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Abstract. Context-aware power management (CAPM) uses context (e.g.,
user location) likely to be available in future ubiquitous computing en-
vironments, to effectively power manage a building’s energy consuming
devices. The objective of CAPM is to minimise overall energy consump-
tion while maintaining user-perceived device performance.

The principal context required by CAPM is when the user is NOT USING
and when the user is ABOUT TO USE a device. Accurately inferring this
user context is challenging and there is a balance between how much
energy additional context can save and how much it will cost energy wise.
This paper presents results from a detailed user study that investigated
the potential of such CAPM.

The results show that CAPM is a hard problem. It is possible to get
within 6% of the optimal policy, but policy performance is very depen-
dent on user behaviour. Furthermore, adding more sensors to improve
context inference can actually increase overall energy consumption.

1 Introduction

With more and more computing devices being deployed in buildings there has
been a steady rise in buildings’ electricity consumption. These devices not only
consume electricity but also produce heat, which increases loading on ventilation
systems, further increasing electricity consumption. At the same time there is a
pressing need to reduce overall building energy consumption. For example, the
European Union’s strategy for security of energy supply [1] highlights energy
saving in buildings as a key target area'!. One approach to reducing energy
consumption of devices in buildings is to improve the effectiveness of their power
management.
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Context-aware ubiquitous computing describes a vision of computing every-
where that seamlessly assists us in our daily tasks, i.e., many functions are intel-
ligently automated. Information display, computing, sensing and communication
will be embedded in everyday objects and within the environment’s infrastruc-
ture. Seamless interaction with these devices will enable a person to focus on
their task at hand while the devices themselves vanish into the background. Re-
alisation of this vision could exacerbate the building energy problem as more
stationary computing devices are deployed but it could also provide a solution.
Context information (e.g., user location information) likely to be available in
such ubiquitous computing environments could enable highly effective power
management for many of a building’s energy consuming devices. We term such
power management techniques as context-aware power management (CAPM),
their principal objective being to minimise overall energy consumption while
maintaining user-perceived device performance.

The oracle power management policy is a theoretical optimal policy that
switches a device down to its low-power standby state the instant it is not being
used and switches it back on just before the user requests its service again.
Coming close to this oracle policy is a hard problem as it requires accurate
prediction of the user’s future intent. For example, the user has just left the
room but will she be gone long enough to justify powering down the fluorescent
lighting. The longer the policy waits to make the power down decision the more
energy is being wasted. Then the user re-enters the room but is she going to
use the desktop PC or is she just popping in to pick up some lecture notes.
To develop effective CAPM policies that approach this ideal we need to obtain
useful context from the user of the device.

We have identified several key requirements and designed a framework for
CAPM. The principal context required for effective CAPM is (i) when the user
is NOT USING for a sufficiently long period (see Section 2.1) and (ii) when the
user is ABOUT TO USE a device. Accurately inferring this user context is the most
challenging part of CAPM. However, there is also a balance between how much
energy additional context can save and how much it will cost energy wise. To
date there has been some research in the area of CAPM but to our knowledge
there has been no detailed study as to what granularity of context is appropriate
and what are the potential energy savings.

We have conducted an extensive user study to empirically answer these ques-
tions for CAPM of desktop PCs in an office environment. The sensors used are
idle time based on keyboard /mouse input, user presence based on Bluetooth bea-
coning, near presence based on ultrasonic range detection, face detection, and
voice detection. Results from the study show that coming close to the oracle is
a hard problem and that performance is very dependent on user behaviour. For
those who are HeavyUse users (i.e., use their PC greater than 85% of the time
when they are in its vicinity) it is possible to get within 6-9% of the oracle policy
and maintain user-perceived performance with a simple policy based on idle time
and user presence. For LightUse users the median performance is 22-31% from
the oracle and the standard deviation is large (21-28%). For these users a policy



based on idle time, user presence, and near presence does better but incurs some
user-perceived performance degradation. Beyond this face detection and voice
detection consumed more than they saved.

The remainder of this paper is structured as follows. The following section
briefly describes the background, requirements for CAPM and related work.
Section 3 describes our CAPM framework design and Section 4 describes the user
study. Section 5 presents the results and evaluation. Finally, Section 6 concludes.

