
Networks and Distributed Systems:

Applying Micro Payment Techniques to

Discourage Spam

by

Shane O’Brien, B.A., B.A.I

Thesis

Presented to the

University of Dublin, Trinity College

in fulfillment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2008

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated, is

my own work.

Shane O’Brien

September 9, 2008

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Shane O’Brien

September 9, 2008

Acknowledgments

Firstly I would like to thank my supervisor, Hitesh, for all his help and guidance through

out the course of my dissertation.

Secondly I would like thank my family for all their support during the year especially

my parents and grandparents.

Finally I would like to thank everyone from the NDS class, especially Tony for his

couch and the other lads in the lab with me, Cian, Eric and Dan.

Shane O’Brien

University of Dublin, Trinity College

September 2008

iv

Networks and Distributed Systems:

Applying Micro Payment Techniques to

Discourage Spam

Shane O’Brien, M.Sc.

University of Dublin, Trinity College, 2008

Supervisor: Hitesh Tewari

E-mail spam is a major problem on the Internet where an estimated 75% of all e-mails

sent world wide are spam. The main reason that users send spam e-mails is to make

money. This is done by sending millions of e-mails and even if one person responds, the

spammer will profit.

This thesis aims to remove the profit that a spammer makes by adding an initial

charge to send e-mails thus discouraging them for sending any to begin with. Normal

users will not want to pay for their e-mails however so the systems also aims to be cost

neutral to the average user. This is achieved by implementing a micropayment system for

e-mail where the sender pays a small fee to send the e-mail while the receiver of an e-mail

receives the same amount. This way the normal user remains with the same amount of

money or more while a spammer who is sending millions of e-mails has to pay for them.

The system is designed with a two tier payment structure. E-mails between the users

and mail server are processed and recorded on the mail server, while payments for e-mails

v

between mail servers is done by using a micropayment technique, called hash chains. This

removes the reliance on a central server.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Roadmap . 3

Chapter 2 State of the Art 4

2.1 E-mail . 4

2.1.1 Mail User Agent - The Client of e-mail 5

2.1.2 Mail Transfer Agent - The Server of E-mail 6

2.1.3 E-mail Protocols: Simple Mail Transfer Protocol 6

2.1.4 E-mail Protocols: Post Office Protocol 8

2.1.5 E-mail Protocols: Internet Message Access Protocol 9

2.2 Spam . 10

2.2.1 Types of Spam . 10

2.2.2 Methods used by Spammers . 12

vii

2.3 Current Spam filtering . 13

2.3.1 End-User Methods . 13

2.3.2 Simple Filtering Methods . 15

2.3.3 DomainKeys Identified Mail . 19

2.3.4 Cost Based Solutions . 20

2.4 MicroPayments . 22

2.4.1 Cryptography: Message Digesting 22

2.4.2 Cryptography: Public Key Encryption 23

2.4.3 Micropayment System using Hash Chains 25

Chapter 3 Design 27

3.1 Requirements . 27

3.2 Initial Considerations . 27

3.3 Early Designs . 29

3.4 Second Iteration Designs . 32

3.5 Final Design - CentMail . 34

3.6 Other Consideration . 36

3.6.1 Internal Mail . 36

3.6.2 Mailing Lists . 36

3.6.3 Sending Mail from non-CentMail MTAs 37

Chapter 4 Implementation 38

4.1 Main Application . 38

4.1.1 Milter API . 38

4.1.2 OpenSSL Library . 43

4.1.3 XML-RPC Library . 43

4.1.4 MySQL Library . 44

4.2 The Central Server . 45

4.2.1 XML-RPC server . 45

viii

4.2.2 User Interface . 45

4.3 Databases . 45

4.4 Interaction . 47

Chapter 5 Evaluation 49

5.1 Testing . 49

5.1.1 No Credit Tests . 50

5.1.2 Credit Tests . 50

5.1.3 Other Tests . 52

5.2 User Trials . 53

5.2.1 Real User System Trial . 53

5.2.2 Live System User Trial . 54

Chapter 6 Conclusion 56

6.1 CentMail - A micropayment system for e-mail 56

6.2 Future Work . 57

6.3 Final Word . 58

Appendix A Abbreviations 59

ix

List of Tables

2.1 Computational Speeds of Various Cryptographic Functions 23

4.1 Milter API callback functions that can be 39

4.2 Values that can be returned from callback functions 39

x

List of Figures

2.1 Overall E-mail System . 5

2.2 Sample SMTP transaction between bob@a.com and alice@b.com 7

2.3 The different parts of an e-mail . 8

2.4 Sample of Different Spam E-mails . 10

2.5 An Example of an fake phishing E-mail . 11

2.6 Examples of Address Munging . 14

2.7 Example of Hashcash Stamp . 20

2.8 A message being signed and sent by Alice 24

2.9 Hash tokens being exchanged as credits . 25

3.1 One of the first designs of the system . 30

3.2 Another one of the first designs of the system 31

3.3 Overview of the two layer Hash-Chain payment Scheme 32

3.4 User Commitment Signed by the Central Server 33

3.5 MTA Commitment Signed by the Central Server 33

3.6 An Overview of an E-mail being sent on the final design 34

4.1 Initialising the Milter and starting the main event loop 40

4.2 Private memory being set up for the system 41

4.3 The flow of the code within the eom callback 42

4.4 A XML-RPC function from the system . 44

4.5 Communication between services for an internal e-mail 47

xi

4.6 Communication between services for an external e-mail 48

5.1 The application output for sending an e-mail with no credit 50

5.2 Application output from sending an e-mail to another server 51

5.3 Application output from receiving an e-mail from another server 52

5.4 Application output from receiving the same payment token twice 53

5.5 Results from the Real User System Trial 54

xii

Chapter 1

Introduction

E-mail can trace its origins to before the Internet[1]. It was originally used to send text

messages between users registered on the same computer, but was later extended to allow

messages to be sent to users on other computers as well. In modern times e-mail has

become one of the major forms of communication and is popular for people of all ages.

It allows text to be sent from one person to any other person world wide, with an e-mail

address. E-mails also offer the ability to attach files like pictures and documents. The

popularity and growth in e-mail as a form of communication for people in their everyday

lives, unfortunately, has resulted in some users taking advantage of this and using e-mail

to send unsolicited bulk e-mails to other users. This unsolicited bulk e-mail is known as

spam.

1.1 Motivation

Spam is not only an annoyance to e-mail users, but also costs businesses and internet

service providers money to transmit, store e-mails and prevent spam from reaching their

users. The reason that spam is so common is that the cost to send millions of e-mails is

almost nothing. So if a user is trying to sell a product using spam they can send millions

of e-mails advertising the product and then if only one person buys the product then the

1

spammer stands to makes a profit.

Existing e-mail filters reduce the amount of spam being received by filtering them on

the receiving side of the system; however the cost to transport them is still there. Filters

also remove legitimate e-mails which can be, depending on the importance of the e-mail,

more annoying to the user then spam. To allow the user to check to see if anything was

marked as spam, the spam e-mails are kept on the machine, so that the user can look

through them and unmark the ones that are not spam. This means that the provider of

the e-mail service has to pay to store the e-mails that are considered spam. The better

the spam filter the less likely it is that a user will check their spam folder, because they

trust that the spam filterer is doing its job correctly.

1.2 Goals

The overall goal for this dissertation is to implement a micropayment system to be used to

send and receive e-mail, which will discourage users from sending excess e-mails or spam.

It is hoped that by adding a charge for the user to send an e-mail that spammers will not

profit from sending millions of e-mails. Normal users, however, will not want to pay for

their e-mails so the system will need to be cost neutral for the average user. The system

tries to minimise false positives, i.e. legitimate e-mails marked as spam. The main goals

are as follows:

• Identify methods that are used by spammers as well as current anti-spam methods

that are used to combat spam.

• Identify current e-mail payment systems that are being used.

• Design and implement a micropayment system for e-mail that is cost neutral for a

normal user and has a minimal amount of false positives.

• Evaluate the system to determine its effectiveness.

2

1.3 Roadmap

The structure of the remainder of this dissertation document is outlined as follows:

Chapter 2 will provide background and context for this study by reporting on the current

state of the art. This will contribute to the understanding of the main areas relating to

this dissertation.

Chapter 3 describes the considerations and steps involved in the design of this disserta-

tion.

Chapter 4 outlines the implementation of the design as covered in chapter 3. It will also

discuss some problems encountered, as well as solutions to them.

Chapter 5 discusses the testing of the final application to assure that it was working cor-

rectly, as well as covering the user trials and the results from them.

Chapter 6 presents a conclusion, including a summary of the achievements and covers

some possible improvements and future work.

3

Chapter 2

State of the Art

This chapter will discuss current methods, protocols and implementations that there are

for e-mail, spam, spam filtering and micropayments. Each section will cover a different

topic and provide insight as to the current state of e-mail and spam.

2.1 E-mail

E-mail or electronic mail is not run using a single server or application; it is instead made

up of many clients, multiple servers and various protocols, all of which will be described

within this section. The overall system looks like Figure 2.1; a typical series of events for

Alice sending an e-mail to Bob and is as follows:

1. Alice writes the e-mail using her client which can be a stand alone desktop applica-

tion or a web based client. When she is finished writing her e-mail, she puts Bobs

e-mail address in the ’to’ section of the e-mail and sends it.

2. Alice’s client then transmits her e-mail to the local Mail Transfer Agent (MTA), the

mail server, using a protocol called Simple Mail Transfer Protocol (SMTP [2]). The

local MTA checks that all the necessary information is included with the e-mail, if

it is not, it is returned to Alice, who will have to send it again with the necessary

4

corrections. The server is the part after the ’@’ in the e-mail address, so if the e-mail

is for someone on the same server, then the e-mail is delivered straight away.

3. In this case Bob’s e-mail account is on a different server, so Alice’s MTA performs

a DNS look up for Bob’s domain. This will return either the IP of the domain or

the MX record if the e-mail server is not the same as the domain. Alice’s MTA

connects to Bob’s MTA using this information and transmits the e-mail message

using SMTP.

4. Once the message arrives at Bob’s MTA, it is stored until requested by Bob, us-

ing a desktop application or web based client. The message is retrieved by these

applications using the POP3[3] or IMAP[4] protocols.

