
Supernode-BasedMultiring P2P Middleware for the

Global Contentifier

Gábor Bernáth, B.Sc.

bernathg@tcd.ie

A dissertation submitted to the University of Dublin, Trinity College,

in partial fulfilment of the requirements for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2007

Declaration

I, the undersigned, declare that this work has not previously been submitted

as an exercise for a degree at this, or any other University, and that unless otherwise

stated, is my own work.

Gábor Bernáth

September 14, 2007

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this

thesis upon request.

Gábor Bernáth

September 14, 2007

Acknowledgments

Many thanks to my supervisor, Dr. Mads Haahr for his advice. The invaluable

discussions with the project team members Thom Kubli and Uli Fouquet provided

help throughout the project.

A special thanks goes to the NDS class, it has been a great experience. Finally,

I want to thank the Ballybough Crew for their support throughout this year.

GÁBOR BERNÁTH

University of Dublin, Trinity College

September 2007

iv

Supernode-BasedMultiring P2P Middleware for the

Global Contentifier

Gábor Bernáth, M.Sc.

University of Dublin, Trinity College, 2007

Supervisor: Mads Haahr

Abstract

As peer-to-peer applications are becoming ubiquitous for content distribution and

communication, modern artists reflect on and incorporate P2P technologies in their

work. The novel Global Contentifier installation art project uses P2P technology

to drive an interactive audio sculpture interconnecting users and enabling the

exchange of personal wishes of political concern, while visualising the geographical

and logical network topology and the content flow therein to create an interactive

experience. This dissertation strives to realise the technical requirements of the

Global Contentifier and is part of a project of larger scale.

A supernode-based P2Pmiddleware for buildingmultiring overlay networks

is designed and implemented. The multiring topology consists of the outer and

inner rings. The latter interconnects the more powerful supernodes which provide a

number of services for the P2P overlay, such as bootstrapping, security mechanisms,

as well as geo-location of nodes and content. The design addresses the issues of

security, survivability and scalability. An existing ring protocol is adapted to the

requirements. The network component of the Global Contentifier application is

built on top of the middleware. The designed application realises a serial content

v

flowwithin the ring overlay and it communicates with a GUI frontend, which is not

part of this dissertation.

Design issues of the middleware and the application are discussed in detail

and design choices are presented. A detailed report on the implementation follows,

including descriptions of the implementation decisions, the development process

and the software architecture.

The results are evaluated experimentally by quantifying performance metrics

and overheads. The evaluation discusses the results of several measurements and

contrasts the initial goals with the actual achievements. Finally the research is

concluded and possible directions of future research are identified.

vi

Contents

Acknowledgments iv

Abstract v

Table of Contents vii

List of Tables x

List of Figures xi

List of Listings xii

Chapter 1 Introduction 1

1.1 The Global Contentifier . 1

1.2 Research Aims . 2

1.3 Dissertation Outline . 3

Chapter 2 Background and Related Work 4

2.1 P2P Overlay Networks . 4

2.2 Ring Topology Overlays . 5

2.2.1 Ring Protocols . 6

2.2.2 Multiring Protocols . 6

2.3 P2P and Art . 8

2.4 P2P and Geography . 9

2.5 Cryptography . 11

2.5.1 Encryption and Signatures . 11

vii

2.5.2 Pricing . 13

Chapter 3 Design 15

3.1 Design Choices . 15

3.1.1 Requirements . 15

3.1.2 P2P Overlay . 16

3.1.3 Software Architecture . 18

3.1.4 Ring Protocol . 19

3.1.5 Supernode architecture . 22

3.2 Security Considerations . 26

3.2.1 P2P Security . 27

3.2.2 Cryptography . 28

3.2.3 Application Security . 29

3.3 Interfaces . 30

3.3.1 Middleware-Application Interface 30

3.3.2 Network-Frontend Interface . 30

Chapter 4 Implementation 32

4.1 Development Process . 32

4.2 Implementation Choices . 33

4.2.1 Python . 33

4.2.2 Twisted . 33

4.3 Implementation Details . 36

4.3.1 Overview . 36

4.3.2 Protocol Stack . 37

4.3.3 Shared state . 41

4.3.4 Messages . 42

4.3.5 Node Join . 43

4.3.6 NAT traversal . 45

4.3.7 Logging . 46

4.3.8 Frontend . 46

Chapter 5 Evaluation 49

5.1 Measurements . 49

viii

5.1.1 Experimental Setup . 50

5.1.2 Round Trip Time . 50

5.1.3 Messaging Overheads . 51

5.1.4 Time to converge . 52

5.2 Goals and Achievements . 54

Chapter 6 Conclusion 55

6.1 Future Work . 55

6.2 Conclusion . 57

6.2.1 Summary . 57

6.2.2 Contributions . 58

Appendix 59

Bibliography 62

ix

List of Tables

3.1 Attributes of the Content class representing the metadata 24

4.1 Protocol Stack . 37

4.2 Data stored as part of the node ID . 44

x

List of Figures

3.1 Application Components . 18

3.2 Protocol stack . 19

3.3 Inner and outer rings . 23

3.4 Middleware interfaces . 30

4.1 Components of the P2P client software 36

4.2 State machine describing the ring protocol 40

4.3 Content Protocol: messages exchanged during content insertion . . . 41

4.4 Messages exchanged during the join operation 45

4.5 The GUI of the Contentifier application 48

5.1 Round trip time and ring size . 51

5.2 Ring protocol and content protocol messages 53

5.3 Time to converge to a ring . 54

6.1 Class diagram of the messages module 60

6.2 Class diagram . 61

xi

Listings

4.1 HelloReplymessage serialised to wire format 38

4.2 Example of request-response pattern 39

4.3 Accessing message headers in the Message class 43

4.4 Log file excerpt . 46

4.5 Console frontend . 48

xii

Chapter 1

Introduction

1.1 The Global Contentifier

The Global Contentifier is a project of Thom Kubli, a German media artist. The

concepts of the Global Contentifier are summarised here and are described in detail

on Kubli’s website [1].

The Global Contentifier is a P2P network for distribution of audio content.

The audio material is speech or sound expressing personal desires of political

concern. The system facilitates the interactive exchange of political views between

the users. Users can listen to others and broadcast their own ideas. The Global

Contentifier also aims to provide the users with the feeling of being a part of the whole

by means of geographical and topological visualisation of the overlay network and

the content flow therein. A number of network nodes are deployed on “politically

interesting” locations in an urban setting, inviting the pedestrians passing by to

participate. Home users can download the P2P client and join to the network from

the convenience of their own homes1.

The operational P2P overlay network including the member nodes is an art

installation, a constantly evolving audio sculpture that interconnects several public

and private spaces and becomes manifest at those locations.

The Contentifier overlay network has a ring-based topology. The topology2

1The nodes placed around the city will be referred to as “deployed nodes” as opposed to “home
nodes”.
2The geographical topology as well as the logical network topology.

1

of the deployed nodes initially resembles the shape of the number eight. Nodes are

inserted into the network topology based on their geographical location. When home

nodes join the overlay, the shape of the overlay network evolves, while keeping

the eight-shaped topology intact. The new node temporarily replaces the deployed

node that is closest in geographical distance. This process is referred to as an

intervention and accounts for the constantly evolving topology.

The content propagates serially through the networked nodes. The resulting

circular data flow resembles the repetitions of a mantra. The continuous data flow is

ensured even without user interaction. The content is downloaded, stored, played

back, forwarded and then deleted automatically. Thus the content is not bound to

a specific node or location; instead it moves continuously, traversing the networked

nodes without any user control.

1.2 Research Aims

The main aims of this research are:

• to survey the state-of-the-art of ring-building overlays, with a particular
emphasis on protocols suitable for P2P systems.

• to design and implement a novel ring-based P2P middleware that provides a
platform to realise the Contentifier and other applications.

• to consider security issues and develop countermeasures to minimise threats.

• to produce the networking component of the P2P application based on the
middleware.

• to present and evaluate the results of the work outlined above in an
informative paper.

The goal beyond the scope of this dissertation is the continued collaboration

with the project team to further improve and deploy the Global Contentifier.

2

1.3 Dissertation Outline

Chapter 1 introduces the concepts of the Global Contentifier project and states the

research aims.

Chapter 2 presents essential background information and surveys the state-of-the-

art in the field of ring overlays suitable for P2P systems with a focus on

multirings and presents applications in the field of geo-based P2P systems.

Chapter 3 enumerates technical requirements, discusses design issues and gives

an overview of the main decisions made. The design of the P2P network,

the P2P middleware and the client software is presented. The ring protocol

is introduced and the behaviour of the supernode architecture is presented

in detail. Finally security issues are considered and countermeasures against

identified threats are described.

Chapter 4 presents implementation choices including the software and tools

used, the protocol stack used for communication, as well as the software

architecture. Three main software components are identified, the frontend,

the application and the middleware and a detailed report on their

implementations is given.

Chapter 5 evaluates the results in light of the research aims and quantifies protocol

performance and overheads by means of experimental measurements. A

report on implementation status is given.

Chapter 6 presents short and long term future work and summarises the main

achievements of the research.

The impatient reader is advised to jump straight to Chapter 3 where all

important design issues and decisions are presented and then move on to the

conclusion in Chapter 6.

3

Chapter 2

Background and Related Work

In this chapter, essential background information is presented and the state-of-the-

art is surveyed with a particular emphasis on ring topology overlays, P2P systems

based on geography, and cryptography in the context of P2P networks.

2.1 P2P Overlay Networks

Peer-to-peer overlay networks construct and maintain a virtual network on top of

an existing network, eg. the Internet. The additional logical topology connecting

the P2P nodes does not necessarily resemble the underlying physical topology.

The overlay network represents a layer between the Internet and the applications

running at the nodes. The responsibilities of P2P overlay networks include the

management of the overlay itself, routing of messages and providing lookup and

search facilities. Overlay management is necessary in a dynamic environment,

because the highly autonomous P2P nodes may frequently join and leave the

overlay and random link or node failures may occur as well. The overlay network

has to be maintained at all times in face of network churn. Nodes act as routers

forwarding messages in the overlay network.

There are several benefits of P2P overlays. The overlay abstracts away from

the dynamic topology of the underlying network. The overlay network intends to

provide basic reliable services to the application layer over an unreliable network.

Furthermore, the overlay can exploit the underlying network topology to improve

4

application-specific performance metrics. Thus, P2P application developers can

focus on application development by building on services of the overlay network.

Overlay networks can be used to maintain a range of topologies depending

on application-specific requirements. Mesh, tree and ring are common topologies.

The latter are discussed in Section 2.2.

2.2 Ring Topology Overlays

A significant amount of research on the topic of ring topology overlays has been

conducted. This section discusses general properties of ring networks and presents

some of the related work in the field. Sobeih et al. survey, describe and classify

several ring-building group communication protocols in [2]. Wang et al. survey

and classify multiring protocols for group communications in [3]. These two

papers provide an excellent introduction to ring overlays, however, both of them

concentrate on military application requirements.

Properties. Ring topology networks share some common properties. Bidirectional

rings exhibit inherent tolerance to single node or link failures since there are two

disjunct paths between each node. Another beneficial property of rings is that

ensuring message ordering is more straightforward than with other topologies.

Also, key management schemes are relatively efficient on ring overlay networks.

Rings are scalable in the sense that the node degree and the link stress is

constant independently of the number of nodes. On the other hand, network

diameter increases with the ring size, which in turn increases delay and jitter,

limiting scalability. Furthermore, the throughput of the ring is constrained by the

throughput at the node with the lowest bandwidth.

