
Networks and Distributed Systems

Intelligent Agents in Ad Hoc Networks

by

Anthony Winters, B.A.

Dissertation

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2008

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Anthony Winters

September 10, 2008

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Anthony Winters

September 10, 2008

Acknowledgments

First and foremost I would like to thank my supervisor Dr. Stefan Weber for his patience

and guidance throughout the course of my dissertation.

Secondly I would like to thank our course supervisor Dr. Siobhán Clarke for giving

me the oppourtunity to take on the NDS challenge.

Thirdly I would like to thank my family, Angie, me Da, Kitty and J for their support

throughout the year.

Next I would like to thank the entire NDS class, especially the lads in the lab, Shane,

Eric and Cian, it’s nice to know insanity is contagious.

Finally I would like to thank Bits, I couldn’t have done it without her.

Anthony Winters

University of Dublin, Trinity College

September 2008

iv

“Whether you think that you can, or that you can’t, you are usually right”

- Henry Ford

v

Networks and Distributed Systems

Intelligent Agents in Ad Hoc Networks

Anthony Winters, M.Sc.

University of Dublin, Trinity College, 2008

Supervisor: Dr. Stefan Weber

Ad hoc networks provide a rapidly deployable, “bring your own network” solution for

situations where the use of infrastructure networks is not possible. Groups who could ben-

efit from such a network solution include “search and rescue” teams and mobile military

operations. One key limitation however, in the use of ad hoc networks is the efficiency in

which data may be successfully routed through them. Routing protocols such as AODV

[1] and GPSR [2] have provided usable solutions, however such protocols’ performance is

greatly reduced when faced with erroneous scenarios such as node failure and lossy wire-

less links. Multi Agent Systems (MAS) is a field of computer science that is concerned

with producing environment aware software agents that use intelligent algorithms to allow

them to sense and reason about their environment, and take decisive action. Using the

MAS paradigm, an efficient solution to successful routing of data in ad hoc networks was

devised. The proposed solution, entitled the Agent Distribution (AD) mechanism is an

opportunistic, on-demand mechanism for distributing software agents (and by extension

the data which they carry) throughout an ad hoc network. The AD mechanism was im-

vi

plemented in a message delivery system entitled Shoulder Monkey. This system was then

performance tested and compared to a simple TCP routing protocol. Results showed

that the Shoulder Monkey system out performed the simple TCP routing protocol on a

number of network topologies. This indicated that the AD mechanism could be used as

a viable solution for efficient routing of data in ad hoc networks.

vii

Contents

Acknowledgments iv

Abstract vi

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.1.1 Ad Hoc Networks . 1

1.1.2 Multi Agent Systems . 3

1.2 Road-map . 3

1.3 Summary . 4

Chapter 2 State of the Art 5

2.1 Ad Hoc Networks . 5

2.1.1 Routing Protocols in Ad Hoc Networks 6

2.1.2 Security Considerations for Ad Hoc Networks 9

2.2 Multi Agent Systems (MAS) . 11

2.2.1 Belief Desire Intention (BDI) Architecture 11

2.2.2 Agent Communication Languages 12

2.2.3 Collaboration . 13

2.2.4 Standardisation . 14

2.3 Combining Multi Agent Systems (MAS) and Ad Hoc Networks 14

2.4 Technology Overview . 16

2.4.1 Ad Hoc Networks . 16

2.4.2 Agent Frameworks . 17

2.5 Summary . 18

Chapter 3 Design 19

3.1 AD Mechanism . 20

viii

3.1.1 Naming of Network Nodes . 20

3.1.2 Agent Distribution Mechanism Message Types 21

3.1.3 AD Mechanism Operation . 23

3.1.4 Software Agent Replication . 25

3.1.5 Software Agent Merging . 27

3.2 Summary . 28

Chapter 4 Implementation 29

4.1 Shoulder Monkey System Design . 29

4.1.1 Host Agent . 30

4.1.2 Play Pen . 31

4.1.3 Migrant Agent . 31

4.1.4 Gateway Agent . 31

4.1.5 Comms Agent . 32

4.1.6 GUI . 32

4.2 Shoulder Monkey System Implementation 32

4.2.1 AD mechanism . 32

4.2.2 Comms Agent and Stop Clocks . 33

4.2.3 Migrant Agent . 35

4.2.4 Host Agent . 44

4.2.5 Gateway . 45

4.2.6 GUI . 46

4.3 Summary . 48

Chapter 5 Evaluation 49

5.1 Test-Bed Network Setup . 49

5.1.1 Installing Wireless Adaptors . 49

5.1.2 Ubuntu Networking Problems . 51

5.2 Comparitive Tests . 53

5.2.1 Simple TCP Comparitive Test . 53

5.2.2 Shoulder Monkey Comparitive Test 55

5.3 Shoulder Monkey Stress Test . 57

5.3.1 Delta Topology . 57

5.3.2 Diamond Topology . 59

5.4 Summary . 62

ix

Chapter 6 Conclusions 63

6.1 Ad Hoc Networks in the Wild . 63

6.2 MAS and Ad Hoc Networks (Together at Last) 64

6.3 The AD mechanism . 65

6.4 Summary . 66

Chapter 7 Future Work 67

7.1 Further Testing . 67

7.1.1 Larger Testbed . 67

7.1.2 Introduction of Mobility to Network Nodes 68

7.2 Implementation in Lower Layers of the Network Stack 68

7.3 Dynamic Addition to Agent Behaviour . 68

7.4 Final Thought . 69

Appendix A Abbreviations 70

Appendix B Technical Specifications 71

Bibliography 73

x

List of Figures

1.1 Metaphorical representation of an ad hoc network. 2

2.1 FIPA ACL example taken from Ahmad et al. [3] 13

3.1 AD mechanism overview . 21

3.2 AD mechanism operation . 23

3.3 Software Agent Replication for Rapid Routing 26

3.4 Software Agent Replication for Complex Task 27

3.5 Software Agent Merging . 28

4.1 Design Architecture for Shoulder Monkey system 30

4.2 Code snippet of AgentDistributionMechanism class constuctor 33

4.3 Code snippet of CommsAgent class run() method 34

4.4 Code snippet of stop clock used by CommsAgent class 35

4.5 Code snippet of Agent-Reply message processing 37

4.6 Code snippet of MonkeyAgent self-replication method 38

4.7 Code snippet of MonkeyAgent class chat() method 40

4.8 Code snippet of MonkeyAgent class merge() method 41

4.9 Code snippet of Msg class methods . 42

4.10 Code snippet of MonkeyAgent class Msg object passing 43

4.11 Code snippet of MonkeyAgent routing algorithm 44

4.12 Code snippet of HostAgent methods . 45

4.13 Code snippet of gateway agent operation 46

4.14 Screen shot of Shoulder Monkey system GUI 47

5.1 Sheet of tin foil and anti-static component bag 51

5.2 Sheet of tin foil and anti-static component bag combined 51

5.3 Wireless adaptor removed from plastic casing 51

5.4 Covered wireless adaptor with limited range 51

5.5 Screenshot of /etc/hosts . 52

xi

5.6 TCP line topology for 5 node ad hoc Network 53

5.7 TCP throughput for 5 node ad hoc network 54

5.8 TCP network overhead for 5 node ad hoc network 55

5.9 Shoulder Monkey line topology for 5 node ad hoc network 56

5.10 Shoulder Monkey network overhead for 5 node line topology 57

5.11 Shoulder Monkey delta topology for 5 node ad hoc network 58

5.12 Shoulder Monkey network overhead for 5 node delta topology 59

5.13 Shoulder Monkey diamond topology for 5 node ad hoc network 60

5.14 Shoulder Monkey network overhead for 5 node diamond topology with non-

replication . 61

5.15 Shoulder Monkey network overhead for 5 node line topology with replication 61

xii

Chapter 1

Introduction

Ad hoc networks and Multi Agent Systems (MAS) are two highly active research areas

in the field of computer science. Ad hoc networks provide an alternative to wired in-

frastructure networks and managed wireless networks, whereas MAS allow systems to be

designed and implemented with system optimisation at the forefront of the development

process.

This chapter discusses the motivation for this work and defines the research questions

the author hopes to answer. This chapter then gives a brief introduction into the two

main research areas studied in this work, ad hoc networks and multi agent systems. The

chapter is then concluded with a road-map for the remainder of this dissertation.

1.1 Motivation

The use of ad hoc networks in real world situations is less than optimal as said networks

are hampered with problems, some of which are discussed in chapter 2 (section 2.1 Ad Hoc

Networks). By combining the paradigms of ad hoc networking and Multi Agent Systems

(MAS), ad hoc networks could reach their full potential. This dissertation is therefore

concerned with answering the following research questions:

1. Can ad hoc networks be used in real-world real-time situations?

2. Is ad hoc network performance enhanced through the use of the MAS paradigm?

3. Can the MAS paradigm be used to route data in ad hoc networks?

1.1.1 Ad Hoc Networks

“Ad Hoc: For the purpose of” - Oxford Dictionary [4]

1

An ad hoc network is a wireless network set up for a certain purpose. Ad hoc networks

have no set infrastructure so they can be rapidly deployed. Participant devices in the

ad hoc network are called nodes. Nodes act as transmitters, receivers and routers for

data within the network. Therefore data can be routed in a multi-hop fashion through

the network; much like the way a frog might traverse a pond using multiple lily-pads i.e.

nodes, and hops i.e. transmissions as seen in Fig. 1.1.

There are two types of ad hoc network, namely:

1. Static Ad Hoc Networks

2. Mobile Ad Hoc Networks (MANETs)

Nodes in a static ad hoc network do not move (hence the keyword static) once they are

deployed. Examples of static ad hoc networks include urban roof top networks. Nodes in

a mobile ad hoc network (MANET) can move around (hence the keyword mobile) once

they are deployed. Examples of MANETs include networks comprised of personal mobile

computing devices e.g. PDAs.

Figure 1.1: Metaphorical representation of an ad hoc network

2

1.1.2 Multi Agent Systems

“an agent is an artificial, computational entity that can perform certain tasks

with a certain degree of autonomy or initiative whilst intelligently adapting

to its environment” - Woodbridge [5]

The paradigm of Multi Agent Systems (MAS) is by no means a new concept to the world

of computer science; however in recent years due to the growth of distributed computing

practices for complex tasks it has seen somewhat a revival. Agents can ultimately be

seen as helpers, which enhance a systems performance. The fundamental idea behind the

MAS is to have individual agents that can display “intelligent” qualities by being:

• Environmentally aware - Agents should be able to sense the environment in which

they operate and dynamically react to situations that may arise

• Interactive - Software agents should be able to interact with other software agents

in order to acquire information and collaboratively complete assigned tasks.

• Autonomous - Software agents should be able to make self-dependant decisions and

take decisive actions.

Agents can be implemented as software entities that operate on a heterogeneous system

consisting of numerous devices.

1.2 Road-map

The remainder of this dissertation is broken up as follows.

Chapter 2 discusses the state of the art and background information relating to ad hoc

networks, multi-agent systems (MAS), the use of MAS in ad hoc networks and technologies

used in the areas of MAS and ad hoc networking.

Each of the subsections explains the current state of the art and background research in

the given field, or combination of fields.

Chapter 3 discusses the design of the Agent Distribution(AD) mechanism. This chapter

explains the need for such a mechanism in the given domain and gives a detailed account

of the operational semantics of the mechanism.

Chapter 4 discusses the implementation of the AD mechanism into a personal messenger

system called Shoulder Monkey. This chapter discusses the design and implementation of

the system in detail and gives reasons behind the need for such a system.

Chapter 5 discusses the evaluation of the implemented Shoulder Monkey system and, by

extension, the evaluation of the AD mechanism. This chapter compares the performance

3

of the Shoulder Monkey system to communicating using TCP. The evaluation of the

system was carried out using a number of topologies on a purpose build testbed, namely

a real world ad hoc network. A complete analysis of results obtained from both testbeds

is then discussed.

Chapter 6 discusses the main conclusions obtained from work carried out during the course

of this dissertation.

Chapter 7 concludes the dissertation with future work that may be carried out building

on the work completed for this dissertation.

1.3 Summary

In this chapter, we discussed the author’s motivation for completing this work, and set out

the research questions that the author wishes to answer during the course of this study.

A brief introduction has been given into the key research areas of this work. Finally a

road-map to this work has been defined to inform readers of the layout of this dissertation.

4

Chapter 2

State of the Art

The two research areas this work is concerned with are ad hoc networks and MAS. As both

fields are highly active research topics, a lot of information is available in said research

areas. An understanding of each research area as an individual discipline is required

before research into a study which combines the areas of ad hoc networks and MAS is

undertaken.

The remainder of this chapter discusses background research and the state of the art for ad

hoc networks and MAS. Ad hoc network limitations, routing protocols and security issues

are first discussed. This discussion is followed by an evaluation of MAS architectures,

communication, collaboration and standardisation. These two sections are followed by a

review of research which combines ad hoc networks and MAS. Finally a brief overview of

technologies currently being used in ad hoc networks and MAS is given.

2.1 Ad Hoc Networks

Potential uses for ad hoc networks include providing rapidly deployable networks for or-

ganisations such as search and rescue teams and mobile military operations alike. However

making potential uses of ad hoc networks a reality seems to be ultimately limited by the

efficiency in the performance of such networks. In situations where data delivery in a

network can literally mean life or death, effective real time data routing protocols need

to be in operation. Therefore current uses of ad hoc networks are somewhat limited as

performance is not always efficient or reliable.

The use of multi agent systems could provide a way to manage ad hoc networks without

the use of a central control point, and increase efficiency, reliability and performance. This

could ultimately lead to a more stable network environment which would lead to greater

success in the routing of data through the network. By combining the two technologies

5

of ad hoc networks and MAS, potential uses for ad hoc networks could become a reality.

Much research is being carried out into the use of ad hoc networks for search and rescue

personnel and mobile military operations. Ultimately the practical use of ad hoc networks

is limited only by the success and efficiency in which data can be routed through the net-

work. As such, the topic of routing protocols in ad hoc networks is an active research

area.

2.1.1 Routing Protocols in Ad Hoc Networks

In an ad hoc network there is the basic case of routing data from a source node S to

a destination node D, through intermediate nodes I...I+n. This section looks at two

approaches to routing in ad hoc networks, namely the topology-based routing approach

and the location-based routing approach.

Topology-Based Routing

Topology-based routing uses information about links between nodes in an ad hoc network

to forward data packets. There are three main types of topological approaches to routing

data [6]:

1. Proactive Routing - Whereby nodes in the ad hoc network continually make their

presence known to other nodes in the network to ensure data can be routed to them.

