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Abstract

In this paper we introduce an adaptive technique for compressing small quantities of
text which are organized as a rooted directed graph. We impose a constraint on the
technique such that data encountered during a traversal of any valid path through the
graph must be recoverable without requiring the expansion of data that is not on the
path in question. The technique we present determines the set of nodes y which are
guaranteed to be encountered before reaching node x while traversing any valid path
in the graph, and uses them as a basis for conditioning an LZW dictionary for the
compression/expansion of the data in x. Initial results show that our improved LZW
technique reduces the compressed text size by approximately 20% more than regular
LZW, and requires only minor modifications to the standard LZW decompression
routine.

1 Introduction

Consider an on-line tour guide application for a personal digital assistant where users
position themselves at a designated starting point and log onto a website to begin a
tour from that location. The pages delivered to a PDA during such tours are fairly
small; generally containing a couple of paragraphs of text at most. Each page de-
scribes a location/item of current interest along with links to other nearby attractions
offering users some choice in tailoring their tour. The collection of pages and links
form a directed graph, similar to pages on the world-wide-web, however they remain
static once authored and they have a fixed entry point (Figure 1 (i)).

The route of attractions a user visits during their tour can be visualized as a path
through the graph. Any route which leads to The Quays in our example must start at
the Tourist Office and directly proceed to Trinity College Dublin optionally visiting
The Book of Kells en-route to O’Connell Bridge before reaching the destination. The
Tourist Office is guaranteed to be on any path reaching Trinity College, which itself is
guaranteed to be on any path reaching either the Book of Kells or O’Connell Bridge.
Finally, O’Connell Bridge is guaranteed to be on any path reaching The Quays. This
relation, where one node in a graph is guaranteed to be present on any path reaching
another is called dominance, and its transitive reduction gives rise to a tree structure
called an immediate dominator tree (Figure 1 (ii)). While compression can be applied
to the text for each page individually using well known techniques [2], we propose
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Figure 1: Example of graph structured text (left) and the associated immediate
dominator tree (right)

exploiting the inter-page context identified by dominance to improve results when
using adaptive dictionary based compression methods.

The remainder of this paper is structured as follows. First we briefly review the
LZW algorithm and the structure of an LZW dictionary during decompression. Next
we give formal definitions of a rooted directed graph, the dominance and immediate
dominance relations, and we discuss the relationship between an immediate dominator
tree and the graph from which it was derived. With the appropriate background
material covered, section 4 describes our new approach to compression in detail.
Results and related work are presented in sections 5 and 6 respectively, before our
conclusions are made in the final section.

2 LZW

LZW [11] is a popular text-compression algorithm. It is classified as lossless, dictionary-
based and adaptive. A block of LZW-coded data is comprised of a sequence of fixed-
length n-bit indices into a dictionary of 2n phrases, constructed in the following way:
Initially the dictionary contains only the individual symbols from the input alphabet
∑

. At each step the dictionary is searched to find the longest matching phrase which
is a prefix of the input data. The index for this phrase is output as the compressed
encoding, and a new entry, consisting of the next symbol from the input concate-
nated to the end of the phrase just matched, is inserted into the dictionary. Coding
continues in this fashion, restarting each time from the last unmatched symbol in the
input. When the dictionary is full no more entries can be added and the remaining
input data is coded using the dynamically-constructed dictionary.

Expansion of LZW coded data starts with the initial dictionary used for com-
pression. Each codeword in the input is used as an index to the dictionary and its
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Index Parent Suffix Phrase
0 -1 α α

1 -1 β β

2 0 α αα

3 0 β αβ

4 1 α βα

5 2 β ααβ

6 - - -
7 - - -

Figure 2: LZW dictionary after compression/expansion of the string ααβααβ

corresponding phrase is output to the decompressed stream. Then the first symbol
from the phrase in the dictionary indexed by the next codeword in the input stream
is appended to the phrase just decompressed, and this sequence is inserted as a new
entry in the dictionary. In this way, the decompressor maintains the same dictionary
as that generated during compression. The dynamically constructed LZW dictionary
encodes a history of previously encountered phrases in the input stream and gives rise
to compression when single codes (dictionary indices) are output in place of multiple
symbols from the input stream during coding.

