax or x : A. The sets of leaves with the same names form packets
of hypotheses, and distinct formulas must belong to distinct packets. Packets
may be empty. Inference rules may discharge packets of hypotheses, meaning
that the proof no longer depends on the formula involved. Each leaf belonging
to the packet then has its discharged flag set. A closed derivation is one where
every packet has been discharged. An undischarged packet is open or active.

In everyday mathematical practice, one reasons by beginning with a hy-
pothesis A, deducing some consequence B and concluding A→ B, discharging
a hypothesis in the process. Symmetrically, if one has proved A → B and A,
one can conclude B, as with modus ponens.

1.3.2 Definition. The system NM→ of implicative minimal propositional logic
is a system of natural deduction given by the following rules.

x
A
...
B →+

xA→ B

A→ B A →−
B

In the first rule, the packet Ax is discharged.
4Gentzen’s system was anticipated by Jáskowski — see [Pra06, Appendix C] for a brief

overview.
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Observe that the rule →+ introduces the connective → while the rule →−

eliminates it. This pattern is followed by the natural deduction rules for the
other connectives, and is closely analogous to the constructor/destructor dis-
tinction familiar to computer scientists.

1.3.3 Remark. As an example, one of the standard axioms for Hilbert systems
can be proved in NM→ with the following closed derivation.

x
A →+

yB → A →+
xA→ B → A

This derivation makes use of an empty packet By. A proof of another of the
standard axioms uses →−:

x
A→ B → C

z
A →−

B → C

y
A→ B

z
A →−

B →−
C →+

zA→ C →+
y(A→ B) → (A→ C)

→+
x(A→ B → C) → (A→ B) → (A→ C)

This derivation is also closed. If the last rule was erased, the packet x would
remain open.

1.3.4 Definition. The rules for conjunction ∧ are these, where i = 1, 2:

A1 A2 ∧+

A1 ∧A2

A1 ∧A2 ∧−iAi

The system NM→ extended with these rules is called NM→∧.

1.3.5 Definition. The rules for disjunction are as follows, where i = 1, 2:

Ai ∨+
iA1 ∨A2 A1 ∨A2

x
A1

...
B

y
A2

...
B
∨−x,yB

In the second rule, the hypotheses x and y are discharged. The system NM→∧

extended with these rules is the full system NM .

1.3.6 Definition. Intuitionistic natural deduction NJ is obtained from NM
by adding the following rule of ex falso quodlibet :

⊥ ⊥−
A

Classical natural deduction NK adds to NJ the rule of duplex negatio affirmat
(double negation):

¬¬A ¬¬−
A
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An alternative to NK is the system NKm of multiple-conclusion natural deduc-
tion (see e.g. [Dum00]), where nodes are labelled with a sequence of formulas.
This system will be treated in section 2.4.

1.3.7 Definition. We write `L A to mean that the judgement A can be derived
in the system L. If L allows hypotheses, then we write Γ `L A when A can
be derived under the hypotheses Γ. If D is a derivation of A under Γ then we
write D :: Γ `L A. The name of a system L may be used to denote the set of
derivations of L.

An alternative to the above treatment of hypotheses is to maintain a list of
those active at each stage of the proof. This is more cumbersome for humans,
but better for theorem provers, and makes induction on proof-trees easier. It
also makes empty hypothesis-packets explicit.

1.3.8 Definition. A formula context is a finite set of named formulas {x1 :
A1, . . . , xn : An}, where each of the xi are distinct. The set-braces are usually
omitted. A (minimal) sequent is a string of the form Γ . A, where Γ is a
formula context. The union of two formula contexts Γ and ∆ is denoted Γ,∆.

The definition of a derivation is modified accordingly.

1.3.9 Definition. A natural deduction derivation with explicit hypotheses is a
finite sequent-labelled tree where leaves are of the form

Γ, x : A . A

and nodes are well-formed with respect to a set of inference rules.

1.3.10 Definition. The system NM may be formulated with explicit hypothe-
ses using the following rules, where the Ax rule gives the form of leaf sequents
as above.

AxΓ, x : A . A

Γ, x : A . B
→+

xΓ . A→ B
Γ . A→ B Γ . A →−

Γ . B

Γ . A Γ . B
Γ . A ∧B

Γ . A1 ∧A2 ∧−iΓ . Ai

Γ . Ai ∨+
iΓ . A1 ∨A2

Γ . A1 ∨A2 Γ, x : A1 . B Γ, y : A2 . B
∨−x,yΓ . B

1.3.11 Remark. Let NM ′ denote the above system: clearly, Γ `NM A iff
`NM ′ Γ . A. From now on, we use NM ′ instead of NM , regarding the two as
equivalent. We extend the turnstile notation to systems with explicit hypotheses
by writing Γ ` A instead of ` Γ . A.

1.4 λ-Calculus

The λ-calculus is an abstract theory of functions, on which many modern pro-
gramming languages are ultimately based. Because it axiomatizes the notion of
‘computable higher-order function’, it is well suited to interpreting constructive
logic.

We begin with some standard definitions (see e.g. [Bar81, HS86]):
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1.4.1 Definition. The set Λ of λ-terms M is given by the grammar:

M ::= x | λx.M | (M M)

where x ranges over a countably infinite set V of variables. Application (M N)
is left associative, so that e.g. the term ((M N) L) may be written MNL.
The scope of a λ extends as far to the right as possible, until interrupted by a
close-parenthesis or a space.

1.4.2 Definition. The set FV(M) of free variables of a λ-term M is defined as
follows:

FV(x) = {x}
FV(λx.M) = FV(M) \ {x}

FV((M N)) = FV(M) ∪ FV(N)

The set BV(M) of bound variables of M is defined as

BV(x) = ∅
BV(λx.M) = BV(M) ∪ {x}

BV((M N)) = BV(M) ∪ BV(N)

1.4.3 Definition. The substitution M [x := N ] of a λ-term N for a variable x
in a λ-term M is defined as follows:

x[x := N ] = N
y[x := N ] = y

(M1 M2)[x := N ] = (M1[x := N ] M2[x := N ])
(λy.M)[x := N ] = λy′.(M [y := y′][x := N ]), y′ 6∈ FV(N)

1.4.4 Definition. Two λ-terms M,N are said to be α-equivalent M ≡α N if
they differ only in the names of their bound variables. Axiomatically,

λx.M ≡α λy.(M [x := y])

and if = denotes syntactic equality, then α-equivalence is the quotient =/≡α.
Unless otherwise specified, we consider terms only up to this relation.

1.4.5 Definition. The (one-step) relation of β-reduction �β is defined on Λ as

(λx.M N) �β M [x := N ]

β-reduction �β is defined as the reflexive and transitive closure of �β , and
β-equality =β as its reflexive, transitive, symmetric closure.

The relation of η-reduction is defined as

λx.(Mx) �η M

where x 6∈ FV(M). As with β-reduction, there is a reflexive and transitive
closure �η and a symmetric closure =η of that.

A term M such that M �M ′ is called a reducible expression, or redex, and
the term M ′ is its reduct. A term that contains no redexes is said to be in
normal form.

These six relations are extended to the whole of Λ by congruence with respect
to the term constructors, so that e.g. if M � M ′ then λx.M � λx.M ′ and if
also N � N ′ then MN �M ′N ′. The unions of these relations will be denoted
�βη, �βη, =βη, etc. The second is a preorder, the third an equivalence relation.
The subscript may be dropped if there is no danger of ambiguity.
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The operations of λ-abstraction and application provide higher-order func-
tions to interpret implication. We may also add constructs to interpret conjunc-
tion and disjunction, namely ordered pairs and unions.

1.4.6 Definition. Pairing and union operators are added to the λ-calculus as
follows: if M,N are terms then

π1M π2M 〈M,N〉

are terms, with reduction rules

π1〈M,N〉 �β M
π2〈M,N〉 �β N

〈π1M,π2M〉 �η M

Unions are defined using injection and case operators:

ι1M ι2M [x.M1|y.M2]N

with reduction rules

[x.M1|y.M2]ι1N �β M1[x := N ]
[x.M1|y.M2]ι2N �β M2[y := N ]

[x.ι1x|y.ι2y]M �η M

1.4.7 Remark. The η-reduction rules are sometimes interpreted as increasing,
e.g. M � 〈π1M,π2M〉. We may then think of the projections as an ordered pair
(π1, π2) : Λ → Λ× Λ, in which case we have, for all M,N :

((π1, π2) ◦ 〈−,−〉)(M,N) � (M,N)
M � (〈−,−〉 ◦ (π1, π2))(M)

which expresses a Galois connection (see def. 1.1.4) between the pairing and
projection operators. A similar relation holds between the term constructors
for the other types, when η is interpreted as an expansion. Developing this
point of view leads to the use of bicategories and lax adjunctions to model
typed rewrite systems: see e.g. [See87, Gha95, Hil96].

Types

The λ-calculus with pairing and unions is a system of realizers for NM . In
order to restrict the set of λ-terms to those that realize theorems of NM , we
introduce types. Typing is of course also used in programming languages to
provide compile-time consistency-checking.

1.4.8 Definition. The set T (S) of simple types A is freely generated over a
set S of atomic types by way of the following grammar, where P ∈ S:

A ::= P | ⊥ | A→ A | A×A | A+A

The set T →(S) is that generated by the first three productions, and similarly
for other superscripts. The set S will usually be left implicit.
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1.4.9 Definition. The set ΛT→ of simply-typed λ-terms is a subset of Λ×T →
determined by derivability in the system λ→, defined below. An analogous
notation may be used for extensions of the system to include other types defined
above. In symbols:

ΛT→ = {(M,A) ∈ Λ× T → | ∃Γ.Γ `λ→ M : A}

The functions FV and BV are defined just as for Λ, giving the free and bound
variables of a term together with their types.

