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Summary 

Component frameworks are said to support contextual composition when crosscutting 
functionality is bound to component instances by declarative selection of context 
properties, rather than through direct connections, such as method invocation, or derivation 
mechanisms, such as inheritance.  Using contextual composition, component framework 
services such as synchronization, security and transaction support are bound to component 
instances via method interception.  Here, the term component instance is an abstraction for 
whatever unit of interaction is used to access software component functionality be it an 
interface, an object or a set of objects.  The mechanism for declarative selection can range 
from deployment descriptors, used with EJB Containers, to attribute-based annotations to 
source, used with CLR contexts of the .NET Framework. 

Contextual composition frameworks suffer from the lack of tailorability problem as well as 
the preplanning problem.  Contextual composition is employed in a range of component 
frameworks including MTS contexts, EJB containers, COM+ contexts, CCM containers, 
and CLR contexts.  The lack of tailorability problem arises because the context properties 
available are either fixed or extensible in an ad hoc manner.  The preplanning problem 
arises because accessing context properties constrains component architecture.  Binding to 
context properties involves exposing component functionality as instance methods and 
supplying significant prerequisite composition infrastructure. 

Aspect-oriented programming (AOP) addresses the problems of contextual composition, 
but AOP solutions are difficult to adopt as they introduce language dependencies and 
suffer problems with reusability.  AOP offers language extensions that provide a linguistic 
means of implementing new crosscutting concerns encapsulated in aspects.  An emphasis 
on noninvasive binding means AOP places fewer restrictions on component architecture, 
but relying on language extensions forces components to align to a single language for 
interoperability.  Furthermore, reusability involves the customization of an aspect, which is 
much more complex than declarative mechanisms used with contextual composition such 
as attribute-based property selection. 

This thesis introduces aspect-based properties, which avoid the restrictions of context 
properties, provide language-independence and simplify reuse.  Aspect-based properties 
are implemented by aspects with pointcut-advice semantics, and composition is the 
responsibility of the aspect weaver rather than the components being composed.  The 
underlying aspect model is language-independent in that it allows aspects and components 
to be written in a variety of languages and freely intermixed.  Aspect-based properties use 
attribute-based property selection to allow reuse without the need to customise an aspect. 

An implementation for standardised Common Language Infrastructure (CLI) demonstrates 
aspect-based properties to be easy to adopt and to solve the problems identified with 
context properties.  Aspect-based properties are implemented as CLI components with 
XML-based crosscutting specifications that are composed with application components 
using a load-time weaver.  For reusability, aspect-component bindings are written in terms 
of attributes types, but for support of legacy components custom crosscutting is available 
in which bindings are specified in terms of CLI metadata.  Language-independence is 
available in either case, which we demonstrate by weaving aspect-based properties and 
components written in object-oriented, procedural and functional programming languages.  
In comparison to the CLR contexts for the CLI, aspect-based properties provide a richer 
join point model for better tailorability, the weaver allows them to avoid preplanning 
issues, and they execute an order of magnitude faster. 
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Chapter 1 Introduction 
 

 

“Get to the point.” 

–Attributed to Tim Walsh 

 

 

 

 

 

 

 

 

Component frameworks are said to support contextual composition when crosscutting 

functionality is bound to component instances by declarative selection of context 

properties, rather than through direct connections, such as method invocation, or derivation 

mechanisms, such as inheritance [Szy'02].  Using contextual composition, component 

framework services such as synchronization, security and transaction support are bound to 

component instances via method interception.  The term component instance [Szy'02] is 

not rigorous, and in practice a component instance can range from an interface of static 

functions to an object to a set of objects.  The commonality is that these elements form the 

basis of the API from which component functionality is accessed.  The mechanism for 

declarative selection can range from deployment descriptors, used with EJB Containers 

[DeM'03], to attribute-based annotations to source, used with CLR contexts that are 

available with the .NET Framework [Mic'04b] implementation of the Common Language 

Infrastructure (CLI) specification [Ecm'03b]. 

 

Contextual composition frameworks suffer from the lack of tailorability problem [Pic'03] 

as well as the preplanning problem [Tar'99, Cli'00].  Contextual composition is employed 

in a range of component frameworks including MTS contexts [Gra'97], EJB containers 

[DeM'03], COM+ contexts [Edd'99], CCM containers [OMG], and CLR contexts 

[Mic'04b].  Such component frameworks are sometimes referred to as container models 

[Pic'03, Coh'04].  The lack of tailorability problem, or tailorability problem, arises because 

the context properties available are either fixed or extensible in an ad hoc manner.  In 
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many cases, the functionality available as context properties is fixed as in the case of MTS 

context [Szy'02], COM+ contexts [Szy'02], CCM containers [Duc'02] and standard EJB 

containers [Szy'02].  Extensibility is available with CLR contexts [Shu'02, Szy'02] and 

non-standard extensions to EJB [jBo'01, Pic'03];  however, these programming models are 

idiom-based, and this makes them difficult to use [Pic'03].  The preplanning problem arises 

because accessing context properties constrains component architecture.  Binding to 

context properties involves exposing component functionality as instance methods and 

supplying significant prerequisite composition infrastructure.  For example, EJB [DeM'03] 

requires the specification of several interfaces to describe which instance methods will be 

exposed by a container, and CLR contexts place inheritance restrictions on types bound to 

context properties [Shu'02, Szy'02]. 

 

This thesis introduces aspect-based properties, which use AOP to avoid the restrictions of 

context properties, but avoid barriers to adoption by providing language-independence and 

simplifying reuse.  Aspect-based properties are implemented by aspects with pointcut-

advice semantics [Kic'01b, Kic'01a, Mas'03], which provide a well-structured 

programming model for writing custom properties [Coh'04] and are shown in this thesis 

not to interfere with component architecture.  Aspect-based properties avoid making 

component interoperability language dependent by adopting a language-independent AOP 

model [Laf'03], in which aspect-based properties and the components to which they are 

applied can be written in a variety of languages and freely intermixed.  Language-

independent AOP meets adoption criteria that requires AOP solutions not make existing 

component programming technologies [Coh'04] obsolete, and language-independent AOP 

is consistent with the language-independent nature of component-oriented programming 

[Szy'02].  Aspect-based properties address reusability by supporting attribute-based 

property selection [Shu'02, Szy'02].  We argue that the use of attribute types for property 

selection is consistent with the noninvasive properties of AOP by avoiding the need to 

modify component implementation, and we show that doing so allows reuse without the 

need to write new aspect code.  Avoiding the need to learn how to revise crosscutting 

semantics also meets adoptability criteria, because it allows the component programmer to 

access aspect-based properties with existing knowledge. 

 

The claims above are verified with an aspect weaver implemented for the CLI.  This 

weaver allows the language-independent properties of aspect-based properties to be 

verified, which involves showing that aspects and components can be developed in a 
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variety of languages and freely intermixed and showing that attribute-based property 

selection can be used regardless of component implementation language.  Attribute-based 

property selection demonstrates the ability to reuse aspects without having to modify their 

crosscutting specifications.  The weaver is also used to compare aspect-based properties 

with equivalent functionality written as context properties using CLR contexts, as CLR 

contexts are also implemented for the CLI.  In this comparison, we note that the pointcut-

advice mechanism offered by aspect-based properties provides better tailorability than 

CLR contexts, because the mechanism’s join point model offers a richer set of execution 

points at which it can influence application semantics.  Furthermore, the aspect weaver 

avoids the architecture restrictions that cause the preplanning problem associated with 

context properties.  Finally, the execution overhead of aspect-based properties is an order 

of magnitude lower than that of CLR contexts. 

 

In the remainder of this chapter, we focus on the contribution that aspect-based properties 

make to the area of composing software components and crosscutting concerns.  The 

following section starts with an examination of the problem of composing crosscutting 

functionality with software components, and then explains how context properties provide 

only a limited solution to the difficulties faced.  The next section outlines our strategy for 

improving on contextual composition.  Next, we describe how aspect-based properties 

provide a novel solution to these requirements.  Since this thesis limits its scope to 

introducing a new aspect-oriented programming technology and comparing it to contextual 

composition, we take another section to point out what falls outside the scope of our 

investigation.  Following this, we outline the evaluation criteria that must be met to justify 

the value of aspect-based properties.  We conclude this chapter with an overview of the 

remainder of the thesis. 

 

1.1 Crosscutting using Contextual Composition 

Typically, crosscutting functionality introduces tangling [Lop'97], which we can 

demonstrate to adversely affect the independent deployment and third-party composition 

characteristics of software components.  Contextual composition solves these problems by 

avoiding the need to bind crosscutting functionality with tangling.  However, the 

applicability of contextual composition is limited by the lack of tailorability problem and 

the preplanning problem.  In the following subsections, we expand on the difficulties in 
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implementing crosscutting concerns, the solution that contextual composition provides, 

and problems with this solution. 

 

1.1.1 The Problem with Crosscutting Concerns 

The problem with crosscutting concerns is that they conflict with the distributed nature of 

software component development and use.  Software components emphasise deployment 

and composition characteristics that allow components provided by one organisation to be 

combined with components of another by a third-party unrelated to either organisation 

[Szy'02].  Unfortunately, crosscutting concerns introduce tangling [Lop'97] in which the 

proper binding of two different functionalities requires that their implementations become 

interlaced.  As we will see in this section, tangling integrates a crosscutting concern with 

the implementation of affected components, and this introduces problems for third-party 

composition and independent deployment of components. 

 

By definition, software components emphasise an architecture that supports independent 

deployment and third-party composition of software components.  We draw our definition 

of software components from the area of component-oriented programming, which states 

that 

“A software component is a unit of composition with contractually specified 

interfaces and explicit context dependencies only.  A software component can be 

deployed independently and is subject to composition by third parties.” [Szy'02] 

Independent deployment implies that components will be distributed as separate self-

contained entities.  This requires that their interactions with other software components as 

well as their environment must be narrowly specified in terms of what the software 

component requires for proper functionality as well as what functionality that software 

component provides.  Third-party composition implies a lack of complete knowledge about 

the components involved in composition.  Specifically, “a third party is one that cannot be 

expected to have access to the construction details of all the components involved.” 

[Szy'02] 

 

Programming paradigms usually leave the encapsulation of crosscutting concerns 

unaddressed [Tar'99], and so the implementation of these concerns becomes tangled with 

other functionality in an application.  Crosscutting concerns correspond to functionality 

whose implementation crosscuts the units of encapsulation within an application.  
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Figure 1.1:  Example of tangling of synchronization functionality for data consistency in a C# class 

modeling rational numbers. 

In object-oriented programming, for instance, crosscutting concerns are “properties or 

areas of interest” [Elr'01] that normally defy object-oriented modelling [Boo'94], because 

their implementation does not align to class boundaries.  Thus, conceptually simple 

crosscutting concerns, such as tracing during debugging or synchronization for data 

consistency, lead to tangling in which code statements addressing a crosscutting concern 

become interlaced with those addressing other concerns within the application.  Indeed, the 

implementation of synchronization for data consistency provides a particularly good 

example of tangling due to the difficulty in encapsulating the implementation of data 

synchronization requirements [Mat'93, Ber'99].  A simple instance of this problem is 

shown in Figure 1.1, which contains a class Rational that models rational numbers.  

The class is written in C#, and it contains methods to calculate the addition of rational 

numbers and to convert a rational number to a string.  Within these methods, code 

operating on object data is interleaved with code for data consistency, which is highlighted 

in the figure.  Rational number manipulation is well encapsulated as the addition and string 

generation methods are limited to manipulating data within Rational object boundaries.  

In contrast, data consistency requirements are decided on an application-wide basis.  The 

data consistency requirements may have to be implemented for other classes in the 
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application besides class Rational in the same way, and so the implementation of data 

consistency is said to crosscut the classes of an application. 

 

With respect to third-party composition, the difficulty with tangling is that it introduces the 

need to modify the implementation of a component being composed.  Take the example of 

class Rational in Figure 1.1, where synchronization characteristics were inserted into 

the bodies of methods Add and ToString.  Such changes would require an application 

developer to have access to construction details in order to modify the component’s 

implementation.  However, such a requirement violates the notion of third-party 

composition in which the composer need not have access to component construction 

details to perform composition.   

 

With respect to independent deployment, the difficulty with tangling is that it forces 

components to be deployed as sets rather than independently.  At issue is the inability to 

distribute a tangled crosscutting concern independent of the components it affects.  Being 

partly a module [Szy'02], components should be separate units of compilation [Car'97, 

Fin'98], but tangled functionality cannot be separately compiled.  Thus, it is not possible to 

separate tangled functionalities along software component boundaries.  So, the 

implementation of a crosscutting concern is not contained in a single component, but rather 

in each of the components with which it is tangled.  Take the example of distributing data 

synchronization.  Using object-oriented composition mechanisms, data synchronization 

must be tangled with the components it affects [Mat'93, Ber'99].  The deployment of this 

crosscutting functionality then requires that the components containing its implementation 

be distributed together, because when the implementation of a crosscutting concern is 

broken up along component boundaries it is possible to introduce errors.  For instance, 

errors in data synchronization are introduced when subtypes of class Rational use their 

own implementation for synchronization.  Take the subtype BetterRational in Figure 

1.2.  Although both class Rational and class BetterRational use monitors, the 

supertype locks on object instances, while the subtype locks on a separate class-wide 

object.  Thus, the critical sections of Sub and Add are not mutually exclusive for instances 

of type BetterRational.  This would not be the case were the implementation of 

synchronization consistent in the two types.  Guaranteeing such consistency is a matter of 

using the same synchronization implementation, but doing so no longer allows 

BetterRational to be deployed independently of this implementation of Rational. 
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Figure 1.2:  Subtype of class Rational with incorrect synchronization.  Avoiding such errors 

prevents independent deployment of software components. 

1.1.2 Decoupling with Context Properties 

The use of context properties avoids deployment and third-party composition constraints 

that tangled crosscutting concerns place on components.  Context properties are 

crosscutting concerns implemented by a component framework and composed with 

component instances with a method interception mechanism.  In particular, contextual 

composition involves binding crosscutting functionality to component instances by 

declarative selection of context properties, rather than using direct connections, such as 

method invocation, or derivation mechanisms, such as inheritance [Szy'02].  For example, 

in container models [Pic'03, Coh'04] context properties correspond to container services 

bound by a deployment descriptor.  Previously, binding crosscutting concerns involved 

tangling crosscutting functionality with component implementation; however, the 

contextual composition avoids the need for tangling, which simplifies third-party 

composition.  In these cases, the crosscutting concerns would be distributed with the 

affected components.  However, having the component framework implement crosscutting 

concerns allows the crosscutting concerns to be addressed consistently across an 

application without the need for the application’s constituent components to come form the 

same organisation.  This simplifies independent deployment. 

 

Contextual composition uses message interception to compose crosscutting functionality 

with component instances.  In the case of EJB, “contextual composition works by placing a 

hull around instances and intercepting communication from and to that instance” [Szy'02], 

and a similar approach is taken in other implementations of contextual composition such as 

CLR contexts.  The interception mechanism is then used to bind object instances to 

services and resources such as synchronization and transactional properties.  For example, 

the synchronization characteristics required for objects of class Rational of Figure 1.1 
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and class BetterRational of Figure 1.2 can be addressed by a context property.  Upon 

interception of an Add, Sub, or ToString invocation, the context property should create a 

critical section by obtaining locks on object instance and method parameters before 

forwarding the invocation to the destination method.  After the method completes, the 

context property should release the locks.   

 

The declarative means by which context properties are bound to component instances 

varies according to the component framework implementing contextual composition.  The 

mechanism for declarative selection can range from deployment descriptors, used with EJB 

containers [DeM'03], to attribute-based property selection, used with CLR contexts 

[Mic'04b].  Deployment descriptors identify context property requirements of component 

instances separate from the component implementation.  For example, the context 

properties of an EJB are described in XML with tags that cross-reference types and type 

members implemented by a component with the context properties required.  In contrast, 

CLR contexts use attributes to make the association between type implementation and 

context properties.  Attributes [Ecm'03b], also called annotations [Blo'03], are a 

programming-language mechanism for associating additional information with the 

metadata descriptions of types and their members.  Types or type elements become 

associated with a context property when their implementation is annotated with an attribute 

corresponding to the context property.  This approach is sometimes referred to as attributed 

programming [Shu'02].  Whether context property selection is by deployment descriptor or 

by attribute, composing the component implementation to that of the context property is 

deferred until or after deployment.  For example, EJB components are composed with 

context properties at deployment time typically through code generation [Szy'02].  With 

CLI, context properties are composed at runtime when objects are instantiated [Szy'02].  

By deferring composition with the context property at least until deployment, a component 

can avoid explicitly addressing the corresponding crosscutting concerns in its 

implementation [Pic'03].  The Synchronization attribute highlighted in Figure 1.3 

provides an example of a context property available in the Microsoft .NET implementation 

of the CLI.  This attribute allows a class to define the synchronization characteristics of its 

objects.  The use of this attribute in Figure 1.3 limits the execution of class 

SampleSynchronized methods to one thread at any given time.  The figure also highlights 

the need to inherit from ContextBoundObject in order to use the context property, which 

we discuss in the next section.  
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Figure 1.3:  Use of Synchronization attribute available in CLR contexts [Mic'04b]. 

 

1.1.3 Limits to Contextual Composition 

Unfortunately, the use of contextual composition to address crosscutting concerns is 

limited by the lack of tailorability problem [Pic'03] as well as the preplanning problem  

[Tar'99, Cli'00].  Lack of tailorability is an issue, because of the great difficulty in creating 

context properties to suit the crosscutting functionality required by a component.  

Preplanning is an issue, because even the most recent contextual composition frameworks, 

such as EJB and CLR contexts, constrain component architecture to suit the contextual 

composition mechanism [Shu'02, Coh'04]. 

 

Although the preplanning problem originates with design patterns, the same difficulties are 

faced by components wishing to exploit contextual composition.  The preplanning problem 

was observed in the context of design patterns [Gam'94], where it was noted that although 

the use of patterns allowed for adaptability, they could only be applied if the need for such 

adaptation was identified during design.  We can extend the preplanning problem to 

contextual composition by observing that the use of context properties by a software 

component influences the class and object structure implemented by the component, which 

is also known as the component’s architecture [Boo'94].  The underlying difficulty is that 

contextual composition does not provide a sufficiently general mechanism for binding 

crosscutting functionality to component instances.  For instance, with CLI software 

components, the class exploiting CLR contexts faces strict inheritance requirements, and 

so class SampleSynchronized of Figure 1.3 was forced to inherit from class 

ContextBoundObject.  Likewise, EJB components must implement an interface 

appropriate to the bean type [Rom'02] along with extensions to the EJBHome and 

EJBObject interfaces to allow component instance functionality to be accessed from 

outside the container.  Also, the binding mechanism used in contextual composition 

constrains component architecture by forcing behaviour being crosscut to be directly 
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activated by messages passing between objects.  Thus, intra-object activities such as data 

access and recursive calls cannot be influenced.  In addition to constraining component 

architecture, these requirements prevent context properties from being used to address 

crosscutting concerns that are only spotted when the components of an application are 

assembled.  For instance, performance concerns sometimes appear when the final 

application is composed that can only be solved with result caching described as method 

memoization [Men'97]; however, by this time it is too late to change component 

architecture to allow composition with a memoization context property. 

 
Figure 1.4:  C# source for class Time component annotated with its thread safety requirements. 

The lack of tailorability problem [Pic'03] refers to the inability to extend the set of context 

properties available to suit the crosscutting functionality required by a component.  

Specifically, the set of context properties available with MTS, COM+, EJB, and CCM 

component frameworks is fixed [Szy'02, Pic'03].  Extensibility is available to a limited 

extent with CLR contexts [Shu'02, Szy'02], but in practice this programming model is ad 

hoc rather than structured.  Unlike other technologies for manipulating crosscutting 

concerns, such as aspect-oriented programming (AOP) [Elr'01], contextual composition 

mandates no structured operations for generating or manipulating a crosscutting view of an 

application.  Take for example the synchronization requirements for class Time in Figure 

1.4.  The class requires two synchronization policies depending on whether one or two 

objects of type Time are being manipulated.  Since the class is written in a CLI-based 

language C# [Ecm'03a] and the CLI supports extensible context properties, it is tempting to 
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implement these policies with a context property.  While the framework provides an 

implementation of a monitor to define critical regions, there are is no obvious mechanism 

for obtaining an object reference from within a context property’s implementation for the 

monitors to lock. 

 

1.2 Solution Domain 

Our interest is in overcoming the limits of contextual composition, while retaining its 

benefits.  Such work has been undertaken in the area of aspect-oriented programming 

(AOP), which recognises context properties as a form of aspect [Kim'02].  In particular, 

AspectJ2EE [Coh'04] has addressed the lack of tailorability problem with an AOP-based 

programming model for creating new container services for EJB.  An aspect [Kic'97] 

provides a unit of encapsulation that couples the behaviour of a crosscutting concern with a 

join point specification detail where in component code the behaviour is to be applied.  In 

the context of AOP, components [Kic'97] correspond to units of well-encapsulated 

behaviour, be they source code or binaries.  The aspects and components of an application 

are composed, or woven, to produce a single program.  This composition is specified in 

terms of aspect-oriented composition mechanisms [Elr'01].  The use of AOP for contextual 

composition is contingent on the ability to defer composition of components and aspects at 

least until deployment time [Pic'03].  This avoids problems with independent deployment 

that we observed in section 1.1.3 when the implementation of a crosscutting concern is 

composed with components before they are deployed. 

 

While AOP has been shown to be capable of tackling the lack of tailorability problem, 

AOP-based alternatives to contextual composition do not eliminate the preplanning 

requirements imposed, and the use of AOP introduces language dependencies and 

reusability problems.  Recall that AspectJ2EE [Coh'04] avoids lack of tailorability in the 

context of the EJB container model [Coh'04].  Despite the advances available with 

AspectJ2EE, only Java classes meeting EJB architectural constraints can access context 

properties.  Another difficulty is that AOP has traditionally been a programming language 

mechanism [Elr'01], and so its use implies the adoption of a particular language.  In 

contrast, the language-independent characteristics of components [Szy'02] suggest that 

component interoperability should not be language dependent.  As we will see in the next 

chapter, aspects also tend to be difficult to reuse, as reuse implies customizing the aspect’s 
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implementation.  The need to rewrite an aspect is problematic, as an alternative to context 

properties should not add new complexity to the selection of crosscutting functionality. 

 

1.3 Thesis Contribution 

This thesis proposes a solution to the problems identified with contextual composition and 

AOP in the form of aspect-based properties.  Aspect-based properties are an alternative to 

context properties in which crosscutting functionality is modelled with aspects 

implemented with a pointcut-advice mechanism.  The key characteristics of aspect-based 

properties are: 

• A pointcut-advice mechanism for defining aspects 

• Load-time weaving of aspects with components 

• Language-independence 

• Support for attribute-based property selection 

 

Each of these characteristics plays a role in allowing aspect-based properties to replace 

context properties.  The pointcut-advice (PA) mechanism allows new crosscutting 

functionality to be written that can be bound to a richer set of execution points than 

contextual composition offers, which allows aspect-based properties to address the 

tailorability problem.  While choosing the pointcut-advice mechanism is consistent with its 

success in implementing context properties in the past [Pic'03, Coh'04], the decision to use 

this mechanism is based on an analysis of aspect-oriented mechanisms presented in 

Chapter 2.  This analysis noted the PA mechanism to be easier to conceptualise, to offer 

finer grained crosscutting and to offer better performance.  The use of a load-time weaver 

to compose aspects with components removes the burden of providing support for 

composition from the software component.  Thus, the component inheritance and interface 

constraints imposed by contextual composition that cause the preplanning problem are 

avoided.  Furthermore, weaving at load-time allows composition of aspect-based properties 

and components to be deferred until after deployment for consistency with component-

oriented programming requirements.  Language-independence involves allowing aspects 

and components to be written in a variety of languages and freely intermixed, regardless of 

how aspect-based properties are selected.  Such characteristics allow aspect-based 

properties to retain the language-independent nature of component-oriented programming.  

Attribute-based property selection provides a declarative means of selecting aspect-based 
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properties.  Attribute-based property selection provides a simple means of aspect-based 

property reuse that avoids the need to revise the crosscutting specification of the aspect. 

 

This thesis makes secondary contributions specifically to AOP in the areas of language-

independence and the use of attributes.  Although AOP technology has been applied to the 

composition of software components [Coh'04], these technologies have not been 

demonstrably language-independent in the sense that components and aspects can be 

implemented in a variety of languages and freely intermixed [Laf'03].  With aspect-based 

properties we see the first example of an AOP technology that demonstrates language-

independence.  Also, this thesis addresses reusability with attribute-based property 

selection.  A reuse strategy should decouple aspect binding from aspect implementation so 

that components can be associated with aspects at deployment time [Pic'03].  Current 

strategies for reuse of aspects involve providing revised crosscutting specifications.  For 

instance, pointcut-advice mechanisms propose abstract pointcuts [Pic'03, Ras'03, Coh'04] 

even in systems that allow crosscutting in terms of attributes [Bon'04a].  This thesis 

addresses reuse with attributes by identifying how they can be used in a fashion consistent 

with the noninvasive nature of AOP.  Specifically, we argue that the use of attributes 

adheres to the noninvasive emphasis of AOP, as attributes do not actually modify the 

implementation of component types. 

 

1.4 Orthogonal Issues 

This thesis does not address the implementation of existing context properties with aspect-

based properties.  Work in [Coh'04] has demonstrated the ability for aspects with pointcut-

advice semantics to be used to implement EJB container properties, but in our presentation 

of aspect-based properties we have not attempted to implement a series of existing context 

properties for aspect-based properties. 

 

This thesis does not touch on aspect frameworks.  Work in [Ras'03] describes a framework 

for persistence consisting of several aspects.  The need to use multiple aspects to properly 

model crosscutting concerns such as persistence is not dealt with in our work on aspect-

based properties. 

 

Finally, we leave the issue of mediating the composition of different crosscutting concerns 

unaddressed.  Organising the application of multiple aspects, such that each does not 
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adversely affect the others, is an issue in contextual composition, referred to as the 

composability problem [Szy'02], as well as aspects [Kni'01a] to which aspect-based 

properties make no contribution. 

 

1.5 Evaluation Criteria 

The evaluation should determine if aspect-based properties are realistic to adopt for 

component-oriented programming.  Adoption is an issue of whether programmers can 

realistically migrate from context properties to a programming model involving aspect-

based properties.  Adoption requires that users not have to abandon existing programming 

techniques [Coh'04].  We understand this to mean that developers should not have to 

abandon the programming languages that they current use to implement components to 

take advantage of aspect-based properties, nor should the developer have to abandon 

existing components.  This is a matter of ensuring that aspect-based properties properly 

support language-independence, and that crosscutting specifications can, if necessary, be 

tailored to existing components.  Since AOP is a reasonably novel approach [Elr'01], we 

can expect that existing programmers do not have a strong knowledge of AOP 

mechanisms, and so a second facet of adoption is whether aspect-based properties can be 

used without the need to modify an aspect.  This is a matter of demonstrating the attribute-

based property selection of aspect-based properties is available in a manner consistent with 

language-independence. 

 

The second evaluation problem is to determine if aspect-based properties make tangible 

improvements on contextual composition.  The tangible benefits of aspect-based properties 

concern their ability to solve the preplanning and tailorability problems.  With respect to 

preplanning, we want to see that aspect-based properties place less design constraints on 

software components than context properties.  This comparison should involve a simple 

example, in which custom crosscutting functionality is written for a software component 

both as a context property and as an aspect-based property.  This comparison requires a 

component framework that provides a mechanism for writing new context properties such 

as CLR contexts do for the CLI.  With respect to tailorability, a minimal test is to illustrate 

that custom aspect-based properties can be written.  A more interesting test is to illustrate 

that custom aspect-based properties can address problems beyond the scope of context 

properties.  Since AOP originated in part to lower application execution times [Kic'97], we 

would like to see a custom aspect-based properties used in order to lower the execution 
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time of an application.  Also, we would like to see aspect-based properties not introduce 

any more execution overhead than context properties, and ideally for them to introduce 

less.   

 

1.6 Thesis Overview 

The remainder of this thesis provides a grounding in aspect-oriented technology and 

characterises aspect-based properties.  Chapter 2 reports on the state of the art in AOP 

starting with an introduction to important AOP terminology, which is followed with the 

taxonomy of the principle aspect-oriented mechanisms.  Finally, the implementation issues 

with software component weaving are summarised.  Chapter 3 presents aspect-based 

properties in the context of their programming model.  The programming model is first 

presented in terms of the developer roles involved with using aspect-based properties for 

application development and the products of these roles.  Next, the chapter focuses on the 

aspect model used to implement crosscutting functionality with aspect-based properties in 

which crosscutting specifications are written in XML and behaviour implemented with a 

component type.  Chapter 4 provides implementation details for a prototype weaver, called 

Weave.NET, that supports aspect-based properties for the CLI component platform.  This 

chapter provides details on why the CLI platform was targeted, how the XML schema for 

crosscutting specifications was devised, how the weaving APIs are implemented, and how 

they are integrated with the execution environment to provide load-time weaving.  Chapter 

5 evaluates aspect-based components based on the criteria described in section 1.5.  

Chapter 6 summarises the thesis and its contributions, and then it points out future avenues 

of research.  

 

1.7 Summary 

In this chapter we introduced contextual composition as a declarative means of binding 

crosscutting functionality with components.  Contextual composition suffers from the lack 

of tailorability problem in that the set of context properties is difficult if not impossible to 

extend.  The preplanning problem is another issue, and it refers to the inability to use 

context properties without influencing component architecture.  These issues can be solved 

with aspect-oriented programming (AOP).  However, aspect-based properties are required 

to overcome language dependency and reusability issues with AOP technology.  Aspect-

based properties are characterised by language-independent pointcut-advice semantics, 
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support for attribute-based property selection and a load-time weaving architecture.  

Evaluation criteria will concern the adoptability of aspect based properties and their ability 

to solve the lack of tailorability and preplanning problems. 
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Chapter 2 State of the Art 
 

 

“Originality is the fine art of remembering what you hear, but forgetting where you  

heard it” 

–Laurence Peter 

 

 

 

 

 

 

 

This chapter surveys the aspect technology used to address crosscutting concerns in 

software.  In our analysis, we find that among the canonical aspect-oriented mechanisms, it 

is the pointcut-advice mechanism that best addresses the tailorability and preplanning 

problems with contextual composition.  A pointcut-advice mechanism allows the aspect to 

directly influence execution with fine-grained aspects, and its use does not impose 

restrictions on the programming model for components.  Unfortunately, the reuse strategies 

for aspect-oriented mechanisms rely on being able to customise the aspect, whereas reuse 

of a context property leaves the property unchanged.  Also, interoperability is at the 

language level, leaving aspect users to define their component to suit the aspect-oriented 

language.  As for retaining the independent deployment characteristics of components, we 

find load-time weaving can address the need to keep crosscutting functionality separate 

until after deployment without the need to consider the implementation language of 

components or aspects. 

 

To provide an in-depth understanding of AOP, we describe the canonical AOP 

mechanisms in terms of their aspect model rather than simply looking at the operations 

these mechanisms make available for expressing aspects.  An aspect model describes the 

crosscutting semantics of an aspect technology in terms of its join point model, its means 

of identifying join points and its means of modifying application semantics at these join 

points [Kic'01a].  A join point model specifies the elements of an application to which an 

aspect can bind to or can influence.  Join points are manipulated as sets rather than 
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individually, and to create these sets there must be some means of identifying join points.  

Finally, manipulating the sets of join points requires a means of modifying application 

semantics on a set-wide basis.  In contrast, we view aspect-oriented mechanisms as the 

abstractions used to express an aspect.  Whereas mechanisms define operations with which 

an aspect is implemented, an aspect model provides details on the semantics of aspects and 

an insight into how the operations provided by the mechanism are to be used. 

 

We have identified five canonical aspect-oriented mechanisms, which are as follows: 

• The pointcut-advice (PA) mechanism exemplified by the work of the AspectJ Team 

[Asp'00] 

• Class composition exemplified by the work of the MDSOC Project [IBM'00a] 

• Object-graph traversal exemplified by the work of the Demeter Project [Lie'00] 

• Open class composition, which originated with mixins [Moo'86], but is exemplified 

by the inter-type declaration semantics of AspectJ 

• Composition Filters (CF) object model extensions available with tools such as 

ComposeJ [Car'01] 

The first four mechanisms were identified as aspect-oriented in work to develop a 

definition of what makes a modular crosscutting mechanism aspect-oriented [Mas'03].  The 

CF Model appears frequently as a prominent aspect-oriented mechanism in AOP 

community literature, such as  [Ber'01].  The CF mechanism is also of interest in that it 

provides a tailorability mechanism to similar context properties in that it relies on method 

interception and offers to avoid the preplanning problem with contextual composition. 

 

The rest of this chapter establishes the fundamentals of aspect technology, critiques the 

five canonical mechanisms, and examines implications of component composition for 

weave time.  In section 2.1, we clarify what is understood to be an aspect and an aspect 

model.  Also, the concept of obliviousness is examined along with it consequences for the 

reusability of aspects and the complexity of component maintenance.  Section 2.2 provides 

an overview of AOP mechanisms and current approaches to language-independence.  Each 

AOP mechanism is then discussed in-depth.  Background details summarise the 

technology’s origins and goals.  The mechanism is characterised in terms of the underlying 

aspect model, and where possible programming details are provided.  The mechanism is 

analysed for its usefulness in solving the problems of context properties, providing 

language-independence, and simplifying reuse.  In section 2.3, we examine what 
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requirements component composition places on aspect weavers and we characterise a 

common solution to these issues in the form of load-time weaving. 

 

2.1 Principles of Aspects 

In section 1.2, the aspect was presented as a unit of encapsulation motivated by the need to 

avoid software engineering problems surrounding tangling.  So far, we have mentioned 

five mechanisms with aspect-oriented characteristics.  What these technologies share is the 

ability to implement functionality that crosscuts an application in a well-encapsulated 

manner.  What differentiates these technologies is what elements of the application are 

crosscut and how crosscutting functionalities are implemented.  These details are given by 

the aspect model of a mechanism.  The aspect model describes the semantics underlying a 

mechanism.  With the model in mind, it is possible to exploit a particular AOP mechanism 

for writing aspects.  These aspects address tangling based on the component to which they 

are applied being oblivious to the application of the aspect.  Obliviousness separates 

implementation of the aspect and component by dictating that aspect-related artefacts 

should not be placed in the component implementation. 

 

In the following subsections, we go into detail on aspects.  First, we characterise aspects 

and point to the common characteristics of aspect-oriented technologies.  Next, we 

examine the concept of an aspect model in greater detail.  The constituent elements are 

discussed one by one with the aid of an example based on the PA aspect-oriented 

mechanism.  Finally, we look at the consequences of obliviousness for the specification of 

an aspect’s crosscutting semantics. 

 

2.1.1 Aspects 

At first glance the notion that aspects allow the encapsulation of crosscutting concerns may 

seem paradoxical.  Recall from section 1.2 that an aspect [Kic'97] provides a unit of 

encapsulation that couples the behaviour of a crosscutting concern with a join point 

specification that details where in component code the behaviour is to be applied.  It would 

appear contradictory that an aspect can encapsulate crosscutting concerns if crosscutting 

concerns by definition cannot be encapsulated.  This apparent contradiction is referred to in 

the literature as the aspectual paradox [Lie'99], and it is addressed by pointing out that 

there is a primary decomposition paradigm within a programming language and that it is 
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from the point of view of this primary decomposition paradigm that crosscutting concerns 

are observed.  For example, in OO systems data is encapsulated along object boundaries, 

and we tend to think of such systems in terms of their objects.  However, the data hiding 

properties of object boundaries would hinder the implementation of functionality such as 

persistence, which requires direct access to the data of multiple objects and multiple types 

of objects.  In solutions for persistence based on aspects [Soa'02, Ras'03], persistence is 

still a crosscutting concern, because persistence still crosscuts the data hiding boundaries 

of objects in the application.  Similarly, the aspectual paradox is resolved by considering 

that the mechanisms proposed by AOP allow the manipulation of arbitrary sets of program 

elements, such as data members of objects, and these program elements are normally 

encapsulated separately with other units of decomposition such as object boundaries in 

object-oriented programming.  From this view, AOP can be seen as breaking the “tyranny 

of the dominant decomposition” [Tar'99] paradigm of a particular programming language. 

 
Figure 2.1:  Tangled implementation of logging crosscutting behaviour. 

Aspects eliminate tangling by supporting modular crosscutting.  For our purposes, modular 

crosscutting describes the ability of an aspect to specify, in a well encapsulated fashion, its 

bindings to the final application.  This final application is generated when a weaver 

combines any number of programs together to create a single combined computation  

[Mas'03].  Take the example of Figure 2.1 in which logging calls are inlined with the 

implementation of a simple I/O program.  In contrast, Figure 2.2 separates logging calls 

from the I/O program by placing them in an aspect.  This requires the aspect include 

logging behaviour as well as specifications for its integration with the final application.  In 

Figure 2.2, these semantics are interpreted by the weaver, and they result in a program with 

behaviour identical to that of the tangled original.  In this case, crosscutting is modular 

because its specification is encapsulated with the aspect. 
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Figure 2.2:  Visualization of weaver 

2.1.2 Aspect Model 

The concept of an aspect model introduces a structured means of describing a particular 

aspect-oriented mechanism.  The defining elements of an aspect model correspond to the 

characteristics that allow an aspect-oriented mechanism to crosscut an application.  For 

these elements, we turn to an investigation into the commonality among recognised aspect-

oriented mechanisms discussed in [Mas'03].  This investigation “produces a clear three part 

characterization of what is required to support crosscutting structure: a common frame of 

reference that two (or more) programs can use to connect with each other and each provide 

their semantic contribution.” [Mas'03]  This statement can be confusing to readers, as the 

three parts that characterise the crosscutting nature of an aspect-oriented mechanism are 

not presented in enumerated form.  The first part of the characterization is the “common 

frame of reference”, which allows aspects to refer to elements of the final application, 

rather than other programs that are composed to create the final application.  In terms of an 
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aspect model, this common frame of reference corresponds to a join point model, which 

identifies the possible connection points that an aspect can potentially exploit to influence 

the final application.  Thus, the join point model corresponds to the “common frame of 

reference” referred to by an aspect in its crosscutting specification.  The second element of 

the characterisation is a description of how the aspect-oriented mechanism refers to 

program elements.  In terms of an aspect model, this second element is the means of 

identifying join points, which gives an aspect mechanism its ability to “connect” to the 

final application.  The third element is a description of what can be done by an aspect to 

program elements in the final application in order to make a “semantic contribution”.  In 

terms of an aspect model, this third element is the means of modifying join point semantics 

that an aspect-oriented mechanism provides. 

 

The following subsections elaborate on the function of each element of an aspect model.  

To make our description concrete, we map the functionality of a pointcut-advice (PA) 

mechanism to aspect model elements.  This analysis of a PA mechanism is cursory, and a 

more in-depth explanation is presented in section 2.2 when the canonical PA mechanism 

implemented by AspectJ is analysed. 

2.1.2.1 Join Point Model 

A crosscut can be thought of as an arbitrary collection of potentially unrelated program 

elements.  By unrelated, we mean that there is no existing grouping by which we can 

manipulate these program elements from a single point.  Take the example of a set of types 

in an object-oriented language supporting inheritance.  If the types in the set are all 

subtypes of a common class, adding fields or methods to all types in the set is a matter of 

making changes to the common super-type.  Using this single point of change is visualised 

on the left-hand side of Figure 2.3, where modifications to all types correspond to a change 

to one class.  For types not related by inheritance, the modification involves multiple points 

of change, which crosscut several class structures.  This scenario is visualised on the right-

hand side of Figure 2.3.  Our example of type modification involves the static structure of a 

program, but the execution flow of the program can be crosscut as well.  Consider applying 

logging to method invocations.  We presented this example in Figure 2.1 and again in 

Figure 2.2.  If logging is applied to invocations of a single method, it is possible to revise 

the method containing the invocations to include logging semantics.  If logging is to be 

applied to invocations in multiple methods contained in multiple types, the addition of 

logging will involve changes to methods throughout a program.  In the example of adding 
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type members as well as logging invocations, the crosscut is the set of program elements 

that are being manipulated, while the join points are the constituent elements of this set.  

While type structure and method behaviour were being modified in the examples 

 
Figure 2.3:  Visualization of crosscutting types. 

described, the program elements that are made available for manipulation vary according 

to the AOP mechanism being used. 

 

Even though aspects and the components to which they are applied were introduced as 

separate entities, aspects have the ability to crosscut join points that they implement and 

join points implemented by other aspects as well as those implemented by components.  

An important consequence of the three part characterisation of an aspect-oriented 

mechanism is that the set of join points manipulated by an aspect comes from the woven 

application, and not from a limited set of the programs being woven.  Thus, the join points 

available for manipulation by an aspect can include join points implemented by the aspect 

itself as well as join points implemented by other aspects.  In practice, self-referential 

crosscutting semantics may be limited in order to simplify weaver design. 

Table 2.1:  Categorization of dynamic join points. 

Join point category 
Execution 
Call 
Field access 

In the case of a PA mechanism, join points correspond to “well-defined points in the 

execution flow of the program” [Kic'01a].  These join points are referred to as dynamic 

join points in PA mechanism terminology [Kic'01a].  Dynamic join points fall into three 

categories: execution join points, call join points and field access join points [Asp'02, 

Laf'03].  This categorization is summarised in Table 2.1, but a clearer understanding can be 

gained from Figure 2.4 where example implementations of each join point kind are 

presented.  Execution join points roughly correspond to the execution of a block of code, 
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as opposed to a call or dispatch to that block. In the simplest case, the block may 

correspond to the body of a method.  However, finer distinctions exist when it comes to the 

execution of exception handlers and the sequence of constructor executions and data 

member initializations during object creation.  Call join points are present on the calling 

side of a method invocation or when the new operator is used for object construction.  The 

final category of join point is that of field access, which corresponds to a read or write 

access to a data member of an object or class. 

 
Figure 2.4:  Examples of join points for a pointcut-advice aspect-oriented mechanism (source in C#). 

2.1.2.2 Means of Identifying Join Points 

AOP mechanisms provide a means of identifying join points in order to create sets of join 

points that crosscut an application.  Tangling occurs when modifications to several join 

points are inlined with the implementation of these join points.  An aspect centralises 

changes to join points by specifying the changes once and applying them to a set of join 

points.  In order for this set to be created, the aspect must have a means of identifying join 

points.  Moreover, the means of selecting join points must allow arbitrary join points to be 

selected.  Arbitrary join point selection was demonstrated in the right-hand side of Figure 

2.3 in which classes unrelated by inheritance were selected for the same modifications. 

