
Ontology based Algorithm Modeling: obtaining adaptation
for SOA environment

Simone Grassi
Trinity College Dublin

CS Department
DSG Group, D2, Dublin

+353-85-1571903
grassis@cs.tcd.ie

Stephen Barrett
Trinity College Dublin

CS Department
DSG Group, D2, Dublin

+353-1-896-2730
ebarrett@cs.tcd.ie

Francesco Sordillo
Università di Bologna

via Sacchi n.2
47023, Cesena (FC)

sordillo@csr.unito.it

ABSTRACT
Our work addresses the issue of software adaptation in Service
Oriented Architecture (SOA) environments. We aim to support a
wide range of adaptations using a new formulation of Web
Service (WS) model based on client driven service adaptation via
ontological description of algorithms. We describe how this
approach can be applied to a SOA scenario involving
heterogeneous systems, and report on experimental work that
demonstrates how services can be transformed in practice, using a
framework approach.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design Tools and Techniques -
Software libraries, Computer-aided software engineering.

General Terms
Algorithms, Design, Languages, Theory.

Keywords
Adaptable Software, Ontology, Software Synthesis, Semantic Web
Services, Service Oriented Architectures.

1.INTRODUCTION
Software maintenance and adaptation is a challenging field. The
presence of many interconnected interactions make modern sys-
tems difficult to maintain, despite continuous pressure to adapt
[8][9]. Web solutions are now integrated and interacting and the
resulting computations cross organization boundaries. Coordina-
tion technologies [3], the Semantic Web and WS composition
techniques [4][5][6][7] allows service providers to interact in mas-
sive distributed systems. Those systems provide orchestrated
Business Processes (BPs) for a wide range of services, from travel
information, to e-government, document management and so
forth. In this context of e-business the traditional development life
cycle, involving redesign and redevelopment by software engi-
neers, is too expensive and too slow, a more agile process is need-

ed. The problems are amplified in the heterogeneous context of
Internet based systems like SOA.

In this paper we argue for an alternative approach to WS construc-
tion that supports the dynamic adaptation of services on a specific
client request basis. We propose an approach focused on the onto-
logical expression of a services algorithms in a form open to client
based modification.

We use an ontological approach to enable Domain Specific Model
of WS algorithms, that enable the use of an open-adaptive ap-
proach [10], in contrast to close-adaptive approaches [10] which
include a limited and predetermined range of possible adaptations.
The use of ontologies enable the modeling of algorithms using a
standard like OWL, enabling also the use of common tools for
creating, managing and reasoning on an ontology.

In section 2 we introduce the structure of our solutions. In section
3 a case study is presented, which demonstrates an adaptable Web
Service [1]. In section 4 we discuss related work both of the case
study and the approach in general. Section 5 contains a brief about
future works and section 6 contains the conclusions.

2.AN ONTOLOGICAL APPROACH TO WS
CONSTRUCTION
The fundamental feature of our modeling approach is to provide a
mechanism for client and servers to reason over algorithms so that
change may be agreed. The Ontology Algorithm (OA) is struc-
tured as set of OWL ontological individuals, on top of an ontology
made by two parts. The Logic Ontology (LO), describes the com-
posing elements needed to construct the abstract algorithm, and
the data Domain Ontology (DO), that describes the domain of in-
terest. Together the LO and DO provide the building blocks of the
described algorithms. We visually describe the OA like a tree, that
we call algorithm tree.

