
Electronic Communications of the EASST
Volume 11 (2008)

Guest Editors: Romain Rouvoy, Mauro Caporuscio, Michael Wagner
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

Proceedings of the

First International DisCoTec Workshop on

Context-aware Adaptation Mechanisms for

Pervasive and Ubiquitous Services

(CAMPUS 2008)

Feature Interaction in Pervasive Computing Systems

Yu Liu and René Meier

6 Pages

 ECEASST

2 / 7 Volume 11 (2008)

Feature Interaction in Pervasive Computing Systems

Yu Liu and René Meier

Lero @ TCD, Department of Computer Science,

Trinity College Dublin, Ireland

{yuliu, rene.meier}@cs.tcd.ie

Abstract: Feature interaction describes a situation where the combination of two or

more services that individually perform correctly results in unexpected and possibly

adverse behaviour. Such feature interaction issues have first been identified in

telecommunication systems and are now beginning to be considered in other

distributed software systems. We expect significant feature interaction research in

pervasive computing where very many applications collaborate and adapt to changes

to their environment or to user needs in order to provide tailored services to users.

This paper presents a classification of feature interaction issues in pervasive

computing systems. The classification captures, with a focus on automotive systems

and systems for smart homes, feature interaction issues related to types of

interaction, channels of interaction, and user needs. The classification aims to aid the

understanding of feature interaction in pervasive computing systems, and to serve as

a guideline for designers of pervasive applications.

Keywords: Feature Interaction, Pervasive Computing, Adaptation

1 Introduction

The complexity of pervasive applications has grown dramatically, with the involvement of a

diverse set of devices, the dynamic nature of the environment that these applications monitor

and control, and the changing user needs. Examples of pervasive applications can be found in

areas such as automotive systems and systems for smart homes. Today’s luxury cars are

equipped with a multitude of software intended to assist car users to enhance safety, to

strengthen security, and to improve comfort. A car essentially becomes a smart object, reacting

dynamically to changing driving conditions as well as to the condition of the vehicle and the

driver. Smart homes include services for controlling lighting, heating, and ventilation as well

as for delivering information and entertainment. These services become networked smart

objects to adjust to the needs of residents.

Generally, pervasive computing systems exist in a dynamic environment that has a range of

parameters that must be catered for. Pervasive applications need to be context aware so that

information about the context of a device can be captured and utilized. For example, in smart

homes, relevant pattern of occupancy and alternative means of heating, such as sunlight, are

important parameters a heating control application should capture and adapt to. The changes in

the context ought to be dynamically accommodated and as such pervasive applications must be

adaptable.

Collaboration and adaptation of pervasive applications is hindered by feature interaction

issues, which were first identified in telecommunication systems [1] and are now considered

Feature Interaction in Pervasive Computing Systems

Proc. CAMPUS 2008 3 / 7

relevant to other distributed software systems. Feature interaction is a situation where a

number of services work properly in isolation, but exhibit undesired behaviour when

combined. A wealth of literature [7] on feature interaction can be found in the

telecommunication domain, but relatively little work has focused on addressing the distinct

requirements of pervasive computing systems. A notable distinction, between

telecommunication systems and pervasive computing systems, is that they have very different

notions of context. Telecommunication applications treat the signalling channel as their

context whereby the set of status signals of a call is transmitted and shared. Pervasive

applications, on the other hand, consider the context in terms of the physical environment and

of the needs of individual users. Consequently, pervasive computing systems have to deal with

a much more complex context, and therefore face greater possibilities of feature interaction.

This paper discusses feature interaction in pervasive computing systems presented in the

form of a classification. The classification captures types of interaction, channels of

interaction, and user needs. Types of interaction describe how pervasive applications interact

with their context and with each other. Channels of interaction are concerned with identifying

the pathway whereby pervasive applications may interfere with each other. User needs are

important inputs to pervasive computing systems and aim to describe the overall system

behaviour. However, individual users might have conflicting goals that may not be satisfied at

the same time or users have quality of service constraints that can not be met at runtime, thus

leading to feature interaction. Calder [2] proposes a classification of telecommunication

features, and his classification serves as basis for our types of interaction. In the pervasive

context, however, both physical environment and user needs play a crucial part. Our

classification extends his classification to deal with physical environment and user needs.