A term M of type A is denoted M : A or MA, although terms will often
have most or all of their types omitted.

1.4.10 Definition. A type environment is a set of variable–type pairs, where
the variables are distinct. They are written as sequences:

Γ ::= · | Γ, x : A

Given type environments Γ and ∆, their union is denoted Γ,∆. The pair x : A
may stand for the obvious singleton environment.

Type environments may be regarded as functions V → T , so that e.g. if
Γ = x1 : A1, . . . xn : An, then dom(Γ) = {x1, . . . , xn}, and so on.

1.4.11 Definition. The simply-typed λ-calculus λ→ is defined by the following
rules, where Γ is a type environment:

Γ, x : A . x : A

Γ, x : A . M : B
→+

Γ . λx.M : A→ B

Γ . M : A→ B Γ . N : A →−
Γ . (M N) : B

Terms of product type are derived as follows, for i = 1, 2:

Γ . M1 : A1 Γ . M2 : A2 ×+

Γ . 〈M1,M2〉 : A1 ×A2

Γ . M : A1 ×A2 ×−iΓ . πiM : Ai

Terms of sum type are derived as follows, for i = 1, 2:

Γ . M : Ai
++

iΓ . ιiM : A1 +A2

Γ . M : A1 +A2 Γ, x : A1 . N1 : B Γ, y : A2 . N2 : B
+−

Γ . [x.N1|y.N2]M : C

The Curry–Howard Correspondence

1.4.12 Remark. Observe now that there is a bijection between proofs of NM→

and derivations in λ→. We map the latter to the former with a function that
forgets the λ-term:

Γ . M : A 7→ Γ . A
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which obviously commutes with the inference rules, while from an NM -proof
we can build a typing derivation by induction:

Γ, x : A . A 7→ Γ, x : A . x : A

Γ, x : A . B

Γ . A→ B
7→ Γ, x : A . M : B

Γ . λx.M : A→ B

Γ . A→ B Γ . A
Γ . B

7→ Γ . M : A→ B Γ . N : A
Γ . MN : B

It is easy to see that this is a bijection — indeed, an NM→ proof and a λ→

derivation that map to each other are themselves isomorphic as trees, and hence
we get a strong isomorphism (def. 1.1.5) NM→ ≡ λ→. This extends in the
obvious way to the full system NM , by the mapping on types × ↔ ∧,+ ↔ ∨.

In fact, we can go further than this, since a typed λ-term is isomorphic to
its own typing derivation. The only snag in constructing a bijection is that a
type environment may contain unused variables. However, we can single out a
minimal environment, which is the point of the following.

1.4.13 Proposition. Define a partial order on λ→ derivations D :: Γ . M : A
and D′ :: Γ′ . M : A by D ≤ D′ iff Γ ⊆ Γ′. Then there are functions

λ→
φ -�
ψ

ΛT→

such that φψ = 1ΛT→ and ψφ ≤ 1λ→ in the pointwise order.

Proof. First note that if Γ ` M : A then FV(M) ⊆ Γ. Define φ(D :: Γ . M :
A) = M , and let ψΓ be defined as follows, where Γ is a type environment:

ψΓ(x : A) = Γ . x : A

ψΓ(λxA.MB) =
ψΓ,x:A(M)

Γ . λx.M : A→ B

ψΓ(MA→BNA) =
ψΓ(M) ψΓ(N)

Γ . MN : B

Define ψ(M) = ψFV(M)(M), and observe that if ψ(M) = D :: Γ . M : A then
Γ = FV(M) (thus Γ is the ‘minimal environment’ we are looking for). Observe
also that the value of ψΓ(x : A) is a well-formed axiom sequent, because if M is
the term we started with then either x : A ∈ FV(M) or x : A ∈ BV(M): in the
latter case x : A ∈ Γ by the second clause.

Now for some D and Γ

φψ(M) = φ(D :: Γ . M : A) = M

and thus φψ = 1ΛT→ . Given D :: Γ . M : A

ψφ(D) = ψFV(M)M = D′ :: Γ′ . M : A

where Γ′ = FV(M). Since FV(M) ⊆ Γ, we have that Γ′ ⊆ Γ, implying D′ ≤ D
and thus that ψφ ≤ 1λ→ .
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Again, this extends to the systems with the full complement of types or con-
nectives. By considering derivations up to the (practically trivial) equivalence
relation ∼ = ker ψφ that disregards unused variables and extending it to NM
via the bijection of remark 1.4.12, we get the strong isomorphisms:

NM/ ∼ ≡ λ→×+/ ∼ ≡ ΛT

So to any NM proof there corresponds an isomorphic typed λ-term — but the
correspondence is even closer than that, extending to cover reduction rules too,
as the following shows.

1.4.14 Proposition (Subject Reduction). If Γ `λ→ M : A, and M �M ′, then
Γ `λ→ M ′ : A.

Proof. We show that the reduction relation on Λ can be extended to λ→, thereby
yielding a derivation of Γ . M ′ : A. Indeed, given the equivalences shown
above, it should not be surprising that this can be done: we could simply use
the functions φ and ψ from the previous proposition. However, we will instead
give the rewrite rules explicitly.

We define substitution of derivations using the following meta-rule:

Γ . N : A Γ, x : A . M : B
Cutx

Γ . M [x := N ] : B

The definition of substitution (def. 1.4.3) is extended via Cut to derivations in
λ→ as shown in figure 1.4.1. Now we can lift �βη to λ→:

D
Γ, x : A . M : B

Γ . λx.M : A→ B
E

Γ . N : A
Γ . λx.M N : B

�β

E
Γ . N : A

D
Γ, x : A . M : B

Γ . M [x := N ] : B
D

Γ . M : A→ B Γ, x : A . x : A
Γ, x : A . Mx : B

Γ . λx.Mx : A→ B

(x 6∈ FV(M))

�η
D

Γ . M : A→ B

We extend the reduction relation to λ→ by congruence, as with Λ (def. 1.4.5).
Induction on derivations then shows that given D :: Γ . M : A, if M � M ′

then there is a D′ such that D � D′ and D′ :: Γ . M ′ : A.

The above shows that for any NM proof of a formula A there is a typed λ
term isomorphic to it, which, in the spirit of the BHK interpretation, may be
thought of as a realizer of A. What the equivalences mean is that given suitable
notions of reduction, as in the proposition, a proof of a formula A may itself act
as a realizer of A.

1.5 Models

Intuitionistic logic has a standard truth-value semantics in Heyting algebras.

12



D
Γ . N : A Γ, x : A . x : A

Cutx
Γ . x[x := N ] : A

= D
Γ . N : A

D
Γ . N : A Γ, y : A . y : A

Cutx
Γ . y[x := N ] : A

= Γ, y : A . y : A

D
Γ . N : A

E
Γ, x : A . M : B → C

E′

Γ, x : A . M ′ : B
Γ, x : A . MM ′ : C

Cutx
Γ . (MM ′)[x := N ] : C

=
D

Γ . N : A
E

Γ, x : A . M : B → C

Γ . M [x := N ] : B → C

D
Γ . N : A

E′

Γ, x : A . M ′ : B
Γ . M ′[x := N ] : B

Γ . (M [x := N ] M ′[x := N ]) : C

D
Γ . N : A

E
Γ, x : A, y : B . M : C

Γ, x : A . λy.M : B → C
Cutx

Γ . (λy.M)[x := N ] : B → C
=

D
Γ . N : A

E

Γ, x : A, y′ : B . M [y := y′] : C
Cutx

Γ, y′ : B . M [x := N ] : C
Γ . λy′.M [y := y′][x := N ] : B → C

Figure 1.4.1: Substitution in λ→
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1.5.1 Definition. A lattice is a poset in which every pair of elements a, b has
both a least upper bound, called sup{a, b} or join a ∨ b, and a greatest lower
bound, called inf{a, b} or meet a ∧ b. A lattice is bounded if it has least and
greatest elements 0 and 1 (which are the units of ∨ and ∧ respectively). Because
∨ and ∧ are easily shown to be associative, a bounded lattice is therefore a poset
that has all finite (including empty) joins and meets.

1.5.2 Definition. A Heyting algebra is a bounded lattice H where for all a ∈ H
the function x 7→ x ∧ a has an upper adjoint (def. 1.1.4) y 7→ a ⇒ y. The
operation a ⇒ b thus denotes the greatest c such that a ∧ c ≤ b. This means
that a ≤ b iff a⇒ b = 1. Negation ¬a is defined as a⇒ 0.

1.5.3 Definition. A valuation on a Heyting algebra H is a function v : P → H
from proposition letters to elements of H. Given a formula A and a valuation
v, the denotation JAKv of A with respect to v is defined by induction as follows,
where P ∈ P and Γ is a sequence of formulas:

JP Kv = v(P )
J⊥Kv = 0

JA→ BKv = JAKv ⇒ JBKv

JA ∨BKv = JAKv ∨ JBKv

JA ∧BKv = JAKv ∧ JBKv

JΓKv = J
∧

ΓKv

If JAKv = 1, we say that v satisfies A, written v � A. A is valid if v � A for
all valuations v, written simply � A. If, for all v, v � A implies v � B then we
write A � B, and similarly for sequences of formulas Γ.

