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Abstract

We present a model of the simply typed λ-calculus as a simply typed explicit substitution

calculus encoded in a bigraphical reactive system. The reactive system combines a previous

model by Milner with a sorting of the place graph structure which is defined using a general-

isation of our previous work on kind sortings. The model demonstrates the expressiveness of

these sortings.

We identify some useful subcategories of kind sorted bigraphs which retain some important

properties of the transition theory of pure bigraphs. We introduce a more general notion of

kind sorting which can properly model XML data. We also present a simple idea of combining

sortings which retains the transition theory and consider combining kind sorting with the

Plato-graphical sorting of Birkedal et al.

1 Introduction

This paper presents a model of the simply typed λ-calculus as a simply typed explicit substitution
calculus encoded in a bigraphical reactive system (Brs). We first introduce simple types into
Milner’s Λsub calculus using the typing rules for λxgc [5] presented by Di Cosmo and Kesner [13].
We then advance the definitions of kind sortings [9] to isolate sub-s-categories of sorted bigraphs
which can be used to model both finite CCS and simply typed Λsub. Finally, we present our
encoding of simply typed Λsub in bigraphs. Our motivation is simply to present an example that
demonstrates that kind sorting is quite expressive. We believe that a model of the simply typed
λ-calculus demonstrates this.

The central theme of this paper is the model of simply typed λ-calculus. However, the appen-
dices contain further generalisations of kind sortings and make connections to related work which
we believe could be useful in the future.

To keep this paper brief, we assume a familiarity with pure bigraphs [26]. We will make mention
of local bigraphs [27] but do not need to go into details. We restrict the discussion to hard bigraphs,
bigraphs where every non-atomic node has a child. This is sensible in a model of the λ-calculus.
We also assume knowledge of the λ-calculus and explicit substitutions. We refer the reader to
Barendregt’s book [1] and Rose’s tutorial [29] for these subjects respectively. For more recent work
on explicit substitution, we refer the reader to Kesner’s paper [18] which describes the progress
made in the interim and discusses the relationship between explicit substitution calculi and Linear
Logic’s proof-nets.
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1.1 Structure of the paper

We begin in Section 2 by introducing the simply typed version of Milner’s Λsub calculus, denoted
Λτ

sub. Λsub was previously modelled by Milner as a bigraphical reaction system ′Λbig.
Milner’s definition of place sorting [26] and a slight generalisation of kind sorting are given in

Section 3. Our new definition of kind sorting introduces a notion of invisible controls, controls
which are forced to be hidden inside the place graph structure and never allowed to be children of
a root. This paves the way to the definition of Milner’s multi-nodes as elements of kind signatures.
As we will use a subcategory of kind sorted bigraphs to model Λτ

sub, we introduce general definitions
for subcategories of kind sorted bigraphs. We state whether or not the various subcategories have
the properties of RPO creation and pushout reflection used in the transition theory of bigraphs.

In Section 4, we describe the kind signature for the bigraphical model ′Λbigτ of Λτ
sub. The

signature is based on the typing rules for Λsub and uses an infinite number of ‘typed’ ′Λbig con-
trols. We describe our motivation for using a subcategory of kind sorted bigraphs and choose a
subcategory which is similar to (but generalises) the type of subcategory Milner used to model
finite CCS. This later provides a nice correspondence between the type of a Λsub term under some
environment Γ and the interface sort of its encoding in Λτ

sub.
The encoding of Λτ

sub into ′Λbigτ is presented in Section 5. We introduce a partial functor from
′Λbigτ to ′Λbig which recovers the bigraphical encoding of untyped Λsub terms given by Milner.
We finally reason about normalisation and confluence properties for simply typed Λsub based on
the untyped calculus. This allows us to proof, using a technique due to Herbelin [15], that the
simply typed calculus is strongly normalising. This result adds to the positive properties of Λsub

which include simulation of β-reduction, closed confluence, preservation of strong normalisation,
and full composition of substitution [10]. We use these results to reason about encodings of simply
typed terms in ′Λbigτ .

The central theme to this paper is the presentation of ′Λbigτ but its investigation has spun off
some other questions and ideas which we present in the appendices. This is also where we intern
(for the sake of the reader) some of our intuitions.

As we use a subcategory of kind bigraphs for ′Λbigτ , we had to consider whether subcategories
of kind sorted bigraphs retain RPO creation or gain pushout reflection – the full category of kind
sorted bigraphs creates RPOs but does not reflect pushouts. Having identified various subcategories
in Section 3.3, we prove/disprove these properties in Appendix A.

′Λbigτ can model Λτ
sub but not all bigraphs in the s-category correspond to a a simply typed

term. The grammar of Λsub is quantified – one subterm lies below an abstraction and two lie
below an application or explicit substitution. Pure and kind bigraphs cannot express capacities of
controls i.e. that a node of a specific control can contain a certain number of controls of some type.
Appendix B.1 introduces a generalisation of kind sorting which allows minimum and maximum
capacities to be expressed with some degree of freedom. One application of this sorting is modelling
XML data whose document order is relevant.