2. Reactive/On-Demand Routing - Whereby nodes only acquire information relating

to network routing when data packets are injected into the network.

3. Hybrid Routing - Which encompasses one or more of the characteristics of both

proactive and reactive/on-demand routing approaches.

Flooding is the simplest form of topoloical data routing in an ad hoc network [7]. The

idea behind this mechanism is to propagate the data packet to all the nodes within range

of the source node S. Then each node that received this data packet will forward the data

packet to all nodes within range of it, and so on until the destination node D is reached.

Theoretically if all nodes in the network forward the same data packet to multiple nodes,

multiple but identical data packets will ultimately find different routes to the destination

node D, therefore increasing the chances of successful data packet delivery.

There are, however, two fundamental problems with this approach to routing data packets

in an ad hoc network:

1. Excessive Bandwidth Utilisation

6

2. Broadcast Storm Problem

The first problem encountered is excessive bandwidth utilisation. As each node that

receives the data packet will forward the data packet, excessive use of the transmission

medium results. Therefore, in theory, a single data packet routed in this fashion could

saturate the entire network, as it will be retransmitted by every node that receives it.

The second problem encountered by flooding, again, stems from the retransmission of

data packets by each node that received the data packet. This causes a problem known

as a broadcast storm [7], whereby every node, upon receiving the data packet, will try to

re-transmit the data packet to all nodes within its transmission range. As many of these

nodes will be within transmission range of each other, this will ultimately cause multiple

data packet collisions. Nodes will then need to retry their re-transmit, again at roughly

the same times, causing further data packet collisions.

A number of approaches to alleviate the broadcast storm problem exist such as; staggering

initial re-transmission time of receiving nodes [7], thus decreasing collision possibilities,

and having only certain receiving nodes re-transmit the data packet [7].

Due to the limitations of flooding as a routing protocol in ad hoc networks different

routing protocols have been devised.

Dynamic Source Routing (DSR) [8] is a reactive routing protocol used in ad hoc networks.

DSR has two parts to its operation; the first part being route discovery and the second

part being route maintenance. In DSR only once a route from a source node S to a

destination node D through intermediate nodes I...I+n has been discovered, will a data

packet be routed from S to D. DSR routes data packets by appending routes to the actual

data packet header thus allowing each intermediate node to ascertain the next hop the

data packet should be routed along. This approach is less than optimal as long routes will

ultimately lead to longer headers thus increasing the actual data packet size that must

be transmitted. DSR also makes use of caches to store routes to nodes that are in use in

the network. During the route discovery phase intermediate nodes can return routes to

sought destinations directly to querying nodes. This saves route discovery time, however

it also introduces the possibility of intermediate nodes returning out of date information

about routes to querying nodes.

Ad Hoc On-Demand Distance Vector Routing (AODV) [1] is another routing protocol

that is similar to DSR. It is also a reactive routing protocol and only maintains routes to

destinations that are in use. However the main difference between DSR and AODV is that

AODV does not encapsulate the route in a data packet but makes use of routing tables

stored at each node in an ad hoc network to route data to specific locations. Intermediate

nodes can also respond to route discovery messages as in DSR, however the introduction

of sequence numbers somewhat alleviates the of problem out of date information being

7

returned to querying nodes. Due to routing tables AODV does not scale very well, as

even though it is a reactive protocol, if a large network has many active nodes routing

tables can quite quickly become very large.

Ad Hoc On-Demand Distance Vector Routing with Backward Routing (AODV-BR) [9]

is an adaptation to the AODV routing protocol. AODV does not use multiple paths to

destinations, so if a node fails the route discovery phase of AODV must be re-initiated

to find a new route to a destination node D. This can lead to a high overhead in the

network. AODV-BR makes use of backward paths when a failed node is encountered.

The protocol allows data packets to “hop back” two nodes in order to find alternate

routes to destinations. If, however, a route cannot be found from the use of a two hop

backward hop then a route discovery must be re-initiated. When compared to normal

AODV, AODV-BR performed better than regular AODV, especially when node mobility

was introduced into the ad hoc network, i.e. when a MANET was created. However in

static ad hoc networks it was seen as over kill as an AODV route discovery would cause

less network overhead than maintaining the backward routes AODV-BR requires.

Position-Based Routing

Position based routing protocols try to address some of the problems that exist in routing

data in ad hoc networks using topology based routing protocols [6]. For position-based

routing protocols the physical geographic location of nodes must be known, therefore it

is assumed that each node is equipped with a location device e.g. a GPS locator, or that

an external service will provide nodes with the physical geographic location of all nodes

within the ad hoc network.

Within position-based routing protocols there is the concept of greedy forwarding [7].

Imagine the following scenario, source node S is trying to route a data packet to destina-

tion node D via intermediate nodes I...I+n. If greedy forwarding is used, S will route the

data packet to the node within its transmission range which is geographically closest to

D. If this procedure is followed by all nodes within the network, the amount of hops that

must be taken for the data packet to reach destination node D will be minimised. On the

surface this is a very efficient approach to routing data in ad hoc networks; however it

has one major flaw, local maximums or dead ends. If source node S routes a data packet

to an intermediate node I that is geographically closest to destination node D, there is

no guarantee that intermediate node I has a route to destination node D. Therefore once

data has been routed to intermediate node I it hits a local maximum or dead end and can

go no further.

Ad Hoc On-Demand Distance Vector Routing with Directional Forward Routing (AODV-

8

DFR) [10] is a protocol that makes use of greedy forwarding to route data packets. When

AODV- DFR encounters a local maximum it uses backup paths that are set up using a

beacon system to find an alternate route. This beacon system uses fisheye scaling [11];

whereby beacons closer to the destination node D are transmitted more frequently, there-

fore as a data packet gets closer to the destination node D information on how to get there,

i.e. backup paths, gets better. In simulations AODV-DFR outperforms regular AODV,

however due to the use of a beaconing system, it does introduce a greater overhead into

the network.

The Greedy Perimeter Stateless Routing (GPSR) [2] protocol is another protocol that uses

greedy forwarding. When GPSR hits a local maximum it uses the concept of perimeter

forwarding to recover. Perimeter forwarding uses the right hand rule to traverse around

the local maximum thus allowing the data packet to be delivered.

More environment-specific routing protocols have also been researched. The Greedy

Perimeter Coordinator Routing (GPCR) [12] protocol is used to route data packets in

urban environments where concrete buildings can act as obstacles for radio transmissions.

GPCR does not use global or external information (i.e. maps) about the environment;

instead the protocol uses restricted greedy forwarding to ensure data packets are not

routed past street junctions in urban environments. GPCR does this by having nodes

act as coordinators at junctions. Data packets are always routed to a coordinator if a

coordinator exists, before any other node in the network. Therefore in between junctions,

greedy forwarding is used for routing until a coordinator node is reached.

It is evident that position-based routing has its advantages as an approach to routing

data in ad hoc networks. However it does require the additional incorporation of location

information for nodes (e.g. GPS coordinates), the additional fitting of nodes with location

devices (e.g. GPS locators) or an external service that provides such information, and the

added overhead that is needed to reason about routing data packets through the network.

2.1.2 Security Considerations for Ad Hoc Networks

Nodes in ad hoc networks were originally intended to operate in a friendly environment.

However this may not always be the case and nodes may need to be capable of operating

in both hostile and friendly enviroments. As each node in an ad hoc network can act as

a data router for other nodes the fundamental question is raised; how does one guarantee

data transmission from a security point of view, in an ad hoc environment?

When considering security issues in ad hoc networks two types of attack must be taken

into account namely:

1. External attacks - attacks that originate from outside the ad hoc network.

9

2. Internal attacks - attacks that originate from a compromised node within the ad

hoc network.

Denial of Service (DoS) Attack

DoS attacks can originate from either external or internal attackers. External attacks

could introduce interference, thus impeding ad hoc networks from operating properly.

Internal attacks could create a DoS attack via packet blasting or the injection of consid-

erable amounts of junk packets into the network, thus creating congestion in the network

and degrading its performance. An internal attack could even consist of a malicious node

continually transmitting control packets, thus starving other nodes of network utilisation.

If two or more network nodes were compromised a “wormhole” [13] could be formed,

which would enable the flow of data to propogate between compromised nodes. Hu et al.

[13] discussed the use of packet leashes as a possible defense against such attacks.

Packet Authentication

An issue raised by the possibility of network nodes becoming compromised is that of

data authenticity and integrity. In the Dynamic Source Routing (DSR) protocol [8] for

example, a change to the RREQ or RREP control packets could hide certain routes

or route data along an intended or non-existent route. This situation could easily be

avoided if data authenticity and integrity were introduced, however this is not a easy task

to accomplish in ad hoc networks. The problem of packet authentication could be solved

using cryptographic keys, however this raises the questions of who issues said keys, and

where are they stored. Ramkumar et al. [14] proposed a scheme for predistribution of

keys within an ad hoc network which could be used to solve this problem.

Possible Solutions

Hao et al. [15] identified that security solutions in ad hoc networks should provide com-

plete protection by spanning the complete protocol stack. The also concluded that two

kinds of approaches to security in ad hoc networks should be taken; proactive and reac-

tive, and that each of these approachs should encompass prevention of attacks, detection

of attacks and reaction to attacks.

Reasearch carried out by Manikopoulos et al. [16] has produced an architecture for secu-

rity in ad hoc networks. When tested this architecture was shown to withstand attacks

of both an internal and external nature. It is therefore evident from the works mentioned

that effective security in an ad hoc networked environment is a non-trivial problem and

10

requires much consideration. Ad hoc-specific security solutions need to be further re-

searched as current solutions for wired computer networks may not be transferrable to

wireless networks and those that are may not be transferrable to an ad hoc environment.

2.2 Multi Agent Systems (MAS)

The computer science paradigm of Multi Agent Systems (MAS) is by no means a new

concept in the field of computer science. MAS has a number of key idioms which are

needed to fully understand the field.

2.2.1 Belief Desire Intention (BDI) Architecture

In MAS the BDI architecture [17] is used to help model the behaviour of an agent. The

architecture is comprised of three parts:

• Belief - What an agent knows or does not know about its environment.

• Desire - What goal(s) the agent wants to achieve.

• Intention - How the agent plans to achieve its goal(s).

The BDI architecture is based on practical reasoning or reasoning towards actions. The

following example explains how the BDI architecture may be used.

A villager is given the task of going to the well to fetch some water. The villager wants

to achieve the goal of bringing water back from the well, so in the BDI architecture his

desire is to bring water back from the well. How the villager might achieve the goal of

bringing water back from the well is as follows:

a) Walk to the well.

b) Get the water out of the the well.

c) Carry the water back.

These three actions relate to the villager’s intentions in the BDI architecture. They are

the steps he must take in order to achieve his main goal of fetching water from the well.

The villager’s beliefs in the BDI architecture relate to him knowing about his environment,

i.e. being environmentally aware. To complete the goal of fetching water from the well

the villager must have the following beliefs:

a) The villager must know how to walk.

11

b) The villager must know where the well is.

c) The villager must know how to get water out of the well.

d) The villager must know how to carry water back from the well.

Note that this knowledge is referred to as a belief as it can be wrong, for example the

villager might think he knows where the well is but may be mistaken. Suppose the villager

did not know where the well was located, then he would have the belief that:

a) He did not know where the well was.

In order to complete his goal of fetching water from the well, the villager must acquire

this information. To do this the villager would have to ask a fellow villager where the well

was, and interact with his environment, before he could proceed.

The above example shows how the BDI architecture can be used to model agent behaviour.

Ronald et al. [18] used an agent-based simulation to model pedestrian behaviour in an

urban environment. Each pedestrian in the simulation was modelled using an autonomous

agent. The agents used a BDI architecture to help model their behaviour. Agents were

chosen to model pedestrians as they could easily encompass the behaviour of a pedestrian.

2.2.2 Agent Communication Languages

A number of communication languages such KQML [19] and FIPA ACL [20] are used to

allow agents to communicate. These languages are based on speech-act theory, whereby

the speaker makes a declarative statement, e.g. “I declare that...”, and in doing so

completes an action. Agent communication languages are essential to enable agents to

interact with each other and to collaboratively complete tasks.

Figure 2.1 shows an example of a FIPA ACL message used to communicate the price of

a bid in an auction between two agents. The first key word in the message is inform,

this sets the declarative statement, or meaning of the message. The message is then

made up of a number of keywords followed by values. For example the keyword :sender

is followed by the value of the agent sending this message, in this case the sender being

Agent-A. Other keywords are used to specify which agent to send the message to; in this

example the :receiver is Agent-B, and what kind of reply the sender is expecting; in this

case Agent-A is expecting Agent-B to :reply-with a bid value of the type bid02. Other

keywords such as :language and :ontology allow the language and ontology of the message

to be defined.

12

(inform

:sender Agent-A

:receiver Agent-B

:reply-with bid02

:content (price (bid good01) 100)

:language fipa-sl

:ontology auction

)

Figure 2.1: FIPA ACL example taken from Ahmad et al. [3]

2.2.3 Collaboration

Having agents work in collaboration is essential if agent technology is to reach its full

potential. Agents need to be able to work together to complete complex tasks that are

too labour-intensive for a single agent to complete.

Rosenschein et al. [21] proposed a framework for modelling communications between

agents which allows agents to “keep promises” with each other. The framework makes

the benevolent agent assumption, whereby all agents are seen to want to help one another.

The proposed framework enables promises made by agents to become binding i.e. they

have to be carried out. The framework introduces the concept of group offers; a group of

tasks an agent is willing to collaborate on, and deals; all the agents’ group offers combined.

The framework also introduces a number of theorems which help agent collaboration to

take place. The framework was used to solve the prisoners’ dilemma problem, which

showed that agents could successfully communicate and negotiate in order to complete a

complex task.

Grosz et al. [22] presented a model that uses a group of agents to complete a complex plan

without using the notion of jointly held intentions i.e. we-intentions. The model is based

on the notion that, ultimately, all collaborative actions are based on the individual action

of an agent. The model provides intention operators and potential intention operators in

order to allow agents to collaborate on completing tasks.

Agent collaboration allows agents to complete complex tasks in a group-like work struc-

ture. However, there is still the case where agents may have many non-complex tasks to

complete, where an abundance of such tasks could cause a single agent to become over-

loaded. Therefore, there is the need for a mechanism to allow agents to pass non-complex

tasks off to other agents who are less resource constrained than they are. Shehory et al.