 

It is useful in the characterising the reusability of an aspect-oriented mechanism to 

distinguish name-based crosscutting from property-based crosscutting.  These terms 

originate from their use in the context of PA aspect mechanisms [Kic'01a].  In this context, 

name-based crosscutting involves identifying individual join points by complete 

implementation information for that join point.  In the case of a PA model, these include 

the containing type, identifying name and signature details of the join point.  In contrast, 
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property-based crosscutting refers to groups of join points by their commonality such as a 

shared containing type, some naming convention, or common parameter types in the case 

of methods.  We can generalise these categories to the whole of AOP by considering name-

based crosscutting to identify join points based on complete details of the join point’s 

implementation and property-based crosscutting to use properties that distinguish groups of 

related join points.   

 

The precise details used in distinguishing join points will vary according to the join point 

model of the aspect-oriented mechanism.  For a PA mechanism, a name-based crosscutting 

specification of the join points identified in Figure 2.4 would involve citing the join point 

type as well as declaration details of the join point’s implementation.  In the case of the call 

join point, this would involve identifying the join point of interest as being a call join point 

that invokes a method in type Terminal with the following declaration:  void 

WriteLine(String s).  Property-based crosscutting would take into account some other 

commonality.  While the field access and call join points in Figure 2.4 share no naming 

conventions, they could be grouped according to the type containing their implementation.  

For a second example, let us turn to the object graph traversal aspect-oriented mechanism 

offered by the Demeter tool.  In contrast to the PA mechanism offered by AspectJ, 

Demeter supports crosscutting of the object graph within an object-oriented application, 

and the join points are traversal to and visitation of objects in this object graph.  For this 

aspect-oriented mechanism, a form of name-based crosscutting would be to identify 

objects according to absolute paths between objects in the object graph, whereas property-

based crosscutting would locate objects in terms of relative details such as neighbour node 

type. 

2.1.2.3 Means of Modifying Join Point Semantics 

The third element of an aspect model, the means of modifying join point semantics, 

includes structural as well as behaviour modifications that an aspect exploits to influence 

the woven application.  In earlier work, the third element of an aspect model was described 

as the means of modifying join point behaviour [Laf'03].  This kind of modification is 

typical of a PA mechanism in which aspects influence join points in terms of advice.  

Broadly speaking, an advice statement associates a set of join points with aspect behaviour 

and specifies how to execute this behaviour relative to the execution of the join points.  

The behaviour is either executed before, after, or in place of the join point.  The later case 

is referred to as around advice, and around advice typically retains the capability to 
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activate the join point.  However, viewing aspects as only influencing behaviour does not 

allow an aspect model to characterise recognised aspect-oriented mechanisms such as 

mixins [Moo'86].  Crosscutting occurs when the same mixin’s behaviour is applied ‘as is’ 

to a number of classes in an application.  Normally, a mixin makes additive changes to a 

type.  Such changes do not modify existing execution join points, and so the changes made 

using mixins cannot be characterised purely in terms of modifying join point behaviour.  

By stating the third element of a join point model to be a means of modifying join point 

semantics, we can take into account purely structural changes such as those offered by 

mixins. 

 

2.1.3 Obliviousness 

Obliviousness hides details of crosscutting functionality from components being crosscut 

to simplify the task of programming these components.  Obliviousness [Fil'00] is a 

property of aspect-component composition.  Obliviousness is achieved when the 

component implementation shows no explicit evidence of the application of aspect 

behaviour.  In these circumstances, the developer of the component is oblivious to the 

application of an aspect.  Obliviousness allows for a separation of concerns between 

aspects and the components to which they are applied.  Separation of concerns as coined 

by Dijkstra [Dij'76] refers to compartmentalizing the different issues at play in a problem 

so that each can be solved separately and independently [Ber'99].  In this case, 

obliviousness brings about a separation between the crosscutting functionality being 

provided by an aspect and the implementation details of components to which the aspect is 

applied.  Thus, the component need not account for the crosscutting functionality in its 

implementation, nor need it provide hooks for binding crosscutting functionality to 

component behaviour.  For example, recall the two versions of component code from 

Figure 2.1 and Figure 2.2 in which logging properties were being added to a simple I/O 

program.  These two implementations of the I/O program are pictured in Figure 2.5.  The 

top version is taken from Figure 2.1, and it includes logging calls tangled with I/O 

instructions.  The bottom version is taken from Figure 2.2, where logging was added to the 

component using a weaver and an aspect.  With the crosscutting functionality removed, the 

compiled component’s code size drops by about half.  From a software engineering 

perspective, this should be an indication that the component is addressing a simpler 

problem, which should make it easier to design and implement. 
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The advantages of obliviousness have led to a focus on noninvasive composition in AOP.  

At its extreme, obliviousness implies that aspects will leave no artefacts at the join points 

they affect.  When using the term artefact, we mean any sort of manual modification 

required to allow the component to accommodate an aspect.  To meet this requirement, the 

aspect-oriented mechanism being used must allow noninvasive adaptability.  “By non-

invasive adaptability, we mean the ability to adapt a component or an aspect without 

manually modifying it.” [Cza'00]  For example, the component described in the bottom of 

Figure 2.5 provides no indication of where the logging methods are going to appear in the 

woven version.  Note that this concept of noninvasive composition was originally 

introduced when AOP was viewed as a compile time activity, where source code of both 

aspect and component was available.  In the context of software components, it is the 

software components and not their source code that is being composed.  In this case, 

invasiveness concerns the artefacts that the aspect leaves in a software component’s source 

code. 

 
Figure 2.5:  Components oblivious (bottom) and aware (top) of crosscutting written in C# and 

annotated with compiled code sizes for the Main method. 

Unfortunately, noninvasive adaptation of components with aspects makes it harder to write 

and reuse aspects.  According to an evaluation of AOP [Mur'99], AOP is much simpler if 
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aspect code has a well-defined effect on particular points of code, which suggests a 

development goal is to make the crosscuts as specific as possible.  To do so with 

noninvasive adaptation requires that the aspect’s crosscutting specifications be tailored to 

the component to which the aspect is being applied.  In the case that an aspect is being 

reused, this involves updating the sets of join points that the aspect manipulates to reflect 

the new component.  For example, if the logging aspect of Figure 2.2 were revised to be 

applied to the code in Figure 2.6, the crosscutting semantics would have to be restated.  

The ReadInt and ReadBool calls print questions to the console, so we would want to log 

their invocation parameters before the calls, and record the values returned by the user by 

logging the call results.  Using name-based crosscutting, each join point that is 

manipulated by an aspect must be cited specifically.  In the case of Figure 2.6, two join 

points are cited and so name-based crosscutting is manageable.  However, when larger 

applications are crosscut, the number of citations can be difficult to manage.  Moreover, 

the aspect cannot be reapplied to a different application, as it cites specific details of the 

current one.  Property-based crosscutting can substantially reduce the number of terms 

required to identify the join points affected by an aspect by citing the commonality that 

join points share rather than citing join points individually.  In the case of Figure 2.6, we 

could apply logging to all calls to methods in the Terminal class.  However, with 

property-based crosscutting it is easy to inadvertently select or forget to select join points, 

because the join points being selected are not apparent from the application source either to 

the component or aspect programmer.  The internals of the tcdIO library [Cah'02]1 were 

alluded to in Figure 2.4, and they are repeated in Figure 2.7 where we see that the class 

makes internal calls to I/O functions.  Property-based crosscutting that selects all calls to a 

method in class Terminal will log these internal calls which are not of interest.  Thus, 

with property-based crosscutting we trade the verboseness of name-based crosscutting for 

an error prone mechanism.  Moreover, property-based crosscutting with obliviousness in 

mind still has limited reuse.  Property-based crosscuts are still coupled to the component 

implementation, and so reuse requires that component programmer and aspect writer 

coordinate to guarantee that components implements types with the commonalities 

identified by the property-based crosscuts.  However, the implementation of types with 

such commonalities in mind violates strict obliviousness. 

                                                 
1 The I/O tcdIO library was implemented for the CLI platform for teaching purposes as described in [Cah'02] Cahill, V. 

and Lafferty, D. Learning to Program the Object-Oriented Way with C#. Springer-Verlag UK, London, 2002. and is 

available for download from http://csharp.dsg.cs.tcd.ie 
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using System;  
using tcdIO; 
 
public class Client { 
  public static void Main() { 
    Terminal form1 = new Terminal(); 
    string query = "What is your age? "; 
    int age = form1.ReadInt(query); 
 
    query = "Is " + age + "old?"; 
    string name = form1.ReadBool(query); 
  } 
} 

Figure 2.6:  New I/O program requiring revised crosscutting semantics to log console access. 

In the case of components being maintained, noninvasive adaptation makes code difficult 

to reason about as well as to refactor.  When reasoning about components, the difficulty is 

that it is not possible to determine from component source whether or not additional or 

modifying functionality is being provided by aspects.  Thus, the observation that a more 

explicit mechanism for alerting users to an aspect’s presence would ease maintenance 

[Lip'99].  Referring to Figure 2.6, it is impossible to know that the code is being influenced 

by a logging aspect from component source alone.  Logging does not influence component 

behaviour significantly, so may be possible to reason about the component in this example 

without the knowledge of aspects being applied.  Where the aspect implements security or 

synchronization constraints, its influence on component behaviour must be considered.  In 

these cases, noninvasiveness may lead to a misinterpretation of component semantics.  In 

terms of refactoring, noninvasive adaptations tend to break when the implementation of the 

component is modified [Tou'03].  Essentially, noninvasive crosscutting specifications 

make assumptions about the structure of the application when join points are identified.  

For instance, name-based crosscuts mirror join point implementations by including details 

such as the containing type in the case of method calls or executions, or the destination 

method name in the case of messages being passed to an object.  Refactoring revises the 

application structure, which breaks these assumptions. 

 
Figure 2.7:  Details of class Terminal implementation. 
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In contrast, context properties specified in terms of attributes are simpler to use and their 

presence provides feedback on refactored code.  With attributes, fewer clerical issues exist 

in that it is clear from the placement of an attribute which point of code a context property 

influences.  When reasoning about a component, the attribute provides an explicit 

indication of the presence of context properties.  Moreover, it is possible to infer the 

property being applied from the name of the attribute.  Based on the appearance of an 

attribute, we can determine if refactored code is consistent with the original version.  For 

instance, the disappearance of an attribute from refactored code would alert the developer 

to a missing context property.  

 

2.2 Canonical Aspect-Oriented Mechanisms 

Although a number of AOP technologies exist, they draw their aspect-oriented 

characteristics from exploiting one or more of the five canonical aspect-oriented 

mechanisms.  In support of so called hybrid approaches [Ras'01], in which a variety of 

aspect-oriented mechanisms are available, we should point out that they have been noted to 

improve separation of concerns.  Indeed, prominent AOP tools such as AspectJ have been 

described as using multiple aspect-oriented mechanism [Mas'03].  However, we focus our 

discussion on the five key aspect-oriented mechanisms knowing that an understanding of 

these mechanisms will allow any AOP tool to be understood.  To reiterate the introduction, 

these canonical mechanisms along with their archetype implementations are as follows: 

• The pointcut-advice mechanism exemplified by the work of the AspectJ Team 

[Asp'00] 

• Class composition exemplified by the work of the MDSOC project [IBM'00a] 

• Object-graph traversal exemplified by the work of the Demeter Project [Lie'00] 

• Open class composition, which originated with mixins [Moo'86], but is exemplified 

by the inter-type declaration semantics of AspectJ 

• Composition Filters (CF) object model extensions available with tools such as 

ComposeJ [Car'01] 

 

We can summarise each mechanism with an overview of how the mechanism allows an 

application to be crosscut.  A pointcut-advice mechanism crosscuts the execution flow of 

an application.  Method calls, method execution and field access can be selected and their 

semantics modified by specifying the execution of advice relative to selected join points.  

Class composition allows an application to be partitioned into declaratively complete 
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subsystems that crosscut the types and type hierarchies of an application.  Being 

declaratively complete, each subsystem will compile independently, which allows its 

development to go on independently from other subsystems.  Open class composition 

allows type members and interface implementations to be added to a selection of existing 

classes without changing the source code of these classes.  Specifically, the inheritance 

declarations used to define these classes are unchanged.  Object-graph traversal 

mechanisms allow the succinct description of traversals that crosscut the object graph of an 

application.  This avoids the need to embed traversal infrastructure in object graph 

elements, and it makes traversals flexible to changes in the object graph.  A Composition 

Filters model provides crosscutting views of the messages passed between objects in an 

application.  Although the CF model and context properties share a focus on message 

interception, the CF model provides a programming model with specialised syntax for 

defining filters that perform message manipulation.  In contrast, context properties offer no 

new syntax and only a reflection API for examining messages. 

 

The aspect-oriented mechanisms are supported as extensions to a variety of programming 

languages, but with these extensions the focus is on porting the aspect model to a 

programming language.  Moreover, a strategy for language-independence as defined in 

literature [Laf'03] does not exist for every aspect-oriented mechanism.  In the initial 

approaches to multilingual support, aspect-oriented extensions were developed on a 

language by language basis.  For example, separate projects were undertaken to develop 

PA semantics for C++ (AspectC++ [Spi'04]), C (AspectC [Coa'01]), and Ruby (AspectR 

[Bry'02]).  Likewise, the Demeter Project developed object traversal implementations for 

C++ [Lie'96] and then later for Java [Orl'04].  More recent work has examined a simplified 

means of multilingual support [Gra'04].  Rather than re-implementing a weaving engine, 

this approach allows the same weaver to be ported to different compilation tools by 

mapping weaving to language transformation systems, which are already available or 

easily implemented for the target language.  Providing a plethora of extensions and a 

general porting mechanism does not address the language-independence problem which is 

to allow aspects and components developed in a variety of languages to be freely 

intermixed.  However, strategies for language-independence have been proposed for both 

the PA model [Lam'02, Sch'02, Laf'03], and the CF model [Gar'03, Ber'04b], which are 

identified during our analysis of each technique. 
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In the following subsections we characterise the canonical aspect-oriented mechanisms.  

To put each mechanism in context, we summarise its historical background.  The 

mechanism is introduced, and then its semantics are explained in terms of an aspect model.  

The specification of crosscutting is characterised in terms of whether the mechanism uses 

an approach closer to name-based or property-based crosscutting, and how this allows the 

mechanism to support obliviousness.  The mechanism for reuse is identified along with 

strategies for language-independence.  Finally, we summarise whether the mechanism is 

suitable for a replacement to aspect-based properties in terms of its ability to solve 

preplanning and tailorability problems with context properties and to provide a simple 

means of aspect reuse and language-independence. 

 

2.2.1 Pointcut-Advice Model 

2.2.1.1 Background 

Pointcut-advice (PA) mechanisms originated with an effort to provide a generic aspect 

writing mechanism for ‘D’.  ‘D’ was a language framework [Lop'97] that provided two 

aspect-specific languages for writing the synchronization and remote communications 

characteristics of distribute applications.  Here, aspect-specific languages correspond to 

domain-specific languages in which the domain functionality is a crosscutting concern.  In 

addition, ‘D’ included a PA mechanism, called JCore, to provide a general means for 

writing crosscutting functionality.  Eventually, the aspect-specific languages were phased 

out in favour of a focus on PA mechanisms, and the tool renamed AspectJ [Kic'01b].  

AspectJ now defines the de facto standard to which implementations of a PA mechanism 

are compared as occurs in [Mas'03]. 

2.2.1.2 Overview 

AspectJ provides language extensions to Java that allow the definition of aspect types 

[Kic'01b].  What distinguishes an aspect type in AspectJ from a regular Java class is the 

presence of pointcut specifications that identify sets of join points and advice specifications 

that influence the behaviour of join points in these sets.  Pointcuts are specified in terms of 

primitive pointcut designators that are combined using Boolean logic.  A variety of 

primitive pointcut designators are available for selecting “well-defined points in the 

execution flow of the program” [Kic'01a], referred to as dynamic join points in AspectJ 

terminology [Asp'02].  The specification of advice involves defining a method body and 

coupling its execution to the execution of join points in a pointcut.  Advice can access the 
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execution context of a join point through two means.  A reflective API is available, but a 

more efficient approach is to bind join point execution parameters to typed formal 

parameters, which are accessible within the method body defined by advice. 

2.2.1.3 Join Point Model 

This section describes the join point model available with AspectJ V1.0.6 [Asp'02].  The 

AspectJ join point model [Asp'02] includes three categories of join point each consisting of 

several join point types, and these are summarised in Table 2.2.  The categories correspond 

to method execution, client-side calls, and field accesses.  The different join point types 

within the execution join point categories allow fine-grained distinctions between regular 

method execution and the execution of code bodies during class initialization, object 

initialization and exception handling.  The fine-grained execution join point types are 

identified in Java code shown in Figure 2.8.  The join points occur when the new operator 

is used to create a new object instance of class Foo.  The first step to instantiating the 

object is to load the class.  When a class is first loaded into the runtime environment, the 

static initializer executes.  This static initializer corresponds to the execution of static 

assignments as well as class-static blocks of code, which are sometimes referred to as class 

constructors.  This block of code is labelled with a ‘1’ in the diagram.  Next, an instance of 

Foo is created, and the initializer executes.  Initializer execution corresponds to instance 

member assignments outside a method body.  These are labelled in diagram as ‘2’.  All 

these assignments are executed at the time of object construction, but their source code 

definition lies outside the body of the constructor.  Constructor execution corresponds to 

the execution of the body of a single constructor method, but it does not include calls made 

to a super class constructor or another constructor of the same class.  In Figure 2.8, the new 

operation invoked is new Foo(1, 2), and so two constructor executions are required to 

initialise the object.  These are labelled 3a and 3b.  Object initialization encompasses the 

execution of all constructors and initializer code that occurs during object instantiation.  In 

Figure 2.8 object initialization is the code identified by the label ‘4’.  The code labelled ‘4’ 

implicitly includes the initializer, as initializer code is embedded into the body of a 

constructor that calls a base class constructor.  In contrast, object pre-initialization, 

corresponds to direct calls to constructors from the body of the first constructor called 

during object initialization.  Such calls correspond to the use of this() and super() at the 

beginning of constructors.  In Figure 2.8, we identify the start of this join point as the 

initial call to this() and the end as the return from super().  Although not involved in 

object creation, an example of a handler execution join point is identified in Figure 2.8  and 
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labelled ‘6’.  Handler execution join points correspond to blocks of code in the catch and 

finally blocks found in method bodies. 

Table 2.2:  Join point types distinguished in the AspectJ Pointcut-Advice aspect model. 

Join point category Join point types 
Execution Method execution 

Initializer execution 
Constructor execution 
Static initializer execution 
Handler execution 
Object initialization 

Call Method call 
Constructor call 
Object pre-initialization 

Field access Field reference 
Field assignment 

 
Figure 2.8:  Java source code samples for select join point types presented in Table 2.2. 

2.2.1.4 Means of Identifying Join Points 

Of the three categories of the primitive pointcut designator that exist for the PA 

mechanism, Table 2.3 presents those that identify join points in terms of metadata 

descriptions.  These designators identify join points according to the join point’s 

implementation or the location of this implementation.  To select a join point by 
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implementation, a developer should pick a primitive pointcut designator corresponding to 

the join point type, and then provide as an argument the metadata description of the desired 

join point’s implementation.  Selecting join points by implementation location corresponds 

to the use of within and withincode designators.  These select all join points, regardless 

of join point type, within a type or within a method’s body, depending on which designator 

is used. 
Table 2.3:  Designators specified with a signature or type pattern. 

Designator Joint points selected 

call(Signature) Method and constructor calls. 

execution(Signature) Method and constructor execution. 

initialization(Signature) Object initializer execution. 

get(Signature) Field reference. 

set(Signature) Field assignment. 

Handler(TypePattern) Exception handler execution. 

staticinitialization( 
        TypePattern) 

Static initializer execution. 

within(TypePattern) All join points defined by the selected type. 

Withincode(Signature) All join points defined within method or 
constructor matching declarations 

 

 
Figure 2.9:  Example of logical combination of primitive pointcut designators from Table 2.3. 
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Table 2.4:  Designators that can expose execution context with typed formal parameters. 

Designator Joint points selected 

this(TypePattern or Id) Join points in which the object bound to this is 
an instance of a particular type. 

target(TypePattern or Id) 
Join points in which the object on which a call or 
field operation is applied to is an instance of a 
particular type. 

args(TypePattern or Id,  ...) Join points where there are arguments whose types 
match those listed by the designator. 

Sets of join points can be refined by combining primitive pointcut designators.  

Intersections of join point sets correspond to the use of the logical and, while unions 

correspond to the use of the logical or.  Sets can be negated and evaluation order managed.  

In the case of AspectJ, the syntax of logical and and logical or are ‘&&’ and ‘||’, while 

logical not is symbolised with a leading ‘!’.  Round brackets are used to manage 

evaluation order.  Figure 2.9 provides a simple example in which pointcuts are used to 

select join points from the Foo class that appeared in Figure 2.8.  In the top pointcut, all 

field accesses to Foo.b are selected in which the value of Foo.b is set.  This corresponds to 

the use of the primitive pointcut designator set.  In the bottom pointcut, the withincode 

primitive pointcut designator is combined with the previous pointcut using ‘&&’ to narrow 

the set of join points selected to those that appear in the Bar method. 

 
Figure 2.10:  Sample use of typed formal parameter in a pointcut. 

Access to join point execution context can be obtained through typed formal parameters or 

a reflective API.  Typed formal parameters [Asp'02] are variables declared in a pointcut 

and bound to join point execution context using  the primitive pointcut designators shown 

in Table 2.4.  These primitive pointcut designators match join points depending on the type 

of parameters in the join point execution context.  this matches the type of the object 

executing the join point.  target matches the type of the object used to reference the join 
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point’s implementation, and args matches the join point execution parameters.  The 

parameters of these primitive pointcut designators are types.  These types can be specified 

explicitly by using the type name.  Alternatively, type can be specified implicitly by 

providing the name of a typed formal parameter whose declared type is then used as the 

parameter.  In this case, the typed formal parameter is assigned a reference to the 

parameter it matches.  As we will see, this typed formal parameter can then be used by 

advice that executes at the join point.  Different implementations of the PA model make 

available a reflective API from which join point execution context can also be obtained.  

However, the need to set up the reflective description of a join point introduces significant 

execution time overhead, and so typed formal parameters are preferable.  Figure 2.10 

provides an example use of the typed formal parameters.  This example revises the bottom 

pointcut of Figure 2.9 to include a typed formal parameter that is bound to the new value 

that will be assigned to the b variable in the Bar method.  The diagram shows how the 

value referenced by bValue varies depending on the join point executing. 

Table 2.5:  Designators specified with a pointcut. 

Designator Joint points selected 

cflow(pointcut) All join points encountered during the execution of 
join points identified by the pointcut. 

Cflowbelow(pointcut) Identical to cflow, but does not include the join 
points identified by the pointcut argument. 

The designators of Table 2.5 allow the selection of join points to take into account 

execution flow.  Selecting join points based solely on a metadata description of their 

implementation is unsuitable when code is re-entrant.  Take the example of recursion in 

functional programming, in which methods use recursion instead of loops.  The recursive 

invocations are called with intermediate parameters and return intermediate results, and so 

they may not be of as much interest as the initial method invocation and its result.  For 

example, in Figure 2.11 class Math implements the Factorial function using recursion.  

The invocation Factorial(3) in the main method causes a series of recursive calls.  The 

initial call is shown at the bottom of the diagram and labelled #1, whilst subsequent 

recursive calls are labelled #2, #3, and #4.  The recursive calls are said to be in the 

execution flow of Factorial(3), as these method executions are required in order for the 

execution of Factorial(3) to complete.  The cflow and cflowbelow primitive pointcut 

designators allow pointcuts to take into account execution flow.  cflow broadens a pointcut 

specification by adding all join points that appear in the execution flow of join points in the 

pointcut.  In contrast, cflowbelow selects join points that appear in the execution flow of 

join points of another pointcut.  For example, in Figure 2.11 the pointcut execution(int 
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Math.Factorial(int)) selects each of the method executions that result from a call to 

Factorial.  For the call Factorial(3) in Figure 2.11, four execution join points match, 

but only the first invocation will return the final result.  To capture only this join point, 

cflowbelow can be used to remove the intermediate method executions from our pointcut.  

cflowbelow(execution(int Math.Factorial(int))) selects the unwanted join points, 

which are then removed from the set of selected join points using the logical operations 

pictured in Figure 2.11.  

 
Figure 2.11:  Example of execution flow-based join point selection with cflow. 

PA models support both name-based crosscutting and property-based crosscutting by 

varying the signatures and type pattern arguments used to parameterise primitive pointcut 

designators.  Name-based crosscutting corresponds to the literal expression of signatures 

and type patterns.  With name-based crosscutting, the signatures and type patterns used in a 

pointcut must match the implementation of the targeted join points exactly.  This name-

based crosscutting supports obliviousness as the specification of join points is noninvasive.  

So long as the declarations in the component being crosscut are implemented to match 

existing name-based crosscutting, the component developer can be unaware of the 

application of an aspect.  In property-based crosscutting, the signatures and type patterns 

used in a pointcut are only partially specified.  This is achieved by allowing declarations to 
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be written in terms of regular expressions.  For example, rather than writing a method 

name explicitly, the regular expression “Write*” is used to select method names with the 

prefix “Write”.   More recently, attributes have been explored as a means of property-

based crosscutting [Mas'03] in tools such as AspectWerkz [Bon'04b].  In this alternative 

form of property-based crosscutting, an attribute can be specified instead of a partial 

signature or type name.  Type or type member declarations sporting the specified attribute 

are selected according to whether the primitive pointcut designator is expecting a type 

pattern or type member signature.  In the case that property-based crosscutting uses 

signatures, obliviousness can be achieved.  However, the use of attributes leaves artefacts 

in the component corresponding to the aspect and nothing else.  Being invasive, the use of 

attributes does not strictly adhere to obliviousness. 

2.2.1.5 Means of Modifying Join Point Semantics 

Advice is a specification for behaviour executed relative to join points in a pointcut.  A 

sample advice declaration written in AspectJ syntax appears in Figure 2.12.  This advice 

declaration first specifies its kind.  Kind indicates when advice behaviour is executed 

relative to affected join points.  In the case of Figure 2.12, advice will be executed around 

existing join points, which is to say that advice behaviour is executed instead of the join  

 
Figure 2.12:  Example advice declaration. 

point and that the join point can then be called from within the advice behaviour.  As 

mentioned earlier, a PA model makes available before and after advice.  Before advice 

executes before the join point, while after advice executes afterwards.  Since a join point 

can either complete normally or throw an exception, there are three types of after advice.  

After returning advice executes when a join point executes normally, while after throwing 

advice executes when a join point throws an exception.  Finally, after advice executes in 
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both cases.  Figure 2.12 also points out the use of pointcuts in advice.  A pointcut is used to 

select the set of join points whose semantics will be modified.  In this example, the 

pointcut is selected by citing the name of an existing pointcut declaration.  Finally, advice 

must specify the behaviour that is executed relative to join points.  In the AspectJ 

implementation, the behaviour executed is specified in the code block that follows the 

advice declaration.  An example of such a block is shown in Figure 2.13, which highlights 

the two means by which advice accesses join point state.  The figure provides examples of  

 
Figure 2.13:  Example specification around advice written in AspectJ. 

join point state being accessed through typed formal parameters declared in the pointcut as 

well as through a reflective API.  In the case of AspectJ, typed formal parameters are 

bound to variables in the scope of the advice behaviour code block.  So, the bValue typed 

formal parameter declared in the myPointcut pointcut of Figure 2.12 is bound to the 

newValue variable in Figure 2.13.  newValue then has access to the value being assigned 

by join points in the myPointcut pointcut.  The alternative to typed formal parameters is to 

use a reflective API to introspect on join point state.  For example, AspectJ makes 

available keywords such as thisJoinPoint that give access to reflective objects 

describing the join point at which advice behaviour is executing.  

2.2.1.6 Analysis 

A PA mechanism does not have the preplanning and tailorability problems of contextual 

composition, nor does it preclude attribute-based property selection or language-

independence.  The aspects available with a PA mechanism are well suited to solving the 

tailorability problem with context properties.  PA mechanisms are consistent with 
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contextual composition in that both allow the execution flow of a program to be 

influenced.  Also, there are examples of common context properties such as persistence 

[Soa'02, Ras'03] being addressed with PA mechanisms.  While the preferred strategy for 

reusing properties implemented with these aspects is the use of abstract aspects [Pic'03, 

Ras'03], even where attribute-based property-based crosscutting is supported [Bon'04a].  

Abstract aspects define advice and leave the pointcut partly unspecified, and reuse involves 

implementing the pointcuts, and thus aspect modification.  This approach is unsatisfactory, 

because the crosscutting semantics of the aspect are being revised.  We can see an 

alternative consistent with contextual composition in which attributes are used for 

property-based crosscutting.  This alternative involves using attributes in place of type, 

method signatures and field signatures in pointcut specifications.  While such an approach 

offers the same attribute-based property selection offered by context properties, there is no 

programming model for separately expressing aspect bindings and aspect crosscutting 

semantics written with attributes.  Finally, introducing PA mechanisms need not place any 

restrictions on OO programming languages [Kic'01b], and we see no evidence of 

restrictions being imposed on other languages types; however, the interoperability of 

aspects and components written in a variety of languages not addressed by the 

programming model. 

  

2.2.2 Class Composition in MDSOC 

2.2.2.1 Background 

Multi-dimensional separation of concerns (MDSOC) [IBM'00a, Oss'01c] is a software 

evolution technology that applies class composition to the separation of concerns in a 

software application.  MDSOC provides the means to partition an application according to 

a particular dimension of concern.  A concern [Oss'01b] is an arbitrary engineering issue 

such as software features.  The partitions are referred to as hyperslices, and class 

composition is used to facilitate the development of software in terms of hyperslices. A  

hyperslice [Tar'99] is a declaratively complete set of partial types that corresponds to a 

concern.  The hyperslice is declaratively complete in that it will independently compile 

allowing independent development.  The set of types is partial in that compilation is 

dependent on units, such as types or type members that are declared in the hyperslice, but 

may not all be defined within that hyperslice.  Class composition is called upon to combine 

hyperslices so that all declared units have a concrete definition, and so that there are no 

conflicts when different hyperslices inadvertently define units with the same name. 
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2.2.2.2 Overview 

The class composition mechanism used in MDSOC originated with research on subject-

oriented programming (SOP) [Har'93, Mat'96, IBM'00b].  SOP aimed to provide a means 

whereby the direct specification of object classes could be avoided.  Instead, classes 

emerge from the different roles that their objects play in subsystems of an application.  

SOP research points out that the intrinsic properties of an object that are of interest to an 

application are those exploited during object interactions, and so these interactions should 

be the basis of an object’s definition.  Interestingly, the definitions of the various intrinsic 

properties of an object may be at odds depending on the context in which an object is used.  

Thus, “the essential characteristic of subject-oriented programming is that different 

subjects can separately define and operate upon shared objects, without any subject 

needing to know the details associated with those objects by other subjects.” [Har'93]   To 

achieve partitioning, classes defining objects are themselves composed from a set of partial 

types for which there is one for each subsystem in which a class object plays a role.  Such 

subsystems were referred to as subjects [Har'93].  In SOP, the implementation of a subject 

consists of several partial types classes that collaborate to achieve a particular 

functionality.  Thus, subjects correspond to hyperslices in MDSOC [Tar'99].  An 

application is built from the composition of several subjects, and objects of the application 

are instantiated from classes that compose the object’s functionality in each of the subjects 

in which it plays a role [Oss'94]. 

 

An example for motivating class composition in subject-oriented programming is the task 

of modelling a tree in software, where the tree has quite different properties depending on 

the context, or subject, in which it is used [Har'93].  If the subject were forest ecology, 

important characteristics of a tree would be the water consumption, the kind of habitat the 

tree provides and the age of the tree, while important operations might be 

shedding/growing leaves, growing higher, or growing fruit.  If the same tree were 

considered for the subject of logging, somewhat different properties and behaviour would 

be of interest.  For instance, the tree’s wood type, height, diameter and value would be key 

characteristics, while important operations would be to it cut down and remove branches.  

Analogously, an application can consist of multiple subjects, each of which describes the 

interaction of overlapping sets of objects. 

 

To allow applications to be developed in terms of subjects, subject-oriented composition 

provides two general categories of composition rules to allow subjects to be merged with 
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minimal restrictions on their implementation.  Correspondence rules [Oss'95] identify 

methods, fields and class names from different subjects that refer to the same entity.  This 

allows a class to be developed in different subjects without the need to decide upon a 

common name across all subjects.  The implication is that subjects can be developed by 

different development teams and possibly as separate applications.  Recall the example of a 

tree object involved in ecology and logging.  At some point an integrated forest 

management system may be developed that models both the ecological and logging 

characteristics of a tree.  Rather than creating a new application, it would be simpler to 

integrate the existing ecology and logging applications.  However, merging the two 

separately developed systems will likely fail due to naming discrepancies.  For example, 

the tree class may be named differently in the two subjects mentioned.  Correspondence 

rules over come such issues by providing the ability to map classes from one subsystem to 

another. 

 

While correspondence rules deal with differing names, combination [Oss'95] rules deal 

with differing implementations.  Subject-oriented composition offers combination rules to 

deal with conflicts arising from the presence of multiple definitions for methods and fields 

in subjects that are being composed.  Of greatest concern is the meaning of a self-reference 

variable, e.g. this.  Combination rules can define whether composed operations use this 

to access an object defined by the pre-composition class definition or that of the newly 

composed class.  Of secondary importance is the resolution of variables that have the same 

name prior to composition.  In both cases, the combination rules dictate the meaning of 

variables either on a class basis or on a method basis. 

2.2.2.3 Join Point Model 

Class composition, as practiced with MDSOC, manipulates units.  A unit is a syntactic 

construct in a particular language [Oss'01b], and when applied to object-oriented languages 

a unit corresponds to types and type members.  For example, the class Rational in Figure 

2.14 and BetterRational in Figure 2.15 define types, contain fields and contain methods.  

The types defined as well as their field and methods all correspond to units. 
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Figure 2.14:  Class modeling rational numbers. 

 
Figure 2.15:  Subtype of class Rational with an added mathematical operation. 

2.2.2.4 Means of Identifying Join Points 

With MDSOC, a concern describes a set of units, and a specification for a set of types and 

type members is referred to as a concern map.  Concern mappings are able to select class 

members across multiple classes, regardless of the type hierarchy of those classes, and 

concern mappings are used to define hyperslices.  In an example analogous to feature 

slicing shown in [Oss'01b], we could define hyperslices to separate the mathematical 

operations, data storage facilities, and display operation of classes Rational and 

BetterRational.  The concern mappings to do this are shown in Figure 2.16, which 

assume that class Rational and BetterRational are defined in the myRational package.  

This concern mapping will create three hyperslices corresponding to different features.  

The Data feature hyperslice will have all classes, less the definitions for the Add, Sub, and 

ToString methods.  The Math feature will have two abstract types corresponding to 

Rational and BetterRational with Add and Sub operations defined in the appropriate 
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class and abstract declarations for the data and methods upon which Add and Sub are 

dependent.  Similarly, the Display feature will have a single abstract type containing the 

ToString method. 

package myRational: Feature.Data 
operation Add: Feature.Math 
operation Sub: Feature.Math 
operation ToString: Feature.Display 

Figure 2.16:  Concern mapping that divides the class Rational in Figure 2.14 and 

BetterRational in Figure 2.15 along feature boundaries. 

2.2.2.5 Means of Modifying Join Point Semantics 

The modification of join point behaviour takes place via a hypermodule specification that 

specifies a set of hyperslices and their relationships.  The relationships compose 

hyperslices by resolving abstract units in one slice with concrete definitions elsewhere and 

by resolving conflicts when multiple concrete definitions satisfy abstract declarations.  

These composition rules are based on those available with subject-oriented programming 

[Oss'01b].  Although relationships primarily offer structural composition, the behaviour of 

the composed program can be influenced by varying the meaning of members referenced 

by the code of a particular hyperslice.  For instance, references to methods being called can 

be varied to allow different or multiple methods to be executed.  In a simple example of 

composition, we can combine the data store and features of the Figure 2.16 concern map as 

show in Figure 2.17.  In this figure, mergeByname is a simple relationship that states that 

units in different hyperslices with the same name correspond.  It is simple in that it does 

not resolve conflicts that occur as a result of multiple definitions of concrete methods and 

concrete fields. 

hypermodule Rationals_NoMath 
  hyperslices: Feature.Data, Feature.Display  
  relationship: mergeByName 

Figure 2.17:  Hypermodule constructed from concerns defined in Figure 2.16. 

2.2.2.6 Analysis 

The strengths of class composition are its symmetric composition model and its suitability 

for structural composition; however, these strengths do not make class composition well 

suited to replacing contextual composition.  A class composition mechanism, as typified by 

the Hyper/J MDSOC technology [Oss'01c, Oss'01a, Oss'01b], lacks the aspect-component 

split central to initial AOP research.  This led MDSOC researchers to note that a “key 

difference between MDSOC with Hyper/J and AOP as described in the literature [Kic'97] 

and exemplified by AspectJ [Kic'01b], is that AspectJ supports augmentation of a single 
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model, whereas Hyper/J supports integration of multiple models.” [Oss'01c]  Identified in 

this contrast is the pointcut-based mechanism of AspectJ, which is said to offer a single 

model of an application in that it allows the manipulation of an entire program.  That is, 

pointcut-advice specifications pick join points from the entire application.  In contrast, 

MDSOC allows the manipulation of partial pieces of a program.  Composition 

relationships used to define new hypermodules pick units from hyperslices, which provide 

a limited view of the entire application.  The creation of a hyperslice makes sense if the 

concern being manipulated crosscuts the components of a system.  However, with 

contextual composition, it is well encapsulated component functionality that is being 

manipulated.  For this reason, an asymmetric composition paradigm suits.  Also, MDSOC 

comes from a background of structural composition, whereas the method interception of 

contextual composition suits behavioural composition. 

 

2.2.3 Aspect-Oriented Open Class Composition 

2.2.3.1 Background 

The precursor to open class composition is the concept of a mixin, which provides a means 

of making common features reusable across multiple class definitions [Cza'00].  Mixins 

originate from work on the Flavors programming system [Moo'86], where it was observed 

that the same facet of class behaviour is often repeated throughout an application.  

Duplicating the same code can be avoided with a mechanism that allows this functionality 

to be written once and applied multiple times.  Originally, this mixing was achieved using 

inheritance and, in particular, multiple inheritance [Moo'86], as there will be cases when a 

class will want to take advantage of multiple mixins.  Take the example of a class wishing 

to participate in a doubly linked list.  To do so it may select a mixin that contains the 

methods required to add and remove elements from the list as well as the data members 

required to reference the next and previous list elements.  In addition, it may be a 

requirement that that same class have the ability to participate in a hash table.  In this case, 

a mixin for hash generation functionality would also be useful.  However, the use of 

mixins is not to be confused with inheritance in general, which has other applications such 

as specialising an existing class or making abstract behaviour concrete. 

2.2.3.2 Overview 

Unlike mixins, open class composition allows noninvasive changes to a class definition 

from other classes in the application.  The principle of open class composition is derived 



 

47 

from elements of the multimethod functionality developed for the Dubious language 

[Mil'99].  Among their features, multimethods allow an object to define new methods for 

its constituent, or aggregated, objects in an idiom called open objects [Mil'99].  A focus on 

composing methods with objects makes sense in Dubious as it is a class-less OO language.  

In a class-based OO language, open object functionality is realised as open class 

functionality.  “Open classes allow one to add to the set of methods that an existing class 

supports without creating distinct subclasses or editing existing code.” [Cli'00]  Open class 

composition mechanisms are consistent with the goal of mixins in that new operations are 

added to the class.  However, a big difference is that open class composition is achieved 

without using the inheritance mechanism.  Moreover, mixins encapsulate the additive 

behaviour into a single class, whereas open class composition does not focus on 

mechanisms for grouping additive behaviour into units of encapsulation. 

 

Open classes can be applied as an aspect-oriented mechanism when the behaviour being 

added to objects is modeled as an aspect.  This involves grouping the members to be 

injected into application classes into a single unit.  This encapsulated behaviour can then 

be made to crosscut the objects of an application by identifying the types to which it will 

be applied in a central location in a noninvasive fashion.  This is in contrast to the 

traditional approach taken with mixins in which behaviour being added was well 

encapsulated, but in which the classes wishing to avail of mixin behaviour had to annotate 

themselves with the appropriate inheritance declaration.  An example of using open class 

composition as an aspect-oriented mechanism is in the centralization of infrastructure 

required to support traversals in the visitor pattern [Gam'94], as discussed in [Cli'00].  With 

the visitor pattern, each object type in the graph being traversed must implement a method 

to invoke the method of the visiting object appropriate to the object type being visited.  

Open classes allow the definition of a visitor object to include infrastructure requirements 

for object types being visited.  In this example, open classes are crosscutting the types 

within an application.   

 

Although both open class composition and MDSOC-style class composition provide 

mechanisms for combining classes, their composition goals differ in that open class 

composition adds behaviour to classes, whereas class composition in MDSOC adds classes 

to behaviours.  Open class composition has a focus on making additive changes.  It does 

not require combination and correspondence rules as existing functionality is not being 

replaced or remapped.  Moreover, composition in MDSOC is interested in forming classes 
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from roles of objects within subsystems that are described with hyperslices, while open 

class composition is interested in augmenting the functionality of a particular class 

definition.   

2.2.3.3 Aspect Model 

An aspect model for open class composition is realised in both MultiJava [Cli'00] and 

AspectJ [Asp'00], but of these two examples AspectJ best supports open class composition 

in the AOP sense.  Each tool has as its join point model the types within a system.  Since 

types are often used to express the static structure of a program, it is not surprising that 

these join points are sometimes referred to as static join points [Asp'02].  The means of 

identifying types is usually by name with the name specified either exactly, as in the case 

of MultiJava [Cli'00], or by regular expressions describing the type name as in AspectJ 

[Asp'00].  The means of modifying the semantics of the types identified is to add to the list 

of operations available, to the set of data members in a particular type implementation, and 

possibly to the list of types implemented or inherited from.  In doing so, open class 

composition allows MultiJava [Cli'00] and AspectJ [Asp'00] to apply operations to 

crosscutting views for data that would otherwise be blocked by the data hiding properties 

of a class boundary.  However, there remains an important distinction between AspectJ and 

MultiJava.  AspectJ offers open class composition, referred to introduction [Asp'02], or 

more recently as inter-type declarations, as a constituent of an aspect type.  In contrast, the 

grammar of MultiJava [Cli'00, Gos'00] offers no means of encapsulating open class 

composition statements.  An aspect abstraction is not a required element of an aspect 

model; however, it is the purpose of AOP to provide logical encapsulation of crosscutting 

functionality.  This makes the approach to open class composition offered by AspectJ 

preferable to that available with MultiJava [Cli'00].   