Internet

a.comAlice's MUA

1. 2. 3. 4.

b.com
Bob's MUA

Figure 2.1: Overall E-mail System

2.1.1 Mail User Agent - The Client of e-mail

The Mail User Agent (MUA) is normally the only part of the e-mail system that the

end-user sees. It allows users to write, send and receive e-mails. MUAs can be desktop

applications that give users lots of different features from HTTP formatting to encryp-

tion of e-mails. Some major examples of desktop MUAs are Microsoft’s Outlook[5] and

Mozilla’s Thunderbird[6]. MUAs can also be web based, this web based e-mail, or web-

mail, gives users easy access to their e-mail from any internet connection in the world.

Most webmail services offer the same features as the desktop applications and are nor-

mally easier to use. Some major examples of webmail services are Google’s Gmail[7] and

Microsoft’s Hotmail[8].

5

Almost all MUAs, web based or desktop based, use the SMTP protocol to send their

e-mails to the local MTA servers but offer the user a choice over which protocol, POP3

or IMAP, to use to retrieve their e-mails from the server. Some webmail services that are

hosted on the same server as the MTA can avoid using ether protocol and just read the

e-mails directly from the files on the disk.

2.1.2 Mail Transfer Agent - The Server of E-mail

The Mail Transfer Agent refers to the software that transfers mail from one server to

another or receives mail from MUAs. MTAs use the SMTP protocol to transfer e-mail

across the internet. The most popular[9] MTA software is Sendmail[10] with the open

source server Postfix[11] coming a close second.

On an e-mail server the MTA software is the most important part of it, but MTAs

cannot send mail directly to user’s computers. To enable on demand retrieval of e-

mails the mail server has POP3 and/or IMAP software running as well as the MTA

software. Some popular POP3/IMAP software is Courier[12] and Dovecot[13], both of

which support POP3 and IMAP access to e-mails. Thus a mail server normally consists

of the MTA, Sendmail or postfix etc, and one or more of the protocols to retrieve e-mail,

Courier or Dovecot etc.

2.1.3 E-mail Protocols: Simple Mail Transfer Protocol

The main protocol that is used in the transfer of mail between the user and MTA as

well as between MTAs is called Simple Mail Transfer Protocol[14], or SMTP. The actual

protocol been used to today is called Extended SMTP[2], but is still referred to as SMTP.

SMTP is a simple text based human readable protocol. The commands are similar to

English words and the replies to the commands are also in this format. An SMTP server

can be used by connecting to the server using Telnet[15] or similar, this will allow you

to send e-mails using typed commands, but most of the time is done by the users MUA.

6

SMTP can only send messages by connecting directly to another SMTP server; it can not

receive messages on demand by connecting to another server.

S: 220 smtp.example.com ESMTP Postfix
C: HELO a.com
S: 250 Hello a.com, I am glad to meet you
C: MAIL FROM:<bob@a.com>
S: 250 Ok
C: RCPT TO:<alice@b.com>
S: 250 Ok
C: DATA
S: 354 End data with <CR><LF>.<CR><LF>
C: From: ”Bob” <bob@a.com>
C: To: Alice <alice@b.com>
C: Date: Tue, 15 Jan 2008 16:02:43 -0500
C: Subject: Test message
C:
C: Hi Alice.
C: This is a test message.
C: Bob
C: .
S: 250 Ok: queued as 12345
C: QUIT
S: 221 Bye

Figure 2.2: Sample SMTP transaction between bob@a.com and alice@b.com

An SMTP session starts with an ’HELO’ or ’EHLO’ command which is the ’hello’ or

’extended hello’ command, this is accompanied by the host name of the server from which

the connection is been made. If a command is accepted by the SMTP server then the

server will reply with a ’250 ok’ which means that its ready for the next command. Once

connected and the HELO has been accepted the information for the e-mail can be sent.

To start a new e-mail the first thing that needs to be stated is who the e-mail is from.

This is done with the ’MAIL FROM:’ command accompanied with the e-mail address of

the user sending the e-mail. The next thing that is needed is who the e-mail is for this is

entered after the ’RCPT TO:’ command, there can be as many of these as required. All

these commands will be acknowledge by the server with a ’250 ok’ if they are accepted.

Next is the ’DATA’ command, this command starts continuous input to the server and

7

is where any extra e-mail headers as well as the body of the e-mail go (see Figure 2.3 for

the different parts of an email). To end the ’DATA’ second of the session put a single ’.’

on its own line now the e-mail will be queued for delivery. At this point ’MAIL FROM:’

will start a new e-mail or ’QUIT’ will close the connection. See Figure 2.2 for an example

of an e-mail being processed by SMTP. The end user will almost never need to use these

commands as their MUA will do it for them.

Message Body

Message Headers

Figure 2.3: The different parts of an e-mail

2.1.4 E-mail Protocols: Post Office Protocol

The Post Office Protocol version 3[3], or POP3, allows users to retrieve their e-mails from

the mail server on demand. This allows an e-mail client to connect to the mail server

and retrieve a list of the messages in a user’s mailbox; the user can then retrieve them

and/or delete them from the server while keeping local copies. POP3 commands, like

SMTP commands, are human readable and writeable. A POP3 server can be connected

to via telnet or similar and commands are manually entered to check mail.

The POP3 server waits for connections from users on the default port of 110. Once

8

the user connects they must supply the ’USER’ and ’PASS’ commands together with their

username and password to be allowed to access their e-mails. When the username and

password are accepted the POP3 server will display how many e-mails are currently on

the server for that user as well as the total size of all the e-mails. The user can use ’LIST’

to get a more detailed list of the e-mails that are on the server and the size of each one is.

To read an e-mail the user uses the command ’RETR’ with the message number of the

e-mail they wish to read. They can delete an e-mail from the server with the command

’DELE’ and the message number. As with SMTP, the user does not need to use these

commands and instead their client will perform them for the user. The e-mail client will

normally use the ’RETR’ command to save the message to the local drive and then delete

them off the server with ’DELE’. The clients can be configured to leave the e-mails on

the server until they are deleted locally.

2.1.5 E-mail Protocols: Internet Message Access Protocol

Internet Message Access Protocol[4], or IMAP, is similar to POP3 as it allows a user to

retrieve their e-mail on demand from an e-mail server. A major difference from POP3 is

that IMAP supports both online and offline modes and all e-mails are left on the server

until manually deleted by the client. In online mode the client is automatically notified of

new messages which can then be requested from the server. Any changes that are made to

the e-mails, deleting or reading etc, are instantly reflected on the server. In offline mode

changes and new e-mails are queued until the client connects again. IMAP has support

for multiple clients for a single mailbox and changes are reflected between the clients. For

example checking your mail on your mobile phone will mark the messages you’ve deleted

and read, so when you check your mail on your computer they will be already deleted or

marked read.

Again like SMTP and POP3, IMAP commands are human readable. However, unlike

SMTP and POP3, they are not as easy to read and a lot more text intensive with multiple

9

places where the mail is stored. IMAP realistically can only be used with client software,

and to take advantage of all of its extra features needs client software to use it.

2.2 Spam

Spam, or unsolicited bulk e-mail, is estimated to constitute up to 73%[16] of total e-mail

traffic in the world, that’s over 14 billion messages. There are many different types of

spam, see Figure 2.4 for a selection of spam, and methods that spammers use. This

section will explore the most common forms of spam and methods used.

Figure 2.4: Sample of Different Spam E-mails

2.2.1 Types of Spam

One of the most common types of spam is advertising products for sale. In this case, the

spammer sends out millions of e-mails in the hope that a small number of those spammed

will purchase the product. As the cost to the spammer is almost nothing, anything they

sell will generate income. They can expand their product range without any marketing

costs. Popular types of products that are advertised through spam include medical drugs,

10

adult entertainment, and health and weight loss.

Figure 2.5: An Example of an fake phishing E-mail

Now a days ’phishing’ (pronounced fishing) is used extensively to acquire login details,

bank account and credit card details and personal information that can be used for identity

theft. Phishers, spammers who send phishing e-mails, try to make their e-mail look like

they are coming from a legitimate bank or other website that they want information for,

see Figure 2.5 for an example of an phishing e-mail. They include a link in the e-mail

that goes to a website which is not run by the bank but looks like it does. Phishers

normally scare the user into clicking on this link and entering their details by saying that

their account will be disabled if they do not. To make the link to the website look real,

phishers can use sub-domain and Internationalised domain names (IDNs). By using a sub-

domain, the phisher can set up a website like http://www.yourbankname.example.com/,

where they own the example.com domain but at a quick glance, a user would see the bank

name first. With the release of IDNs, phishers could replace the letter ’a’ in addresses,

11

and some other letters as well, with Cyrillic small letter ’a’. This allowed addresses to

look identical to the user but would redirect to a phishing website. This vulnerability has

been removed by most of the latest internet browsers.

Advance-fee fraud, Nigerian money offer or 419 frauds refer to a type of spam e-mail

where the receiver is offered a large sum of money, but to get the money they have to

send a smaller sum of money to the sender. This is a variation of an old confidence trick,

which offers the hope of large riches in exchange for a small advance sum of money.

The aim of almost all types of spam is to be profitable for the spammer, and this only

takes a few people to open and respond to the e-mail.

2.2.2 Methods used by Spammers

For a spammer to send spam they need to get a list of e-mails. This list can be bought

from a list merchant or harvested using many different methods for harvesting e-mails

addresses. They can use harvester bots, which can trawl through websites searching for

e-mail addresses posted on them. E-mail addresses can also be ’guessed’ by using a brute

force dictionary attacks. This involves trying every word in front of the domain name and

sending a test e-mail to that address, any e-mail address that doesn’t exist will bounce

and be taken off the list, and any that aren’t bounced are added to the list and reused.

Once the spammer has a list of e-mail addresses they can use a variety of methods to

avoid being black-listed or prosecuted. Lots of e-mails can be sent anonymously, using

free webmail services. Most free services have a limit on the amount of e-mails that can

be sent per day, so spammers use web bots to register and manage multiple accounts at

the same time.

Proxies are computers that users and services can use to make indirect connections

to other computers and services like e-mail servers. Open proxies are proxies that allow

any connection through them. They can be used to anonymously route e-mail from the

spammer to their destination. This helps to reduce the risk to spammers of getting caught.

12

The use of viruses that take control of users computers, to send spam from, is another

widely used tactic. The spammer can set up a website that infects users that browse to

it, or send spam to millions of users with the virus attached. Once the user is infected,

their computer becomes part of the spammers’ botnet or zombie network whenever it is

connected to the internet. Botnets are collections of infected computers that can be used

to send spam messages via the infected machines and the users e-mail accounts.