Multirings. The network diameter can be reduced by using multirings, whereby

smaller rings are interconnected to form multirings. The rings can be constructed

to share either edges or nodes, resulting in a mesh or tree of rings respectively. A

few isomorphic varieties of ring meshes are further distinguished in [3]. Both types

of multirings can be constructed by recursively appending rings to each other or by

creating a shortcut links in a big initial ring. Two metrics of multirings affect the

5

properties message delay, routing complexity and fault tolerance: the depth of the

multiring graph and the number of nodes in the small rings. Multirings increase

overall throughput by improving both scalability of bandwidth and latency.

2.2.1 Ring Protocols

FTAR Protocol. In [4] Risson et al. describe Fault Tolerant Active Rings (FTAR),

an active topology maintenance protocol for structured overlays. Normal ring

membership changes are managed by a variation of the Paxos Commit algorithm.

Node join and scheduled leave procedures are implemented as a transaction

involving the joining (leaving) node and its neighbours. The main contribution of

FTAR is that the ring continuity is maintained at all stages of normal membership

changes. Paxos Commit achieves consensus in three phases in a non-blocking

fashion and guarantees consistency and progress even in the presence of faults. The

authors quantify messaging overheads and conclude them to be acceptable. The

FTAR protocol is formally specified and proved.

RN Protocol. Shaker et al. present the Ring Network protocol for construction

and maintenance of self-stabilising overlay network [5]. The peers running the

Ring Network protocol converge from an arbitrary P2P network state to a directed

ring topology, ordered according to their node IDs. The proposed protocol is

a distributed and asynchronous message-passing protocol and relies only on the

existence of a weakly-connected bootstrapping system. All peers execute the simple

and robust Ring Network protocol by initiating Closer-Peer Searches periodically

and monitoring searches initiated by other peers. The information gathered using

the searches is used to update the local successor and neighbour lists.

2.2.2 Multiring Protocols

VRing. In [6] Sobeih et al. present VRing, an application layer multicast protocol,

that establishes a multiring overlay in a distributed manner. The VRing is

constructed by extending the initial single ring with a spare ring. The spare links

create shortcuts between group members. The proposed data delivery mechanism

6

uses both rings to forward data. The utilisation of the spare ring is shown to reduce

the network diameter from O(n) to O(
√
n).

P2P Multi-Ring. Junginger et al. propose a multi-ring topology for high-

performance group communication in P2P networks [7]. First an outer ring is

formed connecting all nodes. Then, more powerful nodes construct an inner ring

among themselves to reduce the network diameter and eliminate their dependency

on less powerful nodes. If necessary, multiple inner rings may be established,

thereby creating shortcuts to all ring segments. The inner rings are constructed

based on local information and no node needs to have a global view of the

overlay network. Nodes measure bandwidth to their neighbours and exchange this

information in their limited neighbourhood. Themulti-ring is designed for dynamic

and heterogeneous P2P networks. For example inner ring nodes are replaced if more

powerful ones join the overlay. The advantages of inner rings are only useful if the

inner ring nodes are well balanced in the outer ring. Thus, inner ring neighbour

nodes periodically monitor their distance on the outer ring and swap position with

their outer ring neighbours if necessary to improve balancing.

The idea of adjusting the overlay topology to match performance

requirements of individual nodes is similar to the more generic concepts

described by Haahr et al. [8]. The proposed supernode-based, unstructured P2P

overlay network strives to improve performance metrics in a distributed manner.

Nodes search for new neighbours with similar characteristics and capabilities to

themselves, until the required amount of similar neighbours is reached.

De Bruijn Rings. Wepiwe et al. have constructed HiPeer, a novel concentric

multiring overlay topology for highly reliable P2P networks with a bounded

number of routing hops [9]. The authors claim that the proposed overlay can

maintain the topology in face of a high network churn rate using a bounded number

of messages. The overlay constructs a highly connected network topology. The

authors tackle the problem from a graph theoretic perspective. HiPeer strives to

maximise the number of nodes in a graph with given degree and diameter. The

resulting network overlay topology resembles a de Bruijn graph and the number of

nodes approximates the theoretically possible Moore bound. The concentric rings

7

can accommodate an exponentially growing number of nodes, but the size of each

ring is limited. When the outermost ring is full, a new ring is added to accommodate

joining nodes.

However, the presented routing, resource lookup, node join and node leave

procedures are relatively complex. Also, peers need to assist in repairing the overlay

before they leave and it is not clear to what extent HiPeer supports node failure.

Further research [10] suggests that de Bruijn based topologies (and current constant

node degree network topologies in general) fail to meet the conflicting goals of

storage load balancing and search efficiency.

Centralised Multirings. There is a wide variety of multirings using some sort of

centralised management such as Totem [11] and Hierarchical Self-Healing Rings

[12]. However, the lack of distributed management capabilities is not practical in

a highly autonomous, dynamic and scalable P2P environment.

2.3 P2P and Art

The Global Contentifier is an installation art project that is based on a P2P network

designed for this exact purpose. There has been no published prior work that

builds a P2P overlay as an artwork. However, a number of artists use existing P2P

networks to distribute their work or to collaborate with others in an effort to create

art.

P2P Art [13] is a project by the film director Anders Weberg. The artist

made an experimental film entitled Filter for distribution on P2P networks. After

completely uploading the film to another user, Weberg deleted the original file and

the material used to create it. The film is available as long as users share it. The

project emphasizes the “aesthetics of ephemerality”. The film is still available on

P2P networks at the time of this writing, one year after the it was published. Several

other artists produce content for exclusive distribution on P2P networks.

The Electric Sheep distributed computing project [14] generates fractal-like

images and animations and display them as a screensaver. It makes use of

processing power and human presence at the edge of the Internet. The software

uses BitTorrent to distribute the artwork.

8

It has been reported that a number of musicians use the Skype P2P internet

telephony and conferencing service to rehearse and jam online. Others are teaching

music through Skype, which allows them to expand their services to a global scale.

2.4 P2P and Geography

A significant amount of research has been done on location-based services and

information in computer networks. Interesting concepts and applications have

evolved in the field of mobile ad-hoc networks (MANETs), which are related to P2P

networks. Unfortunately, it is out of the scope of this dissertation to discuss these in

detail.

Most P2P applications that exploit node location in building the overlay

network use metrics that rely on the logical structure of the underlying network,

such as the round-trip-time and IP address prefixmatching. No known P2P overlays

build a topology that leverages the geographical location of the nodes, partially

because of the difficulty of precisely geo-locating peers.

Geographic Routing. In geographic routing, messages are addressed at a

geographic location as opposed to a network address. Messages are routed to the

node closest to the destination. Mamei et al. introduce such a geographic routing

algorithm for the TOTA middleware [15]. There are several applications in the field

of MANETs. For instance geographic hash tables can be built analogously to DHTs,

as described by Ratnasamy et al. [16].

Hovering Information. Konstantas et al. introduce the novel concept of hovering

information in the context of MANETs [17, 18]. The authors define hovering

information as an autonomous entity that is anchored to a specific geographical

location, rather than a storage device or physical media. The active information is

responsible for its own survivability and migrates between mobile devices as they

move into and out of the anchor area. The concept behind hovering information is

that information is not controlled by the users or devices, but makes an active effort

to achieve its goals. The authors briefly mention the possibility that the hovering

information could define a migration plan, thus moving along its desired path by

9

making use of the movement of mobile devices and hopping to other devices when

necessary. This very interesting research is a work in progress. The introduced

concepts are related to that of the Contentifier, where the content traverses along a

geographical path.

O’Flaherty proposed the Stirling distributed filesystem [19] for MANETs. In

Stirling files are replicated at powerful backbone network nodes near to the file

owner’s mobile device, thus allowing for low-latency access. The concept of files

“following” their owners on the move is somewhat related to hovering information.

Mapping P2P Networks. Pascual et al. developed Minitasking, a tool for

visualising the structure of the Gnutella P2P network and search queries

propagating between nodes [20]. Minitasking aims to present the logical overlay

topology rather than the geographical distribution of nodes.

There are several projects for geographically mapping the Internet backbones

and ISP networks. These projects do not aim to locate individual nodes and the

techniques used have limited applicability to P2P networks.

Geo-locating IP addresses. Determining the geographical location of computers

is important for a number of applications. Several solutions have been proposed.

This section briefly introduces the main alternatives. For discussion in detail refer

to the survey conducted by Padmanabhan et al. [21].

The simplest solution to geo-locate an IP address is making use of human

presence. Many applications ask the users where they are located. This solution

has several problems, as it depends on the cooperation and honesty of the user.

The other major client-side solution is the application of GPS receivers or other

equipment capable of locating itself, but today few users have such devices.

Numerous databases and webservices exist for mapping IP addresses to

geographical locations. A problem with existing services is that often times they are

either expensive or inaccurate, or both. However, for many applications they pose

the most viable alternative. IP-to-geo services are often used by geo marketing and

fraud detection systems. Many P2P file sharing clients use these methods to infer

the country or organisation where the peers are located in order to avoid logging

the transmission of copyright infringing content by law enforcement.

10

Other methods are based on running traceroute, or using triangulation to

infer the location by measuring propagation delays from a number of servers

deployed worldwide at known locations. There are solutions that combine multiple

methods to increase accuracy.

2.5 Cryptography

This section gives an overview of cryptography in the context of P2P networks.

2.5.1 Encryption and Signatures

Secret key or public key cryptography can be used to address the security threats of

eavesdropping, insertion and modification of messages.

Symmetric Cryptography. Secret key (symmetric) cryptography shifts the security

issue to the one of key distribution. One possibility for using secret key

cryptography in group communication is to distribute a single secret key among

the group members. Apart from the contradiction of distributing a secret, the need

of rekeying the whole group arises on every membership change. Leaving nodes

should not be able to continue decrypt the communication and joining nodes should

not be able to decrypt messages recorded beforehand. Such a requirement is most

infeasible in P2P overlays with a high network churn.

An alternative is establishing shared keys for each link independently. This

alternative is manageable in a ring topology overlay with constant node degree.

However, it is hard to agree on a shared secret without mutual authentication.

For example the Diffie-Hellman key exchange protocol is vulnerable to man-in-

the-middle attack if the two parties cannot authenticate each other. The parties

need to have a shared secret in advance or a public key infrastructure (PKI) or

similar mechanism in place. Nodes to not have a shared secret in a P2P system;

the possibility of PKI deployment is discussed below.

Asymmetric Cryptography. Public key (asymmetric) cryptography can be used

to encrypt and sign messages. The main difficulty in deploying public key

cryptography is to find a way to distribute public keys in an authentic fashion. This

11

can be achieved by delegating trust to a third party. The trusted third party is most

commonly a certificate authority (CA), which issues a certificate that binds a public

key to an user identity1. A classic public key infrastructure automates the process

described above in a centralised fashion. The “web of trust” used by PGP is different

way of creating similar certificates in a decentralised manner.

Centralised PKI. Most PKI systems rely on a hierarchy of certificate authorities.

The certificate of an end user is issued (signed) by a CA. The identity of CAs is also

described in a certificate issued by a higher-level CA. Thus, the identity of an end

user is described through a certificate chain. The root certificate used to establish

the identities of the high-level CAs is distributed to the end users by out-of-band

means, usually together with the software performing validation of certificates. The

identity of an user can be proven by following and verifying the certificate chain

up to the root certificate. Centralised PKIs make use of a directory scheme, such as

LDAP, to store certificates in a hierarchy.

The traditional X.509-style PKI has a number of shortcomings, including

complexity, rigid and impractical directories, naming problems and revocation

issues [22]. While many of these shortcomings can be addressed by omitting the

directory and choosing another means of distributing and managing certificates,

revocation issues still remain. Certificate revocation lists (CRLs) have proved

inefficient; online revocation solutions create a bottleneck and single point of failure

at the server. Issuing short-lived certificates shifts the problem to revalidation and

requires synchronised clocks, which contradict the self-governing nature of the

Internet. As an effect, several applications design around the problem of revocation,

such as SET and SSH.

