
Stream-based Macro-programming of Wireless Sensor,
Actuator Network Applications with SOSNA

Marcin Karpiński and Vinny Cahill
Distributed Systems Group

Trinity College Dublin
{karpinsm, vjcahill}@cs.tcd.ie

ABSTRACT
Wireless sensor, actuator networks distinguish themselves
from wireless sensor networks by the need to coordinate
actuators’ actions, real-time constraints on communication
and the frequently feedback-based nature of computation
performed in the network. In this paper we propose a func-
tional macro-programming language, SOSNA, that employs
the stream programming paradigm to concisely specify data
transformations in the network so that wireless sensor actu-
ator network (WSAN) application developers can focus on
higher-level control-oriented problems rather than on design-
ing the way in which communication is organised in the net-
work. SOSNA accommodates a broad class of WSAN coor-
dination models, supports mobility and provides a means of
employing feedback for distributed state maintenance. Pro-
gram execution proceeds in rounds providing real-time guar-
antees on actuator decision making and synchronisation. In
addition, static program semantics permit nodes to switch
their radios off to conserve energy.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distri-
buted applications; C.3 [Special-Purpose and Applica-

tion-Based Systems]: Real-time and embedded systems;
D.3.2 [Programming Languages]: Concurrent, distribut-
ed, and parallel languages; Data-flow languages

General Terms
Design, Languages

1. INTRODUCTION
Wireless sensor, actuator1 networks are an emerging re-

search discipline in which the problem of controlling a physi-
cal phenomenon is addressed using spatially distributed net-
works of devices that possess communication, sensing and/or

1Some authors use the term actor to refer to the same con-
cept.Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DMSN ’08 August 24, 2008, Auckland, New Zealand.
Copyright 2008 ACM This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for re-
distribution. The definitive version was published in DMSN ’08: Pro-
ceedings of the 5th Workshop on Data Management for Sensor Networks
http://doi.acm.org/10.1145/1402050.1402061 ...$5.00.

actuation capabilities. Typically, sensor nodes (or sensors,
for brevity) are considered to be highly resource-constrained
while actuator nodes (or simply actuators) may have less
stringent resource budgets [2]. Computation in the network
is driven by data coming from sensor nodes and the control
task has to be realised by means of actuator coordination.

WSANs are not just an extension of wireless sensor net-
works (WSNs) with actuators. The existence of actuators
in the system shifts the focus from sensing to control pos-
ing new requirements on the methods employed. In this
view, a WSAN is a kind of control system in which sens-
ing, actuation and decision making are distributed while
resource-constrained system components communicate with
each other, in particular, over unreliable communication chan-
nels what makes already established tools and approaches
from the control systems domain unsuitable [19].

There is a considerable variety in the WSAN design space.
The network may be homogeneous with all nodes being
equipped with sensing and actuation modalities; sensing and
actuation may be performed by different network nodes; or
different network nodes may possess different sensing and
actuation capabilities. Network (sensor and actuator) nodes
may be static, some of them may be mobile or, in the ex-
treme case, all of them may be able to move. Network
topology may be hierarchical with actuators being capable
of long-range communication and sensor nodes transmitting
data using low-power unreliable links directly to actuators
in their vicinity; or communication in the network may be
multi-hop with all network nodes using the same communi-
cation medium.

Because a WSAN is essentially a kind of control system,
real time plays an important role in its operation and often
manifests itself in the need for synchronisation of actuation.
This fact implies that all communication in the network, as
well as the process of actuator coordination have certain tim-
ing requirements and the degree of timeliness may depend
on a particular application. Also, as explained in [2], there
are many ways in which communication between sensors and
actuators can be organised. It is not clear, however, given
the current state of knowledge, which models are preferable.

Apart from the way communication is organised in the
network, sensor data fusion, environment state estimation
and maintenace, as well as control algorithms play a very
important role in the design of WSAN systems. Their im-
plementation in a distributed setting with unreliable com-
munication links is a non-trivial task and leaves much space
for further research.

All of the above and the requirement of keeping resource

consumption to a minimum show that WSAN application
development is an extremely difficult and challenging task.
We propose, therefore, a programming language SOSNA
that addresses the key characteristics of WSAN systems
allowing researchers, engineers and developers to focus on
their-specific higher-level control-related problems. The main
highlights of the language are:

• Network topology, node heterogeneity and mobility are
abstracted away while making it possible to realise
different sensor-sensor, sensor-actuator and actuator-
actuator coordination strategies, as presented in [2].