2.3 Current Spam filtering

A lot of research and money has gone into combating spam. There is a wide variety of

methods available that attempt to combat spam. These range from simple methods that

the end-user can use to cut down on the amount of spam that they get, to powerful filters

that process millions of spam emails per day.

The following sections will cover some of the filtering methods currently available.

2.3.1 End-User Methods

There are a number of simple methods that the end user can do to avoid or limit spam in

the first place. Most of these methods are free, easy to implement and if everyone adopted

them there would be a lot less spam.

The first thing is simply not to post your e-mail address publicly. This is impossible for

most people, so a method know as Address Munging can be used to obfuscate the e-mail

address, when publicly posting the address. Basic Address Munging involves changing

the way the address is written, so that a machine would not be able to read the valid

address, but still having it correctly human readable. Examples of this involve adding

extra words/spaces/special characters to the address which can be easily seen by humans

and removed, but not by machines. The following are some examples of basic Address

Munging:

More advanced Address Munging include replacing every characters of an address with

13

john@NOSPAMexample.com
john@example.com.invalid

john(AT)example.com
john at example dot com

j o h n @ e x a m p l e . c o m

Figure 2.6: Examples of Address Munging

its ASCII equivalent, so that when displayed on a web page it is readable, but if a machine

was looking at the code it just looks like a string of numbers and symbols. Another is

to use a client side scripting language, like JavaScript, to take parts of the address and

display them correctly on the web page, again this is readable by the user but not a

machine. The address could also be drawn on an image and the image displayed instead

of the text, this will work because the machine won’t be able to read the address in the

picture, where as a human can.

According to Prince et al. [17] 52% of machines will not recognize an address if the @

sign is replaced with the ASCII equivalent, while almost no machines will recognize an

address if it’s displayed with JavaScript or in an image.

If a spammer decides to send spam emails to random accounts, if they get replies from

the user, then they know that the account is active and that their e-mail got through,

what ever filters there is on that server. Replying to spam e-mails, therefore is the wrong

thing to do, even to those with an opt out option (e.g. click this link if you do not want to

receive further e-mails). The other problem with replying to spam e-mails is that most of

the time the reply address is forged, and as it doesn’t exist, the e-mail will bounce back to

the user causing more spam, or get sent to another user who is unrelated to the spammer.

Thus a way to reduce some spam would be to avoid responding to spam e-mails.

It is possible to get a disposable e-mail account for users signing up to certain website,

likely to make them more vulnerable to spam or where they need to post their address

somewhere with a likelihood of being harvested by a spammer. These disposable accounts

are normally used once or a few times and then disposed of once they start receiving

14

spam. These accounts are not suitable for long term communication between people, as

they would have to be replaced every few days and the new address sent on to the people,

who they wish to communicate with.

Finally a simple way to reduce the amount of spam overall is to report any spam

messages that are received by a user. Spam messages can be reported to many different

places, the biggest being is spamcop.net [18] which reported an average of 23 spam mes-

sages, a second over the last year. Reported spam is used for Blacklisting, which will be

covered in the next section, and also for research into improved ways of fighting spam and

new methods implemented by spammers.

2.3.2 Simple Filtering Methods

Most modern servers now have filters to try to eliminate incoming spam. The most

common and easiest is called Blacklisting, with White and Gray listing been used at the

same time.

Blacklisting[19] uses a list of e-mail addresses and IP addresses from known or reported

spammers and does not allow e-mail messages from these to be delivered to the recipient.

Blacklisting can use ether a local list of spammers or, as discussed in the previous section,

can use real time Blacklisting from a central server, which maintains a list of e-mail

addresses, IP addresses, DNS server, forwarding server and ISPs which have been reported

to be spam sending or relaying sources. If an e-mail is received from an address on the

blacklist, it can be discarded or rejected back to the sender[20], rejecting it may help

reduce the amount of spam that is coming from that spammer in the future.

Whitelisting[19] is a way of preventing false positives. Instead of discarding or rejecting

anything that is on the list, as Blacklisting does, it allows any e-mails from addresses or

IP addresses on the list. This is used a lot for contacts in e-mail address books. When

used with other filtering methods Whitelisting allows e-mail from your contacts to be

delivered even if they normally would be filtered out by another filter.

15

Graylisting[19] takes advantage of the STMP protocol[2] being able to temporary reject

incoming messages. Normal MTAs will recognise this temporary rejection and try again

at a later time. Graylisting works by recording the sender’s address, recipient’s address

and the sender’s IP address (these 3 items together are called a triplet) of incoming e-

mails. If this triplet has already been recorded before, then the e-mail is allowed through.

If the triplet has not been recorded before then the e-mail is temporarily rejected for

a certain amount of time. After this time if the e-mail is retried, it is let through. If

the sender is a spammer then they will ether not retry sending the message after the

first rejection or if they do retry the spammers address will have already been blacklisted

by other receivers of the spam. Thus Graylisting is more effective when combined with

real-time Blacklisting.

Content Filtering is another common method of filtering e-mails for spam. It filters

e-mail based on its content. The easiest way of doing this is to reject e-mails containing

words that appear regularly in spam messages. Huge problems can happen here, as e-

mails, which are not spam are blocked because of the word ’assign’ which has the word

’ass’ in it, which would be filtered by the content filter. Content filters can be bypassed by

adding extra white space and symbols between the letters in a filtered word. Misspelling

words would be ignored as well, meaning that content filtering on its own is a very weak

form of filtering.

An improvement on content filtering and one of the main types of filtering used today

is statistical content filtering[21]. Statistical content filtering uses Bayesian probability

to determine e-mails which are spam, and which are not. It works by scanning the users

received e-mails and assigning a probability to each word or token of it been spam, this

list is saved as a database for each user. When a new e-mail arrives it is scanned and the

top 15 words with a probability furthest from 0.5 are taken and the Bayesian probability

of these numbers is calculated[21]. If the resulting probability is greater then 0.9 it is

considered spam, anything else is not.

To use statistical content filtering to it’s full extent, each user would have a ’Report

16

as Spam’ button which would analyse the e-mail as spam increasing the probability of

certain words been spam. All mail, not reported as spam, would be analysed as not

spam, decreasing the probability that the contained words are spam. As each user has

a different database for their words and probabilities, users who have legitimate e-mails

containing words that would otherwise be filtered, would not be filtered using this method.

For example a chemist who is sending lots of e-mails referring to drugs, won’t have their

legitimate e-mails filtered, where as any spam e-mails about drugs would still get filtered

because of the difference in the content.

A different type of spam filtering is the challenge/response system. With this type

of filtering when an e-mail is received by a server, the server automatically replies to the

sender with a challenge which must be responded to in order for the e-mail to be delivered.

The challenge is simple to do for a single e-mail, but time consuming for a lot of e-mails,

and almost impossible to automate. The challenge can consist of simply replying to the

challenge e-mail or clicking a website link within the challenge e-mail. Most challenge

e-mails contain some form of Turing test, a test to determine if something is a human or a

machine, in order to make sure that the response to the challenge is from a human. This

Turing test is normally in the form of a CAPTCHA, which is a word or group of letters

slightly distorted in an image, so it’s relatively easy for a human to read but very hard for

a machine to read. Since a lot of spam e-mails are sent with forged reply addresses, the

spammers would not get the challenge at all and thus the e-mail would not be delivered.

Even if they did get the challenge, the amount of time it would take to respond to each

of the challenges would not make it worth while.

Checksum-based filtering[22] takes advantage of the way that spammers send bulk

e-mail. All the e-mails are mostly the same, except for some slight differences. Checksum

filtering removes anything that might make these e-mails different and creates a check sum

of the remaining information, which it stores in a database. The user can report e-mails

as spam, and then if any e-mails with the same checksum are received they are marked

as spam. Spammers can get around this by adding large chunks of invisible differences

17

into each e-mail, making checksum filtering effectively useless.

Most MTA servers do not fully enforce the standards set out in RFC 2821[2] and,

instead allow the administrator to allow or disallow features. If the standards are enforced

fully, mail coming from servers that do not comply with the standards can be blocked. A

lot of spammers use software that does not have all the features and standards and so,

would have their e-mails blocked. Some of the main standards that can be used to reduce

spam are HELO/EHLO checking, Nolisting and Greeting delay.

HELO/EHLO checking can reduce the amount spam received by a mail server by up

to 61.8%[23] by simply checking to see if the domain in the HELO statement is a Fully

Qualified Domain Name (FQDN). If it is not, then it is rejected with out being received

in the first place, which cuts down on the amount of bandwidth the server has to use.

The domain can also be looked up via DNS, to check the IP against the server that is

connected to make sure it is from that domain.

Nolisting uses a section in the SMTP protocol that provides a prioritized list of e-mail

severs on a particular domain. This list is maintains in the DNS as MX records, so if the

main server goes down there can be a backup server to take over, while the main server

is restarted. Nolisting takes advantage of this by putting a fake server address as the first

record, so that when a spammer, using their own custom software, tries to send mail the

attempts will fail, as their software does not try and contact the lower-priority servers on

the MX records list.

Greeting delay introduces a deliberate pause between when a client connects to the

MTA server and when it sends the greeting. Since no communication can take place with

the MTA server until the greeting has been sent, anything sent before will be discarded.

Spammers try and send their e-mails as fast as they can and a lot of the time will not wait

for the greeting, and instead will start sending as soon as the connection is established.

The server will discard anything they send and disconnect them if they try this.

There are many different types of spam filtering available, each has its own strengths

and weaknesses, but which provides the most effective means of filtering spam? Hybrid

18

filtering uses all or some of the different types of filtering that have been covered here. It

assigns a numerical score to each test result. Running each test on an e-mail gives that

e-mail a total score, which determines if that particular e-mail is spam or not. Since no

single test is able to mark an e-mail as spam, the false positives can be reduced while

keeping the amount of spam filtered high. Widely used Open Source mail filters such as

SpamAssassin[24], and Policyd-weight[25] use this method of filtering.

2.3.3 DomainKeys Identified Mail

DomainKeys Identified Mail[26] or DKIM is a new method for e-mail authentication.

DKIM is a hybrid of Identified Internet Mail, created by Cisco[27]; and DomainKeys[28],

created by Yahoo[29]. It is an e-mail header based signature system which is supposed to

be able to protect the sender from spoofing and cut and paste attacks.