Distributed PKI. In [23] Datta et al. present a quorum based distributed PKI built

on top of a P-Grid, a structured P2P system with a tree-based key-space. Their

proposed system replicates public keys at multiple nodes. A node looking for a

key retrieves it from a set of replicas. Given a set of answers the key originally

stored in the overlay is deduced using statistical methods. Thus the information

is available even in the presence of failures and malicious nodes. The authors

1In the context of the Contentifier the identity is described by the node ID, which includes the IP
address, port number and geo-location.

12

advocate the quorum based approach over PGP like web of trust models because

of the possibilities of exploiting collective knowledge and quantifying probabilistic

guarantees. The proposed system could be adapted to a DHT-based overlay.

Wöfl et al. propose P2P-PKI [24, 25], a distributed PKI based on Chord. It

relies on trust-based metrics to provide authorisation. P2P-PKI distributes trust

management like PGP, but goes further and distributes the directory as well. P2P-

PKI is a work in progress and is missing certificate revocation and expiry features.

2.5.2 Pricing

Pricing is a mechanism that allows a service provider to force clients to prove they

are serious about a request. The client contributes a small price for each request

and the service provider verifies the contribution before processing the request.

Pricing can be used to mitigate or at least slow down large scale attacks such

as spamming, distributed denial of service and sybil attacks. The price can be

monetary or computational.

Micropayment. Micropayment systems facilitate the transfer of very small

amounts of money, thus large scale attacks get expensive. However, micropayment

systems involve real money, require a considerable administrative effort and are

impractical in open P2P systems, where users are not willing to open their wallets.

The alternative “payment” method involves trading computational power by

solving cryptographic puzzles, which is analogous to minting electronic coins or

stamps. The idea behind crypto puzzles is the same as in micropayments: it is

expensive to mint large amounts of electronic coins, but it takes a very short time to

mint a single one.

Hashcash. Back proposed the hashcash system as a denial of service counter-

measure [26, 27]. Hashcash requires the client to find a string that has a

corresponding SHA-1 hash with the first x bits set to zero. The amount of

computational work required can be parametrised by choosing an appropriate value

for x. The generated string is easy to verify by the receiver. Attackers could compute

many stamps in advance of mounting an attack. Another issue is double-spending.

There are several variations on the hashcash cost-function including interactive

13

ones, which solve the problems of computing stamps beforehand and double-

spending. Others have raised concerns about the effectiveness of crypto puzzles,

because it is hard to parametrise them in a way that is acceptable to the slowest

legitimate node but sufficient to slow down attackers with access to a high amount

of computational power [28]. The attacker has to consider a cost-benefit trade-off

depending on the value of the service attacked. In an open P2P system where user

selfishness is rather a motivation for attacks on the network, cryptographic puzzles

are an effective way to deter an attacker.

14

Chapter 3

Design

This chapter enumerates the technical requirements of the Global Contentifier,

discusses design issues in detail and presents design decisions. The design of the

overlay network, the supernode services, the software architecture and security

measures are addressed.

3.1 Design Choices

3.1.1 Requirements

The middleware requirements of the Contentifier differ from that of other P2P

applications in many aspects. This section enumerates requirements that affect the

overall design. The implied design choices are discussed in the following sections.

The main requirements of the Contentifier are:

• build and maintain the ring-based topology

• serial content flow in the ring

• allow home users to participate in the network

• enforcement of overlay policies affecting node join and content insertion

• geo-location of nodes and content and aggregation of a global view of the
overlay network topology and the content flow

15

3.1.2 P2P Overlay

Serial Content Flow. Most P2P applications are sensitive to message delay,

therefore, most ring protocols aim to reduce latency at the cost of networking

and storage overheads. Multirings have been introduced to improve scalability of

message delays as the number of nodes in the network grows. Latency is mitigated

by enhancing connectivity to distant ring segments, that in turn decreases the

network diameter.

The Contentifier application in contrast intends to distribute content in

a sequential fashion with an inherent propagation delay. This relaxation of

requirements greatly reduces complexity.

Global View. A requirement of the Contentifier is to present a global view of

the P2P overlay network topology to the user. Distributed group membership

management protocols do not aggregate a global view of the overlay, P2P nodes are

only aware of their limited local neighbourhood. The Contentifier needs to preserve

scalability of the network without exposing a single point of failure. Thus, the ring

management protocol has to be kept distributed and the aggregation of a global

network view has to be realised at a higher level. Implementing such functionality

at a higher level keeps the ring protocol scalable and shifts the bottleneck to the

higher level.

Home Users. A requirement of the Contentifier is to allow home users to

download the client and participate in the P2P system. In this context two

conditions have to be met: platform independence and network connectivity.

The users running different operating systems on a variety of devices should

be able to run the client without an effort. This implies the need for cross-platform

solutions to keep development effort low as well. The programming language and

libraries used have to support different platforms.

The other issue to be addressed is network connectivity. Nowadays, home

users are likely to be located behind home routers and middleboxes of other

kind performing Network Address Translation. NAT violates the end-to-end

argument [29] and causes difficulties for P2P communication. In practice, many

P2P applications use the controversial UPnP protocol to work around middleboxes

16

by enabling port forwarding. Another widely used NAT traversal technique is hole

punching which in general requires third party coordination services in the initial

phase of setting up a connection. Hole punching is possible with both UDP and

TCP network transports, while devices supporting UDP hole punching are more

numerous [30].

The Contentifier protocols are based on TCP communication to make use of

its advantages in reliability. Implementing the required TCP functionality over UDP

is an error prone and tedious effort1.

The requirement of the intervention, whereby home nodes replace deployed

nodes, imposes a constant number of nodes. This requirement is not addressed

by the middleware, which should be able to scale to a potentially large number of

nodes. Instead, the restriction is implemented as an application layer policy.

Supernode Architecture. Several requirements of the Contentifier need services

that are centralised to a certain extent. These requirements include maintaining a

global view of the network, aggregating content flow tracking information, geo-

locating peers and content, enforcement of policies and keymanagement. Providing

these services from a single central server is not feasible because of the limited

scalability and failure tolerance of such an architecture2. Other practical concerns

such as the lack of funding for providing high bandwidth and processing power in

a single location are against the deployment of a completely centralised architecture.

However, the Contentifier network will have a set of nodes deployed in

booths around the city. These nodes are arranged in a relatively static topology and

are under control of the network operators. Thus, a supernode based architecture is

a viable alternative to support the required services in a decentralised manner.

The design of the supernode architecture is elaborated in detail in

Section 3.1.5.

1Even tough some work has already been done in the Twisted community: see pseudo-TCP or
PTCP [31].
2At the time of this writing the prominent supernode-based P2P telephony service Skype has

experienced a two-day outage due to a massive amount of simultaneous login requests at a
centralised server.

17

3.1.3 Software Architecture

Application Architecture. The Contentifier software has two main components:

the frontend and the network component. The frontend is an user interface that

allows the user to produce and consume content and visualises the global view.

The network component is responsible for managing the P2P infrastructure. It is

composed of the middleware and the application. The middleware layer provides

maintenance of the overlay network, while the application layer relies on the

overlay network to distribute content and aggregate the global view information.

Figure 3.1 illustrates the components. The scope of this dissertation is the network

component, shown in grey.

Figure 3.1: Application Components

Protocol Overview. The communication protocols for the Contentifier use a

layered protocol model. The protocol layers provide services to the layers above

and depend on services of the underlying layers. The lower protocols provide

message-based communication and related abstractions. The ring protocol layer

provides membership management, ring maintenance and failure handling. The

protocol layers above the ring protocol are collectively referred to as application

layer protocols. These realise content flow control and global view aggregation.

The supernode functionality crosscuts several protocol layers3. The protocol stack

is shown in Figure 3.2. The design issues of the different layers are addressed in the

following sections.

3For example the supernode protocol aids the ring protocol layer with providing bootstrapping
functionality and also drives the aggregation of the global view.

18

Figure 3.2: Protocol stack

3.1.4 Ring Protocol

The ring protocol for the Contentifier overlay network is in many ways similar to

existing ring protocols, in particular VRing [6], which it is based on. Nodes are

arranged in a ring. Each node keeps track of its neighbours, that is its immediate

successor and predecessor4. However, nodes may fail at any time, breaking the ring.

It is desirable to keep track of a number of successors5 and predecessors. Hence

several neighbouring nodes may fail simultaneously without breaking the ring

ultimately. The designed ring protocol can cope with a configurable amount of

failure.

Ring Maintenance. The nodes in the ring have to maintain the ring continuously.

For this reason each of the member nodes runs the hello protocol with its successor.

The hello protocol is a heartbeat mechanism that allows to detect node failures. The

hello protocol compromises sending Hello messages periodically to the successor

4Some authors refer to the successor as the “downstream node” and call the predecessor the
“upstream node”.
5The term “successor list” will be used in this paper to refer to the list of known successors. The

“neighbour set” refers to all known successors and predecessors, that is the successor list and the
predecessor list.

19

and monitoring the arrival of HelloReply messages or the lack thereof. When a

node detects the failure of its immediate successor, it attempts to repair the ring. On

receiving a Hellomessage the node replies with a HelloReply message if the Hello

originates from its current predecessor.

The hello protocol also has another purpose apart from failure detection.

The nodes include their successor list with each HelloReply message. Using this

mechanism the nodes get to know the desired number of successors. The nodes

build up knowledge about their limited neighbourhood in a completely distributed

manner.

Failure Handling. When a node detects the failure of its successor using the hello

protocol as described above, it initiates a recovery process to repair the ring. It sends

a LinkRepairmessage to the successor of its successor (2 hops away) and waits for a

LinkRepairReplymessage. If no LinkRepairReply arrives, the node assumes that its

two immediate successors have failed and contacts its next successor (3 hops away).

This process is repeated until a LinkRepairReply message is received or there are

no more known successors left.

Consequentially the node either succeeds in repairing the ring or comes to

the conclusion that the ring is broken beyond repair, leaves the ring and restarts the

bootstrapping phase.

Join Procedure. A node n intending to join the overlay first contacts a supernode

and retrieves the node ID and address of one or more peers. This process is called

bootstrapping and happens before the join procedure, which is described here.

The node n sends a Join message to a peer p. The Join message contains

information about n’s current neighbours if it has any. The join procedure will result

in either:

• a ring of two nodes (if the peer p was isolated), or

• a larger ring (if pwas already in a ring) comprising of the original ring and the
new node n, in such a way that p is the successor of n and n is the successor of

p’s predecessor in the original ring, or

• failure (if p decides not to participate). In this case no changes take effect.

20

On receiving a Join message the peer p decides6 if it wants to participate in

the join operation. Any node can participate in a single join procedure at a time,

otherwise network partitioning may occur. Based on the decision, p either ignores

the Join message or it sends a JoinReply message to the requesting node n. The

peer p includes its neighbour set in the JoinReply message. If p was already in a

ring, it also notifies its old predecessor of the topology change by sending a JoinTo

message that indicates the node ID and address of n.

The join procedure involves two or three nodes, as described above. Along

the procedure the affected nodes update their neighbourhood sets to point to the

new neighbours.

Differences to VRing. There are a number of differences between the ring protocol

proposed above and VRing due to the different requirements. VRing is an

application layer multicast system, while the Contentifier is a content distribution

system.

VRing relies on a centralised Rendezvous Point (RP) as a bootstrapping

mechanism. Each node has to contact the RP before joining the ring. The proposed

ring protocol uses a decentralised bootstrapping service that is provided by the

supernodes.

After establishing the overlay ring, VRing constructs an additional spare ring

comprising all nodes to reduce the latency of message propagation. The VRing

protocol relies on the RP to determine when to start the construction of the spare

ring and needs to know the total number of ring members to do so. The Contentifier

does notmake an effort to reducemessage propagation delay, because the sequential

propagation of content is a core concept. Instead, the supernodes build an inner ring

to reduce the latency of control messages among themselves. Regular nodes do not

participate in the inner ring. Both the inner and outer rings are maintained using

the proposed protocol.

