Tree-based Analysis of Mesh Overlays for
Peer-to-Peer Streaming

Bartosz Biskupski®, Marc Schiely?, Pascal Felber?, René Meier!

!Trinity College Dublin, Ireland
2University of Neuchatel, Switzerland

Abstract. Mesh-based P2P streaming approaches have been recently
proposed as an interesting alternative to tree-based approaches. How-
ever, many properties of mesh overlays remain little understood as they
are difficult to study due to the lack of a predefined structure. In this
paper we show that when data is streamed through mesh overlays, it
follows tree-based diffusion patterns and thereby mesh-based streaming
can be studied in a similar manner to tree-based approaches. We iden-
tify properties of the diffusion trees that emerge in mesh overlays and
compare them to optimal diffusion trees. We show that the emerging dif-
fusion trees exhibit suboptimal height and are unbalanced, which results
in increased buffering delay of mesh-based P2P systems, particularly in
heterogeneous environments. We present an algorithm that adapts the
mesh overlay to shorten diffusion trees and to reduce the buffering delay.'

1 Introduction

The use of peer-to-peer (P2P) overlays for multicast media streaming has gained
significant attention in recent years as it alleviates scalability problems of cen-
tralised client-server architectures and weaknesses that prevent a wide adoption
of IP Multicast. Two main approaches for building overlays for P2P multicast
media streaming are tree-based [1] and mesh-based [2,3,4]. The former approach
explicitly places peers in a single tree or multiple multicast trees, where they
receive the stream from their parent(s) and forward it to their children. In the
mesh-based approach, the P2P overlay is unstructured, formed by peers con-
necting to neighbours, which may be randomly selected. The media stream is
typically split into small data blocks that are exchanged between neighbouring
peers, resulting in their propagation throughout the overlay. The main advantage
of mesh overlays compared to tree-based overlays is their much higher robust-
ness to peer churn. In tree-based approaches, a peer can receive data only from
its specified parent and when that parent fails or leaves the network, its whole

! ©Springer-Verlag, (2008). This is the author’s version of the work. The origi-
nal publication is available at www.springerlink.com. It is posted here by permis-
sion of Springer-Verlag for your personal use. Not for redistribution. The defini-
tive version was published in Lecture Notes in Computer Science, {5053, 2008}
http://dx.doi.org/10.1007/978-3-540-68642-2 11

sub-tree loses that data until the tree is reconstructed. In mesh-based streaming
systems, data chunks can be obtained from any neighbour that holds it and thus
when one neighbour fails, other neighbours may still provide the data. For that
reason, many researches focus on mesh overlays for P2P streaming. However,
one problem posed by mesh overlays is that they do not rely on any predefined
network structure and thereby are more difficult to study than tree-based over-
lays. In this paper, we show that when data chunks are streamed over mesh
overlays, tree-based diffusion patters dynamically emerge in the overlay. These
tree-based patterns of diffusion can be studied in the same manner as tree-based
overlay structures. The contribution of this paper is that we identify and anal-
yse properties of the emerging tree structures in mesh overlays and, in order to
evaluate their performance, we compare them to optimal diffusion trees in both
homogeneous and heterogeneous environments. This provides insights into how
mesh overlays can be adapted to reduce buffering delay in mesh-based stream-
ing systems to a theoretical minimum. Based on this analysis we developed an
algorithm that reduces diffusion tree heights in a mesh overlay and thus, also
reduces buffering delay.

The paper is organised as follows: in Section 2 different approaches to the
analysis of mesh-based streaming systems are presented. Section 3 shows how
diffusion trees emerge in mesh overlays and analyses these diffusion trees. Finally,
the adaptation algorithm is presented and evaluated in Section 4 before the paper
concludes in Section 5.

2 Related Work

Many mesh-based P2P streaming systems have been proposed in the last few
years [2,3,4], but none of them has been formally analysed due to their complex-
ity.

Chunkyspread [5] is one example of an unstructured approach to media
streaming. It uses a multi-tree (multi-description) based structure on top of
an unstructured overlay. The structure is very dynamic as each peer periodically
searches for new partners in its local environment. Peers exchange information
(load, latency, creation of loops) with their neighbours to search for the best
parent-child pairs for each tree. The constraints on these relationships are (1)
to avoid loops, (2) to satisfy any tit-for-tat constraints, (3) to adapt load (shall
be in a per peer defined range) and (4) to reduce latency. The loop-preventing
algorithm which is run on the overlay ensures that chunks are distributed fol-
lowing a multi-tree structure. In this paper we argue, that trees do not need to
be built explicitly, but that they are inherent to the mesh structure.