When a user sends an e-mail the following happens:

1. The sender’s MTA signs the message and puts the signature into the e-mails header.

2. The recipient’s MTA verifies the signature in the header.

3. The recipient’s MTA contacts the receiving domains DNS to get its public key from

the domainkey sub domain.

When the signature is being verified it must pass two tests before it’s authenticated.

Firstly it must verify that the message was not edited or changed in any consequential

way and secondly the receiving domain must ask the sending domain to confirm that

whoever signed the message was authorized to do so.

The main advantages of using DKIM are that it allows the source domain of an e-mail

to be identified. This mean that forged e-mail messages can be deleted when they are

received. Some weaknesses exist with DKIM, for instance if a message was significantly

modified in transit or by another filter the signature may not be valid anymore, even if it

is a legitimate message. For example some free e-mail providers add advertisement on the

19

bottom of incoming e-mails, this would cause the signature to become invalid and thus

get rejected.

DKIM itself does not filter spam, but with widespread use it can prevent spammers

forging source and return addresses and thus allow existing filtering techniques to work

more effectively, by forcing the spammers to use a valid source domain. This would make

domain based black and white listing more effective, as well as making phishing attacks

easier to spot.

2.3.4 Cost Based Solutions

There have been a few attempts at using cost based solutions to combat spam. Some

solutions require cost in the literal sense and attach ’stamps’ to the e-mails, where as

other solutions have a computational cost instead.

One attempt at implementing a computational cost solution is called Hashcash[30].

The idea behind Hashcash is that ’payment’ takes the form of used CPU cycles which,

to a spammer sending millions of e-mails, can be monetarily expensive in terms of time

and power. The sender generates the Hashcash stamp by using the date, the recipient’s

e-mail address and the information to verify the hash together with a random number

and computes the SHA-1[31] hash of them. If the first n bits are zero, where n is how

much work the sender needs to do (a bigger n means more work), then that stamp is

acceptable and is attached to the e-mail header as proof of work. If the first n bits are

not zero then a new random number is generated and tried again until the first n bits are

zero. When the e-mail is received by the recipient, it only has to hash the header value

and verify that there are n zeros at the start, if there is then the e-mail is accepted.

1 : 40 : 051222 : foo@bar.org :: Cu2iqc4SmotZ7MRR : 0000214c3J

Figure 2.7: Example of Hashcash Stamp

The time to compute a stamp for n = 20 on a 2.13Ghz Core2 Duo takes 0.16 seconds[32]

20

doing 6.7 million hashes per second. This would not cause much of a problem for most

spammers, but by increasing n by just 1, doubles the length of time it takes to compute

the stamp. So by using an n of 30, instead the time would be around 2.5 minutes per

stamp, meaning a spammer could only send around 575 per day, instead of the millions

they normally send, and to a normal user, this amount of e-mails per day would be more

then acceptable.

Certified e-mail[33] is a technique that allows a delivery receipt to be obtained, when

an e-mail is received by the recipient, by using a Trusted Third Party (TTP). At the

same time a proof of mailing is also available, once the receipt is signed. E-mails sent in

this manner can be assured to pass filters and be delivered to the recipient. The TTP,

normally called the Post Master (PM), can charge a fee for this service either per e-mail

or for a certain time period. The system works by routing all mail through the PM. When

a sender(S) sends an e-mail to someone else(R), it is instead sent to the PM, who issues

a proof of mailing to S. The PM then encrypts the e-mail and sends it to R, who then

issues the receipt to the PM, who in turn gives R the key to decipher the message. The

PM then gives the receipt to S. This means that there is a lot of traffic going through the

PM, which causes a bottleneck at that point.

Goodmail Systems[34] is currently providing Certified Email services for major com-

panies such as AOL[35] and Yahoo[29]. Goodmail charges users $2.50 per thousand mes-

sages, as well as a $399 accreditation fee. The accreditation means that only certain

people will be able to send mail using there service, they mainly limit it to companies in

the UK, US and Canada.

Another current implementation of a money based system uses a payment at risk sys-

tem, similar to bonds. In this system if the sender is not on a list of approved senders,

then they have to attach a payment stamp that is only redeemed if the recipient disap-

proves of the e-mail. So if a friend who’s not on your approved senders list sends you an

e-mail, they have to attach a stamp, but since you are happy to receive the e-mail, the

stamp is not redeemed, where as if a spammer sends you an e-mail and you report it as

21

spam, then the spammer loses their stamp.

All of the current implementations of payment based filtering involve use of resources,

and in some cases money, has to be paid to the companies, running the service. This

means that there is a cost to legitimate users, in terms of time and/or money, to send

and/or receive e-mails and this is not acceptable to most users.

2.4 MicroPayments

There are many different methods to pay for goods and services over the internet. These

methods include credit cards and other macropayment systems. Macropayment systems

allow users to pay for goods and services, without exposing their payment details to the

vendor for a fee. However, for low value goods and services, the fee that macropayment

systems charge, would eliminate any profit for the vendor. So if a vendor is selling items

for a cent or providing a pay per query database, they could not use a macropayment

protocol. The vendor could instead use a micropayment[36] system which can deal with

very small values of fractions of cents. As the value of each transaction is very small, real

time communication with the payment server and high levels of security is not feasible, as

it would make the service unprofitable. This means that the micropayment systems have

to be quick, low on processing and with no unnecessary communications with a central

server.

The following section describes a method of implementing a micropayment system

using hash chains. Hash chains are used in the credit based micropayment system called

PayWord[37]. The cryptographic techniques used in hash chains will also be introduced.

2.4.1 Cryptography: Message Digesting

Message digesting is a one way transform that takes an input of any size and returns a

fixed sized string. The same input will give the same output every time it is used, while at

the same time changing a single letter or value in the input will give a completely different

22

output. Most hash functions are fast and computationally inexpensive, see Table 2.1 for

the average speeds on a typical computer (A 1.9GHz AMD-64 PC running Windows XP).

Two hash functions that are used a frequently in various applications are MD5[38] and

SHA[31].

Operation Number per second
RSA 1024 Signing 398
RSA 1024 Verification 10,000
DES 480,000
IDEA 780,000
SHA-512 Hash 3,200,000
SHA-1 Hash 15,500,000
MD5 Hash 30,000,000

Table 2.1: Computational Speeds of Various Cryptographic Functions

MD5 outputs a 128-bit string, normally a 32 digit hexadecimal number. MD5 is one

of a series designed by Ron Rivest, the others are MD2 to MD4. It was one of the most

widely used message digest functions, but since 2006. Its use has diminished as collisions

can be found in under a minute[39]. If collisions can be found in a message digest function

it is considered insecure. Collisions can be used to substitute an unauthorized message

for authorized messages.

SHA, Secure Hash Algorithm, can produce different length outputs depending on the

type of SHA function used; they are SHA-1, SHA-224, SHA-256, SHA-384 and SHA-

512. The latter four are known as SHA-2. SHA-1 produces a 160 bit output, 40 digit

hexadecimal number, and the others outputs are the same as their names. There is also

a SHA-0 but that is considered insecure like MD5. The SHA functions were designed by

the National Security Agency (NSA) of the U.S.A.

2.4.2 Cryptography: Public Key Encryption

Public Key Encryption, or sometimes called asymmetric cryptography, is a process in

which plain text is encrypted using one key and decrypted using a different key. Each

user has a public and a private key generated from a large random number, normally a

23

prime number. The public key is given out to anyone who wants it, so that it can be used

to encrypt messages that are going to be sent to the owner of that public key. The private

key is kept secret by the user, and is used to decrypt any messages that were encrypted

by the public key. One major advantage of using this type of encryption is that once you

encrypt a message only the user with the private key pair of the public key can decrypt

it.

Using the fact that only the user knows their own private key, it is possible to sign

messages so that the identity of the sender of a message can be determined. Instead of

encrypting a message with the receivers public key, the senders private key is used, see

Figure 2.8 for an example. The receiver can then use the senders’ public key to decrypt

the message, confirming that it was from that sender. This method also can also be used

to make sure a message is not tampered with.

Plain Text Message Sign (Encrypt)

A28BC3209EB

DEBC281A810

Plain Text Message Verify (Decrypt)

Alice’s Private

Key

Alice’s Public

Key

Alice Transmits

Encrypted

message to Bob

Alice

Bob

Figure 2.8: A message being signed and sent by Alice

One of the main problems with public key encryption is proving that a public key

belongs to a certain user and has not been exchanged for one of a malicious user. The

current way of establishing public key ownership is by using a public-key infrastructure

[40], which is made up of a number of certificate authorities who certify the ownership

of public keys and also provide a place to look up public keys when they are required.

24

Another big problem is that signing and verifying keys is computationally expensive,

Table 2.1 shows the speed of signing and verifying using RSA 1024 which is one of the

algorithms used to calculate public and private keys.

2.4.3 Micropayment System using Hash Chains

Hash chains are a collection of hashes where the hash of N in the chain is N-1 in the chain,

e.g. for a chain of 20 hashes the first one or anchor, N0, is the digest of the N1 and so

on until N20 which is randomly generated and the digest of it is N19. These hash chains

along with a signed commitment can be used to authenticate payments with out having

to contact a central server. Each chain and commitment is vendor-specific, so they can

only be spent at a single place and only by that user.

User

Vendor

Broker

Signed Commitment: SigBK (User, P0, Length, Value, Vendor)

User Releases Hashes as Payment Token P1

Redeem Highest

Payment Hash

Verify Payment Hashes

and Credit Vendor

Generate Hash Chain Verify Hash Values

as they Arrive

Figure 2.9: Hash tokens being exchanged as credits

When a user wishes to purchase something from a vendor, they generate a hash chain

to a value normally more then the user is likely to spend, each hash value represents the

same value (normally 1 cent). Unused credits can be discarded as they only represent

the users’ credit and no value is lost unless they are redeemed. Once the chain has been

25

generated from WN to W0 the user sends the anchor, W0, and the length to the Broker

who will sign it along with the user, value and the vendor (other values such as expiry

date are possible) by digesting the all of these values and signing it with its private key.

This signed digest is called the commitment and is sent back to the user. The user can

now use the generated hash chain and signed commitment to purchase something from

the vendor. This is preformed by first sending the commitment to the vendor who can

verify it by getting the Brokers public key. Then the user will release the appropriate

amount of hashes for the product or service that they wish to purchase. The released

hash is verified offline by the vendor by digesting the received hash until it is equal to

W0 or the last received hash. The payment can be redeemed at a later date by sending

the highest received hash along with the commitment to the Broker. This transaction is

summarised in Figure 2.9.