The third difference is that VRing introduces the concept of leader nodes. In

the overlay construction phase, each ring has a leader. Two leaders negotiate to

join the rings together and at the end of this process one leader retires. At the end

6The decision involves the verification of the node ID of node n, the neighbour set of p and its
current state.

21

of the overlay construction phase a single leader remains in the ring that initiates

and controls the spare ring construction. The VRing protocol requires a distributed

monitoring and additional election algorithm to handle the failure of ring leaders.

In the Contentifier the work of the leaders is delegated to the supernodes, without

exposing regular nodes to increased responsibility.

3.1.5 Supernode architecture

The Contentifier has requirements for a number of services. Care was taken not

to centralise any services for obvious reasons. However, completely distributing

these services would increase design complexity and expose all nodes to increased

responsibility and security threats. The supernode architecture was chosen to cope

with the mentioned requirements by decentralising services, rather than completely

distributing them. In this section the supernode architecture and the services

provided by supernodes are described in detail.

The following services are provided by supernodes:

• bootstrapping

• node ID generation

• geo-location of nodes

• management and enforcement of policies concerning node join and content
insertion

• aggregation and distribution of the global view and content flow information

Inner and Outer Rings. Both supernodes and regular nodes are connected in a

single ring, the outer ring. The supernodes also participate in an inner ring. The

inner ring provides low-latency communication for exchanging information about

the global network view and the content flow, without using any resources of the

regular nodes. Content traverses the outer ring and control messages along the inner

ring.

Figure 3.3 illustrates the two rings. The supernodes (nodes 1, 4 and 6) are

connected with an additional inner ring.

22

Figure 3.3: Inner and outer rings

Bootstrapping and Node ID Generation. Bootstrapping7 is the process of aiding

new nodes to discover nodes that are alreadymembers of the overlay. Bootstrapping

is necessary in P2P networks because of the lack of fixed nodes that can be assumed

to be a member of the overlay and because of the dynamic changes in the IP

addresses of participating nodes.

Node ID generation is the assignment of a globally unique identifier (GUID)

to a node. The node ID can be regarded as the address of the nodewithin the overlay

network. The node ID also determines the location of the node in the logical network

topology in many P2P networks8.

New nodes intending to join the overlay require a node ID and bootstrapping

information. The new node contacts a supernode to satisfy these needs. It is

expected to know the IP address of at least one supernode or obtain it by means of

DNS or another out-of-band method. The joining node selects a random supernode

and initiates a registration process. During the registration process the new node is

geo-located by a supernode, a node ID is generated and signed by the supernode.

The new node receives its node ID along with a list of node IDs of geographically

7Some authors use the term “rendezvous” for bootstrapping.
8In particular DHT-based P2P networks.

23

nearby peers.

Content Insertion. The process of inserting new content into the overlay also

involves supernodes. Supernodes can control the amount and rate of content

insertion on the overlay. A node trying to broadcast new content has to ask for

permission from a supernode. This involves calculating a hash9 of the content itself,

providing some additional metadata, as well as solving a crypto puzzle based on

the content hash.

The supernode considers current network load and overlay policies and

decides about giving or denying permission for the new content. If the operation

is permitted, the metadata is timestamped, signed and sent back to the requesting

node. Then the content can be distributed without supernode interaction, as the

metadata is self-certifying.

The structure of the metadata is shown in Table 3.1.

Attribute Description
id Content identifier, the hash of the data
name Original file name, optional
size Content size in bytes
pieces Number of content parts
piece size The size in bytes of each piece
length Content playback duration
codec The codec used to encode the content
created Timestamp indicating creation time
signature Digital signature of the metadata

Table 3.1: Attributes of the Content class representing the metadata

Global View. The aggregation and distribution of the global view of the overlay

topology and the content flow therein is the responsibility of the supernodes. In

providing this service the supernodes depend on regular nodes reporting network

events.

Each node has a supernode assigned to it. The assigned supernode is the

next supernode in the outer ring that is downstream from the node. That is, the

9The hash is calculated using a collision-resistant cryptographic hash function.

24

node’s assigned supernode is the first supernode among the successors of the node

in question. Each supernode is responsible for aggregating information about the

topology and content flow in the ring segment containing the nodes assigned to it.

In other words, this is the ring segment including its predecessors up to the next

upstream supernode.

Each node reports two types of events to its assigned supernode: topology-

related and content-related events. A topology-related event is a change of the

successor. This happens when a new node joins the overlay or when a member of

the overlay fails. Content-related events are the beginning and ending of content

downloads. The supernodes track the current geo-location of all content in the

overlay network.

Supernodes use the inner ring to exchange information about their ring

segments. In this manner all supernodes have up-to-date information about all ring

segments. The global network view and content flow information is broadcast along

the outer ring segments to each node, to be presented on the screen to the user.

Transmitting the whole view to regular nodes each time the topology or content

flow changes would create a large overhead. Instead the global view is transmitted

initially when the node joins the ring and updates are distributed that allow the

regular nodes to refresh their view of the topology.

Assumptions. This section lists the assumptions about the supernodes.

• Supernodes have sufficient knowledge about each others network addresses
to create a weakly connected network.

• Supernodes do not exhibit malicious behaviour.

• Supernodes have a node ID and public key which is signed by the network
operators10.

• Supernodes have synchronised clocks11.
10The public key of the operators is distributed along with the client software.
11A practical way of synchronising clocks is running an NTP service.

25

3.2 Security Considerations

Before considering appropriate security measures In this section, first the different

node roles and communication characteristics in the Contentifier overlay network

are introduced. Following that, threats are evaluated and possible solutions are

discussed.

There are two types of nodes in the Contentifier network: supernodes and

regular nodes. All nodes run the ring management protocol and the Contentifier

application. Supernodes run addtional services the overlay network depends upon.

From a security perspective, it is important to consider the types of

communication and the kind of data exchanged. Communication between the

nodes can be classified as follows:

node to node Nodes announce, request and forward content and associated

metadata to each other. Also, information broadcasted by supernodes is

forwared between regular nodes.

node to supernode Nodes request bootstrap information when joining the

network. Supernodes geo-locate nodes, assist in ID assignment and

communicate this information to nodes along with policy configuration

that has to be obeyed by the nodes. Furthermore, supernodes distribute

information about the global network view and content flow. Nodes report

content flow information to supernodes.

supernode to supernode Superndoes exchange bootstrapping information to be

sent to joining nodes, as well as information about the global network view

and content flow. The transmitted data includes node IDs, IP addresses,

geo-location of nodes and content, content metadata and other statistical

information.

CIA Triad. Confidentiality, integrity and availability are widely accepted as the

three key components of information security and are also referred to as the CIA

triad. Confidentiality is achieved by providing data privacy, that is preventing

unauthorised parites from reading the data. Integrity is ensured by preventing

26

unauthorised modification data. Availability means that authorized users can

reliably access the data at all times.

There are several security threats that compromise one or more of the security

components mentioned above: eavesdropping, insertion, modification, replay and

deletion of messages. These threats have to be addressed in order to achieve secure

communication in the P2P network.

3.2.1 P2P Security

In an open P2P system nodes cannot be generally trusted. In such an environment

failures are common and nodes might exhibit malicious behaviour. The P2P

network has to operate in the presence of faulty and malicious nodes.

Extensive research has been done on the topic of P2P security. Engle et al.

present vulnerabilities in current P2P systems and evaluate possible solutions [32].

The authors identify lower layer attacks and P2P layer attacks. Denial of service

(DoS) andman-in-the-middle (MitM) are classified as lower layer attacks, while user

selfishness, sybil and eclipse are P2P layer attacks. Their results are summarised

here. DoS can be limited using pricing. MitM can be prevented by distributing

services or using public key cryptography. User selfishness is usually solved using

a tit for tat strategy. The sybil and eclipse attacks can be effectively addressed by

limiting the node join rate, expiring node IDs, and preventing the attacker from

choosing its own node ID12.

Security Measures. These results are applied in the design of security measures.

Small scale attacks are be prevented from corrupting the overlay as a whole by

increasing the availability. Availability is achieved through scale and distribution.

Failure of single nodes must not compromise the P2P overlay. The desired degree

of availability is achieved by designing a ring protocol that tolerates a configurable

amount of failure (trading off bandwidth and storage).

Large scale attacks are mitigated by using pricing and secure node IDs. Node

IDs are signed by a supernode and given a short expiration period. Hashcash is

used in the Contentifier to limit the rate of node join and content insertion attempts.

12Contentifier nodes are inserted into the topology according to their geo-location as opposed to
the node ID. That said, choosing the node ID translates to choosing the geo-location.

27

The client has to provide proof-of-work before joining the overlay network and to

insert new content into the overlay.

User selfishness can be addressed by enforcing overlay policies regarding

bandwidth requirements and content insertion. The constrained serial data flow

mitigates the benefits of user selfishness.

3.2.2 Cryptography

This section discusses cryptography in the context of the Contentifier. Related work

has been discussed in Seciton 2.5.

Encrypting and signing of messages prevents outsiders from eavesdropping,

modification and insertion of messages. Replay and deletion of messages have

to be addressed separately. However, all information in the overlay is public

inside the overlay. An attacker could join the overlay at any time to compromise

confidentiality through eavesdropping or message insertion. In an open P2P

network anyone should be able to join the overlay and listen to the broadcast

content, thus there is no point in encrypting messages. Integrity has to be ensured

of course, but confidentiality is not a priority.

Integrity of data is ensured by employing self-certifying data using public

key signatures. Once the data is obtained, clients can verify both data integrity and

the authenticity of the sender without using any additional network resources. This

concept is applied to node ID certificates, the content distributed on the overlay, as

well as all information published by the supernodes.

The deployment of a full PKI is out of the scope of this dissertation. However,

the authenticity of the overlay information sent by the supernodes is of importance.

The overlay information contains the global network view and content flow data,

rather than plain content. The overlay information is generated at the supernodes

and its integrity must be protected. The most convenient way to ensure integrity

of overlay information is to allow supernodes to include digital signatures in those

messages. In turn, this involves assigning private-public key pairs to supernodes.

The signatures are verified at regular nodes. The root certificate used to issue

supernode certificates will be distributed to regular nodes along with the client

software. This architecture has the benefit of using self-certifying data for the

28

overlay information.

3.2.3 Application Security

Another security issue is exposing the P2P client application to the Internet.

Connectivity is crucial for a P2P application, so it will employ NAT traversal

mechanisms to improve connectivity. However, opening ports on a NAT device is

considered a security threat by many network administrators. A common concern

with P2P clients is that eventual application bugs and vulnerabilities are exposed to

remote attackers, allowing the spread of worms and trojans.

Therefore, extreme care has been taken to avoid programming errors.

The Contentifier application is developed in Python, a high-level programming

language. The choice of a high-level language largely eliminates the possibility

of memory leaks and buffer overflows, that account for many vulnerabilities in

applications developed in low-level languages. Another advantage of high-level

languages is that the application code is relatively short. Less code means less

bugs. The Python syntax and the simplicity of the language produces readable code,

which in turn makes code reviews easier.

Twisted’s concurrency model, specifically the lack of threads in general

networking tasks reduces concurrent programming pitfalls and difficulties related

to accessing shared resources, such as race conditions and deadlocks.

Secure programming guidelines have been followed throughout the

development. The use of encapsulation, clean interface design, extensive error

checking and exception handling has been taken into account. Sensible limits (on

input data, amount of network resources used, timeouts, etc.) are enforced.

Furthermore, Test-Driven Development (TDD) has been employed to spot

and isolate programming errors early in the development cycle. Refactorings have

been made to keep the code simple and clean. A subversion code repository

was used to keep track of changes. Documentation has been written and

maintained literary along with the code (docstrings). Logging is used throughout

the application.