• Maintenance of distributed state can easily be realised
by means of accessing stream values at the previous

round.

• Program execution time is deterministic and proceeds
in rounds. This, together with provision of time syn-
chronisation in the network, gives real-time bounds on
actuator decision making and allows for actuator syn-
chronisation.

• Static program semantic permits the compiler to gen-
erate communication protocols that make use of radio
duty-cycling for energy conservation.

SOSNA is a macro-programming language meaning that
programs written in the language do not describe actions
taken by individual nodes but rather operate groups of nodes.
Because SOSNA is also a functional language, physical en-
tities in the network can only be addressed associatively by
the data they hold at a given moment in time. Thus, SOSNA
programs describe transformations of streams of spatial val-
ues. In this setting, building WSAN applications comes
down to designing high-level algorithms that transform and
fuse sensor data.

2. RELATED WORK
Many different programming paradigms have been pro-

posed for wireless sensor (actuator) network application de-
velopment. Our work, however, targets macro-programming
languages with the primary focus on the stream program-
ming paradigm. Within this scope, two languages are partic-
ularly related to SOSNA: the Regiment macro-programming
system [16] and Proto [5]. Although SOSNA shares many of
their design characteristics (e.g., programs are collections of
spatial stream definitions) there are some important differ-
ences. Regiment programs are functions evaluated periodi-
cally on a distributed computational substrate (the network)
and their results must be forwarded to a central point, i.e.,
the base station. Regiment cannot realise persistent state
and because its programs asynchronously fuse data from re-
gions of arbitrary size, it is challenging to implement many
sensor data fusion algorithms, where it is required to keep
track of the time at which sensor values are sampled.

Proto, on the other hand, does not assume presence of a
base station in the system, computation in the network pro-
ceeds in a completely decentralised way and persistent state
can be maintained in a similar fashion to SOSNA. However,
because the asynchronous neighbourhood data exchange op-
erator reduce-nbrs (similar to SOSNA’s foldnbrs opera-
tor) is the only means of inter-node communication, con-
sistent data aggregation over regions larger than a 1-hop
neighbourhood is non-trivial to realise.

COSMOS [4] is a macro-programming language for build-
ing heterogeneous WSN applications. Its programs are ex-
pressed as graphs of functional data processing components.
COSMOS uses a subset of the C language to define these
components and special data structures need to be used to
reference a component’s input and output channels. Net-
work nodes may aggregate data in their few-hop neighbour-
hoods and a tree topology is imposed on the whole network.
COSMOS programs consist of definitions of functional com-
ponents, as well as, of specifications of connections between
them. In this respect, SOSNA’s design is orthogonal to that
of COSMOS because streams rather than stream processing
components are the core language primitives.

Along similar lines, ATaG is a macro-programming lan-
guage [18] in which programs are expressed graphically in
terms of data processing tasks, data items and communi-
cation channels that connect them. Tasks are defined us-
ing an imperative programming language (e.g., Java), data
items correspond to named variables whose values are ex-
changed among different tasks possibly running on different
network nodes. Hierarchical (clustered) network topology is
used and communication is asynchronous and based on the
idea of logical neighbourhoods of arbitrary size.

The Kairos [9] and its successor Pleiades [11] programming
languages offer an imperative approach to macro-program-
ming wireless sensor network applications. Both languages
have C-like syntax and the distributed iteration operator
cfor plays a central role in the programming models they
offer because all concurrent computation in the network is
specified sequentially as iterations over sets of nodes that
exchange information via shared variables.

The PIECES [12] framework proposes a state-centric ap-
proach to building WSAN applications where portions of a
physical phenomenon’s global state are maintained by mo-
bile principals that interact with each other by means of
local collaboration groups. Although this work influenced
the design of SOSNA, it differs from it fundamentally as it
proposes to implement the logic behind the central concept
of principals in the Java programming language.

Sensor query systems offer a different approach to build-
ing WSN applications where all nodes in the network are
running the same query processing engine and users post
queries expressed in a high-level language in order to ex-
tract information of interest from the network. TinyDB [15]
and the Semantic Streams framework [20] are examples of
this approach. Clearly, these systems are not suitable for
expressing WSAN applications as they were designed with
the purpose of monitoring applications in mind.