 

Figure 2.18 demonstrates open class composition-based crosscutting with a sample of 

AspectJ source used to insert doubly linked list functionality into a class Foo.  In the 

DblLinkListAspect declaration, the declare parents statements adds the DblLinkList 

interface to the list of types implemented by class Foo.  Next, elements whose identifiers 

are prefixed with by type Foo are inserted into the class Foo declaration.  The 

specification of types to which new functionality is introduced is consistent with the 

approach used in AspectJ to specify PA model pointcuts.  Thus, the characteristics of 

name-based and property-based crosscutting for class composition are consistent with 

those of the PA model implementation discussed in section 2.2.1. 
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public interface DblLinkList { 
  public void Append(DblLinkList newObj); 
  public void Insert(DblLinkList newObj);  
  public void Remove(DblLinkList oldObj); 
} 

public aspect DblLinkListAspect { 
 
  declare parents: Foo implements DblLinkList; 
 
  public DblLinkList Foo.Next; 
  Public DblLinkList Foo.Prev; 
 
  public void Foo.Append(DblLinkList newObj) {}  
  public void Foo.Insert(DblLinkList newObj) {}  
  public void Foo.Remove(DblLinkList oldObj) {}  
} 

Figure 2.18:  AspectJ source for inserting doubly linked list functionality into a class Foo. 

2.2.3.4 Analysis 

The difficulty with using open classes to replace contextual composition is that open 

classes make purely additive structural changes.  The point of open class composition is 

not to influence existing methods, as the changes being made to classes do not influence 

existing behaviour.  In contrast, contextual composition is not meant to add new methods, 

but instead attaches additional behaviour to execution of existing methods. 

 

2.2.4 Object Graph Traversal 

2.2.4.1 Background 

Work by the Demeter project [Lie'00] focuses on expressing object graph traversals that 

crosscut the object hierarchies of an application.  In an object graph [Lie'04], objects form 

the nodes, and references between objects form the graph’s arcs.  An aspect-oriented 

means to address object graph traversal emerged from problems with maintaining code that 

relies on graph traversals.  Implementing a traversal requires a method to access the object 

references between objects.  In its simplest form, these references are public data.  

However, using this data directly involves making explicit assumptions about the chain of 

references from an object accessing the method to the methods being invoked.  When the 

invoking method includes direct accesses to each data member storing an object reference, 

details of the object graph become built into its implementation.  This leads to brittle code 

that will break when the object graph is modified.  The Law of Demeter [Lie'96] proposes 

programmers implement traversals with methods that do not make assumptions about the 

object graph.  Such methods should not directly access the data members containing object 

references when those data members are contained in objects of another class.  Rather, 
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object references should be accessed via methods.  Doing so avoids having methods of one 

class dependent on the data of objects defined by another.  Following the Law of Demeter 

leads to a second approach to building an object traversal, which involves using 

intermediate methods whose only role is to route messages between objects that do not 

have direct references to each other [Orl'01].  However, this too leads to maintenance 

difficulties.  Revising the object graph requires changes to the methods responsible for 

providing the routing. 

2.2.4.2 Overview 

In response to the short comings of OO based techniques, the Demeter project proposes 

adaptive programming (AP) [Lie'96] as an alternative for writing behaviour that crosscuts 

the object graph of an application.  AP makes available propagation patterns (now called 

adaptive methods [Lie'01]) that consist of a traversal strategy and an adaptive visitor.  

Here, a traversal strategy is “a high-level description of how to reach the participants of 

the computation” [Lie'01], while an adaptive visitor specifies “what to do when each 

participant has been reached” [Lie'01].  The approach is adaptive, because adaptive 

methods will organise themselves around a program’s object graph, allowing the object 

graph to change without the need to update operations that are dependent on traversing the 

graph.  Adaptive programming is similar to the application of the visitor pattern; however, 

AP is not as invasive as the visitor pattern.  For instance, AP avoids the need for the node 

being visited to provide a method to activate visitor behaviour.  Moreover, AP avoids the 

need for a programmer to manually add traversal infrastructure to an application’s objects. 

2.2.4.3 Join Point Model 

Adaptive programming has for sometime been recognised as an aspect-oriented 

programming mechanism [Elr'01, Lie'04] in which aspects correspond to adaptive methods 

[Lie'01].  In adaptive programming, the join point model used consists of the set of object 

visitations possible in an application.  By using the term visitation, we are referring to the 

traversal path to an object plus the execution of methods when the object is reached. 

2.2.4.4 Means of Identifying Join Points 

Join point selection is via an object graph traversal specification that selects a particular set 

of visitations based on the traversal strategy specified and the starting point object for the 

traversal.  To clarify, we refer to Figure 2.19, which contains source for a simple aspect 

method written using the DJ tool [Orl'01].  The example traversal strategy is specified with 

the string "from Company to Salary", which selects visitations to objects of type 
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Salary.  Whether these objects are Salary class instances, or simply referenced by 

variables of type Salary is an implementation detail.  Note that since object graphs are 

typically directed, the starting point of a traversal places considerable restrictions on which 

objects can be reached.  In Figure 2.19, the starting point is an object implementing the 

Company type.  In an application that calculates salaries for multiple companies, having a 

single starting point will limit any given traversal to only salary objects that correspond to 

a particular company.  The visitations are no longer brittle to changes in the object graph, 

because their implementation does not include object graph navigation code.  Instead, the 

infrastructure required to navigate the object graph is created automatically by the weaver. 

import edu.neu.ccs.demeter.dj.ClassGraph;   
import edu.neu.ccs.demeter.dj.Visitor; 
 
class Company { 
  static ClassGraph cg = new ClassGraph () ; // class structure 
  Double sumSalaries () { 
 
    String s = “from Company to Salary” ; // traversal strategy 
 
    Visitor v = new Visitor ( ) { // adaptive visitor 
      private double sum; 
      public void start ( ) { sum = 0.0 }; 
      public void before (Salary host) { sum += host.getValue() ; } 
      public Object getReturnValue ( ) { return new Double (sum) ; } 
    }; 
 
    return (Double) cg. traverse (this, s, v) ; 
  } 
  // . . . rest of Company definition . . . 
} 

Figure 2.19:  Simple adaptive method taken from [Orl'01]. 

Adaptive programming adheres to the obliviousness principles of AOP with a strictly 

property-based approach to crosscutting.  Name-based crosscutting of object graph 

traversals defeats the purpose of AP, which is to avoid coupling traversals with 

implementation of an application’s object graph.  Instead, AP provides strong semantics 

for specifying traversals in terms of properties.  The objects being traversed contain no 

artefacts corresponding to traversal specifications, and so the property-based crosscutting 

provided supports obliviousness. 

2.2.4.5 Means of Modifying Join Point Semantics 

The modification of join point semantics involves attaching execution behaviour to the 

visitation.  The behaviour of a visitation is written in terms of the adaptive visitor.  In 

Figure 2.19, this visitor corresponds to an anonymous class instance assigned to a variable 

of type Visitor.  Being a class instance, an adaptive visitor can contain its own state.  In 

Figure 2.19, the visitation behaviour is defined in terms of functions whose name 

determines when during a traversal the method is executed.  For example, the method 
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before is executed upon arrival at the destination node, and access to the node’s interface 

is via a method argument. 

2.2.4.6 Analysis 

Object graph traversal is useful for allowing the object graph to be varied; however, the 

ability to revise existing behaviour does not exist.  Thus, object graph traversal is not a 

suitable replacement for contextual composition. 

 

2.2.5 Superimposition of Composition Filters  

2.2.5.1 Background 

The purpose of the Composition Filters (CF) model [Aks'92, Ber'94] is to avoid the 

tangling that occurs when database services such as transactions and persistence are 

orchestrated for an object.  Specifically, it was observed that such orchestration involved 

“using database services through embedded data manipulation statements.” [Aks'92]  

Research motivating CF identified the need to avoid this tangling without interfering with 

the ability of object-oriented mechanisms to address other program functionality.  For 

example, relying on inheritance to compose persistence with objects in a single inheritance 

language impedes the use of inheritance for accessing other services.  The solution in the 

CF model is to provide an extension to an object-oriented programming model that allows 

the manipulation of messages incoming to and outgoing from an object on an object-wide 

basis [Ber'04a].   

2.2.5.2 Overview 

The CF model supplants the supremacy of classes as a means of defining object types in 

OO languages with a new abstraction called a concern [Car'01].  The principle contribution 

of a concern is the introduction of abstractions for writing reusable message manipulation 

logic.  Message manipulation is written in terms of reusable filter modules, which consist 

of filters with supporting methods and object instances.  Broadly speaking, filters examine 

incoming messages, and they take a specific action for messages that match the conditions 

of the filter.  Superimposition [Car'01] allows a concern to apply filter modules to arbitrary 

objects in an application, and they form the basis of the crosscutting available with the CF 

model.  Superimposition of filter modules on an existing object is illustrated in Figure 

2.20.  Superimposition is responsible to introducing a filtering layer to the object through 

which messages pass as they go to and from the object.  Incoming messages pass in 
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succession through the filters of each of the filter modules superimposed.  Note that 

separate filters are applied to incoming and outgoing messages. 

 

 
Figure 2.20:  Example of superimposition of a filter modules on an object, based on details in [Car'01, 

Ber'04a]. 

2.2.5.3 Join Point Model and Means of Identifying Join Points 

With Composition Filters, the concern abstraction provides a unit of encapsulation for an 

aspect, and the join points to which aspect functionality can be applied correspond to the 

object instances in an application.  Object instances are selected in a superimposition by 

means of join point selectors.  More recent implementations of the CF model [Car'01] have 

used the Object Constraint Language (OCL) [OMG'03] and OCL-like languages as the 

basis for a selection language.  OCL is defined as part of the UML standard, and as such 

provides a reasonably language-independent means of identifying objects.  However, work 

has been applied to overcoming the verboseness of OCL.  OCL allows only name-based 

crosscutting and so has been augmented with regular expression semantics to make 

crosscuts more succinct. 

 

A sample concern that implements logging crosscutting functionality is shown in Figure 

2.21.  This example provides a glimpse of how concerns in the CF model are written with 

ConcernJ [Car'01], which provides support for writing concerns in Java.  The point here is 

not to explain the syntax involved but to highlight the important elements of the concern.  
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The application of this filter to other objects in the system is governed by the 

superimposition in the dashed rectangle labelled ‘3’, which applies the filter to all objects 

in the system except those used to implement the Logging concern.  This particular 

example was garnered from the TRESE project website [TRE'04], and precise details of 

the operation of super-imposition filters is described in [Car'01].  We will refer to this 

diagram again in the following section. 

 
Figure 2.21:  Logging concern written in ConcernJ taken from TRESE Composition Filters website 

[TRE'04]. 

2.2.5.4 Means of Modifying Join Point Semantics 

The means of modifying join point semantics is through the construction of filter modules, 

which revise the semantics of methods being invoked.  Filter modules consist of three 

elements: filters, supporting methods and supporting objects.  The support methods used 

by a filter can be implemented by a concern directly or accessed from support objects by 

delegating to the methods of these objects.  Method implementations contained in the 

concern are written using nested classes, whose objects are instantiated by the filter 
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module.  The ability to delegate to referenced objects gives filter modules an ability to 

inherit functionality in a fashion reminiscent of Self [Ung'87].  Filters include a type and 

decision making logic that determines whether to act on a message.  This decision making 

logic is based in part on the state of the object for which the filter module is intercepting 

messages, and this state is accessed via helper methods called conditions, whose execution 

returns a Boolean result without influencing the state of the implementing object.  

Depending on its type, each filter can perform a variety of actions.  The simplest filter type 

is that of dispatch filters [Ber'01].  Filters of this type simply accept or reject messages 

based on Boolean conditions ascertained from condition methods.  Rejected messages are 

passed on to the next filter, or rejected if there is no other filter in the module.  Accepted 

messages get passed to the relevant method for execution.  As noted, this method may be 

implemented by the object whose methods are being intercepted, or the message may be 

delegated to helper objects referenced by the filter module.  The use of delegation is typical 

when filter modules are applied using superimposition in order to guarantee the availability 

of a function upon which a filter module is dependent.  More complex functionality is 

available with wait filter types [Ber'01] that simplify the creation of message queues and 

meta filter types [Ber'01] that reify messages so that they may be passed to some other 

method for processing.  The availability of different filter types means that not only do 

composition filters offer strong interception capabilities, but they also provide the 

abstractions necessary for writing different kinds of interceding functionality in a 

structured fashion. 

 

In Figure 2.21, the Logging concern implements the notifyLogger filter module which is 

identified by a dashed rectangle labelled ‘1’.  In this version of the language, the keyword 

FilterInterface is used to define filter modules.  In more recent versions of this tool, the 

syntax has been made to align with the programming model and so the keyword 

FilterInterface has been changed to FilterModule [Ber'04a].  In this filter module, 

two filters are implemented, and they are identified by the dashed rectangle labelled ‘2’.  

The Meta filter type reifies incoming messages and passes them to a log method 

implemented by the class LoggerClass, identified by the dashed circle labelled ‘4’.  

However, this only occurs when the LoggingEnabled condition evaluates to true.  This 

condition corresponds to a method also implemented in LoggerClass.  The second filter, 

dispLogMethods, is of type dispatch.  It only intercepts messages exposed by the filter 

module in the methods section.  With dispLogMethods, messages for LoggingOn and 
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LoggingOff are delegated to the LoggerClass instance referenced by the filter module.  

Other messages are passed on to the object being superimposed. 

2.2.5.5 Analysis 

The CF model provides a much more advanced version of contextual composition.  The 

filter modules of a CF concern provide a programming model for tailorability lacking from 

contextual composition.  Preplanning requirements are eliminated by the transparent 

application of concerns through superimposition, although the use of the CF model 

restricts direct access to data members.  The programming model can be ported to a variety 

of languages as the CF semantics are independent of the language implementing; however, 

interoperability of filter modules and objects written in different languages is not 

addressed.  Also, the filter modules can only be used to augment the behaviour of objects, 

and it is unclear as to whether concerns can be implemented in non-object oriented 

languages or not.  Reusability involves modifying the aspect, as superimpositions are not 

specified separately from the filter modules.  The focus on OCL does not appear to allow 

attribute-based property selection as OCL uses object type names.  This is a minor issue as 

the OCL-based mechanism could be extended to use attributes.  However, like the PA 

mechanism, there is no model for separately expressing aspect bindings and aspect 

crosscutting specifications with attributes. 

 

2.2.6 Summary 

A limited set of aspect-oriented mechanisms provide programming models to solve the 

tailorability problem with contextual composition and avoid the need for preplanning on 

the part of components to which the aspects are applied; however, as a replacement for 

contextual composition the PA mechanism appears easier to conceptualise, offers fine-

grain crosscutting and suggests better performance.  Of the AOP mechanisms investigated 

in this section, only class composition, pointcut-advice and composition filters were 

capable of tailoring component behaviour.  Crosscutting with object-graph traversal and 

open class composition did not offer a means of modifying existing behaviour.  The 

programming model presented for class composition introduces the need to divide an 

application into arbitrary concerns, which are then subject to composition.  This is not 

much use when concerns already align to component boundaries as is the case with 

contextual composition.  Both the PA and CF mechanisms are suitable for addressing the 

tailorability problem as both make additive changes to behaviour without any preplanning 
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requirements.  The need for the CF mechanism to inspect all incoming messages, even 

those for which no action is taken, suggests that PA mechanisms are lighter weight.  Also, 

the CF model can only affect object behaviour with respect to external messages, where as 

a PA mechanism does not treat an object as a black-box.  Another consideration is that PA 

mechanisms appear easier to conceptualise.  Unlike the CF mechanism, PA mechanisms do 

not overlap with existing OO mechanisms.  For instance, in literature the CF mechanism is 

described as being able to implement inheritance, but it is unclear whether CF should then 

replace or complement existing inheritance mechanisms.  Such issues do not arise in PA, 

as the mechanism is distinct from existing OO mechanisms. 

 

In terms of reusability, reuse of aspects continues to involve editing aspects, and in terms 

of language-independence, aspect-oriented mechanisms fail to address interoperability of 

aspects and components written in a variety of languages in their programming models.  

Aspect-oriented mechanisms advocate reusability in accordance with obliviousness in that 

the aspect, and not the target component, is modified when an aspect is reused.  The 

programming models of aspect-oriented mechanisms leave unaddressed the adoption of 

attribute-based annotations of components as a means of binding aspects without the need 

to revise aspect crosscutting semantics.  Although the programming models for aspect-

oriented mechanisms such as the CF and PA mechanisms make no assumption about the 

underlying language, they do not address the situation in which an aspect written in one 

language will be applied to a component written in an unknown language. 

 

2.3 Constraints Component-Oriented Applications Place on 
Weaving 

In examining weaving in the context of software components, we are interested in 

determining the major restrictions on weaver architecture and in finding an approach that 

suits the PA mechanism identified in the previous section as a likely replacement to current 

contextual composition mechanisms.  The most immediate candidate for this role appears 

to be load-time weaving due to its support for clear-box weaving. 

  

The composition of aspects and components should be differed until deployment, as 

weaving before hand threatens the independent deployment characteristics of components 

and combines otherwise independent roles in application development such as that of 

context property writer and component writer.  In combining aspects and components, the 
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weaver tangles the implementation of the component with bindings to aspect behaviour.  

As noted in Chapter 1, tangling forces an aspect and the components to which it is bound 

to be deployed as a set rather than independently from each other.  This problem has been 

noted elsewhere:  “To preserve the property that a component is a unit of deployment, 

weaving has to take place either within a component before deployment or across 

component boundaries after deployment.” [Szy'02]  From the point of view of component 

development, premature weaving undermines the separation of competence [Pic'03] in 

which application development is broken up into different roles.  Defining development in 

terms of roles is handy, as each role can be handled by a different party [DeM'03].  For 

example, the EJB specification [DeM'03] separates component development from context 

property development and from deployment of context properties in components.  

Premature weaving prevents these roles from being taken on by different parties.  

Depending on the weaving mechanism used, the component developer may end up being 

the context property developer as is the case with compile-time weaving. 

 

A separate issue in composing aspects and components is what granularity of composition 

is required of weaving, and this influences the mechanism used to bind components to 

aspect behaviour.  Granularity determines whether black-box or clear-box weaving is 

required.  The clear-box / black-box distinction was originally defined with respect to the 

source code of a program [Fil'00].  A black-box technique manipulates components in 

terms of their public interfaces, while a clear-box technique manipulates the parsed 

language structures used to write these interfaces.  Clear-box techniques often offer a 

richer set of join points, because they provide a better representation of all the structures of 

a programming language used to write the component.  For instance, the difference in 

granularity between the CF and PA mechanisms is accounted for by support in the latter 

for clear-box modification of object join points.  Typically, components do not provide 

access to the programming language with which a component was implemented.  

However, language constructs that are expressed directly in byte code, such as accesses to 

type members, can be modified [Fil'00].  So with clear-box techniques, instrumentation of 

byte code is likely, where as black-box techniques can use a proxy technique in which 

incoming and outgoing messages are intercepted and aspect behaviour applied. 

 

Despite the restrictions that it places on component format, load-time transformation is the 

most general technology for weaving after deployment due to its variable granularity.  

Load-time transformation introduced in research on binary component adaptation (BCA) 
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[Kel'98].  This research demonstrated that load-time transformation was suitable for 

modifying existing binaries, and binary-level weaving is consistent with the binary format 

used to distribute components.  Load-time transformation was later characterised by work 

on JOIE, which concluded that it was “a powerful technique in which user-specified 

transformers add, remove, or change fundamental details of transportable code as it is 

imported into the local Java Virtual Machine” [Coh'98]  The suitability of load-time 

transformations specifically for aspect-oriented composition was later demonstrated by 

work on JMangler [Kni'01a].  Work on load-time transformation pointed out two 

component characteristics that facilitate load-time transformations [Coh'98].  First, 

component code should be packaged with symbolic information that describes its structure.  

This facilitates identifying component elements affected by a transformation, and the 

requirement is met when components contain self-descriptive metadata.  Second, the 

component code should be represented in a format that is easily modified with additions.  

Here, byte code instructions are advocated, as insertion of new instructions does not 

adversely affect method state.  Byte code has the property that it manipulates data using a 

stack, and so new operations do not require that the data of existing code be properly 

stored and retrieved.  The major benefit of this emphasis on the use of byte code to express 

component behaviour is that load-time weaving allows clear-box weaving. 

 

The actual means by which load-time transformation techniques manipulate components as 

they are loaded varies in terms of transparency and portability.  In a survey of load-time 

transformation techniques, the developers of JMangler [Kni'01b] identified three general 

means for hooking into class loader architecture pictured in Figure 2.22.  The different 

approaches vary according to the point at which a transformation hook is introduced in the 

class loader.  Original work on component adaptation in BCA exploited hooks introduced 

into the JVM.  Such an architecture would then be coupled to a particular implementation 

of a component platform.  Platform independent tools such as JOIE and the Javassist 

structural reflection tool [Chi'00] choose to provide a custom class loader implementation.  

While this mechanism is not coupled to a particular platform implementation, weaving is 

no longer transparent.  Another alternative offered in this survey was to modify the 

framework APIs that implemented the application class loader.  This technique is offered 

by the JMangler tool, and it avoids the need to modify the platform JVM and 

simultaneously retains the transparency of weaving as far as the application implementer is 

concerned, as the application need not use a non-standard class loader. 
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Figure 2.22:  “Three ways of hooking into Java’s Class Loader Architecture”, a graphical 

representation of load-time transformation implementation options taken from [Kni'01b]. 

 

2.4 Summary 

In this chapter, we started with the taxonomy of AOP terms and concepts.  First, we 

characterised aspects as a unit of encapsulation that supported the modularization of 

crosscutting concerns.  The aspectual paradox was introduced to describe confusion over 

how crosscutting functionality could be encapsulated, and this paradox was resolved by 

pointing out that crosscutting is with respect to the dominant decomposition paradigm 

within a programming language.  The aspect model was presented as a general means for 

characterising aspect-oriented mechanisms, and this model consisted of the mechanism’s 

join point model, its means of modifying join points and its means of modifying join point 

semantics.  Name-based and property-based crosscutting were introduced to characterise 

the coupling between crosscutting identifying join points and the implementation of these 

join points. 

 

Next, we described the following five canonical aspect-oriented mechanisms in terms of 

their aspect model. 

• Pointcut-advice  (PA) 

• Class composition 
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• Object-graph traversal 

• Open class composition 

• Composition Filters (CF) 

These mechanisms were then analysed in terms of their ability to replace contextual 

composition.  Only the CF and PA mechanisms could produce suitable changes to 

component behaviour, and of these mechanisms the PA mechanism was easier to 

conceptualise, offered finer grained crosscutting and promised better performance.  

However, while the PA (and CF) mechanisms explicitly made no assumptions about the 

underlying language of their programming models, the programming models provided did 

not address interoperability of aspects and components written in a variety of languages.  

Moreover, none of the mechanisms offered a programming model for separately 

expressing aspect bindings and aspect crosscutting specifications with attributes. 

 

Finally, we identified load-time weaving as suitable for composing aspects and 

components after deployment and as offering the clear-box crosscutting required to support 

a PA mechanism. 
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Chapter 3 Programming in terms of Aspect-Based 
Properties 

 

“The secret of a good memory is attention, and attention to a subject depends upon our 

interest in it. We rarely forget that which has made a deep impression on our minds”  

–Tyron Edwards 

 

 

 

 

 

 

 

In this chapter, we present a programming model in which aspect-based properties are used 

to resolve the reusability and language dependency issues that arise with aspect-oriented 

mechanisms when they are used to solve the preplanning and tailorability problems with 

contextual composition.  Based on our analysis of aspect-oriented mechanisms in Chapter 

2, an AspectJ-like pointcut-advice (PA) mechanism has been chosen as the crosscutting 

mechanism for aspect-based properties.  The problem of reusability is dealt with by 

splitting the implementation of an aspect-based property from the specification of its 

binding to a component.  To make this split, the programming model for aspect-based 

properties exploit attribute-based crosscutting in which pointcuts are written with property-

based crosscutting in terms of attributes.  To complement these crosscuts, the aspect-based 

property writer provides attribute types that are used to annotate component code by the 

component writer.  Thus, attribute types provide the API for using aspect-based properties, 

and using attribute types avoids the need to modify the aspect-based property in order to 

reuse it.  Interoperability of aspects and components is guaranteed by use of language-

independent AOP.  Language-independent AOP is achieved with the PA mechanism of 

aspect-based properties by referring to join points in terms of their description in 

component metadata and not the source code used to implement join points.  In the context 

of component metadata, attributes appear as extensions to the metadata description of 

structures that they annotate.  Thus, while the syntax used to annotate types and type 

members may vary from language to language, the syntax for identifying join points does 

not.  Finally, the programming model for aspect-based properties makes allowances for 
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legacy components by providing custom crosscutting, which allows aspect-based 

properties to be applied to components not annotated using attribute types. 

  

The programming model used to write aspect-based properties is explained from two 

views.  In section 3.1, we build an overall view of application development involving 

aspect-based properties.  This view is presented in terms of the developer roles and the 

products passed between these roles.  In section 3.2, we concentrate on the aspect model 

available for writing the crosscutting semantics of aspect-based properties.  The aspect 

model used is similar to the AspectJ PA mechanism discussed in Chapter 2.  However, PA 

specifications are written in XML and separate compilation of aspects and components 

brings about some limitations to advice. 

 

3.1 Roles and Products 

Following the example of the EJB specification [DeM'03], we begin by defining the roles 

involved in developing software in terms of aspect-based properties.  As with EJB roles, 

each role involved in developing software with aspect-based properties can be carried out 

by a different party.  Interdependencies of these roles are expressed in terms of the 

products that a role generates and the products that a role exploits but that are generated by 

other roles.  The roles involved in the creation and use of aspect-based properties are as 

follows: 

• Aspect-based property writer 

• Component writer 

• Application integrator 

• Application deployer 

The dependencies between each role are expressed in Figure 3.1 as directed arcs.  These 

arcs correspond to one or more products that are generated by the role at which an arrow 

originates and required by the role to which the arrow points.  Details of the products are 

provided in the following sections in which we list the responsibilities of each role. 
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Figure 3.1:  Development roles in which aspect-based properties are written and exploited for 

application development. 

 

3.1.1 Aspect-based Property Writer 

 
Figure 3.2:  Products produced by the aspect-based property writer role and their consumers. 

The aspect-based property writer role is responsible for implementing an aspect-based 

property and attribute types by which the aspect-based property’s functionality is accessed.  
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These products and their consumers are depicted in Figure 3.2.  An aspect-based property 

contains crosscutting functionality that is incorporated into a complete application.  

Aspect-based properties are made available to the application integrator for distribution 

with the final application.  Attribute types provide an API by which aspect-based 

functionality is accessed.  Attribute types implement attributes that the component writer 

uses to annotate components in order to specify component to aspect-based property 

bindings. 

 

In the following subsections, we elaborate on the architecture of the aspect-based property 

and attribute type products. 

3.1.1.1 Architecture of Aspect-Based Properties 

Aspect-based properties are aspects defined using a pointcut-advice mechanism.  The 

choice of a pointcut-advice mechanism reflects the results of our analysis of aspect-

oriented mechanisms presented in Chapter 2.  Recall that in section 2.2.6 we noted two 

potential replacements for contextual composition, and these were the CF and PA 

mechanisms.  Of these mechanisms, the PA mechanism offers semantics that are easier to 

conceptualise, provides finer grained crosscutting, and promises better performance.  In 

terms of granularity, PA semantics support clear-box crosscutting allowing, for example, 

both field access and method calls to be manipulated.  Also, there is a clear-cut distinction 

between a PA mechanism and existing object-oriented mechanisms.  This distinction is not 

as clear with composition filters.  For instance, the CF programming model describes 

composition filters as able to simulate inheritance [Ber'04a], which blurs the distinction 

with inheritance.  In terms of performance, the CF mechanism intercepts each message 

coming into an object, whether or not the message triggers filter behaviour.  A PA-based 

alternative can avoid this indirection by adding new behaviour to only those methods that 

are affected by a crosscutting concern. 

Behaviour
(Type in Component)

Crosscutting Spec
(XML File)

Aspect-Based Property

 
Figure 3.3:  Architecture of an aspect-based property. 
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Architecturally, an aspect-based property consists of a type implementation and an 

attribute-based crosscutting specification that is written in XML-based.  Figure 3.3 

provides an overview of this architecture.  The type implementing aspect behaviour is 

distributed as a component in a format consistent with the component platform with which 

aspect-based properties are being used.  While the architecture of aspect-based properties 

is not component platform specific, the examples in this chapter refer to an implementation 

of aspect-based properties for Microsoft’s CLI [Ecm'03b], which reflects our selection of 

the CLI as the target platform for the prototype implementation of aspect-based properties 

described in Chapter 4.  Crosscutting specifications that consist of pointcut and advice 

declarations are distributed in a separate file with an .XML extension.  Attribute-based 

crosscutting means pointcuts identifies join points in term of attributes.  Advice statements 

cross reference the pointcuts with methods that implement advice behaviour.   

 

The decision to use XML reflects our interest in accommodating existing programming 

languages and software component architectures, while allowing for future changes in 

language syntax.  The purpose of storing crosscutting specifications in XML format is to 

avoid the need to modify the binary format of components to store these crosscutting 

semantics.  Extensible metadata is another alternative for storing PA specifications.  

Exploiting extensible metadata requires some sort of language-level support capable of 

interpreting the PA specifications and storing them in metadata in a standard format.  For 

instance language extensions might be used to express PA specifications, and instead of 

influencing compilation these extensions might simply record PA specifications in 

extensible metadata.  Unfortunately, such restrictions of aspect-based property 

programming would interfere with the language-independence that we seek, as only 

programming languages with the appropriate extensions could be used to write aspect-

based properties.  Rather than adding extensions, PA specifications could be expressed in 

the form of attributes, which are emitted directly to extensible metadata [Ecm'03b]; 

however, the literature makes no comment on the use of attributes in this manner.  Our 

XML format for PA specifications anticipates the future appearance of these systems as 

well as future languages that provide first class support for a PA mechanism, because 

XML provides a standard input format for weavers to which attribute-based PA 

specifications and those generated by language extensions can be mapped. 

 

The PA specifications available with aspect-based properties are based on those of AspectJ 

V1.0.6 [Asp'02].  AspectJ was adopted, because AspectJ language semantics are published 
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in a programming guide.  This particular version was chosen, because prior to V1.0 the 

language semantics were unstable.  For example, the keywords of the version 0.8 release 

[Kic'01b] use a different syntax to previous versions as well as those that followed.  Even 

earlier releases [Lop'97] use different language semantics.  Variations in the join point 

model during language evolution have been noted elsewhere [Kic'01b].  Version 1.0 

represents the first stable specification, as subsequent evolution has made only additive 

changes to the aspect model used by the language.  For instance, version 1.1 [Lad'03] 

makes available more primitive pointcut designators.  The language specification in the 

AspectJ V1.0.6 programming guide [Asp'02] is sufficiently detailed to allow its conversion 

to XML in a reasonably methodical manner [Laf'02b].  That is not to say that the language 

semantics documentation is perfect.  First, there are some inconsistencies.  The 

specification for the wildcard character used for property-based crosscutting contradicts 

itself2.  Second, crosscutting in terms of attributes was not supported.  The XML for 

aspect-based properties includes some minor extensions that allow attributes to be used, 

which we describe in 3.2.2 when we discuss the use of XML to select join points. 

 

A sample aspect-based property is shown in Figure 3.4.  This aspect-based property 

provides logging to join points identified in the XML specification on the left-hand side of 

the diagram.  In this example, the XML cross-references a type in a CLI assembly 

providing the aspect behaviour, and a graphical view of that assembly appears on the right-

hand side of the figure.  This view is generated by Ildasm [Mic'04a], which provides 

details on the internal structure of the CLI component including the types that the assembly 

holds as well as the type’s members.  The aspect-based property identifies its behaviour 

according to both the implementing component and the implementing type.  These details 

appear at the beginning of the XML and are highlighted in the figure.  The XML format is 

governed by a schema [Laf'02b] written in W3C XML Schema Language [Fal'01].  

Although the XML in Figure 3.4 uses a local copy of the schema, it is also available on the 

internet3.  We discuss this schema in detail in section 3.2, provide details of its derivation 

                                                 
2 In the context of a type pattern [Asp’02]:  “There is a special type name, *, which is also a type pattern. * 

picks out all types, including primitive types.  So call(void foo(*)) picks out all call join points to 

void methods named foo, taking one argument of any type.”  But in the next paragraph “The * wildcard 

matches zero or more characters”.  In this case , call(void foo(*)) picks out all call join points to void 

methods named foo, taking one or zero arguments of any type.” 

3 http://aosd.dsg.cs.tcd.ie/XMLSchema/aspect_Schema.xsd 
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from the AspectJ V1.0.6 semantics in Chapter 4, and present the actual schema in 

Appendix A. 

 
Figure 3.4:  Sample aspect-based property crosscutting specifications and behaviour implementation. 

Although aspect-based properties exploit the same primitive AspectJ pointcut designators 

that were presented in Chapter 2, attribute-based crosscutting is used to make aspect-based 

properties reusable without modification.  Recall from the description of crosscutting with 

a PA mechanism in section 2.2.1.3 that property-based crosscutting consistent with 

obliviousness involved identifying implementation details common among join points 

being selected.  These details were then used as the argument for the pointcut that selects 

the join points.  This was in contrast to name-based crosscutting in which join points are 

identified individually based on the metadata details of the join point’s implementation.  

With execution and call join points, these details correspond to the signature of the method 

called or executed as well as the type containing the implementation.  For field accesses, 

the field type and a containing type are important.  Name-based and property-based 

crosscutting with strong obliviousness characteristics are available with the aspect-based 

property programming model; however, their use is limited to customization steps used 

under exceptional circumstances by the application integrator, which we discuss in section 

3.1.4.  When writing aspect-based properties, the correct approach to writing pointcuts is to 
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use attribute-based crosscutting.  This is a subset of property-based crosscutting in which 

attributes are used in place of method signatures, field signatures and type specifications 

that are normally used to parameterise primitive pointcut designators.  The use of attributes 

is emphasised in order to decouple the pointcut specification from the implementation 

details of the component to which it is applied.  Splitting binding from aspect 

implementation has been used before in order to improve the reusability of a particular 

aspect implementation [Pic'03].  As we will see, the final binding is left to the component 

writer. 

 
Figure 3.5:  Examples of strong obliviousness with name-based and property-based crosscutting. 

To contrast the crosscutting with strong obliviousness and attribute-based crosscutting, we 

present samples of each approach in Figure 3.5 and Figure 3.6.  In Figure 3.5, 

implementation details in the form of a method signature are used to identify execution 

join points involving one of the constructor methods in class Foo.  These details appear in 

the XML on the right-hand side of the figure.  At bottom of the figure, name-based 

crosscutting identifies the class defining the constructor, its method name, and the 
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parameter type.  The type names and the convention of using ctor as the name of 

constructor methods are specific to our CLI prototype, but the form of the method 

signature, i.e., the XML tag structure, is consistent across implementations of aspect-based 

properties.  In contrast, the property-based crosscut picks the presence of a single Int32 

parameter as the distinguishing characteristic of methods whose execution will be selected.  

The use of either approach depicted in Figure 3.5 is considered bad practice when 

specifying the crosscutting semantics of aspect-based properties.  As the attribute-based 

crosscutting embraced by aspect-based properties uses a style in which signatures and type 

specifications are expressed with attributes.  Such an example is shown in Figure 3.6, 

where execution join points are selected based on the method executing at the join point 

being annotated with an attribute.  The pointcut specification, again written in XML, 

matches join points that correspond to methods annotated with an attribute with the name 

Logging.  The figure provides sample component source in which the Logging attribute 

type is applied to the Foo constructor that was highlighted in Figure 3.5.  Such labelling is 

the responsibility of the component writer, and this role discussed in section 3.1.2. 

 
Figure 3.6:  Attribute-based crosscutting equivalent Figure 3.5 and required constructor annotation. 

It is important to point out that while the attribute name is referenced in the crosscutting 

specification of an aspect-based property, this attribute type’s not required by the 

implementation of the aspect-based property.  Only the attribute’s name is referenced in 

the XML-based crosscutting specification.  The XML is not compiled or linked, and so the 

aspect-based property does not require the attribute name being referenced to actually be 

defined.  Matching between attributes specified in XML and the attribute applied to a 

component is by name, so the name of the attribute used to annotate component source 

must be consistent with the name used in the crosscutting specification of an aspect-based 

property.  Consistency is maintained by having the aspect-based property writer provide an 
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implementation of the attribute with the correct name for use by the component writer.  

This implementation is called an attribute type.  We discuss attribute types in the next 

section. 

 
Figure 3.7:  Overview of a crosscutting specification in the context of an aspect-based property. 

To provide additional clarity as to what is and what is not an aspect-based property, we 

refer to Figure 3.7 in which the implementation and crosscutting specification of an aspect-

based property are pictured along with an attributed component.  The attributed component 

makes use of aspect-based property functionality via an attribute type.  Attributed 

components will be discussed in more detail in section 3.1.2 and so we concentrate on the 

aspect-based property here.  Aspect-based properties are not bound to a particular 

attributed component, and so the attributed component given is only representative.  This 

particular aspect-based property defines logging.  The implementing type is referenced by 
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the crosscutting specification according to the type’s containing component and the type’s 

name.  This reference is indicated with arrow 1.  Methods in the implementing type are 

referenced on an advice by advice basis.  For instance, arrow 3 points out a method that is 

used to implement a before advice statement.  Note that though aspect-based property 

behaviour in Figure 3.7 is written in C#, any language can be used to express the aspect-

based property behaviour.  Also note that the advice references implementing methods 

explicitly by name and implicitly by method parameters.  The required parameters for an 

advice statement can be determined by examining what typed formal parameters are bound 

by the advice statement and the named pointcut that advice references.  A reference from 

advice to a pointcut is shown by arrow 2.  For simplicity, this example does not include a 

typed formal parameter.  Typed formal parameters are passed to method implementing 

advice, and they will be presented in section 3.2.  Finally, arrow 4, points out a method 

whose execution generates join points that match the pointcut of the aspect-based property.  

Although the component writer is responsible for annotating the component with attributes 

recognised by the aspect-based property, aspect-based property used is not know until the 

application integrator chooses a particular attributed component and aspect-based property 

for an application.  We will discuss the application integrator role in section 3.1.3. 

3.1.1.2 Attribute Types 

An attribute type is an API for accessing aspect-based property functionality.  The attribute 

type allows a component writer to bind a component to an aspect-based property without 

the need for the component writer to see the aspect-based property’s implementation or 

modify the aspect-based property’s crosscutting specifications.  To do this, the attribute 

type provides an implementation of an attribute referenced by the crosscutting 

specifications of aspect-based properties that is used to by the component writer to 

annotate component source. 

 

Physically, all attribute types referenced by an aspect-based property are distributed in a 

single component.  Details of how an attribute type is used to annotate a component, as 

well as the functionality accessed by that attribute type, are provided in the attribute type’s 

documentation.  Such documentation may take the form of a class overview that 

characterises where the attribute may be placed and the semantics of this placement.  In 

practice, the attribute type’s implementation and its written semantics can be merged by 

placing the semantics in source code comments.  These comments can then be separated at 

compilation using a standard API generator such as Javadoc [Sun'04] or Doxygen [van'04], 
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depending on the platform for which aspect-based properties are implemented.  In addition 

to having written documentation, attribute types may be tailored in so far as their 

implementation may allow them to be restricted from annotating certain types of structural 

elements, i.e., an aspect-based property writer may tailor the implementation of an attribute 

type to prevent the attribute type from being used in a manner inconsistent with the aspect-

based property’s crosscutting specification.  The restrictions available are platform 

dependent.  We explain these restrictions when we discuss the implementation of an 

attribute type. 

 

Note that attributes types provided by aspect-based properties cannot be parameterised.  

This is in contrast to the approach of AspectJ2EE [Coh'04], an aspect-oriented approach 

used to solve tailorability, though not preplanning, with context-based properties.  

AspectJ2EE parameterises aspect-component bindings in order to improve reusability.  

Specifically, abstract pointcuts can be specified in the declarative binding between an 

aspect and a component.  However, we wish to avoid abstract pointcuts in order to simplify 

the component writer role.  The difficulty is that abstract pointcuts require that the user 

understand concepts beyond the scope of a non-AOP language such as pointcut 

specification, and this extra learning will impede adoption.  A second kind of 

parameterization used in [Coh'04] was the specification of initial values for an aspect.  

There is precedent for allowing these initial values to be assigned to fields in objects 

corresponding to attribute type when the attributes are used to annotate source code 

[Sch'02], but such parameterization is not used with aspect-based properties.  Where initial 

values are required for proper aspect-based property operation, these can be obtained 

directly from type data members using clear-box crosscutting.  In this case, there should be 

an attribute type to annotate the data member that provides the initial value. 

 

The implementation of a very simple attribute type to access a logging aspect-based 

property is shown in Figure 3.8, and its documentation is shown in Figure 3.9.  Figure 3.8 

shows the implementation of the attribute type, which is written in C# and targeted at the 

CLI component platform.  The language used in this example reflects the choice of 

platform made for our prototype, and it is not meant to imply that attribute types can only 

be implemented for the CLI platform.  The declaration that appears in bold in Figure 3.8 

restricts the program structures that can be annotated by this attribute to class types, 

methods and constructor methods.  This is consistent with the attribute semantics described 

in the code comments of Figure 3.8.  Note the lengthy namespace in which attribute types 
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are defined.  To avoid naming conflicts between attribute types implemented by different 

organisations, the name of an attribute type should have a prefix corresponding to the 

organisation producing the attribute type.  An HTML-based description of the attribute 

type is rendered in Figure 3.9.  This description was created programmatically by 

extracting and formatting source code comments from the implementation in Figure 3.8.  

In this case, the semantics indicate that logging is bound to the execution of methods 

annotated with the attribute defined by this type. 

using System; 
 
namespace ie.tcd.cs.dsg.Aspect_CS_Logging 
{ 
  /// <summary> 
  /// Attribute type for specifying logging requirements of methods 
  /// in a class.   
  /// </summary> 
  /// <remarks> 
  /// Apply the <b>Logging</b> attribute directly to constructors or 
  /// methods to have their execution generate a logging entry.   
  /// If the <b>Logging</b> attribute is applied to a type, it is the 
  /// equivalent of annotating on every method/constructor 
  /// defined for the class with this attribute 
  /// </remarks> 
  [AttributeUsage(AttributeTargets.Method 
                 |AttributeTargets.Class| 
                  AttributeTargets.Constructor)] 
  public class Logging : Attribute 
  { 
    /// <summary> 
    /// Default constructor 
    /// </summary> 
    public Logging(){} 
  } 
} 

Figure 3.8:  Sample attribute type implementation for the CLI. 