2 Background

CAPM is a dynamic power management technique. This section gives an overview
of dynamic power management, the requirements for CAPM of stationary (i.e.,
plugged in) devices and a brief overview of related work.

2.1 Dynamic power management

Dynamic power management [2] is the term usually used to categorise tech-
niques that dynamically power manage a device during its runtime operation.
It is an effective technique that simply powers down a device (or some of its
sub-components) during idle periods that occur during its operation. The two
fundamental assumptions are that (i) idle periods will occur during the device’s
operation and (ii) these periods can be predicted with a degree of certainty.
There is also a trade-off in powering down to save energy as, typically, making a
power state transition has a significant cost. Possible costs are (i) extra energy
is consumed in the power state transition, (ii) device performance is degraded
as it becomes slower to respond, and (iii) device lifetime is reduced due to extra
wear in powering down and up. Therefore a break-even time is defined as the
minimum time a device must spend in a lower power state to justify the cost of
transitioning down to that state and back again. For example, break-even time
due to energy transition costs for a hard-disk may be around 10 seconds [3],
break-even time due to lifetime for fluorescent lighting is around 5 minutes [4].
The resume time is the time taken for the device to resume to the operating
state.

The current state of the art in dynamic power management is predominantly
focused on developing policies for mobile computing devices. The key trade-
off for these policies is increased battery life versus device performance. For
example, a hard disk may be aggressively power managed to extend battery life
(i.e., minimise energy consumption) but its performance will deteriorate as it
will be slower to respond to user requests. Policies for mobile devices typically
use low-level information such as the current idle time of the device. They can
only predict short idle periods and are not able to predict the time of the next
user request. Therefore, they are only suitable for managing devices or sub-
components which have relatively short break-even and resume times (order
10 and 1 seconds respectively [3]). An example commonly used policy is the
threshold policy which simply powers down the device when the idle time for the



device is greater than a given threshold limit (e.g., after 10 seconds of inactivity,
power down the hard-disk).

A number of issues relating to power management are already dealt with in
most operating systems. Background processes can deny a power down request if
they are performing a critical task such as file backup. Also, a process can set a
wake-up timer to resume the device at a given time to perform its task. Finally,
Wake-on-LAN enables a device to be resumed via the network by another device
which requests its service.

2.2 Requirements for CAPM of stationary devices

Requirements for power management of stationary devices are different to mobile
device requirements. Typically, the most significant power savings for stationary
devices are achieved by switching the entire device to standby. For example a
typical desktop PC may consume 60 Watts (W) when on-idle and as low as 1W in
standby. However, switching to a deep standby state has two implications as the
device break-even and resume times are significantly longer. Firstly, since break-
even times are longer, policies need to accurately predict longer idle periods
(order 1 to 10 minutes). Second, switching to low-power standby states can
cause significant user annoyance as resume times are longer (order 10 seconds)
and there is the possibility of false power downs (i.e., powering down when
the user is actually still using the device). Furthermore, stationary computing
devices do not have battery limitations so users expect little or no performance
degradation. Therefore, policies need to be near certain before powering down
and they need to predict the time of the next user request to avoid resume-time
delays. In order to predict longer idle periods and the time of next user request,
policies need to use high-level user context.

We define context-aware power management as a dynamic power manage-
ment technique that employs high-level user context to effectively power man-
age users’ devices while maintaining user-perceived device performance. CAPM
requires the accurate prediction of the context NOT USING for at least the given
break-even period and ABOUT TO USE at least the resume time beforehand.
However, achieving this accurate context has a cost energy wise.

For example, coarse-grained location /presence information can be a good cue
for a person ABOUT TO USE their PC, if for example, their behaviour is that they
always check their email when they re-enter the office. For other users it may not
be a good cue, they may often pop in and out of their office without checking
their email and without using the PC2. Adding additional sensors to the scene
may help us do better. For example, knowing the time of day could help in
determining whether they are about to use their PC (e.g., they always check
their email first thing in the morning, after lunch and at the end of the day).
Time of day is cheap to obtain but does depend on the user being very regular
in their behaviour. Adding other physical sensors could improve the situation,
for example, to detect whether the user is alone or with others, where the user is

2 These users may check their email with a hand-held device.



in the space, or whether the user is moving towards the PC. These observations
could possibly be made with additional sensors such as acoustic, video, object
ranging, and more accurate location, to try to establish finer-grained context.