3. THE SOSNA LANGUAGE
SOSNA programs operate on streams of spatial values and

there are two kinds of spatial values in the language: fields

and clusters. For the sake of explanation, we introduce the
notion of a local value to correspond to a data item stored
at an individual network node, for example, an integer, real
number or a tuple of these. Fields, therefore, can be thought
of as collections of local values of a given type present at a
subset of network nodes in a given round of program execu-
tion. Every network node can contribute at most one local
value to a field, and fields do not have to be contiguous,
i.e., they may be composed of disjoint, in terms of topol-
ogy, network regions. We will refer to nodes contributing
local values to a field as members of that field. SOSNA

Figure 1: Fields and clusters in SOSNA

field streams have essentially the same semantics as regions
in [16].

Clusters, on the other hand, can be thought of as sparse
fields whose local values reside on network nodes that may be
separated from each other by a number of other nodes that
hold no local values. Contrary to fields, these separating
nodes form an integral part of clusters and are called cluster

members. Clusters, therefore, are collections of local values
that possess certain spatial extent. We will use the term
cluster heads to refer to those nodes that hold a cluster’s
local values. Figure 1 illustrates these ideas.

Ordinary arithmetical operations can be performed on
streams and they have to be interpreted as pointwise ap-
plication of the operation in time to individual stream val-
ues. Arithmetical operations on individual stream values,
i.e., fields and clusters, have to be interpreted as application
of the operation pointwise in space to the local values that
comprise them. Such a formulation implies that there is
no communication overhead involved in arithmetical opera-
tions on streams but the results are present on those network
nodes that hold local values of all inputs of the operation,
see Figure 1.

3.1 Clustering, Folding and Unfolding
Cluster streams are at the core of the SOSNA language.

They are defined as field stream transformations by applying
one of three clustering operators: clmax, clmin or cluster.
In their simplest form these operators take one argument - a
field stream and transform it into a cluster stream that is a
result of running a clustering and leader election algorithm
(CLE). The CLE algorithm is purely data driven, and re-
sults in a number of spanning trees of bounded height being
formed in the network. The root nodes of these trees corre-
spond to cluster heads and they are the nodes that hold the
largest (if the clmax operator is used) local value of the input
field among all cluster members. We will use the term clus-

ter extent (CE) to refer to the maximmum height of trees
resulting from the execution of the CLE algorithm. CE is
fixed for all cluster streams defined in a program and is a
compilation parameter.

There are two reasons for introducing a spanning tree-
based clustering algorithm into the language: firstly, cluster
heads can be used as local sensor data fusion centres and
secondly, clustering provides a means of node selection and
may serve as a basic building block of coordination among
actuators.

Sensor data fusion is provided by the fold operator whose

semantics are similar to those of the classical function com-
binator found in such programming languages as Scheme
and whose purpose is to reduce a list of values into a sin-
gle value by means of recursive application of a function of
two arguments. The fold operator aggregates values in a
tree (cluster member nodes) towards its root - the cluster
head which makes its operation similar to that of the aggre-
gation process presented in [15]. The operator takes three
arguments: a folding function, a field stream whose values
are to be reduced and a cluster stream that will guide the
reduction process. The following example realises a simple
object tracking application:

object = where (sensor > THRESH) clmax sensor

totalMass = fold (+) sensor object

objX = (fold (+) (posX*sensor) object) / totalMass

objY = (fold (+) (posY*sensor) object) / totalMass

The program defines a cluster stream object that is cre-
ated from a field stream of those local sensor values that
are greater than a threshold, i.e., the corresponding sensor
nodes are detecting an object. This cluster stream is used
to calculate the sum of current sensor values from all cluster
members (totalMass) and the sum of their x and y spatial
positions multiplied by their sensor values in order to esti-
mate the object’s position using the centre-of-mass formula:

objx =

P

posx ∗ sensor
P

sensor
.

Note that the program reevaluates in every round adjust-
ing its operation to changing conditions in the environment,
clusters may change topology from one round to another,
the results of program execution are available only at clus-
ter heads of the object stream.