29

3.3 Interfaces

3.3.1 Middleware-Application Interface

The application extends the middleware classes RingProtocol and RingNode with

application-specific protocols and shared state and behaviour. The ring protocol

provides message sending and receiving trough an open session. The RingNode

provides facilities for sending messages to specific peers and implementing

application-specific behaviour. Figure 3.4 gives an overview of the services

provided by the two classes and the details are described in the next chapter.

Figure 3.4: Middleware interfaces

3.3.2 Network-Frontend Interface

The network component provides the frontend with upcalls on network events. The

frontend initiates downcalls to control the network component.

The interfaces between the network component and the frontend are

consciously kept as simple as possible. The basic structure of the interfaces is

described here. A pair of interfaces define how the two components interact.13

The network interface INetwork, as seen by the frontend:

start() Starts the networking module and event loop. Connects to the overlay

network.

13The Zope Component Architecture [33] was used to define the interfaces.

30

stop() Shuts down the networking module and event loop, closing all open network

connections. Stops the ring protocol.

sendContent(file, metadata) Attempts to insert new content into the overlay. The

frontend invokes this downcall when the user has created new content.

The upcalls are defined in the frontend interface. The frontend interface

IFrontend, as seen by the network:

onlineStatusChanged(status) Notifies the frontend about the online status. The

middleware invokes this upcall when joining a ring has succeeded and after

leaving a ring or network failure. The upcall is also used to indicate that the

node seems to be firewalled and attempts for automatic NAT traversal have

failed.

networkTopologyChanged(topology) Notifies the frontend about a change in the

network topology. This upcall is invoked when information about the global

network view and content flow arrives. The information includes geo-location

of peers and content. This information is displayed to the user.

gotContent(file, metadata) Notifies the fronted about the arrival of new content

that has been downloaded. The frontend presents the content to the user.

31

Chapter 4

Implementation

This chapter gives an overview of the development process and presents the

tools used in the implementation. Following that, a detailed report on the

implementation and software architecture is given.

4.1 Development Process

Team. The Global Contentifier project is being realised in a team effort of

international collaboration. Thom Kubli has created the core concepts of the Global

Contentifier for an arts project. He defined the main technical requirements and

manages the project. The author of this dissertation designed and implemented

the network component of the software for realising the Global Contentifier.

Uli Fouquet develops the GUI frontend component of the software and provides

the necessary infrastructure for the development.

Meetings. Initially the team has met up in person to discuss the requirements

and possibilities of addressing them. Based on the initial discussions the system

design was proposed. Later on, the team had regular online meetings to evaluate

the progress continuously by testing the implementation, refining interfaces and

specifying short term goals for the iterative development. The short feedback cycle

has proved to be very effective.

32

Development. The iterative development was also employed on a smaller scale.

In particular the software was developed using test-driven development to keep the

feedback cycle short on the code level as well. Unit tests were written as a way of

low-level design and documentation and were maintained throughout refactorings.

A subversion code repository was used to keep track of changes and progress.

4.2 Implementation Choices

4.2.1 Python

Python [34] was chosen as a programming language for development. Reasons for

this decision are detailed here.

Python is a high-level, multi-paradigm, dynamically typed programming

language. It encourages agile development, as it strives to lessen programming

effort by its simple and powerful syntax. Python code tends to be short and

readable, minimising the possibility of bugs and maximising maintainability. These

properties make Python an excellent tool for prototyping. Python is largely

platform independent, moreover, the Python interpreter is shipped with most major

operating systems out of the box except Windows and implementations for the JVM

and the CLR exist1.

Python was first published by Guido van Rossum in 1991. Currently it is

actively developed in an open source effort and has a strong user base. Python has

an extensive standard library and many third party modules.

The concept of docstrings is a unique language feature that allows

the embedding of documentation into the code, which in turn improves

maintainability2.

4.2.2 Twisted

Twisted [35, 36] is a non-blocking, asynchronous and event-driven network

programming framework for Python. It is powerful, flexible and highly modular.

1Jython and IronPython respectively.
2Docstrings are not only useful for generating documentation, but can be used to retrieve the

documentation of modules, classes and methods at runtime.

33

Twisted supports a wide variety of network protocols (SSH, HTTP, Jabber, SIP,

etc.) and transports (TCP, SSL, IP multicast, files, . . .) out of the box and can

be extended with more. Protocols and transports are completely separated and

modular. While Twisted is a high-level framework, its low-level workings are not

obscured and accessible if necessary. While it is platform-independent, it exploits

platform-specific features like high performance multiplexing for non-blocking IO.

Twisted is also open source software. The development process used by the

Twisted team is very effective. Test driven development is employed and code

reviews are an integral part of the process. The user and developer communities

are vibrant and helpful.

Deferreds. Deferreds are a core idea of Twisted. A deferred can be returned by

a function, indicating a possibly long-running process with no immediate result,

but promising a result in the future. Callbacks and errbacks can be attached to a

deferred, which will be executed when the result is ready and when the operation

has failed respectively. Deferreds can be chained and multiple callbacks (errbacks)

can be added to a single deferred. The mechanism of callbacks and errbacks can

be compared with flow control through signal and exception handling. Deferreds

allow for writing of asynchronous code that looks very similar to the synchronous

counterpart.

Tightly coupled to deferreds is the concept of cooperative concurrency3.

Instead of blocking until results are available, twisted functions return a deferred

immediately and delegate further work into the callback chain of that deferred.

Larger tasks are refactored into smaller steps. This concurrency model is similar to

coroutines and closures and combined with non-blocking IO largely eliminates the

need for threads. The lack of threads in turn improves performance and mitigates

common concurrent programming pitfalls4.

Threads can be still used if there is no convenient way to split up a long

running operation in the case of an external program or module. For such cases

Twisted provides classes that manage a task queue and a thread pool. Events are

3Also green threads or microthreads.
4At this point it is worth mentioning that Python threads are somewhat flawed from a scalability

perspective, since the Global Interpreter Lock forces atomicity of all statements and significant
context switching penalties apply.

34

generated in the main thread to notify about task completion or failure.

Modular Design. Twisted applications are conventionally structured in a modular

fashion. The network connections are represented by objects inheriting from the

Protocol class. The protocol provides network event handlers that are called

when the connection is made, lost, or data is received. The protocol objects are

instantiated by a Factory subclass. The factory is also used to share state between

the protocol instances. The reactor runs the event loop, connects the factory to a

network transport5, polls sockets and dispatches data flow to and from the protocol

instances.

Twisted applications define the protocol, customise the factory, and control

the reactor.

An example can clarify the benefits of flexibility and the high degree of

modularity. An application developer having written a simple HTTP client might

want to enhance the program to support encryption. The developer might also want

to add a non-standard extension to the HTTP client that closes the connection after

receiving a given number of bytes. A third addition might be to throttle the HTTP

connection to preserve bandwidth for more important tasks. Each of these changes

will affect a single piece of code: the code controlling the reactor, the protocol

class and the factory class respectively. In particular it would involve replacing

the TCP transport with an SSL transport, adjusting the event handler responsible

for receiving data, and using a Twisted policy mixin to extend the factory class to

support throttling.

Testing. Twisted also includes Trial, an extension of the Python unit testing

framework. Trial makes it convenient to test protocols, networking code, code

depending on timing and asynchronous event-driven code in general. Writing unit

tests for these types of code is traditionally hard; Trial relies on the modular Twisted

architecture to provide convenient ways of unit testing.

5Common network transports are UDP, TCP, and SSL.

35

4.3 Implementation Details

4.3.1 Overview

Figure 4.1 illustrates the three components of the P2P client software and the

basic class structures. The middleware implements the ring protocol, the application

provides the application layer protocols. The frontend produces and consumes

content and controls the application.

Figure 4.1: Components of the P2P client software

Middleware. The RingProtocol class implements the syntax and semantics of the

ring protocol. The RingNode class shares state between and controls the protocol

instances. The RingFactory class creates protocol instances and binds them to

incoming and outgoing network connections.

Application. The application using the middleware extends the RingProtocol

class with application layer message handlers. The application also extends the

36

RingNode class by adding application-specific shared state and behaviour in the

ApplicationNode class.

Frontend. The frontend instantiates the ApplicationNode class and uses it to

control the underlying components by initiating downcalls and to receive events

via upcalls.

4.3.2 Protocol Stack

The communication protocol is implemented in a layered architecture. Each

protocol layer provides services and abstractions for and encapsulates data of the

next layer above. Each layer is implemented in a separate class. The lowest protocol

layer subclasses the Twisted Protocol class and the following layers inherit from

each other respectively. The protocol stack is shown in Table 4.1.

Layer Protocol
4 Application Protocols
3 RingProtocol
2 MessageDispatcher
1 MessageSerializer

Table 4.1: Protocol Stack

Details of the responsibilities of the different layers are described here.

MessageSerializer. The lowest protocol provides message encoding. A text-based

header is optionally followed by the binary payload. The main header includes

the size and checksum6 of the payload and message-specific headers. The payload

size is important for synchronisation as it indicates how much binary data is to

be read before the next message header. The message-specific headers contain

structured data and are encoded in the JSON format7. The MessageSerializer class

6The current implementation supports CRC-32 checksums and SHA-384 hashes for integrity
checking.
7The JavaScript Object Notation [37] is a lightweight data interchange format. It is easy for

humans and machines to read and write. It can represent nested structured data (ordered lists and
collections of name/value pairs) and primitive types (numbers, Unicode strings, boolean and null
values).

37

1 180 −503725105
2 {”from” :{ ” ip” : ” 1 2 7 . 0 . 0 . 1 ” , ” id ” : ”ONE” , ” port ” : 1404} , ” succ ” : [{ ” ip” : ”

1 2 7 . 0 . 0 . 1 ” , ” id ” : ”TWO” , ” port ” : 3 3 3 3 }] , ” type” : ”HelloReply ” , ” to ” : [”
1 2 7 . 0 . 0 . 1 ” ,3641]}

Listing 4.1: HelloReplymessage serialised to wire format

is responsible for splitting (merging) messages from (to) the underlying stream-

based transport, marshalling of Message objects into the wire format, as well as

integrity and error checking.

Listing 4.1 shows a serialisedmessage. Themain header in the first line shows

the message size and a CRC checksum. The message-specific header (line 2) reveals

the message type, source and destination and contains a structured successor list.

The lack of the third line indicates that there is no actual payload apart from the

headers.

It is obvious that the encoding is not terse. The implementation allows for the

encoding to be exchanged with a binary encoding8 if the overhead is deemed too

large.

MessageDispatcher. The MessageDispatcher class is responsible for calling the

appropriate message handler method based on the type of the incoming message.

The dispatcher makes use of Python reflection to determine the validity of a

message type and safely call the corresponding message handler, eliminating the

need of maintaining mapping code for each message type. MessageDispatcher also

provides methods for sending messages. It uses the Twisted TimeoutMixin to clean

up and close unused connections.

This layer also encapsulates the request-response matching pattern. It is fairly

common to send a message and wait for a specific response. It is achieved by

sending a tracking ID in the message header and automatically filtering incoming

messages to find the response with the same ID. Boilerplate code is abstracted away

and thus the readability of higher-level code is improved. The developer of higher

level code uses simple control structures. Consider the non-blocking code that sends

a ping message and waits for a response or timeout, shown in Listing 4.2.

8For example bencode is a binary encoding that supports structured data. It is used by the
BitTorrent protocol.