 
Figure 3.9:  Sample API specification for an attribute type. 
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3.1.2 Component Writer 

The component writer has specialised knowledge about components being implemented 

that allows him to properly bind a component to an aspect-based property.  These bindings 

take the form of attributes annotated to the declarations of structural elements of a 

component.  Figure 3.10 provides an overview of the products required and generated by 

the component writer role.  An attribute type provided by the aspect-based property writer 

role provides an implementation of the attribute used to annotate the component being 

implemented by the component writer.  In section 3.1.1.2, we explained that attribute types 

are independent of the aspect-based property that implements the functionality attributes 

reference, and we explained that attribute types include a description of the semantics of 

the attributes provided.  When an attribute type is applied to a component, the result is 

called an attributed component.  An attributed component does not yet contain the 

crosscutting functionality that corresponds to the attribute type.  This binding is carried out 

by the application deployer role, which is discussed in section 3.1.4. 

 
Figure 3.10:  Overview of products produced and consumed by the component writer role. 

The attribute types used by the component writer role were discussed in section 3.1.1.2, so 

we focus in this section on the characteristics of an attributed component. 

3.1.2.1 Attributed Components 

An attributed component corresponds to a component to which attributes have been added 

using one or more attribute types.  These bindings specify when aspect-based properties 

should intercede during the execution of an application that makes use of the attributed 

component.  However, these bindings do not allow the component writer to select specific 
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aspect-based properties.  The component writer is expected to have a good knowledge of 

the component being annotated, because the aspect-based property writer relies on the 

component writer to avoid conflicts between the attributed component and the aspect-

based property with which the attributed component is woven.  For instance, an aspect-

based property that supports persistence relies on the component writer to know which 

specific objects need to be persisted so as not to cripple application performance with 

unnecessary updates to a persistent data store.  The resolution of aspect-aspect conflicts is 

a separate problem that is referred to as the “composability problem” [Szy'02].  The 

composability problem has been examined in recent research [Kni'01a], but a means of 

completely avoiding the problem is not available.  In our programming model, the 

component writer is expected to do his best to spot and address conflicts between attribute 

types applied to the same component; however, complete elimination of the composability 

problem should be verified during integration testing of the final application. 

 
Figure 3.11:  Attribute component of Figure 3.7 updated to include the attribute type’s namespace. 

Since attributes are applied using source code annotations, the component writer role only 

applies to the creation of new components or those for which source code is available.  An 

example application of an attribute type was shown in Figure 3.7.  An expanded version of 

this example is shown above in Figure 3.11.  In this version of the attributed component, 

we use a using declaration to avoid having to use the fully qualified name when using the 

Logging attribute.  Without the using declaration, the attribute used would take the form 

[ie.tcd.cs.dsg.Aspect_CS_Logging.Logging].  This lengthy type name reflects the 

use of fully qualified type names to distinguish between attribute types that correspond to 

different crosscutting functionality. 

 

Note that our programming model does not consider versioning of attribute types.  The 

implementations of aspect-based properties are independent to that of an attributed 
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component in that the type implementing aspect-based property behaviour can vary.  The 

crosscutting specification can also vary, so long as the semantics of the attributes published 

with the attribute type do not change.  Changes to the semantics available with an aspect-

based property would require a new attribute type.  The static nature of attribute types 

reflects the difficulties for an attributed component were the attribute type to change.  

Changes to the semantics of an attribute type would in turn require a re-evaluation of the 

bindings used by a particular attributed component to ensure that they were still correct.  

Preventing the attribute type from changing avoids the need for such re-evaluations. 

 

A major benefit of using attributes to specify component to aspect-based property bindings 

is that attributes are consistent with language-independence in which components can be 

written in any language.  This is because attributes can be applied to the source code of any 

component regardless of implementing language.  In justifying the selection of an XML 

format for crosscutting specifications, we pointed out that attribute annotations are emitted 

directly to component metadata extensions.  Specifically, attributes are stored in a standard 

format as metadata extensions to the components to which they are bound.  Attributes also 

have broad language support, as component platforms typically stipulate their support at 

the language level as is the case with the CLI [Ecm'03b] and J2EE [Blo'03].  For example, 

while the syntax used to place attributes varies between languages that have been 

implemented for the CLI, such as SML.NET [Ken'03], C# [Mic'01], and VisualBasic.NET 

[Mic'04d], the same attribute type implementation can be used for attribute declarations 

regardless of the language being annotated, provided the component platform is the same.  

Furthermore, component platforms complement extensible metadata with an API that 

allows the inspection of the metadata extensions applied to a particular component.  Thus, 

the specification and interpretation of attributes applied to a component has no influence 

on component programming language.  The decision to rely on attributes and component 

metadata for language-independence was chosen as it scales well by avoiding 

modifications to language tools.  These claims to language-independence are verified in 

the evaluation of Chapter 5. 

 

In our programming model, the attribute type must be included with the attributed 

component when it is distributed.  The attribute type is required to indicate to the 

application integrator which aspect-based properties are required.  Proper operation of an 

attributed component requires that it be bound to an aspect-based property when the 

overall application is assembled.  The application integrator will likely have to find an 
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aspect-based property based on what is required by the attributed component, since the 

application integrator cannot be expected to automatically have the required aspect-based 

property.  Moreover, the set of aspect-based properties is not fixed.  Recall that the ability 

to continually create new aspect-based properties is the basis of our solution to the 

tailorability problem.  Determining aspect-based property requirements from the attributed 

component would involve using the reflective API of a component platform to extract 

attribute types applied to an attributed component.  However, this is far from ideal.  For 

example, with the CLI platform, extraction of such metadata extensions requires the 

instantiation of the attribute type.  In the absence of an attribute type, this operation will 

fail.  Even with a means of inspecting attribute types that avoids instantiation of these 

types, without additional information it would be difficult to distinguish aspect-based 

property-related attributes from metadata extensions included for other purposes.  For 

instance, there are examples in which attributes are used to embed test framework 

information [New'02].  Thus, we assume in our model that attribute types required for a 

component to link properly are included with that component when it is distributed. 

  

3.1.3 Application Integrator 

The application integrator is responsible for assembling an application that consists of 

attributed components, supporting aspect-based properties and application-specific 

customizations.  The products required and produced by the application integrator are 

summarised in Figure 3.12.  Among the items produced are the aspect-based properties and 

attributed components used by a particular application.  They are not so much produced as 

they are passed on.  The attribute types used by attributed components are included in the 

items passed on as well, as they are included with the attributed component to guarantee 

proper application execution.  We will discuss the continued purpose of attribute types in 

the next section when we examine the application deployer role. 

 

Figure 3.12 also notes products created by the application integrator.  These are the 

integration components and custom crosscutting.  These products are more ad hoc in nature 

than attribute types, attributed components and aspect-based properties.  In fact, integration 

components and custom crosscutting are not reusable outside the context of a particular 

application.  Integration components address application specific functionality required to 

integrate attributed components.  Custom crosscutting represents a second, more extreme 

form of customization in which changes to an aspect-based property’s crosscutting 
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specifications are made.  Customization of crosscutting specifications allows the 

application integrator to deal with legacy components that have not been annotated with 

attributes, but that must adopt crosscutting functionality to correctly integrate with the 

application. 

 
Figure 3.12:  Overview of products produced and consumed by the application integrator role. 

In the remainder of this section we will examine an integration task in which an application 

is composed with profiling crosscutting functionality.  In the first scenario, the application 

integrator implements the entire system with attributed components and aspect-based 

properties.  This solution allows us to highlight the interoperability of components and 

aspects that language-independent AOP provides to our programming model.  In the 

second scenario, the application integrator must perform considerable customization to 

integrate the system.  This scenario allows us to discuss how tailorability and preplanning 

problems are dealt when our programming model is applied to legacy components not 

developed by the component writer role. 

3.1.3.1 Using Attributed Components and Aspect-Based Properties Only 

Let us start by introducing a very simple application integration task.  A variety of 

programs include diagnostic backends that allow examination of program state.  Take the 

example of real-time controllers that execute a control program at a fixed interval.  An 
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administrator of such controllers may be interested in the amount of time in each interval is 

spent executing control logic.  Such profiling concerns can be viewed as crosscutting 

concerns.  The methods whose execution time is of concern are crosscut by the same 

timing function.  In our scenario, an application integrator is interested in assembling an 

application with strong self-profiling characteristics.  That is, the application should 

provide dynamic updates of execution times of key systems.  The application is the real-

time controller discussed above.  In this case, the elements being profiled are the execution 

of controller logic, inter-controller communications, and logic updates. 

 

In the ideal scenario, the application integrator could satisfy application requirements, 

simply by selecting the appropriate attributed components and aspect-based properties and 

using them ‘as is’.  The attributed components chosen should address primary application 

functionality.  In the case of a real-time controller, attributed components should handle 

controller logic execution, inter-controller communications, the reconfiguration of the 

controller program, and any other subsystems of the controller.  The attributed components 

should also include bindings to crosscutting functionality that address the profiling 

crosscutting concern.  We would expect each attributed component to include an attribute 

type corresponding to the profiling used.  Preferably, the same attribute type would be used 

by each attributed component.  This would allow for a consistent implementation of the 

mechanism used to report profiling information to an administrator.  We would expect the 

aspect-based property to place the profiling information in a central location for inspection, 

but the actual reporting mechanism may vary considerably with some aspect-based 

properties simply updating a file or a shared memory location and others providing a 

complete UI from which profiling values can be observed.  Using a single aspect-based 

property throughout the application avoids these variations. 

 

The independent development and subsequent composition of the attributed components 

supporting primary controller functionality and the profiling aspect-based property is made 

possible by language-independent AOP.  Normally, crosscutting with AOP exposes 

language dependencies when aspects and components are woven.  Composition can then 

go on if the components and aspects involved coordinate on the basis of language, but to 

do so takes away from the independence of their developers.  With language-independent 

AOP, these components and aspects will be woven together, regardless of their 

implementation language.  Figure 3.13 visualises the composition available with language-

independent AOP that is exploited by the application integrator role.  In this figure, 
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attributed components ‘A’, ‘B’ and ‘C’ are composed into an application.  Interoperability 

among components written in different languages is familiar to component-oriented 

programming.  Aspect-based properties go further by allowing functionality to crosscut 

components of a system.  This crosscutting corresponds to language-independent AOP, 

because the aspects and the components they crosscut can be implemented in a variety of 

languages.  For example, in Figure 3.13 aspects in the form of aspect-based properties 

written in C#, SML.NET and Visual Basic crosscut three components also written in these 

languages.  Here, the aspects provide persistence, security and logging functionality. 

Component ‘B’
(SML)

Component ‘C’
(C#)

Component ‘A’
(Visual Basic) Application

Persistence
(Visual Basic)

Security
(SML)

Logging
(C#)

Sec-
urity

Persis-
tence

Weaver

Log-
ging

Component ‘A’

Component ‘B’

Component ‘C’

 
Figure 3.13:  Overview of language-independent AOP. 

3.1.3.2 Using Custom Crosscutting 

The previous scenario presented the ideal application of our programming model.  The 

application integrator benefited greatly from the presence of attribute annotations in the 

components being integrated into an application.  Using attribute types, the component 

implementer had been able to specify the bindings between the component and an aspect-

based property implementing profiling.  Thus, the application integrator did not need to 

understand the AOP mechanism and the operations it relied upon to implement 

crosscutting.  More importantly, the attributed components and aspect-based property 

could be used ‘as is’.  Independently developed components could be crosscut without 

modification. 
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To deal with situations in which components are not properly annotated, the programming 

model makes available a customization mechanism in the form of custom crosscutting.  

Previously, we introduced the application integrator as being responsible for choosing 

required attributed components, aspect-based properties consistent with the attribute type 

accompanying the attributed component, and for creating integration components for a 

specific application.  In addition to these functions, the application integrator role can 

customise the crosscutting specification of an existing aspect-based property.  This 

involves making application-specific edits to the aspect-based property.  Exercising this 

capability is extremely restrictive as it introduces application-specific dependencies into 

the crosscutting specification being modified.  The justification for allowing such changes 

is that it allows the programming model to incorporate legacy components that cannot be 

dealt with by the component writer role.  For example, component source may not be 

available or recompilation may involve using a new compiler that can potentially introduce 

new flaws.  Moreover, custom crosscutting specifications allow our model to avoid 

preplanning problems and allow tailorability even for legacy components. 

 

Custom crosscutting involves writing new pointcuts for an existing crosscutting 

specification.  For example, we may want to modify the logging aspect-based property of 

Figure 3.7 so that it applies logging to the execution of methods of an existing I/O library 

such as tcdIO [Cah'02] that was not previously annotated with the Logging attribute.  The 

updated pointcut appears in Figure 3.14 alongside the attributed-based original.  The 

updated pointcut is similar to the original in that it makes use of a single execution 

primitive pointcut designator.  The difference is that instead of parameterizing the 

primitive pointcut designator in terms of an attribute, custom crosscutting is based on type 

specifications such as type names and the signatures of type members.  We will elaborate 

on the syntax of this example in section 3.2.2, when we discuss the syntax of pointcuts that 

aspect-based properties use to select join points. 

 

Besides allowing legacy components to be crosscut, custom crosscutting deals with 

scenarios in which the attribute type of an attributed component is not specifically 

supported by an aspect-based property, but this aspect-based property provides the 

underlying functionality required to support the attribute type.  Such a situation occurs 

when the attribute types used to annotate an attributed component differ in name to those 

expected by the aspect-based property, but not in terms of semantics.  For example, 

different attribute types for logging may be satisfied by the same aspect-based property if 
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Figure 3.14:  Sample of custom crosscutting used to attributed-based crosscutting of Figure 3.7. 

the attributes used to specify logging have different names but the same meaning.  In such 

cases, custom crosscutting allows the application integrator to step in and integrate the 

attributed component and aspect-based property by amending an existing pointcut. 

 

Custom crosscutting is loosely based on the abstract pointcut facility available with 

AspectJ [Asp'02] upon which we base our aspect model.  In the AspectJ language 

specification, abstract pointcuts are used to make aspects reusable.  Abstract pointcuts 

allow advice to be defined independently of a particular application in which this advice 

will be applied.  Reuse is a matter of providing a concrete implementation for the abstract 

join point.  Our model for customization differs slightly in that there is an existing pointcut 

that is being modified rather than there being no existing implementation.  
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3.1.4 Application Deployer 

 
Figure 3.15:  Overview of products required and produced by application deployer role. 

The application deployer is responsible for ensuring that attributed components are woven 

with aspect-based properties.  An overview of the products required and created by this 

role is shown in Figure 3.15.  Essentially, the application deployer exploits a weaver to 

weave aspect-based properties into the components of an application.  Weaving is carried 

out according to the crosscutting specifications of aspect-based properties, whether they 

are the original version created by the aspect-based property writer or versions with custom 

crosscutting added by the application integrator.  A post-weave component is referred to as 

a property-bound component to indicate that any required crosscutting functionality has 

been bound to the component.  All components produced by the application deployer are 

property-bound components, as the weaver is applied to all components of an application, 

regardless as to whether or not they are annotated with an attribute type.  Access to 

attribute types is also required as the weaver does not remove attributes exploited by 

aspect-based properties from components, and so it may happen, for whatever reason, that 

attributes defined by an attribute type are inspected using the component platform’s 

reflection API.  Such introspection has been known to require that the attribute type be 

instantiated, and doing so requires the type implementation to be on hand. 

 

Chapter 2 pointed out that load-time weaving was well suited to weaving components, as 

load-time weaving is consistent with the deployment characteristics of components and 
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suits PA crosscutting semantics.  In the case that the component distribution format 

includes a rich self-describing metadata and component behaviour is written in terms of 

byte code, load-time weaving also supports clear-box crosscutting.  Clear-box crosscutting 

is required to support the finer granularity crosscutting available with a PA mechanism.   

 

Also, load-time weaving meets our requirements for language-independence.  Recall from 

Figure 3.13, that the weaver used to compose aspect-based properties with attributed 

components and other components will support language-independent AOP.  With respect 

to weaving, language-independence requires weaving be based on details stored in the 

distribution format of the component rather than details in the source code used to 

implement the component.  Load-time weaving suits language-independence as it makes 

exclusive use of the component’s distribution format.   

 

A variety of mechanisms are suitable for implementing load-time weaving; however, the 

weaver architecture used by aspect-based properties is modelled on the mechanism used by 

Binary Component Adaptation (BCA) [Coh'98].  The BCA mechanism was presented in 

the context of other weaving mechanisms in Figure 2.22.  BCA distinguishes itself from 

other load-time transformers in that it uses a modified JVM in which the bootstrap loader 

is replaced with one that hooks into the BCA transformation engine.  The programming 

model for aspect-based properties uses the same approach.  Before invoking the weaver, 

the application deployer must make the weaver aware of the aspect-based properties that 

are available.  In our prototype implementation, the weaver locates aspect-based properties 

by looking at a directory known to the weaver, but other implementations may provide a 

different means to identify aspect-based properties, for instance through configuration files 

or an operation system registry.  In addition to correctly positioning aspect-based property 

files, the application deployer is responsible for launching the component execution 

environment using the modified bootstrap loader. 

 

3.1.5 Programming Model Summary 

Application development involving aspect-based properties is split between four roles 

shown together with their products in Figure 3.16.  Reusability is addressed by splitting the 

implementation of aspect-based properties and their binding to a particular component 

between two programming roles.  On the one hand, the aspect-based property writer 

produces aspect-based properties for use in an application.  Aspect-based properties consist 
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Figure 3.16:  Overview of roles and products of development involving aspect-based properties. 

of XML-based PA crosscutting specifications and a component implementing advice 

behaviour.  Attribute-based crosscutting is used to decouple the aspect-based property and 

that component to which it will be applied, and an attribute type is provided for accessing 

aspect-based property functionality.  Thus, any component writer is able to use an aspect-

based property by annotating the component source in accordance with the attribute type.  

The annotated component is referred to as an attributed component, and it is distributed 

with the attribute types with which it is annotated.  Attributed components and aspect-

based properties are interoperable regardless of implementing language as they are woven 

together using language-independent AOP.  Thus, an application integrator can select 

attributed components, and aspect-based properties without regard for their implementing 

language.  The application integrator can exploit custom crosscutting to crosscut legacy 

components and to adapt aspect-based properties to non-native attribute types.  Integration 

components required for application specific integration may also be produced by this role.  

All these products are passed to the application deployer, who ensures that the load-time 
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weaver has access to all aspect-based properties, and launches the execution environment 

with the weaver’s bootstrap loader. 

 

3.2 Writing Crosscutting Semantics 

Attribute-based crosscutting specifications of aspect-based properties as well as custom 

crosscutting specifications are written using a PA mechanism.  To understand how to write 

a crosscutting specification, we discuss the task of writing a logging aspect-based property 

in terms of the aspect model available with this PA mechanism.  In subsection 3.2.1, we 

look at where logging can be added to the execution of component code.  The points 

available correspond to the join point model.  In subsection 3.2.2, we look at how these 

join points are selected for logging.  The means of identifying join points is through 

pointcuts.  So, in this subsection, the primitive pointcut designators available are 

enumerated before a series of examples are provided to detail how a pointcut is written in 

XML.  Certain types of logging will want to report execution parameters.  These are 

accessed through typed formal parameters, and so we cover binding of join point execution 

context to typed formal parameters.  Broadly speaking, three techniques exist for writing 

crosscuts with pointcuts, and these techniques can be placed in a spectrum according to 

how coupled the crosscut is to implementation of join points that it references.  Custom 

crosscutting is realised with name-based crosscutting in which pointcuts are parameterised 

with precise signature and type information, or with property-based crosscutting in which 

uses signature and type patterns are used.  The attribute-based crosscutting used with 

aspect-based properties relies on property-based crosscutting written in terms of attributes, 

which references no join point implementation.  We provide overviews of each approach in 

turn.  Logging behaviour is bound to pointcuts using advice, which is the means of 

modifying join point semantics.  Advice is the focus of the final subsection.  Essentially, 

advice specification is about cross-referencing the method implementing advice with the 

pointcut describing where it is applied.  In this subsection, the XML schema for advice is 

presented along with a programming example of advice that accesses join point execution 

context and one that does not. 

 

3.2.1 The Join Point Model 

The points in program execution at which we can bind logging are dictated by the PA 

mechanism’s join point model.  With aspect-based properties, the join point model is that 
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of AspectJ V1.0.6.  The join point types available are listed in Table 3.1.  This table is 

identical to Table 2.2, which presented the join points available in the AspectJ PA model.  

Table 3.1:  Join point types available with aspect-based properties. 

Join point category Join point types 
Execution Method execution 

Initializer execution 
Constructor execution 
Static initializer execution 
Handler execution 
Object initialization 

Call Method call 
Constructor call 
Object pre-initialization 

Field access Field reference 
Field assignment 

 

Note that due to the language-independence constraints of the aspect-based property 

programming model, the join points identified in the join point model are not specific to a 

particular programming language.  Rather, they are join points that are identifiable in the 

distribution format of the components for the component platform for which aspect-based 

properties are implemented.  If the component format provides a discernable 

implementation for these join points, then it is straightforward to implement aspect-based 

properties for the component platform.  Otherwise, additional work will be required to map 

the join points to whatever structures are discernable, and where a mapping is not available 

the full join point model may not be available. 

  

The logging example considered in this section should report the execution of methods 

within a type so that stack traces detailing program execution can be observed from a 

logging file.  This limits the join points of interest to method and constructor executions.  

Constructor execution join points offer finer grained tracking than object initialization join 

points.  For simplicity, our example ignores initializer join points. 

 

3.2.2 Means of Identifying Join Points 

Selecting join points for logging is a matter of writing a pointcut.  Pointcuts in aspect-

based properties are not embedded in advice expressions as they are in AspectJ.  Instead, 

advice is applied to a pointcut by referencing the name assigned to a named pointcut 

during its declaration.  We borrow from AspectJ terminology when we refer to a pointcut 

defined in this manner as a named pointcut [Asp'02].  As well as its name, the declaration 

of a named pointcut includes a declaration of its typed formal parameters and a series of 
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logically combined primitive pointcut designator specifications.  The primitive pointcut 

designators available mirror the set available with the AspectJ V1.0.6 PA model.  These 

designators are summarised in Table 3.2, and their semantics are consistent with their 

descriptions in section 2.2.1. 

 

The need to always use named pointcuts defined in aspect-based properties may at first 

appear to be more cumbersome than simply including them as part of an advice statement.  

In fact, providing a clear separation between advice and pointcuts reduces the complexity 

of the XML schema for advice by eliminating the pointcut-related tags.  Another advantage 

is that the separation limits custom crosscutting from having to modify advice. 

Table 3.2:  Primitive pointcut designators available with aspect-based properties. 

call(Signature)   within(TypePattern) 

execution(Signature) withincode(Signature) 

initialization(Signature) this(TypePattern or Id) 

get(Signature) target(TypePattern or Id) 

set(Signature) args(TypePattern or Id,  ...) 

handler(TypePattern) cflow(pointcut) 

staticinitialization(TypePattern) cflowbelow(pointcut) 

The logical operators available for combining primitive pointcut designators are the same 

as those available with the AspectJ model, and they appear in Table 3.3.  Syntactically, 

they are either expressed as XML tags, in the case of logical and as well as logical or, or as 

an XML tag attribute in the case of logical not. 

Table 3.3:  Logical operations for combining primitive pointcut designators. 

Operation XML Expression Semantics 

Or 
<or> 
  <pointcut>…</pointcut> 
  <pointcut>…</pointcut> 
</or> 

Returns union of join points selected by 
primitive pointcut designators 

And 
<and> 
  <pointcut>…</pointcut> 
  <pointcut>…</pointcut> 
</and> 

Returns intersection of join points selected by 
primitive pointcut designators 

Not <pointcut logical_not="false">…</pointcut> 

Inverts the meaning of a pointcut specification. 

NB:  Implemented as an XML tag attribute, 
and not a tag itself. 

To express the crosscutting required for logging, we would need to write a named pointcut 

to select method and constructor execution join points.  An overview of the XML tag used 

to define a named pointcut is shown in Figure 3.17.  The variable elements are enumerated 

in the figure, and the first item of interest is the named pointcut’s name.  This name 
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Figure 3.17:  Overview of XML-based declaration of a named pointcut. 

corresponds to a valid Java identifier, which reflects the Java origins of the AspectJ 

language specification.  Implementations of aspect-based properties have the option of 

choosing a different identifier specification if required. 

 

Logging provides richer information if details of join point execution state are recorded.  

Access to join point execution context is through typed formal parameters defined in the 

pointcut specification.  All typed formal parameters are first declared in the 

<local_var_ref> tag.  Each declaration specifies the variable’s type and name.  The 

typed formal parameter is bound to a variable in the context of join point execution.  This 

binding occurs when the typed formal parameter’s name is referenced by context-exposing 

primitive pointcut designators.  These are the this, target, and args primitive pointcut 

designators, which are described in detail in Table 2.4 on page 36, and we will see an 

example of their use in the next figure. 

 

The final element of the named pointcut contains the primitive pointcut designators that 

bind typed formal parameters, and select join points.  In Figure 3.17, two primitive 

pointcut designators are combined using the logical and operator.  The args primitive 

pointcut designator is used to bind the typed formal parameter, while the execution 

primitive pointcut designator is used to select execution join points.  For brevity, their 

inner tags have been truncated. 
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The specifics of using typed formal parameters appear in Figure 3.18, where a typed 

formal parameter is declared and used in a primitive pointcut designator.  The typed formal 

parameter is referenced by name in the primitive pointcut designator’s arguments.  Since 

this identifier is not used outside the crosscutting specification, we adopt the same naming 

conventions as AspectJ, and allow the name to be any valid Java-style identifier.  

However, the type used in the typed formal parameter declaration must be a valid type in 

the component platform for which aspect-based properties are being implemented.  For 

example, our prototype implementation targets the CLI, and so the type name must be a 

valid CLI type name.  For instance, the example in Figure 3.18 declares a typed formal 

parameter of the type Int32 that is referenced by the name data. 

 
Figure 3.18:  Overview of XML-based declaration and binding of typed formal parameters. 

The ability to use typed formal parameters is limited by compilation dependencies 

introduced by their use.  To pass a typed formal parameter to the aspect-based property’s 

advice implementation requires that the method implementing advice have a parameter 

with the same type as the typed formal parameter.  This requirement makes compilation of 

the method implementing advice dependent on being able to access a declaration for the 

typed formal parameter’s type.  Given that the intent of aspect-based properties is that they 

be developed separately from the components to which they are applied, it is hardly likely 

that declarations of specialised types will be available to aspect-based properties.  To allow 

a reference to be obtained to objects whose type the method implementing advice has no 

knowledge of, the AspectJ specification allows a typed formal parameter to be declared to 

be of type object.  Typed formal parameters of type object match any join point 

parameter type.  Making use of this loophole with aspect-based properties is a matter of 
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finding a type in the component platform targeted that has the same properties as type 

object in Java.  For instance, the Object type in the CLI’s unified type system offers this 

functionality, as any value type or reference type can be cast to Object a reference.  Thus, 

it would be possible to replace Int32 with Object in Figure 3.18. 

 
Figure 3.19:  Categorization of crosscutting specification according to implementation dependency. 

In section 3.1, we explained that the attribute-based crosscutting written by an aspect-based 

property writer corresponds to property-based crosscuts written in terms of attributes.  We 

also pointed out that custom crosscutting created by an application integrator uses name-

based and property-based crosscutting written in terms of implementation details such as 

type specifications, method signatures and field signatures.  These three approaches to 

crosscutting are placed along a continuum in Figure 3.19 from most to least 

implementation specific, and the figure draws a line between the approach taken to 

crosscutting when writing aspect-based properties and the approach taken when writing 

custom crosscutting.  Specifically, the attribute-based crosscutting used with aspect-based 

properties avoids any reference to implementation details, whilst forms of crosscutting 

include partial or complete implementation details when identifying join points. 

 

In the following subsections we describe the XML syntax for writing each of these three 

approaches. 
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3.2.2.1 Name-based Crosscutting 

 
Figure 3.20:  Overview of XML type patterns and signatures used for name-based crosscutting. 

Name-based crosscutting occurs when a primitive pointcut designator’s arguments are 

precise metadata descriptions.  Several primitive pointcut designators in Table 3.2 take 

signature or type arguments.  The general format for XML specifying these arguments is 

shown in Figure 3.20, where identifier is a string that corresponds either to a type 

defined for the component platform for which aspect-based properties are implemented or 

to the name of a field or method.  With name-based crosscutting, type pattern arguments 

are specified with a specific type name, which takes the place of identifier.  Signatures 

are used for identifying fields and methods.  Here, the <parameter> tags correspond to the 

arguments in a method signature, so the number of these tags used in a signature varies.  

The <join_point_type> tag identifies the type containing the field or method being 

identified.  Note that constructors correspond to methods for which the <return_type> tag 

is missing and for which the method name is “ctor”.   Name-based crosscutting requires 

that the details in the pointcut specification match exactly the metadata description of the 

structure implementing join points that the pointcut is selecting.  Metadata details do not 

necessarily correspond to the programming language specification for a signature or type.  

Take the example of the CLI, which is targeted by our prototype.  The metadata type 

System.Int32 corresponds to the int type in C# and Integer in VisualBasic.NET.  
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When custom crosscuts are being written, it is useful to examine the software component’s 

metadata to determine the exact signature rather than rely on the written API of a 

component, which may specify types and signatures in terms of source code.  For instance, 

CLI provides the Ildasm program with introspection facilities that allow component 

metadata to be examined directly.  This program can be used to dissect metadata details 

from a component to ensure that name-based crosscutting is written correctly.  For 

example, in Figure 3.5 of section 3.1.1.1, Ildasm was referenced when name-based 

crosscutting was written to capture constructor join points corresponding to the execution 

of a particular constructor.  For reference, this example appears again at the bottom of 

Figure 3.21. 

 
Figure 3.21:  Name-based and property-based alternatives for selecting join points corresponding to 

the execution of a class Foo constructor with a single argument. 

3.2.2.2 Implementation-based Property-based Crosscutting 

Implementation-based property-based crosscutting relies on partial descriptions of 

signatures and type patterns rather complete signatures and specific type names.  We can 
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think of such property-based crosscutting as specifying signatures and type patterns with 

regular expressions rather than precise strings.  At the top of Figure 3.21, is a property-

based alternative to name-based crosscutting in which most identifiers are specified using 

wildcard characters.  This example demonstrates the use of ‘*’ in the XML, which is a 

wildcard character that allows identifiers and type names to be specified with a regular 

expression.  ‘*’ can be used at any point in an identifier, and it matches any combination of 

characters.  When it comes to parameters, a more powerful wildcard is available in the 

form of the <param_wildcard> tag, which is used in place of a set of <parameter> tags.  

<param_wildcard> matches any combination of parameters, regardless of type or number.  

Finally, the specification of type patterns need not be done with a single <type_name> tag.  

Rather, several <type_name> tags can be combined using the logical operator tags of Table 

3.3.  When doing so, <type_name> tags appear in place of <pointcut> tags shown in the 

table. 

 
Figure 3.22:  Sample of custom crosscutting with implementation-based property-based crosscutting. 

The pointcut in Figure 3.22 is typical of custom crosscutting that uses implementation-

based property-based crosscutting to apply aspect-based property functionality to a legacy 

component.  This example includes a typed formal parameter of type Object that is 
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assigned a reference to the first parameter of the method matching the pointcut.  Implicitly, 

this means the matching method must have at least one parameter.  Of more importance, as 

far as custom crosscutting is concerned, is that this example uses the containing type name 

and a method prefix to crosscut the execution of several methods of a legacy component 

rather than the specific signatures of each method.  The component being crosscut is 

assumed to be a legacy component in that its implementation cannot be revised to include 

the attributes required to bind to the logging aspect-based property’s original crosscutting 

specification.  An important assumption in using custom crosscutting is that the application 

integrator writing the custom crosscutting will have sufficient knowledge of the component 

being crosscut to select correct join points and not to interfere with correct operation of the 

application being crosscut. 

3.2.2.3 Attribute-based Property-based Crosscutting 

When an aspect-based property writer writes the crosscutting specification of aspect-based 

properties, as opposed to the custom crosscutting implemented by an application 

integrator, attributed-based crosscutting should be used.  The syntax for writing such 

pointcuts is derived by substituting type pattern or signature parameters shown in Figure 

3.20 with <attribute> tag shown in Figure 3.23. 

 
Figure 3.23:  XML used to specify signatures or type patterns in terms of attribute types. 

An example of attribute-based property-based crosscutting appears in the pointcut of 

Figure 3.24.  This pointcut is reminiscent of the crosscutting specifications presented in the 

overview of aspect-based properties in Figure 3.7, page 71, in that the pointcut 

specification is the same.  However, Figure 3.24 puts the pointcut in the context of an 

overall application in which multiple attributed components are being crosscut.  The 

example underscores the point that writing the pointcut in term of attributes allows the 

pointcut to select join points in a variety of attributed components without regard for their 

implementation specifics.  In the figure, methods from two attributed components are 

selected for logging based on annotation of their implementation with the Logging 

attribute.  Recall that aspect-based property writer should complement the pointcuts that 

reference attributes with attribute type implementations that allow the component writer to 
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annotate component code.  These attribute types provide an API by which aspect-based 

property functionality is accessed.  The name of an attribute type includes a namespace or 

package details that correspond to the aspect-based property being accessed as opposed to 

other aspect-based properties implementing logging.  In Figure 3.24 the namespace details 

have been removed from the example for brevity.  We provided a sample attribute 

implementation in Figure 3.8, but further details on implementation of attribute types for 

our prototype appear in Chapter 4. 

 
Figure 3.24:  Attribute-based crosscutting used with aspect-based properties. 

 

3.2.3 Means of Modifying Join Point Semantics 

Having shown method execution join points being for logging with both custom 

crosscutting and attribute-based crosscutting, we need to add the logging functionality to 

the join points selected.  Join point behaviour is modified using advice.  The kinds of 

advice available with aspect-based properties are the same as those available with AspectJ, 

but the specification of advice with aspect-based properties is divorced from the 

implementation of advice whereas AspectJ couples the two.  Thus, advice written for 

aspect-based properties does not have access to a reflective API or the ability to proceed 

from advice to join points via the keywords that are available with AspectJ.  This decision 

reflects our interest in maintaining language-independence.  Providing AspectJ-like 
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language keywords would require extensions to the languages in which aspect-based 

property behaviour was implemented.  To avoid this, Aspect-based properties make 

reflective and proceed functionality available through an interface. 

 

Join point behaviour can be modified using before, around and all flavours of after advice 

described in section 2.2.1.  As with pointcuts, advice specifications are written in XML, 

and they cross-reference a named pointcut that selects the join points to which advice is 

applied with a method that implements the advice.  The use of before and all types of after 

advice places no inheritance restrictions on the type implementing advice behaviour; 

however, this type must be instantiable through a default constructor (i.e., one without 

parameters).  The instantiation requirement reflects the fact that a singleton [Gam'94] of 

the type implementing aspect-based property behaviour is instantiated at runtime.  The 

instantiation of aspect types does not figure prominently in characterisations of the PA 

mechanism such as  [Mas'03], but it is none the less useful as it allows aspects to have 

state.  The implementation of around advice requires the ability to proceed to join point 

execution, and this functionality is provided by an API implemented by the weaver that 

weaves aspect-based properties and components.  This API is accessed through 

inheritance.  We will discuss this API further when we present an example implementation 

of around advice later in this section. 

 
Figure 3.25:  XML syntax for before advice. 

The schema used for advice specification varies according to the type of advice being 

specified.  Overviews of the schemas for before, after and around advice are provided in 

Figure 3.25, Figure 3.26, and Figure 3.27 respectively.  All schemas are similar in that they 

use the same syntax to reference advice behaviour as well as the pointcut that they affect.  

Essentially, references to the pointcut name and the method implementing advice 

behaviour are identifiers that cannot be specified with wildcard characters.  Before, after, 

and around advice distinguish themselves by varying the tag containing the advice 
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specifications according to the advice type, and the tags used are <before>, <after> and 

<around> respectively.  These tags appear in bold in Figure 3.25, Figure 3.26, and Figure 

3.27.  In addition to pointcut and advice implementation details, around and after advice 

require additional information, which is specified using additional inner tags.  The optional 

tags for after advice that are pointed out in Figure 3.26 allow after, after returning and after 

throwing advice to be distinguished.  For after returning advice, a typed formal parameter 

must be declared to correspond to the value returned by the join point.  This occurs inside a 

<returning_params> tag and involves specifying the type and name of the typed formal 

parameter.  Being a typed formal parameter, a reference to the return value is passed to the 

method implementing advice, and this reference corresponds to the last advice method 

parameter.  For join points that do not return a value, such as field set join points, the typed 

formal parameter should be declared with a type of Void.  An almost identical approach is 

taken for specifying after throwing advice.  The only difference is that the typed formal 

parameter must be declared inside a <throwing_params> XML tag so as to distinguish 

itself from after returning advice.  Note that declaring the typed formal parameter to be of 

type Object will match any non-void return type.  As with typed formal parameters 

declared in pointcuts, using a return type of Object will match any return type, and an 

object reference or its equivalent will be passed to the method advice implementing 

advice.  Finally, after advice is specified when no typed formal parameter corresponding to 

the return or thrown type is declared. 

 
Figure 3.26:  XML syntax for the variations of after advice.  
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Figure 3.27:  XML syntax for around advice. 

 
Figure 3.28:  Example of before advice in the context of a complete aspect-based property. 
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In contrast to after advice, around advice specifications do not use a typed formal 

parameter to specify the return type.  As pointed out in Figure 3.27, around advice simply 

includes a description of the return type of the join points to which it is applied.  This 

subtle difference occurs as a join point result must be known for it to be assigned to a typed 

formal parameter.  This is not possible in the case of around advice, as the around advice 

executes before the join point to which it is applied.  Thus, a typed formal parameter 

cannot be used to specify the return type.  The return type must still be known for correct 

join point matching, and so it is expressed directly.  For consistency with typed formal 

parameters, the use of the Object type as the return type will match any return type. 

 

The aspect-based property in Figure 3.28 includes a sample advice statement that maps the 

ExecJptObjParam pointcut to an advice implementation that creates a log entry when a 

join point is about to execute.  We first introduced this named pointcut in Figure 3.22, 

where it was presented as an example of custom crosscutting in which a pointcut was 

tailored to a legacy component, but in this version attribute-based crosscutting is used.  Let 

us first focus on the outer tags that encompass pointcut and advice statements, including 

those used to select the type implementing advice.  Crosscutting specifications appear 

within an <aspect> XML tag, which contains leading <assembly> and <type> XML tags 

to identify the component and type containing the methods implementing advice 

behaviour.  All methods implementing advice are contained in a single type to simplify 

support for aspect instantiation.  By using a single type, aspect instantiation can be mapped 

to object instantiation in the underlying component platform.  In Figure 3.28, these 

component and type references select a class Logger that happens to be implemented in 

C# as indicated by arrow ‘1’.  Following these references is a <body> tag containing all 

advice and pointcut specifications for the aspect-based property.  Recall that advice 

specifications indicate the type of advice being applied with a tag corresponding to the 

advice type, so the before advice in Figure 3.28 is specified within the <before> tag.  This 

advice cross references a pointcut to which advice is applied.  In this case, the 

ExecJptObjParam named pointcut is used, and this reference is indicated by arrow ‘2’.  

The ExecJptObjParam pointcut uses the execution primitive pointcut designator to limit 

the join points being logged to methods and constructors annotated with an attribute with 

the name Logging.  The set of join points selected is further limited to those with at least 

one calling parameter by the use of the args primitive pointcut designator.  The pointcut 

declares a single typed formal parameter of type Object, which the args primitive 

pointcut designator binds to the first parameter used to invoke the join point.  The final 
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element of the before advice is a reference to the method implementing advice.  Advice 

behaviour is implemented by the LogBefore method of class Logger, as pointed out by 

arrow ‘3’.  The single object parameter of LogBefore is satisfied by the typed formal 

parameter of the ExecJptObjParam pointcut.  A reference to this parameter is passed when 

LogBefore is invoked. 

 
Figure 3.29:  Overview of advice behaviour implementation. 

Advice behaviours are implemented by methods that have a parameter list corresponding 

to the typed formal parameters declared directly by advice and the pointcut advice 

references.  These methods can be static, or they may be instance methods as is the case in 

Figure 3.29, which shows the C# implementation of LogBefore from the before advice in 

Figure 3.28.  Recall that a singleton of the type implementing aspect-based property 

behaviour is instantiated when the woven application starts executing, which is why this 

type must have a public default constructor.  Thus, in the full implementation of class 

Logger in Figure 3.29, the default constructor, shown in bold, is made public.  The method 

being referenced by advice as well as its containing type should be accessible from outside 

the component in which they are contained.  In our example, it suffices to label the method 

and type with a public access modifier.  Typed formal parameters are passed to the method 

implementing advice in the order in which they are declared.  That is, typed formal 

parameters declared by the pointcut are passed before those declared in the advice, and 

those of the pointcut are passed in order of declaration.  To satisfy the crosscutting 

specification of Figure 3.28, LogBefore need only declare a single argument of type 

Object, but if the pointcut or advice had additional typed formal parameters a longer list of 

arguments would have been used. 

 

In Figure 3.28, advice did not provide details on the result of an operation, whereas more 

interesting logging would include details of the results of a method execution.  While the 

previous example could be appended with after advice, an example in which around advice 
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is used to capture additional details will allow us to discuss the reflective and Proceed 

APIs available to around advice.  In AspectJ, keywords are made available that provide 

access to reflective objects describing the join points and the join point context.  Likewise, 

around advice can call upon the proceed keyword to pass execution control towards the 

join point selected for advice.  In doing so, the proceed keyword causes the join point, or 

the next around advice applied to the join point, to execute.  However, these keywords 

limit the ability to implement aspect-based properties in a variety of languages, since a 

language must be extended with these keywords to allow around advice and reflection can 

be completely supported.  Our solution is to introduce an interface to support reflection and 

proceed, called IAspect.  A specification of the interface targeted at the CLI is pictured in 

Figure 3.30.  The reflective API mirrors that of AspectJ, with keywords mapped to 

correspondingly named access methods.  Indeed, the same types are used to store reflective 

information as those used by AspectJ.  It is difficult to implement the interface independent 

of the weaver, as the weaver provides the reflective information that determines which 

method is called when around advice calls Proceed.  Also, the weaver initialises data 

structures that the reflective API provides access to.  Thus, access to the IAspect is 

through the inheritance of an implementation provided by the weaver implementer. 
 
public interface IAspect { 
  org.aspectj.lang.JoinPoint             JoinPoint{get;set;} 
  org.aspectj.lang.JoinPoint.StaticPart  JoinPointStaticPart{get;set;} 
  org.aspectj.lang.JoinPoint.StaticPart  EnclosingJoinPointStaticPart{get;set;}
 
  object Proceed(params object[] obj); 
} 
 

Figure 3.30:  IAspect interface that provides language-independent access to Proceed and 

reflection APIs exploited by advice. 