In contrast, SplitStream [1] is a tree-based P2P media streaming architec-
ture that focuses on robustness. Different to our model, the stream is split into
multiple stripes that can be distributed independently. A distinct tree is con-
structed for each of these stripes on all the participating peers. The robustness
in SplitStream comes from the fact that each node is an inner node in at most
one tree and a leaf node in all the other trees. Thus, if a peer fails, only one

distribution tree is affected and has to be rebuilt. In our model a tree structure
close to SplitStream is derived from a mesh-based approach. Peers are also inner
nodes in only one tree and leaf nodes in all others. Due to the mesh structure,
trees are dynamically built and adapted if nodes fail or bandwidth conditions
change.

A comparative study of tree- and mesh-based approaches for media streaming
is presented in [6]. Authors first propose an organised view of data delivery in
mesh overlays, which consists of data diffusion and swarming phases, and later
introduce delivery trees, which they discover in mesh overlays in a similar fashion
to diffusion trees described in our paper. Our work is different in that we focus
on formally analysing properties of diffusion trees rather than evaluating them
by simulation. We also propose an overlay adaptation algorithm that improves
properties of these trees.

A different approach to analysing P2P media streaming systems are fluid
models. In [7] the authors present a stochastic fluid model that takes into account
peer churn, heterogeneous peer upload capacities, peer buffering and delays. In
this paper we analyse the distribution trees created in a mesh such that known
adaptations for tree-based approaches can be applied to meshes.

In [8] tree-based P2P streaming systems are analysed and it is shown that
moving high-bandwidth nodes close to the source is advantageous and leads
to high performance gains in terms of total download capacity. We show in
this paper that the same holds for mesh-based systems and that trees can be
shortened by adapting the location of high-bandwidth nodes in diffusion trees.

3 Mesh-based P2P Streaming

The mesh-based approach to data streaming originates from research on gossip
and epidemic protocols, where nodes periodically exchange information among
each other, which results in the eventual dissemination of all information to
all nodes. The BitTorrent [9] file-sharing system popularised this approach for
the dissemination of large volumes of data from a transmitter to all receivers.
BitTorrent creates an unstructured overlay mesh to distribute a data file. A file
is divided into chunks, which are exchanged by nodes in a pull-based fashion
until nodes can reconstruct the original file.

In contrast to file-sharing systems, the transmitter in live P2P streaming
protocols does not have access to the entire data as it is generated “live”, and
thus, it cannot split the whole data into chunks for distribution throughout the
network. In order to leverage mesh-based delivery, streaming protocols require
a delay between the stream creation time at the transmitter and the receiver
playback time. The data stream produced within this delay is split into small
chunks and distributed throughout the network similar to the way chunks of an
entire file are distributed in mesh-based file-sharing protocols. Nodes maintain
sliding windows that reflect this delay and capture which chunks have already
been received and which are still missing. The buffers move forward with the
speed of the original video transmission rate, which is discovered by all nodes

from the video stream. The beginning of the buffer points at the chunk currently
being played at the receiving node and the end of the buffer reflects the chunk
currently generated at the transmitting node. Chunks that do not arrive in time
(outside the sliding window) are lost and cause video playback degradation.

A mesh overlay is created in a random fashion by joining nodes connect-
ing with selected nodes. The selection of neighbours can be based on different
strategies, e.g. random or bandwidth-based. Neighbouring nodes maintain local
knowledge about data chunks they possess by informing each other whenever
they receive a new chunk. The missing chunks are requested from neighbours im-
mediately or periodically, following a chunk selection algorithm. Different strate-
gies such as most-recent-chunk-first, rarest-chunk-first or random can be used to
schedule the chunk requests.