As an example assume
∑

= {α, β} and n = 3. Then, after recovering the com-
pressed version of the string ααβααβ (which consists of the sequence of LZW indices
0,0,1,2,1), the LZW dictionary will appear as shown in Figure 2. Our dictionary rep-
resentation consists of two arrays, one of pointers back into the dictionary (Parent),
and one of symbols taken from

∑
(Suffix). The first section is the initial dictionary,

containing entries for each symbol in
∑

. The second section contains the adaptations
which are entered as part of the standard LZW encoding/decoding procedure. The
final section consists of unused dictionary space. A phrase in the dictionary located at
index w consists of the phrase in the dictionary located at Parent[w], concatenated
with Suffix[w]1.

3 Immediate Dominance

Let G = (V, E, root) be a directed rooted graph where V is the set of vertices/nodes,
E ⊆ V × V is the set of edges, and root ∈ V is a distinguished node. Given x, y ∈ V

we say x dominates y (x dom y) if every path from root to y in G passes through
x. Every node dominates itself and every node is dominated by root. Node x strictly
dominates y (x sdom y) if x dom y and x 6= y. Node x immediately dominates y (x
idom y) if x sdom y and x does not dominate any other dominator of y.

Every node other than root has a unique immediate dominator. This relation may
be represented by a dominator tree stemming from root with edges representing the
idom relation between nodes. A fast algorithm for computing immediate dominators
in a directed rooted graph is available [6]. Intuitively, the immediate dominator of
y is the most recent node x which, regardless of the path taken, is guaranteed to
have been encountered before reaching y while traversing G from root. Figure 3

1The phrase represented at index ‘-1’ in the dictionary is ε, the empty string.
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A: ααβ

B: αβα C: αβββ

E: βαβ D: ββα

A: ααβ

B: αβα E: βαβ C: αβββ

D: ββα

Node Encoding

A 1, 0, 0, 1

B 2, 3, 0

C 2, 3, 1, 1

D 3, 5, 0

E 2, 1, 3

(i) (ii) (iii)

Figure 3: A rooted directed graph, its associated immediate dominator tree, and the
Graph LZW encoded data for each node

shows an example graph of five nodes labeled A to E (i) and its associated immediate
dominator tree (ii).

Arrival at a node p while traversing G starting from root occurs in the following
way with respect to the immediate dominator tree: (i) it arrives directly from p’s
immediate dominator; or (ii) it arrives directly from some descendent of p’s immediate
dominator. The justification for this is as follows: a traversal may not pass directly
from a node at level i in the tree to node p at level i + 2, as doing so would imply
that p’s immediate dominator on level i+1 did not dominate node p. Furthermore, a
traversal may only pass across a tree from node q to node p if their common ancestor
in the tree is p’s immediate dominator (otherwise it would again bypass traversing
the immediate dominator of p). It is easy to verify that traversal may pass from a
node to one of its ancestors in the tree due to the existence of back edges in G.

4 Graph LZW

The key insight here is that the nodes which dominate a given node x constitute the
set from which we can obtain textual-context for the adaptive compression of the con-
tents of x; furthermore, the structure imposed on these dominators by the immediate
dominator tree indicates the order in which they will have been encountered on all
paths leading to x. However, since the dictionary used during encoding/decoding is
conditioned by the contents of only those nodes guaranteed to have been encountered
previously on all paths reaching the node in question, decoding cannot start at any
arbitrary position in the graph.

Before encoding the contents of the root node in the immediate dominator tree
the dictionary is pre-initialized to contain entries for the alphabet

∑
. The tree is

then traversed in pre-order and the contents of each node are compressed using the
dictionary which resulted from coding its parent. The deeper a node is in the tree, the
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Index end of adapt
0 2
1 -
. .
. .
k -

Index Parent Suffix Phrase
0 -1 α α

1 -1 β β

2 - - -
. . . .
23
− 1 - - -

Figure 4: Initial structure of dictionary during Graph LZW expansion

Index end of adapt
0 2
1 4
2 6
3 7
4 -
. .
. .
k -

Index Parent Suffix Phrase
0 -1 α α

1 -1 β β

2 0 α αα

3 0 β αβ

4 3 β αββ

5 1 β ββ

6 5 α ββα

7 - - -

Figure 5: Dictionary structure after traversing nodes A, C and D

more context we have available for compression. But care is needed—for each node
x, before decoding starts we must ensure the dictionary contains only those entries
added up to the point where x’s immediate dominator made its final adaptation.