 
Figure 3.31:  Around advice alternative to advice in Figure 3.28. 

We discuss the methods of IAspect in the context of an example of an around advice 

crosscutting specification shown in Figure 3.31 and its advice behaviour implementation 
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shown in Figure 3.32.  Figure 3.31 clarifies the XML used to specify around advice.  The 

advice implementation in Figure 3.32 passes control from advice to the join point midway 

through the execution of the advice behaviour.  In this example, behaviour is written in C#, 

which reflects our choice of the CLI for a prototyping aspect-based properties.  Control is 

passed when LogAroundJpt calls the Proceed method of the IAspect interface.  An 

implementation of this interface is available from the Aspect class that the implementation 

of class Logger inherits.  We should clarify that in this particular implementation, IAspect 

interface methods are not part of class Aspect’s public interface, and so the self 

reference, this, must be recast to an IAspect reference before the Proceed method can be 

accessed.  This is done so that the aspect-based property writer need not worry about 

conflicts between method names in the aspect behaviour implementation and methods 

defined in the API provided by IAspect. 

 
Figure 3.32:  Use of runtime libraries for reflection and proceeding from around advice. 

Note from its use in Figure 3.32 that the Proceed method has only one parameter, which is 

an array of object references corresponding to the arguments of the method from which 

Proceed is called.  Thus, a call to Proceed involves obtaining object references for each of 

the advice method parameters and placing these references in an array of type Object.  

The Proceed method returns the result of the join point as an Object reference.  The 

return type of the method implementing around advice must match the declared return type 

in the advice statement.  If this is type Object, then the result of Proceed should be cast to 



 

105 

the method’s return type before it is returned.  When the return type is Void, the result of 

Proceed is a null reference, and casting is not an issue as no result will be returned.   

 

Figure 3.32 also includes an example use of the reflective API.  In this case, a description 

of the join point at which advice is executing is obtained from the JoinPointStaticPart 

reference provided by the IAspect interface. 

 

3.3 Summary 

In this chapter, we presented a programming model for aspect-based properties.  Aspect-

based properties provide an AOP-based solution to tailorability and preplanning issues 

with contextual composition by providing a PA mechanism for writing new crosscutting 

functionality.  Moreover, aspect-based properties can be applied to components after their 

design either through attributes applied prior to component compilation or via custom 

crosscutting specified after component compilation. 

 

The programming model for aspect-based properties addresses reusability and language 

independence problems with AOP using attribute-based property selection and language-

independent AOP.  Aspect-based properties use attribute-based crosscutting in which 

pointcuts are parameterised with attributes, and attribute types are provided to access 

aspect-based property functionality.  By specifying component-aspect bindings with 

attribute types, component writers avoid then the need understanding the PA mechanism 

underlying composition.  To allow aspects and components to interoperate without regard 

for implementation language, the mechanism for specifying crosscutting specifications, 

implementing crosscutting behaviour and weaving aspects and components includes no 

language dependencies.  Crosscuts are written in XML rather than language extensions, 

and pointcuts are expressed in terms of component metadata rather than language-specific 

types and signatures.  Advice behaviour is accessed from component interfaces, and the 

implementation of aspect advice avoids the keywords that might introduce language-

specific details.  Finally, a load-time weaver is used to compose components and aspects 

based on details of their distribution format. 
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Chapter 4 Implementation 
 

 

“Developers, developers, developers, developers, developers, developers, developers…”  

–Steve Ballmer emphasising the importance of providing tools to support the developer. 

 

 

 

 

 

 

 

 

This chapter presents the design and implementation of a prototype weaver that supports 

aspect-based properties for the CLI component platform.  Supporting the aspect-based 

property programming model involves implementing a weaver for composing aspects and 

components in a programming environment that facilitates the implementation of 

programming model products such as aspect-based properties, attribute types and 

attributed components. 

 

In the first section, we start by identifying elements of the CLI that support our 

implementation.  Some products of the aspect-based property programming model 

correspond directly to products of the CLI’s existing programming model.  In particular, 

the CLI already provides support for implementing attributed components and attribute 

types.  A weaver supporting a pointcut-advice (PA) mechanism is not available, but the 

CLI simplifies its implementation by providing some necessary infrastructure.  The weaver 

interprets crosscutting specifications written in XML and based on the pointcut-advice 

mechanism described in the AspectJ V1.0.6 Programming Guide [Asp'02].  In the second 

section of this chapter, we explain how such an XML schema is systematically derived 

from a BNF specification for AspectJ V1.0.6.   

 

Our prototype weaver, Weave.NET, addresses two problems:  how to weave aspects and 

components and how to provide weaving at load-time.  In section 4.3, we explain how we 

implement a weaving library that uses byte code instrumentation to weave aspect-based 
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properties with CLI components, and inheritance to provide support for AspectJ facilities 

such as join point reflection and proceed functionality.  In section 4.4, we explain how the 

library is integrated with the execution environment to provide a load-time weaver. 

 

4.1 Exploiting CLI Architecture for Aspect-Based Properties 

We use standardised Common Language Infrastructure (CLI) [Ecm'03b] as the target 

platform for our prototype weaver.  The CLI already supports the ability to define attribute 

types, and includes support for annotating component source code with attributes among 

the requirements of language tools targeting the CLI.  The CLI facilitates the 

implementation of the weaver, because the component format is suitable for clear-box 

crosscutting, while CLI APIs support XML processing and code generation required by the 

weaver. 

Common Language Infrastructure (CLI)

Weaver
Infrastructure

Common 
Language

Specification

Base Class 
Library

Language 
Independent 

Attributes

Common
Type

System

Clear box 
Crosscutting 

Support

Metadata
Standard

Common 
Intermediate 

Language

 

Figure 4.1:  Common Language Infrastructure overview.  

At the top of Figure 4.1 are the requirements met by the CLI.  Clear-box crosscutting, 

language-independent attribute annotation and weaver infrastructure are supported in part 

by the CLI architectural elements identified in the bottom boxes of the figure.  The internal 

details of CLI components suit clear-box crosscutting, as they are standardised in terms of 

the type system they use, the format of their metadata and the intermediate language in 

which method behaviour is expressed.  The CLI Base Class Library (BCL) is a set of APIs 

provided by all CLI implementations, and among the APIs is one specifically for XML 

processing and code generation.  Language-independent component development and 

annotation is made possible by the availability of a Common Language Specification 

(CLS) that allows the CLI to be targeted by compilers supporting a variety of programming 

languages.  Included in the CLS are specifications that allow attributes to be defined in 

variety of languages and used to annotate source code of all of these languages. 
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Support for clear-box crosscutting allows the full range of join points available with the 

aspect-based property pointcut-advice mechanism to be supported.  Clear-box crosscutting 

is supported in part by the rich metadata included in CLI components.  In the CLI, 

components correspond to assemblies, but an assembly is only a logical unit of 

distribution.  The actual physical unit of distribution is the module.  Thus, an assembly 

consists of one or more modules, with each module corresponding to a single file.  

Assembly metadata is organised on a module by module basis with each module 

containing a relational database in the form of several cross referencing tables describing 

all structural elements including types and their members, implemented by the module 

[Lid'02].  The CLI’s metadata specification standardises the tables describing component 

structure as well as the layout of these tables, which makes the metadata representation 

consistent for all CLI components.  The expression of behaviour is also standardised in that 

methods are specified in terms of the CLI’s byte code, called the Common Intermediate 

Language (CIL).  More importantly, field access and method calls are emitted as single 

instructions that are usually parameterised with references to the metadata description of 

the method or field involved.  These opcodes allow call and field access join points to be 

easily identified and distinguished according to their metadata description.  As an example, 

let us look at the opcodes used to implement the Add method of a class Rational shown 

in Figure 4.2.  Notice how calls and field accesses are easily distinguished by the opcodes 

used to specify them.  The opcodes are parameterised with metadata tokens identifying the 

type member being manipulated; however, the disassembler that generated the bottom half 

of Figure 4.2 has gone a step further and replaced the metadata tokens with their text-based 

descriptions.   

 

Among the Base Class Library (BCL) APIs that the CLI provides is infrastructure for 

parsing XML-based crosscutting specifications.  This infrastructure is useful as the aspect 

weaver is responsible for interpreting a crosscutting specification in order to establish what 

modifications must be made to application components during weaving.  In Chapter 3, we 

established XML as a suitable representation for the crosscutting semantics of aspect-based 

properties.  Thus, a requirement of the weaver is the ability to parse the XML specification 

into a navigable object graph so that it may be interpreted.  To simplify XML processing, 

the CLI implements W3C DOM navigation of XML documents [Hor'00].  In contrast to a 

SAX API [Sun'00], the DOM API parses XML files directly into a navigable object graph.  

This CLI’s implementation of this API can also automatically validate the XML against an 
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XML Schema described in W3C XML Schema Language [Fal'01].  The grammar checking 

that validation provides improves usability, because it greatly reduces the amount of error 

checking that needs to be built into the weaver. 

 
Figure 4.2:  Examples of call and field join points in CLI opcodes of a simple method. 

CLI infrastructure also meets the code generation requirements of the weaver.  These 

requirements originate from past experience with implementing weaving as inline code 

modifications.  At that time, we noted these inline modifications proved to be a suitable 

means of aspect-component composition that offered good execution performance 

[Laf'03].  Such changes require byte code instrumentation capabilities.  Rather than write a 

complete code generation engine, it is possible to exploit the CLI’s System.Emit API to 

generate custom versions of a CLI component to suit aspect binding requirements.  As we 

will see, the code generation library has to be complemented with a library able to 

introspect on existing components. 

 

Support for attribute types comes from the ability to create user-defined custom attribute 

types.  Attributes used to annotate types, and type elements, correspond to custom 

attributes in CLI terminology.  Custom attributes are subtypes of System.Attribute that 
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are annotated with attributes of type System.AttributeUsage.  Annotating subtypes of 

System.Attribute with an attribute of type System.AttributeUsage bootstraps the type 

into being an attribute type, and at the same time specifies what structures it can annotate.  

As it corresponds to a normal type, a custom attribute has all the same interoperability 

properties of a CLI type.  Thus, an attribute defined in one language can be used to 

annotate structures in another. 

 

Support for writing attributed components is based on the CLI’s Common Language 

Specification (CLS).  The CLS lays out interoperability specifications for compilers 

targeting the CLI, regardless of the source code being compiled.  This allows attributed 

components to be implemented in any programming language.  Moreover, the CLS 

mandates that component behaviour be written in CIL, which has been designed with 

multi-language development in mind.  For instance, instructions for tail call optimization 

of recursions are included to facilitate functional programming languages.  As a result, 

there are compilers for a number of programming languages that target the CLI.  Actual 

type-safe interoperability of attributed components is the responsibility of the Common 

Type System (CTS), which provides the specification to which types in the CLI are built.  

The CTS was developed with support for multiple programming paradigms in mind, as 

“the CTS supports Object-Oriented Programming (OOP) as well as functional and 

procedural programming languages” [Ecm'03b].  Finally, the CLI makes attributes 

accessible in a language-independent fashion.  Using attributes for annotating definitions is 

different from other forms of type usage such as instantiation or member access.  

Annotation requires specialised language-level support from the tools being used to 

compile the code being annotated.  Fortunately, such support is mandated by the CLS.  

Another minor point is that, by default, all types in the CLI have a constructor method that 

takes no parameters, regardless of the implementing language.  This suits aspect 

instantiation in aspect-based properties, which relies on the presence of a parameterless 

constructor. 

 

For clarity, the following subsection gives further details on how attributes are embedded 

into components, and how new custom attributes are defined and applied. 
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4.1.1 Defining Attribute Types with Custom Attributes 

The CLI, with its custom attributes, provides metadata extensibility by associating 

arbitrary information with metadata elements.  Specifically, a custom attribute is an 

instance of any subtype of System.Attribute that can be associated with an entry in one 

of the 19 CLI metadata tables, shown in Table 4.1.  To control the use of custom attributes, 

an attribute of type AttributeUsage is applied to the definition of the attribute type in 

order to explicitly select which metadata elements instances of the custom attribute can be 

associated with. 

Table 4.1:  Metadata tables that can have custom attributes applied to their elements [Lid'02]. 

Method InterfaceImpl Event AssemblyRef 

Field MemberRef StandAloneSig File 

TypeRef Module ModuleRef ExportedType 

TypeDef DeclSecurity TypeSpec ManifestResource

Param Property Assembly  
 

[AttributeUsage(AttributeTargets.Method)] 
public class MakerInfo : Attribute { 
  private string url; 
 
  public string URL { get { return url; } } 
 
  // Constructors define the positional parameters 
  public MakerInfo(string url) { 
    this.url = url; 
  } 
 
  // Public fields define the named parameters 
  public string Programmer = "None"; 
} 

Figure 4.3:  Declaration of custom attribute type for storing developer details (example written in C#). 

Since the definition and application of custom attributes is hard to visualise, we offer the 

example in Figure 4.3 of a definition of a custom attribute type in C#.  The custom 

attribute is designed to store details about the programmer of a method.  This custom 

attribute allows developer details such as the developer’s website URL and their name to 

be stored in metadata.  Based on the AttributeUsage attribute, the attribute type declared 

in Figure 4.3 can only be applied to methods.  We should point out that the aspect-based 

property programming model does not make use of attribute parameters.  The details in the 

example on how to define parameters for attribute types are for completeness, as attribute 

parameters will not appear in attribute types supplied by an attribute type. 

 

The use of a MakerInfo attribute in a program, again written in C#, is shown in the upper 

section of Figure 4.4, where the application of the attribute appears in bold.  Being type 
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instances, attributes can be parameterised.  In the CLI, this happens using positional 

parameters and named parameters [Ecm'03b].  Positional parameters correspond to 

constructor parameters used to initialise the attribute instance.  So when this attribute is 

instantiated, "http://www.dsg.cs.tcd.ie/~laffertd" is used as the constructor 

argument.  Named parameters correspond to field initialization values.  Referring to the 

example, the assignment of "Lafferty" to the Programmer field corresponds to use 

of a named parameters.   

 

Custom attributes are emitted to a component unchanged by the compiler.  Thus, we can 

see the custom attribute declaration in the lower section of Figure 4.4, where the CLI 

equivalent of the top portion appears.  Here, the attribute declaration is in bold. 

 
class HelloWorld  
{ 
  [MakerInfo("http://www.dsg.cs.tcd.ie/~laffertd",Programmer = "Lafferty")] 
  static void Main(string[] args) { 
    System.Console.WriteLine("Hello World!"); 
  } 
} 
 
 
method private hidebysig static void  Main(string[] args) cil managed 
{ 
  .entrypoint 
  .custom instance void MakerInfo::.ctor(string) = (  
   01 00 22 68 74 74 70 3A 2F 2F 77 77 77 2E 64 73   // .."http://www.ds 
   67 2E 63 73 2E 74 63 64 2E 69 65 2F 7E 6C 61 66   // g.cs.tcd.ie/~laf 
   66 65 72 74 64 01 00 53 0E 0A 50 72 6F 67 72 61   // fertd..S..Progra 
   6D 6D 65 72 08 4C 61 66 66 65 72 74 79 )          // mmer.Lafferty 
 
  // Code size       11 (0xb) 
  .maxstack  1 
  IL_0000:  ldstr      "Hello World!" 
  IL_0005:  call       void [mscorlib]System.Console::WriteLine(string)f 
  IL_000a:  ret 
} // end of method HelloWorld::Main 
 

Figure 4.4:  Use of custom attribute declared in Figure 4.3 and corresponding assembly instructions. 

 

4.2 XML Schema Design 

The actual specification of crosscutting semantics is written in terms of XML.  The XML 

schema used [Laf'02a] was developed from a BNF grammar [Est'02] extracted from the 

Language Semantics Appendix of the AspectJ programming guide V1.0.6 [Asp'02], and 

implemented in the W3C XML Schema Language [Fal'01].  As noted in Chapter 3, the 

AspectJ V1.0.6 grammar is supplemented to allow support for property-based crosscutting 

in terms of attributes.  So, in addition to the schema elements derived from the BNF 

specification for AspectJ V1.0.6 grammar [Laf'02b], an <attribute> tag was added that 
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can be chosen wherever a signature selection is used or a type pattern is required.  This 

tag allows the specification of an attribute type in place of a signature or type pattern.  The 

use of W3C XML Schema language allows more validation to occur within the XML 

specification than in the previous approach of using a DTD to define a schema [Vli'01].  

For example, W3C XML Schema provides regular-expression syntax for restricting the 

values of string data, and this syntax can be used to enforce the naming rules for aspects.   

In contrast, the DTD data type system applies only to attributes of elements, which are 

fields within tags to which values can be assigned. 

 

As much as possible, the schema used exploits the validation capabilities of W3C XML 

Schema. Aspects are expressed mainly in terms of XML tags rather than XML tag 

attributes. The organisation of the tags and their contents are defined by complex types that 

can then validate the grammar used to express an aspect’s crosscutting semantics.  

Naturally, some tags such as identifiers and type patterns must contain data. These tags are 

described with simple types whose data is limited according to regular expressions. This 

removes the need to support a great deal of error checking in the weaver itself. 

 

In the following section, we examine how conversion from AspectJ grammar to an XML 

schema was achieved. 

 

4.2.1 BNF to XML Schema Conversion Rules 

The conversion from BNF to XML focuses on consistency with AspectJ semantics at the 

expense of developing a succinct schema.  In fact, conversion was done according to a 

systematic set of conversion rules.  At the time of schema development, no systematic set 

of conversion rules were evident from the W3C XML Schema Language specification 

[Fal'01], or any related material [XML'01].  To fill this gap, we derived a set of guidelines 

of our own that are presented in the following sections.  Note that the conversion rules 

assume knowledge of BNF as well as W3C XML Schema Language. 

4.2.1.1 BNF Alternatives become choice Selections 

Generally speaking, the left-hand side of a BNF production becomes an XML type 

containing elements defined by the right-hand side of the production.  Expressions on the 

right-hand side that are alternatives appear in a choice tag.  For example, the following 

is the BNF expression for signatures.  



 

114 

<signature> ::=  <method_signature> | 
   <field_signature>   
 

The corresponding XML type contains elements corresponding to the 

<method_signature> and <field_signature> set in a choice tag as we see below. 
<xsd:complexType name="signature"> 
  <xsd:choice> 
    <xsd:element name="method_signature"      type="ax:method_signature"/> 
    <xsd:element name="field_signature"       type="ax:field_signature"/> 
  </xsd:choice> 
</xsd:complexType> 
 

Notice that in W3C XML Schema it is possible to give elements the same name as their 

type provided that the type is not defined in the same scope. 

4.2.1.2 Production Expressions become sequence Selections 

A series of terminals and non-terminals in a single BNF expression are represented as 

elements grouped in a sequence tag.  The right-hand side of the following production is 

the BNF expression representing before advice. 
<before_advice> ::= [<advice_modifier>] before <formal_params>  
       ":" <pointcut> <behaviour> 

 

The corresponding XML type uses the sequence tag to allow the <advice_modifier>, 

<formal_params>, <pointcut>, and <behaviour> tags to appear at the same time in a tag 

describing before advice.  The XML type for <before_advice> is: 
<xsd:complexType name="before_advice"> 
  <xsd:sequence> 
    <xsd:element name="modifiers"     type="ax:advice_modifier" minOccurs="0"/> 
    <xsd:element name="formal_params" type="ax:formal_params"/> 
    <xsd:element name="pointcut"      type="ax:pointcut"/> 
    <xsd:element name="behaviour"     type="ax:behaviour"/> 
  </xsd:sequence> 
</xsd:complexType> 

4.2.1.3 Optional Items 

Optional expressions, e.g., those in square brackets, are expressed by lowering the 

minimum number of occurrences in a type instance from the default of one to zero.  An 

example of this is shown in the modifier_spec element of the XML type for field 

signatures presented in bold below. 
<xsd:complexType name="field_signature"> 
  <xsd:sequence> 
    <xsd:element name="modifier_spec" type="ax:modifier_spec" minOccurs="0" 
                       maxOccurs="unbounded" /> 
    <xsd:element name="field_type" type="ax:type_pattern" /> 
    <xsd:element name="join_point_type" type="ax:type_pattern" /> 
    <xsd:element name="field_name" type="ax:identifier_pattern" /> 
  </xsd:sequence> 
</xsd:complexType> 

4.2.1.4 Keywords become Empty Tags 

Terminal tokens that are keywords become empty XML elements.  The XML element 

name then corresponds to the keyword.  An alternative would be to encode the keyword in 

an attribute or as element data, but validity checking separate from schema validation is 

required to error check the data.  This secondary validity checking can be simplified with 
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the use of an enumeration, but writing the schema is still complicated as the programmer 

has two items to remember:  the general XML element name or attribute, and the keyword 

data required.  An additional advantage of a single XML element is that it simplifies 

parsing an XML specification since keywords can be identified in a graph of XML tags 

without the need to examine data associated with each tag node.   

 

Based on this rule, each modifier in  
<access_modifier>  ::= public|private|protected  
 

corresponds to a separate tag, as we see in the corresponding XML type: 
<xsd:complexType name="access_modifier"> 
  <xsd:choice> 
    <xsd:element name="public"    type="ax:empty"/> 
    <xsd:element name="private"   type="ax:empty"/> 
    <xsd:element name="protected" type="ax:empty"/> 
  </xsd:choice> 
</xsd:complexType>  

 

However, we have bent this rule where there is duplication between a keyword and the 

containing production.  For example, with advice the keyword is not required, because we 

know from the containing XML tags the kind of advice that is being expressed.  So in the 

case of the before advice BNF: 
<before_advice> ::= [<advice_modifier>] before <formal_params>  
       ":" <pointcut> <behaviour> 

 

The corresponding XML sequence, shown below, does not contain an empty XML tag 

corresponding to the before keyword. 
<xsd:complexType name="before_advice"> 
  <xsd:sequence> 
    <xsd:element name="modifiers"     type="ax:advice_modifier" minOccurs="0"/> 
    <xsd:element name="formal_params" type="ax:formal_params"/> 
    <xsd:element name="pointcut"      type="ax:pointcut"/> 
    <xsd:element name="behaviour"     type="ax:behaviour"/> 
  </xsd:sequence> 
</xsd:complexType> 

4.2.1.5 Remove Terminal Tokens for Delimiting Text 

Terminal tokens used to enclose bodies are not required, as the opening and closing tags of 

an XML element automatically delimit an area of text.  This rule of thumb eliminates most 

of the round, i.e. "(", and curly brackets, i.e. "{", from the syntax.  BNF expressions that 

are delimited lists of other expressions are represented as a single element that can appear 

multiple times.  Thus, the delimiters in  
<local_refs> ::= <var_type> <var_name> { "," <local_refs> } 
 

need not be represented explicitly in XML.  We would represent the BNF above with an 

XML tag with a type containing the <var_type> and <var_name> elements, shown on the next 

page, and an unbounded cardinality. 
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<xsd:complexType name="local_ref"> 
  <xsd:sequence> 
    <xsd:element name="var_type" type="ax:var_type"/> 
    <xsd:element name="var_name" type="ax:identifier"/> 
  </xsd:sequence> 
</xsd:complexType> 
 

Thus, the element can appear multiple times, which is indicated by varying the value of the 

maxOccurs attribute when local_ref is used as an XML tag type, as shown below. 
       <xsd:element name="local_var_ref" type="ax:local_ref" minOccurs="0"  
                                                            maxOccurs="unbounded"/> 

4.2.1.6 Dealing with Informational Non-Terminal Tokens 

Some BNF non-terminal tokens are included only to make the BNF more readable.  Such 

tokens simply provide a new name for an existing BNF expression that is meaningful in 

the context of a particular BNF production.  When converting to XML, this intermediate 

non-terminal token is retained by using it as the element name in the overall XML type.  

However, to avoid defining a new type corresponding to this element, we use the type of 

the expression that it maps to.   

 

Take the BNF below in which the <field_type> expression is included for informational 

purposes only. 
<field_introduction> ::= <intro_modifiers> <field_type>  
    <target_type> "." <identifier> [<field_init>] ";" 

 

Where: 
<field_type> ::= <var_type> 

<target_type> ::= <type_pattern> 

<field_init> ::= "=" <expression> 

When converting to XML, a new XML type is not defined for the field_type non-

terminal.  Instead, an element of type var_type is used as shown below. 
<xsd:element name="field_type" type="ax:var_type "/> 
 

4.2.1.7 Unary and Binary Operators are Tags 

Unary and binary operators, exemplified by the logical operators employed by AspectJ, are 

expressed using attributes and elements respectively.  Thus, the logical not, i.e. "!",   is 

represented as an attribute of an XML type to which it can be applied.  The attribute is a 

Boolean value with a default of false, which avoids any need to validate the attribute’s 

data.  In contrast, the logical or and logical and operations, i.e. "||" and "&&" in AspectJ 

syntax, are expressed with an XML tag type with the corresponding name.  The XML 

elements are defined with anonymous types containing the operands of the logical 

function.  For example, the logical ‘or’ available in pointcut expressions, shown below 

<pointcut> ::=  <primitive_pointcut>  | 
   "(" <pointcut> ")"  | 
    "!" <pointcut>   | 
   <pointcut> "&&" <pointcut>  | 
   <pointcut> "||" <pointcut> 



 

117 

 

corresponds to the following XML type: 
<xsd:element name="or"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element name="pointcut" type="ax:pointcut" minOccurs="2" maxOccurs="2"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 

 

4.2.2 XML Summary 

The XML rules discussed in the previous section have been applied to creating an XML 

schema.  As mentioned, this schema is listed in Appendix A of this thesis.s 

 

4.3 Weaving Library 

In this section, we focus on the weaving library underlying Weave.NET.  This library must 

provide an API that generates a property-bound component from an aspect-based property 

and a component, be it an attributed component or a legacy component.  Recall that 

property-bound components are components that have been inspected at load-time for join 

points matching the pointcut specifications of aspect-based properties.  Matching join 

points are bound to aspect-based property behaviour according to advice.  In the case of the 

CLI, components are loaded when one of the types they implement is required by the 

execution environment.  The weaving library must also provide an implementation of the 

IAspect interface.  Recall that in Chapter 3, we pointed out that the IAspect 

implementation requires cooperation on the part of the weaver to guarantee that reflective 

data structures are properly initialised to allow introspection on join point state and to 

allow execution control flow to be influenced by Proceed calls in around advice. 

 

In the following sections we present the weaving library’s interface, and explain how the 

interfaces are implemented.  In section 4.3.1, the library APIs are presented.  In section 

4.3.2, an overview is presented of the architecture that allows the weaver to match join 

points with pointcuts and apply relevant advice.  However, not all matching decisions can 

be made at weave time, and so the execution of advice is not always a static decision.  In 

4.3.3, we examine the algorithms that are embedded into the woven component to allow 

runtime decision making associated with selecting join points for cflow pointcuts and 

executing around advice.  This section also includes details on how the weaver provides 

runtime support for the IAspect interface.  Finally, section 4.3.4 points out limits to the 
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weaver due to its single pass code generation design, its use of static pointcut matching and 

limits to developer resources available during its implementation. 

 

4.3.1 Weaving Library APIs 

The weaving library provides two APIs.  A weaving API implemented by the type 

TCD.CS.DSG.WeaveDotNet generates woven assemblies, and an IAspect implementation 

by the type TCD.CS.DSG.Weave.Reflect supports reflection and Proceed functionality 

for around advice.   

4.3.1.1 TCD.CS.DSG.WeaveDotNet 

The API of the prototype weaving library is shown in Figure 4.5.  The library is stored in a 

CLI assembly composed of a single .DLL file called wdn.dll.  This API accepts as input a 

reference to a CLI assembly and to an XML document that contains the specification for a 

particular aspect.  The reference to the CLI assembly corresponds to a full filename of the 

assembly’s primary module, which includes the extension, along with the path to the file 

relative to the current directory of the execution environment.  The XML file is referenced 

in the same way.  By default, the current directory of the execution environment is the 

same as the current directory when the CLI execution environment was launched.  The 

Boolean value returned by the method indicates whether weaving failed or succeeded.  

More importantly, a result of true means that a new version of the component assembly has 

been created.  The new assembly is placed in the current directory. 

namespace TCD.CS.DSG { 
  public class WeaveDotNet { 
 
    public static bool Weave(string targetFile,  
                             string targetPath,  
                             string xmlFile,  
                             string xmlPath) {  
      ...  
    } 
  } 
} 

Figure 4.5:  Weaving interface for prototype weaving library. 

Like BCA [Kel'98], our weaver generates components that are binary compatible with their 

original version.  This allows newly woven components to work properly with client 

components that have already been loaded.  Without binary compatibility, the modularity 

of a component will be broken, as components will no longer link properly with the rest of 

the application based on their API.  So, binary compatibility avoids the need to 

synchronize clients of the component being woven with the changes made. 
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4.3.1.2 TCD.CS.DSG.Weave.Reflect.IAspect 

The TCD.CS.DSG.Weave.Reflect.IAspect interface implemented by the prototype 

weaver is shown in Figure 4.6.  This interface is a forerunner to the standard version of the 

IAspect interface described in Chapter 3, as it includes deprecated helper functions from 

earlier versions of the prototype weaver.  These helper methods provide access to join 

point metadata for the implementation of Proceed.  Using helper functions, the metadata 

can be obtained directly from an IAspect reference as opposed to a reference to its 

implementing type.  This allows the weaver to avoid emitting recasting instructions during 

code generation, which was of interest when the weaver was initially implemented.  With a 

small amount of programming effort these helper functions could be removed from the 

weaver, but they have been left in place as they do not limit prototype functionality. 
 
public interface TCD.CS.DSG.Weave.Reflect.IAspect { 
  org.aspectj.lang.JoinPoint             JoinPoint{get;set;} 
  org.aspectj.lang.JoinPoint.StaticPart  JoinPointStaticPart{get;set;} 
  org.aspectj.lang.JoinPoint.StaticPart  EnclosingJoinPointStaticPart{get;set;}
 
  object Proceed(params object[] obj); 
 
  // Control structures specific to Weave.NET implementation of proceed. 
  void QueueAroundAdvice( int[]                mappings,  
                          RuntimeMethodHandle  adviceMeth, 
                          RuntimeFieldHandle[] cflowActiveFlagRefs,  
                          bool[]               cflowActiveFlagStates); 
 
  bool       ExecJoinPointRecurseActive { get;set; } 
  object[]   ProceedParams{ set;} 
  RuntimeMethodHandle JoinPointInvocationCache{set;} 
} 
 

Figure 4.6:  Prototype weaver’s specification for the IAspect interface. 

This IAspect interface is implemented by the class TCD.CS.DSG.Weave.Reflect.Aspect, 

which is available from a CLI component contained in a single file called wdnr.dll.  This 

class is discussed further in 4.3.3.3. 

 

4.3.2 Weaver Architecture 

Architecturally, the weaver decomposes into two principle systems: one for code 

generation and the other for aspect modelling.  The code generation system performs a 

traversal of a software component targeted for weaving in which the existing 

implementation is copied into a new version of the software component.  During the 

traversal, join points and potential join points are identified by the aspect modelling 

system, which is responsible for interpreting the XML-based crosscutting specification.  

Potential join points require a runtime decision to determine whether or not to execute 

crosscutting functionality, whereas known join points can be directly bound to aspect 
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behaviour.  These modifications are carried out under the direction of the aspect modelling 

system by the code generator. 

 

The bridge between these two systems is the JoinPoint class hierarchy.  The code 

generation system creates instances of objects in this hierarchy to encapsulate join point 

details, which are passed to the aspect modelling system for examination. Join point 

objects also provide code generation capabilities specific to join points for embedding 

advice that used is by the code generation system. 

 

In section 4.3.2.1, we will review the code generation system and explain how it interacts 

with JoinPoint objects.  In section 4.3.2.2, we will review the aspect modelling system, 

and examine how it interacts with JoinPoint objects to decide whether or not to apply 

advice.  The JoinPoint objects themselves are discussed in section 4.3.2.1.1, where we 

summarise the purpose of each type in the JoinPoint type hierarchy. 

4.3.2.1 Code Generation Architecture 

The code generation system performs a traversal of a software component targeted for 

weaving in which the existing implementation is copied into a new version of the software 

component.  The traversal is at the level of CIL (byte code), meaning that methods are 

copied one instruction at a time rather than in blocks of instructions.  Traversing 

component behaviour at the CIL level allows intra-method join points to be exposed to 

pointcuts for the purpose of clear-box crosscutting.  This traversal requires that the code 

generation system have a means of examining a component without loading it into the 

execution environment, since we will want to load the newly generated component instead.  

Also, there should be a means of generating a new component that will be the result of 

weaving. 

 

The new component is created using a CLI dynamic assembly, which is one whose 

implementation can be specified at runtime.  The CLI’s System.Reflection.Emit API 

[Ecm'03b] provides classes to create an object graph corresponding to a dynamic assembly.  

The principle classes used by the Emit API to model a dynamic assembly are shown in 

Figure 4.7.  Here, a module corresponds to a physical file. Thus, an assembly can span 

files. Types and their constituent members are contained entirely within one module.  Were 

it not for the modifications specified by the aspect, a hierarchy of these objects built from 
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the component being woven could be emitted without change; however, as per the aspect, 

there will be some differences.  

 
Figure 4.7:   Dynamic assembly as modelled by the System.Reflection.Emit library. 

To inspect the existing assembly, a third-party library called the CLIFile Reader API 

[Cis'02] was used.  The System.Reflection API has been suggested as a tool for 

introspecting on existing assemblies [Sch'02], but this API lacks the ability to directly 

access the CIL stream.  Without access to CIL it is impossible to expose call, field access 

and object pre-initialization join points, which are expressed as method invocations or field 

accesses in the body of methods.  Thus, the code generation system bypasses the 

convenience of the Reflection API and examines the assembly metadata directly using 

the CLIFile Reader API. The CLIFile Reader API provides abstractions to access intra-

method details such as the CIL stream and the method’s exception handling table directly 

from the CLI file format [Lid'02].  The benefit of using the CLIFile Reader over directly 

accessing the file from the weaver is that the CLIFile Reader provides decompression and 

metadata table modelling, and it greatly simplifies resolving cross-references within table 

entries. 

 

The code generation system must map assembly details provided by the CLI File Reader to 

their representation in the Emit API, but there is a mismatch in the way the two APIs 

model assemblies.  The object graph used to model an assembly in the CLIFile Reader 

corresponds to the organisation of metadata.  Since metadata is organised on a module 

basis, type members are keyed with module-wide identifiers that do not immediately 

identify their containing type.  In contrast, the Emit API expects a type to directly 

reference its constituents. To bridge these two views, the code generation system 

introduces its own object graph for modelling an assembly based on the class hierarchy  
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Figure 4.8:  Architecture to resolve Emit object hierarchy and CLI metadata indexing. 

shown in Figure 4.8.  This hierarchy mirrors the Emit API.  Indeed, each class in Figure 

4.8 aggregates the corresponding Emit API object.  For example, instances of 

DynamicType contain an instance of System.Reflection.Emit.TypeBuilder.  These 

aggregate relationships allow instances of the classes in Figure 4.8 to be used for code 

generation.  On the other hand, objects of the class hierarchy in Figure 4.8 retain the 

relationships necessary to look up objects using metadata keys.  For instance, objects of 

type DynamicModule have arrays that allow lookup of DynamicType instances as well as 

DynamicMethod instances using the module-wide metadata keys used in the original 

assembly that is being woven.  The availability of metadata key lookup is required to emit 

CIL instructions that have a metadata token as their parameter.  This is because the Emit 

API provides special methods for emitting token-dependent opcodes that take the 

corresponding builder object as a parameter.  Doing so accounts for the fact that the newly 

generated assembly may key its metadata differently based on whether the types being 

implemented are changed slightly.  An example of this approach to emitting opcodes can 

be seen for method invocations.  Method invocations in the existing file are expressed as a 

call opcode followed by a metadata tag corresponding to the method being invoked, 

whereas in the code generation API an invocation corresponds to an opcode and a 

reference to the MethodBuilder object of the method being called.   

 

During CIL traversal, the code generation system detects join point implementations, 

sometimes referred to as join point shadows [Hil'04], and models them with objects of type  
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Figure 4.9:  JoinPoint class hierarchy. 

JoinPoint.  The join points are modelled by the class hierarchy defined in Figure 4.9, 

where JoinPoint and JoinPointMethodSig are abstract classes.  Objects of this hierarchy 

allow pointcut matching and code generation for advice invocations.  The objects in the 

JoinPoint class hierarchy are well understood by the aspect modelling system, which 

provides an API that compares the objects to pointcuts in an aspect and loads the join point 

objects with details that allow matching advice to be called.  The JoinPoint class 

hierarchy objects also have an API that generates the code required to invoke advice 

associated with the JoinPoint.  This code marshals advice parameters and calls the 

method that implements aspect advice.  The code generation system accesses this API 

before and after it emits the code corresponding to the join point. 

 

In the following subsection, we characterise the objects of the Figure 4.9 class hierarchy in 

terms of CIL. 

4.3.2.1.1 Join Point Types Expressed in CIL 

In Figure 4.9 four concrete classes are used to model the join points that appear when CIL 

is traversed.  The classes are JoinPointExecution, JoinPointCall, 

JoinPointFieldAccess, JoinPointInitialization.  Objects of these classes model 

different join point types depending on the CIL instructions at the point that the object is 

instantiated. 

 

JoinPointExecution objects correspond to blocks of CIL.  In a .NET assembly, CIL code 

is located on a method by method basis. The assembly’s metadata identifies which block of 

CIL code corresponds to which method signature. This is true for constructors as well, 

since constructor bodies are modelled as methods with special names, such as .ctor in the 

case of an instance constructor, and by marking the methods with certain metadata flags 

that distinguish them from other methods.  Fine-grained execution join points are resolved 

by closer inspection of the implementation of the method body. In the case of exception 



 

124 

handlers, extra metadata tables associated with the method’s opcodes identify blocks of 

exception handling code. For execution join points related to object instantiation, it is 

necessary to examine the CIL at the start of the constructor to distinguish constructor 

execution from object initialization and initializer execution join points. This is because 

data member initialization and flow of control between different constructors in a class’s 

inheritance hierarchy are written explicitly into each constructor method. 

 

JoinPointCall objects correspond to join points that are present on the calling side of a 

method invocation or when the new operator is called for object construction. These points 

are observed as CIL opcodes of type InlineMethod, which indicate the target method with 

a metadata token. Using this token, it is possible to look up the signature of the method 

being called. The signature also indicates where on the stack the call context is located. 

Constructors present a special case. They may be accessed as part of a call join point, for 

instance as part of a new operation, or they can be accessed as part of an execution join 

point, for instance via this() and super() calls in Java.  Fortunately, these two cases are 

distinguished by the opcode used to access the constructor, which is NewObj in the case of 

a constructor call join point.  Object pre-initialization join points also present a special 

case, as they are method invocations whose parameters are used in calls to other 

constructors, such as this() and super()in the case of Java [Lad'03].  Essentially, the 

code generator must be aware of whether or not the result of a call is going to be used as a 

parameter for calls to other constructors. 

 

JoinPointFieldAccess objects correspond to a read or write access to a data member, or 

field in CLI terminology.  These join points do not include final fields, i.e., constant 

fields emitted as literals in CIL.  These join points are observed as special CIL opcodes 

used to access static and non-static fields.  These opcodes are associated with a metadata 

token identifying the signature of the field being accessed. 

 

The JoinPointInitialization specialisation is of particular interest.  It exists because 

code generation for advice applied to object initialization join points varies slightly from 

that applied to execution join points.  In the context of object construction, execution join 

points correspond to the execution of a constructor body or data member initialization, 

whereas object initialization join points correspond to the execution of all the constructors 

used to create an object.  Thus, object initialization join points include the execution of 

constructors defined in the object’s class as well as those defined in inherited classes.  The 
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difficulty is in knowing where the initialization join point ends, since this is not associated 

with completion of a particular constructor but rather a set of constructors.  Take for 

example a class with two public constructors ctorA and ctorB.  Typically, constructors all 

have the same name, but for illustrative purposes we make an exception.  In this example, 

ctorA calls ctorB and ctorB calls an inherited constructor.  In this case, there are two 

different, overlapping implementations of object initialization join points.  One starts and 

ends in ctorA, and the other starts and ends in ctorB.  Assume we apply the same advice 

to object initialization join points that begin with a call to ctorA as well as object 

initialization join points that begin with a call to ctorB.  When execution reaches the end 

of ctorB, advice should only be executed if execution does not return to ctorA.  Rather 

than examining the stack to see if execution will return to ctorA, code generation 

implemented by JoinPointInitialization makes use of a reference counter that is 

added as a field to the type containing an initialization join point.  Essentially, the counter 

tracks the depth of the constructor call graph during object instance initialization.  The 

implementation of this counter is naïve in that the counter is always created for a type.  

Note that the counter must also be made thread safe, but thread safety is easily 

implemented in the CLI by annotating the field with a thread static storage attribute, which 

is understood by the execution environment. 

4.3.2.2 Aspect Modelling Architecture 

The aspect modelling architecture is responsible for matching join points to advice 

according to XML-based crosscutting specifications.  The aspect modelling system puts 

the crosscutting specifications into an object graph that makes it simple to traverse all the 

pointcuts for the purposes of matching, to determine the implementation advice 

corresponding to the matching pointcuts, and to match up join point context variables with 

parameters required to invoke matching advice.  The relationships between classes used to 

model crosscutting specifications and store advice/join point bindings are shown in the 

UML class diagram of Figure 4.10. 

 

The top portion of Figure 4.10, labelled ‘1’, is generated directly from the aspect’s XML-

based crosscutting specification.  The CLI provides the System.Xml library for modelling 

XML documents and System.Xml.Schema for modelling XML Schemas specifically.  

This XML API parses an XML file into an object graph.  The object graph is built in 

accordance to the W3C DOM [Hor'00] standard for navigating an XML document.  During 

XML file parsing, the XML is validated.  References to nodes in the object graph 
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generated are stored in the Aspect, Advice, NamedPointcut and TypedFormalParam 

objects in Figure 4.10. 

 

 
Figure 4.10:  Aspect modelling and join point matching architecture. 

Let us elaborate further on the Aspect, Advice, NamedPointcut and TypedFormalParam 

classes in Figure 4.10, starting with the Aspect class.  An Aspect object stores details that 

are the same for all advice and named pointcuts such as a reference to the type 

implementing the advice behaviour.  This object provides facilities to the code generation 

system for aspect instantiation, which involves defining a new type with a single field that 

is statically initialized with an instance of the aspect type.  Here, instantiation is performed 

via a static constructor for the type, as the CLI guarantees that static constructors are 

instantiated any time before the associated type is referenced.  Specialisations of the 

Advice class exist for each kind of advice.  Having the ability to modify existing 

assemblies allows all types of advice to be supported.  Specific details on code generation 

for advice invocations are covered in the next section.  Recall that all pointcuts in our 

programming model are named pointcuts.  These are modelled with NamedPointcut 

objects.  These objects retain a reference to the XML element corresponding to the root of 

the pointcut description, and they also reference TypedFormalParam objects describing the 

pointcut’s typed formal parameters. TypedFormalParam objects describe the context 

variables that the pointcut exposes to advice. 
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The bottom portion of Figure 4.10 is instantiated by the code generation system each time 

a join point is identified.  The JoinPoint object contains the join point’s signature and 

references to ContextVar objects describing the variables in the context of the join point. 