[23] discussed such an approach whereby overloaded agents may pass tasks off to other

agents. When no appropriate agents exist, an agent may clone itself to create the necessary

resources for task completion. To enable this cloning approach an agent must be able to

13

reason about its current state i.e. load and available resources. In this study simulations

were run to compare systems in which cloning of agents was allowed and where cloning of

agents was not allowed. Results showed that for small numbers of tasks, cloning enabled

systems and non-cloning enabled systems performances were almost equal. However when

the number of tasks increased the cloning enabled system performed better than the non-

cloning enabled system. Beyond a certain threshold of tasks to be completed however,

even cloning-enabled systems showed poor performance. Therefore it is evident that the

decision on whether or when to clone is no simple task, and system-specific algorithms to

enable such behaviour seem to be the standard approach.

The opposite behaviour of merging two agents or self-extinction is also an important con-

trol mechanism for agent proliferation and must be studied if agent cloning is to be used

in MAS.

2.2.4 Standardisation

Standardisation of agent technology took a long time to come about as many agent tech-

nologies were easier to design and implement if they were system specific. Standardisation

of agent technology allows interoperability between agents from different platforms which

is essential for successful growth of agent technology.

In 1997 the Foundation for Intelligent Physical Agents (FIPA) released a set of speci-

fications [24] relating to agent technology standards. This paper was reviewed at the

AMAAS 98 conference [25], which lead to a further FIPA specification being released

at the end of 1998 [26]. The FIPA specification was finalised and released in 2000 [27].

This specification contains information needed to develop FIPA compliant agent based

systems. These standardisation efforts by FIPA ultimately lead to agent interoperability

becoming possible.

2.3 Combining Multi Agent Systems (MAS) and Ad

Hoc Networks

Ad hoc networks may benefit from the introduction of the MAS paradigm into the field.

Cicirello et al. [28] proposed that MAS can be used to help coordinate ad hoc networks.

The Drextel University MANET [29] architecture is made up of a two tier architecture

with agents being placed on the top tier and the MANET being placed on the bottom

tier. A number of experiments were carried out using this MANET, including intruder

detection in the network [28], an ant nest relocation problem [28] and an agent ecosystem

[28] where agents had to complete tasks to stay “alive”.

14

A lot of research in this area is being carried out using a MAS approach to distributed

problem solving. Macker et al. [30] proposed a three tiered design approach for devel-

oped cross-layer MAS and MANET systems. This approach separates out the different

sections of the system, with agents being on the top layer, middleware, e.g. routing pro-

tocols, being on the middle layer and the physical network, i.e. MANET, being on the

bottom layer. This design divides out the MANET routing problem from the agent task

problem. It also is suggested that using pro-active routing protocols to route data in a

MANET may yield better results than using reactive routing protocols, as even though

pro-active routing protocols introduce a higher overhead into the network it would lead

to a) a lower average delay in transmissions between nodes and b) the overhead being

predictable, especially during stressed conditions. Coordination of agents was tested us-

ing the predator prey problem with agents being required to work together in order to

complete their assigned tasks. However as agents are supposed to be environmentally

aware to aid them in carrying out their tasks this approach may seem counter-intuitive.

A knowledge of network conditions at the agent level may better equip agents to carry

out their tasks especially if the tasks involve traversing the network. Ultimately an agent

based approach to routing may facilitate better efficiency in relation to task completion.

Traditionally system optimisation techniques have relied heavily on prior knowledge of a

system’s environment and some form of centrally managed runtime knowledge. However

with the use of agent technology some concepts from the field of machine learning can be

used in a distributed fashion. Dowling et al. [31] proposed a collaborative reinforcement

learning model (CRL) to achieve system optimisation. The CRL model was evaluated by

using it to build a MANET routing protocol called SAMPLE. SAMPLE was compared

against DSR and AODV for efficiency. DSR and AODV seemed to outperform SAMPLE

when perfect radio links were simulated, however when more adverse network conditions

were introduced SAMPLE outperformed both DSR and AODV.

Boukerche et al. [32] proposed the use of agents to secure routing in MANETs. Anony-

mous Routing Protocol Based on Mobile Agent (ARMA) encapsulates all routing infor-

mation in an agent, which then migrates from node to node in the network. This approach

removes any routing processing from the node and places it on the mobile agent. ARMA

uses a uni-directional trust value relationship system to provide security against mali-

cious nodes in the network. However for this protocol to function correctly an external

certificate authority (CA) is required which may not be possible in an ad hoc environment

especially where node mobility is introduced. The ARMA protocol also makes use of a

Twice-ID Provided (TIP) Mechanism [32] whereby the nodes in a route discovery path

and route reply path are compared for consistency. If any of the nodes are out of place it

is presumed that the out of place node is potentially malicious. This approach however

15

does not allow different routes to be taken for route discovery and route replies, which

may be a bit naive when considered for use in MANETs. Finally the ARMA protocol

makes certain assumptions about what a malicious host will try to do, however such as-

sumptions cannot be made in real world environments, as the intentions of a malicious

host can never be fully known.

Misker et al. [33] put forth the concept that computer system users should not only in-

teract with individual computer devices but with a computer system as a whole. Agent

technology allows this concept to become a reality as agents can be used to enhance user

experience by traversing networks to carry out complex tasks. When one considers that

every individual in the modern world carries some sort of electronic device around with

them and these devices could be used to make up a very extensive MANET the possibil-

ities of agent technologies coupled with this MANETs are vast.

To allow the successful operation of ad hoc networks in the real world careful design

considerations need to be taken into account. For example all agents will need to be in-

teroperable with communication and collaboration between agents being at the forefront

of the system design. Much work has been carried out in the individual areas of ad hoc

networks and MAS. It seems the next logical step has been taken in combining these

two areas, but more research on the potential benefits of this combined research area is

needed.

2.4 Technology Overview

There are also a number of technologies which allow simulations to take place in ad hoc

networks of both a static and mobile nature. These simulators allow complex scenarios

to be run without the need for real world ad hoc networks to be deployed.

Agent technology can be used to enhance capabilities in complex computer systems. Be-

fore 1997 many of these agent technologies were system independent. With the introduc-

tion of the Foundation for Intelligent Physical Agents (FIPA) [34] a number of specifica-

tions were decided upon which enabled these technologies to become interoperable. Since

this introduction of interoperable agents, a number of agent technologies which allow easy

development of agents in agent based systems, have become available.

2.4.1 Ad Hoc Networks

Potential uses for ad hoc networks are currently being studied by a number of researchers.

There are two approaches to testing scenarios in ad hoc networks, firstly via the use of

simulators, and secondly via the use of real world deployed ad hoc networks.

16

Simulators

The most popular simulator used to simulate ad hoc network conditions is the ns-2 sim-

ulator [ts1]. The ns-2 simulator is used primarily to test routing protocols in ad hoc

networks [2] [12], however some research has been carried out with the ns-2 simulator

being used to test agent based systems [30].

Other possible choices for simulators include OPNET [ts2], OMNET++ [ts3], Glomosim

[ts4], Qualnet [ts5]. OPNET provides a suite of commercial network simulation tools

which could be used to model ad hoc network conditions. Qualnet is also a commercial

product for ad hoc network simulation, however a free version of Qualnet called Glomosim

is available to educational bodies. A knowledge of parsec and c is required to setup and

run simulations using Glomosim. OMNET++ is an open source network simulator which

is free for non-profit bodies and educational bodies alike.

Real World Deployment

Researchers at Drextel University, Philadelphia, USA, have not used simulations but have

instead carried out real world experiments using the Philadelphia Area Urban Wireless

Network Testbed (PA-UWNT) [28]. Research carried out by Cicirello et al. [28, 35],

showed that complex agent systems can be built and tested using real world testbeds as

opposed to simulations as is discussed in the previous sub-section.

For testing agent-based technologies there are a number of arguments for the use of a

simulator such as; ease of testing, i.e. a fully operable MANET would not have to be

deployed, and guaranteed results, i.e. even an incorrectly configured simulation would

produce some results. However some simulators, such as ns-2, have a steep learning curve

and require a lot of man-hours for a developer to become confident with its use. Also

simulations are just that, simulations, and should only be used as a stepping stone for

future real world testing.

2.4.2 Agent Frameworks

A number of agent technology frameworks are available for the development of agent-

based systems, the vast majority of which are FIPA compliant.

Ahmad et al. [3] discussed the use of the Java Agent Development Envirmonment (JADE)

[36] as a fundamental java-based framework for the develoment of agent technologies.

JADE is fully FIPA compliant, which ensures ease of interoperability between agents on

different platforms. Research carried out [37] [33], successfully used JADE to develop

agents for their respective agent-based systems.

17

Ronald et al. [18] used JACK Intelligent Agents [38] to develop agents for their agent

based system, as JACK was specifically designed for use in creating agent simulations.

This enabled the system in question to be successfully designed in an efficient timeframe.

O’Hare et al. [39] used the Agent Factory framework [40] to develop agents for agent-

based systems they designed. Agent Factory is fully FIPA compliant and was used to

successfully develop software agents used in the Gulliver’s Genie [41] agent based system.

Memebers of Drextel University, Philadelphia, USA, used the Extendable Mobile Agent

Architecture (EMAA) framework [42] to develop agents used in agent-based systems in

[28] and [35].

For the development of agents in an agent-based system a FIPA compliant framework

such as Agent Factory or JADE would be an asset as it would remove FIPA compliancy

issues from system development.

2.5 Summary

In this chapter, we discussed background research and the state of the art for the two

research areas this work is concerned with; ad hoc networks and MAS. An overview of

the limitations, routing protocols and security concerns for ad hoc networks has been

discussed. Key concepts and research relating to MAS have been reviewed. Existing

research which combines ad hoc networks and MAS has also been discussed. Finally an

overview of the technologies used in developing systems which use ad hoc networks or

MAS is given.

18

Chapter 3

Design

Ad hoc networks provide a “bring your own network” solution for situations where in-

frastructure networks cannot be used. Examples of uses range from search and rescue

operations to mobile military operations. In ad hoc networks of both a static and mobile

nature a key research question is how to provide successful and efficient routing of data

through said networks. Many current ad hoc routing protocols such as AODV [1] and

DSR [8] try to establish end-to-end routes between source and destination nodes before

routing data packets. This approach places the decision of what route a data packet

should take on the source node, thus not allowing dynamic adjustments to selected routes

to be made during data transfer.

Other ad hoc routing protocols such as GPSR [2], AODV-DFR [10] and GSCR [12] use

physical geographic locations to help route data packets efficiently. These protocols do

not require an end-to-end route between source and destination to be known before the

transmission of data packets begins. However, geographic routing protocols do require

the physical location of the destination to be known i.e. via the use of GPS devices or

external services that provide such information. Therefore the route taken by data pack-

ets in geographic routing protocols is decided by intermediate nodes along the route.

The research area of Multi Agent Systems (MAS) uses autonomous software agents to

provide advanced functionality to software systems. Boukerche et al. [32] used software

agents to provide routing anyonmity in ad hoc networks. This approach takes the respon-

sibility off source and intermediate nodes of data packet routing and places it solely on

the software agent.

This chapter discusses an optimistic on-demand/reactive routing mechanism for software

agents entitled the Agent Distribution (AD) mechanism, which is used to distribute agents

throughout an ad hoc network.

19

3.1 AD Mechanism

As mentioned above, the AD mechanism is an optimistic on-demand/reactive routing

mechanism for software agents used in an ad hoc networked environment. The AD mech-

anism removes the responsibility of routing data packets from nodes in an ad hoc network

and places it solely on network aware software agents that can migrate freely around the

ad hoc network in question. The AD mechanism does not fit into any of the routing

protocol approaches discussed in chapter 2 (section 2.1.1 Routing Protocols in Ad Hoc

Networks). It does not require an end-to-end to route from source to destination to be

known before it begins transmission of data as in topology-based routing approaches, and

it does not use location devices to ascertain destination locations; as in position-based

routing. The AD mechanism can, therefore, be seen as a fresh approach to routing in ad

hoc networks.

3.1.1 Naming of Network Nodes

The proposed AD mechanism uses a static naming convention for naming network nodes.

Each network aware software agent has a node from which it originates, in the AD mech-

anism these origin nodes are called hosts. Each host is given a globally unique identifier

or host-name. The concept used to assign host-names is similar to the naming concept

used in friend-to-friend networks such as SKYPE [43]. In such networks a static name

is applied to a users account and some external means is used to propagate the account

name of a given user to other system users (e.g. via simple person to person communica-

tion) in order to allow two users to communicate. In the AD mechanism the host-name

of a certain host will be propagated using similar external means.

An implementation of this naming concept might involve a host registering their host-

name with a central authority that has records of all host-names for a given network. This

would halt the same host-name being assigned to multiple hosts. To aid system efficiency

names could then be hashed using a hash function (e.g. SHA-1). Therefore as each host

can be assigned its own globally unique identifier in the form of a host-name, naming

concepts, such as IP addresses, for underlying protocols, such as the Internet Protocol

(IP), for a host can dynamically change over time as a hosts’ IP address is not used by

the AD mechanism to identify it. This allows hosts to be completely mobile and the need

to register with new networks and unregister with old networks is not required by the AD

mechanism.

20

3.1.2 Agent Distribution Mechanism Message Types

Within the AD mechanism there are four types of message which may be sent by network

agents to assist in agent routing within the ad hoc network in question. These messages

types are as follows:

1. Agent-Query

2. Population-Query

3. Population-Reply

4. Agent-Reply

The following subsections explain each of these message types in turn.

Figure 3.1: AD mechanism overview

Agent-Query

Agent-query messages are sent by a software agent to hosts that are currently its one-hop

neighbour. In Fig 3.1 the Source host/node contains the querying software agent who

sends an agent-query message to its one-hop neighbour. Agent-query messages contain

the following information:

• The host-name of the current host on which the software agent is operating.

• The host-name of the destination host.

• The IP address of the current host on which the software agent is operating, if IP

is used as the underlying transport protocol.

21

Population-Query

Population-query messages are sent by the one-hop neighbour(s) of the querying software

agent to its current one-hop neighbours (or the two-hop neighbours of the querying soft-

ware agent). In Fig 3.1 the One-Hop host/node sends a population-query message to its

one-hop neighbour, host/node Two-Hop. A population-query message can be seen as a

light weight ping message that is only used to ascertain host/node populations for a given

area. Population-query messages contain the following information:

• The host-name of the agent’s one-hop neighbour sending the population query mes-

sage.

• The IP address of the host sending the population-query messages, if IP is used as

the underlying transport protocol.