The remainder of the paper is organized as follows: Section 2 introduces the three major

categories of our classification and uses them to discuss feature interaction in pervasive

computing systems; Section 3 describes related work; Section 4 concludes this paper and

outlines future work.

2 The Classification

Feature InteractionFeature InteractionFeature Interaction

TypesTypesTypes ChannelsChannelsChannels User NeedsUser NeedsUser Needs

Feature InteractionFeature InteractionFeature Interaction

TypesTypesTypes ChannelsChannelsChannels User NeedsUser NeedsUser Needs

Figure1. Root of the Classification

As shown in Figure 1, Feature Interaction in pervasive computing systems can be described in

three categories, namely, types of interaction, channels of interaction, and user needs.

 ECEASST

4 / 7 Volume 11 (2008)

2.1 Types of Interaction

Types of feature interaction describe how features, or services, are triggered. Features can

trigger each other, or respond to the same external trigger. In telecommunication systems,

external triggers reside in a two-way signalling channel and features usually detect their own

triggering conditions. However, in pervasive computing systems, external triggers of a feature

are defined by a possibly large set of context properties, which can be changed by the

environment, which in turn can be influenced by the feature or indeed by other features.

Shared Trigger. Shared Trigger interaction takes place when more than one feature is

activated by the same event trigger, and their responses conflict with each other. For example,

consider the application that opens windows and an application that controls air conditioning

[4] in a modern house. Both applications are triggered once temperature reaches a certain

threshold value chosen by the occupant of the house. Opening the windows will compromise

the effectiveness of air conditioning. This type of interaction can affect the environment and

might result in a fluctuating room temperature.

Sequential Trigger. Sequential Trigger interaction occurs when the responses of one

feature cause another feature to be triggered [2]. Sequential trigger takes two forms: 1) One

feature sends a notification directly to another feature. 2) One feature affects environment

variables, such as temperature and humidity, through actuators, for example, air conditioner

and heater, and these changes to the environment variables then lead to other features being

triggered.

Looping Trigger. There are situations where individual features may run correctly but

multiple features as a whole are stuck in a loop [2]. This is due to cyclic generation of

sequential events, whereby the features involved get triggered repeatedly. Looping Trigger is

considered to be a special case of Sequential Trigger. For example, in order to keep humidity

of a room at a constant level, the Humidifier application is activated once humidity drops

below the constant level. Meanwhile, the Ventilation application is triggered by a high

humidity level that is caused by humidifier. Hence, this may cause the Humidifier application

and Ventilation application to be switched on and off repeatedly.

Missed Trigger. Missed Trigger interaction refers to a situation where the presence of one

feature in the system prevents the second feature from operating. Some features are designed

to use the same device; however, the undesirable situation could be that one feature has full

control over the device or disable it, thus preventing other features from correctly functioning.

2.2 Channels of Interaction

Channels of feature interaction are concerned with the pathway whereby pervasive

applications may interfere with each other. Pervasive computing systems can be modelled

through three layers, namely, application layer, device layer and environment layer [8].

Feature interaction might occur at each layer for different reasons.

Application Layer. Experiences from telecommunication domain [1] have shown that

distributed support for applications, such as information sharing or transactions, might be

problematic and as such may give rise to unanticipated interaction between features. Two

issues arising from distributed application support also find their way into pervasive

computing systems. The first issue is concerned with the assumption of data availability of

pervasive applications. Based on its context, one application assumes that certain data is

Feature Interaction in Pervasive Computing Systems

Proc. CAMPUS 2008 5 / 7

available while the applications that hold the data keep it private. The second issue is

transaction support of pervasive applications. Apart from the issues in distributed support for

applications, dynamic adaptation of pervasive applications can also lead to unanticipated

interactions, as some of the applications might collaborate for the first time and lack

knowledge of each other’s interface and behaviour.