We state the following standard result without proof.

1.5.4 Proposition.

• NJ is sound: Γ `NJ A implies Γ � A

• NJ is complete: Γ � A implies Γ `NJ A.

A lattice, being a preorder, can only model the entailment relation, that is,
the existence or otherwise of a proof of A ` B. To distinguish between different
proofs of the same entailment, we need to move to categories, where hom sets
may have more than one element.

1.5.5 Definition. A cartesian category C is a category with all finite products
— equivalently, one with binary products and a terminal object. That is, for
all A,B,C ∈ C, the maps π1, π2 exist, and for any f : C → A, g : C → B, the
dotted arrows exist uniquely such that the diagram on the right commutes.

A

>

3A......?

.......

C

A �
π1

f

�
A×B

〈f, g〉......?

.......

π2

- B

g

-

14



The definition of a cocartesian category is dual — it is a category with all finite
coproducts, i.e. binary coproducts A+B and an initial object ⊥, with mediating
morphisms written as [f, g] and 2A, for all A,B,C and f : A→ C, g : B → C.

1.5.6 Remark. Observe that in any cartesian category, by uniqueness of 3, we
have 3> = 1> and, for all f : A→ B, 3B ◦ f = 3A; i.e. the following diagram
commutes:

A

>

3A

-

B

f

? 3B

-

The dual holds in any cocartesian category: 2⊥ = 1⊥ and f ◦2A = 2B .

1.5.7 Definition. A cartesian closed category (CCC) is a cartesian category
C where for each object A ∈ C the functor − × A has a right adjoint A ⇒ −.
The adjunction 〈− × A,A ⇒ −, φA〉, where φA : C(−× A,−) ∼= C(−, A ⇒ −)
is the isomorphism of adjunction, gives rise to the following two-way inference
rule:

f = φ̃A(g) : B ×A→ C

g = φA(f) : B → A⇒ C

and to the usual natural transformations (unit and counit):

ηA : 1C ˙−→ A⇒ (−×A) ηA
B = φA(1B×A)

εA : (A⇒ −)×A ˙−→ 1C εAC = φ̃A(1A⇒C)

A bicartesian closed category (BCC) is a CCC with all finite coproducts. An
almost bicartesian closed category (ACC) is a CCC with n-ary coproducts for
n ≥ 2 — that is, a BCC that need not have an initial object.

To interpret a proof of NM (or a term of λ→×+) in an ACC C, we simply
generalize def. 1.5.3. That is, the denotation of a derivation

D :: x1 : A1, . . . , xn : An . B

instead of being an inequality ∧
i

JAiK ≤ JBK

will be an arrow in C: ∏
i

JAiK
JDK- JBK

1.5.8 Definition. An interpretation of a typed λ-calculus L in a BCC C is
given by the assignment of an object of C to each atomic type of L. The
interpretation is extended to compound types by

J⊥K = ⊥
JA×BK = JAK× JBK

JA→ BK = JAK ⇒ JBK
JA+BK = JAK + JBK

Jx1 : A1, . . . , xn : AnK = JA1K× · · · × JAnK

15



Typing derivations (and thus terms, cf. proposition 1.4.13) are interpreted as
follows, where φ, φ̃ are as in def. 1.5.7, and δA : A→ A×A is the diagonal map.

JΓ . M [x := N ] : BK = JΓ, x : A . M : BK
◦ (Γ× JΓ . N : AK) ◦ δΓ

Jx1 : A1, . . . , xn : An . xi : AiK = πi

JΓ . 〈M,N〉 : A×BK = 〈JΓ . M : AK, JΓ . N : BK〉
JΓ . πiM : AiK = πi ◦ JΓ . M : A1 ×A2K

JΓ . ιiM : A1 +A2K = ιiJΓ . M : AiK
JΓ . [x.N1|y.N2]M : CK = [JΓ, x : A . N1 : CK, JΓ, y : B . N2 : CK]

◦ JΓ . M : A+BK

JΓ . λx.M : A→ BK = φA
Γ,B(JΓ, x : A . M : BK)

JΓ, x : A . MA→Bx : BK = φ̃A
Γ,B(JΓ . M : A→ BK

The last clause is extended to cover all applications by observing that MN =
(Mx)[x := N ] for x 6∈ FV(M).

This interpretation is sound with respect to =βη because by def. 1.5.7

JΓ . λx.M NA : BK = φ̃A
Γ,Bφ

A
Γ,B(JΓ, x : A . M : BK)

◦ (Γ× JΓ . N : BK) ◦ δΓ
= JΓ, x : A . M : BK ◦ (Γ× JΓ . N : AK) ◦ δΓ
= JΓ . M [x := N ] : BK

and similarly for =η and the other type constructors.

Because this interpretation is sound, any ACC is a model of NM and of λ→,
for some choice of atomic propositions or types.

1.5.9 Remark. Until now, we have not discussed intuitionistic logic, with its
extra rule of ex falso quodlibet ⊥ ` A for all A. We can now interpret this rule in
any BCC by means of the initial object ⊥. This amounts to adding a constant
A to λ→, with the following rules (see [Gal93]):

Γ . M : ⊥
Γ . AA(M) : A

(AA→B(M) N) � AB(M)
πiAA1×A2(M) � AAi(M)

[x.NC
1 |y.NC

2 ]AA+B(M) � AC(M)

The A combinator has the effect of discarding terms surrounding its argument.
It can thus be thought of as an exit operator.

Although there is no problem with interpreting intuitionistic logic in bicarte-
sian closed categories, attempting to extend the correspondence to classical logic
in the obvious way — by making the canonical arrow Jλxy.yxK : A→ ¬¬A into
an isomorphism — fails dramatically, as a result of the following.

1.5.10 Proposition (Joyal). In a CCC with initial object, if hom(A,⊥) is
nonempty then A ∼= ⊥.

16



Proof. ([LS86, Prop. 8.3, p. 67]) Given an arrow g : A → ⊥, the following
diagram commutes — the left square by definition of π2 (def. 1.5.5), the right
by remark 1.5.6:

A
g - ⊥

2A - A

A×⊥

〈1A, g〉

?

π2

- ⊥

wwwwwwwwww
2A×⊥

- A×⊥

π1

6

Since hom(A×⊥, A×⊥) ∼= hom(⊥, A⇒ A×⊥) = {2A⇒A×⊥} is a one-element
set, the bottom composite 2A×⊥π2 = 1A×⊥. Thus

2A ◦ g = π1 ◦2A×⊥ ◦ π2 ◦ 〈1A, g〉
= π1 ◦ 〈1A, g〉
= 1A

and
g ◦2A = 2⊥ = 1⊥

so A ∼= ⊥. In particular, hom(A,⊥) contains at most one element.

Corollary. A ‘Boolean category’ — a CCC B with initial object where A ∼= ¬¬A
for all A — is equivalent to a Boolean algebra.

Proof. Suppose A ∼= ¬¬A for all A. Then for any objects A and B,

hom(B,A) ∼= hom(B,¬¬A) (Yoneda)
∼= hom(B × ¬A,⊥) (−× ¬A a ¬A⇒ −)
∼= {∗} or ∅ (Prop. 1.5.10)

Thus B is a preorder. The equivalence BoolCat ' BoolAlg is easily checked.

This shows that the notion of a model of classical proofs is not as straight-
forward as it may seem. Indeed, we will see in section 2.5 that the correct such
notion is still being sought, while remark 2.3.6 shows how this issue relates to
the question of giving an appropriate notion of equality for classical proofs.

We have now covered, though only superficially, all three aspects of the
modern approach to the Curry–Howard correspondence for minimal logic —
logic, λ-calculus and category theory. The correspondence can be extended to
predicate logic and type theory: see [LS86] for details. Here, however, we will
examine a similar correspondence for sequent calculus, and show how classical
logic may be given a natural computational interpretation.

2 Classical Logic

From what we have seen, it would seem counter-intuitive that classical logic
could have any computational interpretation. Nevertheless, we will see that,
by expressing the Curry–Howard correspondence in terms of sequent calculus

17



M : C1 → C2 → · · · → Cm → B N1 : C1

MN1 : C2 → · · · → Cm → B

...
MN1N2 · · ·Nm−1 : Cm → B Nm : Cm

MN1N2 · · ·Nm−1Nm : B
λxn.MN1N2 · · ·Nm : An → B

...
λx2 · · ·λxn.MN1N2 · · ·Nm : A2 → · · · → An → B

λx1.λx2 · · ·λxn.MN1N2 · · ·Nm : A1 → A2 → · · · → An → B

Figure 2.1.1: Form of λ→ derivations

rather than natural deduction, not only do we gain an insight into the structure
of proofs and λ-terms, but we also find a natural way of interpreting classical
proofs.

We begin this section with an informal motivation of sequent calculus, both
as a proof-system and as a type-system.

2.1 The Structure of λ-Terms

Many properties of λ-terms follow from this simple but important fact:

2.1.1 Proposition. Any λ-term is of the following form (∗), for some n,m ∈ N:

λx1.λx2 · · ·λxn.MN1N2 · · ·Nm (∗)

where M is either an abstraction or a variable, and each Ni is also of this form.

Proof. Let (∗)a
b denote the predicate ‘of the form (∗), with n = a,m = b’. By

induction on terms, we have:
Case 1. A variable x is (∗)00.
Case 2. An abstraction λx.N , where N is (∗)a

b , is (∗)a+1
b .