Population-Reply

Population-reply messages are sent by the querying software agent’s two-hop neighbours

in receipt of a population-query message. In Fig 3.1 the Two-Hop host/node sends a

population-reply message back to the One-Hop host/node after receipt of a population-

query message. A population-reply message allows the querying software agent’s one-hop

neighbour to ascertain a host/node population/neighbourhood count and to alert the

querying software agent as to whether the required destination host is within it’s popula-

tion/neighbourhood group. Population-reply messages contain the following information:

• The host-name of the host sending the population-reply message.

• The IP address of the host sending the population-reply message, if IP is used as

the underlying transport protocol.

Agent-Reply

Agent-reply messages are sent by a querying software agent’s one-hop neighbour in re-

ceipt of an agent-query message, after the one-hop neighbour has performed a popula-

tion/neighbourhood count for its population/neighbourhood group. In Fig 3.1 the One-

Hop host/node sends a agent-reply message back to the Source host/node after steps 1 -

3 have been performed. Agent-reply messages contain the following information:

• The host name of the agent’s one-hop neighbour.

• The population count of the agent’s one-hop neighbour.

22

• A boolean value indicating whether or not the destination host is directly reachable

via this one-hop neighbour, i.e. via two-hops with the host that sent the agent-reply

message being the first hop.

• The IP address of the host sending the population-reply message, if IP is used as

the underlying transport protocol.

The above message types for the ABR protocol are exchanged between agents oper-

ating on network hosts/nodes, and as such, depending on the performance constraints of

the network hosts/nodes, should be implemented in an agent communication language

such as KQML [19] or FIPA ACL [20].

3.1.3 AD Mechanism Operation

There are five stages to successful operation of the AD Mechanism. Fig 3.2 gives an

overview of this operation.

Figure 3.2: AD mechanism operation

1) As seen in Fig 3.2 host/node S wishes to find host/node D. A software agent operat-

ing on host/node S broadcasts an agent-query message to its one-hop neighbours,

23

depicted in Fig 3.2 by a red ring around host/node S. This agent-query message is

received by software agents operating hosts/nodes A1 and A2.

2a) If host/node A1 or host/node A2 were the required destination host/node then an

agent-reply message would be sent straight back to the querying software agent

operating on host/node S informing it of this. The querying software agent would

then migrate to either host/node A1 or host/node A2, depending on the value of

required destination host/node.

2b) In this scenario the required destination host/node is D. Therefore software agents

operating on hosts/nodes A1 and A2 broadcast a population-query message to their

one-hop neighbours, depicted in Fig 3.2 by a blue ring around hosts/nodes A1 and

A2.

3) Software agents operating on hosts/nodes B1, B2 and B3 receive host/node A1’s

population-query message broadcast, and software agents operating on hosts/nodes

B4 and B5 receive host/node A2’s population-query message broadcast. Software

agents operating on hosts/nodes B1, B2, B3 then reply directly to the software

agent operating on host/node A1, and software agents operating on hosts/nodes

B4 and B5 reply directly to the the software agent operating on host/node A2,

with a population-reply message, as depicted by blue arrows in Fig 3.2. This in-

forms the software agents operating on both host/node A1 and A2 of their popula-

tion/neighbourhood count.

4) Software agents operating on both host/node A1 and A2 then reply to the querying

software agent operating on host/node S with a agent-reply message which contains

the population/neighbourhood count for each host/node and a boolean indicating

whether or not either host/node A1 or A2 can act as a gateway or stepping-stone

to the required destination host/node D.

5) As Fig 3.2 shows neither host/node A1 or A2 is a gateway or stepping-stone to the re-

quired destination host/node D, so the software agent operating on host/node S will

then migrate to the one-hop neighbour with the highest population/neighbourhood

count, that being host/node A1 in this scenario. Host/node A1 is chosen as the

greater the number of nodes in an area of the network the greater the chance of

successful routing of the software agent.

24

3.1.4 Software Agent Replication

Software agents that use the AD mechanism have the ability to replicate themselves,

thus allowing multiple agents with the same or different tasks to traverse an ad hoc

network. The keyword replicate was used, as opposed to the keyword clone, to describe

such behaviour as replicated agents may not be an exact copy of the software agents that

they were replicated from. For example, replicated software agents may only contain a

subset of the resources, i.e. data and capabilities, of their replicant agent. Replication

may be desirable in two cases, firstly if rapid routing of software agents is required, and

secondly if a task is overly complex and the resources of single software agent are not

great enough to complete it.

Rapid Routing

As described in the AD mechanism above if a software agent’s one-hop neighbours return

the same population values then the agent must make a choice. They can either:

a) Choose to ignore the problem and go with the neighbour who returned the highest

neighbour population value first or last depending on the nature of the ad hoc

network (i.e. static or mobile).

b) Choose to replicate itself and have each replicated software agent migrate to one of

the possible one-hop neighbours with population values equal to the maximum.

Choice b) increases the possibility of one of the software agents finding the required desti-

nation host/node in the best time possible, especially if the software agent has more than

one destination to locate.

For example, if a software agent has to route to multiple locations it may decide to repli-

cate itself multiple times before it starts to seek any of the locations, and have each

software agent route to a single location. This increases overall system efficiency. In

Fig 3.3 this scenario is depicted, with software agent A1 operating on host/node S. The

software agent is given the task of routing to hosts/nodes D and Q. In this scenario the

software agent replicates itself, thus creating software agent A2. Each software agent is

then given a single location to route to.

25

Figure 3.3: Software Agent Replication for Rapid Routing

Complex Task

If a software agent is given a complex task which can be divided into individual sub-tasks

then a software agent may “choose” to replicate itself in order to create more resources

to complete the given task.

Fig 3.4 shows such a scenario, where a software agent A operating on host/node S is given

a complex task that may be broken down into two or more logical sub-tasks. The result

is the software agent A replicating itself and creating the software agent B. A and B are

then given separate tasks. In this scenario the task given to software agent A involves

routing to host/node D and performing some action and the task given to software agent

B involves routing to host/node Q and performing some different action. This division of

software agents and assignment of individual tasks increases the overall performance of

the system.

26

Figure 3.4: Software Agent Replication for Complex Task

3.1.5 Software Agent Merging

As software agents in the ABR protocol have the ability to replicate themselves, the

opposite behaviour is required for the ABR protocol to work efficiently. Merging of

software agents or “self-extinction” allows multiple agents to become one. An example of

where this behaviour might be desirable would be when resources in the system become

constrained and an abundance of active software agents has a detrimental effect on system

performance.

Post Complex Task/ Re-Finding S

If multiple software agents or an agent swarm have completed a complex task they may

be required to return to a central host/node in order to relay the acquired information.

If the end location needs to wait for all agents in the agent swarm to return before taking

decisive action, enabling software agents to merge and return as a single entity would

increase system efficiency, as it reduces the possibility of single agents “getting lost”.

Fig 3.5 depicts this scenario whereby software agents A and B operating on hosts/nodes

D and Q respectively, both have to route to host/node S to complete their assigned task.

The software agents meet up at host/node M. Upon the realisation that both software

27

agents are in the final stages of execution and must return to host/node S to complete

their tasks, the two software agents may decide to merge, thus creating a single software

agent X. X can then then route to host/node S as a single software agent. The system

must wait for both software agents to return before it can proceed. If the merged software

agent X takes a non-optimal route to host/node S, i.e. “gets lost”, for example via the

hosts/nodes M - P - O - L - S, then the maximum time waited would be equal the time

taken if one of the non-merged software agents had “gotten lost”. Therefore merging of

software agents can be seen as an optimistic approach to increase system performance.

Figure 3.5: Software Agent Merging

3.2 Summary

In this chapter, we discussed an optimistic on-demand/reactive routing mechanism for

distributing software agents and by extension, the data which they carry, throughout an

ad hoc network. The AD mechanism operational semantics were formalised and discussed

thus allowing the design of this mechanism to be conveyed to readers.

28

Chapter 4

Implementation

To prove the AD mechanism could be successfully used to route data in an ad hoc network,

a simple message delivery system entitled Shoulder Monkey was developed. This system

was agent-based and used the AD mechanism as the method of allowing software agents

to jump from node to node in an ad hoc network. The operation of the system consisted

of a software agent been given a message, which it then had to relay to a given node in

an ad hoc network. Once this message was relayed, the software agent waited for a reply

and then re-routed to its originating node to relay this reply.

This chapter discusses the design and implementation of the Shoulder Monkey system in

detail.

4.1 Shoulder Monkey System Design

The design architecture for the Shoulder Monkey system needed to be modular; allowing

easy separation of system concerns, easy to understand; allowing future researchers to

add new features to the system and as light weight as possible; keeping the use of system

resources to a minimum. The design architecture for the system went through many iter-

ations and the result is shown in Figure 4.1. A high level view of the design architecture

for the Shoulder Monkey system shows that the system met the criteria set out above.

29

Figure 4.1: Design Architecture for Shoulder Monkey system

4.1.1 Host Agent

The Host Agent component in the Shoulder Monkey system was responsible for maintain-

ing data relating to the node on which the system operated. The Host Agent contained

the following information:

• The host name of the node.

• The IP address of the node.

This information could be accessed by components such as the Play Pen, the Comms

Agent and Migrant Agents as was needed.

Creation of Migrant Agents was the responsibility of the Host Agent component. Once

a Migrant Agent was created by the Host Agent, it was passed to the Play Pen where it

began executing. The Host Agent also acted as the intermediary component to enable

messages to be passed from Migrant Agents operating in the Play Pen component to the

GUI component. This design decision avoided concurrency issues which may have arisen

from allowing Migrant Agents direct access to the GUI component.

30

4.1.2 Play Pen

The Play Pen component was designed to act as a holding area for Migrant Agents.

Newly created Migrant Agents were passed to the Play Pen component by the Host

Agent component. Migrant Agents that migrated from other nodes were passed to the

Play Pen component via the Gateway Agent component. Once a Migrant Agent began

executing it was required to register with the Play Pen component. If a Migrant Agent

self-terminated, merged with another Migrant Agent or migrated to another node, it was

required to unregister with the Play Pen component before doing so. This allowed the

Play Pen component to keep count of how many Migrant Agents were operating within

it.

4.1.3 Migrant Agent

Once a Migrant Agent had been created by the Host Agent it executed entirely in the Play

Pen component of the system. The Migrant Agent was equipped with an implementation

of the AD mechanism to enable it to traverse an ad hoc network. The Migrant Agent

contained algorithms to enable it to ascertain which network nodes it must migrate to,

and whether or not it was currently operating on said nodes. Migrant Agents also had the

ability to replicate themselves, merge with other Migrant Agents and self-terminate. The

Migrant Agent could leave the Play Pen at any time and of its own merit, but was required

to enter Play Pen components on other nodes via their Gateway Agent component.

4.1.4 Gateway Agent

The Gateway Agent component acted as the doorman of the Shoulder Monkey system.

As discussed in Chapter 2 (section 2.1.2 Security Considerations for Ad Hoc Networks)

security considerations are coming to the forefront of research in ad hoc networks. Many

ad hoc networks and protocols trust that all nodes operating within an ad hoc network

are benevolent, which may not be the case. As the Shoulder Monkey system operated by

transferring executable code bases from node to node; i.e. the systems migrant agents,

security concerns had to be taken into account in the design architecture. Even though

the security considerations for an MAS approach to ad hoc routing were beyond the scope

of this dissertation, it was the opinion of the author that any system that was designed

to be potentially deployable in real world situations should show a knowledge of security

issues in their design. Therefore the Gateway Agent component was designed to allow

the easy addition of security checks such as digital signatures and cryptographic keys,

to be run on Migrant Agents before they are allowed to begin executing, thus impeding

31

malicious agent attacks on the system.

4.1.5 Comms Agent

The Comms Agent component was the most unusual design feature of the Shoulder Mon-

key system. This component provided an automatic reply system for broadcasted Agent-

Query and Pop-Query messages. When a Migrant Agent broadcasted an Agent-Query

message, the Comms Agent component received it, and sent back a reply automatically,

without the need to communicate with other system components. The Comms Agent

component was also responsible for sending and responding to Pop-Query messages, sent

to/from Comms Agent components operating on other nodes. This enabled population

counts to be ascertained for nodes.

4.1.6 GUI

The GUI component for the Shoulder Monkey system was designed to be as user friendly

and informative as possible. As a proper evaluation of the AD mechanism was the rea-

son for developing the Shoulder Monkey system, AD mechanism operation needed to be

shown in the finished GUI component. Also as many academic research projects are easily

forgettable to say the least, an attractive GUI that “catches one’s eye” was seen a key

feature to attract the attention of fellow researchers, much like the way magpies would

be attracted to shiny objects.

4.2 Shoulder Monkey System Implementation

The Shoulder Monkey system was implemented entirely in java. A number of java based

frameworks [36] [40] were considered for the development of the system, however these

frameworks came with an inherent level of complexity, and as the Shoulder Monkey system

was designed to be as light weight as possible, it was decided not to use a framework to

develop the system.

4.2.1 AD mechanism

The AD mechanism was implemented at application layer in a single java class aptly

named AgentDistributionMechanism. This class enabled the AD mechanism to operate.

The class consisted of four methods which:

1. Sent an Agent-Query message.

32

2. Sent a Pop-Query message.

3. Sent a Pop-Reply message.

4. Sent an Agent-Reply message.

Agent-Query and Pop-Query messages were broadcasted via the use of a UDP multicast

group. Figure 4.2 shows a code snippet of the constructor method for the AgentDistri-

butionMechanism class. This code snippet shows the UDP multicast group being setup

thus allowing broadcasting of messages.

Four more methods from the AgentDistributionMechanism class allowed the payload for

all message types to be set. For example, the method used to set the payload for an

Agent-Query message took the host name of the node sending the Agent-Query and the

host name of the node being sought as arguments. These values were then concatenated

into a single string; separated by a space and broadcasted to the UDP group.

public AgentDistributionMechanism()

{

group = "230.0.0.5";

try

{

myIP = InetAddress.getLocalHost().getHostAddress();

} catch(UnknownHostException e) {

e.printStackTrace();

}

}

Figure 4.2: Code snippet of AgentDistributionMechanism class constuctor

4.2.2 Comms Agent and Stop Clocks

The CommsAgent class was used to implement the Comms Agent component of the

Shoulder Monkey system. Figure 4.3 shows a code snippet from the CommsAgent run()

method. This snippet shows that both Agent-Query and Pop-Query messages were con-

tinually listened for by the run() method. Upon receiving a message of either type a new

thread was started which sent an appropriate message i.e. an Agent-Reply or Pop-Reply

message, in reply.