3.1 Mesh Overlay Properties

In our previous research on mesh overlay adaptation [10,11], we identified that
completely random mesh overlays limit the network throughput by underutil-
ising the available upload bandwidth at peers. Limited network throughput in
turn reduces possible video streaming rates and the corresponding video qual-
ity. We showed properties of mesh overlays that, when satisfied, optimise the
network throughput. This requires that each peer maintains two sets of neigh-
bours - (1) children, which are the neighbours to which data is uploaded and (2)
parents, which are the neighbours from which data is downloaded. The network
throughput is optimised in such a directed mesh overlay when:

— Each peer has a constant (configurable) number of parents
— Each peer has a number of children proportional to its upload bandwidth

We showed in [10] that a mesh overlay satisfying these two conditions optimises
the upload bandwidth utilisation and enables all peers to download at the max-
imum possible global video streaming rate. We also proposed algorithms for
adapting the mesh overlay to satisfy these conditions. In this paper, we conduct
our analysis on directed mesh overlays that satisfy these two conditions and thus
we can provide a fair comparison to multiple-tree-based overlays that also opti-
mise the network throughput. This paper is novel in that we show how diffusion
trees emerge in these adapted directed mesh overlays; we analyse properties of
diffusion trees and compare them to those of multiple-tree-based overlays; and
finally, propose an algorithm that improves these properties.

3.2 Tree-based View of Mesh Overlays

Mesh overlays are very dynamic and thus are difficult to analyse. In contrast,
trees are well understood and it is easier to derive properties of trees. Meshes can
be seen as a structure of multiple trees if we assume that bandwidth of all peers
remain constant over time and that the chunk selection algorithm is determin-
istic. We assume that peers request missing chunks from parents immediately

when they are notified of them, following a most-recent-chunk-first strategy, i.e.,
when a decision is made between two chunks, a chunk with a more recent time-
stamp is requested. This chunk request strategy is based on an observation that
most recent generated chunks are also the rarest in the overlay and thus need to
be given priority for distribution.

We assume that the stream rate is set to the maximum rate supported by the

overlay such that all peers can receive it, i.e., equal to W, where N is the
total number of peers including the source node (the source uploads, but does
not download data). We also assume that the mesh overlay satisfies conditions
discussed in Section 3.1 and that a peer’s upload bandwidth is shared equally

by all its connections. Under such assumptions, upload of all peers is saturated

Eiv upload;
(N-1)xK
globally configurable number of parents of each peer. From this follows that each

N—_1)xK . .
SN E whore s is the size of a chunk.
>;" upload;

s¥(N—1)

The source node generates a new chunk every SN wploads
time a single chunk is transferred to a child, K new chunks are generated. Since
it is desired that the source node sends different chunks to different children
(to distribute chunks equally in the overlay), we use a round-robin strategy to
push chunks from the source node to its direct children in which the ith child
receives chunks with sequence numbers ¢y + j * K 4 (i mod K), for some initial
to and j = 0,1,2,3,.... Peers, which are not direct children of the source node,
request the most recently generated missing chunks, so they always request a
missing chunk that travelled the least number of hops (and time). Effectively, K
diffusion trees emerge, where each tree propagates every Kth chunk. This process
of diffusion trees emerging in a mesh overlay, which has properties outlined in
Section 3.1, is illustrated in Figure 1 for K = 2.

and the upload rate of each link is the same, equal to where K is a

chunk is transferred over a link in time

time units, so by the

1
6 Diffusionﬁ‘]/
1
2
5 4 6

5 i

3

4 3 2

(a) Directed mesh overlay where (b) Corresponding diffusion trees
each peer has 2 parents

Fig. 1. Mesh overlay and its two diffusion trees.

3.3 Analysis

In this section we show how optimal multiple trees are constructed in both
homogeneous and heterogeneous environments and analyse their heights in order
to compare them, in the next subsection, to diffusion trees emerging in mesh
overlays.

Height of optimal trees in a homogeneous environment. First, we analyse a ho-
mogeneous environment, where all peers have the same upload capacity. Optimal
K distribution trees can be created by placing each peer as an inner node in ex-
actly one tree and as a leaf node in the other K — 1 trees. Thus, each peer has K
parents, one in each optimal distribution tree. In a homogeneous environment,
this means that the out-degree d of each peer is equal to K. Since a peer has
children in only one tree, K and d are the number of children of each inner
node in each tree. Thus, the height of each of K optimal distribution trees in a
homogeneous environment with N nodes is equal to the height H(d, N) of an
evenly balanced tree with N nodes and out-degree d, which is calculated using
a relation

based on the fact that there are d* peers at tree level i. Solving this geometric
sequence gives an equation for the height of a balanced homogeneous tree:

H(d,N)=logg((d—1)*N+1)—1 (1)

Therefore, the height of each of K optimal trees in a homogeneous environment
is given by H(K,N). In this paper we also use an equation for the number of
leaf nodes L(d, N) in a balanced homogeneous tree with N nodes and out-degree
d, given by

L) = g - A=V N L @

k trees

G A

w1 SRR R ... KRR
2 Ns/k . Ns/k

e leaves e e leaves 4ev

AAR

Fig. 2. Optimal construction of K trees consisting of fast and slow nodes.

