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Owing to the technological revolutions of the past century, information access

and provision have become a fortiori, one of the most prominent corner stones of

our society. Along with these revolutions, the associated responsibilities and choices of

authorities and engineers designing and delivering these technologies to the community

have increased tremendously.

Since its creation, the World Wide Web, for instance, has exceeded all

expectations relating both to its size as well as the way it a�ects our lives. Intertwined

with this exponential growth, the ability however to retrieve useful information from

the net is now completly dependant on how search engines order and present these

Web pages to users, raising many ethical implications.

Moreover, although the last decade witnessed giant leaps in information retrieval

technologies such as Page Rank, important issues relating to the way search engines

organise this data still persist. Traditional indexing approaches for instance, are �nding

it increasingly di�cult to keep up with the internet's expansion, while link manipulation

is moving Page Rank's hype curve towards increasing disillusionment. The recently

observed �Rich get Richer� nature of the Web favouring high pro�le pages as well as

entrenchment e�ects induced by search tools also pose a serious threat to diversity of

content in cyberspace. Finally, concern among the general public over privacy and

freedom of expression in the digital world is increasing as both goverments and the

private sector are accumulating control of digital information.

The question �Can search engine design be improved towards achieving better

InfoEthical practices? � evidently emerges.

This thesis therefore, is an attempt to provide solutions to these issues through

the conception of Elite, a novel P2P Web search engine designed with InfoEthical

considerations. Elite's objective is to promote quality & diversity of content through

selective collaborative peer �ltering over a semantic overlay. A new Ripple E�ect

technique will also be designed and analysed with the aim of fragmenting and handing

control over digital data to Web citizens through democratic decision making based on

universal values.
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Chapter 1

Introduction

1.1 The Rise of InfoEthics

Owing to the technological revolutions of the past century, information access and

provision have become a fortiori, one of the most prominent corner stones of our society.

Its importance is such that it is considered as one of our most fundamental rights &

duties, inherent to UNESCO's constitution [65] stating:

�That the wide di�usion of culture and the education of humanity for justice and liberty

and peace are indispensable to the dignity of man and constitute a sacred duty which

all the nations must ful�ll in a spirit of mutual assistance and concern�.

Along with these revolutions, the associated responsibilities and choices of

authorities and engineers designing and delivering these technologies to the community

have increased tremendously. According to a UNESCO report [25], �Because choices

in their design and use carry moral consequences, these technologies pose signi�cant

infoethic challenges �.

As this thesis is being submitted, the European Union is holding the third

conference on the �Ethical Dimensions of the Information Society� in Strasbourg with

the sole purpose of adopting a �Code of Ethics for the Information Society�[64] currently

drafted and proclaiming an ethical framework including the following guidelines which

will be referred to on several occasions throughout this thesis:

1



Extract of the Code of Ethics

• Article 1.4: This Code of Ethics [...] shall provide a common framework for

the setting out of commitments to ethical conduct in the information society, in

order to promote diversity of content in information networks.

• Article 2.2: The use of ICTs and content creation should respect human

rights and fundamental freedoms of others, including personal privacy and the

right to freedom of thought, conscience and religion in conformity with relevant

international instruments.

• Article 3.1: Governments, civil society, the private sector and other stakeholders
holding information on the state of technology should disseminate such

information to the maximum extent possible to enable the public to consider how

the information society can guard against use of information and communication

media that violates human rights.

• Article 5.2: Principles urging the information society to be based on universally
accepted values and all stakeholders to promote the common good and prevent

the misuse of ICTs should be respected.

1.2 Search Engines in an Exponentially Growing

World of Information

Since its creation, the World Wide Web has exceeded all expectations related both

to the amount of information it can hold as well as the way it a�ects our lives.

Several studies throughout the years have already attempted to estimate its actual

size. According to [69] in 2003 the surface web1 consisted of approximately 167 Tera

Bytes of information. With a deep web2 estimated to be 550 times larger, the total size

1The surface Web (or visible Web) refers to the part of the Internet directly indexable by
conventional search engines

2The deep Web (or invisible Web) is the portion of the Internet not directly indexable by search
engines It can be contained for example in databases. By de�nition, the deep web is the WWW which
isn't part of the surface Web

2



of the system was evaluated to be more than 92 000 Tera Bytes ! Moreover, scientists

are expecting this growth to persist in the future.

Victim of its own success, the web is now facing the challenge of avoiding

collapse because of its own weight. Intertwined with this exponential growth, the

ability to retrieve useful information from this colossal entity is becoming, without any

surprise, a humongous task. Search engines have hence become the central �gure in web

browsing and the idea of managing without them today seems completely impractical.

As pointed out by S. Olsen[49], �if your page isn't indexed by Google, your page doesn't

exist on the web�. In a universe in constant expansion, our own vision of this world

can only be seen through the eyes of these telescopes. However large this source of

information might be, our ability to use this data is now completely dependent on the

pages presented to us by these search engines. Moreover, as most users only focus

their attention on the top-ranked results [36, 47], the additional concern about the

manner in which these pages are ranked becomes predominant. Furthermore, bringing

these issues up to a broader context, it becomes crucial, for the reasons outlined in

the previous section, to ask ourselves the following questions: Who controls this view

presented to us of the web? Are the tools provided presenting a fair and reliable view

of the web? Can they be improved? However genuinely good these authorities might

be, should they possess such an amount of responsibility towards our society? Can

they themselves be subjugated by anyone? And if so, who are these individuals? Are

there any alternatives to this scenario? Can search engine design be improved towards

achieving better Infoethical practices ?

1.3 Analysis of existent Search Engines

As Google puts it so famously well, �some people think the search is over� and

why wouldn't they? The past decade, has witnessed giant leaps in information

retrieval technologies. The most symbolic example could probably be described by

the elaboration of this new ranking system, PageRank, [50]developed in the early 90s,

by two Stanford students, Larry Page and Sergey Brin, suddenly improving the quality

of our search engine queries and leading to the creation of, without any doubt, one of

the most globally in�uential institutions of our time. Some of us might still remember

the B.G. , or Before Google era where a random individual's home page would come
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up on a search engine's �rst page result set, when you entered the word �search� as a

keyword. Although this memory would make most of us smile today, it nevertheless

illustrates how this ranking system has improved our ability to discover interesting

information on the web. Fewer people however, would be aware of the di�culties, in

the background, faced by search engine designers today, trying to adapt to the never

ending evolution of this �rst Universal �Book� of Human Knowledge.

1.3.1 Copying the Web

As pointed out in 1.2, the web has become an immense entity growing exponentially,

and simultaneously increasing the di�culties in both managing and organizing it. Until

recently [12], the typical approach in dealing with this problem would have consisted

of crawling the web using spiders to index and store as many pages as possible in

servers. Without any surprise, this task has become Herculean and even today's most

successful systems are struggling to keep up with the pace. According to a BBC report

in 1999[20], search engines were already logging only 16% of the publicly indexable web

estimated to be of only over a billion pages at that time[14, 42]. Another article[23]

issued more recently reported that Google search crawlers could collect about 850TB

of information from the web. Although this may seem a lot, it still represents only

1% of the estimated total size of the web 1.2. In addition to this, as mentioned by

Junchoo Cho in [12], we also need to take into account the fact that existing pages are

continuously updated. According to his study, 23% of pages change daily and pages

have a half-life of only 10 days (in 10 days half of the pages taken into account were

gone).

Notwithstanding automated crawling 10 years ago seemed the most obvious

strategy to adopt, these �gures strongly suggest these methods are becoming

questionable. As pointed out by Faroo [2], �We can't possibly copy the entire web

to servers? �. And after all, why should we? As stated in [15], is it really necessary

to index the entire web? Although returning millions of pages to a query might seem

impressive, is it really useful? As mentioned earlier, web users only browse through the

�rst results sets anyway and then give up. Wouldn't pre-�ltered indexing approaches

be preferred to exhaustive indexes?
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1.3.2 PageRank, or The Rise and Fall of an Empire

PageRank has undoubtedly become one of the most popular IR successes in the last

few years, more than likely due to attention emanated from its resulting search engine.

Originally described by Larry Page and Sergey Brin in 1998 [50], this algorithm exploits

the linkage structure of the web to evaluate and sort out pages in relation to their

�importance�.

The intuition behind PageRank is the following: if a page possesses many links

pointing towards it, we may conclude that a substantial amount of people are interested

in this page. Additionally, if several people are interested in it, this page's quality

should be considered as high. Furthermore, if one of those inward links originates from

a �high quality� page, supplementary weight can be associated with this connection.

The simplicity of this algorithm and evidence of improvements over its

predecessors, in result set ordering is today undeniable. Over the last few years however,

scientists have started witnessing undesirable e�ects of this technique. Whether they

are intentional or natural side e�ects, these occurrences have moved PageRank's

Gartner hype curve peak[30] towards increasing disillusionment.

1.3.2.1 PageRank Manipulation

In recent years, extensive press coverage has pinpointed several incidents directly

related to vulnerabilities with this technique. Although some individuals may bene�t

from it, to most of the Internet community, these events are becoming an increasing

nuisance. Apprehension over the potential impact of these vulnerabilities related to

the information presented to web users is rising.

In 2003, the BBC [19]described how president George W Bush had been Google

bombed[17]. During the time this article was released, whenever the words �Miserable

Failure� were entered in the search engine, web users were directed towards the

president's biography on the White House website. During the same period, what

started as a private joke by a pharmacist became an Internet hit. A site which was

designed to look like an error message appeared among the �rst topped ranked result

set[21]. When the query �weapons of mass destruction� was entered in the popular

search engine, a page with the message: �These Weapons of Mass destruction cannot

be displayed� appeared on the screen. Although the latter had very benign e�ects, these
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Google bombs (also referred as Link bombs), which exploit the PageRank algorithm

by arti�cially increasing the amount of links pointing towards a particular page, can

also have serious impacts. Online ranking for example, can have important economic

e�ects[20], hence web positioning companies such as NetBooster [18][4] have sprung up,

o�ering services increasing your page rank in common search engines by misusing the

algorithm for �nancial purposes. Even worse, last October The International Herald

Tribune[63] reported the existence of a project among the US Republican party whose

sole purpose was to increase the rank of 50 republican candidates to the presidentials

by �ooding the web with references to these politicians and repeatedly cross-linking

speci�c articles on sites.

This series of events, among many more others, defeats the popular idea that

search engines are unbiased and �untouchable� by malicious individuals wishing to

in�uence popular opinion in a speci�c direction.

1.3.2.2 Rich get Richer Phenomenon

In addition to intended e�ects, PageRank also overlooks issues related to the �natural�

structure of the web. A whole �eld of research has recently emerged, interested in

the natural linkage of the World Wide Web. These studies have discovered how this

hypertext document system evolved into a form very similar to a �bow tie� . According

to [9], the distribution of outgoing and incoming links naturally follows a power law

distribution favoring a core of the web corresponding to the knot in the bow-tie. This

phenomenon has become so widely accepted as been part of the essence of the web,

that all major analytical studies [13] modeling this data structure take into account

this phenomenon. It produces a so called �rich get richer� scenario where existing pages

with already a high degree of incoming links pointing to them are the most likely to

receive new incoming links by newly created pages.

This characteristic once again, involves numerous ethical implications related

to the dissemination and variety of information available to web users. To mention

one among several studies[31], the political science report by Hindman in Princeton: �

'Googlearchy': How a Few Heavily-Linked Sites Dominates Politics on the Web�[37]

illustrates how this �winner takes all�, power law distribution aggregate structure

of the Web is anti-egalitarian and exhorts global citizens to be aware that the
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current predominant feature of online political information is based on what they call

�Googlearchy�, the rule of the the most heavily linked.

The natural tendency of this universal information source to favor high pro�les

inclines search tools to instinctively orientate themselves towards these pages and

thus limiting the diversity of information accessible to web citizens consequently

going against Article 1.4 in the Code of Ethics 1.1. Although, PageRank's original

designers were, more than likely, unaware of this phenomenon, current engineers hold

the responsibility to counter this natural e�ect while designing new web information

retrieval tools in order to honor this code of ethics.

1.3.2.3 Entrenchment E�ects

Another important fact needed to be taken into account, is how current search engines

were designed based on a conceptualized static Web. For a surprising amount of

scientists, considerations of the � living� nature of the World Wide Web is usually

neglected if not entirely ignored. As mentioned previously1.3.2.2, the hyper link

structure we created more than 20 years ago has evolved unintentionally with a bow-

tie like anatomy and will continue to do so in the future. According to Liu, �temporal

dimension of search is of great importance in the development of search technology�[51]

and several studies[38, 55] have already started taking seriously into account this

previously unexplored search dimension.

Emerged from this very young �eld of research is the concept of Entrenchment

E�ect. In several of his researches[40, 41, 56], Junchoo Cho studied the impact of

current search engines on the Web and discovered how they delay the popularity of

newly created pages by an alarming factor of 60 ![40] This literally means that �if it took

one year for a page to become popular without search engines, it may take up to 60 years

for the same page to become popular when search engines are heavily used �. Unlike the

one mentioned previously 1.3.2.2, this issue however, is directly related to the design of

our search tools. As if a bow-tie knot 1.3.2.2 information structure favoring a core of

the web wasn't enough, these tools have contributed to tightening the knot even more

resulting in a theoretical Web Choke where randomly browsing information outside of

this core entity would be extensively di�cult or maybe even impossible. Not only does

this problem contribute to the one mentioned earlier 1.3.2.2, it additionally impedes
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citizens of their fundamental right to freedom of speech mentioned in Article 19 in the

Universal Declaration of Human Rights[48]. One might argue that low pro�le citizens

are still free to express their opinion on the net, but what bene�t is there in speaking

when no one or few are listening?

1.3.3 Freedom of Expression and Control over Digital

Information

The original naive dream of a World Wide Web, ultimate cyberspace ensuring Global

& Equal Freedom of Expression is fading as it blooms out of its infancy.

1.3.3.1 Digital Censorship

All of those thinking the Internet would �nally become the decisive tool against

censorship have been up for a big disappointment these last few years. History repeats

itself, and censorship is now moving up to the global scale. Anyone reading the

press recently would be aware of legal decisions and government actions attempting to

control somehow the information �ow over the net. At this instant, probably the most

covered topic on digital censorship would involve the Chinese government defending its

new Internet censorship laws ensuring � harmful information from spreading through

the Internet� as described in the International Herald Tribune[62]. These actions are

without any doubt impudently a�ecting global citizens from their fundamental right

of freedom of expression [48]. For this reason, many organizations [58, 29, 67] have

emerged, with the sole purpose of ensuring these rights are preserved. As engineers

providing these technologies which can be used by some governments for the latter

purposes, it is crucial to take into account these issues when designing these systems

so as to minimize the potential harm induced by these activities.

1.3.3.2 Control of Digital Information by the Private Sector

When it comes to search engine technologies, the two obvious major concerns to be

taken into account consist in minimizing the amount of in�uence a government can have

over the result set delivered by the technology providers and ensuring the impartiality

of the private sector creating these result sets. When it comes to the former, laws
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can be created to guarantee the autonomy of search engine providers but as history

shows us, these laws can be bent or even changed with time due to political shifts and

hence these solution only provide a limited peace of mind for web users. As far as

the latter is concerned, laws once again must provide a legal framework within which

these technology providers must evolve, but once more, users are mostly relying on the

good will of these entities. Unfortunatly, the �Don't be Evil� motto[32] isn't a view

shared by all, and although some might currently embrace it fully, the considerable

power generated by this amount of control over digital information is a too bigger bait

for evil wills. The bottom line on all these issues is really all about who should possess

this control over digital information? An attempt to answer this question is given in

1.3.3.5.

1.3.3.3 Anonymity

Anonymity of course, is also intrinsically intertwined with freedom of expression. A

list of in�uential personalities could be enumerated, such as Voltaire, Camus, Hugo...

who all, at some point in their lives, used anonymous writing in order to bring forward

novel ideas which could have led to sanctions by authorities at the time. Anonymity

thus, enables individuals to bring forward challenging ideas without having to fear

for their own sake. This topic is therefore a crucial element needed to be taken into

consideration when designing a technology promoting freedom of expression.

1.3.3.4 The Cons of Unilateral Freedom of Expression

Several endeavors have already aimed at tackling these issues. One of the most

famous examples would be the FreeNet project[3] initiated by Ian Clarke. FreeNet is a

distributed storage system built in such a way to guarantee total freedom of expression

over the net. This example probably illustrates best how design considerations can

have a major impact on Infoethical issues. Notwithstanding this project attempts

a fair trial towards a solution to freedom of expression over the net, it nevertheless

provides this freedom by stepping over other fundamental rights. According to

FreeNet's philosophy[27], �there is no middle-ground, [...] you either have censorship,

or you don't� and following this argument Clarke makes several conclusions such as

�you cannot guarantee freedom of speech and enforce copyright law� and even more
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concerning, in paragraph 6, he argues in favor of letting racist information spread freely

over the net. How many other examples are needed? Child pornography for example

isn't even mentioned as well as rights to privacy which, to the same extent as freedom

of expression, is part of our most fundamental rights as well (Article 12[48] and 1.1).

Should all these rights be neglected for the sake of total freedom of expression?

Although censorship should be avoided as much as possible, unilateral freedom

of expression undermines other fundamental rights and therefore isn't defensible. The

main reason behind this unilateral view emanates from his concept of control over

digital information. According to him, �you can't allow those in power to impose

"good" censorship, without also enabling them to impose "bad" censorship�, hence to

avoid any �bad censorship�, Clarke advocates the total lack of control over information

available to users within his system. Albeit any entity retaining the power to censor

can indeed exercise it with both altruistic and malicious means, why should �those

in power� as he calls them, or more precisely governments and the private sector,

necessarily have such an authority?