This structure allows to model an algorithm as a set of individuals
built on top of a common ontology, that describe a system
independent specification. Then, extending the platform specific
ontology, we move the specification from platform independent to
platform specific. The general architecture of the approach is
described in Figure 1, that illustrates the delivery of a request for
adaptation, originated by a government, and received by an
administrative region. Both the systems are assumed to host a BPs
and WSs. The OA created by the government is based on a
common shared ontology. The region use this as the basis of a
concretization with system dependent extension. This extension
allows the Local Adaptation Engine (LAE) to generate system
specific code, that will constitute the new version of a WS, as

Copyright ACM, (2007). This is the author's version of the work. It is
posted here by permission of ACM for your personal use. Not for
redistribution. The definitive version was published in MW4SOC '07:
Proceedings of the 2nd wordshop on Middleware for service oriented
computing http://doi.acm.org/10.1145/1388336.1388339

MW4SOC’07, November 26, 2007, Newport Beach, CA, USA

http://doi.acm.org/10.1145/1388336.1388339

requested by the government. In section 3, we cover the case
study, and we will illustrate how to use an aspect oriented style
adaptation request and how to merge different versions of an
algorithm reasoning on the OAs.

3.CASE STUDY
We consider a tax environment where unpredictable changes are
needed, due to changes in the legislation of the central govern-
ment and in the specific decision made autonomously, region by
region. In such a context, a capability to migrate service or behav-
ior in this scenario could provide a major advantage.

In Figure 2 we consider a service providing tax calculations for
different jurisdictions, that is required to adapt its core behavior
not only to the context of a particular client, but also to longer pe-
riod changes in government legislation in any jurisdiction. Re-
gions, in turn, provide a set of services for public access. We sepa-
rate the government level from a region level to let regions intro-
duce adjustments to the central government rules. Accountancy
software solutions and public web portal, can use services pub-
lished by regions to require tax calculations. We now consider the
dynamic adaptation of some provided services, and we propose a
way to solve the issue using adaptable WS [1].

Maintaining a system that is capable of accurately functioning in a
large set of taxation contexts is a challenging task, even though
we might reasonably assume that most of the core calculations
and workflow will be similar in each jurisdiction. The contempo-
rary approach to this problem is to develop a framework or com-
ponent oriented solution which can be specialized to a particular
jurisdiction. Thus, by specializing or otherwise injecting bespoke
behavior, a generic solution is tuned to the problem at hand. How-
ever, in the context of SOA, where pre-configured instantiations
deployed as WSs are the fundamental unit of composition, it be-
comes difficult to tune such components to the needs of clients.

Our approach involves the explicit model of WS algorithm in a
form open to adjustment post deployment. We consider how the
algorithm for the calculation of yearly tax liability of an individual
can be described and adjusted so that its WS implementation can
be changed in response to client need. A possible basic calculation
scheme is one with layers. A no-tax zone up to 12k, 20% up to
24k, 30% up to 40k and 40% over 40k. Figure 2, describes a Cen-
tral Service Provider (CSP), the government, who set general tax
policy. A second level of Service Providers (SP), the regions, who
can amend tax policy and a set of applications (ex: accountancy
solutions and web portals for tax calculation services) who pro-
vide user level services that combine features provided by govern-
ment and regions. Algorithm 1 (Figures 3 and 4) is used to calcu-
late taxes to pay for a specific person. We use tree structure in the
reminder of this paper to emphasize change as structural adjust-
ment.

We consider an adaptation originated by a single region. In Algo-
rithm 2, Figure 5, taxes are reduced by py for young people, aged
under y, for the first nla layers of taxation. This originates at a re-
gion so that is has some freedom in autonomously adapting taxa-
tion schemes. The peer differing elements in Algorithm 2 have
gray background color, and more parameters are present (y is the
maximum age to obtain the reduction; yp is the age of the person;
py is the percentage of reduction obtained, 0.9 stand for 10%; nla
are the number of taxation layers affected by the reduction, start-
ing from the lower one and up). The subtree in gray has been
added to obtain a multiplication by a factor that introduce the dis-
counted rate for young people.

The new Algorithm 2 is an update of Algorithm 1 and the LAE of
the region that originated the modification can generate an imple-
mentation as before. It is a local adaptation specific to one region,
and other regions and the government are aware of this change. At
any stage the government itself may ask for another adaptation
due to a new legislation modification.