Height of optimal trees in a heterogeneous environment. We study the construc-
tion of optimal trees in a heterogeneous environment by using two types of peers

- N, slow peers and Ny fast peers, where a fast peer has upload bandwidth
¢ times higher than a slow peer. In such a scenario, the optimal placement of
peers that minimises the height of each of the K trees is presented in Figure
2. Similar to homogeneous environments, each peer is an inner node in exactly
one tree and a leaf node in K — 1 trees. Additionally, fast nodes are placed at
the top of the trees in order to reduce the height of the trees. Slow nodes have
out-degree d, while fast nodes can upload ¢ times faster, so their out-degree is
i % d. The out-degree of slow and fast nodes is derived from the fact that the
total number of outgoing links of all peers must be equal to the total number
of incoming links in the P2P overlay, while taking into account that the source
node has out-going links, but does not have any incoming links. From this we
have Ny« d+ Ny« i*xd= K % (Ns + Ny — 1), which gives

K % (Ny+ Ny —1)

d=
tx Ny + N, (3)

The height Hp.; of each heterogeneous tree constructed as in Figure 2 is
calculated as Hyet = H1 + H2 + 1+ 1, which is the sum of the height H; of the
upper part of the tree composed of inner fast nodes only, the height Hs of the
lower part of the tree composed of slow inner nodes only, plus one level between
the two parts of the tree and one level for the peers that are leaves in the tree
(and which are inner nodes in other trees). The height H; is calculated using
Eq. 1 as the height of a homogeneous tree of Ny/K fast nodes with out-degree
ixd:

Hy :H(i*d,%) = 10Gixa <(i*d—1)*%+1> -1

N./K

Tyaied SlOW

The height Hs is calculated as the height of a homogeneous tree of
nodes with out-degree d

N,JK N,JK
Hy=H(d,————) =1 —1)x—4+1) -1
2 (d’Ll*i*d) Ogd<(d)*Ll*i*d+)

where Ly = L(i*d, %) is the number of leaves in the upper part, i.e., H;. From
these equations we derive a formula for the optimal height Hj.; of each optimal
heterogeneous diffusion tree

. . Nf Ns
Hhpet = 10gixa ((z*d—l)* 7 —l—l)—l—logd ((d—l) (i*d—l)*Nf—l—K_Fl)
(4)

where d is the out-degree of a slow node given by Eq. 3.

3.4 Evaluation

We compare the optimal tree heights, calculated in Equation 4, to the average
height of diffusion trees that emerge in mesh overlays and are calculated by our
custom-built simulator of mesh overlays. The simulator relies on the assumptions

outlined in Sections 3.1 and 3.2. We used 50,000 nodes and studied both a ho-
mogeneous environment and environments with different levels of heterogeneity.
In experiments involving heterogeneity, 10% of all nodes are fast nodes with up-
load bandwidth 2 and 8 times higher than the remaining slow nodes. The overall
upload bandwidth in all overlays is the same. The results are presented in Figure
3. The results show that the average height of diffusion trees in homogeneous
mesh overlays is around 2 levels above the optimal height, for all K. The reason
for that is that in the optimal tree each peer is an inner node in exactly one
diffusion tree, whereas in the trees emerging in mesh overlays a peer is located
randomly and can be an inner node in several trees. The results show that when
the level of heterogeneity increases, the gap between the height of diffusion trees
in the mesh overlay and optimum trees significantly increases. For the case with
10% of peers being 8 times faster than the remaining slow peers, the average
height of a diffusion tree in the mesh overlay for K = 2 is 3 times higher than
the optimum and drops to 2 times over the optimum for K = 16. Increased
heterogeneity results in higher importance of the location of fast and slow peers
in the tree. Worse performance for small K, in turn, is caused by higher vari-
ation in the height of diffusion trees - some leaves are much lower or higher
than the others. This tree imbalance can be observed in Figure 4 that shows the
cumulative distribution function (CDF) of the depth of leaf nodes in diffusion
trees that emerge in a mesh overlay for both homogeneous and heterogeneous
environments. The highest diffusion tree imbalance is for small K.