For example, when an Agent-Query message was received, a new thread was started which

33

broadcasted a Pop-Query message via a UDP multicast. A stop clock was then started

to give nodes a time frame of 50 ms to reply to the broadcast. A code snippet for this

stop clock is shown in Figure 4.4. Once the stop clock was up an Agent-Query message

was sent to the locahost to inform the system to proceed. All Pop-Reply messages were

then processed and an Agent-Reply message, containing information on located destina-

tions, neighbourhood sizes, etc, was sent to the node the Agent-Query originated from.

Pop-Query broadcasts were also replied to in the same manner, however stop clocks were

not used. This enabled Pop-Reply messages to be sent directly back to a querying node,

via a UDP unicast, upon receipt of a Pop-Query message.

public void run()

{

// Listen for PopQuery msg’s

Thread pop_query_listener = new Thread(new PopQueryListener());

pop_query_listener.start();

System.out.println("COMMS AGENT : ACTIVE");

// Listen for AgentQuery msg’s

AgentQueryListener dave = new AgentQueryListener();

while(true)

{

dave.listen();

// Start a thread to send a reply

Thread AgentQueryListener = new Thread(

new AgentQueryListener());

AgentQueryListener.start();

}

}

Figure 4.3: Code snippet of CommsAgent class run() method

int current_time = (int) System.currentTimeMillis();

int end_time = (int) System.currentTimeMillis();

while(current_time < end_time)

{

try

34

{

Thread.sleep(10);

} catch(InterruptedException e) {

e.printStackTrace();

}

current_time = (int) System.currentTimeMillis();

}

AgentReplySender.setWait(false);

stephen.sendPopulationReply("localhost", HostData.getHostID());

Figure 4.4: Code snippet of stop clock used by CommsAgent class

4.2.3 Migrant Agent

The migrant agent was implemented in the MonkeyAgent class. This class allowed migrant

agents to traverse an ad hoc network. The implemented migrant agent had two operation

modes, namely:

1. findD mode

2. findS mode

When a migrant agent was in findD mode it sought the destination it had been given to

relay a message to. When a migrant agent was in findS mode it sought it’s source node, or

the node which it originated from, in order to relay a reply to the message sent. Migrant

agents operated differently depending on which operation mode they were operating in.

To ensure that migrant agents successfully jumped from node to node all migrant agent

migration was performed using TCP.

Scout class

The scout class removed the AD mechanism logic from the MonkeyAgent class. This

allowed the the MonkeyAgent class to be concerned with where it was and where it was

going and not how to get there. Whenever a MonkeyAgent object wished to locate a

35

new node to jump to it created a Scout object and then called its seek() method. This

method returned a ArrayList of destinations to the MonkeyAgent object. Depending on

whether or not the MonkeyAgent object was in replication mode and on whether multiple

destinations had been located, the first entry of this ArrayList, or multiple entries were

chosen as the next hop for the MonkeyAgent object. The seek() method in the Scout

class followed a number of steps in order to locate nodes that a MonkeyAgent object

could jump to, namely:

1. Sending an Agent-Query message.

2. Receiving back Agent-Reply messages.

3. Processing Agent-Reply messages.

4. Using a built in algorithm to decide which node(s) to jump to next.

The first of these steps broadcasted an Agent-Query message to nodes within range of the

querying node. A hop-timer, similar to the stop clock timer used by the CommsAgent

class, allowed a time frame of 125 ms for nodes to ascertain a population count for

their neighbourhoods and send back an Agent-Reply message via a UDP unicast, thus

completing step two. Step three then processed all Agent-Reply messages, as can be seen

in Figure 4.5. The payload for all Agent-Reply messages was divided into separate strings

which were stored in a string array. This allowed easy access to the data contained in each

payload during step four. To complete step four an algorithm was used to run a number

of checks on the Agent-Query messages received. Using the data processed in step three

the algorithm checked the following for each Agent-Query message:

1. If the IP address was 127.0.0.1.

2. If a one-hop neighbour was the required destination.

3. If the required destination was found by a one-hop neighbour.

4. Which one-hop neighbour returned the largest neighbourhood count.

Depending on which of these conditions were met, different choices were made for the

next node a migrant agent jumped to.

tuples = new String[agentReplies.size()][4];

String alan;

for(int i = 0; i < agentReplies.size(); i++)

36

{

alan = agentReplies.get(i);

StringTokenizer carol = new StringTokenizer(alan);

// Hostname of one hop neighbour

tuples[i][0] = carol.nextToken();

// Destination found boolean

tuples[i][1] = carol.nextToken();

// Population count

tuples[i][2] = carol.nextToken();

// Sender IP

tuples[i][3] = carol.nextToken();

}

Figure 4.5: Code snippet of Agent-Reply message processing

Agent Replication

As discussed in Chapter 3, software agents which use the AD mechanism to traverse an

ad hoc network should have the ability to replicate themselves, thus allowing the creation

of more resources as is needed. This feature was implemented in the Shoulder Monkey

system and could be turned on or off by a system user from the GUI. When this feature was

turned on, an agent was said to be in cross-roads mode. When an agent was created with

the ability to replicate itself, it did so when two or more possible routes to a destination

node were discovered. Upon the discovery of possible multiple routes to a destination

an agent would replicate itself the exact number of times needed to send an agent on

each route. To avoid the network becoming completely flooded all replicated agents were

created without the ability to replicate, therefore only the original agent could replicate

itself. Agents did not replicate when searching for their source node. Figure 4.6 shows a

code snippet for the method used to replicate migrant agents.

This method took a string, which is the node the replicated agent should migrate to

immediately upon creation, as an argument. This method then created a name for the

replicated agent, which was a concatenation of the original agent’s agent name, the letter

37

R to indicate that this agent was a replica, and an integer relating to the number of

replicas the original agent had created. The method then created a new agent, using a

different constructor than the one used by the HostAgent class and added it to the Play

Pen. Once this was completed the original agent set its self-replicated status to true,

indicating that it had created at least one replica.

private void selfReplicate(String nextHop)

{

String repName = agentID + "R" + replicaCounter;

replicaCounter++;

PlayPen.add(new MonkeyAgent(repName, homeHostID,

desHostID, desHostIDList, msgList.get(0), nextHop));

hasSelfReplicated = true;

}

Figure 4.6: Code snippet of MonkeyAgent self-replication method

Agent Merging

As was also discussed in Chapter 3, agents using the AD mechanism should have the

ability to merge with other agents to allow resources to be saved and/or freed up. The

feature of agent merging was implemented in the Shoulder Monkey system. Two situations

called for agents to merge when:

1. Agents replicated from the migrant agent, or said migrant agent, encountered each

other before finding their destination.

2. Agents returning to the same source node encountered each other en route.

To enable this merging behaviour, an algorithm was developed, which consisted of four

steps:

1. Check for other migrant agents.

2. Message said agents.

3. Pass on payload.

4. Self-terminate.

38

The following scenario explains how agent merging works in the Shoulder Monkey system.

Imagine two migrant agents, agent X and agent Y operating on the same node. When

agent X arrived at a new node and began executing in the Play Pen, it began the merging

algorithm if one of the two conditions were met:

1. The agent had replicated or was a replica.

2. The agent was in findS mode.

If either of these conditions were met, Agent X checked if any other migrant agents were

operating in the same Play Pen. It did this by calling the preMerge() method in the

MonkeyAgent class. A message was sent to agent Y as it was operating in the Play Pen,

using the chat() method in the MonkeyAgent class. This method enabled agent Y to

check if it was eligible to be merged with. If agent Y was eligible it returned a boolean

value of true. Agent X then called the merge() method to pass on its payload to the agent

Y. Once the payload was passed, agent X self-terminated.

Figure 4.7 shows a code snippet from the chat() method. The first if loop checked if agent

Y was a replica of agent X. It did this by checking if agent Y was in findD mode and

then whether or not agent names were of the same form i.e. if they both started Mon-

keyAgent Z@W. If they did, agent Y set its can merge status to false and self-terminated.

This resulted in agent X being the only operating agent in the Play Pen and was then

allowed to continue searching for its destination. If the condition for the first if loop was

not met, the next if loop checked if both agents were in findS mode and whether or not

they originated from the same node. If these conditions were met, agent Y set its can

merge status to true and returned. If none of the above conditions were met agent Y set

its can merge status to false and returned.

Once a true value had been returned from the chat() method, agent X could then take

steps to merge with agent Y. Figure 4.8 shows a code snippet of the merge method from

the MonkeyAgent class. This method enabled agent X to pass on its payload to agent Y

before self-terminating. This approach of shallow merging, whereby agent X only passed

on some information to agent Y, was chosen over a deep merging approach. A deep

merging approach would entail passing the entire agent X object to agent Y. This was

seen as a waste of resources as both agents were equipped with the same operational

algorithms. This would have increased the overhead of transferring agents from node to

node without any benefit to the Shoulder Monkey system. The shallow merging approach

allowed agents to only pass on relevant information when merging with other agents and

was therefore seen as a more optimal approach.

boolean canMerge;

39

// If in findD mode and of the same MonkeyAgent/Replica

if(findD && localName.equals(externalName))

{

canMerge = false;

System.out.println();

System.out.println("MONKEYAGENT " + agentID + "

: Replica in findD mode exists on host - self-terminating");

this.selfTerminate();

}

// If in findS mode and from the same host

else if((findD != true) && homeHostID.equals(hostName))

{

canMerge = true;

}

else

{

canMerge = false;

}

return canMerge;

Figure 4.7: Code snippet of MonkeyAgent class chat() method

private void merge(MonkeyAgent abu)

{

abu.lastRights(msgList);

System.out.println();

System.out.println("MONKEYAGENT " + agentID + " :

MERGED WITH : " + abu.getAgentID());

this.selfTerminate();

}

40

Figure 4.8: Code snippet of MonkeyAgent class merge() method

Msg class

The Msg class contained the payload that a migrant agent carried. Each Msg object

contained a message, a message-reply and a message-id. The class also contained getter

methods for this data, and a setter method to allow a message-reply to be added to a

Msg object. Figure 4.9 shows the methods of the Msg class. Msg objects were created by

passing an integer containing the message id number and a string containing the message

to be relayed to the Msg class constructor.

public Msg(int id, String s)

{

msgID = id;

content = s;

}

public String getContent()

{

return content;

}

public void setReply(String hostID, String msg)

{

destinations = destinations + " " + hostID;

destinationReply = destinationReply + "*" + msg;}

public String getReply()

{

String all = destinations + "\%" + destinationReply;

return all;

}

public int getID()

{

return msgID;

}

41

Figure 4.9: Code snippet of Msg class methods

MonkeyAgent run() Method (run() Monkey run())

The behaviour of the migrant agent was implemented in the run() method of the Mon-

keyAgent class. This method enabled multiple migrant agents to operate on the same

platform simultaneously in their own thread. As discussed previously, the operation mode;

findD or findS, a migrant agent was in, would have an effect on its behaviour. The first

task a migrant agent carried out, regardless of what mode it was in, was to add the cur-

rent node it was operating on to an ArrayList which served as a record of all the nodes

the migrant agent had visited. If the migrant agent was in findD mode it would then

check if the node it was currently operating on was the required destination. If it was,

the migrant agent would relay its message to the Host Agent. Figure 4.10 shows a code

snippet of how this was achieved. The migrant agent would pass its Msg object and a

reference to itself to the Host Agent. The Host Agent would then process the message

while the migrant agent waited. If the message had already been relayed to the Host

Agent by a replica migrant agent, the Host Agent would terminate the current migrant

agent. Once the migrant agent received a reply it would enter findS mode and route to

its original source node. The same manner of routing was used by the migrant agent to

route to its source node as was used to route to the destination node. However once the

migrant agent located it’s source node and relayed it’s reply, it self-terminated.

Figure 4.11 shows a code snippet for the algorithm used by the migrant agent to traverse

an ad hoc network. A migrant agent first checked if agent merging was possible, as dis-

cussed in previous sections. Once this had been completed, the migrant agent called its

scout method, which used an instance of the Scout class, as discussed in previous sections,

to find a node to migrate to. Once a node was found, the migrant agent used the jump()

method to migrate to the selected node. Fault tolerance was built into the implemented

migrant agent jump behaviour using a boolean value, which ensured the process of find-

ing a node to migrate to and jumping to it via TCP was re-tried until it was completed

successfully.

if(this.isCurrentHostDes())

{

// Relay MSG

HostAgent.relayMsg(this, msgList.get(0));

// Where did we visit

42

System.out.println();

System.out.println("MONKEYAGENT " + agentID + " : Hop-List");

for(int u = 0; u < visitedHostIPList.size(); u++)

{

System.out.println("HOP " + u + " : " +

visitedHostIPList.get(u));

}

// Wait for reply

while(waitReply)

{

try

{

Thread.sleep(1000);

} catch(InterruptedException e) {

e.printStackTrace();

}

}

// No longer looking for D

// Set home destination to S

this.getNextDestination();

}

Figure 4.10: Code snippet of MonkeyAgent class Msg object passing

this.preMerge();

if(alive != true)

{

break;

}

// If not @ home

this.scout();

this.jump();

43

// If TCP connection fails try until it is successful

while(trapped)

{

this.scout();

this.jump();

}

Figure 4.11: Code snippet of MonkeyAgent routing algorithm

4.2.4 Host Agent

The HostAgent class was used to implement the Host Agent component in the Shoulder

Monkey design architecture. This class consisted of methods to allow creation of new

migrant agents, importing of created agents to the Play Pen and passing of Msg objects

between the GUI component and migrant agents operating in the Play Pen. Figure 4.12

shows a code snippet of the methods used for migrant agent creation and importing mi-

grant agents into the Play Pen. The first method; createNewMonkeyAgent(), created a

new migrant agent. The method achieved this by taking an ArrayList, which contained

the destination(s) that a migrant agent had to route to, and a string, which contained the

message the migrant agent must relay to said destination(s), as arguments. The method

then created a Msg object containing the message string. This Msg object was given an

ID consisting of a concatenation of the host name of the node in question and a message

count number, which was then hashed using a hashing function. The method then created

a new migrant agent which it imported into the Play Pen. Once the agent was in the

Play Pen its run() method was started and it began executing.

Passing of messages from migrant agents in the Play Pen to the GUI was achieved by a

migrant agent passing a reference to themselves as well as an Msg object as arguments to

the Host Agent. Then when the GUI contacted the Host Agent with a reply, the reference

to the migrant agent was used to ensure the newly modified Msg object was passed to

the correct migrant agent operating in the Play Pen.