We consider now an extension of this scenario where the
government sends a further change regarding the taxation
calculation. Further reduction is applied by the government, to all

people with at least one child. In Figure 6, Algorithm 3 is
represented. The changes relative to Algorithm 1 are in gray
background. There are also new parameters (ch the number of
child in charge; pc the percentage of tax reduction, 0.9 is 10%;
nlc are the number of taxation layers affected by the reduction).
The region that performed its own modification, now has the
problem of merging its own changes with this new version of the
original algorithm.

Having the original algorithm (Algorithm 1) and the two modified
versions (Algorithm 2 and 3) we propose a solution based on
merging. We automatically generate a new algorithm including
both the modifications. To achieve this, we use rules, based on the
semantic knowledge of the elements that compose the algorithm
itself. We limit this to an easy example, to show the potential of
the approach, to aid the human interaction with automatic or semi-
automatic reasoning on adapting algorithms. We utilize a few
definitions, described below, that can be applied to single
elements of the algorithm, subtree or entire trees. Those rules are
applied to one of those elements in relation to another element,
subtree or full tree.

Definition 1: An element, or a set of elements forming a subtree
or a full algorithm is strongly independent from another element,
set of elements or full algorithm if,

rule 1: It does not use values if not previously initialized

rule 2: access data from local data layer only if not modified by
other elements positioned before

rule 3: access data only using an element that is a parameter and it
has not been modified from other elements positioned before

Definition 2: An element, or a set of elements forming a subtree
or a full algorithm is weakly independent from another element,
set of elements or full algorithm if rule 1 applies, but rule 2 or 3 or
both does not apply.

Definition 3: An element, or a set of elements forming a subtree
or a full algorithm is dependent from another element, set of ele-
ments or full algorithm if rule 1 does not apply.

Having a set of differences between Algorithm 1, 2 and 3, we can
determinate what modified subtrees are strongly independent,
weakly independent, or dependent. This information allows us to
decide if it is possible to merge. In our case we propose the merge
as in Figure 7, this is possible because the two subtree in gray,
from Algorithm 2 and 3, are strongly independent between each
other. We don’t need a specific order because the ‘*’ element, is
commutative. The information about being commutative is
included in the LO OWL. The decision about the merge can be
done automatically, a visit of the algorithms find out the
differences, and if one by one they can be merged we have one or
more possible solutions. Semi-automatic solutions can be used
adding a human interaction, if needed, at any stage of the
adaptation. That can be used to select between different proposed
adaptation or to adjust one of the proposed adaptations.

We end up with the description of an adaptation requests and how
it can be specified using an aspect oriented style approach, and
can be then accepted and deployed by a client using an additional
OA specification on the original OA. The scenario is again about a
government, sending an adaptation, to the regions. The new adap-
tation is specified as a description of an aspect to be weaved into
the original algorithm. In Figure 8 the usual tree representation of
the ontology is presented, the request specifies a modification for

all the read accesses for the element a to become accesses to the
element a*pc if the condition a<S[nlc] is true.

In Figure 8 the foreach element specifies that its first element a,
should be modified when the conditions specified in the second
element subtree are true. In this case when the elements < and
read-access are both true. We say both, because of the father node
&, that join them in logic and. The third element specify the ac-
tion to adopt, in this case we have to substitute element a with the
subtree a*pc. For brevity we don’t show reasons of all the ontolo-
gy elements, but the semantic informations are described with
OWL.

The benefit we aim to obtain is the decoupling of algorithms from
the implementation and deployment details. Moreover to change
the level of abstraction of an algorithm specification importing
and extending ontologies instead of a more traditional rewriting of
algorithm specification. That enables the use of abstract oriented
style specification but in the same way the use of a domain specif-
ic language approach. Finally we enable the use of standard tech-
nologies as ontology to reason on algorithms. That can be used to
evaluate the adoption of an algorithm, to merge different versions
of algorithm. Finally we consider an interesting path for further
changes to weave requests of adaptation in an existing algorithm
at an abstract level.