18

Optin"lal (homogenebus)
Mesh (homogeneous) --—+---
\ Optimal (10% have 2x higher upload) --------
16 -\ Mesh (10% have 2x higher upload) - .
\ Optimal (10% have 8x higher uploag) E—
14 \
12 FAd

Mesh (10% have 8x higher upload) ---%--

’,;ﬁi’ =

=z .
=) *
< 10 ’
[
8
(= %
8 ‘ké‘\ ~\‘\
S
. Xl B
Sl K
6 —
\\ _ \ - i
* of *
S
\\\ 7 \
4 T SN B
2
2 4 6 8 o ’) 16

Number of trees (number of parents)

Fig. 3. Average tree height for different number of parents and different heterogeneity
levels.

06 P

CDF

04 e

0.2

10 15 20 25 30
Depth

Fig. 4. CDF of the height of diffusion trees in mesh overlays in a heterogeneous (10%
peers have 4x upload) environment.

Chunk propagation delay. In order to measure the impact of the tree height on
the buffering delay, we analyse the time required to propagate a chunk through
the diffusion trees in mesh overlays. Since in a mesh overlay, a peer can be placed
anywhere in each diffusion tree, its buffering delay needs to accommodate the
maximum difference between chunk arrivals in each distribution tree, which is
equal to the chunk propagation delay. The propagation delay can be calculated

as

Hxs+Kx(N—-1)
ZNuploadi

3

delay =

where H is the height of the tree, s the size of a chunk and the remaining part
of the formula derives from the equation for the bandwidth of a link (see Section
3.2). It can be observed that this delay represents a trade-off between the height
of a tree and the number K of distribution trees. Larger K produce shorter trees,
however, it takes longer for a node to upload a chunk to all its children (since a
node has more children). Smaller chunk sizes allow for their faster propagation,
but more control messages are required to notify /request chunks. Propagation
delay as a function of the number of diffusion trees (peer parents) is shown in
Figure 5 (for an average upload bandwidth of 1,000kbps and a chunk size of
4KB). The results show that a small number of diffusion trees result in shorter
buffering delays. However, small number of diffusion trees also means that the
number of parents of each peer is small and this reduces robustness to peer

failures.

T T

Optimal (homogeneous)

Mesh (homogeneous) --—+---

Optimal (10% have 2x higher upload) --------
Mesh (10% have 2x higher upload) -

25 1 Optimal (10% have 8x higher upload) —--- .

: lesh (10% have 8x higher upload) ---%-- e

X %

*
3

X%

% %%

15

*X%
\
i
\
i
\
i
\
\
\
\
\
\

Propagation delay (sec)

0.5 =

2 4 6 8 10 12 14 16
Number of trees (number of parents)

Fig. 5. Propagation delay for varying number of trees for mesh overlays and the optimal
case.

4 Mesh Adaptation Algorithm

In the previous sections we showed that the heights of diffusion trees in mesh
overlays are much higher than the optimal height. In this section we present
an algorithm that adapts the location of high-bandwidth peers dynamically. To
shorten tree lengths it is advantageous to place high-bandwidth nodes near the
source and low-bandwidth peers near the leaves.

4.1 Algorithm

We assume that peers have accurate information about their bandwidth, either
through user input or through passive measurement techniques, such as [12].
Furthermore, the assumption is made that techniques are deployed that prevent
peers from cheating about their bandwidth. To do this, peers may for exam-
ple team up to compare effective bandwidth of neighbours with their indicated
bandwidth and drop links to cheaters if the difference is too high. Alternatively,
a reputation system like [13] could be implemented.