As the primary objective of CAPM is to minimise overall energy consump-
tion, there is a bound on the granularity of context that is appropriate. Overstep-
ping this bound and the system will start consuming more sensor energy than
the device energy it is saving due to the additional context. The additional con-
sideration is that user-perceived device performance must also be maintained.
To date there has been some research in the area of CAPM but to our knowledge
there has been no detailed study as to what granularity of context is appropriate
and what are the potential energy savings.

2.3 Related work

Our previous work [5] evaluates the use of location as a key piece of context for
CAPM of desktop PCs in an office environment. A simple location-aware policy
was implemented that uses location context derived from detecting the user’s
Bluetooth-enabled mobile phone. This standby /wakeup on Bluetooth (SWOB)
policy runs on the users PC. When the PC is on the policy polls for the user’s
phone via the Bluetooth discovery mechanism. If the phone is not found (after
5 discovery attempts) the PC powers down to standby. The PC is powered up
again the next time the phone is found in range. Six user trials were performed,
each over a period of a week.

The results from the user trials highlight that user behaviour significantly
affects the performance of the policy. The results show two clear user types,
HeavyUse users who use the PC a lot when in its 10-metre Bluetooth vicinity
and LightUse users who use the PC occasionally when in its vicinity. The policy
performs very well energy-wise for HeavyUse users (8% from oracle), whereas
for LightUse users the performance deteriorates (>50% from oracle), consuming
energy when the user is in the vicinity but not using the device. The user-
perceived performance is good for both HeavyUse and LightUse users as the
PC remains on while the user is in its vicinity. The threshold-5% policy’s user-
perceived performance deteriorates significantly for LightUse users as the PC
goes into standby many times while in the vicinity. The results demonstrate
that coarse-grained location alone is not sufficient to determine the detailed user
behaviour necessary for effective CAPM for all users.

Finer-grained context is needed to predict (i) the user in the vicinity but NOT
USING the device and (ii) the user in the vicinity and ABOUT TO USE the device.
The second scenario is difficult to achieve, as one key advantage of coarse-grained
location is that it is a distant sensing device, i.e., it senses the user at a distance
thereby enabling time for the device to resume before the user requests its use.
Saving energy by switching off devices in the near vicinity of the user is difficult
to achieve transparently. In this paper we examine in a detailed user study, how

3 The threshold-5 policy initiates a power down after 5 minutes of idleness.



much better can be done than the SWOB policy with the use of finer-grained
context.

Mozer’s Adaptive House project [6] employs a sophisticated framework, ACHE,
that has been developed over eight years of actual implementation and exper-
imentation, to power manage devices in a house. ACHE is the most advanced
CAPM application that we know of, employing in total 75 sensors monitoring
temperature, light, motion, sound, door and window positions, and weather. The
techniques used are a neural network for mobility prediction, and a reinforce-
ment learning technique for the decision making policy. The book chapter [7]
concentrates on the issue of lighting control, the objective being to automate
the setting of lighting levels within the house to maximise inhabitant comfort
and minimise energy consumption.

The real-life experience from this project highlights the subtle requirements
for effective power management. The two main discomforts the author experi-
enced were the slow response of the system (due mainly to X10 communication
delay) and the occasional false anticipation of zone entry. This caused switch-
ing of lights on in unoccupied zones. Results from the project show the cost of
lighting and user discomfort values dropping over time as the system learns the
user behaviour. However, the control of lighting level is based on user activity
prediction, which currently is only inferred from the motion sensors. For exam-
ple, the user being still for 5 minutes equating to the user READING and frequent
zone change equating to CLEANING HOUSE. There is no evaluation as to how well
the current activity classification works, but Mozer states that it is an area for
future research.

Being able to infer these finer-grained user activities could increase the per-
formance of the control decisions but it will also require the use of additional
sensing and thereby increase energy cost.

Oliver et al. [8] present a system, SEER, that infers user activity from real-
time streams of video, acoustic, and computer interactions in an office environ-
ment. The system is based on a set of layered hidden Markov models (LHMMs)
that combine the readings from binaural microphones, a USB web camera, and
a keyboard and mouse, to infer the activities, PHONE CONVERSATION, FACE TO
FACE CONVERSATION, ONGOING PRESENTATION, DISTANT CONVERSATION, NO-
BODY IN THE OFFICE, and USER PRESENT ENGAGED IN SOME OTHER ACTIVITY.
The results claim a prediction accuracy of 99% for the system.