4.IMPLEMENTATION
In our tests we implemented a LAE written in Java, that accept
OWL and generates php5 code for the Symfony MVC [22] frame-
work, see Figure 9. To move an OA to working code, i) the LO is
translated into valid php5 code, ii) the DO uses the API of the cre-
ole library to generate the proper code to access the data layer, iii)
the created algorithm is encapsulated as a method in a class and
properly positioned as a new file in the framework tree. Having
the publication of a WS as an objective, we then provided the cre-
ation of the proper configuration for the Apache server, in order to
publish the WS, using the Pear SOAP libraries. In such a way we
generate automatically a WS to be published using php SOAP li-
braries and the Apache web server.

The code of the LAE has two main hierarchy of classes. The first
does the high level creation of the generated code. It cares about
collecting the code of the basic elements (generated by the second

hierarchy of classes), then about positioning the code of the algo-
rithm in the proper method and class, and finally to position the
file into the proper path. The second hierarchy is a mapping of the
building blocks described by the ontology, and it store the capabil-
ity to generate the proper code of the covered element. Some of
the elements may have a complex behavior, like the elements used
to describe an adaptation in an aspect oriented style. In that case,
the corresponding class or structure of classes, describes the code
that is able to weave the adaptation to the original algorithm. To
start the generation of an algorithm or an adaptation, the LAE is
able to browse the OA and find the root of the algorithm tree, fol-
lowing then the structure of the OA, visiting the algorithm tree,
thanks to the semantic information associated with the individuals
that constitute the algorithm tree.

The powerful aspect of this approach is the capability to have a
very flexible algorithm specification, because the ontology can be
extended in order to store more semantic information, more ab-
stract operations, or to specify an adaptation as a piece of an algo-
rithmic tree instead of going to modify an existing algorithm. This
flexibility, that can also be used to create an ad-hoc domain spe-
cific language, or a subset of it, has a complexity involved, and it
is managed by the LAE. The core architecture of the LAE is
generic and can be completely recycled to build the LAE for an-
other system (like Ruby on Rails or the Java Framework, instead
of php5-Symfony).

5.RELATED WORKS
In the field of adaptive software, there are two main approaches to
obtain adaptations. Closed-adaptive systems, are self-contained
and not able to support the addition of new behaviors, on the other
side there are open-adaptive systems, where new application be-
haviors and adaptation plans can be introduced [10]. What is still
under study is the development of a comprehensive adaptation
methodology suitable for a wide range of adaptation scenario.
Adaptations can include the replacement, cancellation or addition
of components and connections, the change of configuration pa-
rameters, and all changes must include a test and validation mech-
anism, avoiding inconsistent and unsafe adaptations. In the field
of Semantic Web, some promising work, approaches the problem
of dynamic composition using a detailed semantic representation
and matchmaking algorithms to generate a BP specification from

advertised web services. Adaptations are left to a matchmaking al-
gorithm that relies on the existence of enough basic components
to compose a BP [4][5][6]. In [7][6], compositionality is decided
automatically, identifying attributes and separating them into syn-
tax attributes, such as input and output parameters, static semantic
and dynamic semantic attributes, covering respectively the do-
main of interest and the business logic. Some parameters are then
used to assign a compositionality level, useful in deciding what is
composable and what is not. In [11] a base theory is provided to
support compositionality for Semantic WS, adding temporal prop-
erties like assumption and commitment that are used to validate
not only initial and final state but also intermediate states. In [12]
it is argued that more dynamic and behavioral aspect needs to be
included in the exported semantic of the WS. An outstanding is-
sue is the hosting of glue code, specially when it cannot be hosted
by who is doing the composition (mainly for privacy or perfor-
mance reasons). A modeling and transformation approach to ex-
press the distribution pattern of WS composition is presented by
[13]. We see it as a well infrastructure to be used for the dynamic
deployment of adaptable WS. An Aspect Oriented approach is
used to align internal service specification to a standardized exter-
nal specification in [2], that is a valuable approach to cover the is-
sue of a service adaptation in some circumstances. A range of
adaptations are obtained via protocol composition [8], treating
protocols as building blocks that can be composed and adapted. In
[14] and [15] the template mechanism of the CARE toolset is en-
hanced providing adaptation tool at different levels.