The fold operator organises the flow of data in the net-
work from cluster members towards cluster heads. It is also
reasonable to consider the opposite direction of information
flow - from cluster heads towards all cluster members. This
data can be used by cluster members to, for example, make
informed decisions as to whether they should participate in
a folding process. The unfold operator is introduced for
that purpose. For example,

c = clmax //a cluster

n = fold (+) 1 c

avg = (fold (+) s c) / n

var = (fold (+) (s - unfold avg)^2 c) / n

The above program calculates the variance of all sensor read-
ings in the cluster according to the standard formula:

V ar(s) =
1

n

n
X

i=0

(si −
1

n

n
X

j=0

si)
2

Because the CLE algorithm builds clusters of bounded ex-
tent it is possible to calculate the result of this program in
one round of program execution. Thus, in every round, the
program will first build the cluster c, fold recent sensor read-
ings in order to calculate the average value and then it will
propagate the result back to cluster members in order for
them to include it in the final fold.

Following the analogy from the domain of functional pro-
gramming languages, unfold may take an additional argu-
ment - a function that will be used to augment propagated
values as they move hop-by-hop away from the cluster head.

Figure 2: The weighted average program.

The following program computes a weighted average of all
sensor values in the cluster:

c = clmax s

weights = unfold (map 1 c) (\x -> x/2)

w_avg = fold (+) (s * weights) c

We borrow the notation for anonymous function definition
from the functional language Haskell. The second line of
this program introduces the map operator, whose purpose is
to map values of a field stream onto a cluster stream result-
ing in a new cluster stream being defined that differs from
the previous one (c, in this case), only in values held by its
cluster heads. For the new values, in this example, the con-
stant field stream 1 is used. The situation is described in
Figure 2.

Sometimes it may be necessary to perform calculations in
the network based not on sensor readings reported at indi-
vidual sensor nodes, but rather based on concentrations of
values in a small network region. This idea might be par-
ticularly useful in situations where sensor readings are noisy
and some form of spatial smoothing is required before the
data can be further processed. For that purpose, we employ
a neighbourhood data aggregation primitive which has very
similar semantics to that defined in [5] and is represented
in the language by the foldnbrs operator. The operator
has a similar semantics to the fold operator with the dif-
ference that it does not need a cluster stream to guide data
aggregation because it operates on data exchanged by net-
work nodes within a one-hop network neighbourhood. The
following program finds local minima of spatially averaged
sensor readings:

loc_avg = (foldnbrs (+) s) / (foldnbrs (+) 1)

loc_min = clmin loc_avg

3.2 Persistent State
Maintaintenace of controller state plays a very important

role in most of modern Control Theory methods [17]. In the
wireless sensor network domain target tracking algorithms
can often be considered as distributed control systems where
the task is not only to discover an object’s position but also
to ”act” on it by moving the centre of computation to the
sensor node closest to it. Maintenance of state information
that follows the object in the network allows for accuracy
improvement of tracking algorithms [13] or for object clas-
sification [14].

SOSNA provides a simple way of realising persistent state
that was inspired by the synchronous programming language
Lustre [7] where the pre operator is used to reference a
stream value at the previous instant (or execution round). In
the WSAN setting, pre operates on field and cluster streams
and it returns a field or cluster stream that is delayed by one
round of program execution. This means, essentially, that
for a given stream x the expression pre x refers to the value

x held in the round previous to the current one. Recur-
sive stream definitions can be used, as in Lustre, in order
to realise state that persists between subsequent rounds of
program execution. For example, a stream that takes val-
ues of subsequent natural numbers on all network nodes (as
we said before, numerical constants are extended to fields of
values) can be defined as follows: n = 0=>1+pre n. The =>

operator is called the supplement operator and, in this case,
it initialises the definition of n with the value 0. The sup-
plement operator, however, has a different semantics than
its counterpart in Lustre. In SOSNA, the result of x => y

is a stream that comprises of all local values of y, as well as
of all local values of x on nodes that are not members of y.
The operator, therefore, has spatial semantics.

The pre operator together with other language operators
provides considerable flexibility with regards to the way in
which state can be handled in the program. The previous
example was a case of persistent state that was completely
distributed. In distributed control applications, however, we
may be interested in maintaining the state at actuator nodes.
When clustering and leader election are used for actuator
coordination it may become challenging to maintain state
distributed among them. We use an example of a tracking
application where abstract object state needs to follow the
physical object in the network:

current_obj = where (sensor>THRESH)

clmax sensor

obj_total_age = (map 0 current_obj) => 1 +

(fold (+) (pre obj_total_age) current_obj)

In the above program, current_obj is a cluster stream that
has its cluster heads located closest to the object. The
obj_total_age cluster stream is a sum of all values held
by its cluster heads in the previous round. If none of the
current members of obj_total_age was a cluster head in
the previous round then the value 0 is assumed, meaning
that a new object entered the network. If some values were
found then they are all summed together.