Device Layer. The device layer comprises sensors, actuators and control devices. In this

layer, feature interaction issues boil down to the conflicts in accessing control devices. Some

control devices may only be used by one application at the same time, while other devices can

be used by multiple applications simultaneously. Lack of control over the access to the shared

devices can result in a deadlock situation for the applications attempting to use such devices.

Another issue regarding application-device interaction is the absence of the notion of a session.

Feature interaction in telecommunication applications is dealt with in a specific period of time,

namely, a session. However, there is no indication of the completion of a control request

delivered to a device [4]. For the devices controlled by a pervasive computing system, some of

them can carry out a control request almost instantaneous while other devices carry out a

request over a certain length of time, for example, to request a VCR to record a TV program.

Hence, the start and endpoint to look for feature interaction are not well defined.

Environment Layer. The environment layer is the source of an implicit coupling between

different applications in a pervasive computing system. Environment variables, such as

temperature and humidity, can be changed by control devices. One feature might be triggered

by the changes in an environment variable that other features have influence upon. Kolberg [8]

advises to explicitly specify the links between control devices and environment variables. In

addition, two seemingly irrelevant environment variables can affect each other, thus creating

an implicit relationship between trigger conditions of several otherwise independent features.

Metzger [5] proposes to build an environment simulator to establish relationships between

environmental variables.

2.3 User Needs

An integral part of the context that pervasive applications deal with is the needs of user. User

needs are arguably the important inputs to a pervasive computing system. User needs also

constrain the overall behaviour of the system. User needs can be divided into behaviour

constraints and Quality of Service (QoS) constraints. Behaviour constraints are used to specify

the composite behaviour of features. QoS constraints are generally concerned with timeliness,

resource consumption and other QoS metrics associated with features.

Behaviour Constraints. Users of a pervasive computing system typically define specific

behaviour constraints. These constraints range from simple tasks such as controlling devices

individually, e.g., switch on the heater at 9pm, to situations that involve very complex user

activities, such as controlling the level of illumination of a room according to user profiles.

Behaviour constraints typically have been embedded in the implementation of applications.

This is at the expense of customizability highly demanded by users. We believe that behaviour

constraints are part of the context and should be separated from the implementation of the

applications. Policy based solutions [3] are a promising approach and have already been

applied in smart homes, whereby users can explicitly specify the behaviour constraints they

can accept in terms of policies as opposed to embodying these constraints inside

implementation of features. Some industrial strength platforms for smart homes, such as KNX

 ECEASST

6 / 7 Volume 11 (2008)

[9], make it easier to integrate devices from different vendors and suppliers. By employing this

capability, users are writing their own policies using an elementary set of basic built-in

features of a platform. Policy based solutions consider feature interaction as two policies

having inadvertent embedded conflicts. In adopting policy based solutions, there are two

advantages: 1) Users have greater flexibility to express system behaviour constraints in terms

of policies. 2) Conflicting behaviour constraints can be detected through policy conflicts.

QoS Constraints. QoS constraints such as timeliness, resource consumptions of individual

features are essential considerations for dynamic adaptation. For instance, time-bounded

adaptation in automotive systems is a pressing issue [6]. Adaptation typically involves

swapping in new features or swapping out existing features to suit the current context. The

issue of feature interaction comes down to how to guarantee QoS constraints of existing

features when new features are dynamically activated. Very little current work on feature

interaction considers QoS constraints of a system. This must be addressed, especially in

mission-critical pervasive computing systems, such as automotive systems.

3. Related Work

Feature interaction issues in telecommunication systems have been extensively studied.