1.3.3.5 E-Governance in Cyberspace

E-Governance[66] is an emerging concept which aims at �encouraging citizen

participation in the decision-making process� as well as �making governments more

accountable, transparent and e�ective�. With recent advances in technology, it

becomes increasingly possible to alter how citizens relate to and are governed by

their government. Digital information management is, without any surprise, an area

a�ected by this progress. These technologies, for the �rst time, o�er the possibility for

citizens to directly interact with decision making processes a�ecting them and therefore

enables �the people� to increase their individual as well as collective power over their

environment.

It has been previously shown 1.3.3 how the amount of power, over digital

information, currently retained by authorities raises important Infoethical issues needed

to be resolved. Section 1.3.3.4 additionally suggested how a certain amount of control

over information is nevertheless necessary to protect the most vulnerable as well as

our fundamental rights. E-Governance could provide an answer to these issues, by

migrating and fragmenting this amount of power down to individual users, � Global
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Citizens of the Web�, promoting democratic decisions on how this Global Commons of

Information is managed and used and by adopting Universal Values 1.1 shared by the

majority. At the same time as collectively and directly empowering individuals to self

governance over information management, this would release authorities from ethical

implications related to the manipulation of data against the will of the people since

the possibility of doing so disappears. Authorities such as the private sector would

instead only be responsible for delivering these technologies enabling citizens to make

collaborative decisions on how to manage the data available. Of course, this remaining

responsibility still raises important ethical implications since it indirectly a�ects how

decisions will be taken (whatever they are). This issue however, can be resolved by

promoting openness in the design and implementation of these tools through open

source applications for example. The weight of this bait to malicious entities, currently

carried by the private sector, therefore disappears and is instead transferred to the

population which is, (based on the fundamental concepts underlying democracy), a lot

harder to subjugate as a whole.

1.4 Philosophies behind this Research

This Thesis believes that:

• Although censorship must be avoided, it shouldn't be done to the detriment of

privacy and other fundamental rights for all the reasons mentioned above.

• The right to manage this Universal Commons[33] of Information should be

possessed by citizens collectively as opposed to an institution or authority and

decisions on how to manage this information should be done according to

universal principles chosen democratically over the web. Notwithstanding this

task may never be fully achieved, purely due to technical reasons, it nevertheless

should be an ideal sought for by technology designers.

• The private sector should transfer the responsibility of controlling digital data

down to the people, rather than holding the responsibility itself, and instead

provide an open platform enabling individuals to interact and take these decisions

together (1.1).
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1.5 Aims of this Research

The aim of this research is therefore an attempt to provide a Search Engine as an initial

application substrate designed with E-Governance purposes in mind, with an emphasis

on removing as many Infoethical concerns as possible with the following characteristics.

The system should:

1. Be Autonomous & Manage itself on a Global Scale.

2. Return High Quality Results to Web Users

3. Provide an Answer to the Increasing Size of the World Wide Web and its

implications for Search Engines Performance.

4. Take into account the Evolution of the Web's Hypertext Structure.

5. Counter the Rich get Richer Nature of the Web.

6. Minimize Entrenchment E�ects of New Web Pages.

7. Remove the Ability to Arti�cially Increase the Rank of a Page in Result Sets.

8. Remove Censorship going against Universal Values shared by the Global

Community.

9. Promote Free Expression as well as Protecting Privacy and Fundamental Values.

10. Guarantee Anonymity to Web Users

11. Fragment and Disseminate the Power to Control Digital Information towards

Global Web Citizens and Promote Web Democracy

1.6 Contributions of this Research

This research is an attempt to show how computer engineering design, with a strong

ethical dimension, can have a direct and positive impact on how our society evolves,

in the near future, through the design and implementation of Elite a new peer to peer

search engine.
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This document demonstrates how Elite[43] attempts to solve issues mentioned

in this chapter. It shows how collaborative selective peer �ltering for instance, can

overcome the �Rich get Richer� phenomenon, while entrenchment e�ects can be reduced

through the use of a zero input Ripple E�ect recommendation algorithm developed

for this purpose. A strong analysis of this algorithm will be presented suggesting it

improves general Web browsing quality and has a major impact on new high quality

pages awareness in the community. This research also shows how pre-�ltered indexing

scales in comparison to exhaustive indexing, to the never ending increasing size of the

Web.

Finally, Elite ultimately endeavors to provide a reliable answer to control over

digital information on the Web. It will show how a fair censorship model based on

�Report & Support� combined with a �Tit for Tat� strategy can be achieved. Elite will

eventually demonstrate how fragmenting its global index & associated responsibilities,

by handing them down to users, can enable people together to decide how information

should be managed by democratically promoting universal values.

1.7 Dissertation Outline

This research is organized as follows:

Chapter ?? will cover topics of interest to the reader which will be mentioned

on several occasions within this document, followed by a detailed description of Elite's

architecture and design in chapter 3.

The subsequent chapter will present how an analysis of the Ripple E�ect was

performed through formal computation and simulation. This chapter will also give a

detailed implementation description of Elite from a software point of view.

Chapter 5 will present interpretations of the Ripple E�ect 's formal model as well

as simulation results and evaluation of Elite's design against the issues raised in this

introduction.

Finally, a conclusion of this work will be given in chapter 6 followed by interesting

post investigations to be carried out in future research.
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Chapter 2

Related Research

This chapter presents an overview of previous research carried out which will be

refered to on several occasions throughout this document. Section 2.1 outlines in more

details the fundamental issues behind high pro�le favouritism while section 2.2 gives an

overview of peer to peer technologies within a search retrieval context. Finally, section

2.3 contains a description of the underlying overlay network technologies used within

Elite.

2.1 Rich get Richer & Entrenchment E�ects

In several of his researches [40, 41, 56], Cho studied the evolutive nature of the World

Wide Web and the impact of search engines on its ecology. One of the most recurrent

subjects examined in this area of research relates to how high pro�le pages are favoured

by the intrinsic nature of the Web. As it happens, the layout of all incoming and

outgoing links from pages on the internet follows a power law distribution. What this

means, is that pages already holding a large amount of incoming links, are also the

most likely to get new ones in the future. In an environment, where the importance

of a page is determined by search engines on how many incoming links are pointing to

them 1.3.2, this subject becomes predominent. Hence, in one of his researches [40], Cho

attempts to identify the scale of this behavior and subsequently examines the impact

of search engines in such an environment.
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2.1.1 Natural High Pro�le Favoritism

So as to determine the natural tendency of the net to favor high pro�le pages, a snapshot

of the Web was collected repeatledly over a period of 7 months. Each of these snapshots

consisted of about 5 million pages from 154 di�erent websites. For each collection, a

directed Web graph was created describing the linkage structure between all of these

pages. In a Web graph, nodes represent pages and edges represent links. So an edge

from node A to node B represents a link from page A to page B. For each of these pages,

a PageRank value was computed (section 1.3.2). Once a PageRanks was associated

to each page in each snapshot, pages's incoming links evolution was examined during

this period of time. It was observed that 20% of pages with the highest incoming links

obtained 70% of the new links after 7 months, while the remaining 60% of the pages

obtained nearly no incoming links during that period. This shows how serious this

high pro�le favoritism naturally caused by the World Wide Web is a�ecting low pro�le

pages.

2.1.2 Search Engine Induced High Pro�le Favoritism

Awareness of the Web's natural inclination towards certain pages led to an investigation

on the impact of search engines over this situation was subsequently carried out. The

fundamental problem with search engines is that they present to users a set of most

popular pages ranked in accordance to their �importance� which has a tendency in

making these pages even more popular to the community. The following study therefore

consisted in determining how much in�uence this behavior had over page popularity.

In order to examine this bias introduced by search engines, two models on how

users discover new pages were outlined. The �rst consisted of the Random-surfer model

where users discover new pages purely by sur�ng randomly on the Web and following

links. This model's purpose is to capture the case when users are not in�uenced by

search engines. A second model where, in contrast, users always start exploring the

Web by going to a search engine was also introduced capturing this time a search

dominant browsing model. By analysing and comparing the popularity evolution of

pages within these two scenarios, the bias induced by search engines could hence be

identi�ed.

The random surfer model was de�ned according to 2 concepts which will be

15



Figure 2.1: Time Evolution of a Page Popularity

refered to on numerous occasions within this document. The �rst important one relates

to the popularity of a page. The popularity P (p, t) of page p at time t is de�ned as

the fraction of Web users liking the page. For instance, if say 100,000 users, out of a

million, like page p, this page's popularity will be P (p, t) = 0.1. In a similar manner,

the Visit rate V (p, t) of a page p is de�ned as the fraction of visits a page gets within

a time unit interval t. Using these 2 concepts, the following assumption is formulated:

the number of visits to a page is proportional to its popularity. In other words,

V (p, t) = r ∗ P (p, t) (2.1)

where r is a normalisation constant. This assumption makes sense and is very obvious.

If a page is more popular than another, we can very certainly expect the most popular

page to receive more visits than the latter.

Based on these assumptions, a formal theoretical description of an average page's

popularity is de�ned and graphed (�gure 2.1).

An additional experiment based on the evolution of Googles popularity since it's

creation was performed and con�rmed this curve's accuracy. In this graph, popularity

P (p, t) of a page of quality Q(p) = 1 (quality is measured from 0 to 1) is plotted

against time. A quality equal to 1 represents the case where any user aware of the

page will like it. From this graph, it is easy to notice how a page's popularity goes
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Figure 2.2: Popularity Evolution under the Search Dominant Model

through 3 phases: the infant stage, the expansion stage, and the maturity stage. In

the �rst stage, the page is barely noticed until it reaches its expansion stage where it's

popularity suddenly increases until it subsequently stabilizes at a certain value.

For the second model, it was assumed that all users where using the same search

engine and that the same query was constantly initiated returning the same results.

Moreover, in order to simulate user behavior faced with a result set, since it was proven

that the probability of a page being hit by a user is related to the pages position in

the ranking [36, 47], this behavior was modelled using the following equation:

V (p, t) = c ∗ x
−3
2 (2.2)

where x is the rank position and c a constant. Figure 2.2 depicts the popularity

evolution of a page within this search dominant model.

These �gures are alarming ! For the same parameters, according to this graph,

we can see how a page would take 66 times longer to become popular within a

search dominant environment as opposed to a random-surfer model. Furthermore,

an interesting point to note here is how the curve has now become a step function as

opposed to a smooth evolution in the previous graph. This means that a page will

possess a very low awareness initially for a very long period of time, however, as soon

as it's popularity starts increasing, it stabilises nearly instantly.

These results therefore demonstrate how contemporary search engines have an
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alarming in�uence on a page's ability to be seen on the Web, con�rming our statement

in section 1.2.

2.1.3 Page Quality Prediction

Having studied the popularity evolution of pages in these two di�erent scenarios, Cho

subsequently endeavors to predict page quality based on popularity evolution analysis.

A formal de�nition of page quality is proposed: The quality of a page p, Q(p) is the

probability that an average user will like the page when it sees the page for the �rst

time. In other words, Q(p) = P (Lp|Ap)where Ap represents the event that the user

becomes aware of page p and Lp the event that it likes the page when seeing it for

the �rst time. The problem with this de�nition is that it is very hard to determine if

a user actually likes a page or not. And experiments using explicit feedback are very

limited. Hence, he assumes that if a user creates a link to a page it must indicates that

this user is interested in the page. Therefore, by observing the creation of links we can

implicitly obtain feedback on how many people currently like the page. Secondly, Cho

follows by stating that a page of high quality will see its popularity increase a lot faster

than low quality pages since a larger fraction of visitors will like it when they see it.

Ergo, by observing the increase in popularity of a page we can obtain an estimate of

page quality as well.

The model described in the previous section is therefore extended to include

awareness A(p, t) simply de�ned as the fraction of users aware of page p at time t.

This enables him to bring about another important relationship which will be used

in a subsquent part of this document. In order for a user to like page p, it must be

aware of it and like it. Therefore, P (p, t) = A(p, t) ∗ Q(p). Having extended this

model, an experiment calculating the increase in popularity of pages over time I(p, t)

is initiated with the increase of popularity over time of a page mathematically de�ned

as the derivative of this page's popularty, hence I(p, t) =
dP (p)

dt

P (p)
.

Figure 2.3, presents the results obtained for a page of quality 0.2. It is very clear,

how the curve depicting the increase in popularity of a page represents the inverse

of a page's popularity. Moreover, notice how I(p, t)'s initial value as well asP (p, t)

�nal value are equal to page p's quality. As a result of this study, Cho concludes by

stating how page quality can be obtained by measuring it's popularity and increase in
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Figure 2.3: Time evolution of I(p, t) and P (p, t)

popularity over time using the following formula:

Q(p) = I(p, t) + P (p, t) (2.3)

2.1.4 3rd Generation Seach Engines

Taking into consideration the evolution of Web search engines in the last two decades,

one could easily distinguish several �Search Engine Era�.

The �rst generation of ranking systems for instance, determined the quality

or importance of a page solely based on information contained in these. Very little

consideration of the net's link structure was taken into account when ranking this

information. We could probably estimate this period to have persisted until the end of

the 20th century when came along PageRank.

The second search engine generation however, in addition to considering pages'

information, started according much more importance to the link structure of the Web.

Page Rank and the advent of Google for instance, in the early 21rst century probably

symbolises best this evolution.

Today, Web scientists are considering going even further by taking into account,

not only this global hyperlink structure, but also it's anatomy and evolution over time

of pages it contains. This next step could characterise the birth of a new kind of search

engine along with a new vision of this fantastic information common [33].
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2.2 Peer to Peer Systems

A lot has been said on Peer to Peer systems these last few years, especially in relation

to �le sharing applications. These systems enable millions of user to connect with each

other independently to collaborate so as to provide a common desirable service. This

section describes in a nut shell current research developments in this area and potential

features that, more than likely, will result from these investigations

2.2.1 Structured & Non Structured Peer to Peer

All of these systems are built on top of what is called an overlay network. Such a

network enables peers to organize themselves through a set of protocols and rules.

Most of these, can be divided in two categories referred to as structured and non

structured overlays [24].

Unstructured overlays [6, 39] are built as random graphs made up of nodes

linking with each other as they wish. These systems, due to their nature, usually

require random walks or �ooding throughout the network so as to discover data in the

community. When a random walk occurs for example, each node forwarding the query

evaluates it locally over the data it possesses and hands it over to one of its neighbor.

They are widely used in popular applications because they can perform complex queries

more e�ciently than structured overlays. They do not impose any constraint on each

node since the latter can choose whom they wish to be neighbors of. However, rare data

is very di�cult to �nd in these systems since information is randomly dispersed over

the peers. Moreover, each query launched in the system will return di�erent results

based on the current state of the network.

Structured overlays [52, 54], on the other hand, assign keys to data items

in the system and map each of these to corresponding nodes holding similar keys.

Structured graphs are usually seen as being more expensive to maintain. However

discovery of speci�c information in these systems can be more easily achieved due to

constraints imposed on data storage and node placement. They enable exact queries

to be performed in generally approximately log(n) hops and return the same result set

for each query initiated.
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Figure 2.4: Psearch Semantic Overlay Example

2.2.2 Semantic Overlays

Semantic overlays belong to a level of abstraction above regular overlays mentioned

previously. Their goal consists of organizing information semantically similar according

to the underlying overlay environment chosen. Psearch for example [61], assigns vector

space models to pages within its search space and places these items in function for

their vector as shown in �gure 2.4.

In this environment, the distance between 2 documents is proportional to their

dissimilarity. When a query is initiated for example, it becomes as a result, very easy

to orientate this message towards peers most likely to hold the information needed.

A wide range of semantic overlays [35, 60, 16] have been produced in recent years

with very di�erent and creative characteristics, organizing information in clusters or

sets.

2.2.3 Local & Global Indexes

From these semantic peer to peer structures, applications were built [72, 71], including

new search engines. Although very similar to traditional ones in appearance, their

internal structure however is very di�erent. One of the most important choices lies

in choosing the correct index strategy to adopt which can be divided in 3 di�erent

categories: atomic, semi-atomic and non atomic peer indexing.

In atomic indexes, information model granularity is accomplished to a peer

level.All of a peer index is grouped together and cannot be separated. The focus

is made towards peers which can subsequently be modeled according to their center of

interest contained in their corpus of information held. The advantage of these models

is that peers can be grouped together by interests and keyword expansion can easily
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be achieved. For example, if a query for keyword K1 is initiated, and it happens that

most of the peers interested in K1 are usually also interested in K2, an expansion that

includes both keywords can be executed. The semantic implications of such a level

of atomicity implies that knowledge of the individual dominates global knowledge. A

certain amount of communal knowledge can only be obtained by joining several local

corpus. In these scenarios, peers model pages they hold using vectors and these peers

are then themselves modeled in the same way using their terms of expertise.

In semi atomic indexing, the granularity of atomicity is down to a peer's

individual term index. Peer indexes can be separated in relation to the terms they

contain but documents indexed can't. In these environments it is possible for example

to determine which were the most popular documents for such a term, but term

correlation for example becomes impossible (no query expansion possibility). Index

storage in these systems are based on terms mapped with speci�c peers.

Finally, non atomic indexes possess a granularity at the URL level. The

focus here relies more on the documents themselves being indexed. No peer identity

is retained neither with terms or document correlations. Global knowledge here

dominates completely. All terms present in a document are incorporated in a vector

which is then used to locate it later on ( similar to Psearch 2.2.2).

2.3 Pastry

2.3.1 Pastry Overview

Pastry [52] is a generic,structured, scalable middleware which acts as a substrate for

peer to peer applications. It enables peers to form a decentralized, self organizing and

fault-tolerant overlay on the Internet. Pastry's main objective is to provide e�cient

routing by organizing peers in deterministic locations. It is also a very convenient

overlay for peer to peer applications since it provides support for object replication,

and fault recovery.