A further paper [9] presents an extension to SEER, S-SEER, which attempts
to address the significant CPU usage of the feature processing algorithms. They
say that, although the methods have performed well, a great deal of video and
acoustic feature processing has been required by the system, consuming most
of the resources available in a PC. They have developed an approach, expected
value of information (EVI), which uses the principle of maximum expected utility
to determine dynamically which are the most useful features to extract from the
sensors in different contexts.

This is possibly the closest work to our research in the sense it uses similar
sensors (video, audio, keyboard/mouse) in a similar office environment. They



appear to achieve very good results for activity recognition but at a very high
computational cost. Even with their EVI sensor selection policy the activity
recognition algorithm consumes 33.4% of CPU time (on average). A typical
desktop PC power consumes 60W when on and the CPU is idle. Running the
activity recognition algorithm will increase the power consumption to about
80W. Increasing the power consumption of the PC by one-third is clearly too
costly energy wise. For CAPM it is necessary to find much more energy-efficient
ways of accurately determining the context NOT USING and ABOUT TO USE.

3 CAPM framework design

The CAPM framework is composed of three main components: data capture and
feature extraction, context inference, and decision making. The data capture and
feature extraction layer captures the raw sensor events and in most cases prepro-
cesses the data to obtain relevant features. For example, a video signal could be
preprocessed to obtain features such as density of foreground pixels, density of
motion, density of face pixels and density of skin colour [8]. A Bluetooth detec-
tion event could be preprocessed using a counter to count the number of times
a Bluetooth tag has not been detected. This gives a history of when the tag was
last seen, for example, a count of 10 means the tag has not been detected in
the last ten polls. Sensors can include any physical sensing devices, power state
changes of other devices, and "software sensors", such as time of day, or day of
week.

The context inference layer is responsible for inferring more certain, higher-
level context from the low-level sensor and feature data. The inference can involve
combining redundant data to achieve more certainty and multi-modal data to
infer context based on a combination of the multiple sensor modes. This is the
most challenging part of the data processing as it is trying to infer high-level
notions from low-level, noisy, and incomplete sensor data and/or their features.
Bayesian networks are used to deal with this uncertainty in the data. This gives a
level of confidence /probability in the proposition of a certain context being true.
Furthermore, the Bayesian network can be trained to the specific user’s usage
pattern. The probabilistic inference of the contexts NOT USING and ABOUT TO
USE is made available for use by the decision layer.

The decision layer is responsible for taking the power-management actions.
For the initial version of the framework the decision layer was designed as a sim-
ple threshold rule. If the probability of NOT USING exceeded the given threshold
(80%) then the action to power down was taken. Likewise, if the probability of
ABOUT TO USE exceeded the given threshold (60%) the action to power up was
taken.

3.1 Choice of sensors

The CAPM framework was implemented for the power management of desktop
PCs in an office environment. Users were given dedicated Bluetooth tags to



attach to their key ring in order to achieve coarse-grained user location. The
choice of additional sensors was motivated by the preference to use sensors that
we believe will be part of future ubiquitous computing environments.

It is likely that a web camera and microphone will become integrated in
the PC display as the popularity of video communication applications increases.
Therefore we chose to use both of these sensors to capture finer-grained context.
For our system we chose a standard face detection algorithm [10] as the single
feature to extract from the video stream and a basic voice activity detection
algorithm [11] for the acoustic stream. The face detection only detects a face
that is looking straight at the camera and the voice activity gives a measure
from 0% to 100% of the level of voice activity detected in the environment.

The final sensor chosen was an ultra-sonic object range sensor in order to
detect near presence of the user. We do not envisage this sensor as being part
of a standard ubiquitous computing environment and so it would need to be
installed as part of a CAPM solution. The motivation for choosing it was that
it could possibly give good information at low energy cost, as there is no need
for expensive feature processing.