Case 3. An application NN ′, where N is (∗)a
b , is (∗)0b+1.

That M above is not an application follows from the finiteness of terms (and,
in particular, that of b in case 3).

2.1.2 Remark. It follows from the above that any λ→ derivation is of the form
shown in figure 2.1.1, where M is either a variable or an abstraction (type envi-
ronments are elided). That is, a derivation consists of a sequence of eliminations
followed by a sequence of introductions. It can be reconstructed by starting with
the switchover point (here the judgement MN1N2 · · ·Nm−1Nm : B) and using
introduction rules to grow the tree downwards (i.e. at the root, as usual) and
elimination rules to grow it upwards (i.e. by operating on hypotheses).

The upward →− rule will take derivations Γ . M : A and Γ, x : B . N : C
and produce one of Γ, y : A→ B . N [x := yM ] : C.
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Γ
...

M : A

,

Γ, x : B
...

N : C

7→ y : A→ B

Γ
...

M : A
→−

(y M) : B
...

N [x := (y M)] : C

This suggests the following typing rule:

Γ . M : A Γ, x : B . N : C
→λ

LΓ, y : A→ B . N [x := (y M)] : C

2.1.3 Definition. The implicative minimal sequent calculus LM→ is defined
by the following rules:

AxΓ, A . A

Γ . B
WkLΓ, A . B

Γ, A,A . B
CnLΓ, A . B

Γ . A Γ, A . B
CutΓ . B

Γ . A Γ, B . C →L
Γ, A→ B . C

Γ, A . B →R
Γ . A→ B

The intuitionistic calculus LJ→ is the same, but extended to negation with the
following rule:

⊥L⊥ .

It is instructive to think of an LM derivation as building an NM derivation
from the inside out, as in the remark. The axiom rule denotes the singleton
deduction D :: A ` A. Left contraction CnL allows two hypothesis-packets to
be merged into one, and left weakening WkL allows the formation of empty
packets. The →R rule is introduction as before, and the →L rule constructs a
derivation with a hypothesis A→ B from two others, as in the remark. Finally,
Cut allows substitution of derivations for hypotheses, just as in figure 1.4.1.

2.1.4 Remark. Removing the ‘structural’ rules of Cn and Wk yields (multi-
plicative) intuitionistic linear logic MILL5, so called because a linear sequent
A . B expresses the fact that B can be derived using A exactly once. The
structural rules thus correspond to duplication (Cn) and discarding (Wk) of
hypotheses, or variables.

5Strictly speaking, the binary rules of MILL have different contexts Γ, ∆ in their premises,
rather than the same Γ in both. The literature on linear logic is vast — some good references
are [Gir87, Wad93, Abr93, BS04].
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2.2 Interpreting Sequent Calculus

2.2.1 Remark. Herbelin observes in [Her94] that the term notation for LM→

suggested by the rule →λ
L (remark 2.1.2) can assign the same term to distinct

proofs of the same sequent:

Ax
x : A,w : C . x : A Ax

x : A,w : C, y : B . y : B →L
z : A→ B, x : A,w : C . zx : B →R
z : A→ B, x : A . λw.zx : C → B

Ax
x : A . x : A

Ax
x : A,w : C, y : B . y : B →R
x : A, y : B . λw.y : C → B →L

z : A→ B, x : A . λw.zx : C → B

To get around this, we observe that, in the term N [x := (y M)], the fresh
variable y introduced by →λ

L must occur linearly (i.e. exactly once) as long as
x occurs linearly, which it will in an axiom sequent. In fact, these variables
serve only as placeholders that mark where the next argument (say M ′) will be
inserted. For example, when the rule is applied twice in succession, we get:

Γ . M ′ : A
Γ . M : B Γ, x : C . N : D

→λ
LΓ, y : B → C . N [x := (y M)] : D

Γ, z : A→ B → C . N [x := ((z M ′) M)] : D

where N [x := ((z M ′) M)] is short for N [x := (y M)][y := (z M ′)]. We choose
a new constant to represent this placeholder, and formulate typing rules that
enforce its linearity. This has the effect of disallowing substitution under λ, and
so the second derivation above becomes invalid.

2.2.2 Definition. λ-contexts K are defined by the following grammar, where
M ranges over Λ and [ · ] (hole) is a new constant:

K ::= [ · ] | (K M)

Substitution [M ]K of a term for [ · ] is defined thus:

[M ][ · ] = M
[M ](K N) = ([M ]K N)

Given contexts K and J , the context [J ]K is defined similarly.

A context is thought of as a term with a unique ‘hole’, represented by [ · ].
The notation [M ]K represents the term got by plugging M into the hole of K.
The hole of a compound context [J ]K is the hole of J .

2.2.3 Definition (λ̄-calculus [Her94]). Terms of the λ̄-calculus (in fact, a syn-
tactic variant of it) are defined as follows, where M is a λ-term and K a λ-
context. Substitutions are now part of the object language and are denoted
M{x := N}:

M ::= x | λx.M | [M ]K | M{x := M}
K ::= [ · ] | ([ · ] M) | [K]K | K{x := M}
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Observe that the first three productions for K are equivalent to the two given
in def. 2.2.2. Reduction rules are as follows:

[([λx.M ] N)]K � [M{x := N}]K

[M ] � M
[[M ]K]K ′ � [M ][K]K ′

x{x := M} � M
y{x := M} � y

(λz.N){x := M} � λz.(N{x := M})

[ · ]{x := M} � [ · ]
([([ · ] N)]K){x := M} � [([ · ] N{x := M})]K{x := M},

with the usual renaming of bound variables to avoid capture in the substitution
case for λ.

2.2.4 Remark. λ-contexts are effectively lists of terms, with a hole for a head
subterm (see def. 2.2.7):

K = (. . . (([ · ] N1) N2) . . . Nm)

They can be generated from [ · ] by successively substituting the ‘singleton’ con-
text ([ · ] Ni) for [ · ]. Comparing this with remark 2.1.2, we can derive the typing
rule

Γ . M : A Γ, [ · ] : B . K : C
Γ, [ · ] : A→ B . [([ · ] M)]K : C

This says that from a term of type A and a context of type C with a hole of
type B we can construct a context (still of type C) with a hole of type A→ B
in the indicated way. Substituting a term for [ · ] in this new context will apply
the term to M : A and send the result (of type B) to K — hence the type
A→ B.

Terms derived using this rule will not in general be unique, as in remark
2.2.1. Since left contraction duplicates variables in terms (see remark 2.1.4),
we enforce linearity of [ · ] by restricting contraction on the type of [ · ] in the
following definition.

2.2.5 Definition (LJT [Her94]). The system LJT is defined in figure 2.2.1,
adapted from [Her94] for our variant of λ̄. Sequents are of the form Γ . M : A
for terms M and type environments Γ, or Γ | [ · ] : A . K : B for contexts K,
where A is the type of K’s hole. The place delimited by | and . is called
the stoup, and contains exactly one typing [ · ] : A for some type A. Sequents
Γ . M : A can be thought of as having an empty stoup.

The Cut rules CH,M have their labels set above to save horizontal space.
The rules in the left column type contexts while those in the right type terms.
The rules CH and CM are called head cut and mid cut respectively, and are used
according to whether the cut-formula is in the stoup of the right-hand premise
or not.

Observe that in the context-typing rules the output type (B or C) of the
context K or L never changes, so what is being typed is in fact the hole of the
context.
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Ax
Γ | [ · ] : A . [ · ] : A

Γ, x : A | [ · ] : A . K : B
Cn

Γ, x : A . [x]K : B

Γ . M : A Γ | [ · ] : B . K : C →L

Γ | [ · ] : A→ B . [([ · ] M)]K : C
Γ, x : A . M : B →R

Γ . λx.M : A→ B

CH : CH :

Γ | [ · ] : C . K : A Γ | [ · ] : A . L : B
Γ | [ · ] : C . [K]L : B

Γ . M : A Γ | [ · ] : A . K : B
Γ . [M ]K : B

CM : CM :

Γ . M : A Γ, x : A | [ · ] : C . K : B
Γ | [ · ] : C . K{x := M} : B

Γ . M : A Γ, x : A . N : B
Γ . N{x := M} : B

Figure 2.2.1: LJT

Γ . M : C
Γ . N1 : C1

Γ . Nm : Cm | [ · ] : B . [ · ] : B
Γ | [ · ] : Cm → B . [ · ]Nm : B

...
Γ | [ · ] : C2 → · · · → Cm → B . [ · ]N2 · · ·Nm : B
Γ | [ · ] : C . [ · ]N1N2 · · ·Nm : B

CHΓ . MN1 · · ·Nm : B
Γ \ {xn} . λxn.MN1 · · ·Nm : An → B

...
Γ \ {x2, . . . , xn} . λx2 . . . xn.MN1 · · ·Nm : A2 → · · ·An → B

Γ \ {x1, . . . , xn} . λx1 . . . xn.MN1 · · ·Nm : A1 → · · ·An → B

Figure 2.2.2: Form of LJT derivations

2.2.6 Remark. By analogy with remark 2.1.2, any LJT derivation has the
form shown in figure 2.2.2 (see [Her94]), where C = C1 → · · · → Cm → B.

The Structure of Contexts

We now have a λ-calculus that is a Curry–Howard-style term calculus for LM ,
although it is still far from obvious how to extend λ̄ to deal with classical logic.
A more elegant variant of λ̄ is λ̄µ̄, defined below. We will see that the natural
extension to classical logic of λ̄µ̄ in effect allows arbitrary context variables in
place of [ · ].