Cameron [1] identifies three dimensions for feature interaction: 1) The kind of features

involved in the interaction (customer features, system features). 2) The number of users

involved (single user, multiple users). 3) The number of network components involved in the

interaction (single component, multiple components). Calder [2] proposes a newer

classification of telecommunication features, and his classification contains four types of

interaction using trigger condition as the criteria. Our classification extends Calder’s

classification to deal with a much more complex context which incorporates the physical

environment and user needs.

Feature interaction issues have also been researched in other domains. Metzger [5]

discussed feature interaction issues in embedded control systems introducing the notion of

physical environment and proposes to build an environment model to reveal implicit

relationships of environment variables. Kolberg [4] [8] addresses only four types of interaction

in smart homes, and he proposes a simplified model of environment variables. Shehata [9]

recognises a paradigm shift from feature interaction to policy interaction in smart homes, so

that users can explicitly specify behaviour constraints and interaction detection can be carried

out at both design time and runtime. However, we believe that in addition to behaviour

constraints, QoS constraints must also be considered for (mission critical) pervasive computing

systems.

4. Conclusion and Future Work

This paper proposed a classification of feature interaction issues in pervasive computing

systems. This is achieved through extending existing work on feature interaction in

telecommunication systems. The classification comprises three categories, namely, types of

interaction, channels of interaction, and user needs. These categories have been discussed with

an aim to foster understanding of feature interaction in pervasive computing in light of current

Feature Interaction in Pervasive Computing Systems

Proc. CAMPUS 2008 7 / 7

research in the area. We intended to further diversify our classification with a special focus on

distinguishing between desired and unwanted interactions, on challenges driven by the

physical environment and on detecting and resolving conflicts at the device layer.

Acknowledgement

The work described in this paper is partly supported by Lero - the Irish Software Engineering

Research Centre.

References

[1] E.J.Cameron, N.Griffeth, Y.J.Lin, M.E.Nilson, H.Velthuijsen and W.K.Schnure. A feature
interaction benchmark for IN and beyond. In Feature Interactions in Telecommunication Systems, IOS
Press, pp.1-23, May 1994.

[2] M.Calder, M.Kolberg, E.Magill, D.Marples, and S.Reiff-Marganiec. Hybrid Solutions to the Feature
Interaction Problem. In Proc. 7th. Feature Interactions in Telecommunications and Software Systems,
IOS Press, June 2003.

[3] P.Dini, A.Clemm, T.Gray, F.J.Lin, L.Logrippo, and S.Reiff-Marganiec. Policy-enabled mechanisms
for feature interactions: reality, expectations, challenges. In Computer Networks: The International
Journal of Computer and Telecommunications Networking, Volume 45, Issue 5, August 2004.

[4] M.Kolberg, E.Magill, D.Marples, and S.Tsang. Feature Interactions in Services for Internet
Personally Appliances. In Proceedings of IEEE International Conference on Communications 2002,
New York, USA, vol. 4, pp. 2613-2618.

[5] A.Metzger. Feature interactions in embedded control systems. In Computer Networks: The
International Journal of Computer and Telecommunications Networking, Volume 45, Issue 5, August
2004.

[6] S.Fritsch, A.Senart, D.C.Schmidt, and S.Clarke. Time-bounded Adaptation for Automotive System
Software. In Proceedings of the 30

th
International Conference on Software Engineering, 2008.

[7] M.Calder, M.Kolberg, E.H.Magill, S.Reiff-Marganiec. Feature Interaction: A critical review and
considered forecast. In Computer Networks, Volume 41, Number 1, 15 January 2003, pp. 115-141(27).

[8] M.Kolberg, E.H.Magill, and M.Wilson. Compatibility issues between services supporting networked
appliances. In Communications Magazine, IEEE. Volume 41, Issue 11, 2003.

[9] M.Shehata, A.Eberlein, and A.O.Fapojuwo. Managing Policy Interactions in KNX-Based Smart

Homes. In Proceedings of the 31
st
 Annual International Computer Software and Application

Conferences, Vol 2, 2007.