3.2 Bayesian network design

We divided the problem into designing a distinct type of BN for each inference
task, i.e., NOT USING for at least the break-even period and ABOUT TO USE at
least the resume time beforehand. The structure of both types of BN is similar
but they use different sensors and different sensor models. Development of the
two types of BN was an iterative approach, starting with simple models and
evolving the models to cope with issues that occurred. Fig. 1 details the final
BN for the NOT USING (NU) context. The IsNotUsing node is the query node,
we are asking what is the probability (P) that the user is not using the device
for at least the given break-even time. This node has causal connections to each
of the sensor nodes. This represents the fact that the user using (U) or not using
the device is causing the observed sensor readings. The conditionality probability
tables (CPTs) are initially set to default values and are subsequently learnt using
supervised training data for each of the users. Given the full set of CPTs the
model can reason diagnostically from the sensor values to give the probability of
the user NOT USING the device. The actual value for each of the sensors is input
into the BN and the probability of the context NOT USING is calculated. The
power-down decision threshold was set at a probability of NOT USING greater
than or equal to 0.8 (80%). This threshold figure was derived from trial and error
experimentation with the model.

We also experimented with using a dynamic Bayesian network to capture
possible temporal patterns but we found no significant improvement in perfor-
mance.
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Fig. 1. Bayesian network for NOT USING context

4 User study

The user study focuses on power management of desktop PCs in an office envi-
ronment. We defined the population of the study to be all workers in an office
environment that use a desktop PC. Our previous work [5] shows that the per-
formance of the location-aware SWOB policy depends primarily on whether the
user is LightUse or HeavyUse. A random sample of twenty users from the aca-
demic, administrative, technical and postgraduate staff and also office users from
outside the college were selected for the trial. This ensured a wide range of dif-
ferent users and office types and layout. The trial length was set to run for 5
working days. Based on initial results, we believed this would give enough data
for training and simulation of the CAPM policies.

In order to compare the range of sensors and policies for each user’s usage
trace it was necessary to collect all sensor data simultaneously as the user was
using the PC during the trial and subsequently run policy simulations on the
real usage data. Hence, the trial is broken into a data collection and processing
phase, and a subsequent simulation phase. The simulation enables comparison of
a range of CAPM policies, the SWOB policy, the optimal oracle policy, threshold
policies and an always-on policy.

4.1 Data collection and processing

A set of Windows services were implemented to collect data for each of the
sensors every 5 seconds; each value was date stamped and stored to file. Fur-



thermore, all idle periods (i.e., periods when there is no mouse/keyboard events)
of 30 seconds or more and all power events were logged to the Windows event
log. The most difficult data to collect was the actual usage of the display and
PC, i.e., when the user was actually USING or NOT USING these devices. To mea-
sure the actual usage, the NOT USING service attempts to power off the user’s
display if the PC has been idle for greater than 60 seconds. The 60-second period
of time attempts to balance accuracy against the experiment causing excessive
user disruption. A message box appears asking the user if they are still using
the PC; if they are the message box disappears by simply moving the mouse.
This short mouse input is removed in the data processing as it would not have
happened during normal device usage.

We imagined the effect that the NOT USING service may have on the users’
behaviour was that they would tend to make more inputs than normal to stop
the monitor being powered off. This would lead to a higher frequency of short
idle periods than usual occurring in the usage trace. For this reason, idle period
data was collected for several weeks after each trial and compared with the idle
periods that occurred during the trial. This evaluation suggests that there was
no significant effect from the trial.

The event logs are processed to create the measured device-usage trace, of
when the user was USING and NOT USING the display or PC. Such a trace is
graphed in Fig. 2 where the top-level line represents USING and the bottom-
level line represents NOT USING the PC. The level below USING represents IDLE
PERIODS that occurred when using the PC. There are periods in every trace
where we don’t know whether the user was using the PC or not. These are the
idle periods before the service attempts to power down the display. The user may
or may not be using the device at this time. These idle periods are scanned for
face detection events. If a face is detected, we assume the state is USING (i.e., the
user was looking at the display during this idle period). If a face is not detected,
a DON’T KNOW state is inserted to indicate that we don’t know whether the user
was using the PC or not at this time. This DON’T KNOW state is represented by
the line below the IDLE PERIODS state.