A number of component composition techniques uses different pa-
rameters to define a component and them properties. The same
definition of composition can be discussed and a set of research is
reported in [16], that are mainly done for a specific purpose. One
of the definition is “the process of constructing applications by in-
terconnecting software components through their plugs” [17]. But
in any of those case is very important the role of the glue code,
needed to adapt the interfaces and the behavior of components,
and to compose or connect components to obtain a combined be-
havior [19]. In [18] a parameter adaptation method is used, to map
predefined configuration of subcomponents. In such a way some
adaptations are obtained, but the approach looks not adequate for
a wide and specially unpredictable set of adaptation, specially in-
volving unpredictable behaviors.

Formal methods needs to be mentioned as well, a lot of effort was
done by different researches, starting from many years ago. The
basic idea, that we subscribe, is to obtain a formal specification of
components but also objects, parameters and theories, to be able
to formally decide if a composition is allowed or not
[18][19][20][21]. We conclude mentioning Evolutionary Program-
ming, where a separation from architectural part and algorithmic
part is the base to avoid the system to become unstable due to an
attempt of adaptation [10]. This issue is very important in our
work as well, where the adaptation must be executed automatical-
ly, deciding the proper policy both in case of successful or unsuc-
cessful adaptation.system (like Ruby on Rails or the Java Frame-
work, instead of php5-Symfony).

6.CONCLUSIONS
Our motivation is to isolate that which is most volatile (in terms of
requirements for different clients) in WS behavior in a form capa-
ble of client adjustment. We illustrated a novel approach aiming to
work as a modeling technique for algorithms, with the use of on-
tology as abstraction tool to separate the different aspects involved

in making changes in heterogeneous systems, thus providing a
base to obtain automatic or semi-automatic adaptation of software
algorithms. In this way we can model pieces of software, contain-
ing specific volatile algorithms, without trying to model the whole
architectures of systems, but obtaining a wide range of adaptabili-
ty in the modeled sections. The base is the use of ontological de-
scription in formal model style. We contend that the SOA
paradigm can benefit from the WS formulation obtained with the
described specification, in order to specify and distribute dynamic
adaptation, in an heterogeneous environment.

7.REFERENCES
[1] Grassi, S.; Barrett, S., "Dynamic Architecture Adaptation in

WS Environment," Autonomic and Autonomous Systems,
2006. ICAS '06. 2006 International Conference on, vol.,
no.pp. 26- 26, 19-21 July 2006.

[2] w. Kongdenfha, R. Saint-Paul, B. Benatallah, F. Casati, “An
aspect-oriented framework for service adaptation”, Service
oriented computing, ICSOC 2006, Eds. A. Dan, W.
Lamersdorf Springer, Germany, 2006 pp 15-26.

[3] Malone, T. W. and Crowston, K. 1994. The interdisciplinary
study of coordination. ACM Comput. Surv. 26, 1 (Mar.
1994), 87-119.

[4] B. Medjahed, A. Bouguettaya, A.K. Elmagarmid,
“Composing Web services on the Semantic Web”, The
VLDB Journal, 2003.

[5] L. Li, I. Horrocks, “A software framework for match-making
based on semantic web technology”, WWW ‘03:
Proceedings of the 12th international conference on World
Wide Web, 2003.

[6] B. Medjahed, “Semantic Web Enabled Composition of Web
Services”, Doctor of Philosophy in Computer Science and
Applications, Falls Church, Virginia, USA, 2004.