Peers within a pastry network are arranged in a ring and given a unique nodeId

in a circular 128bit space (�gure ). Each peer maintains a routing table with peer Ids

it currently knows about in the system. When a Peer receives a message with a 128

key, it routes the message to one of the nodes in its routing table holding the closest Id.
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Each peer receiving such a message forwards it to the next node it knows about with

an Id closer than its own until the message arrives to the node holding the closest Id

in the system. This has the nice property of always guaranteeing that a message sent

will arrive at a destination. The expected average number of hops for a each message

is equal to log(n)where n is the number of peers in the system.

Furthermore, each peer in the system keeps track of L of its immediate neighbor

peers (Leaf Peers) in its node space Id. This enables replication to occur as well as

failure noti�cation etc...

2.3.2 Scribe

Many middleware applications have been built on top of pastry. Among the most

popular, Splitstream [45] enables high-bandwidth content distribution in cooperative

environments while POST [7] provides an all in one communication system including

mail, instant messaging etc... Also, �le storage middleware have sprung up such as

PAST [11, 53] maintaining a generic storage system for users and Squirrel [57] enabling

peers to organize themselves and create a distributed web cache. A new global generic

overlay [46] has even emerged just recently based on Pastry with the aim of linking

together all kinds of overlay networks such as Chord [34], Tapestry [22], CAN etc... in

order to provide them with a global bootstrap solution.

Although these application's popularity are increasing very quick, probably the

most adopted of all would be Scribe [10, 44]. Scribe is a generic, scalable group

communication and event noti�cation system providing application level multicast

and anycast. In a nut shell, Scribe enables nodes to create or subscribe to topics.

Whenever a peer (Peer A) wishes to subscribe to topic T for example, it creates a

128 bit hash (H(T)) of this word and uses it as a destination Id in a Pastry message.

The node receiving such a message becomes the root topic and maintains a list of

child subscribers. If another subscribe message for topic T is forwarded within the

network by peer A for instance, the latter stops forwarding the message and adds the

source Id as its own child subscriber. This creates a tree of subscribers in the Pastry

overlay. Whenever any peer wishes to publish information on topic T, it simply creates

a message with this information and sends it using H(T) as a destination Id. The root

then simply sends this information to all of its child peers in the tree.
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Chapter 3

Elite Design

This chapter describes in detail Elite's design, and in particular how it attempts to

remove or reduce fundamental info ethical issues outlined in chapter 1. It starts by

stating the fundamental concept underlying this system in section 3.1 followed in 3.2

by an outline of the fundamental technologies chosen and their reasons. Section 3.3,3.4,

3.5 and 3.6 provide a deep insight into Elite's internal operation. Particular attention

should be given to section 3.7 describing the Ripple E�ect technique as it will directly

relate to the following Chapter. Finally, future possible design considerations are

proposed so as to improve on this prototype's current design in section 3.8.

3.1 Intuition behind Elite

The fundamental intuition over which Elite relies on is the following:

�Human Beings are generally interested, to various degrees, in particular topics.

Additionally people, most of the time, only browse over pages of interest to them. Hence,

a page regularly visited must possess a certain quality to this user in relation to a given

topic. Furthermore, if this page happens to be frequently browsed by a set of individuals

highly interested in the same topic, this page must be of high quality in relation to this

particular topic.�

Hence these individuals highly interested in a particular topic, referred to as

�Elite� members, possess as a group, valuable information regarding the quality of
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pages for this topic. This system is therefore designed so that the �Elite� can Shine

and Share it's Wisdom to the rest of the Community� in exchange of some reward,

in a similar way described by Wassily Kandinsky in �Point and Line to Plane� [70]

where a small group in our society can positively in�uence and improve the majority

by spreading new valuable ideas and information to the rest of the community.

3.2 Fundamental Design Decisions

The �rst fundamental decision taken when designing Elite involved using an underlying

peer to peer network overlay. Such a technology would enable us to create an

autonomous, decentralised system di�cult to attack, manipulate and would also remove

the need for any external authorities. Moreover, the overall load of the system could

be shared by every peer as a whole, thus improving scalability. A structured overlay

was chosen as it would enable us to organize nodes according to the semantic needs

of the network and also provide a consistent answer to successive queries. Pastry was

ultimatly chosen as Elite's underlying overlay since it is a mature and very good peer

to peer middleware abstraction and also provides fault tolerant behavior, replication

etc... which would later on be crucial choices for full scale deployment.

It was decided to use a pre-�ltered index as opposed to traditional exhaustive

indexes. As stated in section 1.3.1, millions of pages returned in result set are never

browsed. People usually take into account only the �rst few results and then start

a new query or give up[36, 47]. So using a pre-�ltered index would make Elite more

scalable.

�Human Web crawling� will be used instead of spider Web crawling. Millions

of people browse the Web simultaneously 24/24 and don't consume any cpu cycles.

Moreover, as stated previously, people generally browse through interesting pages,

hence using humans would both reduce computational cost and provide a �rst level of

Web �ltering which web crawling spiders can't achieve.

A hybrid indexing scheme will be used attempting to take the bene�ts of both

local and global indexing. Since our system will be using peer selection mechanisms,

it is mandatory to possess some level of peer modeling, hence a local indexing scheme

enabling user modelling is required. However, our goal is to provide equal provision of

information to all users, therefore a query should return the exact same result set to
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any peer in the system where ever they might be located, ergo global indexing should

be used to store our results.

Elite will attempt to counter Entrenchment e�ects by using Cho's quality

prediction equations 2.1 along with a new Ripple E�ect technique. Hence popularity

as well as increase in popularity of pages in the system will be monitored.

A variation of this Ripple E�ect algorithm will also be used to endeavor a

level of censorship model enabling peers to democratically make decisions about how

information is managed in the system.

3.3 Elite Overview

3.3.1 Elite World

In the �Elite World�, users are modeled as peers sur�ng the Internet via a web browser.

They maintain a corpus of pages previously visited, each associated with a given web

page Id representing subjects of interest related to it. The corpus needn't store the

actual web pages themselves, solely their URLs and web page Ids. The joined set

of pages thus represents a pre-�ltered portion of the Web �distilled� according to

community browsing activities. Peers are subsequently modeled based on their web

page Id set along with their browsing patterns and given an Id describing their interests

and associated strengths. The system thereafter selects a group of �Elite Peers� of

variable size and membership, comprising of individuals with highest interest in speci�c

subjects. Elite Peer Visit Rates (VR) as well as Relative Visit Increase (RVI), for each

web page co-jointly browsed by the group, are measured and shared throughout the

entire community. Additionally, in exchange in o�ering this information, Elite Peers

possess the privilege of being the foremost aware of newly created pages with potentially

high quality in their subject of expertise. Finally, Elite resembles most search engine

as to initiating keyword queries but di�ers in the result set retrieved from it. Web

pages returned are ranked in 3 di�erent ways, based on Visit Popularity, Increase in

Visit Rate and Rippling (explained in further details in section 3.7).
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3.4 Elite Architecture

3.4.1 Peer modeling

Peer modeling is a very large research �eld of its own which would probably require

a dedicated chapter in this document. Since this research focused more on how peers

could collaborate between each other to meet our goals, these peer in our system,

were modelled in a simple similar way as achieved in [35]. Pages browsed are given an

identity using Vector Space Modelling, which creates an array holding as entries, topics

covered in these pages, with their associated strengths. Once any peer possessed a set

of these vectors, the normalised average strengths in each of these terms was computed

giving a global vector describing this individual.

It must be emphasised how this elementary peer representation does not a�ect

our system since potentially any user modelling technique could be �plugged� in Elite

as desired. However, a long list of variables could be taken into consideration for such

a task. Note that in our system for instance, since the normalised average is taken for

each term, this technique doesn't make any di�erence between the amount of pages

browsed between users but only monitors the relative proportion of pages browsed for

each term. A more evident approach would consist in evaluating a function taking into

account for example, the number of pages browsed in particular topics, the average

page browsing rate, the time spent on pages etc...

3.4.2 Elite Group Membership Management

For each individual keyword queried by users, an elite group is created based on

identities obtained through peer modeling. This group's sole purpose is to deliver

a set of pages of increasing quality related to this keyword.

3.4.2.1 Keyword Elite Peers

The Keyword Elite Peer (KEP), represents and acts as the main rendez-vous point for

a given elite group. Any peer in the system possessing an Id which happens to match or

closely resembles this keyword's hash is selected as the KEP. A peer can act separately

as the KEP for several keywords if it happens to correlate with several hashes as shown
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Figure 3.1: Peer Joining an Elite Group

in �gure 3.1 but there can only be a single KEP for each elite group. It is responsible

for managing the elite group's membership requirements and size according to the

networks characteristics and popularity of it's associated keyword. In other words, it

aims at maintaining the elite group's size at a stable number as high as possible to

guarantee the best quality results to users as well as balancing this aspect with the

networks bandwidth capacity.

3.4.2.2 Diagram Clari�cations

Although the system consists of one ring it is more easily conceptualized as one global

ring and several elite rings for each keywords 3.2. In the rest of this document, �Simple

Peer� to �Simple Peer� messaging will be depicted in the global ring while Elite Peer
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Figure 3.2: Elite Diagram Clari�cations

to Elite Peer communication will be represented in the internal ring. Two nodes linked

together simply illustrates how both refer to the same Peer but from di�erent role

perspectives. A message initiated from an Elite Peer and routed through the global

ring thus describes how the communication was initiated by the Peer because of it's

Elite status in a keyword but destined to a Peer which isn't necessarily an Elite Peer.

3.4.2.3 Membership Request

When a Peer browses through a web page containing a new subject of interest previously

unknown (a new term), it creates a record Id of this new web page in its corpus as

usual and therefore becomes initially �interested� to a very limited extent in this subject

in proportion to the importance of this term in the Web page. When this happens,
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this peer wishes to know if it's interest or expertise in this term meets the minimum

requirements to enter the associated elite group (this initial situation will only occur

when Elite is been initialized or if the term is very uncommon). It therefore sends

a Join Request Message (JRM) to the corresponding KEP by setting this message's

destination Id as the hash of the speci�ed term 3.1. The latter sends back an Elite

Member Status Message (EMSM) either granting the request, (if the current Elite Peer

membership size for this keyword is below the maximum authorized or the peer meets

the minimum requirements), or else refuses the request. When the second situation

arises, the KEP sends back the current minimum entry requirements for this elite

group. The Peer stores this information for each keyword it currently isn't an Elite

member of, and initiates a JRM if it ever meets this expertise. Since we assume the

overall expertise of peers in a given topic can only increase as they browse the web,

this minimum requirement can only increase as well. Hence if a peer never meets this

minimum entry requirements it never needs to send such a request again therefore

avoiding unnecessary messages being sent.

3.4.2.4 The LEP Update Protocol

When a Peer is granted Elite membership, it subscribes to the Scribe STopic

corresponding to the hash of this keyword. This enables all Elite Peers (EP) as well

as the KEP to contact all current EPs without any knowledge of their identity thanks

to Scribe's implementation. The Least Expert Peer (LEP) of the group periodically

broadcasts on this topic it's expertise in the given keyword as it increases over time. The

KEP which also subscribes to this topic is therefore constantly aware of the minimum

entry requirements for a given elite group. Hence if it receives a JRM with an expertise

higher than the current Least Expert Peer, it grants access to this new Peer and asks the

LEP to leave the group by broadcasting the noti�cation on to the group topic. When

a new EP joins, it automatically sets itself as the LEP and broadcasts its own keyword

expertise to ensure it is or isn't the LEP. Each time an LEP update is broadcast in

the group, each EP compares it's own expertise level with the one contained in the

message. If an EP happens to have a lower expertise than the current LEP, it now

becomes the least expert of the group. It therefore sets itself as the LEP and starts

sending periodic updates of its own expertise. The former LEP receives this update and
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Figure 3.3: LEP Protocol

realizes it isn't the LEP anymore and hence stops sending updates as shown in �gure

3.3. This protocol ensures that at any time, the LEP status is constantly assigned to

at least one Peer in the group without any identity being revealed either to EPs or the

KEP.

3.4.2.5 LEP Relief Task

If the KEP doesn't receive an LEP update after a certain amount of time, it assumes the

least expert peer has failed and sends an LEP relief task. This consists of anycasting a

message to a random EP asking it to initiate an LEP update. If this EP isn't the LEP

(which it more likely isn't) then all other EPs with lower expertise will set themselves

as LEPs and start sending updates. At some stage the EP with the least expertise in

the group will have sent its update, thus informing all other EPs that they aren't the

LEP anymore and the situation goes back to normal with a single LEP broadcasting

its expertise as shown in �gure 3.4.
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Figure 3.4: LEP Relief Task
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3.4.2.6 Anonymous Elite Membership

Membership to an Elite group is totally anonymous even to the KEP. The latter only

knows about the number of EPs and the current minimum entry requirements for

the group. When a Peer receives a EMSM and is granted membership, it is given a

temporary Elite Peer Id by the KEP. Each EP periodically sends an �Elite Peer Alive

Message� (EPAM) with it's Elite Peer Id to the KEP. If the latter fails to receive this

update in a given time it assumes the peer is dead and decrements the total number

of EPs in the group. This ensures total anonymity in the system.

3.4.2.7 KEP Replication

In order to minimize repercussion of a KEP potentially failing (�gure 3.5), the former

continuously forwards information it receives related to the elite group size and current

temporary Elite Ids to its Pastry Leaf Set Nodes (it's neighbors). These nodes also

subscribe to the elite Scribe Topic ( section 3.4.2.4) so as to receive minimum entry

requirements for this group. They act as �dead ends� receiving information but never

taking any actions and are for this reason, referred to as Latent KEPs. If at some stage

the active KEP dies, the Latent KEP with the closest Id to the elite keyword's hash

will ultimately receive a message destined for a KEP. When this happens, it sets itself

as active and sets its own Pastry Leaf Set Nodes as Latent KEPs (most of them will

already be latent KEPs).

3.4.3 Three Dimension Ranking

As mentioned in section 3.3.1, Elite provides an unusual result set to user queries. It

consists of 3 di�erent ranking systems each maintained for speci�c purposes.

3.4.3.1 Visit Rate Ranking

The �rst ranking, is the most straight forward. It consist of pages ordered according to

their current visit rate. As illustrated by Cho [40, 41] (section 2.1), the quality Q(p) of

a page is related to its popularity P (p, t) according to equation P (p, t) = A(p, t)∗Q(p)

( A(p, t), the awareness of page p during time t) while its visit rate V (p, t) is directly

proportional to it's popularity shown in equation V (p, t) = r ∗ P (p, t) ( r a constant),
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Figure 3.5: Latent KEPs

hence the visit rate of a page is dependent on it's quality according to the following

equation:

V (p, t) = r ∗ A(p, t) ∗Q(p) (3.1)

. Measuring the visit rate of a page thus, gives a fair idea of it's quality. Furthermore,

as discussed in section 3.2 Elite is designed with a hybrid architecture valuing Local

information, or information possessed by individual peers. Hence, if we consider

equation ?? from a local perspective, the awareness variable A(p, t) becomes a Boolean

since one Peer can only be aware or not of a page. When this peer becomes aware of

a page equation ?? therefore simpli�es to VL(p, t) = r ∗ Q(p) highlighting the evident

proportionality of a page's visit rate to its quality. The bottom line behind this fact is

that this ranking is user driven as opposed to link driven as in Page Rank. This result

set therefore counters the high pro�le favoritism (section 2.1) induced by estimating

quality based on the linkage structure of the web. We have previously seen (1.3.2.2)

how the web's structure naturally follows a power law distribution favoring high pro�le

pages (pages with many inward links) and how this situation favors the �Rule of the
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most heavily Linked�[37] phenomenon with every ethical implications associated with

it. Elite however relies on a �Natural� rather than an �Arti�cial� Quality estimator

(Human Beings rather than Web Links). Users implicitly assign a certain quality

to pages they browse through their visit rate. Of course, a page's quality can have

di�erent values for di�erent subjects but as stated in section 3.1, if this page's quality

is considered as high by peers highly interested in the same subject we can con�dently

estimate this page's quality for this given subject as being high.

3.4.3.2 Relative Visit Increase Ranking

Although the �rst ranking mentioned previously counters high pro�le favoritism, it

still fails to resist the �Rich get Richer� phenomenon. In other words, a search engine

based solely on the �rst ranking will have the same e�ect than those portrayed in [40].

Since users usually only browse through the �rst result set[36, 47] Pages already highly

ranked will get more awareness and hence will be visited even more. For this reason,

the Relative Visit Increase (RVI) of pages is taken into account. As described by �gure

2.3 in chapter 2, the relative popularity increase of a page, characterized by equation

I(p, t) = (
n

r
)
dP (p,t)
dt

P (p, t)
(3.2)

(with I(p, t) is the increase in visit rate of page p during time t and n & r constants),

is a good estimate for its ultimate popularity and hence its quality. Moreover

since visit rate is directly proportional to popularity with some constant r (equation

V (p, t) = r∗P (p, t) or P (p, t) = V (p,t)
r

), taking the constants outside the derivative in ??

gives I(p, t) = (n
r
)

dV (p,t)
dt

V (p,t)
. Hence, measurement of a page's Relative Visit Increase value

gives a fair idea of its quality at early stages of its life time. Consequently, the second

ranking o�ers users results which aren't currently highly visited but possess the highest

increase in visit rate by experts in this subject. Assuming the equation governing the

probability of a page being hit according to it's ranking position in [36, 47] holds and

that pages with the same rank on both list are hit with equal probability, the second

rank list will have the e�ect of decreasing the rich get richer phenomenon. This rank list

thus takes into account the evolution of pages through time and will have a tendency

of shifting Cho's Popularity curve ( �gure 2.1) to the left.
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3.4.3.3 Rippled Ranking

The third result set, is only retrieved by Elite Peers of a particular keyword query.