These variables are the parameters used to activate the join point as opposed to the set of 

all accessible variables within the scope of the join point.  For example, for a method the 

ContextVar objects corresponds to method parameters and not variables declared in the 

scope of the method body. 

 

The relationship between a join point and its advice is stored in a PointcutBinding 

object, shown in the centre of Figure 4.10.  This object is generated when the Aspect 

object traverses its list of named pointcuts asking each to determine if the join point is 

selected by its pointcut declaration. Join points are matched with named pointcuts, which 

in turn maintain references to Advice objects that reference the named pointcut.  

References to these Advice objects are added to the PointcutBinding object, along with a 

mapping between the join point context variables and the typed formal parameters required 

to call advice, which must match the join point in type and number.  The prototype 

supports the full range of typed formal parameters that can be exposed using args, this 

and target primitive pointcut designators. 

 

4.3.3 Runtime Support 

Runtime support corresponds to instructions that the weaver adds to the component being 

woven.  These instructions are responsible for invoking advice, implementing runtime 

support for cflow pointcuts, and implementing the IAspect interface supported by the 

weaving library.  In this section we give an overview of how this runtime behaviour works. 

4.3.3.1 Binding Advice to Join Points 

The weaving library implements advice by transferring control to the method 

implementing advice behaviour, rather than copying the advice’s implementation to the 

join point shadow.  This is done primarily to simplify the implementation of weaving.  

Copying advice CIL into methods at join point shadows involves guaranteeing access to 

fields and methods in the aspect type referenced by the advice.  Field references would 

have to be rewritten as accesses to fields in the aspect instance, which might also involve 

changing the access privileges of aspect type members where aspect type fields are private.  

The same is true for methods called by the advice, so where these methods reside in the 
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aspect type the access privilege might have to be changed.  Furthermore, advice code 

would have to be examined for exception handling blocks, as these are emitted with special 

code generation functions that update the exception handling tables of methods into which 

the advice’s implementation is being copied.  Fortunately, transferring control to the 

method implementing advice avoids these complications.   

 

In the following subsection, we examine how details required to call advice are obtained.  

Next, we look at the special difficulties associated with implementing around advice.   

4.3.3.1.1 Determining Advice Invocation Details 

Transferring control to advice involves emitting a call to the method implementing advice.  

This method’s name, containing type, and implementing assembly are explicitly specified 

in the crosscutting specification.  Advice can be supported by either static or instance 

methods, as the advice method metadata indicates whether an aspect instance is required in 

order to call the advice method or not.  For instance methods, the aspect singleton is used 

to invoke the method.  This singleton is referenced from a global type that the code 

generation system built using the Aspect object in the aspect modelling system.   

 
Figure 4.11:  Back tracing advice parameters to join point context variables (crosscutting specifications 

written in AspectJ-like syntax for clarity). 
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Before invoking the advice method, references to the parameters for invoking advice must 

be placed on the stack.  The first step to generating code that places these parameters on 

the stack is to determine which ContextVar objects the parameters correspond to.  This 

involves backtracking from the advice method parameters to the pointcut specification 

referenced by advice and then to the join point context variables that match the pointcut.  

The backtracking process is visualised in Figure 3.11.  Note that the advice and pointcut 

declarations in the figure are written in AspectJ syntax for clarity.   

 

Typed formal parameters and advice method parameters map one to one according to their 

declaration order, but matching typed formal parameters to join point context variables 

requires more work as there may be more context variables than typed formal parameters.  

Typed formal parameters, modelled by TypedFormalParam objects, are assigned variables 

in the context of a join point via the args, this, or target contextual primitive pointcut 

designators.  For example, this is the self reference variable in the context of the join 

point, and may or may not exist depending on whether the join point is executing in the 

context of an object instance.  target is the variable used to reference a method or field 

being accessed.  As with this, a target variable may or may not exist.  Note that for 

certain join points such as execution join points, this and target may reference the same 

execution context variable.  args implies that the arguments of the join point are being 

bound to a typed formal parameter.   

 

Since the meaning of these contextual primitive pointcut designators varies according to 

the join point type, the join point object decides what variables in the execution context are 

available.  These context variables are modelled with ContextVar objects. Which 

ContextVar objects match a primitive pointcut designator is determined by the JoinPoint 

object and not the ContextVar object itself, and this information is used at weave time to 

generate the mapping between the TypedFormalParam objects of a pointcut and the 

ContextVar objects of a join point.  The mapping is then cached in the PointcutBinding 

object. 

 

In terms of code generation, the ContextVar object is responsible for generating code to 

place a reference to a context variable on the call stack, while the JoinPoint object is 

responsible for generating code to cache all context variables.  Depending on the join point 

type, context variables may be on the stack or they may be an argument of the method 
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executing.  Also, a context variable reference may have to be pushed onto the stack 

multiple times, as any given join point may be influence by multiple pieces of advice.  For 

these reasons, it is best if the each concrete specialisation of the JoinPoint class 

specialisation provides functionality to generate code that caches all context parameters.  

By using the cache as the source for context variable references, ContextVar objects can 

use the same implementation for accessing context variable references, regardless of join 

point type. 

 

The weaving library’s implementation of typed formal parameter to context variable 

mapping had to make subjective decisions to resolve ambiguities in the AspectJ 

Programming Guide [Asp'02].  The programming guide is unclear as to whether typed 

formal parameters can be used in primitive pointcut designators other the contextual 

primitive pointcut designators, i.e. args, this, and target.  Nor are typed formal 

parameters explicitly restricted to only appearing once in a pointcut.  For instance, if two 

primitive pointcuts are combined with a logical or, it might be tempting to let the same 

typed formal parameter be used as an argument for both primitive pointcuts and assume 

that the variable is bound to according to the first match.  We assume only a contextual 

primitive pointcut designator can take typed formal parameters as their arguments and that 

a typed formal parameter can only appear once. 

4.3.3.1.2 Exposing Join Points for Invocation by Around Advice 

When around advice executes, it has the option of passing control to the next piece of 

applicable around advice, or where no more around advice remains to the join point itself.  

Around advice exercises this option by invoking the Proceed method of the IAspect 

interface, whose arguments correspond to the join point context used by the advice calling 

Proceed.  Activation in this manner allows the join point to return to the method 

implementing the around advice.  This situation is shown in Figure 4.12, where the 

execution flow is visualised for all three categories of advice. 

 

As evident from Figure 4.12, there is a requirement that the join point somehow be 

exposed as a separate method that does not include around advice so that it can be invoked 

by the around advice without the risk of infinite recursion.  The weaving library meets this 

requirement by defining a method that corresponds to the join point.  The best option is to 

create this method as a static method in the component being woven.  Changes to the 

aspect type are ruled out by our decision to use aspect types ‘as is’, and an instance method 
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in the component is problematic where the join point is implemented by code in a static 

method.   
 
Execution of method XXX 
(execution join point) 
        | 
        | --> before advice 
        | 
        | <-- before advice 
        | 
        | --> around advice 
                   | 
                   | --> proceed -->   Execution of method XXX 
                                         (New invocation) 
                                              | 
                                              | 
                                              | 
                                              | 
                   | <--------------       return 
                   | 
                   | 
        | <-- around advice 
        | 
        | 
        | 
        | --> after advice 
        | 
        | <-- after advice 
      return 
 

Figure 4.12:  Visualisation of invocation of different categories of advice for an execution join point. 

In our implementation, we refer to this method as the join point’s direct invocation method, 

and the direct invocation method’s body performs three basic tasks:  marshalling of 

parameters required to execute the join point, execution of join point behaviour, and 

marshalling of results.  The marshalling of parameters is generic across all join point types, 

and consists of pushing all join point execution parameters onto the stack.  A shortcut for 

code generation is to make these parameters those of the direct invocation method.   

 

The means by which the direct invocation method implements join point behaviour varies 

according to the join point type, with call and field access join points being straightforward 

to implement.  With call join points, implementation of the join point exposure is a matter 

of knowing the method being referenced in the call join point.  This reference identifies if 

the method is static or not, which makes it easy to select the proper CIL instruction for 

invocation.  With field access join points, the implementation requires knowledge of 

whether the join point is a get or a set.  This can be ascertained from the JoinPoint object, 

which also can provide the metadata token operand for the CIL instruction used to access 

the field. 

  

Recreating an execution join point’s implementation in the direct invocation method is 

difficult due to the complexity of execution join points, so the direct invocation method 

calls the original method containing the execution join point.  Doing so requires care to 
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avoid executing unwanted code and to avoid infinite recursion on around advice embedded 

in the original execution join point.  One solution considered for avoiding recursion was to 

modify the execution environment to add a CIL opcode that allowed an invocation to 

return without destroying its stack state.  A second instruction would also be added to 

allow the method to be re-entered.  Using such instructions we could call around advice 

from the start of an execution join point, then temporarily return to complete executing the 

join point before finally resuming around advice after the join point completes.  This 

solution was avoided as it would make the weaver platform specific.  Instead, the existing 

join point implementation is adjusted to bypass advice when around advice causes 

recursion.  Reference counting logic is added to ensure that the around advice is not 

executed when Proceed is called.  Before and after advice is shut off as well to ensure that 

they are not doubly executed. 

 

Conditional branch instructions placed in the body of the execution join point detect 

whether the method is being called by a direct invocation method or as part of normal 

application control flow by examining a recursion bypass flag.  This flag is held in a new 

field defined in the type containing the join point’s implementation.  This flag is set by the 

direct invocation method before calling the method implementing an execution join point.  

When the flag is set, around advice is bypassed and the flag is immediately reset so that 

around advice will be properly executed during subsequent recursive calls.  Because this 

automatic reset destroys the flag’s original value, the flag has to be cached in the context of 

the execution join point if it has to be inspected again, for instance to decide whether or not 

to execute after advice. 

  

Marshalling the return parameters is trivial if the return type of the direct invocation 

method is the same as the join point.  If this is the case, then after the direct invocation 

method completes, its result will be left on the stack. 

4.3.3.2 Implementing cflow Semantics 

Matching between join points and cflow primitive pointcut designator specifications has 

the property that matching is dependent on runtime information, and so it is often the case 

that only potential matches can be determined during the load-time transformation.  In this 

section we clarify the semantics of a cflow primitive pointcut designator and then discuss 

algorithms to find potential matches and determine whether they match at runtime. 
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4.3.3.2.1 Understanding cflow 

cflow is an extremely powerful primitive pointcut designator in that it exposes join points 

implicitly as well as explicitly.  Those join points that match the pointcut argument of a 

cflow are considered explicit matches, while join points that are traversed in the course of 

executing any of the explicit join points are considered to be implicit matches.  The set of 

implicit join points is unrestricted, so any type of join point is selected by cflow be they a 

in the category of field access, execution or call. 

 

It is easy mistake the cflow pointcut specification as a solution for applying advice to the 

beginning of a recursive call tree.  This mistake is caused by assuming that cflow has 

similar properties to the initialization primitive pointcut designator, which begins at 

the first invocation of a constructor during object initialization and ends when that 

constructor returns.  Under this assumption, cflow advice would only be executed before 

and after the first method invocation in a recursive call chain.  In fact, cflow advice is 

executed for each recursive call. 

 

In contrast to the AspectJ V1.0.6 implementation, our prototype weaver does not consider 

advice execution when matching join points.  If advice were examined for pointcut 

matches, an unrestricted cflow primitive pointcut designator would attempt to apply 

advice to the execution of advice, which would cause an infinite loop.  An example of such 

a situation appears below in the Cflow aspect, which is written in AspectJ syntax.  With 

AspectJ V1.0.6, the AddCflow pointcut is itself executed in the context of the AddCflow 

join points.  Thus, application of the advice will result in an infinite recursion on the 

before advice. 
public aspect Cflow { 
  pointcut AddCflow():  cflow( execution( * Foo.FooBar( * ))); 
 
  before(): AddCflow() {  
      System.out.println("Before advice," 

+thisJoinPointStaticPart.toLongString() ); 
  } 
} 

As the language specification is ambiguous about whether advice is examined for join 

points, this restriction does not does not constitute a limit to our weaver. 

 

cflowbelow is another primitive pointcut designator that selects join points according to 

whether they appear in the execution flow triggered by another join point.  cflowbelow 

differs from cflow in that join points explicitly matching the cflowbelow designator’s 

argument are not included in the set of join points to which advice is applied.  Our 
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implementation of cflowbelow is consistent with that of AspectJ V1.0.6 as neither 

considers advice execution when matching pointcuts. 

4.3.3.2.2 Design Considerations for cflow Matching 

The difficulty with weaving pointcuts specified with a cflow or a cflowbelow designator 

is establishing which join points implicitly match the pointcut.  In this section, we 

concentrate on algorithms to detect matches with the cflow designator as doing so for the 

cflowbelow designator is a subset of the same problem. 

 

At weave time, we are interested in identifying join points that match the cflow 

designator’s argument explicitly, and those join points on which explicitly matching join 

points are in turn dependent upon for their proper execution.  Explicit matches to a cflow 

designator, referred to as explicitly matching join points, can be made by comparing the 

join point’s signature and its immediate context directly with the cflow designator’s 

pointcut argument.  Since explicit matches are based on the static properties of a join point, 

the match can be done prior to execution.   

 

For implicitly selected join points, referred to as implicitly matching join points, the 

metadata describing the join point’s implementation does not determine a match to a cflow 

designator specification, since these details do not indicate if the join point is executing as 

part of an explicitly matching join point or an implicitly matching join point on which an 

explicitly matching join point is dependent.  It is possible to examine the execution 

dependencies within an application at weave time, and then use this dependency graph to 

discern sets of join points that are potentially within the control flow of an explicitly 

matching join point, i.e., it is possible to establish the set of potential implicitly matching 

join points.  The weaver can then modify the code of the potential implicit matches to 

include a runtime check to see if they are in the cflow and to apply advice accordingly. 

 

Two algorithms for finding potential implicitly matching join points at weave time were 

examined during weaver design:  one naïve and the other fine-grained.  The naïve 

algorithm treats every join point in an application as a potential match.  From the code 

generation point of view, the consistency of this algorithm makes it easy to implement.  

This algorithm is naïve, because the set of potentially matching join points is not 

optimized.  If the cflow primitive pointcut designator is not further constrained within the 

pointcut, it is very easy for the aspect programmer to introduce significant performance 
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overhead.  For instance, all field accesses within an application not specifically ruled out 

by the designators combined with cflow would include a dynamic check that adversely 

affects execution time. 

 

A fine-grained algorithm helps in large scale applications or where performance is an issue 

by referencing a dependency graph when deciding on potentially matching join points.  

With this algorithm, only join points whose implementation is activated directly or 

indirectly by an explicitly matching join point need to be tested at runtime to see if it is in 

the cflow.  This dependency graphed can be based on calls or invocations.  The call graph 

maps the activation of one join point by another.  Each join point implementation is a node 

and any direct activation of another join point implementation appears as a directed arc to 

the node corresponding to the implementation of the join point being activated.  The 

invocation graph reflects which join point implementations activate the implement of a 

node, because the directed arcs point back to the calling join point’s implementation.  With 

either graph, a join point should be tested to see if it is in the cflow if there is a path in the 

graph from the implementation of an explicit match to the implementation of the join point 

being examined. 

 

Of the two algorithms, the naïve algorithm is most suitable for our prototype in its current 

state as it is significantly simpler to implement.  Our decision is consistent with the 

commercial implementation of AspectJ, which also uses a naïve algorithm [Hil'04]. 

4.3.3.2.3 Designing Runtime cflow Checks 

At runtime, the cflow active flag corresponding to a cflow primitive pointcut designator 

determines if a join point explicitly matching that cflow is active.  When the flag is active, 

implicitly matching join points should be influenced by advice associated with the pointcut 

containing the cflow designator.  In the example below, written in AspectJ syntax, a call to 

Stack.Push would cause the flag associated with the cflow(execution(* 

Stack.Push(*))) to become active, which signals that advice associated with the 

cflow_or_exec pointcut is executed for implicitly matching join points. 
cflow_or_exec() : cflow( execution(* Stack.Push(*))) ||  
                  execution(* Stack.Pop(*)); 

 
 

cflow activation has to be determined on a thread by thread basis, as the activation of an 

implicitly matching join point is dependent on how that join point was reached during 

execution, and such paths will exist on a thread by thread basis.  With the weaving library, 
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the cflow active flag is implemented by a ThreadStatic field in a type corresponding to 

the cflow pointcut name and aspect name.  To allow it to be ThreadStatic, the field must 

also be a static field.  The field itself is more of a reference counter than a flag.  It is 

implemented as an integer that is incremented each time an explicitly matching join point 

corresponding to the cflow’s argument is started and decremented each time an explicitly 

matching join point is ended.  This makes it simpler to set and reset the flag in light of 

recursion. 

4.3.3.2.4 Difficulties with Logical Not Due to cflow 

Join point matching involves examining a join point to see if it matches a pointcut 

specification that consists of logically combined primitive pointcuts designators with the 

logical not operator applied at any point in the composition.  An example of a pointcut 

written in AspectJ syntax is shown below and it selects all join points except intra type 

calls made by methods in type FooType. 
Simple_match() : !(call(* FooType.Foo(..) || within(FooType)) 
 

A naïve implementation of join point matching is to perform a depth first, left to right 

traversal of a graph built from the pointcut specification at weave time.  Leaf nodes 

correspond to primitive pointcut designators, and internal nodes to logical operators.  Leaf 

nodes that do not match the join point should return false, and the logical operators are 

applied to the Boolean results of children nodes.  Take for example the call to Foo from the 

FooBar method in following source: 
class BarType { 
 void FooBar() { 
  Foo(); 

} 
 ... 
} 

 
Application of the algorithm to the Simple_match named pointcut would result in the 

graph shown in Figure 4.13, in which the results for applying the graph to the code above 

are noted at each node in the figure. 

 

On the one hand, this algorithm has the advantage that its control structure matches the 

layout of data, which is advocated as good programming practice [Fri'01].  However, the 

algorithm is naïve in that it does not deal with potential matches identified at weave time 

by cflow pointcuts.  Take the following pointcut as an example. 
Cflow_match() : !(cflow(call(* FooType.Foo(..)) && within(FooType)) 
 

Blindly applying the negation, as shown in Figure 4.14, will result in the wrong answer.  

When the naïve algorithm attempts to match the Cflow_match named pointcut to the 
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previous code, the result is wrong.  Instead of the logical not inverting the result, it should 

invert the runtime value of the cflow active flag for which the join point match would 

occur. 

 
Figure 4.13:  Successful application of naïve join point matching. 

 
Figure 4.14:  Unsuccessful application o f naïve join point matching. 

To account for cflow matching, we distribute the logical not operator across each 

individual primitive pointcut designator in a pointcut.  This distribution is done according 

to the rules of Boolean logic, and the distribution allows each primitive pointcut designator 

to decide on the semantics of the logical not.  This allows application of logical not to the 

cflow and cflowbelow join points to revise the value of cflow active flag for which 

advice execution is triggered. 
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4.3.3.3 Implementing the IAspect Interface 

Recall from Figure 4.6 that the IAspect interface implementation provided by the weaver 

is implemented in the TCD.DS.DSG.Weave.Reflect.Aspect class.  An outline of this class 

is shown in Figure 4.15.  The ability to use the AspectJ’s reflective types for describing 

join points is based on the availability of and Java interpreter for the CLI in the form of J# 

[Mic'04e].  Thus, the AspectJ classes that support the keywords thisJoinPoint, 

thisJoinPointStaticPart and thisEnclosingJoinPointStaticPart have been 

partially ported to the CLI.  The port is partial in that not all of the features of the reflective 

objects are supported.  Also, the weaver does not predetermine whether or not reflective 

objects are required, so the reflective objects must always be initialised if advice inherits 

TCD.DS.DSG.Weave.Reflect.Aspect. 

namespace TCD.CS.DSG.Weave.Reflect { 
 
public class Aspect : IAspect { 
 
  org.aspectj.lang.JoinPoint              IAspect.JoinPoint{ ... } 
  org.aspectj.lang.JoinPoint.StaticPart   IAspect.JoinPointStaticPart{ ... } 
  org.aspectj.lang.JoinPoint.StaticPart IAspect.EnclosingJoinPointStaticPart{ }
 
  object IAspect.Proceed(params object[] obj) { ... } 
 
 
  // Prototype-specific extensions 
  object[] IAspect.ProceedParams { ... } 
  bool  IAspect.ExecJoinPointRecurseActive { ... } 
 
  System.RuntimeMethodHandle IAspect.JoinPointInvocationCache{ ... } 
 
  void IAspect.QueueAroundAdvice(int[] mappings, RuntimeMethodHandle 
                                 adviceMeth, RuntimeFieldHandle[] 
                                 cflowActiveFlagRefs,  
                                 bool[] cflowActiveFlagStates){   
      ... 
    } 
  } 
} 

Figure 4.15:  Prototype implementation of IAspect interface in Figure 4.6. 

The implementation of Proceed uses a dynamic queuing mechanism that allows the 

sequence of calls corresponding to the Proceed invocations to be set up on a join point by 

join point basis.  The dynamic queue is introduced, because separate compilation of aspect 

and component means that the methods invoked by Proceed cannot be known at compile 

time.  The implementation of this dynamic queuing mechanism is the subject of the 

following subsection. 

4.3.3.3.1 Designing the Proceed Method for Around Advice 

Central to the ability of a Proceed implementation to call advice methods or the join point 

direct invocation method is the presence of a cache of all the context variables for the join 

point at which advice is executing.  This cache is the source for parameters of the method 
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executed in response to Proceed, be it another advice method or the direct invocation 

method for the join point.  Since advice may change join point context variables, the cache 

must be kept up to date with the parameters used to call Proceed.  A demonstration of 

cache updating is shown in Figure 4.16.  In this figure, two pieces of around advice, 

written in AspectJ syntax, are applied to join points corresponding to the execution of a 

method Foo.  Since Foo is an instance method, the cache contains a reference of type 

object used to invoke the method.  Also, the cache contains the parameters for method 

execution, which are of type int and string.  The first cache update is caused by the 

Proceed call made by Advice#1, which updates the value of the integer argument of the 

join point from 1 to 20.  The cache is updated again in Advice#2 after Proceed call is 

made.  This time the second argument of the join point is updated to “orange”. 

void around(int a):
call(void *.Foo(..)) && args(a)

{
a+=19;
proceed(a);

}

objectobjRef

string"apple"

int1

TypeValue

Context Variable Cache

public void Foo(param1, param2){
...

}

void around(string b):
call(void *.Foo(..)) && args(b)

{
b="orange";
proceed(b);

}

objectobjRef

string"apple"

int20

TypeValue

objectobjRef

string"orange"

int20

TypeValue

a = 20

a = 2

target = objRef
param1 = 20
param2 =“orange”

Advice#2

Advice#1

Join Point Implementation

b=“orange”

b=“apple”

 

Figure 4.16:  Join point execution context cache updates during around advice execution. 

Our implementation of Proceed uses one parameter cache per thread, which is consistent 

with the decision not to match advice execution with pointcuts.  Were around advice 

applied to around advice execution join points, two sets of context parameters would have 

to be cached:  one set for the advice execution join point and another for the component 

join point at which advice was executing.  This situation is presented graphically in Figure 

4.17.  Eventually, the number of caches would have to be variable to allow multiple 
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applications of around advice to around advice execution join points.  By not matching 

advice to pointcut, we avoid this scenario. 

Method FooClass.Foo 
 (execution join point) 
        | 
        | --> around advice of FooAspect 
        |           |  
        |     (cache Foo parameters in  
        |      FooAspect.ProceedParams) 
        |           |  
        |           |  
        |           | --> Method FooAspect.Bar 
        |           |     (implements around advice) 
        |           |           | 
        |           |           | --> around advice of FooAspect 
        |           |           |           | 
        |           |           |     (cache Bar parameters in 
        |           |           |      FooAspect.ProceedParams) 
        |           |           |           | 
        |           |           |           | 
        |           |           |           X 
        |           |           |           
        |           |           |      Previously cached parameters 
        |           |           |      are wiped out! 

Figure 4.17:  Failure with using single cache for join point context variables when around advice is 

applied to advice execution. 

The dynamic queuing mechanism is responsible for caching references to methods that will 

be called by Proceed as well as caching mappings between Proceed parameters and join 

point execution context.  The method queue consists of reflective objects from the 

System.Reflection API describing the around advice methods to be called as well as the 

join point’s direct invocation method.  Any particular around advice method may chose not 

to make a Proceed invocation; however, the full sequence of around advice methods 

matching a join point along with the direct invocation method for that join point are 

queued anyway.  The queue is generated at runtime by code added by the weaver.  Code to 

add methods to the queue is emitted each time an around advice matching the pointcut is 

found by the aspect modelling system.  After all pointcuts are considered, a reflective 

object describing the direct invocation method is added to the queue.  Advice methods 

dependent on cflow join points are queued alongside details of the cflow invocation flag 

and the flag state that triggers advice execution.  This allows Proceed to make a dynamic 

check to determine whether or not the advice should be applied based on whether the 

cflow is active or not. 

  

Proper updating of the join point context as well as proper invocation of advice is a matter 

of knowing which Proceed parameter corresponds to which join point context variable.  

These mappings are cached at the same time as the sequence of advice methods and the 

direct invocation method are queued.  A mapping is succinctly described by an integer 
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array in which the element index corresponds to a parameter passed to Proceed and the 

element data indexes a join point context variable in the join point execution context cache.  

So, for around advice that is applied to join points specified by the following pointcut, 
  pointcut PushExec(StackElement obj): execution( * Stack.Push(*)) 
                                       && args(obj); 
the Proceed call would look like for the following: 

Object[] tmp = new Object[1]; 
tmp[0] = (Object)stackElement; 
Proceed(tmp); 

 
and the corresponding description of Proceed parameter to join point context mappings 

would be as follows: 
int[] proceedMap = { 1 }; 

 
So that the first Proceed parameter, held in element 0 of its object[], is mapped to the 

second parameter in the join point execution context cache.   

 

4.3.4 Limits to the Weaving Library 

The following section identifies limits to the weaving library described in the previous 

subsections.  The weaver is limited due to using a one-pass code generation system and 

due to statically checking for matches between join points and pointcuts.  Another limiting 

factor has been the developer resources available for its implementation and testing.  Thus, 

the library does not support multi-aspect weaving, limits the advice types and join point 

types supported, and does not allow pointcut matching for join points implemented with 

instructions that are parameterised by references placed on the stack at runtime. 

4.3.4.1 Weaving API 

The weaving API only provides a method to weave a component against one crosscutting 

specification.  The objectives for this prototype are to support attribute-based property 

selection and language-independent weaving.  Supporting multiple XML files is a matter 

of revising the interface to accept an array of XML file references.  Although 

modifications of the weaver implementation would be required, the architecture will scale 

to support multiple XML files with multiple aspects.  The same is true for supporting 

multi-module assemblies. 

 

Likewise, a particular XML-based crosscutting specification can only contain one aspect.  

The system makes no effort to resolve the “composition problem” [Szy'02] that refers to 
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problems that arises when dependencies between aspect types restrict their ability to be 

composed with the same component.   

4.3.4.2 Aspect Model Limits 

Our prototype limits the kinds of after advice to after returning advice.  Our design does 

not exclude after and after throwing advice, but for the purposes of experimentation these 

kinds of advice were not required.  This is a pragmatic solution to reducing the amount of 

programming required to implement the weaver.  Code generation for after advice and 

after throwing advice requires try/finally blocks to intercept exceptions, while no such 

restrictions apply to after returning advice.  Another limitation to reduce complexity is to 

limit advice method look up to take into account only the method name.  Thus, the 

prototype weaving library looks up advice methods by name only, i.e., parametric 

overloading of advice implementations is not implemented. 

 

As with the AspectJ compiler, our prototype has placed restrictions on handler join points 

so they cannot be influenced by around advice.  This is restriction is in place, because 

advice applied to exception handlers does not suit the design of direct invocation methods.  

The direct invocation method will want to jump to the body of the execution handler when 

Proceed is called; however, it is not in keeping with the concept of exception handling 

blocks to jump directly into an exception handling block.   

 

The prototype supports the full range of typed formal parameters that can be exposed using 

args, this and target primitive pointcut designators, but the prototype weaver lacks 

error checking to weed out invalid context exposure.  For example, when a static method is 

being called there is no check to make sure the target context variable is not accessed. 

 

Object pre-initialization join point types are not supported.  Recall that object pre-

initialization join points correspond to call join points executed during object construction 

whose results are used in calls to other constructors or to a superclass constructor.  Object 

pre-initialization join point types cannot be detected in a single pass weaver.  They appear 

as call join points until a constructor call appears that uses their result as a parameter, and 

by that time the pre-initialization join point has been emitted to the woven assembly being 

created by the weaver.  Fortunately, object pre-initialization join points are rarely used 

[Lad'03]. 
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As for thread safety, there has been an effort to make the system thread safe in so far as the 

reference counting required to properly implement cflow and cflowbelow pointcuts is 

concerned.  However, thread safety has been a requirement for other features that require 

the dynamic context be tracked such as initialization join point support, and in these 

instances thread safety was not tested. 

4.3.4.3 Unsupported opcodes 

The join points that can be properly woven by the weaving library are limited according to 

the opcode used to implement them.  With respect to call join points, there is an issue as to 

what instruction is used to make the call.  Calli is not properly supported.  Call and 

Callvirt take metadata tokens as their parameters, so the target method for the call is 

clearly identified from the call instruction.  Calli is different in that it draws from a 

function pointer on the stack, and so a dynamic check against all pointcuts is required to 

determine whether or not the method invocation should be influenced by advice.  

However, the current weaver only does static comparisons against pointcuts.  Finally, only 

the CLI’s standard calling convention is supported in which the arguments of a method are 

pushed on the stack in their order of appearance in a C# method declaration starting with 

the object instance reference if required.  In contrast, methods in CLI assemblies can be 

defined with platform specific calling conventions.  These other conventions would require 

updates to the call parameter caching code so that the weaver knew where on the stack 

each parameter is located. 

 

With respect to field access join points, some implementations require a runtime check to 

determine which pointcuts they match.  Field accesses that are made with Ldfld, Stfld, 

Ldsfld and Stsfld instructions name their targets with metadata tokens at compile time, 

and these metadata tokens identify the field’s signature.  Thus, pointcut matching can be 

done at compile-time.  However, there are CIL instructions that obtain their targets from 

the stack.  For example, Stelem_Ref, and Ldelem_Ref allow access to array elements 

based on an index and a reference to the containing array.  If we take the AspectJ 

implementation as precedent, it would seem that these instructions are not supported as call 

join points.  Take the example of trying to identify an array element access using a 

pointcut.  For AspectJ V1.0.6, there is no syntax for accessing a particular element of an 

array field.  In addition to difficulties determining the array field being accessed, the CLI 

allows fields to be accessed from an address stored on the stack.  Specifically, ldflda and 

ldsflda instructions place field addresses on the stack, and the addresses can be used to 
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access data from this instance using a ldobj instruction.  Although the data type being 

accessed is known, other details such as the containing type are harder to determine in the 

one pass weaver used by Weave.NET.  Moreover, the AspectJ V1.0.6 semantics that the 

weaver library implements are targeted at Java, and they have nothing to say about field 

address access.  Thus, we have chosen to not support join points corresponding to the 

execution of these instructions along with others that deal with data in terms of addresses. 

 

4.4 Integrating with the Execution Environment 

The prototype weaver does not modify the existing class loader infrastructure of a CLI 

installation, instead weaving is implemented by a program that intercedes at execution start 

up time.  Rather than launching the CLI normally, a batch file named weave.net.bat is 

called with the name of the assembly containing the application entry point.  This batch file 

starts up the execution environment, and calls a program to discover aspects and 

components and weave them.  The weaving program expects all aspects to appear in a 

subdirectory named aspect, and all components to appear in a subdirectory called 

component.  This organisation of files should be done by the application deployer role.  

Each component is woven against crosscutting specifications in the XML files appearing in 

the aspect directory.  After weaving is complete, the CLI’s reflective API is used to launch 

a new CLI execution environment, called an AppDomain, using the entry point of the 

component passed when the batch file was called. 

 

4.5 Summary 

In this chapter we presented details of a prototype weaver that supports the aspect-based 

property programming model for the CLI platform.  The CLI platform provided 

considerable infrastructure in the form of specifications for language-independent 

component development, attribute type implementation and language-independent 

annotation of component source with attribute types.  In addition, APIs for code 

generation, reflection and XML processing facilitated weaver implementation.  The XML 

schema for aspect-based property pointcut-advice semantics was derived systematically 

from a BNF specification of the pointcut advice semantics of AspectJ V1.0.6 according to 

conversion rules that were presented in section 4.2.  The weaver, Weave.NET, relies on a 

weaving library that implements two APIs.  The TCD.CS.DSG.WeaveDotNet class provides 

a static method that composes a component and an aspect according to the aspect’s XML-
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based crosscutting specification.  The TCD.CS.DSG.Weave.Reflect.Aspect class 

provides an implementation of a modified IAspect interface with support for Proceed 

calls and join point reflection.  The IAspect methods are separate from the type defined by 

Aspect so that Aspect may be inherited by types implementing aspect behaviour without 

concern for naming conflicts.  The weaver consists of two systems:  a code generation 

system that organises byte code instrumentation of components, and an aspect modeling 

system that determines the bindings between join points and advice.  The details of join 

points are encapsulated by the code generation system and passed to the aspect modeling 

system, which determines the join point to advice bindings.  Byte code is added to the 

component being woven to transfer control to advice as required, to support dynamic 

decision making required to detect join points in a cflow and cflowbelow pointcuts, and 

to initialise data structures used by the IAspect implementation.  The weaver is limited 

due to using a one-pass code generation system and due to statically checking for matches 

between join points and pointcuts.  The weaver intercedes at start up by having the 

application deployer launch execution environment with a special batch file.  This batch 

file launches a weaving program that determines the aspects and components to weave 

based on directory location.  After weaving components, it passes control back to the entry 

point of the application being executed. 
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Chapter 5 Evaluation 
 

 

“L'implementation c'est bien mais l'évaluation c'est mieux” 

–Jean-Marc Seigneur 

 

 

 

 

 

 

 

 

In this evaluation, aspect-based properties supported by Weave.NET, our prototype 

weaver, are tested for language-independence and compared with functionally equivalent 

context properties.   

 

The language-independence challenge involves writing component types in C# [Ecm'03a], 

VB.NET [Mic'04d] and SML.NET [Ken'03] and binding each of these to three logging 

aspects, also written in each of these languages.  This selection of languages provides 

representatives from the object-oriented, procedural, and functional programming 

paradigms.  In the first instance of this test, we use custom crosscutting to establish 

interoperability of components and aspects written in different languages.  In the second 

instance of this test, the custom crosscutting is rewritten in terms of attributes to establish 

that attribute-based property selection does not conflict with language-independence.   

 

Comparisons with existing contextual composition involve writing context properties and 

aspect-based properties to address a selection of crosscutting concerns.  Comparisons are 

made with CLR contexts.  CLR contexts are an implementation of extensible contextual 

composition for the CLI.  Qualitative differences in the implementation and application of 

crosscutting functionality are examined in the context of the task of creating a profiling 

property to measure method execution time.  Using the profiling property, we can examine 

differences in execution overhead when logging is applied to a recursive Fibonacci series 

element generator using a context property and then again as an aspect-based property.  
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Finally, context properties and aspect-based properties are applied to the task of 

implementing a memoization optimization for an existing component for which source 

code is unavailable.  Memoization [Men'97] is a term that describes result caching for the 

purposes of enhancing performance.  In our case, this optimization is applied to improve 

the execution performance of the recursive Fibonacci series generator. 

 

We find that using aspect-based properties to implement crosscutting concerns avoids 

preplanning and tailorability issues of context properties, that aspect-based properties are 

lighter weight than context properties, and that aspect-based properties are simple to adopt.  

Migration considerations are addressed by the language-independence characteristics of 

the programming model used with aspect-based properties and the ability to reuse aspects 

without modifying their crosscutting specifications.  Aspect-based properties can be used 

by component and application developers without the need to adopt new programming 

languages.  Also, aspect-based properties can be bound to existing components regardless 

of implementing language of either aspect behaviour or the component.  In terms of 

reusability, the attribute-based property selection used with aspect-based properties is 

consistent with language-independence in that attributes do not dictate programming 

language, and attributed-based property selection avoids the need to revise crosscutting 

specifications.  In the comparison tests we noted that unlike context properties, aspect-

based properties did not place architectural constraints on the components adopting aspect-

based properties.  Application of logging and timing written as context properties required 

substantial changes to component architecture, and for memoization these changes were 

unrealistic.  In contrast, aspect-based properties could be adopted in each test case without 

the need to revise component implementation.  Furthermore, the execution overhead 

introduced by aspect-based properties is one tenth that of context properties, and the 

implementation of aspect-based properties was more succinct and articulate than the 

context-based equivalent. 

 

Indirectly, this evaluation uncovers issues with aspect-based properties with respect to the 

specification of crosscutting and the implementation of aspect-component composition 

with the Weave.NET weaver.  The use of XML simplifies the parsing and validation of 

crosscutting specifications, but observations from the evaluation process indicate that 

writing XML by hand is error prone.  As described in Chapter 3, XML uses CLR type 

names rather than language-specific monikers.  In our tests we noted that mapping type 

specifications between different programming languages and the CLR is not always 



 

148 

intuitive.  Also, our prototype weaver has difficulties when multiple aspects are woven into 

an application.  While the weaver can only weave one aspect per component, we were 

expecting that multiple aspects could be supported provided they were woven into different 

components.  Due to our implementation, weaving for one property can inadvertently load 

assemblies into the execution environment, and once a component is loaded, aspect-based 

properties can no longer be woven to that component.  Finally, the quality of our weaver 

draws attention to the fact that developing a commercial grade weaver requires significant 

programming resources that are beyond the scope of this project. 

 

The evaluation is broken into three sections.  Section 5.1 examines migration issues with 

subsections focusing on the language-independent nature of aspect-component 

composition and attribute-based property selection.  Section 5.2 contains comparisons 

between crosscutting functionality implemented with context properties and aspect-based 

properties.  Finally, section 5.3 summarises usability issues encountered during the 

evaluation of the programming model and the Weave.NET implementation. 

 

5.1 Migration Path Feasibility 

In our view, the primary difficulty with adopting aspect-based technology is the 

preservation of existing components, development tools and developer knowledge.  

Traditionally, AOP has forced the user to adopt a particular language for the 

implementation of component types that will be woven with aspects [Laf'03].  

Unfortunately, this is not feasible where component source is not available or where a 

large code base exists in a language without commercial AOP support.  Such situations are 

in sufficient abundance that there has been a recent recognition of the need for a focus on 

language-independence in the AOP community [Sab'04] with the goal of allowing 

component developers to use AOP with existing components, an existing component code 

base and existing component development languages.  Thus, the primary issue in adoption 

is language-independence.  Language-independence addresses the need to make aspect-

based technology compatible with existing development technology.  We can also look at 

preservation of developer knowledge from the point of view of wanting to avoid new 

technologies that require upgrades to developer skills.  With aspect-based properties, we 

want to hide the aspect-oriented mechanisms from the parties involved in development as 

much as possible.  While it is not possible to hide AOP mechanisms from the aspect 

developer, it is possible to hide them from the component developer using attribute-based 
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property selection.  Thus, the secondary issue in adoption is that aspect reuse be available 

in terms of attribute-based property selection, which avoids the need to modify aspects and 

which is consistent with language-independence. 

  

5.1.1 Language-Independent Composition 

Evaluation of language-independence is a matter of implementing aspect-based properties 

in a variety of languages and applying them to components also written in a variety of 

languages.  The test of language-independence is discussed in section 5.1.1.1.  In this 

evaluation, components implement an algorithm that enumerates Fibonacci series 

elements.  The demonstration of AOP techniques using a Fibonacci series enumeration 

algorithm is quite common as pointed out in [Cos'03].  Indeed, the algorithm has become 

common place in demonstrating AOP concepts in commercial tools such as AspectWerkz 

[Bon'04a].  Custom crosscutting is used to bind components and aspects in this test.  Recall 

from Chapter 3 that custom crosscutting is used by the application integrator role of the 

aspect-based property programming model to combine aspects with components not 

already annotated with attribute types.  The evaluation is concerned with demonstrating the 

binding of aspect-based properties to components across language barriers and not with 

demonstrating the clear-box crosscutting available with aspect-based properties.  For this 

reason, the aspect-based property is limited to logging execution join points as opposed to 

call or field access join points.  Components implementing the Fibonacci series algorithm 

as well as those implementing the behaviour of the logging aspect-based property have 

been written in three CLI-producer compliant languages that were selected in order to have 

examples that include representatives from multiple programming paradigms.  C# provides 

an example of a mainstream object-oriented language, as it shares many similarities with 

Java and C++.  VisualBasic.NET (VB.NET) is chosen as a representative of procedural 

programming languages.  Despite having adopted significant OO extensions in this latest 

update, VB.NET still provides procedural programming capabilities, and its existing base 

of users are focused on procedural-style programming.  Finally, SML.NET provides 

functional programming for the CLI.  In order to allow attribute-based property selection in 

the second set of tests, we have limited ourselves to specifying our SML.NET algorithm in 

terms of a class type for which the SML.NET compiler provides attribute support. 

 

In the course of implementing the evaluation, we noted that writing custom crosscutting is 

error prone due to difficulties with writing the crosscutting specifications and in advertent 
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join point selection.  The causes of these problems are discussed separately in section 

5.1.2.2. 

5.1.1.1 Verifying Language-Independence with Custom Crosscutting 

The target for our language-independence tests is a component implementing a recursive 

algorithm that enumerates members of the Fibonacci series.  The algorithm, shown in 

Figure 5.1, includes two methods, one that generates elements in the Fibonacci series, and 

a second that reports a series of elements generated using the former method.  Components 

containing these methods have been written in C#, VB.NET and SML.NET.  The C# 

version shown in Figure 5.1 is typical of the algorithm, which is recursive regardless of the 

programming language used. 

  public class FibonacciSeries  
  { 
    public void FibSeries(int seriesLen) 
    { 
      for (int i = 0; i<= seriesLen; i++) 
      { 
        long result = Fibonacci(i); 
        System.Console.WriteLine("Element \t"+ i+ "\tvalue \t"+result); 
      } 
    } 
 
    public long Fibonacci(int n) 
    { 
      if (n > 1) 
        return this.Fibonacci(n-1) + this.Fibonacci(n-2); 
 
      return 1; 
    } 
  } 

Figure 5.1:  C# source algorithm to enumerate Fibonacci series elements. 