38

1 @inl ineCa l lbacks
2 def ping (proto , t imeout =10) :
3 msg = messages . Ping ()
4 t ry :
5 # t h i s might t a k e a wh i l e :
6 response = y ie ld proto . sendMessageTracked (msg , timeout)
7 except TimeoutError :
8 print ’ r equest timed out ’
9 e lse :
10 print ’ response i s ’ , response

Listing 4.2: Example of request-response pattern

The proto parameter is a MessageDispatcher protocol instance, that

represents an open connection. The pingmethod sends a Pingmessage by invoking

the sendMessageTracked() method on the protocol object. After the invocation it

yields control9 immediately. Thus the rest of the program can continue its usual

business until the response arrives or a timeout occurs. When the response to the

Ping message is received or after a timeout of ten seconds the control is given back

to the method and the execution continues where it left off: at line 6 with assigning

the response variable and processing the outcome of the ping request.

This pattern encourages the use of a high-level mental model for writing non-

blocking request-response code with optional support for timeouts.

RingProtocol. This layer implements the ring protocol discussed in detail in

Section 3.1.4. The implementation includes message handlers for the Hello protocol,

the join operation and the failure detection and recovery.

Figure 4.2 shows a state machine describing the behaviour of the ring

protocol. The state transitions are triggered by messages being sent and received.

The protocol starts in the offline state. In the join state the negotiation with the

neighbours is in progress. The online state is entered when the join procedure was

successful and is left when the successor fails. The recovery from the failure of one

or more successors is attempted in the repair state.

9The Python yield expression is used to implement coroutines [38]. The coroutine observes the
behaviour of the yield expression as a simple function call: parameters are passed, it “blocks” for a
while, then a value is returned or an exception is thrown. Here a deferred is passed as the parameter
and a message object is returned. In the background the inlineCallbacksdecorator adds a callback
to the deferred that returns control to the coroutine after the deferred fires.

39

Figure 4.2: State machine describing the ring protocol

ApplicationProtocol. The application protocol provides message handlers for

application level messages. In the content protocol these are related to content

announcement, upload and download, as well as metadata approval.

When inserting new content, the node requests a permission to broadcast

from a supernode, that eventually signs the metadata. Given permission to

broadcast, the node announces the new content to its successor on the outer ring.

The content announcement includes the metadata. The successor verifies the

metadata and requests the content if it has no copy of the content in question. The

content is split up in equal pieces and the individual pieces are transmitted upon

request. After a node completes downloading the content, it verifies the content

hash included in the metadata, then initiates a gotContent() upcall and announces

the new content to its successor to ensure data flow on the ring.

The sequence of messages exchanged during content insertion is illustrated

in Figure 4.3.

40

Figure 4.3: Content Protocol: messages exchanged during content insertion

4.3.3 Shared state

While the ring and content protocols are responsible for communicating with

peers and define the sequence of exchanged messages, the classes inheriting from

RingNode share state between the protocol instances (network connections), keep

track of them and support the ring protocol with management and maintenance

tasks.

The shared state includes the neighbourhood set, the own node ID, online

status, content metadata, known peers including bootstrapping peers as well as a

list of known supernodes. The maintenance tasks realised include the heartbeat,

control of the registration and node join operations and control of content flow. Basic

routing facilities are also provided.

Ring. The RingNode class implements state storage structures and management

tasks specific to the ring protocol. Its heartbeat method is called periodically. It

drives the hello protocol by periodically instructing the ring protocol to send Hello

41

messages and monitoring HelloReply messages, detecting eventual failure of the

successor and initiating the ring repair. While the node is offline, the heartbeat is

responsible for establishing connectivity using the connect method.

The connect method initiates the registration process and the ring join

process. It monitors the outcome of the operations and takes the appropriate actions.

These include making the appropriate upcalls to notify the frontend of changes in

online state as well as trying other (super-)nodes while backing off exponentially in

the case of failure.

Content. The ContentNode class implements the application layer part of the node

state. Its main responsibilities are the storage of metadata and the management

of uploads and downloads. The announced and requested contents are added to

the download and upload queues, respectively. The download method schedules

downloads and controls the content protocol to request the appropriate pieces. The

ContentNode class cooperates with the filesharing module to accomplish these

tasks.

The filesharing module encapsulates classes for storing content metadata

and managing the details of file transfer. The content is never kept in memory,

instead it is written to (read from) the hard disk piece by piece. The current

implementation only supports ordered sequential download of the content pieces,

which is sufficient at this time. The success of the file transfer is verified after the

download is complete by calculating the hash of the content and comparing it to the

one stored in the metadata.

4.3.4 Messages

The messages module encapsulates the Message base class and all valid messages.

It provides functionality for message marshalling and demarshalling. All messages

have to inherit from the Message base class, as only these will be accepted by the

message passing protocols. Additional message types include ApplicationMessage,

RingMessage and TrackedMessage. The latter mixin class provides functionality

for the request-reply pattern (described in Section 4.3.2) and is incorporated using

multiple inheritance. Figure 6.1 shows the class diagram of the messages module.

42

1 >>> import messages
2 >>> m = messages . Message (spam= ’ eggs ’ , foo= ’ bar ’)
3 >>> ’ spam ’ in m
4 True
5 >>> m. header . get (’spam ’) # t r a d i t i o n a l b e h a v i o u r
6 ’ eggs ’
7 >>> m[’spam ’] # d i c t b e h a v i o u r
8 ’ eggs ’
9 >>> m. spam # o b j e c t b e h a v i o u r
10 ’ eggs ’

Listing 4.3: Accessing message headers in the Message class

The Message class behaves like a dict10 to make it convenient to get and set

header attributes. Note that the class could be sweetened with even more syntactic

sugar by implementing object-like behaviour11. The interactive Python shell in

Listing 4.3 illustrates the difference.

4.3.5 Node Join

New nodes that want to participate in the overlay initially have to go through two

steps. First the new node registers with a supernode and then it joins the ring.

Registration process. Before joining the overlay a new node has to register with

a supernode. The reasons for this step are twofold. The supernode participates in

the generation of the node ID and supplies bootstrapping information in the form of

node IDs of geographically nearby nodes. The overall workings of the registration

process have been described in Section 3.1.5 and are discussed here in detail.

Before using resources of the supernode, the new node has to provide proof-

of-work by solving a crypto puzzle based on the address of the supernode and the

port the node is listening on. After verifying the crypto puzzle, the supernode

checks the connectivity to the joining node and asks another supernode to do so

as well. If the joining node cannot be reached from the Internet, it has to resolve this

issue before participating in the network.

10The Python dict type is a dictionary of unordered key-value pairs. Other languages use the term
“hash table”.
11This behaviour could be implemented with ease using metaprogramming.

43

Then the supernode geo-locates the joining node based on its IP address.

A unique node ID is assigned to the joining node and it is sent along with

bootstrapping information: a list of node IDs of peers in the geological area of the

joining node. The node ID also contains the geo-location and public IP address of

the joining node and is signed by the supernode, so that it can be verified by third

parties. Table 4.2 describes the data stored in the node ID data structure.

The supernode stores the node ID of registered nodes. Node IDs are valid for

a single session and expire after a configurable amount of time. The stored node

IDs are exchanged with among supernodes and used to aid new nodes in finding

geographically close nodes in the overlay.

Attribute Description
id A globally unique identifier of the node
ip Public IP address
port Network port the client is listening on
location Geo-location of the node
public key Public key (only set for supernodes)
expire Timestamp when the node ID expires
signature Digital signature of a supernode

Table 4.2: Data stored as part of the node ID

Node Join. Having assigned a node ID the node can start the process of joining

the ring. Again the joining node has to solve a crypto puzzle and attempt to join the

ring. The node receiving a join request verifies the crypto puzzle and the node ID

and updates its current neighbours about the joining node. After being accepted,

the joining node runs the hello protocol and participates in the overlay.

The node join process involves three nodes: the joining node and its

neighbours-to-be. The successor lists are distributed shortly after the join process

using the hello protocol. Ring continuity is maintained throughout the join process

unless one of the nodes decides to cancel the operation.

The sequence diagram in Figure 4.4 illustrates the exchanged messages. The

lifelines indicate the online status of the nodes. The actual network topology is

depicted as well. Nodes A and B are initially in a ring. Node C joins in between

them, making B its successor and A its predecessor.

44

Figure 4.4: Messages exchanged during the join operation. The diagrams on the
right hand side illustrate the ring topology before and after the join operation. The
messages highlighted in grey colour are not part of the join operation.

4.3.6 NAT traversal

NAT traversal is crucial for any P2P application targeting home users (see

Section 3.1.2). It has been decided that TCP hole punching is too complex and lacks

sufficient documentation and open source implementations.

The current implementation makes use of the UPnP protocol to detect

and control home routers. The Nattraverso library [39] realises the necessary

functionality as an API. It is based on the Twisted framework and is licensed under

the LGPL12.

The PortMapper class is part of the middleware and provides convenient

management of port mappings on top of Nattraverso. It enumerates UPnP

devices on the LAN and keeps track of active mappings to enable the addition,

removal and monitoring of the port mappings. The middleware attempts to enable

port forwarding at startup if any suitable devices are found. The results are

communicated to the application layer via the upcall onlineStatusChanged(). The

port mapping is removed on cleanup.

12GNU Lesser General Public License.

45

1 2007−09−13 0 1 : 5 5 : 4 1 , 8 8 0 c n t f r . r ing CRITICAL : connect : Reg i s t e rEr ror (we
are o f f l i n e) . r e t r y in 5 sec (r ing . py : 3 3 0)

2 2007−09−13 0 1 : 5 5 : 4 7 , 3 2 0 c n t f r . r ing DEBUG: t ry ing to boots t rap from : [[’
1 2 7 . 0 . 0 . 1 ’ , 3 333]] (r ing . py : 3 0 7)

3 2007−09−13 0 1 : 5 5 : 4 7 , 3 2 0 c n t f r . r ing DEBUG: t ry ing to j o in r ing (r ing . py
: 4 0 8)

4 2007−09−13 0 1 : 5 5 : 4 7 , 3 2 2 c n t f r . r ingproto DEBUG: connect ion es tab l i shed
with peer [’ 1 2 7 . 0 . 0 . 1 ’ , 3333] (r ing pro toco l . py : 4 4)

5 2007−09−13 0 1 : 5 5 : 4 7 , 3 2 5 c n t f r . r ingproto DEBUG: −− sending message (
Jo in) to [’ 1 2 7 . 0 . 0 . 1 ’ , 3333] (r ing pro toco l . py : 1 6 1)

6 2007−09−13 0 1 : 5 5 : 4 7 , 3 3 3 c n t f r . r ingproto DEBUG: peer i s o l a t ed (
r ing pro toco l . py : 3 3 5)

7 2007−09−13 0 1 : 5 5 : 4 7 , 3 4 0 c n t f r . r ing INFO : 1 NEW SUCCESSORS (r ing . py : 2 0 0)
8 2007−09−13 0 1 : 5 5 : 4 7 , 3 4 1 c n t f r . r ing DEBUG: j o in ok . (r ing . py : 4 5 3)

Listing 4.4: Log file excerpt

4.3.7 Logging

Extensive logging has been developed along with the middleware and the

application. Even tough logging is not a main requirement, it certainly is useful

for testing, analysing and debugging distributed systems. The logs of the nodes in

an overlay test run can be collected and combined. The combined logs allow for

reasoning about the overlay behaviour or track down specific problems.

The Python logging facility is utilised, as it provides the necessary features

like log levels, log file rotation, as well as multiple destinations and formatters.

The logging format is verbose: the timestamp, log level and the exact location of

the logging call itself are added automatically. Listing 4.4 shows a log excerpt of a

successful join operation.

4.3.8 Frontend

The frontend handles user interaction, produces content to be broadcast and

consumes content arriving on the ring. The frontend also presents the global view

and content flow information to the user.

Two frontends have been developed for the Contentifier application. A

console-based user interface and aGUI. The console client has been developed along

with the middleware and application. The GUI is currently being developed by

46

team member Uli Fouquet and is in the phase of integration.