Ergo, only peers issuing queries containing keywords for which they have the Elite

Peer status will receive this result set, any other will solely get 2 result sets. This list

consequently is perceived as a privilege for EPs in exchange for sharing their expertise

to the community. This list consists of new pages this peer is currently unaware of

which have been assigned a certain quality by other EPs. They are ranked based on

the number of recommendations received by other Elite Peer members of the group,

in other words the more a page is recommended the more it goes up the ranking. If

one of these pages, is browsed by the user, the former becomes aware of it and the

page is removed from the ranking. The purpose of this third ranking is to impede as

much as possible entrenchment e�ects (section 2.1) of new pages with high quality. A

more detailed explanation is given in section 3.7. Brie�y, if a page of high quality for a

subject is created and browsed by only one EP for this given subject, it will be spread

around the Elite group with a speed proportional to its quality. Therefore, this system

allows the awareness of new high quality pages to increase signi�cantly within the elite

group and thus increase their visit rate ranking.

3.4.4 Global Index Generation

Elite's design is based on a novel Global Keyword Distributed Indexing scheme

(GKDIS) approach. It is global in the sense that a query initiated by any peer in

the system will return the same result set, guaranteeing consistency in the quality of

pages received by every individual, and keyword distributed in the sense that no single

peer possesses the complete inverted index for a given keyword in contrast with other

distributed search engines. This guarantees distribution of control over information in

the system. If a peer for example, could somehow adverse Elite's security design and

manipulate the information it holds, even then, it could only manipulate a small part

of the index and thus have a limited impact on users.
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Figure 3.6: Page Elite Peers

3.4.4.1 Page Elite Peer

Elite stores and fragments its keyword index in several pages corresponding to each

page retrieved during a query. A page thus holds exactly and no more than 10*2 entries:

10 VR ranking entries and 10 RVI ranking entries (exception for the number of entries

are made and explained in section 3.4.4.4). They are named according to the following

convention <Km>_n (where n is the page number retrieved by the user and n > 0 &

n = 1 by default). Each page's name is hashed and stored in the peer holding an Id

closest to this hash (�gure 3.6). Peers storing a copy of these pages are called Page

Elite Peers (PEPs). Each one of them is responsible for keeping VR and RVI values up

to date for each URL entry. The number of PEPs in the system and thus, the number

of result set pages available per keyword directly depends on the capacity of the P2P

network to hold these pages for scalability purposes. Hence the bigger the community,

the larger the result sets. Each PEP subscribes to the <keyword> SCRIBE topic and

the creation of a new PEP is broadcast to this topic making all EPs and PEPs aware

of it's existence.

3.4.4.2 PEP Mapping

Every Web page ranked in the system can only be at one place at a time in each

ranking. Hence Web page W1 for example, is located in one particular PEP page for it's

associated VR value and another PEP for it's RVI value. Let's take into consideration
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Figure 3.7: PEP Mapping

for the moment only VR ranking. For each Web page related to the keyword in which

a peer possesses Elite status, a table mapping the PEP currently holding this page is

created in this EP. This table needn't be complete, as this information is only needed

if the EP revisits these pages as will be discussed in the following section. For each

of these Web pages, every EP subscribes to a Scribe topic named with the following

convention: �<keyword>_VR_<URL>� where keyword is the keyword of expertise

and URL the Web pages address. Any information regarding this particular Web page

will be broadcasted on this topic and hence every EP holding this Web page in their

corpus will be noti�ed. When a PEP inserts a new Web page entry in it's page it

broadcasts a Web page Location Update Message (WLUM) to this Web pages topic,

specifying this particular Web page's new location ( �gure 3.7). Every EP subscribed

to this topic subsequently update their mapping table.

If an EP needs a PEP mapping for one of it's particular Web pages but hasn't

receive a PEP update yet, it anycasts a Web page Location Request Message (WLRM)

to all other EPs subscribed to this topic and waits for one of them to broadcast this

page's current location. If no EP replies it assumes this is a new global entry in

the system and maps this Web page with the latest PEP created (PEP with the

highest �n� value) therefore placing the Web page at the end of the ranking. This

38



mapping done by EPs for Web pages PEP location on the VR ranking is similarly

done by PEPs themselves for the 10 VR entries they possess and the corresponding

PEP's holding these same entries on the RVI ranking. In other words, EPs and

PEPs hold PEP mappings for each Web page they possess respectively for VR and

RVI ranking. We therefore have a sort of double mapping layer. The corresponding

Scribe topic for these PEP Web pages RVI ranking location follows the convention

�<keyword>_RVI_<URL>�.

3.4.4.3 Visit Rate & Relative Visit Increase Updates

Whenever a Peer which happens to be an Elite Peer for a given keyword visits a page

related to it, it must inform the community (�gure 3.8). To do so it �nds the correct

PEP holding this web page's entry by looking through it's mapping table described

in the previous section 3.4.4.2, hashes the PEP's name and uses this hash as the

destination source. Pastry routes the update to the correct Peer and the latter updates

the global visit rate value it holds for this entry. This can result in the web pages

rank to be increase or not depending on whether it surpassed the VR value of the

entry above it. EPs send single VR updates as soon as they visit a Web page or VR

updates bundles at periodic intervals depending on the network's capacity to handle

this communication.

Additionally, PEPs measure the rate of change of their entries visit rate and at

regular intervals, inform the proper PEP holding these entries RVI values of this change.

It �nds the correct destination in exactly the same manner as EPs did previously and

sends an RVI update to another PEP.

3.4.4.4 PEP Entries Transfer

Distributing the index over several Peers does fragment control over an entire index

but it nevertheless creates complications. Inconsistencies in ranking can arise between

page edges. More concretely, if PEP �K1_VR_2� for example receives a VR update for

it's locally highest entry, how does it ensure that this entry should still be ranked lower

than PEP �K1_VR_1� lowest entry? To handle this issue, whenever a PEP receives a

VR update for its lowest entry, it broadcasts a Lowest PEP Value Message (LPVM),

containing its own name and new lowest value, on the Scribe STopic <Keyword>.
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Figure 3.8: VR & RVI Updates

Every PEP keeps track of others PEP lowest value in a second table (with �n−1� rows

one for every PEP but itself), hence when PEP �K1_VR_2� receives an update for its

highest entry, it checks whether or not this entry should be instead in another PEPs

list. If this is the case, it sends a Transfer VR Web page Message (TVWM) to this

PEP containing the entry and it's associated VR value. At this stage, the PEP sender

holds 9 entries while the receiver now holds 11 VR entries which causes an over�ow.

When an over�ow occurs a PEP of page number nselects its lowest value (among the

11) and transfers it to the next PEP of number n + 1. This re-stabilizes the system

to PEPs holding both 10 VR entries again. If PEP number n in a network containing

n Page Elite Peers contains 10 entries and happens to receive an additional one, (this

can happen if a new Web page is added to the system ), it over�ows and transfers

it's lowest entry to a new created PEP with number (n+1). When this happens, this

new Page Elite Peer only holds 1 entry. This is the only time a PEP can hold a lower

number of entries than speci�ed in section 3.4.4.1. These page transfers, of course also

apply for RVI entries.

3.4.4.5 Web Scalability

Finally, as our goal isn't to index the entire web as stated in 3.2 for reasons discussed

earlier ( 1.3.1), but instead only to keep in index useful pages, a �garbage removal�

function can be used by the last PEP ( PEP with highest n value) to remove pages

with a very long life time and low visit rate. Only this PEP can use this functionality
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since it holds the entries with the lowest VR & RVI values. This simply means that

in order to survive in the system, a web page must possess a minimum VR or RVI

value above an arbitrary threshold. This enables the system to scale according to it's

network capacities by preventing pages with low quality to clutter the system.

3.5 Elite Query

3.5.1 Single Keyword Queries

Once Page Elite Peers are set up, querying Elite becomes very simple. When a user

issues a query with keyword K1, Elite will automatically assume by default that the

user is requesting the �rst page of the result set associated with this keyword. Hence,

a Query Message (QM) is sent in the network to the Peer holding the �rst page of the

index, in other words PEP �K1_1�, by hashing this name and setting the hash as the

destination address as usual. This message contains the keyword of interest and page

number as internal variables. The latter replies by sending a Query Answer Message

(QAM) containing the list of ranked terms it holds and their VR & RVI values, along

with the current total number of existing PEPs for this keyword. Remember that,

as described in section 3.4.4.1, every PEP is aware of the total number of pages in

the system for the keyword it is concerned with since the creation of a new page is

automatically broadcast. The peer which issued the query thus displays to the user the

VR & RVI ranked results and optionally any rippled pages it possesses if it received any,

corresponding to the 3 result sets outlined in section 3.4.3. The number of additional n

pages available in the result set is also displayed to the user in the event that it wishes

to request another page. If this happens Elite simply routes the query to the correct

PEP.

3.5.2 Multi-Keyword Queries

Multi-Keyword Queries follow the same pattern as single keyword queries. A QM is

sent in the network using the hash of �<K1><K2><...><Km>_MK� with keywords

in alphabetical order. In most cases the corresponding Page Elite Peer will not exist.

The Peer receiving such a query will therefore temporarily become a Multi-Keyword
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PEP (PEPMK) which serves the same purpose as traditional PEPs but generates its

entries di�erently. A PEPMK will stay active if it keeps receiving these QMs or die if

a certain amount of time elapses without any request. They enable users to perform

Boolean algebra over several indexes.

When the PEPMK receives this request for the �rst time, it initially spawns a

series of QMs for each keyword separately as described in section 3.5.1 and retrieves the

index assigned to these keywords (�gure 3.9). These two indexes are then merged into a

single result set, according to the Boolean algebra requested, using Fagin's Algorithm1

described in [28] (other algorithms could also be used) with a value for the variable

k = 10 ∗ n (with n the page number requested). Remember (3.5.1) that by default,

page number 1 is always requested. This means that the entire index for each keyword

needn't be retrieved totally, only the amount necessary to rank k entries, thus limiting

the number of QMs sent. In the worst case however, if each keyword Kw possesses Nw

PEPs, a total of
∑m
w=1(Nw) QMs will be sent ( where m is the number of keywords

and Nw the number of PEPs for each keyword).

As this task involves a substantial amount of computation and messages it is

necessary to minimize the initial step in creating this index as much as possible. Hence

if a PEPMK is kept alive after a substantial amount of time, it will subscribe to∑m
w=1(Nw) STopics of the form <Kw>_n (with 0 < n <

∑m
w=1(Nw)). Whenever

a ranking changes on a PEP's page, the latter broadcast this new page onto the

corresponding <Kw>_n STopic enabling PEPMK 's to adjust their own index and thus

keep up to date. Note that since we seek to achieve maximum scalability by limiting

computations and messages sent a multi-keyword query will only be sent to a single

PEPMK as opposed to several PEP's for single keyword queries. Thus multi-keywords

aren't distributed resulting weaker security related to control over information discussed

in 3.4.4. Of course, data manipulation can still be countered thanks to replication (??)

but it is worth indicating the consequences involved. Additionally we can also expect

PEPMKs probability to stay alive through time to decrease as the number of keywords

it contains increases.

1This algorithm merges 2 di�erent lists A & B each sorted according to their score for their own
particular term. Say you want to rank kpages from both lists; The �rst step involves looking at the
�rst k elements in both list and matching those in common. If you get k entries, the algorithm stops
here else, for each k entries in both lists which didn't get a match �nd their corresponding score in
the other list and rank them this way.
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Figure 3.9: Multi Keyword Query

3.5.3 Queries Anonymity

As mentioned in section 1.3.3.3, anonymity should be considered as one of the most

fundamental requirements of a search engine. Elite provides query anonymity through

a very simple mechanism already used and proven e�cient in several systems [3]. When

a query or any message is forwarded by Pastry nodes in the ring, any of these nodes

can, if they wish at random, substitute the source address of the message with their

own. Whenever a node substitutes a source address with its own, it keeps track of

it and forwards it back to the original sender when it receives an answer for it. This

results in the inability for any Peer to determine if the message received really did

originate from this the source address Peer or not.

3.5.4 Query Caching

Also, in order to remove any bottlenecks around PEPs of any type and improve

scalability, Peers forwarding QAMs keep a local copy of the page forwarded with an

associated expiry time limit. Hence, if one of these Peers later on receives a request for

the same page it simply answers the query without handing it to the PEP. Consequently,

as a query becomes popular, the number of cached copies will increase, and as copies
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accumulate, they alleviate the PEPs serving load. Additionally, if a Peer is constantly

forwarding or serving the same QAMs it could also ultimately subscribe to this page's

STopic as performed by PEPMKs in 3.5.2

3.6 Elite Encryption

Finally, Elite uses encrypted indexing so as to �blind� any potential data manipulation

in the system. In other words, if a malicious Peer did succeed in manipulating some

community data, this encryption protection mechanism aims at removing this attacker

from knowing what information it is actually manipulating, hence reducing potential

harm induced. Allusions to this feature of the system were avoided throughout this

design chapter in order to remove confusion and allow previous explanations as much

clarity as possible.Elite provides encryption at two separate levels. In simple terms,

the aim is to guarantee that PEPs of any kind, holding the indexed data, do not know

what data they hold and moreover do not know themselves which PEP they are either.

3.6.1 Index Entries Encryption

Every URL or Web page mentioned in the system is always used in its cipher form,

encrypted & fully decrypted by EPs providing & retrieving them to users. Hence,

although PEPs store and exchange these entries, they are unable to produce any sense

from them. A XOR cipher is used by EPs to encrypt these entries. Whenever referral

about a URL is made to an PEP, these EPs encrypt the URL using as a key the hash

of this URL(C(url) = url ⊕H(url)). Figure illustrates a summary of the encryption

procedure.VR & RVI updates holding cipher entries can therefore openly be transferred

through the Pastry network. So as to later on decrypt these entries, the EPs associate

with every URL cipher a variable S consisting of the URLs hash XOR-ed with their

own keyword of expertise (SKm = H(url)⊕Km).

When a Peer makes a single keyword query using Km, it collects the

corresponding entries from the correct PEP, retrieves the H(url)value from S using

this keyword it issued and �nally uses this hash value to recover the plain text url

(�gure ).
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3.6.2 PEP Identity Encryption

Of course this �rst level of encryption would be completely pointless if the following

mechanism wasn't in place as well. PEPs could indeed easily retrieve H(url) from S

by simply extracting Km from their own names <Km>_n. Hence, whenever a PEP is

mentioned, it is named instead using the hash of the keyword( <H(Km)>_n). This

means that PEPs can easily interact with their counterparts by changing n as they

wish, but are completely unaware of which keyword their index actually belongs to

since hashes are irreversible.

Furthermore, PEPMK 's, named

as �<H(K1)><H(K2)><...><H(Km)>_MK� can still contact the PEPs needed by

using their own H(Km) hashes and compare these PEPs cipher entries since they were

individually encrypted irrespective of what PEPs they belonged to (using H(url)). A

PEPMK will therefore hold m S variables for each entry corresponding to the m PEPs

used to form the index. Hence, a Peer initiating a multi-keyword query can use any

of the m keywords issued to extract H(URL) from an Sand subsequently retrieve the

plain text URL.

3.7 Ripple E�ect

This section will cover in detail the ripple e�ect technique designed during this research

which is a fundamental and intrinsic component of Elite. In one sentence, this algorithm

aims at spreading information in the community with a speed based on its value and

importance. If section 3.1 and 1.1 discussed why dissemination of information was a

necessity, this part of the document explains the mechanism of how this can be done. In

brief, this technique takes advantage of Elite's Peer to Peer nature to use individuals as

in�uencers catalyzing or softening the spread of information throughout the community.

Valuable information will build momentum & force, increasingly spreading through the

network, while less important data will possess a ripple impact of smaller size which

will be reduced or softened by the community.
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3.7.1 Ripple as a Recommendation Strategy

3.7.1.1 Centrality of Awareness

In section 3.4.3, we have seen how the �rst 2 ranked result sets returned by Elite

were governed by equation V (p, t) = r ∗ A(p, t) ∗ Q(p) & I(p, t) = (n
r
)

dV (p,t)
dt

V (p,t)
. Also,

as mentioned in 3.1 and 3.4.3.1 we considered the quality of a page to hold di�erent

values according to its context. However, we can assume that a page's quality for a

given subject will be constant over time as long as it doesn't change. Hence, in both

equations it is easy to spot how A(p, t), or page p's awareness, is the only variable

a�ecting both rankings in a speci�c elite group. Therefore, suppose a new page p

possessing quality Q(p) > T is created (where T is an arbitrary threshold), the only

way possible for a system to increase both V (p, t) & I(p, t) is by arti�cially increasing

the speed at which A(p, t) increments. Within in our own environment, if an Elite Peer

already aware of p ergo Q(p), judges that this page's VR & RVI values do not come

near their full potential, it can only be because A(p, t) is closer to 0 than 1, hence it

should recommend this page to its peers.

3.7.1.2 Zero input Recommendation

Recommendation solutions aren't a new idea. Several attempts to use this type

of solution to increase awareness of new pages have already been implemented [5].

However, nearly all of these are based on models where users must explicitly input

recommendations themselves. These systems are thus limited to how much e�ort

individuals are willing to make and hence do not scale. Elite however, is built as a zero

input recommendation system where reference to pages are initiated automatically by

analyzing user behavior.

As we have shown in section 3.4.3.1, since direct measurement of page quality

is impossible, the local visit rate of a page is very close in determining how a single

peer values a web page (VL(p, t) = r ∗ Q(p)). Furthermore, assuming a page's quality

is known based on the previous statement and that similar peers will value it equally,

the elite group (or global) Visit Rate variable ( V (p, t) = r ∗ A(p, t) ∗Q(p) ) can then

be used by a single peer in determining the relative community awareness of a page by
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inserting VL(p, t) in the latter equation giving:

A(p, t) =
V (p, t)

VL(p, t)
(3.3)

.