The Host Agent component was also responsible for maintaining information relating di-

rectly to the node on which the Shoulder Monkey system was operating. This information

was contained in a class called HostData. The HostData class contained information such

as the IP address of the node and the nodes host-name and provided methods to allow

access to this information.

// Creates a new MonkeyAgent

44

public static void createNewMonkeyAgent(ArrayList<String> des, String msg)

{

int msgID = (HostData.getHostID() + Integer.toString

(msgCounter)).hashCode();

Msg m = new Msg(msgID, msg);

msgCounter++;

PlayPen.add(new MonkeyAgent(HostAgent.generateNewAgentName(),

des, m, GUI.crossRoadsMode()));

}

// Generates a new MonkeyAgent name

private static String generateNewAgentName()

{

String name = Integer.toString(monkeyCounter);

monkeyCounter++;

return name;

}

Figure 4.12: Code snippet of HostAgent methods

4.2.5 Gateway

The Gateway Component of the Shoulder Monkey system was implemented in the Gate-

wayAgent class. This class provided a method called standGuard(), which simply listened

on a TCP port for MonkeyAgent objects and then passed them to the Play Pen to begin

executing once they were successfully received. As the security considerations for MAS in

ad hoc networks were beyond the scope of this dissertation, no security measures were im-

plemented in the GatewayAgent class. However, as can be seen in Figure 4.13, a number

of security checks could be easily implemented after the MonkeyAgent object is received

and before it is added to the Play Pen where it begins executing. This is an example

of how new features could be easily added to the Shoulder Monkey system due to its

modular design architecture.

45

jane = new ServerSocket(PortNumbers.MIGRATING_AGENT_PORT);

Socket claire;

ObjectInputStream john;

while(true)

{

claire = jane.accept();

claire.setTcpNoDelay(true);

john = new ObjectInputStream(claire.getInputStream());

MonkeyAgent newbie = (MonkeyAgent) john.readObject();

PlayPen.add(newbie);

john.close();

}

Figure 4.13: Code snippet of gateway agent operation

4.2.6 GUI

The GUI was implemented using java swing, and went through two stages of development.

A rudimentary GUI was first developed to aid in the testing of a prototype of the Shoulder

Monkey system. This GUI was then used to aid in the further development of the Shoulder

Monkey system. Once the Shoulder Monkey system was operating efficiently a new GUI

was developed, as can be seen in Figure 4.14. This new GUI allowed system users to

create agents to send messages, turn the cross-roads replicating mode on/off, see at a

glance how many migrant agents were present in the Play Pen and view AD mechanism

operation.

As can be seen in Figure 4.14, on the left hand side of the GUI there are three spheres.

Each of these spheres rotated when an AD mechanism message was sent. For example,

the top sphere rotated when an Agent-Query message was sent, the middle sphere rotated

when an Agent-Reply message was sent and the bottom sphere rotated when a Pop-Reply

message was sent. This allowed system users to witness the AD mechanism in operation.

In the top right hand corner of the GUI, as can also be seen in Figure 4.14, there is

a graphical representation of the Play Pen component. The small black spheres in this

section indicate at a glance how many agents are operating in the PlayPen. As migrant

agents migrate to or leave the Play Pen these small black spheres increase and decrease

in quantity.

The bottom right hand corner of the GUI allowed users to create migrant agents to send

46

messages to other system users, as can be seen in Figure 4.14. Once a user clicked the

button labeled “Relay Msg”, they were prompted with a text box to enter their message.

Once a user entered a message and clicked a button to continue they were prompted

with another text box to enter the destination or destinations of the network nodes they

wished to relay the message to. Multiple destinations were inputed one after another,

separated by blank spaces. Once a user entered the destination(s) a new migrant was

created and displayed graphically as a small black sphere in the Play Pen section of

the GUI. The migrant agent then began sending AD mechanism messages, which were

represented graphically by the rotating spheres on the right hand side of the GUI.

Figure 4.14: Screen shot of Shoulder Monkey system GUI

47

4.3 Summary

In this chapter, we discussed the implementation of the AD mechanism in a simple message

delivery system entitled Shoulder Monkey. A top level design architecture was given

which outlined key components in the system. This was followed by a discussion of the

implementation of the system.

48

Chapter 5

Evaluation

To properly evaluate any system testing must be carried out. This testing gives an insight

into the performance abilities and constraints of the system in question. Therefore, to

evaluate the Shoulder Monkey system discussed in chapter 4, a real world ad hoc network

was deployed and the Shoulder Monkey system was run on this network. Quantitative

data was collected during testing of the Shoulder Monkey system to enable an accurate

evaluation of the system.

This chapter discusses the setup of the ad hoc network used as a test-bed to evaluate

the Shoulder Monkey system and by extension the AD mechanism. This is followed by a

discussion of the evaluation process and the results produced.

5.1 Test-Bed Network Setup

Each node in the testbed network consisted of a dell laptop D400/C400 [ts6]/[ts7] running

Unbuntu 8.04 (hardy heron) [ts8]. Each node was equipped with a Netgear WPN111

wireless USB adapter [ts9] to act as its network connector. Static IP addresses were

given to all network nodes in the form 169.254.230.9x, with network node one having the

address 169.254.230.91, network node two having the address 169.254.230.92, etc. All

network nodes also had the java 6.0 jre [ts10] installed on them. Network traffic for the

testbed network was monitored using an apple iBook G4 laptop [ts11] running wireshark

[ts12].

5.1.1 Installing Wireless Adaptors

The installation of the Netgear WPN111 wireless USB adaptors was a two part process

that consisted of:

1. Installing the necessary software to operate the wireless adaptors.

49

2. Configuring the wireless adaptors to limit their range.

Netgear WPN111 Software

To enable the Netgear WPN111 wireless USB adaptors the following packages were down-

loaded and installed on each node:

• build-essential

• ndiswrapper

• windriver

A number of steps were then taken to install ndiswrapper on each node. Once ndiswrap-

per was installed the Windows drivers for the wireless adaptors could be installed and

configured to enable the wireless devices. Finally ndiswrapper had to be added to the

following file:

/etc/modules

This ensured that the wireless adaptor was initialised on system startup. A complete

tutorial to install a Netgear WPN111 wireless USB adapter is available from the Ubuntu

forum website [ts13].

Configuring Wireless Adaptors

As the Netgear WPN111 adaptors had a range of approximately 90 m [ts9] the range had

to be greatly reduced. To achieve this, the wireless adaptors were firstly removed from

their plastic casing as can be seen in Figure 5.3. An anti-static component bag and a

single sheet of tin foil were then combined to limit the range of the wireless adaptors. As

can be seen in Figure 5.1 and Figure 5.2 a sheet of tin foil was placed inside the anti-static

component bag. The bag was then wrapped around the case-less wireless adaptor, as can

be seen in Figure 5.4, which limited the range of the wireless adaptors to 1cm - 10 cm.

The wireless adaptors were then connected to the network nodes and the ping command

was used to ascertain the range of each node, which could then be physically moved in or

out of range of other network nodes.

50

Figure 5.1: Sheet of tin foil and anti-static
component bag

Figure 5.2: Sheet of tin foil and anti-static
component bag combined

Figure 5.3: Wireless adaptor removed from
plastic casing

Figure 5.4: Covered wireless adaptor with
limited range

5.1.2 Ubuntu Networking Problems

Two main problems were encountered when running tests on the Ubuntu platform:

1. Multicast problem

2. TCP problem

Multicast Problem

The Shoulder Monkey system used a UDP multicast to broadcast Agent-Query and Pop-

Query messages to a UDP multicast group. However when the Shoulder Monkey system

was executed on network nodes the following exception was thrown.

java.net.SocketException: No such device

51

After some research it became evident that the solution to the problem lay in one line of

code, which added the default UDP multicast route to the routing table:

sudo route add -net 224.0.0.0 netmask 240.0.0.0 dev wlan0

TCP Problem

The IP address of each network node was statically assigned using the following command:

sudo ifconfig wlan0 169.254.230.9x

This however caused an error when the migrant agent had to jump from one node to

another using a TCP socket. Once the migrant agent had detected the node which it

wanted to jump to next, the migrant agent would set up a TCP connection and then

the system would hang until it was restarted. The route of this problem lay in the way

Ubuntu assigns two loopback IP addresses in the following file:

/etc/hosts

Fig 5.5 shows a screen shot of this file. On line two the second loopback IP address

“127.0.1.1” is assigned to the node in addition to the loopback IP address “127.0.0.1”

on the first line. Changing this second loopback IP address to the static IP address of

the network node fixed this problem and allowed the Shoulder Monkey system to operate

correctly.

Figure 5.5: Screenshot of /etc/hosts

52

5.2 Comparitive Tests

To enable a complete analysis of the Shoulder Monkey system, a number of compar-

ative experiments were run using a simple TCP based routing approach and using an

implementation of the AD mechanism in the Shoulder Monkey system.

5.2.1 Simple TCP Comparitive Test

A simple line topology was setup for comparitive testing of a simple TCP based routing

approach. Channel 3 was used for radio transmissions in this ad hoc network, with a

background noise level of -60 dBm. For this experiment set, each experiment run consisted

of TCP data being generated and transmitted using the iperf tool [ts14]. Transmission

of data was from Node 1 to Node 5, as seen in Figure 5.6. Five experiment runs were

used to obtain results for this experiment set. Each node in the network was given a fixed

gateway to pass data through, ultimately creating an ad hoc network with uni-directional

links. All experiment runs were carried out for approximately 60 secs.

Figure 5.6: TCP line topology for 5 node ad hoc Network

Success Rate

Results showed that the performance of the TCP based routing approach in the created

ad hoc network was less than perfect. Figure 5.7 shows the TCP throughput measured in

MBytes, for a number of hops in the network. For a single hop transmission, i.e. transmit-

ting from Node 1 - Node 2 as seen in Figure 5.6, TCP showed quite a good performance,

averaging 4.63 MBytes. However as the number of transmission hops increased the per-

formance of TCP in the ad hoc network rapidly decreased, averaging 1.96 MBytes for a

two hop TCP transmission, i.e. transmitting from Node 1 - Node 2 - Node 3 in Figure

5.6, and just 0.15 MBytes for a three hop TCP transmission, i.e. transmitting from Node

1 - Node 2 - Node 3 - Node 4 as seen in Figure 5.6.

Results for a four hop TCP transmission, i.e. transmitting from Node 1 - Node 2 - Node

3 - Node 4 - Node 5 as seen in Figure 5.6, could not be obtained. However an analysis of

network traces taken during the attempted four hop transmissions revealed an insight into

a possible reason for this. The network traces showed that Node 1 would send out a TCP

53

syn packet to Node 5, in some runs it would receive a syn-ack packet back from Node 5,

and then nothing else, in other runs no syn-ack would be received from Node 5. A possible

explanation for this phenomenon relates to each node having different transmission and

interference ranges. For example Node 1 may have had a transmission range of only 5

cm, however its interference range may been as much as double that, at 10 cm. Therefore

as Node 1 sent a TCP syn packet it may have experienced interference from Node 2 and

Node 3, i.e. experiencing the hidden and exposed terminal problems. This interference

would have had an accumulative effect on re-transmissons of syn and syn-ack packets for

all nodes involved. This would ultimately have caused Node 1 to timeout before the com-

plete three way TCP handshake could have been completed, thus impeding any transfer

of data. Medium access protocols such as RTS/CTS [44] could possibly have alleviated

this problem, however such protocols would have caused extra network overhead and as

such, were not used during the evaluation process.

The results obtained for this experiment set are contrary to previously published results

of TCP throughput performance in ad hoc networks [45], [46]. This may be due to the

fact that these studies provided results obtained from simulated ad hoc conditions. As

the results in this work were obtained from experiments which used actual real world ad

hoc networks, the results produced can be seen as a more accurate view of actual TCP

performance in real world deployed ad hoc networks.

Figure 5.7: TCP throughput for 5 node ad hoc network

54

Network Overhead

An analysis of traces taken during TCP transmissions in the ad hoc network showed that

as the number of transmission hops increased the amount of TCP error packets; comprised

of TCP retransmits, TCP lost segments and TCP lost acks, increased dramatically. Figure

5.8 shows that over a one hop TCP transmission the amount of TCP error packets averages

0.91 MBytes, which is small in comparison to the average 4.62 MBytes transmitted.

However as the number of transmission hops increase the number of TCP errors is also

increased. For example for a three hop TCP transmission TCP error packets average 0.10

MBytes, with only 0.20 MBytes being transmitted 50% of data packets transmitted fall

into the TCP error packet category.

Figure 5.8: TCP network overhead for 5 node ad hoc network

5.2.2 Shoulder Monkey Comparitive Test

As in previous experiments, an ad hoc network with a simple line topology was setup

for comparative testing of the Shoulder Monkey system. Channel 3 was used for radio

transmissions in this ad hoc network, with a background noise level of -60 dBm. For

this experiment set each experiment run consisted of a migrant software agent originating

from Node 1, being given the task of routing to Node 5, as seen in Figure 5.11. Five

experiment runs were used to obtain results for this experiment set. As no gateways for

any node in the network had to be manually set, each node in the ad hoc network had a

bi-directional link with any node it was in range of. All experiment runs were carried out

55

for a period of no more than 60 secs.

Figure 5.9: Shoulder Monkey line topology for 5 node ad hoc network

Success Rate

For the simple line topology the Shoulder Monkey system was given the task of routing

a payload from Node 1 to Node 5, as seen in Figure 5.9, using the AD mechanism.

For all experiment runs the Shoulder Monkey system’s migrant software agents had a

success rate of 100% in delivering data to the given destination node. The only variable

in all experiment runs was the time it took for the a migrating software agent to find

the destination node, with all destinations being located in a time of no more than 60

seconds, i.e. the length of each TCP transmission for simple TCP routing experiments.

These results showed that the AD mechanism approach to routing in ad hoc networks was

susbstantially more reliable than a simple TCP based approach. As each migrant software

agent made a jump of no more than one node per transmission, the reliability of both

TCP and UDP (the two protocols used to implement the AD mechanism as discussed in

chapter 4) at these short ranges allowed for successful operation of the AD mechanism.

When routing data via the simple TCP based approach a maximum of 4 nodes could be

reached, i.e. Node 1 - Node 2 - Node 3 - Node 4 as seen in Figure 5.6. When routing

data via the AD mechanism all five nodes in the ad hoc network could be reached, thus

increasing the operational capacity of the ad hoc network.

Network Overhead

The payload for each experiment run was a simple Msg class (as explained in chapter 4),

however in systems where the payload would be greater, the size of the payload should

be simply added to the size of the migrant software agent, as the migrant software agent

would contain the payload to be routed.