GUI frontend. The graphical user interface frontend is not part of this dissertation,

but an important part of the Global Contentifier project. A short overview is given

here. The GUI provides audio recording and playback, as well as visualisation of

an interactive world map showing the overlay network topology and the content

flow therein. A screenshot of the current version of the GTK-based GUI is shown in

Figure 4.5.

The Speex codec [40] is be used to encode audio data. Speex was designed for

encoding high quality human speech at a low bitrate. The codec is patent-free and

open source implementations exist.

The global network view visualisation is intended to be interactive to provide

the user with the feeling of being “a part of the whole”. Thus the visual

representation will feature near-realtime updates of node joins and leaves and

content flow progress in the overlay network. The visualisation will appear as

unique and artistic animated infographics.

Console frontend. The console client is kept as simple as possible and was

developed solely for testing and debugging purposes. The client has a built-in

Python shell13 to allow for debugging the running node with the full power of the

language. It also provides a set of commands to use chat, insert content and display

various statistics and node state. Furthermore, simulation of failure is implemented

for testing; it supports single failure with or without recovery at a later time and has

a random failure mode.

The console client can be configured with an extensive set of command line

parameters and the configuration can also be changed at runtime. The client filters

logging based on the current debug level and displays the desired events.

Listing 4.5 shows an example session of the console client. The numbers at

the beginning of lines indicate the debug level of log messages. The lines starting

with triple greater-than signs are displayed on arrival of upcalls.

13The user input loop is run in a separate thread in order to avoid blocking of the reactor. Entered
commands are dispatched to and processed in the main thread. Python lacks asynchronous console
input and Twisted only provides remote telnet and SSH shells for debugging.

47

Figure 4.5: The GUI of the Contentifier application

1 $./ c o n t e n t i f i e r . py −−supernode lo c a lhos t :1404 −−port 2000 −−id ONE
2 20 : c o n t e n t i f i e r i s s t a r t i n g up
3 30 : current host i s { ’ ip ’ : None , ’ id ’ : ’ONE’ , ’ port ’ : 2000}
4 20 : gotMessage : discovered my publ ic ip : [’ 1 2 7 . 0 . 0 . 1 ’ , 2000]
5 20 : 1 NEW SUCCESSORS
6 >>> onl ine s t a tu s changed : onl ine
7 20 : new content announced . downloading 218656 bytes . . .
8 50 : content downloaded to downloads/bach .mp3 . . . speed : 128 .05 KB/sec
9 >>> got content . type ”send downloads/bach .mp3” to forward i t
10 50 : l a s t p iece of content sent

Listing 4.5: Console frontend

48

Chapter 5

Evaluation

This chapter evaluates the research project. The evaluation aspects are twofold.

First, basic performance metrics and messaging overheads of the middleware

are quantified by evaluating the measurement results of a series of experiments.

Second, the initial research aims and the defined requirements are compared to the

actual achievements.

5.1 Measurements

Several tests and experiments have been conducted during the development and

the results were the basis for refinements in design and implementation. The team

members provided help resources in testing the functionality and stability of the

system.

In contrast, this section presents scientific experiments made on the final

system. Or more accurately, the latest version of the system.

Using sophisticated simulation tools would extend the significance of the

measurements. On the other hand, simulations require careful planning and

considerable effort in adapting the protocols to conform with the simulation

framework in use. Instead of simulation, measurements on a set of live nodes were

performed.

49

5.1.1 Experimental Setup

The measurements were taken on a single computer, a Dell Latitude D400 notebook.

The machine has an Intel Pentium M 1.60 GHz processor and 512 MB of RAM

and runs Ubuntu Linux 7.04 operating system with a 2.6 series kernel. Python

2.5.1 and Twisted 2.5 were installed on the system. Swapping was turned off

and the Contentifier application logging was redirected to /dev/null to eliminate

inaccuracies related to disk access.

Some measurements were conducted on a network of up to 50 nodes. This

involves running 50 instances of the Python interpreter in 50 separate processes.

All nodes share the resources of a single computer and significant penalties occur

from e.g. frequent context switching. While the resources are low, the nodes

only have to communicate on the loopback network interface which behaves like

a network connection of unrealistically high speed. Therefore, the accuracy of the

measurements can be disputed.

A single supernode was used in the experiments to evaluate the extent of

bottlenecks building up at the supernode.

A simple script called noderunner was developed to start the desired number

of nodes with a precise timing. The program takes care of supplying command line

arguments to the Contentifier console client instances, such as setting the network

address of the supernode, configuring a port and controlling logging output for each

node. Each node is run in a separate xterm terminal to visually verify the progress.

The overhead of running the terminals is a quantité négligeable.

5.1.2 Round Trip Time

In this experiment the round trip time of a short message traversing the entire outer

ring was measured. A round trip message and corresponding message handlers

were implemented at the application layer for this purpose. One node periodically

sends round trip messages along the ring and measures the time it takes for the

message to arrive back. A hop counter inside the message is incremented at each

node that forwards the message. Thus the round trip message not only measures

the round trip time, but also determines the current number of nodes in the ring.

The experiment started with a stable ring of two nodes and up to 50 nodes

50

were started successively with a two second delay each. The round trip times and

the according number of nodes in the ring were logged and processed later. The

experiment was repeated several times with similar results.

The network diameter grows as more nodes are added. Figure 5.1 shows the

expected linear increase of the round trip time. Starting from 10 ms for two nodes

the round trip time eventually reaches 250 ms in a ring of 50 nodes. The sparse

outliers are attributed to context switching.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 5 10 15 20 25 30 35 40 45 50

R
ou

nd
-T

rip
-T

im
e

[s
ec

on
ds

]

Number of nodes

Figure 5.1: Round trip time and ring size

5.1.3 Messaging Overheads

An experiment has been conducted to measure the overhead of control messages

over the content messages. The experiment was designed to measure the number

as well as the size of messages for the ring protocol and the application protocol.

51

Ring protocol messages in this experiment comprehend building the ring from

scratch and ring maintenance during transmission. Application messages are solely

content-related and include the content announcement, piece requests and piece

replies.

The experiment was conducted on a network of two nodes, as the number of

nodes does not affect the measured values. A file of size 218 KB was transmitted

from one node to the other and back. That is 436 KB of payload was transmitted

altogether.

Collection of message statistics is part of the network component, hence no

additional implementation specific to this experiment was required. The message

statistics were retrieved after the transmission using the debug console built into the

console client.

Figure 5.2 shows the results. The experiment produced 11 ring protocol and

30 content protocol messages. The cumulative size of all ring protocol messages

make up only 0.32 % of the whole size. That overhead is considered acceptable.

5.1.4 Time to converge

This experiment quantifies the time it takes for a given number of nodes to

converge to a single ring. First a supernode is started. All other nodes are started

simultaneously. The nodes register at the supernode and join the ring. Note that

three nodes are involved in a join operation and each node is allowed to participate

in a single join operation at any time. Nodes back off exponentially when the join

operation fails.

The experiment was conducted using 10 to 50 nodes in steps of ten. The time

to converge was determined by measuring the round trip time periodically several

times a second. The round trip message also includes a hop counter which was

used to identify the point in time when all nodes are accommodated in the ring.

The round trip measurements were logged for later processing.

Figure 5.3 shows the results. For 10 nodes it takes less than two seconds to

converge, while 50 nodes converged in 36 seconds. Given a distributed ring protocol

this takes quite long.

The unexpected results of this measurement point to an implementation

52

 0

 10

 20

 30

 40

 50

ring applicaiton
 0

 100

 200

 300

 400

 500

nu
m

be
r

of
 m

es
sa

ge
s

si
ze

 o
f m

es
sa

ge
s

(K
B

)

number of messages
size of messages

Figure 5.2: Ring protocol and content protocol messages

issue. The nodes are located at the same geographical position and the supernode

returns the same bootstrap peer for each node. Hence a large number of join

operations are attempted at a single node, most of which are ignored and the nodes

time out, back off exponentially and try again. The back off time is deterministic,

thus the nodes retry later simultaneously.

The problem could be addressed in multiple ways. One solution is to build

randomness into the back off time. In this case nodes will initiate the join operation

at different intervals and have a higher success rate. The other solution is to change

the supernode algorithm to select a random bootstrap peer if there are multiple

peers located at the same geographical position. In this case the nodes will initiate

the join operation at different peers and can succeed in parallel.

53

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50

T
im

e
to

 c
on

ve
rg

e
[s

ec
on

ds
]

Number of nodes

Figure 5.3: Time to converge to a ring

5.2 Goals and Achievements

The main goals of this research were outlined in Section 1.2. Most goals were

eventually achieved. The state-of-the-art of ring-building overlays was surveyed

and a ring protocol was adapted to the requirements of the middleware. The P2P

middleware design and implementation is complete. Security threats have been

considered and countermeasures have been designed and partially implemented.

Notably, the digital signatures of supernode messages remain to be implemented.

The networking component of the Global Contentifier application was designed

and the implementation is nearly finished. In particular the content flow protocol

was realised, while the implementation of the global view protocol is a work in

progress. The enforcement of policies is in place, yet the dependency of the global

view protocol needs to be satisfied. Section 6.1 details work that remains to be done.

54

Chapter 6

Conclusion

Directions for future work are discussed in this chapter, then the research is

concluded.

6.1 Future Work

The future work is discussed in two sections. Ongoing work details the work that

is already in progress, the design is done and in some cases the implementation has

started. The outlined tasks are of highest priority for the Global Contentifier project

and the work will be continued after the submission of this dissertation.

The next section discusses potential future work and identifies interesting

directions for future research that is not scheduled yet for the near future as part

of the Global Contentifier project.

Ongoing Work. Most importantly the implementation of the global view protocol

has to be finished. The protocol entails reporting of network events to supernodes,

aggregation of this information at the supernodes and distribution of the global

view to the regular nodes. The protocol semantics and data structures in question

have been agreed upon. Implementation of the new protocol layer remains to be

done.

The view protocol outlined above depends on correct geo-location of the P2P

nodes. The current geo-location routines use a web-based frontend to an open

source database backend. However, concerns have been raised about the accuracy

55

of this method. It has been discussed that users should be able to locate themselves

on the map, or alternatively, a traceroute-based method can be used in case the

database fails. As correct geo-location of nodes is a crucial part of the system, more

research needs to be conducted in this area.

Another important area for ongoing work is the implementation of digital

signatures to allow for self-certifying data that originates from the supernodes.

These include the node ID, the bootstrapping information, the metadata and the

global view information. Of course the according verification processes have to be

put in place as well.

P2P systems are relatively hard to evaluate and test. Clearly, more tests

and measurements have to be conducted beyond the ones presented in Section 5.1.

The best practice to evaluate P2P systems is to observe the behaviour of a real-life

network deployed on a large scale. This remains yet to be done. An initial real-life

deployment of medium scale is being organised at the time of this writing.

Potential Future Work. The policies for node joins and content insertion have to

be fine-tuned and possibly other policies have to be developed based on experience

from the initial real-life deployment. One possibility for a new policy is the

requirement of minimum bandwidth that a node can contribute to the network. In a

ring overlay the throughput of the network depend on the throughput at the slowest

node. Even if the interventions are temporary, content flow needs to be ensured.

Further fine tuning and configuration of the P2P network could be realised to

improve performance metrics. Possible values for fine tuning are various timeouts,

the frequency of the ring protocol heartbeat, the number of successors that are being

kept track of, the number of contents transmitted simultaneously at a single link, as

well as the hashcash prices of different operations.

The source code of the middleware and the applicationwill be released as free

and open source software at some point. The software release is essential to allow

for the development of other interesting projects and applications that are based on

the ring-building middleware.

Making use of more open protocols and formats should be considered where

possible. The potential benefits are numerous. It would be interesting to investigate

the possibility of building the content protocol using a feed-based publish-subscribe

56

mechanism instead of a proprietary protocol.