On a regular basis, Elite Peers thus scan through their web page set related to

their keyword of expertise and use their local visit rate value VL(p, t) in conjunction with

an approximation of the pages global value V (p, t) to compute A(p, t) using equation

3.3. An EP can easily estimate V (p, t) based on the knowledge of page's PEP mappings

3.4.4.2 and their lowest entry values 3.4.4.4. If the estimated elite awareness value is

below an arbitrary threshold and the quality assigned locally by this peer is above

a certain criteria, this local Peer can then initiate a ripple recommendation without

having to ask the user.

3.7.1.3 Elite Ripple Spread & Ripple Size

When an Elite Peer decides to ripple a page ( it can only ripple a speci�c page once),

it anycasts a Ripple Web page Message (RWM) containing this page's entry, to other

EPs on the <Km> STopic (where Km is its keyword of expertise). The message

will hop through any EP randomly (�gure 3.10). When an EP receives a RWM

containing a reference to a page it has already been recommended, it increments the

number of recommendations it received for it and forwards the message to another

EP. Incrementing the number of recommendations received for a page increases it's

rank in the ripple result set entries (3rd column 3.4.3.3) thus increasing the probability

of it been viewed by users according to [36, 47]. If this is a page which hadn't been

recommended to it already, it acknowledges the recommendation. The algorithm stops

when the page's recommendation has been acknowledged s amount of times or when

the message has gone through all EPs. s represents what is called the ripple size. It

is the number of EPs which had not previously received any recommendation for this

page and are currently unaware of it.

By setting s to a relatively low value, for the whole Elite community to be

recommended this page, a substantial amount of peers must ripple this page. This

enables pages to be spread around the community with a speed proportional to their

quality estimated as a group as opposed to only one peer. Peers as a group can then
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Figure 3.10: Ripple of Page p with s = 2

determine which information is worth to spread and which isn't. Remember that a

ripple is initiated if a peer estimates that a page possesses a certain amount of value

but isn't known as much as it should be by the community. This is a personal choice

made locally by a Peer. If this view isn't shared by most of other EPs, these won't

initiate any ripples for this page hence not incrementing its recommendation value on

other Peers. If they do ripple this page however, the latter will be ranked high in EPs

rippled result sets currently unaware of it increasing the chances of it been aware. This

creates a snow ball e�ect for high quality pages increasing their possibility of getting

awareness and in the contrary damps the spread of other pages with lower quality. The

community hence as a group controls how information is spread in the network.

3.7.2 Ripple as a Censorship Model

Section 3.7.1 described how the Ripple E�ect could be used as a recommendation

system to articially increase a page's awareness. This section however, describes how

Elite attempts to achieve censorship throughout the community through democratic
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decisions.

Censorship through reporting is becoming very wide spread nowadays over the

net with organisations such as Wikipedia or Picassa enabling their users to report

bad content back to service providers. Although, this technique must function to some

extent since an increasing number of Web content providers are adopting it, it still only

relies on the good will of web users to make the �e�ort� of reporting bad content from

a purely altruistic mind set. Non zero input systems, as we saw previously (section

3.7.1.2), only scale to a certain extent, hence the e�ciency of this method is doubtful.

Although, in this situation a zero input strategy is impossible since determining content

suitability can only be done by people, a better approach would consist of rewarding

users reporting bad content.

Moreover, at the end of the day, whatever reporting is done by web users, the

organisation is still the sole entity responsible and holding the power to decide what

should or should not be censored. As has been pointed out in 1.3.3.4, this raises many

ethical issues which should be avoided as much as possible.

3.7.2.1 �Report & Support� and �Tit for Tat� Censorship

Elite's censorship approach is based on a �Report & Support� combined with a �Tit

for Tat� model. The overall idea behind this is the following.

Whenever a web user browses over content which it feels goes against universal

values, (such as child pornography, racism advocacy etc... ) it alerts the community by

reporting it. Doing so spreads a censorship request to other members of the community

who either support or neglect it. If, in a given amount of time, a censorship request

receives support from the community above an arbitrary threshold, the author of

this information is noti�ed that its page is being blacklisted from the community's

information commons and removed from the ranked list. Note that the page isn't

actually removed from the Web, since Elite as we pointed out for search engines in

general ( section 1.2), should only present web information to users and not control

it. However, as the page is removed from the list presented by the search engine, its

accessibility is reduced to a minimum. Moreover, if it was somehow decided, that

blacklisted pages should be completely removed from the Web, we could very well

imagine the application notifying a central legal authority to do so.
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Secondly, so as to reward users for their e�ort in deciding how to manage such

information, a �Tit for Tat� system could make sure reporting alerts attract as much

attention to users as possible. In other words, if a user contributed in supporting, or

voting, to remove Web content going against universal values and that the community

decided so as a whole, we can assume that the information was indeed bad content,

therefore this user should be rewarded for having contributed to this task. A sort of

point system could hence be induced, where the more a user helps the community

tackle content going against universal values, the more the user should possess the

ability to alert the community. So for example, if this user somehow, discovers that

private information about itself which it didn't want to be made public is somehow

released on the net, it could initiate such an alert to protect it's privacy rights and ask

the community to support it. Hence, the more you help others protect their privacy

rights, the more you possess the ability to protect your own.

Finally, to avoid malicious peers repeatedly initiating alerts for no reason in

particular and hence over�owing users with dummy requests, if an alert doesn't achieve

enough support in a given threshold time, we could assume this alert to be a dummy

one and hence remove �points� from this user to avoid it repeatedly doing so.

3.7.2.2 Elite's Censorship Functionality

Since Elite is built on Peer 2 Peer technology, it's ability to enable people to make

decisions together is made very easy. Thanks to a combination of both Pastry and

the Ripple E�ect, democratic decisions within the community are possible without the

need for any external authorities.

Whenever a peer initiates an alert, as described in the previous section, a

Censorship Alert Message (CAM) is sent through Pastry (with as a destination id

the hash of <url>_CAM, where url is the url of the page wishing to be censored),

along with the initiation of a ripple with a Support Censorhip Alert Message (SCAM)

containing the speci�ed url (as shown in �gure 3.11).

The node receiving such a message becomes temporarly the �chair� of this

censorship commity. It doesn't hold any power to make any decisions concerning

this alert but can only organise the decision making. Peers receiving SCAM ripples

however are the only entities capable of making decisions (the original alerter can only
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Figure 3.11: Censorship and Ripple
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request a ban it doesn't hold the power to make this decision). Whenever such a

message is received, users can either agree, disagree or neglect it. If the latter occurs

nothing happens, whereas if a decision is made, a Censorship Decision Message (CDM)

is sent via Pastry to the chair with <url>_CAM as a destination Id and the ripple is

spread to more random members so as to attract more attention. Thanks to the ripple

e�ect's nature 3.7, the more ripples received for a particular issue, the more this issue

will be ranked higher when presented to users and hence increasing the likelihood of

it being seen [36, 47]. The chair receiving a CDM, temporarly keeps the source Id of

this message to enable potential feedback later on and counts the votes. Whenever it

receives a number of votes above a certain threshold, it decides to either blacklist the

page, or not, according to the outcome of the vote by contacting the PEP holding this

page using the same method used by EPs or PEPs 3.4.4.2. It also hands in positive

feedback (possibly as points) to users who contributed to making this decision. If

the decision was positive, the initial peer who alerted the community is given positive

feedback whereas if it was negative, (depending on how overwhelmingly), the peer

receives negative feedback. Peers who made the decision contrary to the majority do

not receive any negative feedback as they possess their own right to hold this view.

Once this whole process is �nished, the peer acting as the chair, removes itself from

this position and remains a �Simple Peer� again.

3.7.2.3 Minority Opinions in a Majority Dominated World

Even though Elite enables democratic decisions to be made by the community, an

important fact shouldn't be neglected. As Winston Churchill puts it so famously well,

�It has been said that democracy is the worst form of government except all the others

that have been tried �. In other words, although democracy has been a positive step

foward in our society, we need to keep in mind that it isn't perfect. This subject is

out of the scope of this document of course, but one important issue however worth

noting, is how the majority tends to dominate entirely the rest of the population. This

should be balanced somehow by protecting views and opinions shared by a substantial

minority of the people, hence promoting diversity of content as encouraged in our

code of ethics (section 1.1). As an example, important concepts which we hold today

as fundamental (such as the abolition of slavery, death penalty...) weren't always

52



shared by the majority. Hence, a mechanism protecting challenging views shared by a

substantial minority of the population ( how much substantial is open to discussion)

should be in place in order to counter any possible �oppression� by the majority.

This could easily be achieved within Elite, by rippling a sort of �Idea Protection

Request� message to the community which would seek to �nd this substantial minority

for opinions which authors would be aware aren't yet shared by the majority. If such a

large minority was found it would be very easy then, to simply assign to any peer the

responsibility of listing these protected pages so that an individual initiating a CAM

message would be noti�ed that this information or opinion is shared among a large

minority of the global population and hence shouldn't be censored.

3.8 Future Design Consideration

Although, this chapter aimed at providing solutions to issues raised in Chapter 1,

improvements to this design are encouraged in future research or deployment.

As a simple example, so as to maximise scalability for instance, stopwords should

be incorporated in the system to minimise network costs. Stopwords[26] consist of

nouns such as �a�, �it�, ... which are so commonly used in the english language that

they do not carry enough weight by themselves to provide meaningful IR information.

Enabling such keywords to create elite groups of their own and all associated entities

would be extremely waistful. This issue could be very easily be solved within Elite by

assigning to speci�c peers the responsability of holding a list of stop words for each

language in the system. Previous any KEP creation, a consultation to these peers

would be necessary to ensure the keyword speci�ed isn't a stopword.

Moreover, and a lot more challenging, would be to open the concept of �Eliteness�

to the entire population of peers. Elite's original design aimed at not distinguishing

any Elite group within a given keyword but instead incorporating potentially the whole

community in a semantic structure in the form of a spiral (or a never ending open ring)

as opposed to a closed ring. Peer's expertise wouldn't determine their belonging to an

Elite group but instead would specify their position in this spiral. As a peer's expertise

in a given keyword would increased, it's position in the spiral would become closer to

the centre. This also would suggest that, so as to regulate the network �ow of VR

updates in the system towards PEPs, each peer's updates importance or frequency
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Figure 3.12: Elite Archimedean Spiral Semantic Architecture

would be assigned a weight proportional to it's direct distance towards the origin. If

we considered an archimedean spiral for example, with equation r = αθ
1
n , where r is

the radial distance, θ the polar angle and n a constant, the inverse of variable r would

be used in specifying both the expertise of a peer, the weight of its VR updates as well

as their frequency. Elite's semantic architecture would result hence in a structure very

similar to �gure 3.12where every peer could be located, if it wished, in di�erent spirals

corresponding to di�erent keywords, in a di�erent position related to its own expertise

in these keywords.
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Chapter 4

Elite Modelling & Prototyping

The following chapter presents to the reader our experiments and protype

implementation. Section 4.1 outlines the derivation of the Ripple E�ect 's formal model,

while section 4.2 describes how a simulation of this technique was carried out. Section

4.3 �nally, presents in detail Elite's prototype implementation.

4.1 Ripple E�ect Formal Model

Preceding any prototyping, a correct understanding of the underlying laws governing

the Ripple E�ect was desirable. The �rst step therefore consisted of creating a formal

model of this algorithm so as to study its behaviour and properties. The formal study

sought the likelihood of an Elite Peer, previously rippled by page p, of being repeatedly

rippled with the same page by di�erent Peers. This behaviour is crucial as it prescribes

the probability of a rippled page incrementing the number of recommendations it

received and hence increasing its local rank on an Elite Peer. Equation

HRips,n,u(R) =
Rs∑
T=s

{
P1n(T ) ∗ P n,u

s=1(T ) +
T−1∑
i=1

[
P1n−i(T ) ∗ P n−i,u−s−1

s−1 (T − i) ∗ Spwn,us=1(T )
]}

(4.1)

was found to describe this behaviour, where n is the number of Peers in the

Elite group, u the number of Peers currently unaware of page p, s the ripple size and

R the number of times this ripple is being initiated ∀R, T > 0; s, n > 1 .

The rest of this section describes in details how this formula was elaborated.
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Figure 4.1: Ripple with s = 1

Readers interested in the formal evaluation of this behaviour can skip this section and

directly read section 5.1 in chapter 5.

4.1.1 Ripple, a Series of Trials

Rippling a page consists of a speci�c set of trials. Recall from section ?? how an

EP receiving a ripple message can either decide to acknowledge it, if it hadn't been

recommended this page before, or forward it, if already had this page in it's ripple

set. Furthermore, it is worth remembering how the ripple algorithm stops when the

number of peers acknowledging a ripple is equal to its ripple size s. In an elite group

consisting of n members with r already possessing this page p in their rippled set and u

members currently unaware of it, �gure 4.1 shows how this algorithm can be modeled

as a binary tree where n = r + u.

4.1.2 Formal model of Ripples of Size 1

Initially, for clarity of explanations we will only consider a ripple of size 1. The following

part of this section (4.1.3) will then generalise the model for any size s.
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4.1.2.1 Hitting Previously Recommended Peers

Assuming a ripple is launched, from the diagram, it is easy to notice how, in a group

containing n = r + u peers, the probability for a ripple hitting a peer r already been

recommended this page is r
n
while the opposite if u

n
. Since, a peer already visited in

a previous trial cannot be revisited twice, at each new trial the number of r peers is

decremented by 1. Hence assuming a second trial is launched, the probability this time

of a ripple hitting an r peer becomes r−1
n−1

and so on. Remember that since we set the

ripple size s = 1, whenever a ripple encounters a u peer, the algorithm stops. Hence

while the number of r peer decreases at each trial, the number of u peers a ripple could

meet however stays constant over the entire set of trials. Therefore in the second trial

the probability of hitting a u peer is u
n−1

. The probability R(T )of a ripple hitting a

previously recommended peer at any trial T can thus be generalised to:

Rn,u(T ) =
r − T + 1

n− T + 1
(4.2)

with T ≥ 1; r, n ≥ 0; r = n− u .

4.1.2.2 Trials Probability

Being aware of the fact that with a ripple size s = 1 the algorithm will stop as soon as

it meets a u peer, the question of the probability of a ripple to launch T trials naturally

emerges. From the diagram it becomes evident that, in order for trial T to occur, all of

the previous trials outcomes must have hit a r peer. Hence, the probability of having

trial T is equal to the probability of hitting a r Peer in all trials T − 1, T − 2, T − 3...

The probability P (T ) of a trial T occuring is a recursive function of the form:

P n,u
s (T ) = Rn,u(T ) ∗ P n,u

s (T − 1) (4.3)

which can also be written as:

P n,u
s (T ) =

T−2∏
i=0

r − i
n− i

(4.4)

where P (T ) = 1∀T < s&r = n− u
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4.1.2.3 Probability of one particular Peer being Hit

Moreover, it will be interesting to know the probability of a ripple hitting one particular

Peer at any Trial. This is very straigth forward to understand. Say trial 1 begins. The

probability of a ripple hitting one particular peer among a group of n Peers is 1
n
. In the

second trial, as stated in 4.1.2.1, one peer is removed from the probability of being hit

again hence the new probability of one particular peer being hit in this trial becomes
1

n−1
and so on... The probability P1(T ) of 1 particular peer being hit at any trial is

therefore summarised as:

P1n(T ) =
1

n− T + 1
(4.5)

4.1.2.4 Probability of one particular Peer being Hit at a Trial

Consequently, we now want to know what is the probability Hn,u
s (T )of one particular

Peer being hit at the T th trial. This is the same thing as asking ourselves, what is the

probability of one particular peer being hit at trial T and what is the probability of

this trial occuring? Using equation 4.4 & 4.5 we get:

Hn,u
s (T ) = P1n(T ) ∗ P n,u

s (T ) (4.6)

which can also be written as:

Hn,u
s (T ) =

1

n− T + 1
∗
T−2∏
i=0

r − i
n− i

(4.7)

where ∀s, T ≥ 1

4.1.2.5 Probability of getting Hit in 1 Ripple

Once we know the likelihood of a particular Elite Peer being hit in any trial, it will be

also useful to know the probability of an EP being hit in a single ripple. This is equal

to the summation of the probabilities of this peer being hit in any trials that occured

within a ripple, giving us:

HRips,n,u =
Max(T )∑
Min(T )

Hn,u
s (T ) (4.8)
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For u > s, the minimum amount of trials T a ripple could initiate is equal to the

number of peers it must hit, unaware of page p which corresponds to the ripple size:

Min(T ) = s (4.9)

Additionaly, a ripple will launch a maximum amount of trials if it happens to

hit all r peers which were previously aware of p and then hit sunaware peers consisting

of:

Max(T ) = r + s (4.10)

Equation 4.8 hence becomes:

HRips,n,u =
r+s∑
T=s

(
1

n− T + 1
∗
T−2∏
i=0

r − i
n− i

) (4.11)

4.1.2.6 Probability of getting Hit in any Ripple

Finally, since we know the number of Elite Peer memberships in the system, and

assuming we knew the number of times a page had been rippled in the system, we

would know the number r of Elite Peers who where introduced to this rippled page.

The latter is very easy to comprehend since each ripple will hop along EPs until s (s

is the ripple size) of them are newly introduced to this page p. If ripple R is being

initiated, we know that r = s ∗ (R− 1) Elite Peers have been introduced so far to this

page by rippling. This relation, of course, also assumes that page p is only discovered

by other Elite Peers through rippling which isn't necessarily the case in real life (they

could simply browse randomly on it) but the probability of this event occuring is so

low that it is considered negligible for the time being. Knowing the latter, it is possible

to model the system in relation to the amount of times R a page p is rippled. Using

the latter equation as well as equation 4.11, we get:

HRips,n,u(R) =
Rs∑
T=s

(
1

n− T + 1
∗
T−2∏
i=0

r − i
n− i

) (4.12)

∀R, T ≥ 1
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Figure 4.2: Ripple with s = 2

4.1.3 Ripples of any Size

Lets consider now the case when the ripple size s > 1. If s = 2 for example, in order for

the algorithm to stop, the ripple must hit 2 Elite Peers which where previously unaware

of this page. Hence the binary tree depicted in �gure 4.1 is now extended to produce

a new tree illustrated in �gure 4.2. As you can see, whenever the ripple hits a peer of

type u for the �rst time, the algorithm continues in a similar way as a ripple of size 1.