Our Fibonacci algorithm lacks an explicit indication of its complexity, but this is remedied 

by adding a logging aspect-based property that reports the start and end of execution join 

points.  Normally only one implementation of logging would be need, but given our focus 

on language-independence, implementations of the logging aspect-based property are 

created for each of the three test languages.  Writing the aspect-based property in a 

particular language involves implementing the aspect behaviour in that language.  Logging 

is bound to a component using custom crosscutting as if binding were written by an 

application integrator.  Logging is a fairly simple concept made simpler by limiting the 

aspect-based property to reporting the start and end of a method execution to the 

application console rather than logging to a file.  A sample implementation of logging 

behaviour is shown in Figure 5.2 written in SML.NET this time.  The method names in the 

source allude to the kind of advice they implement.  The appearance of multiple methods 

with the prefix LogAfterJoinPointXXX methods alludes to difficulties with supporting 

after advice for different return types, which is discussed shortly. 
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structure Aspect_ML_Logging = 
struct 
_classtype Logger() : TCD.CS.DSG.Weave.Reflect.Aspect() 
 with  
  LogBeforeJoinPointInt (param:int) = 
  let 
   val jptInfo = valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: "; print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: "; print (Int.toString(param)); print "\n" 
  end 
 and 
  LogAfterJoinPointLong(param:int, result:Int64.int)= 
  let 
   val jptInfo = valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: "; print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: "; print (Int.toString(param)); print "\n"; 
   print "Execution result:    "; print (Int64.toString(result)); print "\n" 
  end 
 and 
  LogAfterJoinPointVoid (param:int) = 
  let 
   val jptInfo = valOf(this.##get_JoinPointStaticPart()); 
  in 
   print "Join point: "; print (valOf(jptInfo.#toShortString())); print "\n"; 
   print "Execution parameter: " ; print (Int.toString(param)); print "\n"; 
   print "Execution result:    NONE!"; print "\n" 
  end 
 end 
end  

Figure 5.2:  Implementation of logging behaviour written in SML.NET 

The aspect-based property’s custom crosscutting specification is generally the same 

regardless of the language implementing aspect behaviour and the component to which the 

aspect is applied.  The signatures of methods that implement aspect advice have been 

purposely made the same in each implementation of the logging aspect.  This limits the 

need to modify the pointcut specification, which is shown in Figure 5.3, depending on the 

language implementing aspect-based property behaviour.  The crosscutting specification 

shown in Figure 5.3 defines a named pointcut called SomeMethodExecution that identifies 

method invocations that take an integer as a parameter regardless of the return type.  The 

slight variation in the XML specifications used by each aspect-based property comes from 

the type name identifying aspect behaviour.  In contrast to VB.NET and C#, the SML.NET 

aspect behaviour is exported as a nested type, whose type signature includes the name of 

the enclosing class.  The custom crosscutting specifications are reusable without 

modification in that they can be applied to components without change.  Reuse then relies 

on the component’s types being the same in terms of members and member signatures 

regardless of implementing language. 
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<item>   
  <named_pointcut> 
    <modifier><public/></modifier> 
    <name>SomeMethodExecution</name> 
    <local_var_ref> 
      <var_type>Int32</var_type> 
      <var_name>data</var_name> 
    </local_var_ref> 
    <pointcut> 
      <and> 
        <pointcut><primitive> 
          <execution> 
            <method_signature> 
              <return_type><type_name>*</type_name></return_type> 
              <join_point_type><type_name>*</type_name></join_point_type> 
              <method_name>*</method_name> 
              <parameters> 
                <parameter><type_name>Int32</type_name></parameter> 
              </parameters> 
            </method_signature> 
          </execution> 
        </primitive></pointcut> 
        <pointcut><primitive> 
          <args> 
            <parameter> 
              <formal_parameter_name>data</formal_parameter_name> 
            </parameter> 
          </args> 
        </primitive></pointcut> 
      </and> 
    </pointcut> 
  </named_pointcut> 
</item> 

Figure 5.3:  A pointcut identifying method execution join points to which logging is applied. 

Logging is applied to execution join points using separate before and after advice 

corresponding to the start and end of each execution join point, but it is the after advice 

that highlights compromises made in the design of Weave.NET.  The use of the before 

advice in Figure 5.4 and the after returning advice in Figure 5.5 is chosen to provide 

contrast with other evaluation tests later in this chapter, which focus on around advice.  

The application of before advice is straightforward.  Our join points all take the same 

argument, so one before advice can be used if logging is to access join point execution 

state through typed formal parameters.  The variation in return types of execution join 

points in our FibonnacciSeries join points is accounted for with different kinds of after 

advice, one for each possible return type.  For code clarity, it would be preferable if 

methods implementing logging-related after returning advice where identically named.  

Unfortunately, CLR allows method name overloading on the basis of parameter type, but 

not on the basis of return type.  As an alternative, our solution uses a crude form of 

mangling in which methods implementing logging-related after returning advice carry a 

suffix corresponding to their return type.  Another solution would be to provide a single 

after returning advice that returned an Object reference.  While the Int32 and Int64 

return types would match, we would still need separate advice to influence methods that 

have a Void return type.  Note that in the version of the prototype weaver used for 
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evaluation, fully qualified type names were not required, thus the crosscutting specification 

uses the type name Int32 and not System.Int32.  We discuss the purpose of this change 

later in this section. 

    <!-- before advice, where single argument is a 32 bit int --> 
    <item> 
      <advice> 
        <before> 
          <formal_param> 
            <var_type>Int32</var_type> 
            <var_name>data</var_name> 
          </formal_param> 
          <pointcut><primitive><pointcutId><name> 
            SomeMethodExecution 
          </name></pointcutId></primitive></pointcut> 
          <behaviour><name>LogBeforeJoinPointInt</name></behaviour> 
        </before> 
      </advice> 
    </item> 

Figure 5.4:  Before that applies logging before join point execution. 

    <!-- after returning advice, where result is an 64 bit int --> 
    <item> 
      <advice> 
        <after> 
          <returning_params> 
            <var_type>Int64</var_type> 
            <var_name>data</var_name> 
          </returning_params> 
          <pointcut><primitive><pointcutId><name> 
            SomeMethodExecution 
          </name></pointcutId></primitive></pointcut> 
          <behaviour><name>LogAfterJoinPointLong</name></behaviour> 
        </after> 
      </advice> 
    </item> 
    <!-- after returning advice, where result type is void --> 
    <item> 
      <advice> 
        <after> 
          <returning_params> 
            <var_type>Void</var_type> 
            <var_name>none</var_name> 
          </returning_params> 
          <pointcut><primitive><pointcutId><name> 
            SomeMethodExecution 
          </name></pointcutId></primitive></pointcut> 
          <behaviour><name>LogAfterJoinPointVoid</name></behaviour> 
        </after> 
      </advice> 
    </item> 

Figure 5.5:  After advice that applies logging after join point execution. 

The actual language-independence test involves weaving a new assembly for each 

combination of component and aspect and verifying it to be valid.  Nine combinations of 

component and aspect exist, and these combinations are identified in Table 5.1.  For each 

combination of component and aspect woven, the result will be a new version of the 

component assembly that has been modified to access logging functionality from the 

aspect being woven.  At issue is whether this new assembly is a valid CLI component.  To 

verify validity, the new assembly is examined in two ways.  First, the new component is 

checked programmatically to verify that the CIL and metadata meet type safety 

requirements.  Second, the new component is executed.  The expectation is that the 
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assembly will execute and exit without generating an exception or error.  As well, we look 

for logging functionality to be consistent with other components using the same aspect 

implementation.  Component verification is performed using Microsoft’s Peverify 

[Mic'04c], which is an automated tool for type safety verification that reports problems 

with a component’s metadata as well as the CIL of its methods.  Proper execution involves 

piping console output to a file and then examining the results to ensure each of the nine 

executions generate the same results. 

 

Note that the bootstrap loading mechanism described in section 4.4 of Chapter 4 is not 

used during this or any other testing.  The bootstrap loader performs all weaving before 

application start up.  The difficulty with this approach is that it prevents us from isolating 

weaving from the rest of the application.  So rather than use the bootstrap loader, all our 

tests call the weaving API directly. 

Table 5.1:  Combinations of component and aspect woven according to implementing language. 
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The resulting weaving times for each test combination in Table 5.1 are shown in Table 5.2.  

The figures are the average amount of time that the weaver spent processing a component, 

and the average is from figures collected from three trials.  Table 5.2 also indicates the 

number of instructions processed in the component being woven.  As noted in Table 5.2, 

execution times are representative of a debug build running on a 497MHz Pentium III 

laptop with 384Meg of RAM under WindowsXP Professional.  Results are established by 

inspecting the laptop’s high speed timer which operates at approximately 3.6 MHz.  The 

times are representative in that the trials are not rigorous and simply aim to establish the 

ability to weave across language boundaries. 



 

155 

 

Although not shown in Table 5.2, the static overhead of loading types required by the 

weaver is significant.  Our initial tests discovered a substantial overhead in the first 

weaving operation of any test group, and so we added a dummy weave that applied a 

logging aspect against a minimally sized component, i.e. one containing a single method of 

3 CIL instructions in size.  From this we were able to determine an overhead of 

approximately 2000 milliseconds was involved in loading the components involved in 

weaving for the configuration used in Table 5.2. 
Table 5.2:  Weave times for combinations of components and aspects written in a variety of languages. 

151 ms165 ms168 msSML.NET
(444 instructions)

105 ms106 ms110 msVB.NET
(131 instructions)

169 ms169 ms160 msC#
(112 instructions)

SML.NETVB.NETC#

Aspect Type Language

ms – milliseconds or 10-3 seconds
Trials performed with debug build on 497MHz PentiumIII laptop with 384Meg of RAM under WindowsXP
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The language-independent custom crosscutting tests allow us to verify that aspect-based 

properties can be implemented using functional, procedural, and object-oriented 

programming languages and woven with components implemented in any of these 

languages. 

5.1.1.2 Problems with Language-Independent Custom Crosscutting 

In implementing the weaving trials, we noted that the specification of types in XML is not 

as straightforward as it could be, because mapping from language-based type names to CLI 

type names must be done manually.  Writing a custom crosscutting specification in XML 

involves using metadata descriptions to select join points.  As pointed out in Chapter 3, the 

crosscutting semantics of aspect-based properties are specified in terms of CLI types, and 
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not the development language types with which a programmer will be familiar.  The need 

to map from development language types to CLI types is acute in the case of primitive 

types, whose CLI names vary considerably from those used in the source code of a 

component.  For example, Table 5.3 shows the mappings between SML.NET primitive  

Table 5.3:  Mapping between CLI (.NET) types and C# / SML.NET equivalents, taken from [Ken'03]. 

 
types, their C# equivalent and their CLR name.  These tables show no overlap between the 

programming language type names and those used by the CLI.  In the evaluation, we did 

experiment with making it easier to simplify type specification by allowing the use of 

truncated versions of CLI types names in which the namespace is removed.  Hence, the use 

of Int32 and Void in the XML of Figure 5.5.  While these truncated versions are shorter to 

write, they make it easier to make mistakes.  For example, in writing “System.String”, 

we found the capitalization of System to be a reminder to capitalise the ‘String’ portion.  

When the namespace was removed, it was easier to forget that the CLI type was being 

used, and so we reverted to using language-specific monikers.  For example, ‘string’, all 

lower case, was used instead of ‘String’ with the capital first letter.  These mistakes are 

hard to spot, since it appears that the type is correctly written.  Generally, user types 

present less difficulty, as their name and namespace holds across language boundaries, but 

there are still quirks when user types are exported as nested classes.  For instance, class 

types exported by SML.NET are nested in their respective module.  A class Logger 

defined in module ML_Logger would be accessed using the moniker 

Aspect_ML_Logger+Logger.  This moniker is used in the XML of Figure 5.6 in order to 

select the Logger nested class from an assembly written in SML.NET.  
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<?xml version="1.0" encoding="utf-8" ?> 
  <ax:aspect xmlns:ax="http://aosd.dsg.cs.tcd.ie/XMLSchema"  
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
             xsi:schemaLocation="http://aosd.dsg.cs.tcd.ie/XMLSchema 
             file:aspect_Schema.xsd"> 
  <name>LoggingAspect</name> 
  <assembly>Aspect_ML_Logging</assembly> 
  <type>Aspect_ML_Logging+Logger</type> 
  <body> 
     ... 
  </body> 
</ax:aspect> 

Figure 5.6:  Crosscutting specification for logging with SML.NET type implementing logging in bold. 

structure App_Noninvasive_ML_Fibonacci 
  : sig val main: string option array option -> unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + this.#Fibonacci(n-2)) 
 and  
  FibSeries (n) = 
    case(n) of  
      ~1 => () 
     | n => (this.#FibSeries (n-1);  
             print "Element\t"; print (Int.toString (n)); print "\t value \t"; 
            print (Int64.toString(this.#Fibonacci (n))); print "\n" ) 
 end 
 fun SelfTest (elements, times) = 
  let 
   val fibML = FibonacciSeries() 
  in 
   case(times) of 
          0 => () 
        | n => (fibML.#FibSeries(elements); SelfTest(elements, times-1)) 
  end 
 fun main  (a : string option array option) = 
  let   
    val elements = 10 
    val times = 1 
  in  
    SelfTest(elements, times) 
  end 
end  

Figure 5.7:  SML.NET implementation of application to calculate Fibonacci Series elements. 

Our evaluation also noted a severe problem with the accidental selection of join points 

when property-based crosscutting without attributes is used.  Section 3.1.1.1 discussed two 

methods in which aspect-based properties supported property-based crosscutting.  In the 

first instance, a pointcut designator’s argument can be made more general by the use of 

regular expressions in the pointcut designator’s argument.  However, such regular 

expressions can make unexpected join point selections.  Before evaluation, we made the 

general assumption that these extra join points could be spotted in source code.  If this 

were the case, then with a careful examination of component source the crosscutting 

specification could be more finely crafted to remove the superfluous join points.  However, 

evaluation tests involving components written in SML.NET indicate superfluous join 
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points are not always visible from source.  Assemblies generated by the SML.NET 

compiler can contain considerably more types than could be inferred from the source code.  

For example, Figure 5.7 defines a SML module with methods main and SelfTest at the 

module level and methods Fibonacci and FibSeries in the class FibonacciSeries.  

Using the directive “export App_Noninvasive_ML_Fibonacci” to compile this source 

results in an assembly containing a surprising number of additional types.  As shown in 

Figure 5.8, an Ildasm-generated view of the type definitions uncovers a large number of 

types for which there are no explicit declarations in the source code.  As expected, there is 

a type corresponding to the module that contains the implementation of main and 

SelfTest, and there is a class corresponding to the FibonacciSeries class declaration 

that contains the implementations of Fibonacci and FibSeries.  The difficulty is that 

there are other types such as Globals with methods such as “static char a(int32 

A_0)” that would match property-based crosscut for logging shown in Figure 5.3. 

 
Figure 5.8:  Ildasm view of types contained in assembly written in SML.NET source in Figure 5.7. 
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5.1.2 Reuse with Attribute-based Property Selection 

To evaluate support for attribute-based property selection, we contrast the use of attribute 

types with the use of custom crosscutting and look for the attributes to be consistent with 

language-independence and to avoid the need to modify crosscutting specifications.  To 

provide this contrast, the language-independence tests of section 5.1.1 are re-implemented 

using attribute-based property selection in section 5.1.2.1.  So in section 5.1.2.1 it is as 

though aspect-component binding were conducted by an attributed component writer who 

annotated the component with attribute types.  The attributed component writer role is 

described in section 3.2 of Chapter 3.  Attributes are introduced into the source code for 

components written in C#, VB.NET, and SML.NET, as the CLS producer status of these 

code generation tools guarantees that attributes in source code will appear as metadata tags 

in the assembly that results from compilation.  The advantages of using an attribute type 

can be seen in improved weaving performance in that the time required to weave a 

component is usually reduced.  Another advantage is the simplicity of specifying aspect-

component bindings.  The slight performance improvements gained during composition 

when attribute-based property selection is used are likely due to simplification of join point 

matching.   

 

In section 5.1.2.2, we note the qualitative advantages observed with the use of attribute-

based property selection.  Specifically, the use of attributes offers a more succinct and 

accurate means of applying crosscutting functionality; however, attributes prove difficult 

to use when call join points implemented by legacy components need to be manipulated.  

5.1.2.1 Evaluating Attribute-based Property Selection 

To review the discussion in section in 3.1.1, the crosscutting specifications implemented 

by the aspect-based property writer for an aspect-based property are meant to exploit 

attributes.  These specifications are complemented with an attribute type that allows 

component source code to access the functionality of an aspect-based property.  In contrast 

to custom crosscutting, aspect-based properties use attribute type names in place of join 

point implementation details such as types and type member signatures.  When using 

attribute type names, the grammar for pointcut specifications is unchanged when it comes 

to the primitive pointcut designators available, but the parameters used for aspect-based 

properties vary.  Rather than signature or type name arguments, primitive pointcut 
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designators are parameterised with attribute tags describing the attribute type name.  In the 

case of the CLI, these attributes are implemented by custom attribute types.   

  <execution> 
    <method_signature> 
      <return_type> 
        <type_name>*</type_name> 
      </return_type> 
      <join_point_type> 
        <type_name>*</type_name> 
      </join_point_type> 
      <method_name>*</method_name> 
      <parameters> 
        <parameter><type_name>Int32</type_name></parameter> 
      </parameters> 
    </method_signature> 
  </execution> 

  <execution> 
    <attribute>Logging</attribute> 
  </execution> 

Figure 5.9:  Contrast between crosscutting semantics produced by an application integrator (top) and 

an aspect-based property writer (bottom). 

The contrast between aspect-based property crosscuts and custom crosscuts can be seen in 

Figure 5.9.  The top pane of the figure contains the execution pointcut specification used in 

Figure 5.3 to select execution join points for logging.  In this pane, the selection of method 

execution join points is based on a method signature.  In the bottom pane of Figure 5.9, the 

specification is revised to select methods tagged with an attribute type with the name 

Logging.  This second version contains considerably fewer terms than the first.  Of course, 

it is reliant on the ability to associate attributes with methods to be logged, and in our 

programming model this is done by annotating method source with an attribute type.  

Recall that attribute types provide an API for accessing aspect-based property 

functionality.  For example, the attribute type in Figure 5.10 would form the basis of 

logging that is applied to method invocations only. 

[AttributeUsage(AttributeTargets.Method)] 
public class Logging : Attribute 
{ 
  public Logging() {} 
} 

Figure 5.10:  Implementation of attribute type for accessing logging provided by an aspect-based 

property. 

An example application of attribute types is shown in Figure 5.11, where methods of the 

Fibonacci series algorithm in Figure 5.1 are bound to logging functionality.  This example 

emphasises the attribute annotations by marking them in bold.  In our CLI implementation, 

the attribute types are modelled as metadata extensions.  This raises the possibility of 

modifying the metadata of an existing assembly as a means of annotating a component 
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with attributes in the absence of source code.  While this is theoretically possible, at 

present there are no tools to do so.   

  public class FibonacciSeries 
  { 
    [Logging] 
    public void FibSeries(int seriesLen) { 
      for (int i = 0; i<= seriesLen; i++) { 
        long result = Fibonacci(i); 
        System.Console.WriteLine("Element \t"+ i+ "\tvalue \t"+result); 
      } 
    } 
 
    [Logging] 
    public long Fibonacci(int n) { 
      if (n > 1) 
        return this.Fibonacci(n-1) + this.Fibonacci(n-2); 
 
      return 1; 
    } 
  } 

Figure 5.11:  Fibonacci series enumerator annotated with attributes to identify methods for logging. 

In our evaluation we are concerned with determining whether attribute-based property 

selection can be used in a language-independent manner and whether its use avoids the 

need to modify an existing aspect.  To do so, we duplicated the language-independence 

tests of the previous section with crosscutting semantics revised to exploit attribute types 

for join point selection.  Modification of the language-independent composition tests 

involves two steps.  First, the crosscutting specification of the each logging aspect is 

revised to use an attribute for method selection.  These changes are analogous to the 

changes made between the top and lower panes of Figure 5.9.  Secondly, new versions of 

the components targeted for weaving are created in which attributes are applied in a similar 

fashion to Figure 5.11.  Specifically, attribute types are applied to the Fibonacci and 

FibSeries methods, whose execution is to be logged.  These new aspect-based properties 

are then composed with the new components, and average weave times are collected for 

comparison with the results of the previous weaving tests. 

 

Our evaluation indicates that language-independence was preserved without introducing 

additional overhead to weaving.  Language-independence is preserved in that the same 

attribute types were used to annotate components, regardless of the programming language 

used to implement the component.  Assemblies resulting from the weaves passed the 

verification testing of Peverify, and weaving generally took less time than when custom 

crosscutting was used to specify aspect-component bindings.  The weave times for 

attribute-based property selection are contrasted with their custom crosscutting equivalents 

in Table 5.4.  The better performance with attribute-based property selection is likely due 

to a decrease in the number of XML tags that must be examined to determine a match 

between a method and an execution primitive pointcut designator.  As is evident from 



 

162 

Figure 5.9, attribute-based specifications have considerably fewer XML elements.  The 

reuse of aspect-based properties did not require the revising of the aspect-based property’s 

crosscutting specification.  This was also the case in our example of custom crosscutting; 

however, with attribute-based property selection the crosscutting specification did not 

dictate component implementation. 
Table 5.4:  Contrast of execution times for attribute-based and noninvasive selection of logging. 
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5.1.2.2 Advantages and Disadvantages of Attribute-based Property Selection 

Our evaluation noted the use of attribute-based property selection to be substantially 

simpler than custom crosscutting with the exception of call join points.  Essentially, 

attribute-based property selection made writing aspect-component bindings less error 

prone, and in our trials only explicitly annotated types and type members were labelled 

with attributes in the compiled component. 

 

Attribute-based property selection provides an alternative means of identifying CLI 

metadata that avoids mistakes made in a custom crosscutting specifications that are 

extremely difficult to detect.  Recall that writing custom crosscutting involves specifying 

join points in terms of metadata that is native to the CLI.  On the one hand, most 

programmers do not think in terms of CLI types, and so they are apt to make mistakes 

when they are forced to translate an API documenting a component in terms of language-

specific types to the underlying CLI native types.  On the other hand, there is little help 
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available from the weaver for detecting erroneous type specifications, as it is hard to 

design a weaver that can distinguish between types that are specified correctly and those 

that are specified in error.  For instance, the method parameters in Figure 5.11 are of type 

int.  int is the C# moniker for the CLI type System.Int32, and thus the short form 

Int32 appears in the method parameter specification of Figure 5.9.  Should the type int 

appear accidentally, one would expect the weaver to complain.  However, it is legitimate 

for a programmer to define a custom CLI type by the name of int in a different 

namespace.  Even if we require that type names in the crosscutting specifications include a 

full namespace, int is still a valid user defined type.  Attribute-based property selection 

avoids the issue of detecting errors made when the language type name is mapped to the 

CLI type name mappings, since the placement of attributes on types or type members 

avoids the need to deal with join point selection in terms of CLI-specific type names.  In 

effect, the use of attributes represents the introduction of language-independent monikers 

for types and type members. 
 
structure App_Invasive_ML_Fibonacci  
  : sig val main: string option array option -> unit 
    end =  
struct 
_classtype FibonacciSeries() 
 with  
  {Aspect_CS_Logging.Logging()} Fibonacci (n) = 
    case(n) of 
      0 => (Int64.fromInt(1)) 
    | 1 => (Int64.fromInt(1)) 
    | n => (this.#Fibonacci(n-1) + this.#Fibonacci(n-2)) 
 and  
  {Aspect_CS_Logging.Logging()} FibSeries (n) = 
    case(n) of  
     ~1 => () 
    | n => (this.#FibSeries (n-1); 
            print "Element\t"; print (Int.toString (n)); print "\t value \t";  
            print (Int64.toString(this.#Fibonacci (n))); print "\n" ) 
 end 
 
 ... 
 
end  
 

Figure 5.12:  SML.NET implementation of Figure 5.7 updated to exploit custom attributes. 

Also, attribute-based property selection has less difficulty with unexpected join point 

selection, since attributes follow the implementation of the tagged method.  With revisions 

to include attributes, the SML-based Fibonacci series algorithm in Figure 5.7 takes on the 

appearance of that of Figure 5.12, where attributes appear in bold.  Note that the definitions 

of main and SelfTest have been removed for brevity.  As before, additional helper types 

will appear in the compiled assembly.  However, an examination of the metadata of the 

assembly indicates that only those methods explicitly tagged at the source code level will 

have their metadata description annotated by the logging attribute in the compiled 
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assembly.  Thus, applying logging on the basis of attributes rather than method signature, 

constrains logging to the Fibonacci and FibSeries methods.  VB.NET and C# showed 

similar behaviour in that only methods annotated in source code were annotated in the 

compiled assembly.  However, these languages introduced no new types beyond those in 

source code and they introduced only a minor number of type members such as default 

constructors. 

 

While updating the logging crosscutting specification, we noticed that attribute-based 

property selection was not as useful when it came to selecting call join points.  Using 

attribute-based property selection, the signature argument of a call join point will be 

substituted with an attribute.  This attribute must appear on the declaration of the method 

being called; however, in many cases the method being called is implemented by a legacy 

component.  This is the case with methods from the CLI’s Base Class Library such as the 

console output methods Write and WriteLine.  Depending on the CLI implementation, 

source code may not be available, as is the case for Microsoft’s .NET Framework 

implementation.  Thus, in practice it is quite difficult to use attributes as the argument of a 

call primitive pointcut designator.  A possible solution to this limitation is to allow call 

primitive pointcut designators to exploit parameterised attributes in which an attribute 

applied to a method can point out calls in the method’s body.  Such a solution is the subject 

of future research. 

 

5.2 Aspect-Based and Context Crosscutting Functionality 
Compared 

This section compares crosscutting concerns implemented with a contextual composition 

mechanism to those implemented with aspect-based properties.  Our evaluation starts by 

examining the limits to context properties.  This involves implementing crosscutting 

functionality in terms of context properties and contrasting this with equivalent 

functionality implemented as an aspect.  These custom context properties are written using 

extensible contextual composition available with CLR contexts.  This choice also avoids 

the need to discount platform differences in our performance comparisons, as both CLR 

contexts and our prototype weaver target the same platform.  The crosscutting functionality 

chosen is high accuracy execution time profiling, which is available in the CLI as an API.  

Unfortunately, profiling is not sufficiently computationally intensive to ascertain the 

performance characteristics of context properties.  The calculation of Fibonacci series 
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algorithms according to the algorithm described in section 5.1 involves an exponentially 

growing number of method invocations, and so we examine the performance 

characteristics of logging applied via context properties to those of the aspect-based 

solution developed in the language-independence section.  Finally, both technologies are 

applied to the task modifying an existing component.  In this case, the task is to implement 

a memoization performance enhancement for the Fibonacci series algorithm.   

 

5.2.1 Qualitative Comparison 

In section 5.2.1.1, which follows, we use the task of implementing profiling to demonstrate 

the ability of aspect-based properties to match CLR context properties in terms of the 

functionality that can be implemented.  Then, in section 5.1.1.2 we point out how the richer 

join point model available with aspect-based properties allows them to avoid preplanning 

issues with context properties and to provide better tailorability. 

5.2.1.1 Profiling Implemented with CLR Contexts and Aspect-Based Properties 

A problem that allows us to contrast contextual composition with aspect-based properties 

is that of profiling method invocations.  The need for a tidy system for profiling method 

execution time is evident from the test results of the previous sections.  Take for example 

Table 5.4.  Here, 18 timing results were shown, and each corresponds to an average for 

three trials.  Thus, at least 54 different executions had to be measured and their value 

stored.  One option for capturing this data is to add timing code to the code that calls the 

weaver; however, we have to consider the number of locations at which code it updated in 

order to make this change. Two applications were used to generate the results in Table 5.4:  

one uses attribute-based property selection and one uses custom crosscutting.  Each 

application is responsible for weaving a test group, which involves three different weaves, 

which means that code to report execution time has to be placed at six points throughout 

the application.  We could refactor these invocations into a single method that provides 

profiling, but an attempt at such a refactoring would require retesting the new program 

design to verify that the semantics had not changed.  Coincidentally, embedding timing 

code is the kind of tangling problem that is addressed by AOP.  Thus, it should be possible 

to model profiling with an aspect-based property.  Being a crosscutting functionality, it 

should also be possible to model profiling as a context property. 
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Using CLR contexts, the behaviour of the context property to handle execution time 

profiling becomes a message sink that accesses the CLI’s profiling API.  The CLI provides 

extensible context properties via message sinks, which intercept method calls received by 

an object and wrap them with additional functionality.  At the core of a message sink class 

is a SyncProcessMessage method that is invoked whenever a synchronous method call is 

invoked on the object to which the message sink is attached.  The SyncProcessMessage 

method is passed a reified version of the method invocation.  The SyncProcessMessage 

can then perform processing and optionally pass on the invocation to the target object.  The 

SyncProcessMessage method responsible for profiling method execution is shown in 

Figure 5.13.  The method uses the WIN32 API QueryPerformanceCounter method to get 

high precision measurements of the execution time of a method, where the actual 

frequency of this clock is given by QueryPerformanceFrequency. 

 public IMessage SyncProcessMessage(IMessage msg)  
{ 
  // We only want to process method calls 
  if (!(msg is IMethodMessage))  
    return m_next.SyncProcessMessage(msg); 
 
  /// Record invocation details. 
  RecordMethodDetails(msg); 
 
  /// Start timer to measure weaving speed. 
  ///  
  IMethodMessage callMsg = msg as IMethodMessage; 
  IMessage returnMethod = null; 
  long ctr1 = 0, ctr2 = 0, freq = 0; 
 
  if (QueryPerformanceCounter(ref ctr1)!=0) // <--------- Begin timing. 
  { 
    returnMethod = m_next.SyncProcessMessage(msg); // <-- Call profiled method 
 
    QueryPerformanceCounter(ref ctr2); // <-------------- Finish timing. 
    QueryPerformanceFrequency(ref freq); 
 
    RecordExecutionTime(ctr1, ctr2, freq); 
  } 
  else  
  { 
    this.sw.Write("High-resolution counter not supported."); 
  } 
  return returnMethod; 
} 

Figure 5.13:  Message sink written in C# that is used to implement the functionality of an execution 

time profiling context property. 

Message sinks implementing a context property are attached to context-bound objects 

during construction under the direction of a context attribute.  The term “context-bound 

object” is CLI specific, and it refers to a type of object to which message sinks can be 

attached.  Context-bound objects are those that directly or indirectly inherit from class 

ContextBoundObject.  Context attributes are a subtype of custom attributes that bootstrap 

the process of attaching a message sink to a newly instantiated object.  When a context-
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bound object is instantiated, associated context attributes are instantiated and asked to add 

themselves to the list of context properties applied to the context-bound object.  These 

properties are in turn responsible for assigning message sinks to the object, and these 

message sinks implement context properties.  As a concrete example, Figure 5.14 provides 

the definition of a class of context attribute that attaches an execution time profiling 

property to a context-bound object.  The implementation of the property being attached 

follows in Figure 5.15. 

[AttributeUsage(AttributeTargets.Class)] 
public class ProfileExecutionTimeAttribute : ContextAttribute  
{ 
  public ProfileExecutionTimeAttribute() :  
           base("ProfileExecutionTimeAttribute") {} 
 
  public override void GetPropertiesForNewContext(IConstructionCallMessage ccm) 
  { 
    ProfileExecutionTimeProperty newProp = new ProfileExecutionTimeProperty(); 
    ccm.ContextProperties.Add(newProp); 
  } 
} 

Figure 5.14:  Context attribute to bind a profiling property to a context-bound object. 

public class ProfileExecutionTimeProperty : IContextProperty,  
                                            IContributeObjectSink  
{ 
  public IMessageSink GetObjectSink(MarshalByRefObject o, IMessageSink next) { 
    return new ProfileExecutionTime(next); 
  } 
 
  public bool IsNewContextOK( Context newCtx ) { return true ; } 
  public void Freeze(Context newContext) { } 
  public string Name { get { return "ProfileExecutionTimeProperty"; } } 
} 

Figure 5.15:  A context property that implements profiling using the message sink of Figure 5.13.  

Unfortunately, it is not possible to apply context property profiling to calls to weaving API 

methods.  As mentioned, the CLR context properties only work with objects that are 

subtypes of ContextBoundObject, and only incoming messages can be captured.  Thus, 

the profiling context property would have to be applied to the weaver API, rather than 

invocations by clients of the weaver API.  To do so, the weaving library would have to be 

updated to sit in a subtype of ContextBoundObject, and the methods in the API would 

have to be changed from static methods to instance methods.  Such modifications are far 

reaching in that they would break significant portions of existing test code and require 

recompilation of the weaver.  A reasonable alternative is to leave the weaver ‘as is’ and 

access the weaving API via a wrapper interface along the lines of that pictured in Figure 

5.16.  In this figure, the type ProfilingWrappers inherits from ContextBoundObject and 

ProfilingWrappers is tagged with the ProfileExecutionTime context based property, 

also shown in bold.  The class allows profiling through the WeaveCallWrapper method 

that forwards calls to the weaving API.  As an instance method in a type inheriting from 



 

168 

ContextBoundObject, WeaveCallWrapper is able to be influenced by the context 

property. 
 
[ProfileExecutionTime()] 
public class ProfilingWrappers : ContextBoundObject 
{ 
  public TimingCallWrappers() { } 
 
  public void WeaverCallWrapper( 
      string component, string componentPath,        
      string aspect, string aspectPath) 
  { 
    TCD.CS.DSG.WeaveDotNet.Weave(component, componentPath, aspect, aspectPath);
  } 
} 
 

Figure 5.16:  Application of context profiling to weaver profiling via a wrapper class.  

Rather than a message sink, the aspect-based profiling property uses around advice.  This 

around advice, shown in Figure 5.17, uses a Proceed invocation to pass control to the join 

point after starting the timer.  After the join point returns, the timer is stopped.  Unlike a 

message sink, the advice return type matches that of the method that it was replacing, 

whereas message sinks return a reified result.  The profiling aspect-based property’s 

crosscutting specification is written in terms of attributes, and the specification is shown in 

Figure 5.18.  The TimeCalls named pointcut that organises join point selection binds 

profiling to each individual method invocation for methods tagged with an attribute of type 

ProfileAllCalls.  TimeCalls combines a withincode primitive pointcut designator that 

selects all join points in a tagged method with a call designator that limits this set of join 

points to method invocations.  The advice semantics of Figure 5.19 further limit the set of 

methods being profiled by selecting only those with a void return type. 

 
 
public void ProfileExecution()  
{ 
  RecordMethodDetails(); 
 
  long ctr1 = 0, ctr2 = 0, freq = 0; 
  if (QueryPerformanceCounter(ref ctr1)!=0) // <--------- Begin timing. 
  { 
    object[] temp = new object[0]; 
    ((IAspect)this).Proceed(temp); // <------------------ Call profiled method 
 
    QueryPerformanceCounter(ref ctr2); // <-------------- Finish timing 
    QueryPerformanceFrequency(ref freq); 
 
    RecordExecutionTime(ctr1, ctr2, freq); 
  } 
  else  
  { 
    this.sw.Write("High-resolution counter not supported."); 
  }       
} 
 

Figure 5.17:  Method implementing behaviour of advice execution time profiling.  
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<item> 
  <named_pointcut> 
    <modifier><public/></modifier> 
    <name>TimeCalls</name> 
    <pointcut> 
      <and> 
        <pointcut> 
          <primitive> 
            <withincode> 
              <attribute>ProfileAllCalls</attribute> 
            </withincode> 
          </primitive> 
        </pointcut> 
        <pointcut> 
          <primitive> 
            <call> 
              <method_signature> 
                <return_type><type_name>*</type_name></return_type> 
                <join_point_type><type_name>*</type_name></join_point_type> 
                <method_name>*</method_name> 
                <parameters><param_wildcard/></parameters> 
              </method_signature> 
            </call> 
          </primitive> 
        </pointcut> 
      </and> 
    </pointcut> 
  </named_pointcut> 
</item> 
 

Figure 5.18:  Pointcut to associate method call profiling with the ProfileAllCalls attribute.  

 
 
<item> 
  <advice> 
    <around> 
      <return_type>Void</return_type> 
      <pointcut> 
        <primitive> 
          <pointcutId><name>TimeCalls</name></pointcutId> 
        </primitive> 
      </pointcut> 
      <behaviour><name>ProfileExecution</name></behaviour> 
    </around> 
  </advice> 
</item> 
 

Figure 5.19:  Advice to associate join points in the TimeCalls with around advice of Figure 5.17.  

Despite having differences in implementation, the context-based profiling matches the 

aspect-based profiler in terms of the functionality.  The results generated by profiling 

weaving execution time using a context property and aspect-based profiling are shown in 

Table 5.5.  The tests performed were those involving attribute-based property selection 

described in section 5.1.2.  The identical nature of aspect-based property profiling figures 

here and those in Table 5.4 reflect the fact that aspect-based profiling was used to gather 

data for section 5.1.  The execution times measured by context-based properties are 

typically longer than their aspect-based property equivalent.  This is likely in part due to 

execution overheads inherent to context-bound objects, which we investigate further in the 

performance comparison. 
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Table 5.5:  Profiling using context property with aspect-based property results below in parentheses. 
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5.2.1.2 Advantages of Aspect-Based Properties over Context Properties 

In our evaluation, we noted specific instances in which component architecture changes 

required to access CLR context properties introduced preplanning problems and limit 

support for tailorability.  First, the component instance inheritance hierarchy is modified as 

component instances must inherit from the ContextBoundObject class.  Such changes 

constitute preplanning requirements that we wished to address with aspect-based 

properties.  Second, the means by which the component instance interacts with other 

objects in the system is changed, as method invocations will always be reified in order to 

be processed by the message sinks that a context property attaches to the component 

instance.  As highlighted in Figure 5.16, context-based profiling requires the code being 

profiled to be crafted around profiling.  This requirement constrains the tailorability 

available with CLR contexts as the scope of component functionality that can be 

influenced by the context properties is limited.   

 

The problems with CLR contexts described above are addressed with the richer join point 

model available with aspect-based properties.  Whereas aspect-based properties offer call, 

execution and field access join point selection, extensible contextual composition only 

supports the manipulation of method execution join points with what amounts to around 

advice.  Moreover, the set of method execution join points available is quite constrained.  
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Static calls, i.e. those not made on class instances, cannot be influenced by context 

properties.  Only invocations crossing object boundaries can be considered, and so 

methods called on an object instance by that instance cannot be influenced either.  As well 

as having a more limited set of join points to influence, context properties lack abstractions 

to refine this set.  For instance, the profiling context property had to be applied to all 

method invocations on a tagged type, whereas an aspect-based property could narrow the 

set of profiled calls to those made by a specific method.  Thus, the architectural changes 

required by CLR contexts are principally due to the narrower set of join points available 

for manipulation with context properties.   

 

5.2.2 Overhead Performance Comparison 

Our performance tests indicate the execution overhead of aspect-based properties to be an 

order of magnitude lower than that of context properties.  In a comparison of logging 

implemented as a context property and logging implemented as an aspect-based property, 

the aspect-based properties executed ten times faster.  Subsequent research indicated that 

use of the CLI’s reflective API when gathering logging data introduces significant 

execution overhead, so a second comparison was done using context properties and aspect-

based properties that had all internal functionality removed.  This second test indicates the 

performance of aspect-based properties to be better than expected, but the performance 

degrades as the number of parameters passed to advice increases. 

 

In the following sections we discuss the testing procedure and subsequent results. 

5.2.2.1 Comparison of Logging Functionality 

Our initial performance tests involved applying logging to a modified version of the 

Fibonacci algorithm.  As CLR contexts can only influence inter-object method invocations, 

the recursion of Figure 5.11 had to be rewritten in terms of mutually recursive invocations 

made by two different objects so that method executions of interest were exposed as 

external invocations.  An implementation that satisfies this requirement with a minimum of 

object instantiations is shown in Figure 5.20.  The algorithm uses mutual recursion 

between objects, and for clarity these objects are of different types.  Logging is applied 

with attribute-based property selection for both context properties and aspect-based 

properties.  In the case of context-based logging, the two types involved in the algorithm 

are annotated with context attributes.  In the case of aspect-based property logging, the two 
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methods that are specifically of interest are annotated.  Note that while inheriting from 

class ContextBoundObject and using mutual recursion is only required for the context 

property logging, for consistency the same algorithm implementation is used when aspect-

based logging is examined. 

public class FibonacciSeries : ContextBoundObject 
{ 
  public static FibonacciSeries singleton; 
  protected FibonacciSeries() {} 
  static FibonacciSeries() { singleton = new FibonacciSeries(); } 
 
  public void FibSeries(int seriesLen) { 
    for (int i = 0; i<= seriesLen; i++)  { 
      long result = FibonacciCalc.singleton.Fibonacci(i); 
      System.Console.WriteLine("Element \t"+ i+ "\tvalue \t"+result);  
    } 
  } 
 
  public long Fibonacci(int n) { 
    if (n > 1)  
      return  FibonacciCalc.singleton.Fibonacci(n-1) +  
              FibonacciCalc.singleton.Fibonacci(n-2); 
      return 1; 
  } 
} 
 
public class FibonacciCalc : ContextBoundObject { 
  public static FibonacciCalc singleton; 
  protected FibonacciCalc() {} 
  static FibonacciCalc() { singleton = new FibonacciCalc(); } 
 
  public long Fibonacci(int n) { 
    if (n > 1)  
      return  FibonacciSeries.singleton.Fibonacci(n-1) +  
              FibonacciSeries.singleton.Fibonacci(n-2); 
    return 1; 
  } 
} 

Figure 5.20:  Fibonacci algorithm implemented as mutually recursive singleton objects that is used for 

performance comparisons.  

Figure 5.21:  Execution times for algorithm of Figure 5.20 with context and aspect-based logging. 
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Comparing the execution time of the logging implemented with each mechanism indicates 

a significant speed up in the case of aspect-based logging.  During our trials, we noted that 

adding logging to the algorithm of Figure 5.16 slows the calculation of Fibonacci elements 

significantly, even when logging output is piped to a file.  Of more interest is the difference 

in execution time between each approach to logging.  Despite using the same base 

algorithm for both aspect-based and context logging, the context logging executed an order 

of magnitude slower than aspect-based logging.  This difference in execution speed is 

captured in Figure 5.21, where the use of context-based logging increases execution time 

approximately ten fold over aspect-based logging in all cases.  Moreover, the execution 

speed of context-based logging and aspect-based logging show no sign of converging as 

the number of Fibonacci elements to be calculated increases. 