If the object is moving fast enough to leave the current_obj
cluster within the duration of one round then the state infor-
mation is lost; if several objects come close together the state
information is improperly merged together; the algorithm
cannot disambiguate between two objects moving apart from
each other after previously being close. These problems,
however, are inherent to all tracking applications and more
sophisticated schemes might need to be introduced. On the
positive side, the above program essentially realises persis-
tent state - the number of rounds for which the object was
being detected in the network - and this state information
follows the physical object. If the object disappears, compu-
tation ceases and is properly restarted whenever the object
appears again; multiple objects are properly handled as long
as they are sufficiently separated from each other.

The PIECES framework [12] proposes the use of leader-
based detection groups for object-state maintenance. Their
formulation of sequential state update exactly matches our
stream-based approach and many of the techniques proposed
can be reformulated in SOSNA.

3.3 Heterogeneity, Mobility and Actuation
SOSNA programs can be executed in heterogeneous net-

works. However, because many different network configura-
tions are possible, language primitives refer only to streams

and do not allow for provision of any deployment-specific in-
formation. Heterogeneity can be addressed in SOSNA pro-
grams by means of evaluating selected streams on a subset
of network nodes. For example, if the network consists of
two kinds of sensor nodes of which one senses ambient light
and the other temperature, then in the following program

max_light = clmax light

sum_temp_on_light = fold (+) temp max_light

sum_light_only = within light

fold (+) light (clmax light)

max_light defines a cluster stream comprising possibly of
both types of nodes but, when temperature data is aggre-
gated on it, only the temperature nodes contribute to the
process while the light nodes only assist by forwarding data
towards the cluster head. On the other hand, if the density
of deployed light nodes was expected to be high enough, a
cluster stream comprising only light nodes can be defined.
The within operator has the same semantics as the where

operator with the difference that it constrains the scope of
evaluation of its second argument to those nodes at which
its first argument is present.

There are two kinds of streams for which it can be de-
cided at compilation time whether they are to be evaluated
at a node of a particular type: sensor field streams and con-
stant field streams. Sensor field streams are streams of fields
whose values originate from the nodes’ hardware compo-
nents, i.e., sensors, so it is natural that these streams should
be evaluated only at nodes providing appropriate hardware.
Constants, i.e., fields of constant values but not necessarily
equal at every node in the network are introduced as an ad-
ditional way of addressing heterogeneity. SOSNA programs
are, therefore, independent of the underlying deployment
configuration while being able to address heterogeneity by
means of relations among streams.

Constant boolean field streams can be used to distinguish
actuator nodes. For that purpose, we introduce the cluster
operator which defines a cluster stream based on the val-
ues of a boolean field stream. Contrary to the clmax and
clmin operators, cluster cannot elect leaders because there
is no way of distinguishing among them. Instead, it sim-
ply realises a basic spanning-tree based clustering algorithm
where network nodes that are not part of the boolean field
stream or for which its value is false become cluster mem-
bers picking the closest cluster head in the vicinity as the
root of their tree. The following program when run on a net-
work consisting of sensor and actuator nodes results in all
sensor readings in some actuator’s vicinity (defined by the
extent of its cluster) being summed and forwarded towards
it:

const actuator = true

sum = fold (+) sensor (cluster actuator)

The semantics of this program rely on its deployment con-
figuration. If the actuator stream was made present on all
network nodes, no trees would be formed (as all nodes would
be cluster heads) and the sum stream would be equivalent to
the sensor stream.

Mobility can be incorporated in the model at no additional
cost. If the actuator nodes were mobile, program semantics
would not change because the cluster topology would be
reevaluated in every round. The only requirement is that the
rate of movement does not affect the topology maintained
within a single round of program execution.

SOSNA introduces a special operator actuate for syn-
chronisation of actuation in the network. The operator takes,
as its arguments, a function f and a stream x. As a result
of its application, the function f is evaluated exactly at the
end of the round with x being passed as its argument so that
actuators can be orchestrated to act at the same time. This
special purpose operator is introduced because the language
does not permit to arbitrarily change the order in which
program expressions are evaluated.