This child ripple however, possesses a di�erent set of variables n, r and u corresponding

to those in the system at the moment when it was produced, minus a u peer (since the

original reason for this tree to be created is because a u peer was encountered). This

graph can also be seen as a �Parent� ripple with size s = 1 spawning �Child� ripples of

size s = 1 themselves.

4.1.3.1 Trials Probability

The likelihood of having T trials now becomes the probability that the ripple hasn't

hit any u peer previously (as in 4.1.2.2) or the probability that it hit only 1. The

second statement could also be formulated in the following way. The probability that
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a ripple only hit 1 u peer and no more, is equal to the probability that a ripple of size

s=1, with the corresponding variables stated in section 4.1.3, was initiated and that

within this nested ripple, no u peer was hit. Moreover, recall that at each trial, this

�Parent� ripple of s = 1 initiates a new ripple of s = 1, hence the probability Spwn,us (T )

that it initiated a new ripple of size s = 1 at trial T is equal to the probability that

the �Parent� ripple hit a u peer at this trial and hadn't done so previously, giving the

following equation:

Spwn,us=1(T ) =∼ R(T ) ∗ P n,u
s=1(T ) (4.13)

where ∼ R(T ) is the inverse of R(T )

Now we want to know the probability of this �Child� ripple of size s = 1 of having

previously hit only r peers at trial T . If we consider only this �Child� ripple spawned

at trial i, this probability is equivalent to P n−i,u−1
s=1 (T − i). Hence the probability that

a ripple with s = 1 hasn't hit any u peer previously or only 1 in any of the �Child�

ripples spawned at each trial for all s is:

P n,u
s (T ) = P n,u

s=1(T ) +
T−1∑
i=1

P n−i,u−s−1
s−1 (T − i) ∗ Spwn,us=1(T ) (4.14)

where P n,u
0 (T ) = 0&P n,u

s>0(1) = 1

4.1.3.2 Probability of a particular Peer being Hit at a Trial

Now applying the same formula (equation 4.6) as in section 5.1.3 in order to get the

probability of one particular Peer being hit at a trialT , gives:

Hn,u
s (T ) = P1n(T ) ∗ P n,u

s (T ) (4.15)

Hn,u
s (T ) = P1n(T )∗P n,u

s=1(T )+
T−1∑
i=1

[
P1n−i(T ) ∗ P n−i,u−s−1

s−1 (T − i) ∗ Spwn,us=1(T )
]
(4.16)

4.1.3.3 Probability of getting Hit in any Ripple for any s

And �nally, using equation 4.12 we get:
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HRips,n,u(R) =
Rs∑
T=s

{
P1n(T ) ∗ P n,u

s=1(T ) +
T−1∑
i=1

[
P1n−i(T ) ∗ P n−i,u−s−1

s−1 (T − i) ∗ Spwn,us=1(T )
]}

(4.17)

∀R, T > 0; s, n > 1

4.2 Ripple E�ect Simulation

4.2.1 Simulation Objective

Having analytically formalised the Ripple E�ect algorithm, the subsequent question

naturally arises. How are pages' awareness evolution over time a�ected in an

environment of this kind? A computer simulation of such a scenario was therefore

implemented, modelling user browsing behaviours over a set of web pages constantly

changing in time. These series of experiments sought to understand how rippling would

a�ect the popularity evolution of pages as well as the general overall quality of user web

browsing. The simulations were therefore carried out in both �ripple� and �non ripple�

environments in order to compare resulting �gures. Additionally, an understanding

of the impact of ripple size as well as minimum quality criteria thresholds related to

rippling pages (section 3.7.1.2) was highly desirable so as to choose optimal parameters

in an Elite prototype. We expect the rippling of newly created pages to improve the

general web browsing quality as well as increasing the speed at which these pages gain

popularity thus reducing entrenchment e�ects.

4.2.2 Simulation Metrics

In order to evaluate these aspects mentioned previously, the awareness evolution of

every page in the system was recorded. From these �gures, a Time to Become Popular

(TBP) metric was derived. The TBP value measures the time taken for a page to reach

90% of popularity according to Cho's de�nition of popularity P(p,t) (section 2.1). A

minimal TBP value for each page as well as a maximum amount of pages reaching this

value is sought.

Secondly, in order to measure the overall quality of web browsing, a Quality Per
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Click metric outlined in [56] was used, measuring the average quality of pages viewed

by users, amortized over a long period of time. It is computed using the following

formula:

QPC = limt→∞

∑t
t1=0

{∑
p∈P (V (p, t) ∗Q(p))

}
∑t
t1=0

{∑
p∈P V (p, t)

} (4.18)

where P is the set of web pages in the system. We seek to have a QCP value as high

as possible. Moreover, the number of ripples initiated as well as messages sent per

ripple was measured. The latter variable gives us the amount of peers incrementing

their recommendations stored in their ripple web pages set. Furthermore, all of

these variables will be measured as a function of ripple size s and minimum ripple

quality RipMin respectively modulated between values 1 to 5 & 0.5 to 1. RipMin is

only considered for quality values equal or above 0.5 since we are only interested in

promoting pages of better quality than average. Finally, the special case of a variable

ripple size s proportional to the quality of the page being rippled will be taken into

account as well.

4.2.3 Default Scenario

It is probably worth emphasizing how the environment we seek to model is highly

complex and dynamic. This system is composed of search engines, users interacting

and making decisions, an immense set of pages evolving through time which we need to

trace and so many other random variables which would be impossible to attempt any

control of. Even if we owned the most popular search engine, clean room experiments

would be impossible since previous experiments would a�ect the subsequent ones

and so on...The only way such a system can be studied is by analytical models and

simulations which can only achieve tradeo�s between precision of measurements and

implementation feasibility within a given accessible framework. Hence the following

paragraph attempts to formulate assumptions which aren't perfect but try to preserve

as much as possible the essence of the system studied. Each assumption will therefore

be based, as much as possible, on real life web analysis of previous researches.

Recall in our model how peers are interested in di�erent subjects, and pages

possess di�erent qualities for a speci�c set of these subjects. Moreover, we mentioned

previously as well how Elite Peers of a particular group are all interested in a given
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Symbol Meaning

P Set of web pages
U Number of EPs within an elite group
ζ Number of pages visited per day by each EP
ψ Probability of randomly sur�ng the web
γ Teleportation Probability

PH(x) Probability of a link with rank x of being clicked based in a result set
RipMin Minimum quality value for a page to be rippled

s Ripple Size
K Set of Web Pages Peers are initially aware of
l Life time expectancy of a Web page
λ Web page renew Poisson process rate parameter

Table 4.1: Notation Summary used in this simulation model

subject and that ripples only occur within these groups. Hence, our model will consider

a set of P web pages within a set of users of one elite group of size U interested in

one particular subject. We consider throughout this section the quality of a page as

its quality in respect to the given subject of interest (To ensure as much clarity as

possible, a summary of notations is provided in table 4.1).

In our model, pages are assigned a quality Q(p) uniformly distributed from 0 to

1. The set of pages isn't �xed through time but evolves due to new pages being created

and others deleted. In order to keep this experiment manageable, it was assumed that

the amount of new pages matched those being deleted keeping a constant set of P

pages over time set at about 10 times the number of Peers. Retirement of pages was

modeled according to a Poisson process with rate parameter λ, and hence the expected

life time of a page is l = 1
λ
a value which was set as l = 1.5 based on data from [8]. New

pages created were assigned the same quality as those dying, guaranteeing a constant

quality for our web page set. When a new page is created it's initial awareness and

popularity is equal to 0.

According to report [59], each Elite Peer in the system visits on average ζ = 51

pages per day. A peer is known to browse the web in the two following ways: it

either randomly surfs1 the Internet with a probability ψ or else visits pages which

were returned by a search engine with probability 1 − ψ. According to [59], ψ is on

1Section ?? gives more information on Random-sur�ng modelling
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average assigned a value of 0.63. However, as this experiment seeks to compare how an

environment using the Ripple E�ect performs with respect to one consisting of a pure

popular based search engine, so as to maximize the quality of our comparisons, it is in

our interest to assign ψ the value for which a �non ripple� environment would perform

the best. Ergo, a small set of experiments will be needed in other to �nd the correct

value for this variable which will be described in the following chapter. Additionally,

while performing random sur�ng, web users traverse a neighbor link with probability

1− γ and jump to a random page with probability γ = 0.15. This constant γ is known

as the teleportation probability [50].

The system records global page visits and a search engine ranks these pages

regularly according to their visit rate. In this model our search engine was modeled

using 2 columns consisting of the VR (visit rate or most popular column) and ripple

result set. We assumed the likelihood of a peer choosing one of the two columns as

been equal and modeled the probability of a link, with a speci�c rank in either of these

2 lists, being click using the following formula derived in [36, 47]:

PH(x) =
ζ ∗ (1− ψ)∑P

i=1 i
−3
2

∗ x
−3
2 (4.19)

where x is the rank position of the page.

Time is divided into discrete units and at the end of each one, peers ripple pages

(with a quality equal or above RipMin) if they do not currently achieve their estimated

global full potential according to each individual peer's point of view (section 3.7).

Finally, so as to guarantee the reliability of our results, measurements were

taken when the system reached a steady state behavior. As the system needs to be

launched with an initial amount of web pages P , we needed to ensure that the awareness

evolution of pages measured were within an environment fully a�ected by rippling so

the steady state behavior was considered as been reached when the initial set of web

pages (una�ected by rippling for some part of their life time) had all died.

4.2.4 Simulation Program Architecture

This part of our simulation description will go through the main components of the

implementation. The �rst paragraph will give a brief description of each module and
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their function while the second will outline the algorithm used during simulation.

4.2.4.1 Architecture Overview

As �gure 4.3 illustrates, our simulation implementation consists of 5 major components

consisting of a WWW page corpus, an Elite surrogate, a set of Peers, a Global Data

Collection module and �nally, a SQL database storing all the data needed for future

evaluation.

The �rst most important module consists of the simulated WWW pages corpus

holding a set of P Web pages objects. Web pages were modeled using inheritance with

two classesWeb Page Ref &WWW Web Page. The �rst parent class simply represents

a reference to any web page (which is used between peers). This reference holds the

URL of this page and its associated page quality for the given subject of interest to the

Elite group. The child class however, models the web page from a global perspective.

It tracks its global awareness evolution through time as well as its age and TBP value

to be reached. The second class is only needed to represent our World Wide Web

surrogate while the �rst is used whenever a reference to one of these pages is needed.

The second important components in the system are the Peer objects, each

representing and modeling a single Peer's behavior and Web knowledge. These are

the main agents browsing the Web and hence a�ecting the awareness distribution, and

search engine ranking in the system. They hold 2 sets of page references consisting of

those they are aware of already and those which were recommended to them by ripple

but which they aren't aware of yet. These two sets simply consist of Web Page Ref

objects from original pages contained in the global corpus.

The Elite surrogate is the core of our implementation holding each component

together and acting as the central �gure in the system. It manages the birth and

death of Web pages, as well as simulating the ripple message passing in the Elite group

since it holds a reference to each Peer modeled. It also records Web pages visits from

peers, ranks these pages according to their visit rate and hence returns when needed

the correct page ranking to peers requesting it.

Finally, the last 2 components serve a purely technical goal consisting of

gathering all the data needed later on for analysis. The Global Data Collection module

measures the number of ripples launched as well as the number of messages sent and
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Figure 4.3: Simulation Architecture

total amount of visits that occurred. From all of this data it is therefore capable of

estimating a QCP over the total length of the experiment. All of this information is

then loaded into the SQL database which acts as a dead end data funnel.

4.2.4.2 Algorithm Description

When the simulation is launched for speci�c sand RipMin variables, an initial global

web page corpus is created containing P pages uniformly assigned speci�c qualities

(from 0 to 1) and age. K of these pages are initially randomly assigned to peers and

represent pages they are initially aware o� when the experiments starts.

For each time unit, the Elite surrogate calls the visitPage()method on all

Peers which initiates user browsing behavior. Peers distributeζvisits in a time frame

corresponding to a day as follows:

1− ψ of these visits are performed through Elite search queries. So as to

retrieve the correct current result set in the system, a Peer calls the

getPopularRankedURLs() method on the Elite surrogate which returns the
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most popular ranked pages and associates these with the set of rippled Web

pages it received through previous rippled message (ranked in increasing

recommendation order). Once it holds these ranked pages it chooses either

of these ranking with equal probability and uses equation 4.19 to choose

one of them.

ψ ∗ (1− γ) of these visits are made through random browsing of previously known

pages. These visits are uniformly distributed through a Peer's set of known

pages in proportion to their quality based on equation VL(p, t) = r ∗ Q(p)

in section 3.4.3.1. Hence a page of quality Q(p) = 0.6 will be in general

locally browsed twice as much as a page of quality Q(p) = 0.3.

ψ ∗ γ of these visits are made totally randomly by calling the getRandomURL()

method in the Elite surrogate which returns one page totally at

random from the global corpus, thus modeling the teleportation behavior

encountered in real life.

Each time a visit is made, Peers inform the Elite surrogate and the Global Data

Collection module about it. It speci�es if this was the �rst time they visited this page

or not enabling Web pages in the global corpus to keep track of their global awareness

evolution. The Elite surrogate then adjusts its global visit rate ranking according to

visit information it receives.

At the end of each time unit, peers estimate which pages should locally be rippled

(based on their quality and global rank position from section 3.7) and hand these pages

over to the Elite surrogate which simulates the ripple message passing between Elite

Peers. The latter also replaces any pages having passed their lifetime expectancy l by

a new set of pages with mapped qualities to ensure a consistent global quality of the

corpus. When a page dies, its awareness evolution over time as well as it's TBP value

(if it reached it) is loaded in the database.

Finally, once the experiment has ended, the Global Data Collection module

inputs in the database, the total number of ripples initiated along with the number

of messages and calculates the estimated QCP for this experiment based on visit data

received through the experiment by Peers.
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4.3 Elite Prototype Implementation

Following these experiments, an initial functional Elite prototype implemented in Java

was completed and tested. This section will cover in details it's functional design

and architecture. All the features mentioned in chapter 3 were implemented with

the expection of encryption and censorship (due to time restrictions) as they are not

essential for this proof of concept. During the course of this research, Elite has evolved

and is now the central �gure of an open-source community project freely accessible to

users on the Web. The Elite Project[43] home page can be found at :

http://sourceforge.net/projects/elite/

4.3.1 Elite as an Internet Layer

Elite is built as a second layer application within a 3 tier framework. It was designed to

�t underneath any popular Internet browser and is omnipresent as well as transparent

to users once it is installed. It is supported by an underlying layer consisting of the

FreePastry substrate. FreePastry [68] is an open-source implementation of Pastry [52]

developed by Rice University [1] in Texas and originally intended to be used as a tool

allowing researchers to evaluate and perform development in Peer to Peer substrates.

It has subsequently matured and has now become suitable for full scale Internet

deployment.

4.3.2 Elite Architecture Overview

Elite's overall architecture is very straight forward (�gure 4.4). It comprises of 3 main

modules consisting of a Web Page Corpus, a variable number of Front Ends and a

Page Cache. As mentioned in the design chapter, the corpus only retains a list of Web

page objects with their associated Vector Space Model holding their main subject of

interest & strength's. Actual Web pages needn't be stored at all, removing the need

for large storage space. The sole purpose of the Page Cache however, is to store result

set pages retrieved or forwarded in the network. It aims at reducing the load on highly

popular queries as stated in section 3.5.4. It's size is variable and scales itself according

to the node's storage capacity. The Front End module on the other hand, probably
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Figure 4.4: Elite's Architecture Overview

constitutes the most complex part of the system. It deals with providing the peer with

several interfaces to the P2P network according to decisions made by the community

as described in detail in section 3.4. The last module is completely optional as the

Peer could simply act solely as a Simple Peer without having to take additional KEP,

EP or PEP responsibilities.

The aim of the following section is to describe in detail the object oriented

architecture of this prototype as well as fundamental modeling concepts.

4.3.3 Module Description

4.3.3.1 Peer Cache & Corpus

The Peer Cache and Corpus are straight forward and do not need further explanations

than those stated in the previous paragraph. It will be noted however that the corpus

is the only entity in the system modelling Web pages as Local Web Page objects

(described in the next paragraph). Among others, these objects are the most detailed

representations of web pages in our system. This corpus is the main local repository

consisting of the users browsing history. It enables the creation of a peer identity and
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Figure 4.5: Web Pages

expertise which will then be used as the main criteria in joining elite groups.

4.3.3.2 Web Pages

Web pages could be seen as the main currency in Elite. These objects are constantly

exchanged, accumulated and their wealth is the main asset of an individual Peer. Elite

possesses 4 di�erent types of model for Web pages depending on their usage. All of

these models extend a very simple Web Page object, solely containing a String URL

attribute which is used as a unique Id (�gure 4.5).

The Rippled Web page object is probably the second simplest of all. It represents

a page stored and recommended to Elite Peers. It directly extends the Web Page object

and holds a recommendation_number integer representing the amount of times this

Elite Peer received a ripple containing this page. This variable is then used to rank a

set of Rippled pages whenever a query for the keyword of expertise is initiated by the

user.

The RVI Web Page is an extension of the web page root object that takes into

account the relative visit increase of such a page. These pages are stored and exchanged
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by PEPs. They are the primary resources while creating the RVI Elite ranking result

set.