Each chunk being distributed from the source s to a peer p contains a hop
count of the path it travelled. Peers can use this hop count as an estimate of their
distance to the source. As explained in previous sections, the goal of each peer
is to climb up, respectively to its upload bandwidth, in one diffusion tree and
to become a leaf node in all other diffusion trees. In order to achieve this, each
peer periodically executes Algorithm 1, which improves a peer’s position in one
diffusion tree. Since each parent of a peer is responsible for delivering only one
tree, the algorithm aims at improving the peer’s position by replacing its current

best parent (nearest to the source) with one of its grandparents that is closer to
the source, subject to the conditions discussed below, effectively moving higher
in one tree. Specifically, a peer p tries to find its parent parent and a grandparent
grandparent (a parent of parent) that satisfies the following conditions:

1. distance(grandparent) < distance(bestparent(p))
2. upload(p) > upload(parent) OR bestparent(parent) # grandparent

The first condition requires that grandparent is closer to the source than the
current best parent. The second condition requires that the upload bandwidth
of peer p is greater than the upload bandwidth of parent (child of grandparent)
or grandparent is not the best parent of parent (parent does not climb up in
that tree) and thus, parent can give up that grandparent. If these two conditions
are satisfied, then peer p climbs up one level by: replacing parent as a child
of grandparent, becoming a new parent of parent and losing one child, which
becomes a child of parent (Figure 6 shows the exchange protocol). This way, the
number of children and parents of all peers involved (p, parent and grandparent)
remain unchanged and thus, the properties of the overlay required for achieving
the optimal network throughput, described in Section 3.1, remain satisfied. The
presented adaptation algorithm effectively results in each peer climbing up in
one tree as long as its parent in this tree has lower upload bandwidth and
climbing down in other trees (by giving up its position in these other trees to its
children that climb up in these trees). The algorithm does not affect the network
throughput as it does not change the number of children or parents of any peer.

Algorithm 1 Adapting position of peer p in the mesh overlay

for all parent < parent(p) do
for all grandparent «— parent(parent) do
if parent # source then
if distance(grandparent) < distance(bestparent(p)) then
if upload(p) > wupload(parent) or bestparent(parent) # grandparent
then
exchangePosition(p, parent, grandparent)
end if
end if
end if
end for
end for

4.2 Evaluation

In this section, we show the results of our evaluation of the adaptation algorithm
presented in Section 4.1. The algorithm was implemented in our custom-built

grandparent

B
A grandparent
Q\\/ O\
p

Oparent

&
e Iadrs
AN

Fig. 6. Peers p and parent exchange their positions respectively to grandparent.

simulator and executed on 50,000 nodes with different ratios of upload band-
width of fast and slow nodes. First, an initial mesh was created and tree heights
calculated. Then, Algorithm 1 was executed to adapt the positions of all peers
until no more adaptations were possible.

In all experiments 10% of all peers had i (i = {2,8}) times higher upload
bandwidth than the remaining peers. The number of trees K varied from 2 to
16. As can be seen in Figure 7, there is a significant benefit of placing high-
bandwidth nodes near the source. The average tree heights decrease by about
35% for two trees (K = 2). The same improvement is in the buffering delay,
which is proportional to the tree height. Figure 8 shows the cumulative distri-
bution function (CDF) of the depth of leaf nodes in diffusion trees in adapted
mesh overlays. This figure, when compared to the analogous Figure 4, shows
that diffusion trees in the adapted mesh overlays are significantly more bal-
anced. However, despite of much improvement, some imbalance in the diffusion
tree heights remains and, for that reason, the height of diffusion trees (and the
corresponding buffering delay) is suboptimal. To achieve optimal diffusion trees,
a more system-wide adaptation is required, which is a focus of our future work.

5 Conclusions

In this paper we analysed data diffusion in mesh overlays. We showed that
data chunks follow dynamically formed diffusion trees and analysed properties
of these trees. The proposed structured view of meshes allows us to apply knowl-
edge about trees directly to mesh-based streaming approaches. Our results show
that diffusion trees in mesh overlays are unbalanced with suboptimal height and
thereby, buffering delay in mesh overlays is suboptimal. With the increasing het-
erogeneity in an overlay, the diffusion trees become even more suboptimal due
to imperfect placement of fast peers in the diffusion trees. This implies that a
mesh adaptation algorithm that places fast nodes closer to the source in ex-
actly one diffusion tree shortens the height and improves the balance of diffusion
trees, thereby significantly reducing the data buffering delay. We presented such
a mesh adaptation algorithm and showed that it improves tree heights. In future

18 T T T
Optimal (10% have 2x higher upload) ——

Mesh (10% have 2x higher upload) ---+---
Adapted Mesh (10% have 2x higher upload) ---x---
16 | Optimal (10% have 8x higher upload) .
Mesh (10% have 8x higher upload) ———

Adapted Mesh (10% have 8x higher upload) ---3--

14

12

10 §

Tree height

Number of trees (number of parents)

Fig. 7. Average tree heights for different proportions of upload bandwidth and 50,000
peers.

work the algorithm will be enhanced to better balance the height of diffusion
trees, implemented in our prototypes and experimentally evaluated to show its
effectiveness in real-world scenarios.