2.2.7 Definition. In any λ-term λx1.λx2 · · ·λxn.MN1N2 · · ·Nm as in proposi-
tion 2.1.1, if M is an abstraction λy.M ′, then the subterm (λy.M ′ N1) is called
the head redex of the term, and if M is a variable (the head variable) then the
term is in head normal form (HNF). If a term is in HNF or n > 0 then it
is in weak head normal form (WHNF). For convenience, we will refer to head
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variables and operators of head redexes as head subterms.

2.2.8 Definition. Head reduction is the reduction strategy that only reduces
the head redex of a term. Weak head reduction is the same, except it never
reduces a redex that is inside the scope of a λ.

Clearly, if (weak) head reduction terminates, then the result is a (weak)
head normal form. Weak head reduction corresponds to the strategy usually
found in functional programming languages, where the bodies of functions are
not evaluated until all arguments have been supplied.

2.2.9 Definition. The Krivine abstract machine (K-machine) performs weak
head reduction using stacks E of λ-terms, where e (a constant) is the empty
stack:

E ::= e | M · E

States of the machine are pairs 〈M‖E〉. Its transitions are:

〈(M N)‖E〉 � 〈M‖N · E〉
〈λx.M‖N · E〉 � 〈M [x := N ]‖E〉

A term M is reduced by starting the machine with 〈M‖e〉. An alternative is to
replace e with a set {α, β, . . .} of covariables to range over stacks, and start the
machine with 〈M‖α〉, where α is intended to represent some unspecified outer
context.

2.2.10 Remark. Given any term L, the K-machine will, by means of the first
transition only, reach a state

〈M‖N1 ·N2 · · ·Nn · e〉,

where M is the head subterm of L. Clearly, L is in WHNF if and only if L is a
λ-abstraction (and so M = L and n = 0) or M = x for some variable x. The
stack N1 ·N2 · · ·Nn · e is known in the functional programming literature as the
spine stack of L.

The above state 〈M‖N1 ·N2 · · ·Nn · e〉 is derived straightforwardly from the
term MN1N2 · · ·Nn. This suggests that we may view it as representing the
λ̄-term [M ]K, where K = [ · ]N1N2 · · ·Nn, as in remark 2.2.4. In particular, the
spine stack represents the context K.

2.2.11 Definition. (Adapted from [Her05], sec. 2.13) The λ̄µ̄-calculus consists
of terms M , coterms E and commands (K-machine states) P :

P ::= 〈M‖E〉
M ::= x | λx.M | P̂
E ::= e | M · E | µ̄x.P

Reductions are as follows:

〈λx.M‖N · E〉 � 〈M [x := N ]‖E〉
〈 ̂〈M‖E〉‖E′〉 � 〈M‖E[e := E′]〉
〈M‖µ̄x.P 〉 � P [x := M ]

23



The substitution E[e := E′] is defined in the obvious way as

(N1 · · ·Nn · e)[e := E′] = N1 · · ·Nn · E′
(N1 · · ·Nn · µ̄x.〈M‖E′′〉)[e := E′] = N1 · · ·Nn · µ̄x.〈M‖E′′[e := E′]〉

with the usual capture-avoiding renaming of x in the second rule.

The constructor ·̂ makes a term out of a command by binding e, while µ̄x
turns a command into a coterm by singling out an input. Intuitively, commands
are thought of as processes, with no specified input or output channels, while a
term is a process with a specified continuation or output channel, and a coterm
is a continuation, i.e. a process with a specified input channel. The restriction
to a single covariable e forces terms to be linear in their continuations. We will
see that to extend λ̄µ̄ to classical logic we need only remove this restriction.

As observed in def. 2.2.5, the context rules of LJT only manipulate the type
of a context’s hole, not its output type. We may thus reformulate them in terms
of spine stacks as follows. Note that now stacks appear inside the stoup, and
the judgement E : A means ‘the hole of E is of type A’.

2.2.12 Definition. The variant LJTµ̄ of LJT is defined by the following rules.
AxΓ, x : A . x : A

Ax
Γ | e : A . e : A

Γ, x : A . M : B →R
Γ . λx.M : A→ B

Γ . M : A Γ |E : B . e : C →L

Γ |M · E : A→ B . e : C

Γ . M : A Γ |E : A . e : B
Cut〈M‖E〉 : (Γ . e : B)

P : (Γ . e : A)
µ

Γ . P̂ : A

P : (Γ, x : A . e : B)
µ̄

Γ | µ̄x.P : A . e : B

It is not obvious that the system above is confluent — there are two reduction
rules that apply to the middle term below:

〈M‖E[e := µ̄x.P ]〉 � 〈 ̂〈M‖E〉‖µ̄x.P 〉 � P [x := ̂〈M‖E〉]

We define translations between λ̄µ̄ and λ̄ that preserve reduction and typing.
Because the typeable terms of LJT are confluent (see [Her94]) so are those of
λ̄µ̄.

2.2.13 Definition. The translation · from λ̄µ̄ to λ̄ is defined as follows:

〈M‖E〉 = [M ]E

x = x e = [ · ]
λx.M = λx.M N · E = [([ · ] N)]E

P̂ = P µ̄x.P = P{x := [ · ]}

Observe that E[e := E′] = [E]E′.
The translation is extended to typing derivations in the obvious way. Note

that the clause for µ̄ may yield a non-well-formed λ̄ term, but this will not be a
problem since we will only be applying the translation to commands 〈M‖µ̄x.P 〉,
yielding well-formed terms P{x := M}.
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2.2.14 Definition. The translation · from λ̄ to λ̄µ̄ is defined as follows:

[[M ]K]K ′ = [M ][K]K ′

[M ]K = 〈M‖K〉 [K]K ′ = K[e := K ′]
x = x [ · ] = e

λx.M = λx.M [[ · ] M ]K = M ·K
M{x := N} = M [x := N ] K{x := M} = K[x := M ]

The first clause ensures that in the clause for [M ]K the term M is not itself of
the form [M ′]K ′.

2.2.15 Proposition.

1. If P : (Γ `λ̄µ̄ e : A) then Γ `λ̄ P : A.

2. If Γ `λ̄ M : A then Γ `λ̄µ̄ M : A, and if Γ | [ · ] : A `λ̄ K : B then
Γ |K : A `λ̄µ̄ e : B

3. If P �λ̄µ̄ P
′ then P �λ̄ P

′.

4. If M �λ̄ M
′ then M �λ̄µ̄ M

′.

5. For all λ̄µ̄ commands P , P � P .

Proof. We prove (1), (3) and (5). The proofs of (2) and (4) are very similar to
those of (1) and (3).

1. By straightforward induction on derivations. The case for µ̄ is:

Γ . M : A
P : (Γ, x : A . e : B)
Γ | µ̄x.P : A . e : B

〈M‖µ̄x.P 〉 : (Γ . e : B)
7→

Γ . M : A Γ, x : A . P : B
Γ . P{x := M} : B

3.

Case 1.
〈λx.M‖N · E〉 � 〈M [x := N ]‖E〉

The translated reduction holds by def. 2.2.3:

[([λx.M ] N)]E � [M{x := N}]E � [M [x := N ]]E

Case 2.
〈 ̂〈M‖E〉‖E′〉 � 〈M‖E[e := E′]〉

By def. 2.2.13, E[e := E′] = [E]E′, so

[[M ]E]E′ � [M ][E]E′

holds by def. 2.2.3.
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Case 3.
〈M‖µ̄x.P 〉 � P [x := M ]

By the definition of substitution

P{x := M} � P [x := M ]

5. The only non-trivial case is that of a command

〈P̂‖µ̄x.〈M‖E〉〉

This maps to
〈M‖E〉[x := P̂ ]

for which the claim holds by induction.

Corollary. λ̄µ̄ is confluent.

Proof. Given a span Q ��
P

�- Q′, by confluence of λ̄ there exists a λ̄

term M such that Q
�- M �� Q′. We get

Q - Q

P

-

M

-

Q′ -

-

Q′

-

It was observed by Curien and Herbelin in [CH00] that the stoup in LJT
sequents, which contains at most one formula or type, is the dual of the restricted
antecedent (at most one formula to the right of . ) in LJ. This suggests that to
extend LJT to classical logic, we should use LJTµ̄ and simply allow more than
one covariable on the right-hand side.

2.3 Classical Sequent Calculus

2.3.1 Definition. The classical sequent calculus LK [Gen69] is defined in figure
2.3.1, where Γ,∆ are sequences of formulas. The structural rules Ax, Wk, Cn
and Cut deal with the form of sequents while the other logical rules deal with
connectives.

LK→ is the subsystem of LK that contains the structural rules plus →L,→R.
The intuitionistic sequent calculus LJ→ (def. 2.1.3) can be defined as consisting
of all LK→ sequents and inference rules with at most one formula to the right
of . .
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Ax
A . A

Γ . ∆
WkLΓ, A . ∆

Γ . ∆
WkRΓ . A,∆

Γ, A,A . ∆
CnLΓ, A . ∆

Γ . A,A,∆
CnRΓ . A,∆

Γ . A,∆ Γ, A . ∆
CutΓ . ∆

Γ . A,∆ Γ, B . ∆ →L
Γ, A→ B . ∆

Γ, A . B,∆ →R
Γ . A→ B,∆

Γ, A . ∆
∧1

LΓ, A ∧B . ∆
Γ, B . ∆

∧2
LΓ, A ∧B . ∆

Γ . A,∆ Γ . B,∆ ∧RΓ . A ∧B,∆

Γ, A . ∆ Γ, B . ∆ ∨LΓ, A ∨B . ∆

Γ . A,∆
∨1

RΓ . A ∨B,∆
Γ . B,∆

∨2
RΓ . A ∨B,∆

Γ . A,∆ ¬L
Γ,¬A . ∆

Γ, A . ∆ ¬R
Γ . ¬A,∆

Figure 2.3.1: LK

A standard argument (e.g. [TS00, prop. 3.1.7] shows that it is possible to
‘push’ all instances of Wk up to the leaves of a sequent derivation, so that the
system that omits the Wk rules and allows axioms of the form Γ, A . A,∆ is
equivalent to LK ([TS00] calls these systems G2c and G1c respectively).