A very similar class derived as a child to the latter is the VR Web page. It adds

another layer of elite Web page modeling to its parent by representing the visit rate of

pages in the system. These pages are stored by EPs and PEPs in the system. Page

Elite Peers can, periodically, compute a page's global Relative Visit Increase so as to,

update it's global entry in another PEP.

Finally, the Local Web Page object, as mentioned in the previous paragraph, is

used by the corpus to store and compute a Peers expertise and interests. It inherits all

of it's parents attributes and adds to them a Vector Space Model for each pages ever

browsed. This vector is a sort of a web page summary describing it's main subjects

and relative importance.

4.3.3.3 Ranked List

The next obvious model to explore thereafter is the ranking of these Web pages. Apart

from the straight forward rippled ranking, Elite possesses 2 di�erent types of ranking

systems, both stored by PEPs, based on page's global Visit Rate or Relative Visit

Increase. Both of these rankings extend the Ranked List object (�gure 4.6) consisting

of a hashtable with a maximum size of 10, using web pages URL's as Keys and either

RVI Web Page or VR Web page as Values. Both of these ranked list possess methods

enabling them to add or transfer pages from or to other PEPs. Each type of ranked list

however possesses a di�erent comparator object to arrange Web pages in the required

order.

4.3.3.4 Elite & Scribe Messages

Messages in Elite are modeled very easily by extending either the Elite Message or

Scribe Message object depending on the type desired. Both of these objects possess

a type attribute integer assigned to each Elite or Scribe message as an identi�er used

when receiving them by Peers. An Elite Message additionally holds the Pastry source

and destination Id needed to route the message through the overlay.
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Figure 4.6: Ranked List

4.3.3.5 Peer

Peer modeling possesses a higher level of complexity than the models described

previously. It is the main central entity in the system holding all modules together

and therefore assuming the most important tasks in the overall structure. It's di�erent

functionalities are segregated on 6 di�erent hierarchical levels (�gure 4.7).

The �rst major functionality it is responsible for consists of joining the Pastry

ring community from a network point of view embodied through the Peer Ring Layer

Class. This class generates a Pastry Id assigned to the Peer for the rest of it's session

by hashing it's IP network address.

The second important function held by the Peer is to manage several roles it

might be assigned to. In other words it needs to deal with acting as KEPs, PEPs

and EPs for potentially several keywords. Everything related to front ends is therefore

located in the Peer Front End class, which extends the previous one.

Following this class in the hierarchy is the PeerScribe class, dealing without

any surprises with all Scribe related issues. It therefore possesses Anycast, Deliver,

Subscribe, Unsubscribe and Publish methods characteristic of any Scribe agent in a

system as well as a list of STopics it is currently subscribed to. Although it possesses

these functionalities, it never really uses them directly. These methods are called by

the front ends seen previously. This layer also acts as a dispatcher, receiving Scribe

messages and forwarding them to the proper front end.

Next are the Peer Elite Message Sender and Receiver classes which, as their

73



Figure 4.7: Peer Hierarchy

name suggest, are dedicated to handling the sending, forwarding and processing of any

Elite message type possibly encountered. The latter class possesses a method for every

type of messages which handles it accordingly.

Finally, the Peer Interface class is the most basic of all the ones mentioned

previously. Public methods used externally are all located in this class. The

visiting(String URL) method for example is called by the browser each time it browses

a page, simply informing Elite of this event which deals with it accordingly (inserting

new a Web page object if it wasn't aware of it or incrementing the corresponding Web

Page objects number of visits).

4.3.3.6 Front Ends

The last quite complex structure to be described is that of Front Ends. Each type of

front end possesses di�erent needs, however they all share characteristics in common

which are modeled in the Front End class (�gure 4.8). Whether they are KEPs, EPs, or

PEPs, all of them are �orbiting� around a keyword concept or Elite group. Hence, every
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Figure 4.8: Front End Hierarchy

front end will possess a String representing the �keyword environment� it is assigned

to as well as an integer holding the total number of corresponding PEPs which can

possibly be queried for that keyword. Each front end will also hold a reference to the

Peer it represents along with a list of Scribe Topics it is subscribed to.

4.3.3.7 KEPs

Keyword Elite Peers front ends are the simplest front ends to understand. They

follow the same conceptualized functionality layering as does a Peer. A KEP Elite

Member Management class for example deals with every issue concerning Elite group

management and directly extends the Front End class. It keeps track of the minimum

entry requirements, the number of Elite members currently in the group and decides

to add or remove members according to decisions explained in the design Chapter of

this document. It also can initiate LEP relief Tasks if a threshold time elapses without

receiving any LEP messages from Elite Peers. Finally, it also possesses 2 additional

layers very similar to the Peers layers, one dealing with Scribe messages processing while

the other acts as the public KEP interface available to other members to communicate

with this front end.
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4.3.3.8 Web Mapping Front Ends

Both EPs and PEPs front end hold an additional layer of functionality in common.

Recall from section 3.4, how both entities map their web page corpus with the relevant

PEPs holding these pages as VR or RVI entries. TheWeb Page Mapping class therefore

ful�lls this functionality by keeping 2 hashtables storing Web pages URL as Keys and

mapping PEP as Values as well as PEP and their current lowest value relationship.

Both front ends need to subscribe to web page STopics to receive mapping updates as

well as answering any relevant mapping request from other front ends in the system

unaware of speci�c mappings.

Similar to the Peer, both front ends possess their own respective Scribe

Messaging layer with one di�erence that unlike the former which only knows how

to dispatch these messages to the correct front end, these entities possess the relevant

processing methods for each type of Scribe message.

Finally, both front ends also possess their own public interface, serving the same

purpose as the KEPs. PEPs for example, need to possess a instance of both VR

and RVI ranked list (section 4.3.3.3) as well as their own speci�c PEP name (section

3.4.4.1). They also possess methods giving them the ability to transfer VR or RVI

entries between each other as explained in section 3.4.4.4. EPs, on the other hand,

need to know whether they are the LEP of the Elite group or not and therefore also

need to know the Peers relevant expertise in their associated Keyword both modeled

as attributes of their Interface class. Every EP additionally possesses a set of ripple

pages received and sent and possess the ability to ripple pages they judge good enough

as well as informing correct mapping PEPs of their visit to speci�c web pages.
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Chapter 5

Evaluation

This chapter reports all of our results and �ndings gathered during this research. In

the �rst section, a formal theoretical investigation of the Ripple E�ect is performed

followed by simulation results obtained for this technique. These �ndings suggest

that the ripple technique reduces entrenchment e�ects and also improves general web

browsing quality. Finally, a general evaluation of Elite's design will be investigated in

the last section.

5.1 Formal Analysis Evaluation

Previous to any simulation evaluation, a theoretical analysis and understanding of the

Ripple E�ect model imposes itself. This section therefore, analyses the most important

equations derived in the previous chapter so as to acquire a general appreciation of this

algorithm.

5.1.1 Probability of Incrementing Previous Recommendations

In �gure 5.1, the probability of a ripple message incrementing a previously received

recommendation, as opposed to hitting an unaware Elite Peer, according to the number

of trials being launched when the ripple size s = 1 is depicted. This curve represents

equation ?? and in other words, estimate the probability of a ripple not stopping at

trial T. Each curve represents a ripple being initiated when a speci�c percentage of the

Elite community already has done so for the same page.

77



Figure 5.1: Probility of a Ripple Message Incrementing Recommendations with s=1

As you can see, it is clear that the more page p is being rippled, the more we

can expect a ripple message to possess a large amount of trials. This is the behavior

expected since, if only rippling is considered as a way for peers to become aware of a

page, when a page is being rippled for the �rst time, no peer except the one initiating

the ripple will be aware of it. Hence, when R = 1 (section 4.1), the �rst peer being hit

by this ripple will automatically be unaware of this page, therefore the probability of

hitting a previously recommended Peer at trial 1 will always be 0 for the �rst ripple.

However, as the number of ripples being initiated increases, the number of peers which

were previously recommended this page is equal to s∗(R−1). Therefore as R increases

the probabilit of a ripple message hitting an already recommended peer increases as

well.

Moreover, for any ripple, once the message is initiated, and since a ripple never

encounters twice the same peer (section 3.7), the number of previously recommended

peers in the group which haven't yet been hit decreases at each trial, hence the

probability of hitting one as well.

Finally, when every Elite peer in the group except one has rippled page p, if

this last peer decides to do so, we can see how the probability of this ripple having
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an amount of trials close to the size of the elite group is high. This is simply because

nearly every peer in the elite group was previously recommended this page, hence the

algorithm will stop only when it meets the speci�c peer in the group which still hadn't

been recommended this page. This represents a lot of messages, however, we need to

keep in mind that this is only a theoretical description of the Ripple E�ect, and the

probability of every Elite peer rippling the same page is extremely close to 0 and can

therefore be assumed never to happen.

5.1.2 Trial Probability

Following this observation, what we naturally wish to understand now is how the

probability of having T trials evolves as the number of ripples for page p increases.

Figure 5.2 shows a graph illustrating the latter. As expected, for s = 1, the probability

of having at least 1 trial, for any ripple number, is always equal to 100% since in order

for the algorithm to stop it needs to encounter one unaware peer. This graph directly

links with the previous one since the probability of having a trial T is equal to the

product of not hitting any unaware peer in the previous T-1 trials. This graph hence

depicts equation 4.1.2.2. It is interesting to note how, for the �rst few ripples being

initiated, the curve illustrating the probability of having a trial, ressemble that of a

step function. And as the number of ripples increases, it becomes smoother to �nally

become totally linear when the last Elite peer in the group decides to ripple the page.

5.1.3 Probability of one particular Peer getting hit twice

Finally, the fundamental behavior we are interested in, consists of understanding the

process by which a page will receive further recommendations and hence increase its

rank in the rippled result set. Figure 5.3, graphs equation 4.12 which illustrates this

behavior.

As you can see, a page will have a very low probability of getting hit twice

in most cases, unless a large amount of peers decide to ripple the page. This is the

behavior we wished to achieve since, the larger the number of peers rippling a page, the

better we can assume its quality to be. Hence a page of high quality, or information

valued by a large percentage of the community, will get its rank increased. In this case,

the probability of a page increasing it's rank is very low when less than 70% of the
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Figure 5.2: Trial Probability

population ripples it but then starts increasing exponentially when this threshold is

reached. It can be argued, and this research agrees with it, that we should more than

likely prefer a threshold set at a lower value. Even though this is probably the case,

this graph nevertheless serves its purpose by proving how a community without any

direct action, can passively promote information valued by the majority and therefore

assign a higher rank to pages holding this data. Further investigations could research

how variables could be used in order to set this threshold at a speci�c value.

5.2 Simulation Evaluation

As stated in section 4.2.1, once the Ripple E�ect algorithm was mathematically

formalised, a comparison as to how Web page awareness would evolve through time in

both �ripple� and �no ripple� environments was made. Additionally, in order to tailor

our Elite prototype and guarantee the most optimal results possible, we were interested

in understanding what impact would ripple size s and minimum ripple requirements

RipMin criteria possess over the awareness evolution of pages. This section thus,

outlines the results obtained during these experiments in details. A summary of all

these �ndings can be found in appendix ?? as well as more detailed measurements used
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Figure 5.3: Probability of getting hit twice

to derive the graphs illustrated in this section.

All experiments were carried out using the parameters described in section 4.2.3

with a set of 200 Peers browsing a web consisting of 2000 pages periodically renewed

(section 4.2.3) for a period corresponding to 5 years. While we are aware of the

limitations of these experiments due to the relatively small number of Peers modelled,

( owing to time & computational power available during these experiments), we do not

expect however, that the variables measured are highly a�ected by this feature of our

test bench and moreover, the results outlined below do suggest and describe interesting

& genuine facts about our algorithm which we believe applies to any amount of peers.

Our model nonetheless, assigned a ratio of 10 between the number of Peers and pages

available which is the typical scenario investigated in such experiments. Nevertheless,

further experiments investigating how the number of peers or even the ratio between

peers and pages would in�uence our results would be interesting to pursue.

5.2.1 Pure Popularity Based Environments

As explained in the previous chapter (section 4.2.3), so as to maximise the quality of

our comparisons between �ripple� and �no ripple� environments, we sought to take as a
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Figure 5.4: Maximum Awareness Reached in a �no ripple � environment

reference point, the best performance in the second case. Hence, a set of experiments

were performed in order to �nd out for which value ψ (probability of a user doing

random browsing) would a �no ripple� environment produce best results. All of the

following ripple experiments will use this value so as to compare as accurately as

possible both scenarios.(A notation summary is provided in table 4.1).

The �rst sets of experiments therefore consisted in running our model without

any ripple initiated and varying ψ from a wide range of values ranging from 0 to 1.

ψ = 0 would correspond to a situation where users would browse the web solely using a

search engine to �nd new pages, while ψ = 1 represents the opposite when users never

use search engines when sur�ng the Web.

Figure 5.4 outlines the maximum awareness reached by Web pages accross a set

of ψ values. Each curve represents di�erent quality pages Q(p) ranging from 0 to 1. As

you can see, surprisingly, the awareness distribution doesn't seem, at �rst glance, to be

highly a�ected by the random browsing probability. Furthermore, quality seems totally

unrelated to the maximum amount of awareness a page would achieve throughout its

life time. Most of pages whether of quality 0.1 or 1 for example, reached a maximum

awareness close to 20 % which is very low. An average curve was therefore graphed in
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order to study the overall behaviour of a pure popularity driven search engine.

As you can see, pages in average perform equally bad in an environment

consisting of pure popularity driven search queries as well as pure random browsing

since the average pages would only reach 5% of awareness. Moreover, it can easilly be

noticed that, although pages of di�erent qualities have disparate values for most ψ's,

they all converge to 5% for both ψ = 1 and ψ = 0. Additionnally, observing the average

curve shows how page attain 2 slight peaks in awareness when ψ = 0.2 and ψ = 0.6

with the second achieving a better score. Interestingly, as pointed out in section 4.2.3,

the value observed in real life for random browsing seems to assign ψ a value of 0.63

which is extremely close to the numbers outlined previously. It was therefore decided

to use this value for all future ripple experiments as it both corresponds to a �no ripple�

environment performing at its best and moreover it is very close to real life parameters.

Finally, it must be pointed out that none of the pages in this scenario reached their

TBP value which corresponds to the the time taken for a page to reach 90% of global

popularity (section 4.2.1).

To summarise, this experiment therefore tells us 5 important things:

1. Page awareness in an environment driven by popularity search engines performs

very poorly

2. Awareness doesn't seem a�ected by either page quality or random sur�ng

probability

3. All pages however, perform very badly in pure search driven or pure random

sur�ng environments

4. Although, performance is very low, 2 slight peaks seem to appear on average at

values ψ = 0.2 and ψ = 0.6

5. Finally, no pages in the system was able to achieve its TBP value

5.2.2 Ripple Based Environments

5.2.2.1 TBPs & QCPs

Now that an analysis of a �no ripple� environment had been undertaken, a large set

of experiments was performed. In each one of them, the same scenario as in 5.2.1 was
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modelled, using this time, rippling of pages of di�erent minimum quality thresholds,

ranging from Q(p) = 0.5 to Q(p) = 1. Rippling pages of lower quality wasn't performed

as we only seek to increase awareness of good pages in the system. Additionally, for

each of those thresholds the rippling size s was also modulated within values starting

from 1 to 5. As before, awareness evolution during time as well as TBP and QCP

values (section 4.2.3) were measured.

The histogram in �gure 5.5 shows the results for all these experiments. This

graph illustrated the percentage of pages reaching their TBP value, in other words

90% of global awareness, throughout their life time. The x-axis represents the minimum

quality required for a page to be rippled during the experiments where a value of 1.1

represents the same results when pages of quality equal or above Q(p) = 1.1 are rippled,

(in other words no pages), corresponding to the �ndings in the previous experiment

without any rippled being initiated at all. For each of the RipMin values, the 5 di�erent

colored histograms correspond to di�erent ripple size s tested. Finally, the two curves

represent the QCP, or quality per click (section 4.2.3), metric for both �no ripple� and

�ripple� environments.

The �rst obvious feature to point out is the di�erence in QCP value

corresponding to both scenarios. While environments using no ripple achieved a stable

quality per click of 0.5 in average, ripple environments always outperforms the mean

browsing quality by a di�erence of 20% on average for RipMin values ranging from

0.8 to 1. This value decreases as RipMin is lowered down to 0.7 and stabilises at

QCP = 0.6 which still is above a �no ripple� scenario. It is also worth mentioning that

these values were equal for all ripple sizes s within each RipMin scenario suggesting

that ripple size isn't directly related to QCP.

Secondly, while no single page reached their TBP in �no ripple� environments,

about 12% of them did in the latter cases. Moreover, no obvious recognisable

identi�able pattern is observed when relating TBP performance and ripple size s values.

In order to con�rm this fact, an additional graph (�gure 5.6) was plotted directly

comparing the percentage of pages reaching their TBP in relation to ripple size. There

again, ripple size seems to be unrelated to TBP performance.

Subsequently, the next question to ask is: amongs these pages, what is the

average TBP value encountered? In other words how long does it take for a page in

general to reach this TBP? Figure 5.7 shows this data plotted against RipMin values
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Figure 5.5: Average TBP & QCP

Figure 5.6: Pages reaching TBP and Ripple Size
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Figure 5.7: TBP Values and RipMin

for di�erent page qualities. An interesting point to notice here, is the fact that only

rippled pages reach their TBP. Put in another way, whether a page reaches its TBP is

totally dependant on the RipMin threshold used. When RipMin = 1, only pages of

quality 1 reach TBP when RipMin = 0.9 only pages with Q(p) = 1 and Q(p) = 0.9

reach this value etc... Moreover, when solely pages of quality 1 are rippled, these pages

reach TBP at 60% of their lifetime while as soon as pages of other qualities are added,

the time taken for pages to reach TBP stablelises regardless of RipMin around 90%

which is quite late. Here again ripple size s doesn't seem to have an impact on these

�gures which is con�rmed when plotting them directly together in �gure 5.8.