4. SEMANTICS AND EXECUTION
The execution of SOSNA programs proceeds in rounds.

Each round is split into a number of steps, which is program
specific. In each execution step, one-hop network neigh-
bours exchange a single protocol packet. The step duration
is, therefore, a compilation parameter and has to be long
enough so that all one-hop neighbours in the largest neigh-
bourhood in the network have a chance to send their proto-
col packet.

Every network operator in SOSNA requires a fixed num-
ber of steps to be evaluated. The simplest one - foldnbrs is
evaluated in only one execution step. The number of steps
required to evaluate all clustering operators is a compilation
parameter and influences the way the application executes.
As was mentioned in Section 3, the CLE algorithm gener-
ates clusters of bounded extent. It is the CE constant that
defines the number of execution steps in which the CLE al-
gorithm is executed. Given that in every step every network
node sends out at most one protocol packet, all spanning
trees constructed by the CLE algorithm are of height not
greater than CE. The fold operator aggregates data on al-
ready constructed trees, thus the number of steps required
for its evaluation is exactly CE. The same rule holds for
the unfold operator as it is evaluated on an already con-
structed cluster. Other language constructs do not have
any communication-related semantics, thus their execution
is local and is considered instantaneous.

This static program semantics permits the compiler to
infer the maximum number of steps of which each round
should consist. Given that in every step each node sends
out at most one packet, as well as, the fact that step dura-
tion is fixed throughout the network, each round of program
execution takes a fixed amount of time and this time can be
calculated off-line.

The values of the CE constant in practice will depend on
a particular application. For example, in [6] the authors
propose to realise target tracking using collaboration groups
spanning two hops from the group leader. Other applica-
tions might require larger CE values, especially when static
topologies are used, e.g., sensor nodes placed in some area
around an immobile actuator. A question, however, arises
as to whether a single cluster extent value would be good
for all clusters that an application might define. We believe
that it would because the within and where operators can
be used to constrain the range of communication in the net-
work when it has to be kept small. This characteristic lies
at the core of SOSNA’s programming model. It results in
real-time bounds on program execution in the network but,
on the other hand, it potentially constrains the applicability
of the language.

Thanks to the static language semantics, the SOSNA com-
piler is able to infer what network operators can be evaluated
in parallel and to fit all data items that need to be communi-

Step number 0 1 2 3

Packet contents p y, 1 m0, u m1, u
Step number 4 5 6 7

Packet contents m2, u r0 r1 r2

Table 1: Example protocol schedule.

cated in a single protocol packet (a similar approach is used
by Proto [5]). Those operators that have data dependencies
have to be executed sequentially what affects the number
of steps that comprise one execution round. We use the
following program as an example to clarify these concepts:

y = foldnbrs max p

x = (foldnbrs (+) y) / (foldnbrs (+) 1)

m = clmax x

u = unfold (map s m)

r = fold (*) (x - u) m

The protocol schedule for one round of execution of the
above program is presented in Table 1 where we use vari-
ables mi and ri to denote intermediate results of the CLE
algorithm and the evaluation of the fold operator respec-
tively. Note that value unfolding can be realised in parallel
with cluster formation since the unfolded values originate
from cluster heads.

There are exactly eight steps required for one round of this
program to be completely evaluated. Not all nodes, however,
have to send protocol packets in every round. Nodes join the
protocol in a certain step if they have data items to be sent.
It may also happen in a step of program execution that a
node can contribute only a subset of all data items required
in this step. As a remedy, each protocol packet carries a data
item presence indicator (a bit array in the packet header)
that identifies data items contained in the packet.

4.1 Time Synchronisation
The correct execution of SOSNA programs relies on the

provision of a time synchronisation service in the network
and the effects of asynchronous inter-node communication
on program consistency need further investigation. Network
time synchronisation, however, was a crucial component in
some real-world deployments, e.g., [10]. Also, when time is
synchronised across the network precise sensor data fusion
can be realised in SOSNA if we note that, regardles of the
number of steps in one round of program execution, the
values of all sensor data streams referenced in the program
are sampled at the same time, i.e., at the beginning of the
round.

4.2 The CLE Algorithm
The clustering and leader election algorithm that SOSNA

uses is similar in principle to the DAM protocol presented
in [8]: the input field stream passed as an argument to the
clmax and clmin operators is used as a set of contention
values for future cluster heads. Each node that belongs to
this field sends out its local field value and listens for the
values sent by its neighbours. When a node receives a con-
tention value greater than the one it is holding in the current
protocol step (without loosing generality we confine the ex-
planation to the clmax operator) it takes it as the current
maximmum and marks the sender as its parent in the tree.
The received value is sent again in the next step of algorithm

execution in order to be propagated further on. If no con-
tention value greater than the initial one was received the
node considers itself to be a cluster head.