5.2.2.2 Comparison of Intercession Mechanism 

The second performance evaluation focuses on the execution overhead of the intercession 

mechanisms of context properties and aspect-based properties.  Our initial performance 

tests revealed significant overhead was incurred when the logging functionality made use 

of the CLI’s reflection API.  To determine if this overhead distorted the performance 

comparison, we devised a new test that examined the overhead of the intercession 

mechanism used by context properties and aspect-based properties.  To begin, seven 

functions were written that do not contain any functionality.  These methods are 

implemented in class BlanksMethods shown in Figure 5.22.  Next, a context property and 

an aspect-based property were written to intercede at the start and end of each method 

execution join point, and to expose the join point’s arguments and return value as typed 

formal parameters.  Despite having access to these parameters, the context property and 

aspect-based property did not include any functionality, i.e., the before and after returning 

advice methods contained no behaviour.  

  public class BlanksMethods : ContextBoundObject 
  { 
    public static BlanksMethods singleton; 
    public BlanksMethods() {} 
    static BlanksMethods() { singleton = new BlanksMethods(); } 
 
    public void    BVoidVoid() { } 
 
    public void    BVoidInt(int a) { } 
    public void    BVoidIntInt(int a, int b) { } 
    public int     BIntIntInt(int a, int b) {return a; } 
 
    public void    BVoidObj(int a) { } 
    public void    BVoidObjObj(Object a, Object b) { } 
    public Object  BObjObjObj(Object a, Object b) {return a; } 
  } 

Figure 5.22:  Empty methods that will be influenced by aspect-based properties and context properties.  
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Performance profiling confirmed the intercession mechanism of aspect-based properties to 

be an order of magnitude faster than that of context properties, but this improvement 

degrades as the amount of join point execution context exposed by an aspect-based 

property increases.  As with all performance tests in this section, the execution overhead 

was profiled using a debug build running on a 497MHz Pentium III laptop with 384Meg of 

RAM under WindowsXP Professional, and execution times were calculated using the 

laptop’s high speed timer which operates at approximately 3.6 MHz.  Our trials examined 

average execution overhead due to intercessions as the number of invocations increased 

from 10000 to 100000 in steps of 10000.  We observed average execution overhead to 

increase linearly, and so values at 10000 and 100000 invocations were used as endpoints of 

a line from which the average overheads shown in Table 5.6 were calculated.  The table 

indicates that the execution overhead of aspect-based properties is heavily dependent on 

the number of parameters that must be loaded onto the stack during advice invocation; 

however, in our trials aspect-based properties offer an even better performance increase 

than was alluded to in Figure 5.21. 

Table 5.6:  Execution overhead of intercession mechanism of context properties and aspect-based 
properties when applied to methods of Figure 5.22. 

Target Method Context Property 
Intercession Overhead 

(microseconds) 

Aspect-Based Property 
Intercession Overhead 

(microseconds) 
Void BVoidVoid() 50.27 1.521
Void BVoidInt(Int32) 53.72 3.202
Void BVoidIntInt(Int32, Int32) 55.08 3.711
Int32 BIntIntInt(Int32, Int32) 55.80 4.121
Void BVoidObject(Object) 53.96 2.725
Void  BVoidObjObj(Object, Object) 55.29 3.536
Object BObjObjObj(Object, Object) 55.43 3.665

 

5.2.3 Improving Legacy Component Performance 

In this final phase of the evaluation, we apply a light-weight performance-enhancement to 

demonstrate aspect-based properties to be more useful for legacy components than context 

properties.  The comparison tests so far have had the opportunity to revise component 

implementation to suit the crosscutting functionality being applied.  In this section, we 

restrict the crosscutting concerns to working with a component as-is, i.e., without the 

ability to recompile the component.  In contrast, the initial language-independence tests 

were able to synchronize the implementation of components to suit a custom crosscutting 

specification, and the second batch of language-independence tests were able to add 

attributes to suit an aspect-based property or context property.  The programming task in 

this section is to implement and apply memoization for the purposes of improving 
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component execution performance.  Memoization has been used in the past to demonstrate 

the ability of aspects to improve existing code [Men'97], and it consists of caching a 

function’s results for a given input to avoid having to recalculate the results.  Memoization 

is well suited to functional programming languages such as SML.NET where functions are 

stateless and function execution is side-effect free.  The target for memoization is the 

Fibonacci method of the SML.NET-based Fibonacci series enumeration algorithm shown 

earlier in Figure 5.12. 

public class CacheResults : Aspect 
{ 
  public CacheResults() { } 
 
  const int cacheSize = 5; 
  static long[] results = new long[cacheSize]; 
  static int[] inputs = new int[cacheSize]; 
  static int lastIndex = 0; 
 
  static CacheResults() { 
    for ( int i = 0; i<cacheSize; i++) 
      CacheResults.inputs[i] = -1; 
  } 
 
  public long CacheInt_Int(int input)  
  { 
    for ( int i = 0; i<cacheSize; i++) { 
      if ( input == inputs[i])  
        return results[i]; 
    } 
 
    object newResult = ((IAspect)this).Proceed(input); 
 
    inputs[lastIndex]  = input; 
    results[lastIndex] = (long)newResult; 
    lastIndex = (lastIndex + 1)% lastIndex; 
 
    return (long)newResult; 
  } 
} 

Figure 5.23:  Implementation of memoization aspect behaviour written in C#. 

This test highlights the advantages of aspect-based properties, as it is not possible to 

implement the desired functionality with a CLR context property.  The SML.NET 

algorithm does not inherit from ContextBoundObject, and so context properties are not 

applicable.  However, it is possible to add memoization to an existing component using 

custom crosscutting, and it is possible to observe a significant improvement in execution 

time when doing so.  Unlike the aspect discussed in [Men'97], our memoization aspect-

based property is customised for the Fibonacci series enumerator and includes an aspect 

written in a different programming language.  The implementation of aspect-based 

memoization is shown in Figure 5.23.  The use of C# reflects the familiarity of the author 

with OO languages.  In this context, the use of C# is consistent with the intent of language-

independent AOP supported by aspect-based properties, which is meant to make it easier to 

write and apply aspects using existing developer knowledge.  The algorithm implemented 

is not a good general purpose implementation of memoization.  The algorithm is not 
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guaranteed to work if a -1 is used as one of the initial inputs.  Fortunately, our SML.NET 

algorithm does not face such inputs.  The algorithm is applied to join points in the 

FibonacciCalc pointcut of Figure 5.24 by the advice in Figure 5.25. 

<item> 
  <named_pointcut> 
    <modifier><public/></modifier> 
    <name>FibonacciCalc</name> 
    <local_var_ref> 
      <var_type>Int32</var_type> 
      <var_name>data</var_name> 
    </local_var_ref> 
    <pointcut> 
      <and> 
        <pointcut> 
          <primitive> 
            <execution> 
              <method_signature> 
                <return_type><type_name>*</type_name></return_type> 
                <join_point_type><type_name>*</type_name></join_point_type> 
                <method_name>Fibonacci</method_name> 
                <parameters><param_wildcard></param_wildcard></parameters> 
              </method_signature> 
            </execution> 
          </primitive> 
        </pointcut> 
        <pointcut> 
          <primitive> 
            <args> 
              <parameter> 
                <formal_parameter_name>data</formal_parameter_name> 
              </parameter> 
            </args> 
          </primitive> 
        </pointcut> 
      </and> 
    </pointcut> 
  </named_pointcut> 
</item> 

Figure 5.24:  Custom pointcut to select Fibonacci method for memoization and expose input argument.  

 
     
<item> 
  <advice> 
    <around> 
      <return_type>Int64</return_type> 
      <formal_param> 
        <var_type>System.Int32</var_type> 
        <var_name>input</var_name> 
      </formal_param> 
      <pointcut> 
        <primitive> 
          <pointcutId><name>FibonacciCalc</name></pointcutId> 
        </primitive> 
      </pointcut> 
      <behaviour><name>CacheInt_Int</name></behaviour> 
    </around> 
  </advice> 
</item> 
 

Figure 5.25:  Advice statement to apply memoization to pointcut specified in Figure 5.25.  

When applied to the calculation of Fibonacci series elements, the memoization aspect-

based property greatly improves performance.  The results in Table 5.7 represent an 

average of three trials in which Fibonacci series of differing sizes were calculated on a 
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PentiumIII laptop running at 497MHz with 384Megs of RAM under WindowsXP 

Professional.  The graph scale is logarithmic to highlight that the performance difference 

between memoized and non-memoized results for a lower number of elements is 

insignificant as compared to the benefits achieved when larger numbers of elements are 

calculated 
Table 5.7:  execution time of Fibonacci series calculations with and without a memoization aspect. 
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5.3 Usability Issues with the Programming Model 

In addition to the concrete analysis of the previous section, anecdotal evidence from users 

has exposed some problems with the programming model of aspect-based properties as 

implemented by Weave.NET and in particular with the use of XML to specify crosscutting 

semantics and with the code generation support in the weaver.  From one point of view, 

XML-based expressions are not necessarily language-independent, since they may be 

viewed as a language with the validating schema as its grammar.  We address this criticism 

by pointing out that pointcut-advice operations would otherwise be language extensions.  

By expressing them in XML, these language extensions become consistent for all 

programming languages and thus the syntax is language-independent.  Another complaint 

from users of Weave.NET is that the XML specifications are difficult to write and XML 

specifications are not succinct.  Indeed, in section 5.1.1, we pointed out the ease by which 

property-based crosscutting can inadvertently select unwanted join points, and we 

explained the difficulty in verifying type specifications in signatures.  Our solution here 

was to emphasis the use of attribute-based property selection to make aspect-component 

bindings explicit.  However, there may be room for improvement by introducing visual 
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tools such as those available with AMT [Han'01] or AJDT [Cle'04] to provide users with a 

view of affected code or tools such as LOOM.NET [Sch'03] to help in selecting join points 

for annotation by attributes or inclusion in custom crosscutting.  As pointed out in Chapter 

3, the XML grammar probably serves well as a backend format for GUI-based or 

language-based specification of crosscutting semantics than something to be written 

freehand.   

 

In terms of implementation, and not design, the prototype weaver has difficulties in terms 

of completeness and its ability to weave components that are dependent on each other.  A 

difficulty noted during testing was that the code generation architecture was not 100% 

complete.  Due to the lack of programmer resources, some CLI elements such as delegate 

types are not emitted during weaving.  Less obvious are the problems with emitting nested 

type constructors that have no body.  The final problem was that of inadvertent assembly 

loading.  As noted in section 5.1.1, the application of weaving loads an assembly, and it is 

impossible to unload that assembly.  Furthermore, Weave.NET also loads all the types 

upon which an assembly being woven is dependent, and this loading prevents the 

assemblies of these types from being subsequently woven.  This problem was dealt with in 

this evaluation by using reflection to avoid direct dependencies between assemblies that 

had to be woven during testing.  The CLI’s reflection API was used to manually load 

assemblies and invoke required methods.  While this works fine, it can lead to compilation 

errors.  When the explicit dependencies are removed, our build environment could not 

determine automatically which assemblies needed to be updated during compilation.  

Moreover, the use of the reflective API obfuscates the resulting code. 

 

5.4 Summary 

In this chapter, we examined the ability of our prototype weaver to support the adoption of 

the aspect-based property programming model and we compared aspect-based 

functionality with context properties in terms of available functionality and performance.  

Our evaluation also noted usability problems that made writing crosscutting in XML error 

prone, and we noted accidental component loading to cause problems when our prototype 

weaver is used. 

 

In terms of adoption, language-independent AOP allowed aspect-based properties to 

preserve existing developer skills, development tools and source code based, and attribute-
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based property selection avoided the need to learn how PA mechanisms worked in order to 

use them.  In terms of language-independence, the prototype was shown to weave aspect-

based properties, written in object-oriented, functional and procedural programming 

languages, with components also written in these programming languages.  Attribute-based 

property selection was consistent with language-independence in that attribute types could 

be created in a variety of languages, and those created could be applied to any of the 

languages used for component development.  Moreover, attribute-based properties avoided 

the need to write custom crosscutting to bind logging and profiling to components, hence 

their use required no learning on the part of a component writer.  Also, we noted that 

property-based crosscutting in terms of implementation details does not well work in a 

multi-language environment due to the appearance of unexpected helper methods in the 

component; however, attribute-based property selection avoided this problem as attributes 

followed the method to which they were applied.   

 

A comparison of aspect-based properties and context properties available for the CLI noted 

aspect-based properties to offer richer functionality, but to incur an order of magnitude less 

overhead.  In comparison to the programming model for extending context-based 

properties for the CLI, aspect-based properties improved tailorability by offering a richer 

join point model, and they avoided preplanning issues by not requiring object instances or 

specifying inheritance requirements.  Also, aspect-based properties support legacy 

components.  More importantly, underlying intercession mechanism used by aspect-based 

properties was shown to operate ten to thirty times faster than that of context properties 

depending the number of typed formal parameters accessed by advice.  This speed up was 

also observed when a logging aspect-based property was compared to a context property 

with identical functionality. 

 

In terms of usability, the XML does provide a language-independent syntax for writing 

crosscutting in that it avoids the need to include languages extensions to specify 

crosscutting specifications, but work is needed to make XML easier to exploit.  Currently, 

the code generation mechanism loads methods upon which a component is dependent.  Our 

evaluation used the reflection API is used to remove dependencies between components, 

but in future the code generation mechanism should be upgraded. 
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Chapter 6 Conclusion 
 

 

“Where’s the contribution?” 

–Prof Vinny Cahill 

 

 

 

 

 

 

 

 

This thesis is motivated by an interest in applying aspect-oriented programming (AOP) to 

addressing crosscutting functionality in software components.  Our starting point was the 

use of contextual composition in component frameworks that support declarative selection 

of component framework services in which services are bound to component instances 

using method intercession.  However, such contextual composition suffers from the lack of 

tailorability problem as well as the preplanning problem.  To solve these problems, we 

introduced aspect-based properties.  Aspect-based properties allow crosscutting 

functionality to be written with a pointcut-advice aspect-oriented mechanism that is bound 

to components with a load-time weaver.  The difficulty with aspect-oriented programming 

is that it fails to address reusability and it introduces language-dependencies to 

composition.  Aspect-based properties are able to overcome these problems with attribute-

based property selection and language-independent AOP. 

 

To conclude this thesis, we provide an overview of the thesis that identifies the 

contribution of each chapter.  We then summarise how the goals set out for this thesis were 

achieved by the programming model formulated for aspect-based properties.  Finally, we 

identify future implementation and research work. 
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6.1 Thesis Overview 

In Chapter 1, we introduced contextual composition in the context of component 

frameworks.  We pointed out that the difficulty with systems that model crosscutting 

concerns as context properties is that these systems suffer from the lack of tailorability 

problem in that the set of context properties is difficult to extend.  Context properties also 

suffer the preplanning problem in which their use dictates component architecture 

requirements.  Aspect-based properties were introduced as an AOP-based solution to these 

problems, which also avoided the reusability problems and language dependencies that 

AOP introduces. 

 

In Chapter 2, we provided a survey of AOP that focused on five canonical aspect-oriented 

mechanisms, which were as follows: 

• The pointcut-advice (PA) mechanism exemplified by the work of the AspectJ Team 

[Asp'00] 

• Class composition exemplified by the work of the MDSOC Project [IBM'00a] 

• Object-graph traversal exemplified by the work of the Demeter Project [Lie'00] 

• Open class composition, which originated with mixins [Moo'86], but is exemplified 

by the inter-type declaration semantics of AspectJ 

• Composition Filters (CF) object model extensions available with tools such as 

ComposeJ [Car'01] 

These mechanisms were characterised in terms of their aspect model, which consists of a 

join point model, a means of identifying join points, and a means of modifying the 

semantics of join points.  Our analysis concluded that both the CF and PA mechanisms are 

well suited to producing the same behavioural changes to join points as a contextual 

composition mechanism; however, the PA aspect model was easier to conceptualise, 

offered finer grained crosscutting and promised better performance.  Unfortunately, AOP 

introduced language dependencies into aspect-component composition and reuse involved 

revising the aspect’s crosscutting specifications.  Finally, we noted that load-time weaving 

met deployment requirements of components and provided support for clear-box 

crosscutting available with PA mechanisms. 

 

In Chapter 3, we introduced a programming model in which crosscutting concerns were 

modelled with aspect-based properties. Aspect-based properties implement crosscutting 

concerns in a programming model characterised by: 
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• The availability of a PA mechanism 

• Language-independent AOP 

• Attribute-based property selection 

• Load-time weaving 

We provided an overview of application programming involving aspect-based properties, 

and we identified four independent programming roles and their products.  The roles, their 

relationships and their products are summarised in Figure 6.1.  These roles include the 

aspect-based property writer, who produces aspect-based properties corresponding to 

crosscutting functionality.  The aspect model supports a pointcut-advice mechanism, in 

which pointcuts are written in terms of attributes annotated to component code.  While the 

aspect-based property implements crosscutting functionality, it is its corresponding 

attribute types that provide an API for this functionality.  The binding between attribute-

based properties and components is written in terms of attribute annotations to component 

source by the component writer.  Since attribute-based property selection makes no 

            
Figure 6.1:  Overview of roles and products of development involving aspect-based properties. 
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changes to aspect-based properties, aspect-based properties can be reused without 

modification.  Annotated components, referred to as attributed components, and aspect-

based properties are selected by an application integrator.  Aspect-based properties are 

meant to be used as-is, but the application integrator may also write custom crosscutting to 

accommodate legacy components.  The application deployer is responsible for including a 

load-time weaver in the execution environment and for providing access to aspect-based 

properties and components to this weaver.  Components that have been inspected at load-

time for join points matching the pointcut specifications of aspect-based properties are 

referred to as Property Bound Components.  The PA mechanism is based on that of 

AspectJ V1.0.6.  PA specifications are expressed in XML to avoid introducing language 

extensions that would curb language-independence.  Separate compilation of aspect-based 

properties and attributed components dictates limits to the PA mechanism.  Types defined 

by attributed components are not available as typed formal parameters in the aspect-based 

properties.  Keywords are available as methods inherited from a weaver-supplied type.  

Finally, pointcuts are expressed in terms of component metadata instead of language 

syntax. 

 

In Chapter 4, we detailed the design of a prototype weaver that supports aspect-based 

properties for the Common Language Infrastructure (CLI).  The CLI was chosen as the 

experimental platform for this weaver due to its explicit support for multilingual 

development and attribute annotation of component source.  A schema was required for the 

XML to be processed by the weaver, and so rules that mapped BNF to XML were drawn 

up to convert the AspectJ grammar to XML schema.  Composition and aspect behaviour 

was supported by a weaving library.  We presented a design for this library that explained 

how it implemented two APIs:  one for aspect-component weaving and one for AspectJ 

keyword emulation.  Finally, we described the mechanism by which weaving was attached 

to an execution environment.  Essentially, the execution environment was launched by a 

program that first wove application components with the aspect-based properties included 

in the component before passing control to the entry point of the application. 

  

In Chapter 5, we used the prototype weaver to examine the programming model for aspect-

based properties in terms of adoptability, and we compared this programming model to that 

of CLR contexts, which allow the set of context properties available for the CLI to be 

extended.  The evaluation illustrated the language-independence and attribute-based 

property selection characteristics of aspect-based properties that smooth AOP adoption.  In 
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comparison to CLR context properties, aspect-based properties improved tailorability by 

offering a richer join point model.  Aspect-based properties avoided preplanning issues by 

not imposing inheritance constraints and object-oriented characteristics, such as in instance 

methods, on types implemented by components.  Finally, we noted that the overhead of 

aspect-based properties was an order of magnitude lower than context properties. 

 

6.2 Thesis Contribution 

We are especially interested in observations made during the evaluation of Chapter 5 that 

led us to conclude that aspect-based properties offered to replace contextual composition in 

component frameworks.  With respect to existing contextual composition, we wanted to 

solve the tailorability and preplanning problems.  These problems were observed to be 

solved in that aspect-based properties offered a richer join point model than CLR contexts 

and a programming model in which the weaver handled composition of components and 

crosscutting concerns instead of the component architecture.  The richer join point model 

of attribute-based properties allowed memoization to be applied to an algorithm for 

calculating Fibonacci Series elements.  This memoization optimization could not be 

recreated with CLR contexts, as they could not intercede in intra-object method 

invocations.  In terms of preplanning, we observed that component instances wishing to 

take advantage of simple context properties such as logging and profiling had to make 

significant concessions in terms of component architecture.  Binding to context properties 

was only possible for instance methods that inherited from a specific type, and intercession 

was only possible in inter-object invocations.  Hence, the Fibonacci algorithm had to be 

split up between different objects for logging to be applied to recursive invocations.  In 

contrast, no such concessions were required to bind aspect-based properties to component 

instances. 

  

The secondary contributions of the thesis were the introduction of language-independent 

AOP and the use of attribute-based property selection to solving reusability problems with 

aspects.  We take language-independence to mean allowing aspects and components to be 

written in a variety of languages and freely intermixed [Laf'03].  Language-independence 

is achieved by providing a means of expressing pointcut-advice operations that avoids 

language extensions.  By expressing crosscutting specifications in XML, these language 

extensions become consistent for all programming languages used to implement aspect-

based properties.  The XML exploited component metadata to provide a common substrate 
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with which to build pointcut specifications.  Language-independence was illustrated in 

Chapter 5, when we demonstrated cross-language weaving using components and aspects 

written in SML.NET, C#, and VB.NET.  In this evaluation every combination of aspect 

and component was shown to weave correctly regardless of the languages used to 

implement the components and aspects being woven. 

 

Reusable aspects are those that are associated with components at deployment time rather 

than design time [Pic'03].  We take a novel approach in which attribute-based property 

selection is used to specify component bindings without the need to write or revise 

crosscutting specifications.  Attributes-based property selection is justified in terms of 

obliviousness by pointing out that while attributes are annotated to component code, they 

do not influence the implementation of the join points.  In Chapter 5, we illustrated 

attribute-based property selection when profiling, logging and memoization were each 

added to components by annotating component methods with attributes. 

  

6.3 Future Work 

Having introduced aspect-based properties, we are keen to investigate their usefulness.  

This involves upgrading the weaver to eliminate limits to component weaving.  Next, we 

wish to characterise potential security problems that weaving can introduce.  Also, we wish 

to apply aspect-based properties to implementing important enterprise application 

crosscutting functionalities in order to ascertain whether crosscutting mechanisms besides 

pointcut-advice are required for aspect-based properties to support a range of important 

crosscutting functionality.  Finally, we wish to examine new ways of generating XML-

based crosscutting specifications. 

 

6.3.1 Upgrading the Weaver Implementation 

In providing a prototype weaver that supports aspect-based properties, we were interested 

in implementing a prototype in as little time as possible.  The choice of the CLI platform 

satisfied language-independence requirements in terms of multilingual support for 

component implementation and source code annotation.  However, the novelty of the CLI 

platform meant that tool support was relatively weak.  For instance, no byte code 

instrumentation packages existed for the CLI, whereas packages such as the Binary 

Component Engineering Library [Dah'99] has been available for sometime for the J2SE 
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platform.  Thus, while our weaver design included support for all kinds of after returning 

advice, to speed development time we limited support to the implementation of after 

returning advice.  Tool support for the CLI has advanced considerably with byte code 

instrumentation packages now available.  Using these packages for code generation should 

allow us to fill gaps in our weavers support for aspect-based properties. 

  

A more pressing problem is that our prototype weaver does not handle interdependent 

components properly.  Currently, weaving one assembly prevents the assemblies upon 

which it depends from being woven.  This problem also relates to the lack of tool support 

for the CLI platform, and specifically the fact that there is not an API for modifying an 

existing assembly.  To provide such support, our system manually recreates existing 

assemblies through careful examination of the original assembly with the CLIFile Reader 

Library [Cis'02].  However, in examining the original assembly, the CLIFile Reader loads 

types upon which an assembly is dependent.  Loaded types cannot be manipulated by the 

byte code instrumentation used in our system, nor does the CLI allow types to be unloaded.  

We would like to eliminate this loading so that the weaver is able to ignore dependencies 

between components during weaving. 

 

6.3.2 Security Implications 

The security implications of binding third-party code to existing assemblies have not been 

investigated.  The clear-box crosscutting available with aspect-based properties allows 

intra-method changes to components.  With such tight coupling, trust becomes an issue.  

Currently, the weaver recreates a new assembly, but it does not verify the integrity of the 

original.  Also, it is possible to revise code to change the basis of authorization decisions.  

For instance, custom crosscutting could be used to modify calls to a 

System.Security.Principal.WindowsPrincipal object that verifies user group 

membership.  The groups for which authorization is approved could be changed, or the 

authorization check could be bypassed altogether. 

 

6.3.3 Looking at a Hybrid Crosscutting Mechanism 

We would like to know if other crosscutting mechanisms should be introduced to aspect-

based properties.  The set of aspect-based properties in this thesis did not address 

crosscutting functionality typical of enterprise applications such as persistence, 
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authorization and support for transactions that have been addressed elsewhere with an 

aspect-oriented mechanism [Coh'04].  It would be of interest to verify that they could be 

supported with aspect-based properties.  However, it should be pointed out that, in 

[Coh'04], these crosscutting functionalities were implemented with a weaving architecture 

that included a mixin mechanism.  An aspect-based property implementation of these 

concerns would give us a clearer idea of whether mixins or additional mechanisms are 

truly required or whether they are only necessary for the underlying weaver. 

 

6.3.4 Exploring New Ways of Expressing crosscutting Functionality 

We would like to investigate new approaches to writing crosscutting functionality that 

exploit XML as a backend.  In our evaluation, we noted that writing crosscutting 

specifications in XML manually was error prone, and custom crosscutting in particular did 

not provide a good indication of where aspect-based properties influenced component 

behaviour.  We have recently noted alternatives to expressing crosscutting semantics.  For 

instance, attributes have been used to embed crosscutting functionality in component code 

[Bla'03], and LOOM.NET [Sch'03] provided a visual editor to do the same.  In our 

experiments we have found it relatively easy to map GUI and attribute-based pointcut-

advice declarations to XML, and we would like to experiment further with such systems as 

there is little discussion on this topic in the literature.  
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Appendix A – Aspect-Based Property XML Schema 
 
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xmlns:ax="http://aosd.dsg.cs.tcd.ie/XMLSchema" 
  targetNamespace="http://aosd.dsg.cs.tcd.ie/XMLSchema"> 
  <xsd:annotation> 
    <xsd:documentation xml:lang="en"> 
   Test bed schema for figuring out XML for AspectJ. 
   Copyright 2002-2003 Donal Lafferty,  
   Distributed System Group, 
   Trinity College, Dublin,  
   All rights reserved. 
  </xsd:documentation> 
  </xsd:annotation> 
  <xsd:simpleType name="identifier"> 
    <xsd:restriction base="xsd:string"> 
      <xsd:pattern value="[a-zA-Z$_][a-zA-Z$_0-9]*" /> 
    </xsd:restriction> 
  </xsd:simpleType> 
  <xsd:complexType name="empty"> 
    <xsd:complexContent> 
      <xsd:restriction base="xsd:anyType" /> 
    </xsd:complexContent> 
  </xsd:complexType> 
  <xsd:simpleType name="identifier_pattern"> 
    <xsd:restriction base="xsd:string"> 
      <xsd:pattern value="[a-zA-Z$_\*][a-zA-Z$_0-9\*]*" /> 
    </xsd:restriction> 
  </xsd:simpleType> 
  <!-- 
<xsd:complexType name="pointcut"> 
  <xsd:element name="primitive"      type="ax:primitive_pointcut" minOccurs="0" 
maxOccurs="unbounded"/> 
  <xsd:element name="logical_op"     type="ax:binary_logical_op"  minOccurs="0" 
maxOccurs="unbounded"/> 
  <xsd:element name="pointcut_grp"   type="ax:pointcut"           minOccurs="0" 
maxOccurs="unbounded"/> 
</xsd:complexType> 
--> 
  <xsd:complexType name="access_modifier"> 
    <xsd:choice> 
      <xsd:element name="public" type="ax:empty" /> 
      <xsd:element name="private" type="ax:empty" /> 
      <xsd:element name="protected" type="ax:empty" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:simpleType name="var_type"> 
    <xsd:restriction base="xsd:string"> 
      <!--     identifier is  ([a-zA-Z$_][a-zA-Z$_0-9]*) 
       "." identifier is  (\.[a-zA-Z$_][a-zA-Z$_0-9]*)*(\[\]) --> 
      <xsd:pattern value="([a-zA-Z$_][a-zA-Z$_0-9]*)([\.|\+][a-zA-Z$_][a-zA-Z$_0-
9]*)*(\[\])?" /> 
    </xsd:restriction> 
  </xsd:simpleType> 
  <xsd:complexType name="local_ref"> 
    <xsd:sequence> 
      <xsd:element name="var_type" type="ax:var_type" /> 
      <xsd:element name="var_name" type="ax:identifier" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="empty_w_not"> 
    <xsd:complexContent> 
      <xsd:extension base="ax:empty"> 
        <xsd:attribute name="logical_not" type="xsd:boolean" default="false" /> 
      </xsd:extension> 
    </xsd:complexContent> 
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  </xsd:complexType> 
  <xsd:complexType name="modifier_spec"> 
    <xsd:choice> 
      <xsd:element name="static" type="ax:empty_w_not" /> 
      <xsd:element name="abstract" type="ax:empty_w_not" /> 
      <xsd:element name="synchronized" type="ax:empty_w_not" /> 
      <xsd:element name="volatile" type="ax:empty_w_not" /> 
      <xsd:element name="native" type="ax:empty_w_not" /> 
      <xsd:element name="final" type="ax:empty_w_not" /> 
      <xsd:element name="public" type="ax:empty_w_not" /> 
      <xsd:element name="protected" type="ax:empty_w_not" /> 
      <xsd:element name="private" type="ax:empty_w_not" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:simpleType name="type_name"> 
    <xsd:restriction base="xsd:string"> 
      <!-- regular expression for an identifier pattern is: 
         ([a-zA-Z$_\*][a-zA-Z$_0-9\*]*) 
         type_name is  
         <identifier> [.<identifier>]* [ \[\] ]? 
          
         .NET nested types are give as 'encloser' '+' 'nested', hence 
         regular expression needs a '+' where a period can appear. 
    --> 
      <xsd:pattern value="([a-zA-Z$_\*][a-zA-Z$_0-9\*]*)([\.|\.\.|\+][a-zA-
Z$_\*][a-zA-Z$_0-9\*]*)*(\+)?(\[\])?" /> 
    </xsd:restriction> 
  </xsd:simpleType> 
  <xsd:complexType name="type_pattern"> 
    <xsd:choice> 
      <xsd:element name="attribute" type="ax:type_name" /> 
      <xsd:element name="type_name" type="ax:type_name" /> 
      <xsd:element name="or"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="type_pattern" type="ax:type_pattern" minOccurs="2" 
                         maxOccurs="2" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
      <xsd:element name="and"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="type_pattern" type="ax:type_pattern" minOccurs="2" 
                         maxOccurs="2" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:choice> 
    <xsd:attribute name="logical_not" type="xsd:boolean" default="false" /> 
  </xsd:complexType> 
  <xsd:complexType name="field_signature"> 
    <xsd:sequence> 
      <xsd:element name="modifier_spec" type="ax:modifier_spec" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <xsd:element name="field_type" type="ax:type_pattern" /> 
      <xsd:element name="join_point_type" type="ax:type_pattern" /> 
      <xsd:element name="field_name" type="ax:identifier_pattern" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="parameter_types"> 
    <xsd:choice> 
      <xsd:element name="parameter" type="ax:type_pattern" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <xsd:element name="param_wildcard" type="ax:empty" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="method_signature"> 
    <xsd:sequence> 
      <xsd:element name="modifier_spec" type="ax:modifier_spec" minOccurs="0" 
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                   maxOccurs="unbounded" /> 
      <xsd:element name="return_type" type="ax:type_pattern" minOccurs="0" /> 
      <xsd:element name="join_point_type" type="ax:type_pattern" minOccurs="0" /> 
      <xsd:element name="method_name" type="ax:identifier_pattern" /> 
      <xsd:element name="parameters" type="ax:parameter_types" /> 
      <xsd:element name="throws" type="ax:type_pattern" minOccurs="0" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="advice_modifier"> 
    <xsd:sequence> 
      <xsd:element name="strictfp" type="ax:empty" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="behaviour"> 
    <xsd:sequence> 
      <xsd:element name="name" type="ax:identifier" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="formal_params"> 
    <xsd:sequence> 
      <xsd:element name="local_refs" type="ax:local_ref" minOccurs="0" 
                   maxOccurs="unbounded" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="java_modifiers"> 
    <xsd:choice> 
      <xsd:element name="static" type="ax:empty" /> 
      <xsd:element name="abstract" type="ax:empty" /> 
      <xsd:element name="synchronized" type="ax:empty" /> 
      <xsd:element name="volatile" type="ax:empty" /> 
      <xsd:element name="native" type="ax:empty" /> 
      <xsd:element name="final" type="ax:empty" /> 
      <xsd:element name="accessibility" type="ax:access_modifier" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="intro_modifiers"> 
    <xsd:choice> 
      <xsd:element name="static" type="ax:empty_w_not" /> 
      <xsd:element name="synchronized" type="ax:empty_w_not" /> 
      <xsd:element name="volatile" type="ax:empty_w_not" /> 
      <xsd:element name="native" type="ax:empty_w_not" /> 
      <xsd:element name="final" type="ax:empty_w_not" /> 
      <xsd:element name="public" type="ax:empty_w_not" /> 
      <xsd:element name="private" type="ax:empty_w_not" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="method_introduction"> 
    <xsd:sequence> 
      <xsd:element name="modifiers" type="ax:intro_modifiers" /> 
      <xsd:element name="return_type" type="ax:var_type" /> 
      <xsd:element name="target" type="ax:type_pattern" /> 
      <xsd:element name="name" type="ax:identifier" /> 
      <xsd:element name="formal_params" type="ax:formal_params" /> 
      <xsd:element name="behaviour" type="ax:behaviour" minOccurs="0" /> 
    </xsd:sequence> 
    <xsd:attribute name="abstract" type="xsd:boolean" default="false" /> 
  </xsd:complexType> 
  <xsd:complexType name="field_reference"> 
    <xsd:sequence> 
      <xsd:element name="type" type="ax:var_type" /> 
      <xsd:element name="name" type="ax:identifier" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="field_introduction"> 
    <xsd:sequence> 
      <xsd:element name="modifiers" type="ax:intro_modifiers" /> 
      <xsd:element name="field_type" type="ax:var_type" /> 
      <xsd:element name="target" type="ax:type_pattern" /> 
      <xsd:element name="name" type="ax:identifier" /> 
      <xsd:element name="field_init" type="ax:field_reference" minOccurs="0" /> 
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    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="super_type_introduction"> 
    <xsd:sequence> 
      <xsd:element name="target" type="ax:type_pattern" /> 
      <xsd:choice> 
        <xsd:element name="extends" type="ax:var_type" maxOccurs="unbounded" /> 
        <xsd:element name="implements" type="ax:var_type" maxOccurs="unbounded"/> 
      </xsd:choice> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="signature"> 
    <xsd:choice> 
      <xsd:element name="attribute" type="ax:type_name" /> 
      <xsd:element name="method_signature" type="ax:method_signature" /> 
      <xsd:element name="field_signature" type="ax:field_signature" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="type_pattern_or_id"> 
    <xsd:choice> 
      <xsd:element name="pattern" type="ax:type_pattern" /> 
      <xsd:element name="formal_parameter_name" type="ax:identifier" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="primitive_pointcut"> 
    <xsd:choice> 
      <xsd:element name="call" type="ax:signature" /> 
      <xsd:element name="execution" type="ax:signature" /> 
      <xsd:element name="get" type="ax:signature" /> 
      <xsd:element name="set" type="ax:signature" /> 
      <xsd:element name="initialization" type="ax:signature" /> 
      <xsd:element name="withincode" type="ax:signature" /> 
      <xsd:element name="handler" type="ax:type_pattern" /> 
      <xsd:element name="within" type="ax:type_pattern" /> 
      <xsd:element name="staticinitialization" type="ax:type_pattern" /> 
      <xsd:element name="cflow" type="ax:pointcut" /> 
      <xsd:element name="cflowbelow" type="ax:pointcut" /> 
      <xsd:element name="this" type="ax:type_pattern_or_id" /> 
      <xsd:element name="target" type="ax:type_pattern_or_id" /> 
      <xsd:element name="args"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="parameter" type="ax:type_pattern_or_id" 
                         minOccurs="0" maxOccurs="unbounded" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
      <xsd:element name="pointcutId"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="name" type="ax:identifier" /> 
            <xsd:element name="parameter" type="ax:type_pattern_or_id" 
                         minOccurs="0" maxOccurs="unbounded" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
      <xsd:element name="conditional_if" type="xsd:string" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="pointcut"> 
    <xsd:choice> 
      <xsd:element name="primitive" type="ax:primitive_pointcut" /> 
      <xsd:element name="or"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="pointcut" type="ax:pointcut" minOccurs="2" 
                         maxOccurs="2" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
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      <xsd:element name="and"> 
        <xsd:complexType> 
          <xsd:sequence> 
            <xsd:element name="pointcut" type="ax:pointcut" minOccurs="2" 
                         maxOccurs="2" /> 
          </xsd:sequence> 
        </xsd:complexType> 
      </xsd:element> 
    </xsd:choice> 
    <xsd:attribute name="logical_not" type="xsd:boolean" default="false" /> 
  </xsd:complexType> 
  <xsd:complexType name="around_advice"> 
    <xsd:sequence> 
      <xsd:element name="modifiers" type="ax:advice_modifier" minOccurs="0" /> 
      <xsd:element name="return_type" type="ax:var_type" /> 
      <xsd:element name="formal_param" type="ax:local_ref" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <xsd:element name="throwing_params" type="ax:local_ref" minOccurs="0" /> 
      <xsd:element name="pointcut" type="ax:pointcut" /> 
      <xsd:element name="behaviour" type="ax:behaviour" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="after_advice"> 
    <xsd:sequence> 
      <xsd:element name="modifiers" type="ax:advice_modifier" minOccurs="0" /> 
      <xsd:element name="formal_param" type="ax:local_ref" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <xsd:element name="returning_params" type="ax:local_ref" minOccurs="0" /> 
      <xsd:element name="throwing_params" type="ax:local_ref" minOccurs="0" /> 
      <xsd:element name="pointcut" type="ax:pointcut" /> 
      <xsd:element name="behaviour" type="ax:behaviour" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="before_advice"> 
    <xsd:sequence> 
      <xsd:element name="modifiers" type="ax:advice_modifier" minOccurs="0" /> 
      <xsd:element name="formal_param" type="ax:local_ref" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <xsd:element name="pointcut" type="ax:pointcut" /> 
      <xsd:element name="behaviour" type="ax:behaviour" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="advice"> 
    <xsd:choice> 
      <xsd:element name="before" type="ax:before_advice" /> 
      <xsd:element name="after" type="ax:after_advice" /> 
      <xsd:element name="around" type="ax:around_advice" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="softened_exception_introduction"> 
    <xsd:sequence> 
      <xsd:element name="soft_exception_type" type="ax:var_type" /> 
      <xsd:element name="pointcut" type="ax:pointcut" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="error_warning_introduction"> 
    <xsd:sequence> 
      <xsd:element name="target" type="ax:pointcut" /> 
      <xsd:choice> 
        <xsd:element name="error" type="xsd:string" /> 
        <xsd:element name="warning" type="xsd:string" /> 
      </xsd:choice> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="member_introduction"> 
    <xsd:choice> 
      <xsd:element name="method" type="ax:method_introduction" /> 
      <xsd:element name="field" type="ax:field_introduction" /> 
    </xsd:choice> 
  </xsd:complexType> 



 

193 

  <xsd:complexType name="introduction"> 
    <xsd:choice> 
      <xsd:element name="member" type="ax:member_introduction" /> 
      <xsd:element name="super_type" type="ax:super_type_introduction" /> 
      <xsd:element name="error_warning" type="ax:error_warning_introduction" /> 
      <xsd:element name="softened_exception" 
                   type="ax:softened_exception_introduction" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="instantiation_info"> 
    <xsd:choice> 
      <xsd:element name="issingleton" type="ax:empty" /> 
      <xsd:element name="perthis" type="ax:pointcut" /> 
      <xsd:element name="pertarget" type="ax:pointcut" /> 
      <xsd:element name="percflow" type="ax:pointcut" /> 
      <xsd:element name="percflowbelow" type="ax:pointcut" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:element name="aspect"> 
    <xsd:complexType> 
      <xsd:sequence> 
        <xsd:element name="name" type="ax:identifier" /> 
        <xsd:element name="assembly" type="ax:identifier" /> 
        <xsd:element name="type" type="ax:var_type" /> 
        <xsd:element name="instantiation" type="ax:instantiation_info" 
                     minOccurs="0" /> 
        <xsd:element name="domination" type="ax:type_pattern" minOccurs="0" /> 
        <xsd:element name="body" type="ax:aspect_body" /> 
      </xsd:sequence> 
      <xsd:attribute name="privileged" type="xsd:boolean" default="true" /> 
      <xsd:attribute name="abstract" type="xsd:boolean" default="true" /> 
    </xsd:complexType> 
  </xsd:element> 
  <xsd:complexType name="named_pointcut"> 
    <xsd:sequence> 
      <xsd:element name="modifier" type="ax:access_modifier" /> 
      <xsd:element name="name" type="ax:identifier" /> 
      <xsd:element name="local_var_ref" type="ax:local_ref" minOccurs="0" 
                   maxOccurs="unbounded" /> 
      <!-- Pointcut specification not required in the case that a  
         this is an abstract named pointcut. --> 
      <xsd:element name="pointcut" type="ax:pointcut" minOccurs="0" /> 
    </xsd:sequence> 
    <xsd:attribute name="abstract" type="xsd:boolean" default="false" /> 
    <xsd:attribute name="final" type="xsd:boolean" default="false" /> 
  </xsd:complexType> 
  <xsd:complexType name="aspect_body"> 
    <xsd:sequence> 
      <xsd:element name="item" type="ax:crosscutting_statement" minOccurs="0" 
                   maxOccurs="unbounded" /> 
    </xsd:sequence> 
  </xsd:complexType> 
  <xsd:complexType name="crosscutting_statement"> 
    <xsd:choice> 
      <xsd:element name="introduction" type="ax:introduction" /> 
      <xsd:element name="advice" type="ax:advice" /> 
      <xsd:element name="named_pointcut" type="ax:named_pointcut" /> 
    </xsd:choice> 
  </xsd:complexType> 
  <xsd:complexType name="Test"> 
    <xsd:choice> 
      <xsd:element name="Recurse" type="ax:Test" /> 
      <xsd:element name="Foo" type="xsd:string" /> 
      <xsd:element name="Bar" type="xsd:string" /> 
    </xsd:choice> 
  </xsd:complexType> 
</xsd:schema> 
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