The λ̄µ̄-calculus is generalized as follows, replacing ·̂ with a binder µ, dual
to µ̄, that turns a ‘process’ into a term by binding an output channel or contin-
uation variable.

2.3.2 Definition (λ̄µµ̄-calculus [CH00]). We assume countably infinite sets
of variables {x, y, . . .} and covariables (def. 2.2.9) {α, β, . . .}. Expressions are
commands P , terms M and coterms E. Variables range over terms, covariables
over coterms.

P ::= 〈M‖E〉
M ::= x | λx.M | µα.P
E ::= α | M · E | µ̄x.P

2.3.3 Definition. The system LK→
µµ̄ is defined in figure 2.3.2. There are three

kinds of sequent, one for each kind of λ̄µµ̄ expression — terms are typed on the
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AxR
Γ, x : A . x : A |∆

AxL
Γ |α : A . α : A,∆

P : Γ . α : A,∆
µ

Γ . µα.P : A |∆
P : Γ, x : A . ∆

µ̄
Γ | µ̄x.P : A . ∆

Γ . M : A |∆ Γ |E : A . ∆
Cut〈M‖E〉 : Γ . ∆

Γ, x : A . M : B |∆ →R

Γ . λx.M : A→ B |∆
Γ . M : A |∆ Γ |E : B . ∆ →L

Γ |M · E : A→ B . ∆

Figure 2.3.2: LK→
µµ̄

right and coterms on the left, while commands, not having any distinguished
input or output type, are typed by whole sequents.

2.3.4 Remark. The system LK→
µµ̄ eliminates explicit weakening using axioms,

as in def. 2.3.1, while the cut rule includes implicit contraction of formulas
with the same name (variable or covariable) in Γ and ∆. We can thus define
contraction as a cut with an axiom:

Γ . M : A |α : A,∆
CnR〈M‖α〉 : Γ . α : A,∆

=

Γ . M : A |α : A,∆
Ax

Γ |α : A . α : A,∆
Cut〈M‖α〉 : Γ . α : A,∆

Γ, x : A |E : A . ∆
CnL〈x‖E〉 : Γ, x : A . ∆

=

Ax
Γ, x : A . x : A |∆ Γ, x : A |E : A . ∆

Cut〈x‖E〉 : Γ, x : A . ∆

2.3.5 Definition. The reduction rules of λ̄µµ̄ are as follows:

〈µα.P‖E〉 � P [α := E]
〈M‖µ̄x.P 〉 � P [x := M ]

〈λx.M‖N · E〉 � 〈M [x := N ]‖E〉

Alternatively, λ may be defined by means of the following rule.

〈λx.M‖N · E〉 � 〈N‖µ̄x.M · E〉

2.3.6 Remark. Notice that the µ–µ̄ pair makes λ̄µµ̄ fundamentally non-confluent
— a simple example is

〈µα.〈y‖β〉‖µ̄x.〈z‖γ〉〉

〈y‖β〉

�

�

〈z‖γ〉

�

-
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Γ |E : A . ∆
×1

LΓ |π1[E] : A×B . ∆
Γ |F : B . ∆

×2
LΓ |π2[F ] : A×B . ∆

Γ . M : A |∆ Γ . N : B |∆
×R

Γ . (M,N) : A×B |∆

Γ . M : A |∆
+1

RΓ . (M)ι1 : A+B |∆
Γ . N : B |∆

+2
RΓ . (N)ι2 : A+B |∆

Γ |E : A . ∆ Γ |F : B . ∆
+L

Γ | [E,F ] : A+B . ∆

Γ |E : A . ∆ ¬R

Γ . [E]⊥ : ¬A |∆
Γ . M : A |∆ ¬L

Γ | (M)⊥ . ∆

Figure 2.3.3: LKµµ̄

Thus, cut-elimination in LK is non-deterministic. This can be overcome, but
only at the expense of limiting the number of normal forms, by giving priority to
one rule over another. Choosing µ̄ gives call-by-name evaluation, while choosing
µ gives call-by-value (see [CH00]).

The obvious choice for equality of terms — the symmetric closure of � —
leads to the same collapse as was demonstrated in the corollary to proposi-
tion 1.5.10. We may define a non-deterministic choice operator just as above:
for commands P,Q not containing α, x free, let P +Q be

〈µα.P‖µ̄x.Q〉

P

�

�

Q

�

-

so that if =� is the closure of � then P =� Q. In particular, this means that
any two LK proofs of the same sequent are equal. This example is usually
attributed to Yves Lafont (see [GLT89, Appendix B]).

2.3.7 Definition (λ̄µµ̄×+⊥). We add products, sums and negation to λ̄µµ̄ by
adding the following productions to the grammar of def. 2.3.2 (adapted from
[Wad03]):

M ::= . . . (M,M) | (M)ι1 | (M)ι2 | [E]⊥

E ::= . . . [E,E] | π1[E] | π2[E] | (M)⊥

2.3.8 Definition (LKµµ̄). Terms of λ̄µµ̄×+⊥ are typed by the rules of def. 2.3.3
plus those in figure 2.3.3.

2.3.9 Definition. The reduction rules of λ̄µµ̄×+⊥ are those of def. 2.3.5 plus
the following, for i = 1, 2:

〈(M1,M2)‖πi[E]〉 � 〈Mi‖E〉
〈(M)ιi‖[E1, E2]〉 � 〈M‖Ei〉

〈[E]⊥‖(M)⊥〉 � 〈M‖E〉
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Note the symmetry of the above rules. In particular, + is now clearly the
dual of ×, in contrast to the rather messy situation in minimal logic.

2.3.10 Remark. We can now prove the excluded middle A+ ¬A:

Ax|α : A . α : A, β : A+ ¬A ¬R

. [α]⊥ : ¬A |α : A, β : A+ ¬A
+2

R
. ([α]⊥)ι2 : A+ ¬A |α : A, β : A+ ¬A

CnR
〈([α]⊥)ι2‖β〉 : . α : A, β : A+ ¬A

µ
. µα.〈([α]⊥)ι2‖β〉 : A |β : A+ ¬A

+1
R

. (µα.〈([α]⊥)ι2‖β〉)ι1 : A+ ¬A |β : A+ ¬A
CnR

〈(µα.〈([α]⊥)ι2‖β〉)ι1‖β〉 : . β : A+ ¬A
µ

. µβ.〈(µα.〈([α]⊥)ι2‖β〉)ι1‖β〉 : A+ ¬A

The resulting term can be cut against a coterm of the same type, which (if it is
cut-free) will be of the form [E, (M)⊥], yielding

〈µβ.〈(µα.〈([α]⊥)ι2‖β〉)ι1‖β〉‖[E, (M)⊥]〉

Reducing the µ- and ι-redexes gives

〈µα.〈[α]⊥‖(M)⊥〉‖E〉

The µ-redex converts to
〈[E]⊥‖(M)⊥〉

which finally reduces to
〈M‖E〉

The intuitive interpretation of the above is this: a proof that depends on the
excluded middle has two branches — one for the case that P and another for
the case that ¬P . From the syntactic form of proofs we know that the second
branch must contain a counterexample to ¬P , which is a proof of P . The
excluded middle simply extracts this proof and supplies it to the first branch.

The symmetry of the typing and reduction rules for LKµµ̄, and the duality
between terms and coterms, might make us think of process calculi such as π-
calculus. A term µα.P can be thought of as a process P that sends its result
to an output channel α, while a coterm µ̄x.P is a process that accepts an input
x. The ‘process constructor’ 〈 · ‖ · 〉 plugs a term and a coterm together,
connecting the output of the first to the input of the second. These ideas
are made more explicit in the X -calculus [vBLL05], a graphical notation for
classical proofs derived from Lengrand’s λξ (def. 2.4.2). More concrete results
in this vein are given in [BBS97], where a non-constructive proof in Peano
arithmetic is analysed and shown to behave much as a system of asynchronous
communicating processes.
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2.4 Variants

The system λ̄µµ̄×+⊥ is not strictly isomorphic to LK, because of the distinction
between terms, coterms and commands. The correspondence can be turned into
an isomorphism by preceding each use of an LK→

µµ̄ rule by a µ or µ̄, to single
out the active formula, and following it by a contraction or Cut, so that each
inference of LK is represented by a command.

2.4.1 Definition. The subsyntax of λ̄µµ̄ determined by the above convention
is called λ̄µµ̄K . The implicative fragment is typed as follows.