Nodes participating in the CLE algorithm, apart form the
identification of their parent node in the tree, also maintain
the distance in hops to the root of that tree. This infor-
mation is used when the fold operator is evaluated so that
each tree member knows in which protocol step it has to
send data to its parent.

5. WSAN COORDINATION
In this section, we investigate SOSNA’s ability to imple-

ment basic WSAN coordination models, as described by
Akyildiz et al. [2]. This survey proposes two general ar-
chitectures for WSANs: semi-automated architecture with
a central controller that gathers all sensor readings and in-
structs all actuators; and automated architecture in which
there is no central authority and control is distributed among
actuators. According to Akyildiz, the automated architec-
ture is preferable due to its better scalability, low commu-
nication latency, as well as due to potentially lower commu-
nicational overhead imposed on network nodes because of
lower network congestion. SOSNA offers a localised model
of computation that is based on clusters of bounded extent
and one-hop neighbourhood data exchange. Long-range,
multi-hop communication cannot, therefore, be realised in
the language without impractically increasing the CE con-
stant.

As far as sensor-actuator coordination is concerned, the
challenges listed in the paper can be addressed in the fol-
lowing way: real-time communication is provided in SOSNA
programs thanks to the static semantics of the language;
SOSNA enables radio duty-cycling for energy conservation
(see Section 6); each sensor event can be reported to at
most one actuator (cluster head), hence ordering and one-
time respone issues do not arise; event tracking by sensors is
possible as described in Section 3; event delivery to partic-
ular regions in the network can be realised as the following
example illustrates:

dest_pos = ...

destination = clmin (pos - unfold dest_pos)

data_at_dest = fold (=) event_data destination

The dest_pos cluster describes the location to which the
current value of event_data should be sent, the cluster heads
of the destination cluster are the nodes closest to the de-
sired point and event data can be sent there by means of
stream value folding with the identity function. It is not
clear, however, how computation of the minimum sensor and
actuator coverage sets can be expressed in SOSNA.

Similarly to the challenges in sensor-actuator coordina-
tion, the issues in actuator-actuator coordination can be ad-
dressed in SOSNA as follows: actuators can send informa-
tion to other actuators using the unfold operator; actuation
synchronisation can be realised using the actuate opera-
tor; sensor nodes relay actuator data by default; forward-
ing event data towards actuators located at certain places
in space can be realised in the same way as in the exam-
ple above; actuators have limitted means of recognition of
the state of other actuators, in fact, only summaries result-
ing from the application of the fold operator can be used.
Again, the problem of optimum actuator assignment seems
to be difficult to address in SOSNA.

The authors state that actuators are likely to be able
to communicate over long-range channels. The possibil-
ity of communication media heterogeneity in SOSNA was
not sufficiently studied so far, however, the idea of multi-
dimensional programming presented in [3] could potentially
be applied in SOSNA by extending all network-related lan-
guage operators with a prefix that would describe the di-

mension in which the operator has to be evaluated. The di-
mension information could be used by the compiler to chose
the appropriate network controller.

6. ENERGY EFFICIENCY
There is a potential for substantial energy conservation in

SOSNA applications. We emphasise the ability of the nodes
to switch their radios off in addition to limiting the total
number of messages sent, as it has been reported that radio
transceivers in the listening mode consume almost as much
energy as in the sending mode [1]. Static program semantics
allow network nodes to make informed decisions on whether
some neighbours might have some relevant information to
send in the current protocol step or not and control the state
of their radios accordingly. For example, because cluster
members know their distance to the cluster head, as well as
the step in which data aggregation commences a radio duty-
cycling mechanism, similar to that of [15], can be employed
when network time synchronisation is provided.

The scope of all computation and communication in the
network can be also reduced when the where and within

operators are used. This means, in particular, that not only
network nodes may decide not to send a message in a given
execution step but also they can switch their radios com-
pletely off when they find them selves, for example, not be-
ing members of any cluster.

Constant field and cluster streams can be exploited by the
compiler in order to reduce the frequency of cluster structure
refresh, as well as techniques for caching information about
the values of constant streams at one-hop neighbours may
be developed for even more informed radio duty cycling.