26

Chapter 3

Design

This chapter will outline some of the different designs and iterations of this project and

the steps taken from the requirements, initial considerations, ideas and designs to the

finial design.

3.1 Requirements

The application to be designed needs to be a robust mail filter or mail server that can

filter the e-mail, depending on whether or not the e-mail has been paid for. The filtering

must be done in real time without delaying the flow of e-mail through the server. The

filter must be able to accept and reject e-mails with explanation.

The system needs to use a micropayment technique to process the payments for the

e-mails. The payment system needs to be fast, avoid any unnecessary communications

and be secure.

3.2 Initial Considerations

Since the application needed to interact with e-mails while they are being sent and received

it would be logical to edit the code in the MTA itself. Doing this however, would require

either changing the code in an open source MTA, like Sendmail[10], or writing an MTA

27

completely from the ground up. Both of these would limit the spread of the application

with potential users and increase the complexity of installation.

During research for this project an API by Sendmail was found called Sendmail Con-

tent Management API or Sendmail Milter[41]. This API allows applications to be built

that can access e-mail messages as they are being processed by the MTA. This is done

using call backs for all of the SMTP commands that happen on the MTA. This also allows

message headers and body to be modified and validated. Applications created with the

Milter API can be attached to existing mail servers with a minimal amount of work. The

Milter API uses the C programming language for the applications and allows any other

commands or functions to be called with in the applications main loop. This API fulfilled

the requirements for the mail filter and was chosen for this project.

Although there exists wrappers for the Milter API to allow the use of other program-

ming languages, it was decided to use the C programming language mainly because of

the support for C over the other languages. For example the Java version of Milter was

last updated in 2005 and a lot of the functionality has been deprecated. C also allows for

better memory management which is ideal for server applications, which need to be able

to run constantly with out crashing or restarting.

There would be a need to have a server in the system to handle real money payments

as well as current account balances for the users and the MTAs. This server does not

need to actively do anything, except take requests from the MTAs and take local requests

from the web site and process them. The best way to structure the server, in this case,

would be to make it a Remote Procedure Call server. Remote Procedure Calls, or RPCs,

allows programs to call functions on another computer as if the function was on the

local machine. This means that while programming the client, all that will be needed to

request information from the server, is to call a local function in the code. This will return

the requested information from the server without needing to explicitly program how the

client and server interact. There are many different methods of RPC including Java’s Java

Remote Method Invocation (RMI), Microsoft’s .NET Remoting and XML-RPC, which

28

uses XML to encode its requests.

The type of RPC that was used in this project was XML-RPC. This allowed the server

to be a PHP web page on the server thus cutting down on the complexity of the server

to being a web server with PHP. There is an open source C library[42] for XML-RPC

which allows C applications to call RPC commands, which means that the client can

communicate with the server. XML-RPC also offers transmission over SSL[43], which

allows for the information to be passed between client and server to be encrypted at the

Transport Layer.

User and account data will need to be stored for both the client and server. While

it would be less complex to store the information in a file on the machine, sorting and

searching the file would be complex and resource heavy. A more efficient way is to use a

database, which can searched, sorted, updated and information inserted anywhere in the

data. A database can also be moved to a different machine then the one that the client

and server are running on, if more resources are required. It was decided that MySQL

from Sun Microsystems would be used because the author was familiar with it and it

includes C development libraries as standard with the server installation. MySQL also

integrates very well with PHP that the server-side software uses.

The project involves using a micropayment technique for e-mail. It was decided to

use the micropayment technique, hash-chains as explained in the previous chapter. As

hash-chains requires message digesting as well as public key signing it was necessary to

use a cryptographic library. The one that was used is the OpenSSL[44] toolkit. This

provides open source implementations of SSL, TLS and many full strength cryptography

functions, including message digest and public key signing functions.

3.3 Early Designs

In one of the first designs, pictured in Figure 3.1, the user would use their client to

purchase credit from the server. The client would request a hash-chain to the value of the

29

Internet

Central Server

ClientA@a.com

ClienB@b.comMTA

a.com

MTA

b.com

getCredits()

HashChains

Send E-mail with

Hash Value Attached

Verify Hash

and Credit

Receiver

Receive E-Mail

Figure 3.1: One of the first designs of the system

purchase from the payment server. Then when the user sent an e-mail, the client would

attach one of their hash tokens to the e-mail in the header and send it to the local MTA.

At the senders MTA the e-mail is processed as normal and sent to the receiving MTA.

At the receivers MTA the hash token is extracted from the e-mail and sent to the server

to be verified and the receivers account is credited, before delivering the e-mail to the

recipient.

This design had one major problem along with other design issues that made it harder

for users to adopt the system. The main problem is the huge reliance on the central server,

it has to create and issue the hash chains to the user’s client, it has to verify the hash

token at the receivers MTA and also debit the users accounts. A single e-mail has one call

to the server and one more call every few e-mails to obtain a hash-chain, with millions

of e-mails been sent per day world wide, this would put a huge stress on the server. The

design issues that would potentially limit the uptake of the system, is modifying the client,

as there are so many different clients, it would be hard to make modifications for them

all. This would mean that if someone wanted to use this system, they could only use one

30

of the clients that had been modified.

Internet

Central Server

ClientA@a.com ClienB@b.comMTA

a.com

MTA

b.com

Receive E-Mail

Check Credit

and Debt

Sender

Issue Single

Hash for the

e-mail

Verify Hash

and Credit

Receiver

Allow/Disallow

E-mail

Figure 3.2: Another one of the first designs of the system

Another design, pictured in Figure 3.2, was also considered. In this design the client

sends e-mails as normal, but having first credited their account at the central server.

Once their e-mail reaches their local MTA, it contacts the central server which checks

the sender’s credit and if they have enough it debits the sender’s account and sends a

hash token back to the MTA. The MTA takes the token and attaches it to the e-mail and

sends it to the receiving MTA. The receiving MTA sends the token to the server to verify

and credits the receiver’s account, once the token is verified the e-mail is delivered to the

recipient.

This design also has the problem of a central server bottleneck, in this case there are 2

calls for every e-mail that is sent, the server must issue a hash token at one MTA and then

verify it at the receiving MTA. This method does however remove the need to modify the

client in anyway.

These early designs, while workable, had problems which needed to be addressed by

later designs.

31

3.4 Second Iteration Designs

Taking into account the problems that were encountered with the initial designs the system

had to be re-designed. The main problem that occurred in the previous designs was the

reliance on the central server to issue and verify the tokens for each e-mail, to remove this

reliance it was decided to implement a two layered hash-chains payment scheme. This

involves two sets of hash-chains, one set is the users’ chains and the other is the MTA

chains. The users’ chains are used to exchange messages between the user and the MTA,

while the MTA chains are only used to exchange messages from MTA to MTA, see Figure

3.3 for an overview of this. To avoid modifying the client to retrieve and store the user’s

hash chains, the MTA is tasked with getting and holding the hash chains for each user,

as well as the hash chains for the other MTAs.

MTA

a.com
MTA

b.comuser@a.com User@b.com

User chains User chainsMTA Hash Chains

User Chains

Exchanged for MTA

Chains

MTA Chains

Exchanged for Chains

Chains

Figure 3.3: Overview of the two layer Hash-Chain payment Scheme

Users, who wish to send e-mails, would have to visit the central server’s website and

purchase credits using a macropayment solution. These credits would be sent to the user’s

local MTA in the form of a hash chain and a commitment, which would be stored on the

MTA for the user. When the user sends an e-mail, it is sent as normal to the MTA. The

MTA would take one of the user’s hash tokens as payment for either, another user’s hash

token if the e-mail is local, or an MTA token if the e-mail is destined for another server.

The user’s hash chain can only be redeemed at the local MTA. If the e-mail is destined

for another server, the MTA purchases a hash chain for that server and attaches one of

32

the tokens to the e-mail as payment. Once at the other server, the chain can be verified

by getting the commitment from the central server, this only has to be done once per

hash chain, and checking the token against the commitment. If the token is verified then

it is exchanged for a token for the local user and credited to the user.

{P0, Chain Length, User, MTA ID, expiry}SKCentral Server

Figure 3.4: User Commitment Signed by the Central Server

In this design the user’s commitment, the commitment that the MTA uses to verify

the users hash chains, contains the users address and also the MTA ID that it is valid

at. Figure 3.4 shows the users commitment. It is signed by the central server’s secret

key, so that the commitments integrity and origin can be validated. This is generated at

the server, along with the chain, when a user purchases credit then sent to the server via

e-mail.

{P0, Chain Length, Sending MTA ID,

Receiving MTA ID, expiry}SKCentral Server

Figure 3.5: MTA Commitment Signed by the Central Server

The MTA commitment contains almost the same information as the user one, except

that instead of a users address, it has two MTA IDs, sending MTA and receiving MTA

shown in Figure 3.5. It is still signed by the central server’s secret key. The commitment

is generated by the central server, but only after the sending MTA generates the hash

chain and sends the central server the chain anchor and length of the chain. Once received

the commitment can be generated and stored until requested by the receiving MTA.

This method removes a lot of the server calls that the previous designs had. Each

e-mail that is sent to a MTA for the first time has two central server calls, while e-mails

sent to the same MTA again will have no central server calls. This design does not modify

the client at all, which will allow users to adopt the system easier. The implementation

33

was started with this design, but was improved into the final design, which is covered in

the next section.

3.5 Final Design - CentMail

The final version of the design, also know as CentMail, is an improved version of the

previous design. While implementing the previous system, a problem arose when trying

to credit a receiver’s account on a different server to the senders. The system worked fine,

until the MTA hash token that was sent from the senders MTA could not be exchanged

for a user token with out generating a hash chain from the MTA to every user. This was

unfeasible, both in terms of storage space and extra processing required doing this. It

was decided that instead of there being two layers of hash chains, that there would only

be one MTA hash chains layer and in the second layer the user’s credits would be tracked

on their MTA, initially by the CentMail server when a user buys more credit. The MTAs

tracking would be backed up by a log of credit history, so that the user could be sure that

the MTA was keeping track of the credit legitimately.