Finally, the graph in �gure 5.9 shows the percentage of pages reaching their

TBP according to RipMin values but this time for each page quality. Here again,

notice how only the rippled pages reach their TBP but moreover, this graph shows

how the bene�ts of the Ripple E�ect are shared among pages while the threshold is

lowered. When only pages of quality Q(p) = 1 are rippled, 100% of these reach their

TBP which is excelent. However, as soon as RipMin decreases so does this �gure.

When RipMin = 0.9, this number decreases by 30% and with RipMin = 0.8 it goes

down to an average close to 37%. This value seems to stabilise around 20% for all

other RipMin's.
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Figure 5.8: TBP Values and Ripple Size

Figure 5.9: Percentage Reaching TBP and Quality
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Figure 5.10: Number of Ripples Intiniated

5.2.2.2 Number of Messages and Ripples Initiated

During these experiments, the number of messages, or hops between peers, on average

for 1 ripple, as well as the total amount of ripples initiated was measured in the

environment. Figure 5.10 for example, depicts the number of ripples initiated according

to RipMin thresholds. As expected, when the ripple minimum quality requirements

decreases, the number of ripples launched increases. This totally makes sense, since as

RipMin goes down, the number of pages available to ripple goes up, hence more pages

are rippled.

The next graph (�gure 5.11), shows the relation between the number of hops,

or messages sent, per ripple in relation to the ripple size. This plot clearly shows that

ripple size directly a�ects the number of hops on average executed per ripple. Again,

these �gures con�rm what we expected since, as s increases, the number of previously

unware Elite Peers to contact increases, hence the algorithm takes more time to stop

and therefore hops along a larger amount of Peers.

Furthermore, it is interesting to notice how, when s = 1, RipMin has no e�ect

on these results while as s increases, the higher the minimum quality threshold, the

higher the amount of messages sent. This is very surprising and totally unexpected
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Figure 5.11: Ripple Messages Sent

from the author's perspective. With this discovery made, further investigations where

needed and hence, an additional graph plotting the di�erence in messages sent between

RipMin = 5 and all otherRipMin values was derived in �gure 5.12. As you can see, the

di�erence in the amount of messages sent is minimal when s = 1 as stated previously, it

then reaches a peak at s = 2 for RipMin >= 8 and decreases again as s moves towards

5. Also, it seems like this peak is slightly delayed towards s = 3 when RipMin < 8.

Plotting the same results for higher s values would be interesting as these curves seem

to converge towards another point further in the graph.

However, an initial proposition attempting to understand such a behavior could

possibly be formulated. As we have seen in �gure 5.9, when a page is rippled it directly

a�ects positively its increase in awareness in the population, and moreover, as RipMin

increases the percentage reaching TBP goes up. Hence, since these pages rapidly gain

awareness, we can assume them to be ranked high in the VR ranking. Therefore an

increasing number of Peers will discover this page through search queries as opposed to

rippling. Consequently, even though a page might not have been rippled many times,

more peers in these cases will already be aware of it from browsing or querying, hence

a ripple will take more hops, or message, to end. Furthermore, �gure 5.9 backs this
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Figure 5.12: Dif in Ripple Mgs Sent with Ripple Size = 5

idea, since as RipMin decreases so does the percentage of pages reaching their TBP,

and ultimatly so does the additional number of messages due to RipMin which is what

is observed in �gure 5.12.

Another set of graphs were derived so as to compare the number of messages

sent between ripples of size s > 1 and ripples of size s = 1 initiated several times in

order to hit the same number of unaware peers when s > 1. We would expect ripples

with s=1 initiated several times to, in overall, produce more messages than ripples

reaching the same number of unaware peers with higher s's. But �gure 5.13 shows us

the complete opposite. Although the di�erence is very minimal compared to thousands

of messages sent, this graph shows us how rippling with s = 1 is more e�cient than

rippling with higher s's. An average of 50 more messages are sent when using higher

ripples sizes. This number increases as s reaches 3.5 and then decreases for values

reaching a ripple size close to 5. Once again, we can notice how RipMin a�ects the

di�erence in messages sent negatively. This however, assuming the preceding �ndings

could be interpreted, is expected since we have seen how Rippling with a high quality

threshold increases the number of messages sent. Rippling with size s = 1 several

times, simply accumulates these di�erences. Moreover, as shown in �gure 5.12 the

di�erence in messages sent is minimal for s = 1 which is con�rmed here as well.
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Figure 5.13: Dif in average mgs sent per Ripple with s=1 initiated s times

5.2.2.3 Variable Ripple Size

Finally, an additional case consisting of setting the ripple size s proportional to the

quality of the page being rippled was tested as well. In this scenario, we set RipMin

= 0.6, and assigned ripple sizes to pages of quality 0.7, 0.8, 0.9 and 1, respectively of

values of 1, 2, 3, 4 and 5.

This experiment found that the percentage of pages reaching TBP as well as their

TBP values was equivalent to previous experiments. The number of ripples initiated

was similar to ripples with RipMin = 6.5 while the number of messages sent mapped

those of previous ripples with a ripple size between 3 & 4. Finally, the QCP for such

a scenario was found to be equal to 7.

5.3 Elite Design Evaluation

In this section, our design will be evaluated in detail, and particular emphasis will be

given to the original objectives listed in the introduction (??). Each of these points

will be examined in respect to the solutions outlined in previous chapters.
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5.3.1 High Quality Results

Our �rst main objective intended implementing a search engine returning results of

quality as high as possible. Chapter 3 outlined how selecting the most expert peers

in the system for each speci�c subjects, enabled us to provide to the community this

expertise shared by a group of individuals. Furthermore, section 3.4.2 illustrated how

result quality was a�ected by the Elite's groups size and how the latter could be tailored

in function of the communities needs. Furthermore, Elite's design was conceived so as

to ensure the expert group dedicated in �ltering pages was constantly maintained with

the most expert peers in the community thanks to the LEP protocol (section 3.4.2.4 ).

To summarise Elite guarantees a constant high quality of results to its users by using

collaborative �ltering of selected peers with highest interest in subjects queried.

5.3.2 Countering the Rich get Richer Phenomenon

A second important goal, consisted in reducing this rich get richer phenomenon (section

1.3.2.2) which is now known as being an intrinsic feature of the World Wide Web's

nature. This document showed how because of their design based on link analysis

(section 1.3.2), current search engines could only worsen this e�ect. Elite solves this

problem by shifting it's conception of page quality from links to people (section 3.1)

hence removing completely this side e�ect held by other search engines.

5.3.3 Minimising Entrenchment E�ects

Entrenchment e�ects was another important feature to tackle in our system. In order to

do so, we designed a Ripple E�ect technique which democratically, arti�cially increases

the awareness of newly created pages based on their quality (section 3.7). A formal

model of this algorithm was derived (section 4.1), analysed and proved to possess the

characteristics desired. Moreover, a simulation was carried out (section 4.2.1) in order

to study the impact of such an algorithm in the community. The results showed how

rippling newly created pages improved the general browsing quality and increased the

global awareness of these pages (section 5.2) thus reducing entrenchment e�ects and

therefore achieving our goal.
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5.3.4 Information Control

Control over digital data was taken deeply into consideration when designing Elite.

Thanks to a new GKD Indexing Scheme (section 3.4.4), malicious manipulation of

result set ordering is made very hard if not impossible. Furthermore, Elite's encryption

infrastructure (section 3.6), adds an additional layer of complication for potential evil

entities making any possible data manipulation pointless.

5.3.5 Scalability

Scalability was of course the most important concern in this design, as Elite can only

provide a valuable service if it is spread globally. Di�erent scalability aspects were

taken into consideration.

Web scalability as described in section 1.3.1, was countered by using a di�erent

approach than traditional search engines. Instead of attempting to index as many pages

as possible, Elite uses only a pre-�ltered web indexing mechanism, �distilled� twice, and

obtained through peer browsing analysis which only takes into account pages which

people are interested in ( section 3.3.1). Secondly, a garbage removal feature was taken

into consideration as well (section 3.4.4.5) enabling any Elite system to adapt its Web

index according to network capabilities.

Scalability was also considered from a more technical point of view with the

existence of KEPs regulating the size of elite groups according to the network load

and demands (section 3.4.2). Storage is reduced to a minimum since, no pages are

actually stored in the system, solely their Id and subjects of interests. Caching was

also incorporated in the system removing any bottlenecks on PEPs due to popular

queries and autonomous behavior was guaranteed by enabling Elite to handle node

failures automatically (section ?? & ??).

Finally, scalibility from a more human perspective was taken into account when

designing the recommendation system (section 3.7.1.2) based on the Ripple E�ect.

This system is a zero input mechanism which enables total independence of people's

willingness to recommend pages and hence is applicable on a global scale.
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5.3.6 Anonymity

Anonymity in Elite is ensured at numerous levels. It is encorporated in Elite group's

membership thanks to the LEP protocol as well as temporal Elite Ids (section 3.4.2.4,

??), guaranteeing the free provision of information by any party. And more important,

keyword queries executed throughout the system are also totally anonymous thanks to

forwarding and source Id substitution (section 3.5.3) protocol.

5.3.7 Censorship

Finally, and probably most importantly, fundamental rights were a major consideration

in our design. A fair censorhip, based on universal values, was designed based on the

Ripple E�ect technique (section 3.7). This enables the community as a whole to decide

what information should be provided to the community and be rewarded for their

�altruistic� behavior. It also guarantees protection of fundamental rights such as privacy

as well as insuring as much freedom of expression as possible through democratic web

decisions.

5.3.8 Further Evaluation

Our prototype being implemented and fully tested, further evaluations based on this

prototype would be interesting to investigate so as to learn what parameters such as

rate of updates, size of elite groups, number of PEP a network could handle etc...

should be used in a global Elite deployment.
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Chapter 6

Conclusion

This chapter aims at summarizing this research's outcomes in tackling issues raised in

the initial part of this document. It starts by summarizing in section 6.1 the design and

implementation approaches undertaken, attempting to provide answers to engineering

di�culties encountered in this �eld. Section 6.2, will give a concise description of

the analysis carried out of the Ripple E�ect, followed by an outline of this research's

contributions and possible future investigations in section 6.3 and 6.4 respectively.

6.1 Elite, Design with an Ethical Perspective

As a result of this research, several major de�ciencies present in contemporary search

engines were underlined and an attempt to overcome these issues as far as possible

was undertaken. We proved that engineering design could have an important impact

on improving how our society will evolve in the future by providing more adequate

tools to assist these transformations. Thereupon, a novel category of search engine

was designed, built and tested based on design principles including strong ethical

considerations.

This research showed how the �Rich get Richer� nature of the web for example,

could be reduced by removing the dependency of search engines over links in

determining importance of pages. The latter could instead be replaced by peer selection

and collaboration based on expertise and feedback (3.1), simultaneously providing high

quality results to users.

95



A new Ripple E�ect technique built on top of Pastry was introduced and used

in a zero input recommendation algorithm so as to counter entrenchment e�ects by

arti�cially increasing awareness of new high quality pages. A deep analysis of this

technique was performed (results summarized in the next section) which proved the

e�ectiveness of this method.

Web scalability was dealt with by replacing exhaustive indexes with pre-�ltered

ones obtained via Web browsing instead of Web crawling. Regulating algorithms were

additionally introduced to manage this index as needed (3.4.4.5) in respect to demand

& network capabilities and the need to store indexed pages was removed.

Scalability from a technical point of view was taken into account by incorporating

caches 3.5.4 to remove bottlenecks, minimizing messaging (3.4.4.3) and storage

requirements.

Furthermore, anonymity was taken care of on numerous occasions throughout

the design of this search engine, by guaranteeing con�dentiality of message passing

(3.5.3), anonymous group membership ( section 3.4.2), group management protocols

(LEP protocol 3.4.2.4) and hashing of identities (section 3.6) throughout the

community.

Finally, a large amount of consideration was given to control over digital

information. We ensured that global data indexing and associated responsibilities was

fragmented and handed down to the people through a new GKD Indexing Scheme 3.4.4.

This decision additionally assured limited damage of any potential index manipulation

by malicious individuals which is made pointless thanks to a combined encryption

mechanism 3.6. And most important, a censorship model, promoting universal values

and protecting fundamental rights, was designed using democratic decision making by

the community through the use of the Ripple E�ect technique (section 3.7.2).

6.2 Ripple E�ect Results

6.2.1 General Ripple Conclusions

A strong analysis of this new Ripple E�ect technique was performed through

formal and simulation investigations. The e�ectiveness of this method proved to

reduce entrenchment e�ects of new high quality pages and increased general web
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browsing quality. Optimal performance was observed for high minimum ripple quality

requirements (RipMin) while e�cient use of this technique was accounted for when

the ripple size was set to 1. More precise results are outlined in the following section.

6.2.2 Detailed Ripple Results

Our results found that, rippling new pages could increase the quality of web browsing

up to 20%. In our model, while no single page reached 90% of their maximum potential

popularity in an environment without ripple e�ects, about 12% did in the alternative

case. It was shown that the minimum quality requirements value used when rippling

had a direct impact both on which pages reached high awareness as well as the time

taken by these pages to do so. As the requirements are lowered, the bene�ts of rippling

is shared among pages.

Also, we saw, to our surprise, how the minimum quality requirements had an

in�uence on the number of hops or messages sent in an Elite group per ripple, and

formulated an initial possible explanation for such a behavior (section 5.2.2.2).

Finally, our analysis also demonstrated how, initiating a ripple of size 1 several

times as opposed to initiating only 1 with a larger size had no major impact on the

di�erence of messages sent, but nevertheless, to our surprise, was to the bene�ts for

ripples of size 1.

6.3 Contributions of this Research

This research initially aimed at raising awareness on critical issues faced by our society

in relation to the increasing importance of search engines in the global community

along with the responsibilities of engineers designing them. A detailed examination

of these tools was performed so as to understand the technical di�culties associated

with their design. We showed how a new approach to search engine implementation

could attempt to answer these di�culties and achieve better ethical standards, thus

proving how engineering design has a major impact on how our society could evolve

in the future by providing better tools to the community. As a consequence, a new

Elite search engine, based on Peer 2 Peer technology and collaborative peer �ltering,

was designed, built and tested, using a new Ripple E�ect technique and GKD indexing
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scheme approach, ultimately resulting in the creation of the Elite Project open source

software freely available on the web.

6.4 Future Research Considerations

This initial project could potentially extend itself on a very wide scale at di�erent

levels. Additional research, for example, in analyzing the Ripple E�ect technique

would be interesting. The formal analysis performed in this document, for instance,

only considered cases when ripple size was equal to 1. Investigating what in�uence

would an increase in s have theoretically on each curve would be valuable. Further

investigation within the simulation analysis is also required with a higher community of

peer, so as to ensure, as we expect, that our results are consistent for any community

size with a same ratio of associated pages. However, modulating this ratio would

probably result in di�erent �gures which would be interesting to observe. Also, as

stated in section 5.1.3, previous to any serious global deployment, an investigation in

the variables shaping theoretical curves of this e�ect would be needed in order to obtain

the correct curves required for information to �ow via rippling on a global scale.

The most obvious next step in this project however, would involve improving the

current implementation by adding the encryption and censorship mechanism outlined in

( 3) which would be a necessary requirement for full scale deployment. Improvements on

the design could be also investigated based on suggestions outlined in 3.8. And �nally

probably the most exciting endeavor, would consist of incorporating Elite as a plugin

application within most popular Internet browsers so as to enable a full deployment of

this system and analyze its behavior on a global scale.
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Appendix A

Notation & Concepts Summary

A.1 Acronyms

Acronym Signi�cation

KEP Keyword Elite Peer
VR Visit Rate
RVI Relative Visit Increase
EP Elite Peer
PEP Page Elite Peer
LEP Least Expert Peer
STopic Scribe Topic
TBP Time to Become Popular

Table A.1: Acronyms used throughout this document
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A.2 Elite Messages

A.2.1 Pastry Messages

Message Acronym

Join Request Message JRM
Elite Member Status Message EMSM
`Elite Peer Alive Message EPAM

VR Update /
RVI Update /

Transfer VR Webpage Message TVWM
Transfer RVI Webpage Message TRWM

Query Answer Message QAM
Censorship Alert Message CAM

Table A.2: Pastry Messages

A.2.2 Scribe Messages

Messages Acronym

Webpage Location Update Message WLUM
Webpage Location Request Message WLRM

Lowest PEP Value Message LPVM
Ripple Webpage Message RWM

Support Censorship Alert Message SCAM
Censorhip Decision Message CDM

Table A.3: SCRIBE Messages
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A.3 Symbols

Symbol Meaning

K1, K2,... Keyword1, Keyword2,...
W1,W2,... Webpage1, Webpage2,...

s Ripple Size
S Solution variable used to decrypt H(url)

P(p,t) Popularity of page p at time t
V(p,t) Visit rate of page p at time t
Q(p) Quality of page p
A(p,t) Awareness of page p at time t
I(p,t) Increase in Popularity of page p at time t

Table A.4: List of symbols used throughout this document

A.4 Concepts & De�nitions

Concept De�nition

Expertise and Interest Used alternatively throughout
document to refer to amount of

browsing of a Peer in a given subject
Term A word contained in a web page
Subject Concept of interest to Peers associated

with a given Term or Keyword
Keyword A term speci�ed in a Query or

representing an Elite Group
Peer A node in the pastry network, which

is or isn't necessarily an EP, KEP or
PEPThe word Peer is used to

represent characteristics shared by
every member of the network

High Pro�le Page A page with many inward Links
Simple Peer A peer which neither is a EP, PEP or

KEP

Table A.5: Concepts and their de�nitions used throughout this document
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