Possibilities of interconnecting multiple rings at bridges. Brides are P2P

nodes that are part of multiple rings and have the responsibility of mediating and

exchanging content among the rings. Additional policies could control the way

content is exchanged at bridges.

6.2 Conclusion

This section summarises the progress and achievements of this research and

identifies the main contributions.

6.2.1 Summary

This paper is a report on the results and progress of a research that is part of an

ongoing project. A summary is given here.

The state-of-the-art of ring-building overlays suitable for P2P systems and

geography in the context of P2P applications are surveyed. The Global Contentifier

media arts project is presented. The middleware and application requirements of

the Global Contentifier are outlined and design issues are identified. Based on the

survey and the requirements a distributed ring protocol is designed.

A supernode-based P2P middleware is designed and implemented. The

middleware builds and maintains an overlay network of multiring topology

wherein all peers are part of the outer ring and the inner ring provides low-

latency communication for the supernodes. The middleware provides components

and distributed services for the development of P2P applications. Security issues

are considered and threats are addressed with countermeasures. An application

for realising the Global Contentifier on top of the middleware is designed and

implemented.

The results are evaluated by means of experimental measurements and

contrasting the original goals with the actual achievements. Finally, future work

is identified and the research is concluded.

57

6.2.2 Contributions

Ring Protocol. A distributed ring protocol based on VRing is proposed. The ring

protocol is suitable for P2P systems and can tolerate a configurable amount of

failure. It also eliminates limitations of the VRing protocol by adapting it to the

requirements of the middleware.

Middleware. A ring-building, supernode-based middleware was designed and

implemented. The middleware builds and maintains a P2P overlay network

featuring the novel concept of serial content flow. The designed protocols take the

geographical location of the nodes into account. Current evidence suggests that the

middleware is in a way the first of its kind.

The middleware provides a platform for building interesting applications.

Hence, the open-sourced middleware will contribute to the P2P research and the

Twisted communities and hopefully inspire more research and development and

also serve educational purposes.

Application. An application for realising the core concepts of the Global

Contentifier was designed and partially implemented. The innovation of the

application is the aggregation of a global view of the overlay network topology and

the content flow therein. The application is not only of academic interest, but also

contributes to a media arts project by enabling the novel interactive audio sculpture

of the Global Contentifier.

58

Appendix

59

Figure 6.1: Class diagram of the messages module

60

Figure 6.2: Class diagram. White (middleware) and grey (application) classes

61

Bibliography

[1] Thom Kubli. global contentifier, November 2006. [Online; accessed 23-August-

2007] http://www.khm.de/∼kubli/contentifier/.

[2] A Survey of Ring-Building Network Protocols Suitable for Command and Control

Group Communications. Conference on Sensors, and Command, Control,

Communications, and Intelligence (C3I) Technologies for Homeland Security

and Homeland Defense IV, March 2005.

[3] JunWang, WilliamYurcik, Yaling Yang, and Jason Hester. Multiring techniques

for scalable battlespace group communications. IEEE Communications

Magazine, 43(11):124–133, November 2005.

[4] John Risson, Ken Robinson, and Tim Moors. Fault tolerant active rings

for structured peer-to-peer overlays. In LCN ’05: Proceedings of the The

IEEE Conference on Local Computer Networks 30th Anniversary, pages 18–25,

Washington, DC, USA, 2005. IEEE Computer Society.

[5] Ayman Shaker and Douglas S. Reeves. Self-stabilizing structured ring topology

p2p systems. Technical Report 2005-25, June 2005.

[6] Ahmed Sobeih, William Yurcik, and Jennifer C. Hou. Vring: A case for building

application-layer multicast rings (rather than trees). In IEEE Computer Society’s

12th Annual International Symposium on Modeling, Analysis, and Simulation of

Computer and Telecommunications Systems, pages 437–446, Washington, DC,

USA, October 2004. IEEE Computer Society.

[7] M. Junginger and Yugyung Lee. The multi-ring topology-high-performance

group communication in peer-to-peer networks. In Peer-to-Peer Computing,

62

http://www.khm.de/~kubli/contentifier/

2002. (P2P 2002). Proceedings. Second International Conference on, pages 49–56,

2002.

[8] Atul Singh and Mads Haahr. Creating an adaptive network of hubs using

schelling’s model. Commun. ACM, 49(3):69–73, 2006.

[9] Giscard Wepiwe and Plamen L. Simeonov. A concentric multi-ring overlay

for highly reliable p2p networks. In NCA ’05: Proceedings of the Fourth IEEE

International Symposium on Network Computing and Applications, pages 83–90,

Washington, DC, USA, July 2005. IEEE Computer Society.

[10] Anwitaman Datta, Sarunas Girdzijauskas, and Karl Aberer. On de bruijn

routing in distributed hash tables: There and back again. In P2P ’04: Proceedings

of the Fourth International Conference on Peer-to-Peer Computing (P2P’04), pages

159–166, Washington, DC, USA, 2004. IEEE Computer Society.

[11] D. A. Agarwal, L. E. Moser, P. M. Melliar-Smith, and R. K. Budhia. The totem

multiple-ring ordering and topology maintenance protocol. ACM Transactions

on Computer Systems, 16(2):93–132, May 1998.

[12] Jianxu Shi and John P. Fonseka. Hierarchical self-healing rings. IEEE/ACM

Trans. Netw., 3(6):690–697, 1995.

[13] Anders Weberg. P2p art - the aesthetics of ephemerality, September 2006.

[Online; accessed 23-August-2007] http://p2p-art.com/.

[14] Scott Draves. electric sheep, 1999. [Online; accessed 23-August-2007]

http://www.electricsheep.org/.

[15] Marco Mamei. Creating overlay data structures with the tota middleware

to support content-based routing in mobile p2p networks. In HOT-P2P

’04: Proceedings of the 2004 International Workshop on Hot Topics in Peer-to-Peer

Systems, pages 74–79, Washington, DC, USA, October 2004. IEEE Computer

Society.

[16] Sylvia Ratnasamy, Brad Karp, Li Yin, Fang Yu, Deborah Estrin, Ramesh

Govindan, and Scott Shenker. Ght: a geographic hash table for data-centric

63

http://p2p-art.com/
http://www.electricsheep.org/

storage. In WSNA ’02: Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 78–87, New York, NY, USA, 2002.

ACM Press.

[17] Dimitri Konstantas and Alfredo Villalba. Hovering information : a new

paradigm for sharing delocalized information. Technical report, Department

of Information Systems, August 2007.

[18] Giovana Di Marzo, Alfredo Villalba, and Dimitri Konstantas. Dependability

requirements for hovering information. Technical report, Department of

Information Systems, August 2007.

[19] Owen O‘Flaherty. A mobility-aware file system - file availability in a mobile-

aware, context aware environment. Master’s thesis, University of Dublin,

Trinity College, September 2005.

[20] Anne Pascual and Marcus Hauer. Minitasking - a visual gnutella client. In IV

’03: Proceedings of the Seventh International Conference on Information Visualization,

page 115, Washington, DC, USA, 2003. IEEE Computer Society.

[21] Venkata N. Padmanabhan and Lakshminarayanan Subramanian. An

investigation of geographic mapping techniques for internet hosts. SIGCOMM

Comput. Commun. Rev., 31(4):173–185, 2001.

[22] Peter Gutmann. Pki: It’s not dead, just resting. Computer, 35(8):41–49, 2002.

[23] Anwitaman Datta, Manfred Hauswirth, and Karl Aberer. Beyond ”web of

trust”: Enabling p2p e-commerce. In Conference on Electronic Commerce, pages

303–312, June 2003.

[24] Thomas Wölfl. Public-key-infrastructure based on a peer-to-peer network. In

HICSS ’05: Proceedings of the Proceedings of the 38th Annual Hawaii International

Conference on System Sciences (HICSS’05) - Track 7, page 200.1, Washington, DC,

USA, 2005. IEEE Computer Society.

[25] Thomas Wölfl and Sven Wünschmann. Public-key-infrastrukturen in einer

peer-to-peer-umgebung. In GI Jahrestagung (2), pages 643–647, 2005.

64

[26] Adam Back. Hashcash - a denial of service counter-measure. Technical report,

August 2002.

[27] Adam Back. Hashcash.org, 2007. [Online; accessed 23-August-2007]

http://hashcash.org/.

[28] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and

Dan S. Wallach. Secure routing for structured peer-to-peer overlay networks.

In OSDI ’02: Proceedings of the 5th Symposium on Operating Systems Design and

Implementation, pages 299–314, 2002.

[29] Jerome H. Saltzer, David P. Reed, and David D. Clark. End-to-end arguments in

system design. ACM Transactions on Computer Systems, 2(4):277–288, November

1984.

[30] Bryan Ford, Dan Kegel, and Pyda Srisuresh. Peer-to-peer communication

across network address translators. In Proceedings of the 2005 USENIX Technical

Conference, 2005.

[31] Divmod vertex, 2007. [Online; accessed 23-August-2007]

http://divmod.org/trac/wiki/DivmodVertex.

[32] Marling Engle and Javed I. Khan. Vulnerabilities of p2p systems and a

critical look at their solutions. Technical report, Internetworking and Media

Communications Research Laboratories, 11 2006.

[33] Philipp von Weitershausen and P. J. Eby. Web Component Development with Zope

3. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[34] Python Software Foundation. Python programming language – official

website, 2007. [Online; accessed 23-August-2007] http://python.org/.

[35] Glyph Lefkowitz and Itamar Shtull-Trauring. Network programming for the

rest of us. In ATEC’03: Proceedings of the USENIX Annual Technical Conference

2003 on USENIX Annual Technical Conference, pages 14–14, Berkeley, CA, USA,

2003. USENIX Association.

65

http://hashcash.org/
http://divmod.org/trac/wiki/DivmodVertex
http://python.org/

[36] Twisted matrix labs, 2007. [Online; accessed 23-August-2007]

http://twistedmatrix.com/.

[37] D. Crockford. The application/json Media Type for JavaScript Object Notation

(JSON). RFC 4627 (Informational), July 2006.

[38] Guido van Rossum and Phillip J. Eby. Coroutines via Enhanced Generators.

PEP 342, May 2005.

[39] Raphaël Slinckx. Nattraverso, August 2005. [Online; accessed 23-August-2007]

http://raphael.slinckx.net/nattraverso.php.

[40] Jean-Marc Valin. The speex codec manual: Version 1.2 beta 2, May 2007.

[Online; accessed 23-August-2007] http://www.speex.org/.

66

http://twistedmatrix.com/
http://raphael.slinckx.net/nattraverso.php
http://www.speex.org/

	Acknowledgments
	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Listings
	Chapter Introduction
	The Global Contentifier
	Research Aims
	Dissertation Outline

	Chapter Background and Related Work
	P2P Overlay Networks
	Ring Topology Overlays
	Ring Protocols
	Multiring Protocols

	P2P and Art
	P2P and Geography
	Cryptography
	Encryption and Signatures
	Pricing

	Chapter Design
	Design Choices
	Requirements
	P2P Overlay
	Software Architecture
	Ring Protocol
	Supernode architecture

	Security Considerations
	P2P Security
	Cryptography
	Application Security

	Interfaces
	Middleware-Application Interface
	Network-Frontend Interface

	Chapter Implementation
	Development Process
	Implementation Choices
	Python
	Twisted

	Implementation Details
	Overview
	Protocol Stack
	Shared state
	Messages
	Node Join
	NAT traversal
	Logging
	Frontend

	Chapter Evaluation
	Measurements
	Experimental Setup
	Round Trip Time
	Messaging Overheads
	Time to converge

	Goals and Achievements

	Chapter Conclusion
	Future Work
	Conclusion
	Summary
	Contributions

	Appendix
	Bibliography