Sending

Mail Server
Receiving Mail

Server

Centmail

Server

3. Hash value Attached to email as Payment

1. Generate Hash Chain 5. Verify Hash Value that

is attached to the email

2. P0 and the

Chain Length

4. Request Centmail

Commitment

Commitment: {P0, Length, Sending Mail Server ID,

Receiving Mail Server ID, Expiry} SKCentmail

Figure 3.6: An Overview of an E-mail being sent on the final design

34

When a user sends an e-mail to another user on a different server for the first time,

the e-mail is sent to the local MTA, where the users account is debited one credit. The

process then follows Figure 3.6:

1. A hash chain is generated on the local MTA by taking an initial random number

and, using SHA1, hashes the number to give the first value of the hash chain, Pn.

This value is then hashed until the amount of required payment tokens is obtained.

The final value is P0 or the anchor which is used by the receiving MTA for verifying

the payments made using this hash chain.

2. Once the local MTA has generated the chain the anchor and the length of the chain

is sent to the Centmail Server which will verify that the local MTA has enough credit

on account then it will create a commitment this information. The commitment is

stored and given to a server when they request it.

3. Now the local MTA has a verifiable hash chain which it can use to send e-mails. So

the local MTA will take the next unused hash value and attach it to the e-mail then

sends it to the receiving MTA.

4. At the receiving MTA the commitment for the sending server is requested from the

Centmail server.

5. The attached hash token is extracted from the e-mail and verified. This is done by

hashing the value that was attached to the e-mail. If the resulting value equals P0

that’s in the commitment then the payment is verified.

Once the payment has been verified the receiver is credited with one credit and the e-

mail is stored on the receiving MTA, until the recipient connects and retrieves the e-mail.

Subsequent e-mails from that server can be verified from the previous hash, until the max

value that is stated in the commitment is reached, in which case the new commitment

must be retrieved from the Centmail server. Received tokens can be redeemed by sending

the last received hash value to the Centmail server.

35

3.6 Other Consideration

This section will cover some design choices that aims to cover some e-mail options that

might cause problems with the CentMail system. Some of these problems cause imbal-

ances, while others cause e-mail to not arrive. They are explained in detail along with

their solutions in this section.

3.6.1 Internal Mail

Within large companies and colleges, a lot of the e-mail is sent internally. This includes a

large portion of e-mail sent from lecturers and managers to students and co-workers. Using

CentMail in this situation would leave the managers and lecturers with a large deficit of

credit. To avoid this situation the server administrators can choose to exclude e-mail with

in a domain from being processed by CentMail, while still processing mail to and from

other domains. Choosing to exclude a domain has a trade off, reducing the effectiveness

of the system if one of the accounts with in the domain should get compromised.

3.6.2 Mailing Lists

E-mail users are able to sign up to mailing lists to be notified of new products, events and

services, as well as discussion lists on various topics. Mailing lists have a single e-mail

address that when an e-mail is sent to it, if the user has permission, forwards the e-mail

to all subscribed users. When used with the CentMail system this would cause huge

imbalances for the mailing list account, because for every one e-mail it receives, it has to

send e-mails to every list member.

To allow mailing lists to still function under the CentMail system, a double ’opt-in’

address exclusion is used. The first ’opt in’ being that a user has to go to a mailing list

website and sign up for the list. The second ’opt in’ is an e-mail that is sent to the user

from the CentMail server confirming that they want to be on this mailing list. Once the

user has responded to this e-mail, all traffic between the users and the mailing list address

36

will not be charged by the CentMail system.

3.6.3 Sending Mail from non-CentMail MTAs

Users who don’t have the CentMail system installed and send e-mail to a server that does

have CentMail installed will have their message rejected because it has no payment token.

Initially the system could just accept e-mails with no tokens but make the message go

through another spam filter with an already high spam score.

A better way is to use manual stamps, the sending user signs up to an account on

the central server, deposits some money into this account, then enters the e-mail address

they wish to send an e-mail to. This will generate a manual payment token that can be

attached to the e-mail and sent. Using this method, users who are not on a CentMail

server can get some of the features with out having to move server.

37

Chapter 4

Implementation

This chapter will cover how the system was implemented. It will show how each part

interacts with each other and some sample code to explain how the Milter API and other

libraries work with the system. Each part will be covered in its own section with the finial

section explaining how the parts interact.

4.1 Main Application

The main application is based around the Milter API with calls to the OpenSSL library

for message digesting and public key signing, the XML-RPC library to communicate with

the central server and the MySQL library to store data such as account details and hash

chains.

4.1.1 Milter API

The Milter API is the core of the system; it allows access to the e-mails as they are being

processed by the mail server via callbacks to each SMTP command. The callbacks are

similar to methods that can be overridden with user created code. Each callback is called

with arguments that are related to it e.g. the callback xxfi envfrom, which is called at

the beginning of each e-mail, contains the senders address as an argument. Table 4.1

38

shows the different callbacks that the Milter API has and what arguments they offer the

developer. By implementing callbacks information about the e-mail can be determined

and changed if required.

Callback
Function

Description Arguments

xxfi connect Connection Information Senders Hostname and IP Address
xxfi helo SMTP HELO callback Senders Hostname
xxfi envfrom Called at the start of each mail Senders e-mail address
xxfi envrcpt Called for each Recipient Recipients e-mail address
xxfi data SMTP DATA callback None
xxfi header Called for each Header Header name and value
xxfi eoh End of headers None
xxfi body Called for message body The contents and length of the Body
xxfi eom End of Message None

Table 4.1: Milter API callback functions that can be

Each callback must be returned a value, to tell the mail server what to do with

the e-mail e.g. continue processing it with SMFIS CONTINUE or reject it with SM-

FIS REJECT. Table 4.2 shows all the callback return values.

Callback Return
Value

Description

SMFIS CONTINUE Continue processing the message
SMFIS REJECT Reject the current message
SMFIS DISCARD Discard the current message
SMFIS ACCEPT Accept the message without further filtering
SMFIS TEMPFAIL Temporarily Fail the Message

Table 4.2: Values that can be returned from callback functions

To initialise the Milter API the application is required to call 3 functions to configure

settings and start the Milter service. Figure 4.1 shows how the Milter is initialised in

this project. The application does not need to implement all of the callback commands

that are available; the first required start up command tells the Milter what callbacks are

implemented in the program and also, what message modification it will be doing during

the running of the application. This information is set using the smfi regisiter function,

which takes a struct as an argument containing the function names for the callbacks that

39

appear in the application, or null. The MTA communicates with the Milter API via a

socket which is initialised using the function smfi setconn with the port and hostname.

This caused some trouble at the beginning, as the normal way of writing a port and

hostname is to put the port after a colon after the hostname, e.g. host:8080, where as the

Milter API accepts the port first with the hostname following after an @.

Figure 4.1: Initialising the Milter and starting the main event loop

Once the callbacks and the port have been set smfi main is called, which starts the

Milters event loop that triggers the callbacks when they are received from the MTA. After

that all the application code takes place within the callback commands.

As the Milter API can process multiple e-mail messages at the same time, storing

per e-mail information can not be done using global variables. Instead private memory

40

must be initialised using the smfi setpriv function with in the API. This allows a chunk of

memory to be related to the current message being processed. This area of memory can

be used to store values between the different callbacks, for instances in this system the

memory is used to store the to and from addresses as well as the amount of recipients and

the retrieved hash token. This information is arranged in a struct within the memory.

See Figure 4.2 to see how the private memory is set up for this system, ctx is the unique

identifier for the current e-mail and is passed in each call. The memory can be accessed

by using the smfi getpriv function, once it has been set.

Figure 4.2: Private memory being set up for the system

The callbacks that were needed for this system are xxfi envfrom, xxfi envrcpt, xxfi header

and xxfi eom. To get the sending users address and store it in the private memory,

xxfi envfrom is used, and xxfi envrcpt does the same for the receiving address. If an in-

coming e-mail is coming from an external domain then the header is processed to retrieve

the payment token and store it in the private memory to be processed in a later callback.

The bulk of the code for the system lies with in the xxfi eom, end of message, callback.

This is mainly because it is the only callback that you can edit the headers and body

41

from.

Sender Local

Debit Account
Retrieve Hash

Token

NoYes

RejectFail None

Receiver Local

Success

Verify Hash Token

Success

Not verified

Verified

Credit Account
Attach Hash

Token

Yes No

Finished

New E-mail

Figure 4.3: The flow of the code within the eom callback

The flow of the code within the eom, as seen in Figure 4.3. It begins by debiting

the sending account, checking first if it is local or remote. If it is local then the account

is debited if there is enough credit. If it is remote the token that was stored earlier is

verified, by checking it against the commitment which, if necessary, is retrieved from the

central server.

Once the sender has been debited the receiver can be credited. If the receiver is a

local account then the account is credited. If it is on a different server a hash token is

42

attached to the e-mail using smfi addheader from an existing hash chain or by generating

a new one.

4.1.2 OpenSSL Library

The OpenSSL library provides a C language library for cryptography and SSL. In this

project we used OpenSSL to provide the message digest function, SHA1, to create and

verify the hash chains, as well as the public key cryptography function to sign the com-

mitment. While the public key cryptography could be used as is with out much extra

code, the message digest function returned the digest as byte array (unsigned char* in

C). To interact with the PHP version of the SHA1 function the digest needed to be in a

hexadecimal string. To allow for this a function was created to return the message digest

as a string, while also allowing strings to be entered to be digested.

Other then the small digesting problem, the OpenSSL library provided the necessary

cryptography features to implement the hash chains processing with signed commitments

simply and with out much extra code.

4.1.3 XML-RPC Library

The XML-RPC library proved to be code intensive, when implementing the server calls

as local functions. In each method the connection had to be initialised, then the function

called, then results parsed and finally the connection closed, see Figure 4.4 for a sample

function. The reason the connection had to be made for each function is because of

the threaded nature of the Milter API and this also reduces unnecessary connections

to the server, which will be handling hundreds of connections per second already. This

means putting the connection initialisation at the start of an e-mail would have the client

connect, even if it was not going to send anything to the server, instead the connection

is only made if the client wants to request something from the server. The connection is

established quickly and with only three lines of code makes it faster to implement, then

43

setting up a socket to the central server.

Figure 4.4: A XML-RPC function from the system

4.1.4 MySQL Library

The C library to interact with MySQL came as default with the MySQL server and can be

included into applications by including ’mysql.h’. The library includes all the necessary

functions to connect to and query the database. When using select queries, queries that

get data from the database, the data is returned as a MYSQL RES type which can be

used to get a MYSQL ROW type, which is an array of the data that was requested.