In the previous section we established that flow passes through a graph from node
to node such that we move down the corresponding immediate dominator tree one
level at a time, move from the current node to one of its ancestors’ children or move
from the current node to one of its ancestors. Hence the LZW dictionary may be
maintained appropriately at decode time as follows.

We introduce an additional array, end of adapt, with capacity for storing k n-bit
entries where k is the maximum immediate dominator tree depth to be supported.
end of adapt[0] is initialized to |

∑
|. The next available dictionary index, after

node x at depth i in the immediate dominator tree has been decoded, is recorded in
end of adapt[i]. Before the next node y at depth j in the dominator tree is decoded,
all entries in the dictionary from end of adapt[j−1] onwards are removed and then
the node y is decoded, adapting the dictionary while the compressed data is expanded
and finally setting end of adapt[j] to the next available dictionary index. Thus we
need to store the depth of each node in the immediate dominator tree along with its
encoded data. Since dictionary maintenance must occur prior to decoding each node,
this is stored as the first index in the encoded block.

As an example, the compressed encoding for each node in the graph introduced
in Figure 3 (i), with its associated immediate dominator tree (ii), is shown on the
right (iii). Note: the first value in the encoding is the dlog2ke-bit depth of the
node in the immediate dominator tree; while the remaining values are n-bit LZW
dictionary indices for the compressed data. Consider traversing the path A → C →
D → C → .... We begin with the initial dictionary shown in Figure 4. After
visiting nodes A, C and D the dictionary will be as presented in Figure 5, where each
successive section contains the adaptations contributed by the nodes A, C and D
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Figure 6: Connectivity graph extracted from our snapshot of wap.sciam.com (The
Scientific American website, mobile edition)
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Figure 7: Immediate dominator tree derived from the graph shown in Figure 6

respectively. As we traverse the edge D → C we must remove the dictionary entries
previously contributed by nodes C and D (trivially implemented by resetting the
pointer identifying the next available slot in the dictionary). This happens prior to re-
visiting C thus ensuring that only those entries guaranteed to have been added before
arriving at C remain in the dictionary. That is, all entries from end of adapt[1]

onwards are removed from the dictionary (which is where the adaptations based on
the contents of A finish), C is expanded and finally end of adapt[2] is set to the
next available index in the dictionary—where the adaptations based on the contents
of C finish—which is 6.

5 Results

We applied our technique to a collection of PDA websites which were downloaded
in July and September 2007 using the wget program (generally invoked as wget -r -l
1000 http://homepage-address). The full list of websites we used is given in Figure
8, where summary information characterizing the websites’ respective file sizes is also
included. Once downloaded we extracted the connectivity graph for each website
using a collection of perl scripts to identify the edges exiting each file and targeting
another file within that website. This is the input that was given to our prototype
compression implementation. In Figures 6 and 7 we show the connectivity graph and
the associated immediate dominator tree for one of the websites.

We applied regular LZW to each of the files individually, and Graph LZW to the
entire set of files for each website, the results of which are given in Figure 9. While
regular LZW gives its best compression when using 10 and 11-bit dictionary indices,
our Graph LZW technique doesn’t run out of context to condition the models used for
compression until it employs substantially larger dictionaries requiring 12 and 13-bit
indices, demonstrating clearly that exploiting inter-page context is of great benefit to
compressing graph-structured text. The summary figures account for all overheads
in the compressed data encodings.
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PDA Website URI #Files Corpus Size (kB) Average File Size(kB)
www.australianit.news.com.au/wireless 59 275.38 4.67
www.news.com.au/wireless 78 231.81 2.97
wap.sciam.com 158 528.78 3.35
news.bbc.co.uk/low/english/pda 151 882.18 5.84
news.bbc.co.uk/low/english/pda sport 182 1098.16 6.03
www.rte.ie/pda/entertainment 4150 17376.19 4.19