4.2 Simulation of policy traces

All of the policy traces are generated from the measured usage trace. We assume
the behaviour of all the users is good in that they power down their PC when
leaving the office for the evening. So, for all traces the device is switched to off
for the night time period. For all policies, the policy is allowed to power down
in the DON’T KNOW and NOT USING states; attempting to power down when the
user is still USING represents a false power down.

From the measured trace, it is straightforward to generate the estimated
oracle policy trace and the always-on trace. The oracle policy trace is generated
by placing the device in its standby state for all NOT USING periods that are
greater than the device break-even time. The always-on trace is generated by
leaving the device on for the duration of the day.
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Fig. 2. Measured device-usage trace

The SWOB policy was generated by running through the measured trace at
a 5 second time step. The policy attempts to power down if the Bluetooth tag
is not detected more than 5 times and the current idle time is greater than 60
seconds. If the measured usage is still in the USING state a false power down is
reported, otherwise the policy powers down the device. The policy powers up
when it detects the Bluetooth tag.

The range of threshold policy traces were generated by running through the
measured trace at a 5 second time step. If the current idle time was greater
than the given threshold, then the policy initiates a power down. There is no
automated power up for the threshold policies.

The Bayesian CAPM policies required a learning stage and a simulation
stage. To be rigorous, we employed a five-fold cross-validation strategy to the
learning and simulation of the policies [12]. This involved training the model on
one day of data and simulating for the other four days, and repeating this five
times, training on each of the days. The resulting values were then estimated as
the average of the five simulation results, giving a more robust analysis of the
policies.

The Bayesian policies we chose to compare, were idle time (IT), IT-Bluetooth
(IT-BT), IT-object range (IT-OR), IT-BT-OR, IT-BT-face detect (IT-BT-FD),
IT-BT-OR-FD and IT-BT-OR-FD-voice activity (IT-BT-OR-FD-VA). This se-
lection of models gives an increasing order of sensor granularity to enable com-
parison of each sensor’s affect on the CAPM policy (see Table 1). Idle time was
included in every model as it is also used in the SWOB and threshold policies,
and Bluetooth was included in all but one model as it gives the coarse-grained
user presence, which is the basis of the SWOB policy. We selected IT-OR. as
a special case to investigate the affect of only having the near presence infor-
mation. Parameter learning of the models was carried out using the standard
Spiegelhalter Lauritzen algorithm [13].

The set of BN policy traces were generated by running through the measured
usage at a 5-second time step in both the power-down cycle and the power-



Table 1. Bayesian CAPM policies

IT Idle time
IT-BT Idle time, Bluetooth
IT-OR Idle time, Object range

IT-BT-OR Idle time, Bluetooth, Object range
IT-BT-FD Idle time, Bluetooth, Face detection
IT-BT-OR-FD |Idle time, Bluetooth, Object range, Face detection
IT-BT-OR-FD-VA |Idle time, Bluetooth, Object range, Face detection, Voice activity
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up cycle. The power-down cycle operates when the device is on waiting to be
powered down and the power-up cycle operates when the device is in standby. At
each time step sensor values from the sensor records are applied to the BN power-
down or power-up model and the model is updated to give the new probability
of NOT USING or ABOUT TO USE. If the probability exceeds the threshold the
policy initiates a power down or power up of the device. Fig. 3 shows the IT-BT
BN policy powering down soon after the idle period begins.

The 7 Bayesian models plus the oracle, SWOB, six threshold policies and
always-on policy resulted in 16 different policies to compare in total for each of
the devices.

5 Results

Of the 18 user studies selected for analysis, 7 users were HeavyUse (<= 15%
NotUsing when in the vicinity) and the remaining 11 were LightUse users. The
policies were run for both the display unit and the desktop PC. The energy
consumption of the display unit is 45.8W when on and 1.8W in standby. The
transition energy is assumed to be negligible. Its estimated break-even period
is 1 minute and its resume time is 2 seconds. The PC’s break-even and resume
times are significantly longer at 5 minutes and 7 seconds respectively. The en-



ergy consumption is 60.0W on and 2.8W in standby. The transition energy was
measured to be 0.19Wh per transition.

The results first highlight the potential extra energy that can be saved for
both the display unit and PC if we can do better than the simple location-aware
SWOB policy. Results are given in terms of the actual Watt hours (Wh) of
energy consumed per day and the percentage from the oracle policy.