Except for the types that must be used to get the results from select queries, the MySQL

library provided fast and easy access to a database, local or remote, to store user account

information, commitments and payment tokens.

44

4.2 The Central Server

The central server consists of two parts, the XML-RPC server and the website for user

interaction. Data is provided to both services via a common MySQL server.

4.2.1 XML-RPC server

The XML-RPC server was implemented using PHP with the XML-RPC library that

is included with PHP. An XML-RPC server is created by calling the function xml-

rpc server create() and then registering the methods that are to be called from the client.

Any PHP method can be registered as an XML-RPC call by using the PHP function xml-

rpc server register method(). This allowed the methods to be created as functions, which

could be tested with out having to use XML-RPC calls initially. Data was obtained and

stored using a different MySQL server then the client uses. The database was interacted

with using the built in MySQL interface that PHP has. This server provides functions to

the client to get the servers public key, as well one to create and get commitments.

4.2.2 User Interface

For the purposes of this project, only a small user interface site was created to allow users

to check their current balance and add more credit. The site used PHP to interact with

the MySQL server database. The website consisted of two input boxes, e-mail address

and amount of credit the user wishes to purchase, and a submit button. By just entering

the e-mail address box, the current amount of credits is returned, but by entering both

boxes that account would be credited by the amount entered.

4.3 Databases

There are two MySQL databases being used in this project; one is being used with the

Milter Application and one is being used on the server. The database for the Milter

45

application has three tables in it. The first is to store the account details for every user

that this Milter is tracking, which is the e-mail address and the amount of credit that

they have. To protect from database manipulation a signature is created by combining

this information and digesting it with SHA1. This signature will provide an indication of

whether or not the information has been changed. The next table that is in the Milter

database is for credit transfer logs for keeping track of all the users credit flow. This log is

for the users’ benefit, so that they can be sure that their MTA is not overcharging or taking

credits from them. The final table in the Milter stores local copies of commitments. Each

entry in the table needs to store the commitment signature, the chain anchor as obtained

from the commitment, the overall length of the chain from the commitment, the MTA

it’s valid at, the last hash token that was used and the last number of the chain that was

used. This information is used to store and verify incoming tokens and attach outgoing

tokens.

The database on the server side also has accounts and commitment, as well as a table

that tracks the current credits of all MTAs supporting CentMail. The accounts table on

the server is tracking the amount deposited by each user and the current credits of all

the users on all of the MTAs using the software. To reduce the search time that it would

take to find a user by their e-mail address, another field is added to the table which is

the MTA name. This way the SELECT statement can search through a smaller subset

of results. The commitment table is the same as the commitment table on the Milter,

except that it stores both the MTA that is valid from, as well as the MTA that it is valid

to. The third table stores the amount of credit that the MTA has overall, this credit is

increased when the MTA redeems a hash chain and is reduced when one its hash chains

is redeemed.

46

4.4 Interaction

The system as a whole consists of three parts communicating with each other, the Milter,

the server and the MTA that the Milter is running with. All interactions between them

take place as some kind of method call, call back or RPC, so the interactions can be seen

as calls from the different services. Figure 4.5 shows the interaction that takes place when

an e-mail is sent from a local account to a local account. There is no need to connect the

central server for local mail, as the credit is just passed from one account to the other.

Once the message has being accepted, user B can retrieve it at any time.

User A MTA
Milter

ELHO

OK

MAIL FROM:

xxfi_envfrom

SMFIS_continue

RLPTTO:

xxfi_envrept

SMFIS_ACCEPT

Use MySQL to transfer

credit From A’s Account to

B’s Account and record a

log of the transactionOK

SMTP Commands Milter Callbacks

Figure 4.5: Communication between services for an internal e-mail

Figure 4.6 shows the method calls and events that happen during an e-mail being sent

from ’User A’ on ’MTA A’ to ’User B’ on ’MTA B’. In this case there are RPC calls to the

central server, but only when a new hash chain is created. Most of the communication

takes place between the MTA and the Milter application. This figure does not show the

SMTP commands that take place for the Milter callbacks to happen.

47

MTA A Milter A

xxfi_envfrom

SMFIS_CONTINUE

xxfi_envrept

xxfi_eom

smfi_addheader(“X-Payment”,”w1”);

SMFIS_ACCEPT

Record From Address

Record To Address

Attach the payment

token to the e-mail

SMFIS_CONTINUE

MTA B

Send E-Mail to MTA B

Milter A Central Server

create_commintment(w0, length, destination MTA)

SMFIS_CONTINUE

xxfi_envrept

Record To AddressSMFIS_CONTINUE

xxfi_envfrom

Record From Address

xxfi_header

SMFIS_CONTINUE
Record the X-Payment Header

SMFIS_ACCEPT

Verify the payment token

using the commitment

xxfi_eom
get_commintment(MTA)

{Commitment} SKServer

get_public_key()

PKServer
= Always Performed

= Performed Once per

new Hash Chain

Figure 4.6: Communication between services for an external e-mail

48

Chapter 5

Evaluation

This chapter will describe the way in which the software was tested to make sure that it

worked and the user trials undertaken. The findings of these trials will be reported.

5.1 Testing

To be sure that the application was running correctly, three sets of tests were carried out

to test the different features. For the purposes of testing the software, two machines were

set up with Ubuntu server edition operation system with e-mail server and LAMP (Linux,

Apache, MySQL and PHP) server picked at install; this installed the postfix MTA software

as well as PHP, MySQL and a web server. After installation e-mail could be used without

any further configuration. The required libraries where then installed using Ubuntu’s built

in package management system, apt-get. One of the machines was designated the server

and the server side software, the XML-RPC server and user interface, was installed. Both

machines were configured with the Milter application. Once everything was running the

tests were run one at a time. The first set of tests concerned situations where the sending

account had no credit and the second set of tests, where the sending account did have

credit. The final set of tests attempted to break or trick the system. For the purposes of

these tests the machines are called A, the machine that is designated the server, and B is

49

the other one.

5.1.1 No Credit Tests

This set of tests contained 2 tests with the sending account having no credit. The results

are determined by looking at the account details within the MySQL database, as well as

the feedback that the application displays when running.

Test 1 of this set involved using an account on machine A to send an e-mail to another

account on A. Both accounts had no credit, so the expected result would be for the e-mail

to fail. When the e-mail was sent the application output confirmed that the message had

failed due to lack of credit. Figure 5.1 shows the output. This test was a success.

Figure 5.1: The application output for sending an e-mail with no credit

Test 2 was the same as test one, except that the destination was on B instead of been

locally on A. The same result was expected and gotten, the message failed on debiting

the sending account, so the message was rejected before it left the local server. This test

was a success.

5.1.2 Credit Tests

In this set of tests, the sending accounts were given a large supply of credits and were

topped up if they ran out. Again the results were determined by monitoring the databases

and the output of the application.

50

Test 1 of this set, had a similar set up as test 1 in the previous set, an e-mail is sent

from A to A, but this time it is expected to succeed. After sending the e-mail, the initial

response is that the e-mail is sent by looking at the output from the application. This

is then confirmed by seeing that the senders account has been debited and the receivers

account has been credited on the database as expected. This test was a success.

Test 2 is the first test that we expect commitments and hash chains to become involved.

This test sent an e-mail from A to B. It was expected that the e-mail would be delivered

successfully to B, with a new hash chain being created for the MTA to MTA payment.

When the e-mail was sent the application output on A, Figure 5.2 shows that the sender

has been debited and when it goes to credit the receiver sees that it is external and creates

the hash chain. When the e-mail gets to B the application output, Figure 5.3 shows that

the hash token is extracted from the e-mail and verified, both of which are successful and

the receiver is then credited. By checking the databases, it can be seen that the sender

has spent one credit and the receiver has gained one credit. The hash chain commitment

can also be seen, along with the first token that was used. This test was a success.

Figure 5.2: Application output from sending an e-mail to another server

Test 3 sends an e-mail from A to B using a different sending account then test 2.

This test makes sure that the hash chain that was generated in the last test is used by

all accounts, and not just the one that created it. It was expected that the same hash

51

Figure 5.3: Application output from receiving an e-mail from another server

chain would be used and the e-mail sent successfully. This was confirmed by both the

application output and the database data which show that A used the same, local, hash

chain to send the e-mail. This test was a success.

5.1.3 Other Tests

This set of tests attempted to break the system by resending the same hash token and

using a hash token from another MTA.

Test 1 sends the same token twice, the first time legitimately. It was expected that the

first e-mail would succeed, while the second e-mail would fail. This is confirmed by the

application output, Figure 5.4, which shows that the hash token has already been used

and rejects it. This test simulates an e-mail being read on route by packet sniffing and

the payment token being copied out of it and reused. This test was a success.

Test 2 takes a token from the chain of one server and tries to use it to send an e-mail to

a different server. As the chain is not associated with the receiving server, it is expected

that this will fail. By checking the output from the application, it can be seen that the

Milter labels the hash token as ’invalid’ and rejects it at the receiving server. This test

was a success.

52

Figure 5.4: Application output from receiving the same payment token twice

5.2 User Trials

Once the system passed all the tests and was considered stable, two user trials were carried

out. It was hoped that these trials would show that normal users remain cost-neutral.

The trials would also allow the system to be tested in a live e-mail environment.

5.2.1 Real User System Trial

The first trial that was set up invited peers to take part. The trial gave each user a new

e-mail address pre-topped up with 10 credits with the option to topup to 40 credits. The

users were asked to use the e-mail account as they would their own and send e-mails to

each other. E-mails to and from accounts outside the server were ignored. The trial lasted

for 2 weeks and 15 users took part with a 16th account set up to act as a spammer. This

account sent spam e-mails to the other users, until it used up all of its credits.

At the end of the trial, over 100 e-mail messages had been sent through the system to

the different users. The balance for each user was calculated by taking their current credit

balance and taking away the amount that they topped up with during the trial. This gave

each user a positive number if they ended up with more credits then they started with,

a zero if they remained the same or a negative number if they finished with less credits

53

0

2

4

6

8

10

12

Over Equal Under

Credit Left Compared with Starting Credit

N
u

m
b

e
r

o
f

U
s
e
rs

Figure 5.5: Results from the Real User System Trial

then they started with. The amount of users that ended up at each was graphed as in

figure 5.5. As can be seen over 80% of the users finished the trial with the same amount

of credit or more, while the spammer’s account ended up as one of the accounts with less

then their starting amount. As no one replied to the spammer’s e-mails, the only way

that the spammer could keep sending messages was by topping up their account with

more credit.