An analysis of network traces captured during experiment runs was used to give an in-

sight into network overhead for the AD mechanism. The analysis showed the use of AD

mechanism resulted in a minimal network overhead, or mechanism footprint. Figure 5.10

shows that the overall total overhead was in the region of 50.96 KBytes, which was only in-

curred during times of active data routing as the AD mechanism is a re-active/on-demand

56

routing mechanism. This showed that the AD mechanism’s success created only a small

network overhead.

Figure 5.10: Shoulder Monkey network overhead for 5 node line topology

5.3 Shoulder Monkey Stress Test

As the Shoulder Monkey system showed excellent results when compared to a simple

TCP data routing approach, it was decided to stress test the application. To measure its

performance a number of ad hoc networks with different topologies were setup; a delta

topology and a diamond topology. Experiments were then run on these topologies and

results obtained and analysed.

5.3.1 Delta Topology

An ad hoc network with a so-called delta topology was setup for the first stress test of

the Shoulder Monkey system. Channel 10 was used for radio transmissions in this ad

hoc network, with a background noise level of -35 dBm. For this experiment set each

experiment run consisted of two migrant software agents; one originating from Node 1

and the other originating from Node 2, being given the task of routing to Node 5, as seen

in Figure 5.11. Five experiment runs were used to obtain results for this experiment set.

As no gateways for any node in the network had to be manually set, each node in the ad

hoc network had a bi-directional link with any node it was in range of. All experiment

runs were carried out for a period of no more than 60 secs.

57

Figure 5.11: Shoulder Monkey delta topology for 5 node ad hoc network

Success Rate/Network Overhead

As with the previous line topology experiment set, the Shoulder Monkey system’s migrant

software agents had a success rate of 100% in delivering data to the given destination

node. An analysis of network traces captured during experiment runs showed that even

in a relatively noisy environment such as the one created in the delta ad hoc network,

the Shoulder Monkey system performed very well with the AD mechansim creating a

mechanism footprint of approximately 50.88 KBytes. Of the network traffic generated,

most were UDP control packets used by the Shoulder Monkey system implementation of

the AD mechaism.

This experiment set showed that the AD mechanism performed superbly even when mul-

tiple migrant software agents were seeking the same destination, and thus competing for

medium access, as was the case when the two migrant software agents were operating on

Node 3 and Node 4 and had to jump to Node 5, as can be seen in Figure 5.12.

58

Figure 5.12: Shoulder Monkey network overhead for 5 node delta topology

5.3.2 Diamond Topology

An ad hoc network with a so called diamond topology was set up for the second stress

test of the Shoulder Monkey system. Channel 3 was used for radio transmissions in this

ad hoc network, with a background noise level of -60 dBm. For this experiment set, each

experiment run consisted of a single migrant software agent; originating from Node 1,

being given the task of routing to Node 5 via either Node 2 or Node 3, as seen in Figure

5.13. Five experiment runs were used to obtain results for this experiment set. Again as

no gateways for any node in the network had to be manually set, each node in the ad hoc

network had a bi-directional link with any node it was in range of. All experiment runs

were carried out for a period of no more than 60 secs.

For this stress test the Shoulder Monkey system was tested with its migrant agent repli-

cation mode or cross roads mode (as discussed in chapter 4), turned on and turned off.

A further test, where either Node 3 failed, was also carried out.

59

Figure 5.13: Shoulder Monkey diamond topology for 5 node ad hoc network

Success Rate/Network Overhead (Non-Replicating Agents)

As with results obtained from previous experiment sets the Shoulder Monkey system’s

migrant software agents had a success rate of 100% in delivering data to the given des-

tination node. Figure 5.14 shows the mechanism footprint for the successful routing of

software agents through the diamond topology was on average 24.13 KBytes. Again with

the majority of the network overhead being created by AD mechanism control packets.

Success Rate/Network Overhead (Replicating Agents)

Results obtained for the diamond topology with replicating migrant software agents also

had a success rate of 100% in delivering data to the given destination node. Figure 5.15

shows the mechanism footprint incurred by the use of the AD mechanism. The average

mechansim footprint is 45.91 KBytes, less than half of the footprint incurred for the

experiment set run on the diamond topology with non-replicating migrant software agents.

This can be explained as migrant software agents in the Shoulder Monkey system merge

if they end up routing to the same node after being created (as discussed in chapter 4).

For the diamond topology on a number of experiment runs, agents that were replicated

on Node 1 and sent to Node 2 and Node 3, arrived on Node 4 at the same time and

60

then merged, thus creating a single migrant software agent. This single migrant software

agent then routed to the destination node creating less network overhead and a smaller

mechanism footprint.

Figure 5.14: Shoulder Monkey network overhead for 5 node diamond topology with non-
replication

Figure 5.15: Shoulder Monkey network overhead for 5 node line topology with replication

61

Failed Nodes

The final experiment run on the diamond topology was that of Node 3 failing during

network operation. If Node 3 failed, there would still be a route to the destination node,

via Node 1 - Node 2 - Node 4 - Node 5, as can be seen in Figure 5.13.

When Node 3 failed before a migrant agent jumped from Node 1, a 100% success rate

in delivering data to the given destination node was still upheld for both non-replicating

and replicating migrant agents. This was possible as all migrant software agents found

the route via Node 2 to the destination node; Node 5.

This sucess rate of 100% was also upheld if Node 3 failed during operation but migrant

agents had taken the the route to Node 5 via Node 2.

The success rate however dropped to 50% for non-replicating agents if Node 3 failed at

the point when a migrant agent was operating on it. For replicating agents however the

100% success rate was still upheld if Node 3 failed when a migrant agent was operating

on it. This was due to another replica agent operating on Node 2 simultaneously, which

would be allowed to proceed to Node 5. This showed using replicating agents was a good

approach to fault tolerance in ad hoc networks. Migrant agents could traverse an ad hoc

network in a swarm like manner replicating when they found mulitple routes to take; for

example finding Node 2 and Node 3 in the diamond topology, and merging if they met

up again; for example meeting up on Node 4 in the diamond topology. This swarm like

migration could act as a built in redundancy system for routing migrant agents in ad hoc

networks where network nodes had a tendency to fail.

5.4 Summary

In this chapter, we discussed the evaluation process for Shoulder Monkey system, and

by extension, the AD mechanism. An evaluation on successfully deploying a real world

ad hoc network was given, to provide readers and possible future researchers an insight

into the difficulties of deploying such a test-bed. This was followed by a discussion of

the results obtained from quantitive data during the evaluation process. This allowed an

accurate analysis of AD mechanism performance to be given to readers.

62

Chapter 6

Conclusions

Ad hoc networking is an active research area in the field of computer science. By combin-

ing this research area with the MAS paradigm, ad hoc networks have potentially substan-

tial practical applications in real-world systems. To achieve this potential, research such

as the work carried out for this dissertation; which draws clear and concise conclusions,

is required.

This chapter discusses the main conclusions drawn by the author during the course of the

work completed for this dissertation.

6.1 Ad Hoc Networks in the Wild

As previously stated, ad hoc networks potentially provide a rapidly deployable, “bring

your own network” solution to situations where infrastructure networks cannot be used.

In a world where everyday situations rely on communication, the technology which fa-

cilitates this communication has to be efficient, reliable and fault tolerant. As ad hoc

networks are light weight and easy to deploy, they may possibly become the de facto

technology used to enable such activities. That said, ad hoc networks are far from per-

fect. Many problems in ad hoc networks try to use a wired solution to fix a wireless

problem. Similarly managed wireless network solutions are often proposed as solutions

to an ad hoc network problem. More often than not these proposed solutions are not

transferrable to an ad hoc wireless environment.

Trying to rectify fundamental problems such as efficient data routing in ad hoc networks

poses a major problem for ad hoc network performance. This is exacerbated by the fact

that testing new ad hoc protocols, mechanisms, etc. is exceptionally difficult. Due to

theses difficulties in testing ad hoc network performance, much research has been based

on results gathered from simulated ad hoc environments. Work carried out for this disser-

63

tation has shown that results from simulated ad hoc networks and results gathered from

real-world ad hoc networks differ greatly. Therefore it seems that either more accurate

simulators are needed, or the more practical approach of testing ad hoc protocols on real-

world deployed networks should be used. Therefore to answer the first research question

raised in this work:

Can ad hoc networks be used in real-world, real-time situations?

The author is of the opinion, that yes, ad hoc networks can be use in real-world, real-

time situations and it is only through the use of such ad hoc networks “in the wild” that

a proper evaluation of the abilities and constraints of ad hoc network protocols can be

carried out. As with all new technologies ad hoc networks have some teething problems,

however as research in the field enables a deeper analysis of these problems, ad hoc network

performance should reach new levels of efficiency, reliability and fault tolerance.

6.2 MAS and Ad Hoc Networks (Together at Last)

The MAS paradigm is primarily used to enhance a system’s performance, however this

enhancement comes at a price to system resources. As ad hoc networked devices are

primarily seen as being particularly resource-constrained, the use of the MAS paradigm

may have been viewed as being too resource-intensive for use in ad hoc networks. However,

if the MAS paradigm is properly implemented, the positive effects received from using an

MAS based approach should greatly outweigh the negative impacts on system resources.

Therefore the use of the MAS paradigm can be seen as having a “give a little, get a lot”

relationship with ad hoc networks.

As was shown by the work carried out for this dissertation the MAS paradigm does have

potential uses in ad hoc networked environments. Therefore to answer the second research

question raised in this work:

Is ad hoc network performance enhanced through

the the use of the MAS paradigm?

The author is of the opinion that yes, ad hoc network performance can be greatly enhanced

through the use of the MAS paradigm. As with all systems, not paying proper attention

to a system’s development; during design, implementation, etc, can lead to poor system

performance. As ad hoc networked devices may have less resources at their disposal,

when using an MAS based approach in a system that is to run in an ad hoc networked

environment, extreme vigilance must be taken throughout its development process to

ensure the implemented MAS based approach is as efficient as possible.

64

6.3 The AD mechanism

Successful routing in ad hoc networks is no easy task. Current topology-based routing

protocols require that an end-to-end route between source and destination be found before

routing of data can take place. Current position-based routing protocols require the exact

position; via the use of position devices; such as GPS locators or an external service which

provides such information, of a destination to be known before data can be routed to said

location. Both of these approaches have their difficulties.

The AD mechanism was developed during the course of this dissertation to answer the

third research question raised in this work:

Can the MAS paradigm be used to route data in ad hoc networks?

The author can answer yes to this question, as was proven by the implementation of the

agent-based AD mechanism in the Shoulder Monkey system. An evaluation of the AD

mechanism showed that two situations in particular would benefit greatly from the use of

such a routing mechanism:

1. Rapid routing of small payloads

2. Successful routing of large payloads

As a migrant agent that traverses an ad hoc network carries its payload with it from

node to node, the larger the payload the more time it takes for a migrant agent to jump

from one node to another. Therefore migrant agents with smaller payloads will be able to

traverse an ad hoc network quicker than migrant agents with larger payloads. This enables

small payloads to be rapidly routed through ad hoc networks. If agents are allowed to

replicate, this routing could be further accelerated as agents would route to a destination

in a swarm like manner as discussed in chapter 5 (section 5.5.2 Diamond Topology - Failed

Nodes). Migrant agents carrying larger payloads, may take longer to traverse an ad hoc

network, however, will successfully do if a path to a given destination exists. Therefore

agents carrying larger payloads could act as a delivery system for data that did not need

to be delivered to a destination in great haste, so long that it eventually arrived at the

given destination. Finally for migrant agents carrying small or large payloads, replication

of migrant agents would provide a level fault tolerance for an agent based approach to

routing in an ad hoc environment. For example, if any network nodes failed during

routing, replicated migrant agents operating on other nodes would still be able to route

to a given destination.

65

6.4 Summary

In this chapter, we discussed the main conclusions drawn from this work. In doing so

the author has answered each of the research questions defined in chapter 1 (section 1.1

Motivation). Conclusions for the use of real-world deployed ad hoc networks or ad hoc

networks in the wild were first discussed. This was followed by a review of the use of MAS

paradigm within the research area of ad hoc networks. Finally a conclusive discussion

on the use of the AD mechanism as a technique for data routing in an ad hoc networked

environment was given.

66

Chapter 7

Future Work

A lot of work was carried out in completion of this dissertation, however due to time

constraints imposed on the author, all the research avenues considered during the course

of this dissertation could not be investigated. Therefore there are a number of interesting

ideas relating to this dissertation which have yet to be explored in detail.

This chapter discusses future work that that may be carried out and expand upon the

work completed for this dissertation.

7.1 Further Testing

Preliminary testing has shown that the AD mechanism is a successful method for routing

data in an ad hoc environment. However further testing of the AD mechanism would give

a more in depth view of its abilities and/or constraints.

7.1.1 Larger Testbed

The ad hoc network which was used as the test-bed for experiments conducted was some-

what limited in size. Therefore further testing of the AD mechanism, carried out on a

large scale, real world ad hoc network is suggested. Such a test-bed would provide valu-

able data and allow a full analysis of the AD mechanism to be carried out. The use of

a real world deployed ad hoc network is suggested as results gathered from this work

conflict with results obtained from previous works [45], [46], where the ad hoc test-bed

used for testing was simulated. These simulated results clearly show that transmission

of data is achievable for up to 9 hops. In the real world ad hoc network used to gather

results for this work, TCP transmission is only achievable for a maximum of 3 hops (as

seen in Figure 5.7); without the use of added medium access control protocols such as

67

RTS/CTS. Therefore to ensure results obtained from experiments in ad hoc networks are

accurate, a real world deployment should be used in place of a simulated network.

7.1.2 Introduction of Mobility to Network Nodes

The ad hoc test-bed used to carry out experiments for the AD mechanism was static

in nature. The introduction of mobility to the nodes within the test-bed network, thus

creating a mobile ad hoc network (MANET), would allow further analysis of the AD

mechanism. An analysis of the AD mechanism in such an environment would give a

more accurate view of the AD mechanisms performance abilities in real world ad hoc

environments. This further analysis would also indicate whether or not the AD mechanism

could be successfully deployed and used as a reliable form of routing in ad hoc networks

where reliability, fault tolerance and efficiency are paramount.

7.2 Implementation in Lower Layers of the Network

Stack

As described in Chapter 3, the AD mechanism was implemented in the Shoulder Monkey

system at application level. Even though the system performed extremely well when

tested, AD mechanism control packets had to traverse the network stack in order to be

processed. By removing this unnecessary stack traversal, the performance of the AD

mechanism could be further improved. This may entail implementing the AD mechanism

at a lower layer of the network stack, such as the transport or MAC layers. An approach

such as this would enable the AD mechanism to be used as the underlying routing protocol

in an ad hoc network with a degree autonomy and allow other systems to be easily

developed on top of it.