Acknowledgements

This work is supported in part by MiNEMA, ESF, Swiss National Foundation
Grant 102819 and Enterprise Ireland under the Commercialisation Proof of Con-
cept Programme (MeshTV).

References

1. Castro, M., Druschel, P., Kermarrec, A.M., Nandi, A., Rowstron, A., Singh, A.:
SplitStream: High-bandwidth multicast in cooperative environments. In: SOSP’03:
Proceedings of the nineteenth ACM Symposium on Operating Systems Principles,
New York, NY, USA (2003) 298-313

2. Pai, V.S., Kumar, K., Tamilmani, K., Sambamurthy, V., Mohr, A.E.: Chainsaw:
Eliminating trees from overlay multicast. In: IPTPS. (2005) 127-140

3. Magharei, N., Rejaie, R.: PRIME: Peer-to-peer receiver-driven mesh-based stream-
ing. In: 26th Annual IEEE Conference on Computer Communications IEEE IN-
FOCOM 2007. (2007)

4. Pianese, F., Perino, D., Keller, J., Biersack, E.: PULSE: an adaptive, incentive-
based, unstructured p2p live streaming system. IEEE Transactions on Multimedia,
Special Issue on Content Storage and Delivery in Peer-to-Peer Networks 9(6) (2007)

1
k=2 —+—
k=4 ---x---
k=6 ---%---
k=8 &
k=10 —-=-—
k=12 --e-- |
08 k=14 - -e
k=16 -—-a--
0.6
w
[a)
8]
0.4
0.2
0
0 10 15 20 25 30

Depth

Fig. 8. CDF of the height of diffusion trees in adapted mesh overlays in a heterogeneous
(10% peers have 4x upload) environment.

5.

10.

11.

12.

13.

Venkatraman, V., Yoshida, K., Francis, P.: Chunkyspread: Heterogeneous unstruc-
tured end system multicast. In: Proceedings of 14th IEEE International Conference
on Network Protocols. (Nov 2006)

Magharei, N., Rejaie, R., Guo, Y.: Mesh or multiple-tree: A comparative study
of live p2p streaming approaches. In: Proceedings of 26th IEEE International
Conference on Computer Communication (INFOCOM). (May 2007) 1424-1432
Kumar, R., Liu, Y., Ross, K.: Stochastic fluid theory for p2p streaming systems. In:
Proceedings of 26th IEEE International Conference on Computer Communication
(INFOCOM). (May 2007) 919-927

. Schiely, M., Renfer, L., Felber, P.: Self-organization in cooperative content distri-

bution networks. In: Proceedings of IEEE International Symposium on Network
Computing and Applications (NCA). (Jul 2005) 109-116

. Cohen, B.: Incentives build robustness in BitTorrent. In: the 1st Workshop on

Economics of Peer-to-Peer Systems, Berkeley, CA, USA (June 2003)

Biskupski, B., Cunningham, R., Dowling, J., Meier, R.: High-bandwidth mesh-
based overlay multicast in heterogeneous environments. In: AAA-IDEA ’06: Pro-
ceedings of the 2nd International Workshop on Advanced Architectures and Algo-
rithms for Internet Delivery and Applications, ACM Press (2006) 4-11
Biskupski, B., Cunningham, R., Meier, R.: Improving throughput and node prox-
imity of p2p live video streaming through overlay adaptation. In: Proceedings of
the 9th IEEE International Symposium on Multimedia (ISM 2007), IEEE Com-
puter Society (2007) 245-252

Strauss, J., Katabi, D., Kaashoek, F.: A measurement study of available bandwidth
estimation tools. In: IMC’03: Proceedings of the 3rd ACM SIGCOMM conference
on Internet measurement, New York, NY, USA (2003) 39-44

Nandi, A., Ngan, T.W., Singh, A., Druschel, P., Wallach, D.S.: Scrivener: Providing
incentives in cooperative content distribution systems. In: Middleware. (2005) 270-
291