7. CONCLUSIONS AND FUTURE WORK
This paper proposes a stream-based macro-programming

language designed for wireless sensor and actuator network
applications. The language matches key properties of WSAN
systems, as well as, it promisses implementation of energy-
efficient applications. Because of space limitations, this pa-
per presents only an overview of the key characteristics of
the language. Future work will focus on finishing the com-
piler implementation and real-world evaluation of SOSNA
programs.

8. REFERENCES
[1] Mica2 mote datasheet. Crossbow Technology Inc.

[2] I. F. Akyildiz and I. H. Kasimoglu. Wireless sensor
and actor networks: research challenges. Ad Hoc

Networks, 2(4):351–367, 2004.

[3] E. A. Ashcroft, A. A. Faustini, R. Jagannathan, and
W. W. Wadge. Multidimensional programming.
Oxford University Press, Oxford, UK, 1995.

[4] A. Awan, S. Jagannathan, and A. Grama.
Macroprogramming heterogeneous sensor networks
using cosmos. SIGOPS Oper. Syst. Rev.,
41(3):159–172, 2007.

[5] J. Beal and J. Bachrach. Infrastructure for engineered
emergence on sensor/actuator networks. IEEE

Intelligent Systems, 21(2):10–19, 2006.

[6] B. Blum, P. Nagaraddi, A. Wood, T. Abdelzaher,
S. Son, and J. Stankovic. An entity maintenance and
connection service for sensor networks. In MobiSys ’03,
pages 201–214, New York, NY, USA, 2003. ACM.

[7] P. Caspi, C. Mazuet, R. Salem, and D. Weber. Formal
design of distributed control systems with lustre. In
SAFECOMP ’99, pages 396–409, London, UK, 1999.
Springer-Verlag.

[8] Q. Fang, F. Zhao, and L. Guibas. Lightweight sensing
and communication protocols for target enumeration
and aggregation. In MobiHoc ’03, pages 165–176, New
York, NY, USA, 2003. ACM.

[9] R. Gummadi, N. Kothari, R. Govindan, and
T. Millstein. Kairos: a macro-programming system for
wireless sensor networks. In SOSP ’05, pages 1–2, New
York, NY, USA, 2005. ACM.

[10] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu,
R. Stoleru, G. Zhou, Q. Cao, P. Vicaire, J. A.
Stankovic, T. F. Abdelzaher, J. Hui, and B. Krogh.
Vigilnet: An integrated sensor network system for
energy-efficient surveillance. ACM Trans. Sen. Netw.,
2(1):1–38, 2006.

[11] N. Kothari, R. Gummadi, T. Millstein, and
R. Govindan. Reliable and efficient programming
abstractions for wireless sensor networks. SIGPLAN

Not., 42(6):200–210, 2007.

[12] J. Liu, M. Chu, J. Liu, J. Reich, and F. Zhao.
State-centric programming for sensor-actuator
network systems. IEEE Pervasive Computing,
02(4):50–62, 2003.

[13] J. Liu, J. Reich, and F. Zhao. Collaborative
in-network processing for target tracking. EURASIP

J. Appl. Signal Process., 2003(1):378–391, 2003.

[14] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic.
Envirosuite: An environmentally immersive
programming framework for sensor networks. Trans.

on Embedded Computing Sys., 5(3):543–576, 2006.

[15] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. Tinydb: an acquisitional query processing
system for sensor networks. ACM Trans. Database

Syst., 30(1):122–173, 2005.

[16] R. Newton, G. Morrisett, and M. Welsh. The regiment
macroprogramming system. In IPSN ’07, pages
489–498, New York, NY, USA, 2007. ACM.

[17] K. Ogata. Modern Control Engineering. Prentice Hall
PTR, Upper Saddle River, NJ, USA, 2001.

[18] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna,
and G. P. Picco. Expressing sensor network interaction
patterns using data-driven macroprogramming. In
PERCOMW ’07, pages 255–260, Washington, DC,
USA, 2007. IEEE Computer Society.

[19] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and
S. Sastry. Distributed control applications within
sensor networks. Proceedings of the IEEE, 91(8), 2003.

[20] K. Whitehouse, F. Zhao, and J. Liu. Semantic
streams: A framework for composable semantic
interpretation of sensor data. In EWSN 2006.