5.1 Potential extra energy from SWOB

Fig. 4 shows the potential extra energy per day that could be saved for both
LightUse and HeavyUse users of the display and PC. The potential extra energy
is calculated as the difference in energy consumption of the SWOB policy and the
oracle policy for each of the users. The box plots show the range, interquartile
range, median and 95% confidence interval around the median for each of the
groups.
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Fig. 4. Potential extra energy per day from SWOB

The results show there is significantly more energy to be saved for Ligh-
tUse users and also there is a larger variance in their energy consumption. For
LightUse of the display, the median percentage from oracle is 31.1% (median
78Wh, range 20Wh to 185Wh). Similarly, for LightUse of the PC, the median
percentage from oracle is 22.1% (median 59Wh, range 5Wh to 150Wh).

For HeavyUse of the display, the median percentage from oracle is 9.0%
(median 22Wh, range 5Wh to 80Wh). For HeavyUse of the PC, the median
percentage from oracle is 5.7% (median 13Wh, range 0 to 30Wh). Trying to do
better than the SWOB policy for HeavyUse users is therefore difficult.

We next estimate the energy consumption of the sensors used by the CAPM
policies.



5.2 Energy consumption of sensors

The power of each sensor was inferred by measuring the difference in the average
power of the PC with and without each of the sensors running. The average
power of the Bluetooth detection is 0.41W. This is based on the Bluetooth
attempting to make a connection every 5 seconds and includes the energy cost of
recharging the Bluetooth tag. The face detection’s average power is significantly
higher at 2.47W*. Again the sample rate is every 5 seconds and the high power
consumption is due to the large amount of processing needed to perform the face
detection algorithm. The voice activity detection’s average power is 0.78W as
its algorithm is less CPU intensive. Finally the object range detection’s average
power is based on the average power of the sensor hardware, which was measured
at 0.07W.

Fig. 5 shows the estimated energy consumption per day for each of the sen-
sors. This is calculated as the average power of the sensor (at the sample rate)
times the number of hours for each of the user’s days. The median energy con-
sumption per day for the sensors is BT 3.4Wh, OR 0.6Wh, FD 20.2Wh and VA
6.4Wh.
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Fig. 5. Estimated sensor energy consumption per day

FD and VA consume a significant amount compared to the potential savings
from the SWOB policy for the PC and display (LightUse - 59Wh and 78Wh,
HeavyUse - 13Wh and 22Wh). It may be possible to decrease the sensor energy
consumption by employing some form of power management for the sensors, but
this is not explored here.

4 This is significantly less than the estimated 20W used by the feature processing in
Oliver (see Section 2.3).



We next examine if using additional sensors and more sophisticated Bayesian
CAPM policies can improve on the SWOB policy for both LightUse and HeavyUse
users.

5.3 Comparison of additional sensors

The comparison is based on energy consumption and user-perceived perfor-
mance, which is evaluated in terms of the number of false power downs (FPDs)
that occurred in a day and the number of manual power ups (MPUs) that the
user had to invoke per day.

Energy consumption Fig. 6 shows the extra energy consumed per day for each
of the policies from the oracle for both LightUse and HeavyUse of the display
unit. The plots highlight the SWOB policy performing well (close to the oracle)
for HeavyUse users and significantly worse for LightUse users.

The policies closest to the oracle for LightUse are IT-OR 40Wh, IT-BT-
OR 46Wh and threshold-5 46Wh (median 17.3% to 19.5% from oracle). For
HeavyUse the lowest consuming policies are IT-OR 21Wh, IT-BT-OR 21Wh,
SWOB 25Wh, IT-BT 25Wh and threshold-5 30Wh (median 8.9% to 13.1% from
oracle).

User-perceived performance Table 2 details the user-perceived performance
of the CAPM policies in terms of median FPDs per day and median MPUs per
day for all LightUse and HeavyUse users. The policies are ordered in ascending
order of MPUs.