5.2.2 Live System User Trial

The second trial carried out used an existing mail server and users. The system adminis-

trator of the mail server set it up so that existing users could opt into the trial by routing

their mail to another server. The trial was carried out as a blind trial, where the user

would not notice any changes to their e-mail. Instead of rejecting e-mails when the user

had no credits, they would be aloud to go into a negative balance. This would allow their

overall balance to be monitored and recorded like the previous trial.

Unfortunately it turned out that outgoing mail could not be routed through the sys-

54

tem and thus all of the account had a positive balance equal to the amount of e-mails

they received making the results obtained from this trial useless. This trial did how-

ever demonstrate that the application could be run on a live server running a different

operating system, Solaris, successfully.

55

Chapter 6

Conclusion

This chapter will start by summarizing the CentMail system, what it can do, the key

design features, the results obtained from user trials and how it reduces and discourages

spam. It will then discuss some possible future work that can be undertaken.

6.1 CentMail - A micropayment system for e-mail

Users send spam e-mails because they make money from doing it. Millions of e-mails cost

nothing to send, so if one person responds to a spam message the spammer is in profit.

CentMail removes the profit from sending spam by adding a cost to send e-mail. At the

same time, normal users will not have to pay for e-mail as the system is cost neutral for

them. This is achieved by charging a user to send an e-mail, while paying a user the same

amount to receive an e-mail.

The system was successfully implemented by using a micropayment system which

makes use of hash chains. The system works on two tiers, the first being the hash chain

exchange between different servers and the second is the credits that the users have, which

is monitored and managed by each MTA locally. Overall this cuts down on the reliance on

communication with central servers, the system only needs to contact the central server

to create or obtain the commitment for the hash chains.

56

The the system user trials revealed that most normal user maintain the same amount of

credit or gain more. It also showed that users who send excess e-mails, such as spammers,

would have to pay for their e-mails, if they receive no replies. The tests preformed on the

system showed that simply reusing a payment token or using a token from another server

will not work, and that mail that is not paid for, will be rejected at the sending server,

cutting down on the amount of bandwidth that is used.

CentMail can cut down on the amount of spam and discourage spammers from sending

spam to begin with by using some of the features mention above. The main reason that

spammers will be discouraged is by the charge to send the e-mail, which for them can

become very large. Since they can no longer be assured a profit from their spam, they will

not send e-mails to servers that have CentMail. If they hijack an account, the amount of

damage that can be done is limited to the amount of credit that account has currently.

Trying to reuse credits will also fail as illustrated by the tests.

6.2 Future Work

The software at the moment is capable of running on a live e-mail server, as was seen

in the second of the user trials. As it is a C application and contains a lot of pointers,

there is a small bit of memory leaks that need to be plugged. Other then that, the system

administrator should be able to select various options to suit their servers, like using a

file instead of MySQL. The install process needs to be simplified and automated to make

it easier to make a server, CentMail enabled.

On the central server, the main thing that has to be done is to integrate a macropay-

ment system and a proper user interface. Users should be able to graphical see what their

current credit status is, as well as past spending.

Currently the Milter API covers the two main types of MTA software. These two

types of MTA cover a large proportion of the MTAs on the internet, but do not cover

them all. The application can be written as a proxy that will route mail through itself

57

before going to the MTA. Although this makes it more complex to install, it means that

it will have a high compatibility rate then just having the Milter on its own.

Once the system is completely finish the next step would be to release it to the public,

while maintaining control of the central server.

6.3 Final Word

We have successfully implemented a micropayment system that can be used for e-mails.

This system discourages spam by adding a cost to the spammer, who would otherwise

be sending millions of e-mails without any cost. It is easy to install and requires no

modification to existing servers or clients.

58

Appendix A

Abbreviations

Short Term Expanded Term

DNS Domain Name System

ASCII Dynamic Host Configuration Protocol

IP Internet Protocol

ISP Internet Service Provider

SMTP Simple Mail Transfer Protocol

MTA Mail Transfer Agent

MUA Mail User Agent

POP3 Post Office Protocol version 3

IMAP Internet Message Access Protocol

CAPTCHA Completely Automated Public Turing test to tell Com-

puters and Humans Apart

HELO Hello command for MTA

EHLO Extended Hello command for MTA

FQDN Fully Qualified Domain Name

MX record Mail Exchanger record

DKIM DomainKeys Identified Mail

CPU Computer Processing Unit

59

Short Term Expanded Term

SHA-1 Secure Hash Algorithm

MD5 Message Digest version 5

TTP Trusted Third Party

PM Post Master

HTTP HyperText Transfer Protocol

IDN Internationalised Domain Names

RPC Remote Procedure Call

SSL Secure Sockets Layer

60

Bibliography

[1] Tom Van Vleck. The ibm 7094 and ctss, Sept 2004. URL

http://www.multicians.org/thvv/7094.html.

[2] J. Klensin. Simple Mail Transfer Protocol. RFC 2821 (Proposed Standard), April

2001. URL http://www.ietf.org/rfc/rfc2821.txt.

[3] J. Myers and M. Rose. Post Office Protocol - Version 3. RFC 1939 (Standard),

May 1996. URL http://www.ietf.org/rfc/rfc1939.txt. Updated by RFCs 1957,

2449.

[4] M. Crispin. INTERNET MESSAGE ACCESS PROTOCOL - VER-

SION 4rev1. RFC 3501 (Proposed Standard), March 2003. URL

http://www.ietf.org/rfc/rfc3501.txt. Updated by RFCs 4466, 4469, 4551,

5032, 5182.

[5] Microsoft Outlook. URL http://www.microsoft.com/outlook/.

[6] Mozillas Thunderbird 2. URL http://www.mozilla.com/thunderbird/.

[7] Google Mail, Gmail. URL http://www.gmail.com/.

[8] Windows Live Hotmail. URL http://www.hotmail.com/.

[9] Mail Server Statistics. URL http://www.mailradar.com/mailstat/.

[10] Sendmail. URL http://www.sendmail.com/.

61

[11] Postfix Sendmail program. URL http://www.postfix.org/.

[12] Courier-IMAP. URL http://www.courier-mta.org/imap/.

[13] Dovecot Secure IMAP and POP3 server. URL http://www.dovecot.org/.

[14] J. Postel. Simple Mail Transfer Protocol. RFC 821 (Standard), August 1982. URL

http://www.ietf.org/rfc/rfc821.txt. Obsoleted by RFC 2821.

[15] J.B. Postel, J. Reynolds, Network Information Center, and SRI International. Telnet

Protocol Specification. 1983.

[16] Spam statistics and facts, . URL http://www.spamlaws.com/spam-stats.html.

[17] M. Prince, B. Dahl, L. Holloway, A. Keller, and E. Langheinrich. Understanding

How Spammers Steal Your E-Mail Address: An Analysis of the First Six Months of

Data from Project Honey Pot. Second Conference on Email and Anti-Spam, 2005.

[18] SpamCop.net, . URL http://www.spamcop.net/.

[19] I. Miszalska, W. Zabierowski, and A. Napieralski. Selected Methods of Spam Filtering

in Email. CAD Systems in Microelectronics, 2007. CADSM’07. 9th International

Conference-The Experience of Designing and Applications of, pages 507–513, 2007.

[20] T. Salmi. Youve got email... again! Protecting ones emailbox from spam with auto-

matic filtering.

[21] Paul Graham. A Plan for Spam. URL http://www.paulgraham.com/spam.html.

[22] F.D. Garcia, J.H. Hoepman, and J. van Nieuwenhuizen. SPAM FILTER ANALYSIS.

[23] A. Treviño and JJ Ekstrom. Spam Filtering Through Header Relay Detection.

[24] Apache SpanAssassin Project, . URL http://spamassassin.apache.org/.

[25] policyd-weight - A policy daemon for Postfix. URL

http://www.policyd-weight.org/.

62

[26] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. DomainKeys

Identified Mail (DKIM) Signatures. RFC 4871 (Proposed Standard), May 2007. URL

http://www.ietf.org/rfc/rfc4871.txt.

[27] Cisco Systems Inc. URL http://www.cisco.com/.

[28] M. Delany. Domain-Based Email Authentication Using Public Keys Adver-

tised in the DNS (DomainKeys). RFC 4870 (Historic), May 2007. URL

http://www.ietf.org/rfc/rfc4870.txt. Obsoleted by RFC 4871.

[29] Yahoo! URL http://www.yahoo.com/.

[30] A. Back et al. Hashcash-A Denial of Service Counter-Measure. URL: http://www.

hashcash. org/papers/hashcash. pdf. August, 2002.

[31] PUB FIPS. 180-2:Secure Hash Standard,. US Department of Commerce, Technology

Administration, National Institute of Standards and Technology, 2002.

[32] Hashcash Website. URL http://www.hashcash.org/.

[33] A. Bahreman et al. Certified electronic mail. Master’s thesis, Carnegie Mellon Uni-

versity, 1992.

[34] Goodmail Systems, Home of CertifiedEmail. URL

http://www.goodmailsystems.com/.

[35] AOL. URL http://www.aol.com/.

[36] M. Peirce amd H. Tewari D. O’Mahony. Electronic Payment Systems for E-

Commerce, chapter 7. 2nd edition, 2001.

[37] R.L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment

schemes.

63

[38] R. Rivest. The MD5 Message-Digest Algorithm. RFC 1321 (Informational), April

1992. URL http://www.ietf.org/rfc/rfc1321.txt.

[39] Vlastimil Klima. Tunnels in hash functions: Md5 collisions within a minute. Cryp-

tology ePrint Archive, Report 2006/105, 2006. http://eprint.iacr.org/.

[40] C. Adams, S. Farrell, T. Kause, and T. Mononen. Internet X.509 Public Key Infras-

tructure Certificate Management Protocol (CMP). RFC 4210 (Proposed Standard),

September 2005. URL http://www.ietf.org/rfc/rfc4210.txt.

[41] Milter.org. URL http://www.milter.org/.

[42] A lightweight rpc library based on xml and http for c and c++. URL

http://xmlrpc-c.sourceforge.net/.

[43] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Proto-

col Version 1.2. RFC 5246 (Proposed Standard), August 2008. URL

http://www.ietf.org/rfc/rfc5246.txt.

[44] Openssl: The open source toolkit for ssl/tls. URL http://www.openssl.org/.

64