Ax〈x‖α〉 : (Γ, x : A . α : A,∆)

P : (Γ . α : A,∆) P ′ : (Γ, x : A . ∆)
Cut〈µα.P‖µ̄x.P ′〉 : (Γ . ∆)

P : (Γ, x : A . α : B, β : A→ B,∆) →R

〈λx.µα.P‖β〉 : (Γ . β : A→ B,∆)

P : (Γ, x : A→ B . α : A,∆) P ′ : (Γ, x : A→ B, y : B . ∆) →L

〈x‖µα.P · µ̄x.P ′〉 : (Γ, x : A→ B . ∆)

This syntax is a term calculus for the classical variant of Kleene’s system G3
(see [TS00, section 3.5]).

2.4.2 Definition. Urban’s system T [Urb00] and Lengrand’s system λξ [Len03,
vBL08] are variants of λ̄µµ̄K and have the following syntax.

λ̄µµ̄K T λξ
〈x‖α〉 Ax(x, α) 〈x · α〉

〈µα.P‖µ̄x.P ′〉 Cut(〈α〉P, (x)P ′) Pα̂ † x̂P ′
〈λx.µα.P‖β〉 ImpR((x)〈α〉P, β) x̂P α̂ · β

〈x‖µα.P · µ̄y.P ′〉 ImpL(〈α〉P, (y)P ′, x) Pα̂[x]ŷP ′

Typing and reduction rules for T and λξ can be easily inferred from those of
λ̄µµ̄K .

Natural deduction systems for classical logic can be reconstructed from the
LK-based systems.

2.4.3 Definition. The λµ-calculus ([Par92]) is a term calculus for multiple-
conclusion natural deduction NKm (def. 1.3.6).

Ax
Γ, x : A . x : A |∆

Γ, x : A . M : B |∆
→+

Γ . λx.M : A→ B |∆
Γ . M : A→ B |∆ Γ . N : A |∆

→−
Γ . MN : B |∆

Γ . M : A |∆
Name

Γ . [α]M : ⊥ |α : A,∆
Γ . M : ⊥ |α : A,∆

µ
Γ . µα.M : A |∆

The β-reduction relation is given by

(λx.M)N � M [x := N ]
(µα.M)N � µα.M [[α]L := [α](LN)]
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The second rule has the effect of passing a term’s context to named subterms,
and is thus closely analogous to the µ rule for λ̄µµ̄.

One disadvantage with λµ is that in the reduction rule for µ the binder µα
does not disappear in the reduct. This can be worked around by adding a rule
that removes µ at the top level.

2.4.4 Remark. The double-negation rule can be derived in NKm. The result-
ing λµ term is derived as follows.

y : ¬¬A . y : ¬¬A |

x : A . x : A |
x : A . [α]x : ⊥ |α : A
. λx.[α]x : ¬A |α : A

y : ¬¬A . y λx.[α]x : ⊥ |α : A
y : ¬¬A . µα.(y λx.[α]x) : A |
. λy.µα.(y λx.[α]x) : ¬¬A→ A |

Let this term be denoted by C. Applied to arguments M,N1, . . . , Nn, the
reduction rules give

CMN1 · · ·Nn � (µα.(M λx.[α]x)N1 · · ·Nn

� µα.(M λx.(xN1 · · ·Nn))

So C takes an argument and applies it, at the top level, to a function which in
turn throws its argument to the continuation of the call to C. In effect, C is the
(call-by-name variant of the) call/cc operator familiar from Scheme and ML,
the only major difference being that C escapes to the top level first.

2.4.5 Definition. The (call-by-name) λC-calculus [FH92] is defined over the λ-
calculus augmented with constants A, C, and with the following reduction rules,
for K a λ-context (def. 2.2.2).

[AM ]K � M
[CM ]K � M(λv.(A [v]K))

Observe that A as defined here has the same effect as the version in remark
1.5.9.

2.4.6 Remark. The first person to notice that classical logic could be given a
Curry–Howard-style interpretation was Griffin [Gri90], who observed that the
constant C above could be given the (polymorphic) type ¬¬A → A, and that
similarly A : ⊥ → A:

Γ . M : ⊥
Γ . AAM : A

Γ . M : ¬¬A
Γ . CAM : A

Thus A and C can be used to interpret proofs in NJ and NK respectively,
although there is a slight complication with the typing of C (see [Gri90, section 3]
for details) which means that to evaluate a λC-term M we must in fact start
with Cλk.kM .

32



Both λµ and λC have cumbersome provisos relating to the handling of terms
at the top level, which suggests that sequent calculus is a better system than
natural deduction for investigating the computational properties of classical
logic.

A more elegant system of classical natural deduction, quite different to the
two above, is given in [BB96]. We describe the fragment corresponding to
propositional logic.

2.4.7 Definition (λSym
Prop). The types A of λSym

Prop are defined over sets P =
{P,Q,R, . . .} and P⊥ = {P⊥, Q⊥, R⊥, . . .} of atomic and negated atomic types
by

A′ ::= P | P⊥ | A′ ∧A′ | A′ ∨A′

A ::= A′ | ⊥

The operation · ⊥ is extended to formulas A′ via the de Morgan rules. The
inference rules are

x : A

M : A N : B
〈A,B〉 : A ∧B

M : Ai

σiM : A1 ∨A2

x : A
...

M : ⊥
λx.M : A⊥

M : A⊥ N : A
M ∗N : ⊥

The β-reduction rules are

λx.M ∗N � M [x := N ]
M ∗ λx.N � N [x := M ]

〈M1,M2〉 ∗ σiN � Mi ∗N
σiN ∗ 〈M1,M2〉 � N ∗Mi

Observe that λSym
Prop, like λ̄µµ̄, is fundamentally non-confluent.

The paper [BB96] also defines λSym
PA , a term calculus for higher-order Peano

arithmetic. In a later paper [BBS97], the authors give a detailed examination of
the computational behaviour of a non-constructive proof in the latter system.

2.5 Models

The traditional algebraic models of classical propositional logic are Boolean
algebras, i.e. Heyting algebras satisfying 1 ≤ a ∨ ¬a for all a. The denotation
of an LK sequent Γ . ∆ is an inequality∧

Γ ≤
∨

∆
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On the other hand, we have seen (prop. 1.5.10 and its corollary) that giving a
categorical model of classical proofs (as opposed to an algebraic model of clas-
sical provability) is non-trivial, because a CCC where negation is an involution
collapses to a preorder. Among the models that have been proposed, we may
distinguish between two approaches:

• Weakening the axioms of a BCC to avoid the collapse, while adding enough
structure to interpret classical proofs. This is the approach taken by
Selinger [Sel01], based on earlier work by Filinski [Fil89], Power and Robin-
son [PR97] and Pym and Ritter [PR01]. An equivalent formulation was
given earlier by Ong [Ong96] in terms of fibrations.

• Adding structure to ∗-autonomous categories (models of multiplicative
linear logic — see [BW95, BS04]) to interpret classical ∧ and ∨. This is
done in various ways by [FP06, Str07, Lam07].

The relationships between these proposed models are far from clear, and the
current embarras du choix is summed up well by Lamarche:

. . . [We] have gone from having no answer at all to having way too
many answers. [Lam07, p. 473]

We do not have the space to describe these models in full. Instead we sketch
some of their important features. These descriptions are not rigorous — see the
above papers for the definitive accounts.

Control Categories

Selinger weakens the structure of BCCs by not requiring the interpretation of
∨ to be functorial in both variables simultaneously. Disjunction is interpreted
as a premonoidal functor ⊕, which means roughly that the action of ⊕ on two
morphisms need not be defined.

2.5.1 Definition ([PR97]). A binoidal category 〈C, F 〉 consists of a category
C and a pair of endofunctors (FC

1 , F
C
2 ) for each C ∈ C such that FA

1 B = FB
2 A

for all A,B ∈ C.

Because F1 and F2 agree where they are defined, their values may be written
as F (A,B), F (A, f) and so on — but the notation F (g, f) is not well defined,
since F is not a bifunctor. That is, the following diagram, where f : A→ B, g :
C → D, need not commute:

F (A,C)
F (f, C)- F (B,C)

F (A,D)

F (A, g)

?

F (f,D)
- F (B,D)

F (B, g)

?

In fact, commutativity of this diagram is the definition of bifunctoriality for F .
A premonoidal category is just like a monoidal category, except that the

tensor product need only be binoidal (not bifunctorial).
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2.5.2 Definition. A strict premonoidal category consists of a binoidal category
〈C,⊗〉 together with an object I of C such that for all A,B,C ∈ C:

A⊗ (B ⊗ C) = (A⊗B)⊗ C
A⊗ I = A
I ⊗A = A

A premonoidal category is the same, except the equations above are replaced
with natural isomorphisms a, r, l such that the usual diagrams (the Mac Lane
pentagon and triangle) commute (see e.g. [Mac98, chapter VII]). Symmetric
premonoidal structure is defined similarly.

The tensor in a premonoidal category is intended to model the combination
of computations with side-effects, where composing two computations f and g
in parallel does not make sense, because the two compositions in the diagram
above may have different effects.

To interpret classical logic, we need a CCC together with an interpretation
of ∨ that has suitable properties.

2.5.3 Definition ([Sel01]). Let C be a CCC with a symmetric premonoidal
functor ⊕. C is a control category if the following hold:

1. C is distributive, i.e. for all objects A the functor A ⊕ − preserves finite
products.

2. For each object A there is a chosen symmetric ⊕-monoid structure [Mac98,
section 7.3] 〈A, η, µ〉, i.e. two maps η : I → A (unit) and µ : A ⊕ A → A
(multiplication) satisfying the same equations as for a symmetric monoid
in a symmetric monoidal category:

µ(µ⊕A) = µ(A⊕ µ)a µ(η ⊕A) = l µ(A⊕ η) = r µs = µ

where a, l, r, s are the associator, left and right unit and symmetry iso-
morphisms.