Table 2. User-perceived performance of policies in terms of median FPDs and MPUs
per day for LightUse and HeavyUse users

LightUse HeavyUse

Policies FPDs[MPUs FPDS‘MPUS
SWOB 0 0 0 0
IT-BT 0.5 2 0 0.25

IT-BT-OR 0.75 | 475 | 0.5 1

IT-BT-FD 1.25 ] 6.75 | 0.5 2
IT-BT-OR-FD | 0.75 7 0.75 | 2.75
IT-BT-OR-FD-VA| 0.75 7 0.75 | 2.75

IT-OR 0.25 8 0.25 7

The best CAPM policy in terms of manual power ups for LightUse users is
SWOB with median 0, then IT-BT (median 2) and IT-BT-OR (median 4.75)
next. Since the power-up policy for all BN policies was limited to only powering
up on BT, the more times the device was powered down when the user was in
the vicinity, the more MPUs were incurred. The MPUs are less for HeavyUse
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Fig. 6. Extra energy consumption per day from the oracle (including sensor energy)



users. This intuitively makes sense as HeavyUse users do not allow the device
to power down as often, therefore requiring less power ups (SWOB median 0,
IT-BT median 0.25, IT-BT-OR median 1).

The SWOB policy also performs best in terms of false power downs with no
FPDs for both LightUse and HeavyUse users. The BN policies for LightUse are
similar with median of 0.5 to 1.25 per day and range of 0 to 3 FPDs per day.
There is no significant difference for HeavyUse users with median 0.25 to 0.75
and range of 0 to 5.

5.4 Summary

From these results for the display, it is clear that the best policy for HeavyUse
users is the SWOB policy performing well both energy wise and user-perceived
performance wise. On average the energy consumption is 9.0% from the oracle
per day, there are median 0 FPDs and median 0 MPUs, resulting in very good
user-perceived performance. The BN CAPM policies did not save significantly
more energy and caused additional FPDs and MPUs.

For LightUse users the SWOB energy consumption is not as good and varies
considerably across the users. It is equivalent to the threshold 15 to 20 policies
and is on average within 31.1% of oracle. To do better energy wise, it seems
we must accept some performance penalties in terms of false power downs and
manual power ups. Of the BN policies, the IT-BT-OR policy is one of the lowest
energy policies with the least MPUs and FPDs.

The overall pattern of results for power management of the PC are similar
to that of the display. For HeavyUse the SWOB policy is again the clear choice
with both low delta energy consumption 13Wh (5.7% from oracle) and no FPDs
and few MPUs. The fact that the break-even time is longer means the policies
achieve percentages closer to the oracle policy. The number of standby periods
that were less than the break-even time were median 4 per day. This would be
a concern for the lifetime decay of this PC.

For LightUse of the PC the IT-BT-OR policy has one of the lowest delta
energy consumptions 30Wh (12% from oracle) with the least FPDs and MPUs
(FPDs median 0.5, MPUs median 3.75 per day). The number of MPUs is sig-
nificant as the resume time of 7 seconds will cause significant user annoyance.
The SWOB policy delta energy consumption for LightUse is 59Wh (22.1% from
oracle). This appears to be the best overall policy due to it having no false power
downs and very few manual power ups (median 0).

In all cases the face detection sensor consumes significantly more energy
than the object range detection sensor and does not provide significantly better
information. The voice activity sensor information does not improve the IT-BT-
OR-FD policy at all as the quality of its information for determining the context
NOT USING is very weak.



6 Conclusions

Development of effective context-aware power management has an essential part
to play in reducing overall building energy consumption. Achieving close to op-
timal performance is a hard problem as it requires accurate prediction of the
user’s future intent. Furthermore, performance varies significantly with user be-
haviour and there is a balance whereby adding more sensors to improve context
inference can increase overall energy consumption.

The user study of desktop PCs shows that for HeavyUse users, a policy based
on idle time and user presence (Bluetooth tag) performs well both energy and
user-perceived performance wise. For LightUse users, a policy based on idle time,
user presence and near presence (object range detection) performs well for the
display, but may incur too many manual power ups for the PC, which has a
long resume time. Therefore, for LightUse users of devices with long resume
times it may be necessary to accept increased energy consumption to maintain
user-perceived performance. To improve on this case, better sensor information
is needed which has a low energy cost.

Finally, there is a concern of reducing device lifetime due to the policies not
being able to predict long enough idle periods. Future work will look at including
time-of-day information to reduce the number of short standby periods that are
less than the break-even time (e.g., 5 minutes for the PC). If this is not sufficient,
remote sensing may be necessary to detect user location throughout the building
in order to predict these longer idle periods.
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