Figure 8: PDA website benchmark data
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Figure 9: Compression ratios (compressed size/uncompressed size) achieved at various
dictionary sizes for both regular LZW and Graph LZW applied to six PDA websites
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gzip [8], a popular compression program, employs a variant of LZ77 combined
with Huffman encoding to attain excellent compression results. It is used in the
widely deployed mod gzip [1] extension available for the Apache webserver which
compresses data before sending it via HTTP to clients capable of expanding data
prior to rendering. We have included the average compression ratio achieved by
gzip on our data in Figure 9. Whereas gzip is a carefully engineered compression
program, our Graph LZW and the results given here are simply the kernel of an idea.
Nevertheless we achieve competitive compression results and the expansion routine
for Graph LZW is substantially less involved than that of gzip. In our prototype
implementation the decoder required the following simple alterations to the regular
LZW decoding algorithm

• introduction of an additional array, end of adapt

• one read from end of adapt before expansion of a node to identify the position
where adaptations should occur in the dictionary

• one write to end of adapt after expansion of a node has completed to update
the contents of the array

Inspired by gzip’s combination of an adaptive dictionary technique with a semi-
adaptive code allocation phase, we investigated using a canonical Huffman code to
represent the dictionary indices used by our Graph LZW algorithm. Using this ap-
proach we found that although the compression ratios improved over our fixed-length
allocation of dictionary indices, the compression ratios did not beat gzip on average.
Careful engineering and an appropriate combination of our technique with a better
form of data encoding might yield compression ratios which improve on those achieved
by gzip, however we believe the overhead required in the decoder would not represent
a justifiable penalty for the marginal improvements likely to arise.

6 Related Work

To the best of our knowledge we are the first to propose compressing the content of
nodes in a graph by employing an adaptive model which has been conditioned using
inter-node context. Our previous work presented an LZW-based technique targeting
a computer program’s object code which exploited the dominance relation to identify
inter-cache line context for compressing instruction cache lines [5]. In that paper
we derived a data structure (the compulsory miss tree) for representing a partial
ordering in which compulsory misses in an instruction cache would occur, and used
it to condition the LZW dictionary for compression/expansion of each cache line in
the program’s code. While the underlying source of context based on dominance
was the same as that presented in this paper, the method by which it was exploited
to condition and maintain the LZW dictionary during the compression/expansion
of a program was dramatically different to that presented here: space in the LZW
dictionary was statically allocated for each cache line contributing context to its
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children in the compulsory miss tree, whereas the management of the dictionary in
this paper treats the dictionary more like a stack.

All previous work we encountered in the literature which related to compression
involving graphs focused on efficiently storing their structure in a more compact man-
ner than that offered by a straightforward representation using adjacency matrices
or adjacency lists. Some of the techniques targeted web graphs—which represent the
link structure of the world-wide-web [3, 7, 9], while others targeted trees represented
by a stationary ergodic source [4]. In some cases the authors stored the URI of a
node as content along with the node and also required this data to be represented
in a space efficient way [10]. Typically, to allow direct and efficient access into the
graph, the standard graph data structure operations must be implemented over the
compressed encoding. This is in stark contrast to our approach which only requires
that valid paths be traversable through the graph. A more restricted view is that
presented in [4] where LZW is used to compress trees, but expansion of the trees
must occur in their entirety due to the breadth-first search parsing of entries in the
LZW dictionary. Like our approach, all methods we have seen operating on trees and
graphs assume the structure is static and any modification requires a re-computation
of the compressed representation.

7 Conclusion

Ziv-Lempel methods produce optimal coding as the size of the input tends to infinity.
Our technique increases the effective length of sequences being compressed within a
set of textual nodes organized as a directed rooted graph structure, giving a dramatic
increase in the compression ratios attained. We do this by exploiting the structural
properties of directed graphs which often provide a good abstraction over data en-
countered in computer systems, such as pages in the world-wide-web or control flow
graphs encountered by an optimizing compiler.

When compared with the LZW technique our Graph LZW algorithm trades ad-
ditional analysis undertaken at compression time for improved compression ratios.
Despite our superior compression, the modifications to a standard LZW decompres-
sor to support our approach are relatively minor and do not contribute any significant
time overhead to the decoding routine. Notwithstanding the simplicity of our decod-
ing routine, the results we have presented are comparable with those achieved by gzip
which requires a considerably more complex decoder combining both static Huffman
and LZ77 decoding routines.
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