3. The canonical map sABC : (A ⇒ B) ⊕ C → A ⇒ (B ⊕ C) is a natural
isomorphism.

See [Sel01] for the coherence conditions that apply to the above.

Condition 2 is necessary to model right weakening (composition with η) and
contraction (composition with µ). Condition 3 allows us to model the →+ rule,
via

f : Γ×B → A⊕∆
φ(f) : Γ → B ⇒ (A⊕∆)

s̃ ◦ φ(f) : Γ → (B ⇒ A)⊕∆

Control categories are models of call-by-name λµ-calculus with ‘classical
disjunction’ (see [PR01]). Interestingly, their duals, the co-control categories,
model the call-by-value calculus. This duality between the two evaluation strate-
gies was first noticed by Filinski [Fil89]. A disadvantage of this approach is that
it requires a choice of evaluation strategy once and for all (cf. remark 2.3.6).
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Extensions of Linear Logic

Syntactically, classical logic may be recovered from linear logic by readmitting
weakening and contraction. However, things are not so simple on the semantic
side, as we will see. Models of multiplicative linear logic are ∗-autonomous cate-
gories, or equivalently (symmetric) linearly distributive categories with negation
(see [CS97]).

2.5.4 Definition ([CS97]). A linearly distributive category (LDC, also called
a ‘weakly distributive category’) is a category C equipped with two monoidal
structures 〈⊗,>〉 and 〈⊕,⊥〉 and two natural transformations:

dL
L : A⊗ (B ⊕ C) → (A⊗B)⊕ C
dR

R : (B ⊕ C)⊗A→ B ⊕ (C ⊗A)

subject to the coherence conditions given in [CS97].
A symmetric LDC is an LDC where the two monoidal functors are symmet-

ric. An SLDC has negation if to each object A there is associated a chosen dual
object A∗ and two maps

γA : A⊗A∗ → ⊥
τA : > → A⊕A∗

again satisfying some coherence conditions.

An SLDC with negation is equivalent to a ∗-autonomous category, as shown
in [CS97]. In particular, the object map · ∗ extends to a contravariant endofunc-
tor that interprets negation, and there is a linear implication A ( B defined
as A∗ ⊕ B. A sequent Γ . ∆ is interpreted as a map

⊗
Γ →

⊕
∆, and the

distributivity maps are used to interpret the cut rule: given f : Γ → ∆⊕A and
g : A⊗ Γ′ → ∆′, we may form

Γ⊗ Γ′
f⊗Γ′- (∆⊕A)⊗ Γ′

d- ∆⊕ (A⊗ Γ′)
∆⊕g- ∆⊕∆′

Näıvely, then, one might expect that to interpret weakening and contraction,
and thus classical logic, we need only choose symmetric ⊗-comonoid6 and ⊕-
monoid structures for each object and require every morphism to commute with
these. Such a model, however, is subject to Joyal’s collapse, as a result of the
following.

2.5.5 Proposition. Given a symmetric monoidal category 〈C,⊗,>〉, if every
object A of C is equipped with a chosen symmetric ⊗-comonoid structure 〈A, εA :
A→ >, δA : A→ A⊗A〉, and if every morphism in C is a comonoid morphism,
then the monoidal structure on C is cartesian product. 7

6A (symmetric) comonoid object is dual to a monoid object: it is an object A with maps
ε : A→ >, δ : A→ A⊗A satisfying

(A⊗ δ)δ = a(δ ⊗A)δ l(A⊗ ε)δ = 1 r(ε⊗A)δ = 1 (sδ = δ)

7This result and its dual are mentioned in the literature (see e.g. [Lam07, p. 473], [Mac65,
p. 80]), but we have been unable to find a proof, and so present our own.
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Proof. We exhibit ⊗ as right adjoint to the diagonal functor ∆ : C → C ×C,
with unit and counit (calling the counit ζ because ε is already in use)

ηA : A→ A⊗A = δA
ζ(A,B) : (A⊗B,A⊗B) → (A,B) = (r(A⊗ εB), l(εA ⊗B))

where ( · , · ) denotes objects and arrows in the product category C×C. These
are natural because every arrow in C is a comonoid morphism, meaning that
δA and εA are natural in A. The triangle identities are

(r(A⊗ εA), l(εA ⊗A)) ◦ (δA, δA) = (1A, 1A)
(r(A⊗ εB)⊗ l(εA ⊗B)) ◦ δA⊗B = 1A⊗B

The first follows immediately from the definition of a comonoid (footnote 6) and
composition in a product category. For the second, consider the maps

γAB = m(δA ⊗ δB) βAB = r>(εA ⊗ εB)

where m : (A⊗A)⊗ (B ⊗B) → (A⊗B)⊗ (A⊗B) is the unique isomorphism
given by coherence. These define a comonoid structure on A ⊗ B, as is shown
by naturality of m, r and coherence. We show that in this situation comonoid
structures are unique, and hence that γAB = δA⊗B .

First note that ε> = 1>, since by naturality of ε we have ε> = ε>ε>, and by
naturality of l

1> = l(ε> ⊗>)δ>
= l(ε> ⊗>)(ε> ⊗>)δ>
= ε>l(ε> ⊗>)δ>
= ε>

Let 〈f : A → A2, e : A → >〉 be a comonoid on A. Naturality of ε gives
εA = ε>e = e, so ε is unique. Hence > is a terminal object, and in particular
εA⊗B = r>(εA ⊗ εB) as above.

Now consider the following diagram, in which exponents denote tensor pow-
ers (e.g. f2 = f ⊗ f).

A2 A2 ⊗>

(2)

A

f

6

(1) A4 A2 ⊗ ε2A -

A2 ⊗ εA2

-

δA2

-

A2 ⊗>2

A2⊗r>

6

(4) A2

rA2

-

(3)

A2

δA

?
f2

-

(A⊗>)2

m

?
r2A

-

(A⊗ εA)2 -

The components commute for the following reasons.

(1). By naturality of δ.
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(2). By uniqueness of ε.

(3). By naturality of m, coupled with 1A4 = m : A4 → A4 by coherence.

(4). By coherence.

The entire diagram thus commutes, while the comonoid laws and the uniqueness
of ε show that the top and bottom paths equal f and δA respectively. It follows
that δA is the unique comultiplication on A for any A, and thus that γAB =
m(δA ⊗ δB) above is equal to δA⊗B . Now we have

(r(A⊗ εB)⊗ l(εA ⊗B))δA⊗B

= (r ⊗ l)(A⊗ εB ⊗ εA ⊗B)m(δA ⊗ δB)
= (r ⊗ l)(A⊗ εA ⊗ εB ⊗B)(δA ⊗ δB)
= r(A⊗ εA)δA ⊗ l(εB ⊗B)δB
= 1A⊗B

Hence ∆ a ⊗, and so ⊗ is cartesian product.

If C is ∗-autonomous, it is closed and has an involutive negation, and so
prop. 1.5.10 applies, showing that C is a preorder. The solution is not to require
each morphism in C to commute with the comonoid (monoid) structures — that
is, δA (µA) and εA (ηA) need not be natural in A. We mention two references:

1. Führmann and Pym’s classical categories [FP06] are poset-enriched SLDCs
with negation and symmetric (co)monoids, where the (co)unit and (co)-
multiplication are required to be lax natural, i.e. we should have f ◦ ηA ≤
ηB , f ◦µA ≤ µB ◦ (f ⊗ f), and so on. Here f ≤ g expresses that f reduces
to g under cut elimination. (Cf. remark 1.4.7.)

2. Straßburger’s B1-categories [Str07] are ∗-autonomous categories with (sym-
metric)⊕-monoids and⊗-comonoids, but without any commutativity con-
ditions on morphisms. The paper goes on to examine in depth various such
conditions and their consequences.

Despite the current confusion, there is a definite consensus that linear logic
and ∗-autonomous categories are the better foundation for a semantics of clas-
sical proofs.

2.6 Conclusions

We have only scratched the surface of the Curry–Howard correspondence: for
example, we have not even mentioned predicate logic or inductive types, or the
‘negative translations’ of classical into intuitionistic logic and their connections
with CPS transforms [Gri90] and monads in functional programming [HD94].
Nevertheless, the reader should be convinced that the correspondence is at the
very least a useful analogy, and that the study of proof theory may be fruitfully
applied to the problem of deriving provably correct programs as well as in general
theories of computation. In particular, the fact that classical logic presents
such familiar problems as that of giving a suitable notion of equality for non-
deterministic rewrite systems indicates that something non-trivial is going on.
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Conversely, it may be that the coinductive methods of operational semantics
and concurrency theory will shed light on this logical question.

Indeed, the BHK interpretation (and realizability semantics in general) can
be seen as a particularly simple operational semantics of proofs, although be-
cause only the output of a realizer matters, this (largely informal) semantics
coincides with the denotational kind. In the world of classical logic, there are
interesting similarities between Abramsky’s ‘process realizability’ for linear logic
using CCS [Abr00] and Barbanera and Berardi’s ‘symmetric reducibility candi-
dates’ for classical logic [BB96] as formalized in [DGLL05]. Perhaps these will
be useful in extending to classical logic the work already done on the operational
semantics of linear proofs.

We may sum up by saying that the question of what a classical proof ‘means’
is in no way settled, and that in answering it we will need the methods of both
logic and computer science.
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