7.3 Dynamic Addition to Agent Behaviour

In the Shoulder Monkey system the implemented behaviour of the migrant software agent

was of a monolithic nature, i.e. executed in a sequential fashion. The ability to dynami-

cally add modules of behaviour to a migrant software agent would increase the usability of

said agents. In the Shoulder Monkey system the software agents behaviour was contained

in a single run method. Allowing dynamic adjustment to this behaviour, by adding and/or

removing behaviour modules would enable the Shoulder Monkey system to become more

robust. This new feature could ultimately change the Shoulder Monkey system from a

68

simple message delivery service into an agent based activity platform, where software

agents could perform a number of tasks which could be defined by system users.

In the current implementation of migrant agents in the Shoulder Monkey system, agent

to agent interaction is kept to a minimum. A further advancement to migrant agents

would be to allow them to share information on where they have been and how they have

managed to route to their current location. For example if migrant agent X and migrant

agent Y encountered each other on a node in an ad hoc network, migrant agent X could

query migrant agent Y on whether or it had already visited a destination(s) migrant agent

X was seeking, and vice versa. The agents could then exchange data on the best course

of action to route to this already visited destination. This behaviour could also be added

as an additional behaviour module to existing migrant agents.

7.4 Final Thought

The work carried out for this dissertation has provided a viable working solution for

routing data in an ad hoc networked environment. This was achieved by using the MAS

paradgim to help overcome problems with efficient data routing in ad hoc networks. The

solution proposed acts as a means to minimise the limiting factors of ad hoc networks in

real world situations. To achieve this, a new mechansim for distributing agents throughout

an ad hoc network and the data which they carry, was developed. This mechanism was

entilted the AD mechanism. The AD meachanism was then implemented in a simple

message delivery system for use in ad hoc networks called Shoulder Monkey. An evaluation

of this system showed that the AD mechanism was, indeed, a practical and efficient

solution to the problem of routing data in ad hoc networks. Future work was then

proposed to allow researchers to build upon the work produced for the the completion

of this dissertation, which could further enhance the usability of ad hoc networks in the

wild.

69

Appendix A

Abbreviations

Short Term Expanded Term

MAS Multi Agent System

MANET Mobile Ad Hoc Network

AD Mechanism Agent Distribution Mechanism

WAND Wireless Ad Hoc Network for Dublin

TCP Transmission Control Protocol

UDP User Datagram Protocol

70

Appendix B

Technical Specifications

[ts1] Official ns-2 wiki, http://nsnam.isi.edu/nsnam/index.php/, 14:08GMT, 19
Oct, 2008.

[ts2] Official opnet website, http://www.opnet.com/, 14:10GMT, 19 Oct, 2008.

[ts3] Official omnett++ website, http://www.omnetpp.org/, 14:15GMT, 19 Oct,
2008.

[ts4] Official glomosim website, http://pcl.cs.ucla.edu/pro jects/glomosim/,
14:18GMT, 19 Oct, 2008.

[ts5] Official qualnet website, http://www.scalable-networks.com/, 14:21GMT, 19
Oct, 2008.

[ts6] Dell d400 specication, http://www.dell.com/downloads/us/products/latit/d400
spec.pdf, 12:30GMT, 4 Sep, 2008.

[ts7] Dell c400 specication, http://www.tkoelectronics.com/tkoeducation/tkostore/c400,
12:29GMT, 4 Sep, 2008.

[ts8] Ubuntu 8.04 (hardy heron), http://www.ubuntu.com/testing/hardy/beta,
12:32GMT, 4 Sep, 2008.

[ts9] Netgear wpn111 wireless usb adaptor specification,
http://www.netgear.com/products/adapters/rangemaxadapters/wpn111.aspx,
12:34GMT, 4 Sep, 2008.

[ts10] Java 6.0 jre, http://java.sun.com/javase/downloads/ea.jsp, 12:36GMT, 4 Sep,
2008.

71

[ts11] Apple ibook g4 specification, http://support.apple.com/specs/ibook/ibook

g4.html, 12:39GMT, 4 Sep, 2008.

[ts12] Official wireshark website, http://www.wireshark.org/, 12:41GMT, 4 Sep,

2008.

[ts13] Wpn111 installation tutorial, http://ubuntuforums.org/showthread.php,

12:46GMT, 4 Sep, 2008.

[ts14] iperf tool, http://sourceforge.net/pro jects/iperf, 12:48GMT, 4 Sep, 2008.

72

Bibliography

[1] C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. Mobile

Computing Systems and Applications, 1999. Proceedings. WMCSA ’99. Second IEEE

Workshop on, pages 90–100, 25-26 Feb 1999.

[2] Brad Karp and H. T. Kung. Gpsr: greedy perimeter stateless routing for wireless

networks. In MobiCom ’00: Proceedings of the 6th annual international conference

on Mobile computing and networking, pages 243–254, New York, NY, USA, 2000.

ACM.

[3] H.F. Ahmad. Multi-agent systems: overview of a new paradigm for distributed

systems. High Assurance Systems Engineering, 2002. Proceedings. 7th IEEE Inter-

national Symposium on, pages 101–107, 2002.

[4] Oxford English Dictionary. Definition of ad hoc, http://dictionary.oed.com/, 2001.

[5] M. Wooldridge. An Introduction to Multiagent Systems, pages 227–234. Wiley, 2002.

[6] M. Mauve, A. Widmer, and H. Hartenstein. A survey on position-based routing in

mobile ad hoc networks. Network, IEEE, 15(6):30–39, Nov/Dec 2001.

[7] C. Siva Ram Murthy and B.S. Manoj. Ad Hoc Wireless Networks: Architectures and

Protocols, pages 229–278. Prentice Hall, 24 May 2004.

[8] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc wireless

networks. In Mobile Computing, pages 153–181. Kluwer Academic Publishers, 1996.

[9] Hsing-Lung Chen and Chein-Hsin Lee. Two hops backup routing protocol in mobile

ad hoc networks. Parallel and Distributed Systems, 2005. Proceedings. 11th Interna-

tional Conference on, 2:600–604 Vol. 2, 20-22 July 2005.

[10] Jiwei Chen, Yeng-Zhong Lee, He Zhou, Mario Gerla, and Yantai Shu. Robust ad hoc

routing for lossy wireless environment. Military Communications Conference, 2006.

MILCOM 2006, pages 1–7, 23-25 Oct. 2006.

73

[11] Guangyu Pei, Mario Gerla, and Tsu-Wei Chen. Fisheye state routing in mobile ad

hoc networks. In ICDCS Workshop on Wireless Networks and Mobile Computing,

pages D71–D78, 2000.

[12] Christian Lochert, Martin Mauve, Holger Fussler, and Hannes Hartenstein. Ge-

ographic routing in city scenarios. SIGMOBILE Mob. Comput. Commun. Rev.,

9(1):69–72, 2005.

[13] Y.-C. Hu, A. Perrig, and D.B. Johnson. Packet leashes: a defense against wormhole

attacks in wireless networks. INFOCOM 2003. Twenty-Second Annual Joint Con-

ference of the IEEE Computer and Communications Societies. IEEE, 3:1976–1986

vol.3, March-3 April 2003.

[14] M. Ramkumar and N. Memon. An efficient key predistribution scheme for ad hoc

network security. Selected Areas in Communications, IEEE Journal on, 23(3):611–

621, March 2005.

[15] Hao Yang, Haiyun Luo, Fan Ye, Songwu Lu, and Lixia Zhang. Security in mobile ad

hoc networks: challenges and solutions. Wireless Communications, IEEE, 11(1):38–

47, Feb 2004.

[16] C. Manikopoulos and Li Ling. Architecture of the mobile ad-hoc network security

(mans) system. Systems, Man and Cybernetics, 2003. IEEE International Conference

on, 4:3122–3127 vol.4, Oct. 2003.

[17] Alejandro Guerra Hernandez, Amal El Fallah-Seghrouchni, Henry Soldano, and

Henry Soldano. Distributed learning in intentional bdi multi-agent systems. In

ENC ’04: Proceedings of the Fifth Mexican International Conference in Computer

Science, pages 225–232, Washington, DC, USA, 2004. IEEE Computer Society.

[18] N. Ronald and L. Sterling. Modelling pedestrian behaviour using the bdi architecture.

Intelligent Agent Technology, IEEE/WIC/ACM International Conference on, pages

161–164, 19-22 Sept. 2005.

[19] Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. Kqml as an agent

communication language. In CIKM ’94: Proceedings of the third international con-

ference on Information and knowledge management, pages 456–463, New York, NY,

USA, 1994. ACM.

[20] FIPA. Communicative act library specification,

http://www.fipa.org/specs/fipa00037/xc00037h.html, 2001.

74

[21] Jeffrey S. Rosenschein and Michael R. Genesereth. Deals among rational agents,

pages 227–234. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[22] Barbara [J.] Grosz and Sarit Kraus. Collaborative plans for group activities. In

Proceedings IJCAI-93, pages 367–373, 1993.

[23] O. Shehory, K. Sycara, P. Chalasani, and S. Jha. Agent cloning: an approach to

agent mobility and resource allocation. Communications Magazine, IEEE, 36(7):58,

63–67, Jul 1998.

[24] Hiroki Suguri. A standardization effort for agent technologies: The foundation for

intelligent physical agents and its activities. In HICSS ’99: Proceedings of the Thirty-

second Annual Hawaii International Conference on System Sciences-Volume 8, page

8061, Washington, DC, USA, 1999. IEEE Computer Society.

[25] P. Charlton, E. Mamdani, R. Cattoni, and A. Potrich. Evaluating the fipa standards

and its role in achieving cooperation in multi-agent systems. In HICSS ’00: Pro-

ceedings of the 33rd Hawaii International Conference on System Sciences-Volume 8,

page 8034, Washington, DC, USA, 2000. IEEE Computer Society.

[26] FIPA. Specification 1998, http://www.fipa.org/specs/index.html, 7 May 2008, 15:54

GMT.

[27] FIPA. Specification 2000, http://www.fipa.org/specs/index.html, 7 May 2008, 15:56

GMT.

[28] V. Cicirello, M. Peysakhov, G. Anderson, Gaurav Naik, K. Tsang, W. Regli, and

M. Kam. Designing dependable agent systems for mobile wireless networks. Intelli-

gent Systems, IEEE, 19(5):39–45, Sept.-Oct. 2004.

[29] J. Kopena, E. Sultanik, Gaurav Naik, I. Howley, M. Peysakhov, V.A. Cicirello,

M. Kam, and W. Regli. Service-based computing on manets: enabling dynamic

interoperability of first responders. Intelligent Systems, IEEE, 20(5):17–25, Sept.-

Oct. 2005.

[30] J.P. Macker, W. Chao, R. Mittu, and M. Abramson. Multi-agent systems in mobile

ad hoc networks. Military Communications Conference, 2005. MILCOM 2005. IEEE,

pages 883–889 Vol. 2, 17-20 Oct. 2005.

[31] J. Dowling, E. Curran, R. Cunningham, and V. Cahill. Using feedback in collabo-

rative reinforcement learning to adaptively optimize manet routing. Systems, Man

and Cybernetics, Part A, IEEE Transactions on, 35(3):360–372, May 2005.

75

[32] Azzedine Boukerche and Yonglin Ren. A novel solution based on mobile agent for

anonymity in wireless and mobile ad hoc networks. In Q2SWinet ’07: Proceedings of

the 3rd ACM workshop on QoS and security for wireless and mobile networks, pages

86–94, New York, NY, USA, 2007. ACM.

[33] Jan M. V. Misker, Cor J. Veenman, and Leon J. M. Rothkrantz. Groups of col-

laborating users and agents in ambient intelligent environments. In AAMAS ’04:

Proceedings of the Third International Joint Conference on Autonomous Agents and

Multiagent Systems, pages 1320–1321, Washington, DC, USA, 2004. IEEE Computer

Society.

[34] Official fipa website, http://www.fipa.org/, 14:02GMT, 19 Oct, 2008.

[35] V.A. Cicirello, A. Mroczkowski, and W. Regli. Designing decentralized software for

a wireless network environment: evaluating patterns of mobility for a mobile agent

swarm. Multi-Agent Security and Survivability, 2005 IEEE 2nd Symposium on, pages

49–57, 30-31 Aug. 2005.

[36] Jade web site, http://jade.tilab.com, 7 May 2008, 15:52 GMT.

[37] S. Daviet, H. Desmier, H. Briand, F. Guillet, and V. Philippe. A system of emo-

tional agents for decision-support. Intelligent Agent Technology, IEEE/WIC/ACM

International Conference on, pages 711–717, 19-22 Sept. 2005.

[38] Aos website (jack info page), http://www.agent-

software.com/products/jack/index.html/, 14:45GMT, 19 Oct, 2008.

[39] R.W. Collier, M.J. O’Grady, G.M.P. O’Hare, C. Muldoon, D. Phelan, R. Strahan,

and Y. Tong. Self-organisation in agent-based mobile computing. Database and

Expert Systems Applications, 2004. Proceedings. 15th International Workshop on,

pages 764–768, 30 Aug.-3 Sept. 2004.

[40] Prism lab website (agent factory info page), http://www.cs.ucd.ie/csprism/projects.html/,

14:48GMT, 19 Oct, 2008.

[41] R.W. Collier, M.J. O’Grady, G.M.P. O’Hare, C. Muldoon, D. Phelan, R. Strahan,

and Y. Tong. Self-organisation in agent-based mobile computing. Database and

Expert Systems Applications, 2004. Proceedings. 15th International Workshop on,

pages 764–768, Aug.-3 Sept. 2004.

76

[42] J. N. Thies R. Lentini, G. P. Rao and J. Kay. Emaa: An extendable mobile agent

architecture. In In AAAI Workshop on Software Tools for Developing Agents, July

1998.

[43] Skype web site, http://www.skype.com/intl/en/, 4 Sep 2008, 12:20 GMT.

[44] A. Tanenbaum. Computer Networks (fourth edition), pages 295–299. Prentice Hall,

2003.

[45] Yao-Nan Lien and Yi-Fan Yu. Hop-by-hop tcp over manet. In The First IEEE

International Workshop on Wireless Network Algorithms (WiNA 2008), 2008.

[46] Gavin Holland and Nitin Vaidya. Analysis of tcp performance over mobile ad hoc

networks. Wirel. Netw., 8(2/3):275–288, 2002.

77