[7] Medjahed, B.; Bouguettaya, A. “A multilevel composability
model for semantic Web services”; Knowledge and Data
Engineering, IEEE Transactions on Volume 17, Issue 7,
July 2005 Page(s):954 - 968.

[8] Nirmit Desai, Amit K. Chopra, Munindar P. Singh, “Business
Process Adaptations via Protocols,” scc, pp. 103-110, IEEE
International Conference on Services Computing (SCC’06),
2006.

[9] Jae-yoon Jung, Wonchang Hur, Suk-Ho Kang, Hoontae Kim,
"Business Process Choreography for B2B Collaboration,"
IEEE Internet Computing, vol. 08, no. 1, pp. 37-45,
Jan/Feb, 2004.

[10] P. Oreizy, M. Gorlick, R. N. Taylor, D. Heimbigner, G.
Johnson, N. Medvidovic, A. Quilici, D. Rosenblum, A. Wolf.
“An Architecture-Based Approach to Self-Adaptive
Software”, IEEE Intelligent Systems, vol. 14, no. 3, pages
54-62. May/June 1999.

[11] Solanki, M., Cau, A., and Zedan, H. 2004. Augmenting
semantic web service descriptions with compositional
specification. In Proceedings of the 13th international
Conference on World Wide Web (New York, NY, USA, May
17 - 20, 2004). WWW '04. ACM Press, New York, NY, 544-
552.

[12] D. Berardi, G. De Giacomo, D. Calvanese, "Automatic
Composition of Process-based Web Services: a Challenge",
Web Service Semantics: Towards Dynamic Business
Integration, workshop at 14th International World Wide Web
Conference (WWW 2005).

[13] Barrett, R., Patcas, L. M., Pahl, C., and Murphy, J. 2006.
Model driven distribution pattern design for dynamic web
service compositions. In Proceedings of the 6th international
Conference on Web Engineering (Palo Alto, California,
USA, July 11 - 14, 2006). ICWE ‘06. ACM Press, New York,
NY, 129-136.

[14] Hemer, D. & Lindsay, P. (2002), Supporting component-
based reuse in CARE, in M. Oudshoorn, ed., `Proceedings of
the Twenty-Fifth Australasian Computer Science
Conference', Vol. 4 of Conferences in Research and Practice
in Information Technology, Australian Computer Society
Inc., pp. 95--104.

[15] D. Hemer, “A formal approach to component adaptation and
composition”, ACSC2005, Newcastle, Australia, 2005.

[16] P.K. McKinley, et al., "A Taxonomy of Compositional
Adaptation," tech. report MSU-CSE-04-17, Dept. Computer
Science and Engineering, Michigan State Univ., 2004.

[17] O. Nierstrasz and L. Dami. Component-Oriented Software
Technology. In Oscar Nierstrasz and Dennis Tsichritzis,
editors, Object-Oriented Software Composition, pages 3–28.
Prentice Hall, 1995.

[18] Steffen Göbel, “Encapsulation of structural adaptation by
composite components”, Proceedings of the 1st ACM
SIGSOFT workshop on Self-managed systems, 2004.

[19] Lumpe, M., Achermann, F., and Nierstrasz, O. 2000. A
formal language for composition. In Foundations of
Component-Based Systems, G. T. Leavens and M.
Sitaraman, Eds. Cambridge University Press, New York, NY,
69-90.

[20] Joseph R. Kiniry, “Semantic Component Composition”,
Computing Science Department, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, 2002.

[21] M. Lumpe, F. Achermann and O. Nierstrasz, "A Formal
Language for Composition, " Foundations of Component
Based Systems, Gary Leavens and Murali Sitaraman (Eds.),
pp. 69-90, Cambridge University Press, 2000.

[22] Symfony project, www.symfony-project.com

	1.INTRODUCTION
	2.AN ONTOLOGICAL APPROACH TO WS CONSTRUCTION
	3.CASE STUDY
	4.IMPLEMENTATION
	5.RELATED WORKS
	6.CONCLUSIONS
	7.REFERENCES