Many sortings are currently being investigated for bigraphs for different purposes. In Ap-
pendix B.2, we introduce a simple way of combining sortings. We then present a pairing of kind
sorting with the rigid control-sorting of Birkedal et al. [3]. The pairing creates RPOs. In Ap-
pendix B.3, we consider using this pairing in the location-aware printing system example of Birkedal
et al. to remove some bigraphs from their system which do not reflect the intended model. We
also give a simple example of how the expressivity of kind sorted reaction rules could be used in
their system. In the same work, Birkedal et al. presented a bigraphical tree-traversal ‘algorithm.’
In Appendix B.4, we use their idea to present a novel algorithm which utilises the expressivity of
kind sorting.

We implicitly use a link sorting in our model of ′Λbigτ . Appendix C formally presents this link
sorting and proves RPO creation.
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Appendix D compares Milner’s homomorphic sorting with kind sorting in order to provide a
better explanation of the latter.

Appendix E presents an idea of building typed ′Λbig terms with typing rules.

2 Simply typed Λsub

The set Λx of terms of the untyped Λsub is defined inductively by

t ::= x | λx.t | tt | t[x/t]

where the notation [x/t] represents an explicit substitution. Abstractions and explicit substitutions
bind their variable e.g. x, and we assume a variable convention where the bound variables of a
term are distinct and different from the free variables, following Barendregt [1].

Definition (Reduction rules for Λsub). The reduction relation −→ACD of Λsub is defined as the
contextual closure modulo ≡ of the union of the following reductions.

(λx : A.t)u −→A t[x/u] (substitution generation)
C[x][x/u] −→C C[u][x/u] this x is free in C[x] (non-local substitution)

t[x/u] −→D t if x /∈ FV(t) (garbage collection)

The type system for simply typed Λsub (Λτ
sub) is as follows. Given an arbitrary non-empty set

of ground types G, the set of types is given by the inductive definition

τ := G | τ → τ.

We use G and G′ to denote ground types, α to denote function types, and A,B, and C to denote
arbitrary types. We use the same typing rules that Di Cosmo and Kesner introduced for λxgc [13]
which extend the usual simple typing by adding a rule for explicit substitutions. Just as untyped
Λsub has the same set of terms as untyped λxgc, their simply typed variants share the same set of
terms. α-equivalence is defined as usual, preserving types.

We consider type environments Γ as functions from a set of variables to the set of types τ .

Lemma 1 (Subject reduction). If Γ ` t : A and t −→ACD u then Γ ` u : A.

Proof. The proof for −→A and −→D is straightforward. The −→C case may be broken down into
six cases depending on whether C is empty or whether x lies directly beneath an abstraction,
application, or explicit substitution in the abstract syntax tree. These cases are straightforward,
replacing Γ ` x : A with the derivation of Γ ` u : A in the proof tree.

Γ, x : A ` x : A
(axiom)

Γ ` u : B Γ, x : B ` t : A

Γ ` t[x/u] : A
(subs)

Γ ` t : A → B Γ ` u : A

Γ ` (t u) : B
(app)

Γ, x : A ` t : B

Γ ` x.t : A → B
(abs)

Figure 1: Typing rules for Λsub
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3 Place sorting

We start this section on sorting by repeating Milner’s definition of place-sorting [26]. We then
introduce the definition of kind sortings, a particular type of place-sorting. Subcategories of kind
sorted bigraphs are shown to retain properties of pure bigraphs which have positive implications
for the reaction semantics of reactive systems over these subcategories.

Notation. Although incorrect, we write subcategory instead of sub-s-category for convenience. If
I is an inclusion functor then we typically abuse notation and write U for any composite functor
U ◦ I. We let K denote both a bigraphical signature and the set of controls of that signature.

3.1 Place-sortings

A place-sorting is a sorting discipline which constrains the parent map of a bigraph, admitting
only those bigraphs which satisfy the rules of the discipline. Place-sortings must satisfy certain
conditions in order that they can be used to form an s-category. Some useful place-sortings have
further properties such as that the RPO construction for place-sorted bigraphs should also be based
on the RPO construction for pure bigraphs.

In the following, Θ denotes a non-empty set of sorts, and θ ranges over Θ.

Definition 1 (place-sorted bigraphs [26]). An interface with width m is Θ-(place-)sorted if it is
enriched by ascribing a sort to each place i ∈ m. If I is place-sorted, its underlying unsorted
interface is denoted by U(I).

´Bigh(K,Θ) denotes the s-category over signature K in which the objects are place-sorted in-
terfaces, and each arrow G : I → J is a bigraph G : U(I) → U(J). The identities, and composition
and tensor product are as in ´Bigh(K), but with sorted interfaces.

We denote place-sorted interfaces as 〈m, ~θ,X〉 where ~θ is a vector {θ0, . . . , θm−1} ascribing a
sort θi to each place i ∈ m of the interface.

Definition 2 (place-sorting [26]). A place-sorting is a triple

Σ = (K,Θ,Φ)

where Φ is a condition on Θ-sorted bigraphs over K. The condition Φ must be satisfied by the
identities and preserved by composition and tensor product.

A bigraph in ´Bigh(K,Θ) is Σ-(place-)sorted if it satisfies Φ. The Σ-sorted bigraphs form a
subcategory of ´Bigh(K,Θ) denoted by ´Bigh(Σ). Further, if ´R is a set of Σ-sorted reaction rules
then ´Bigh(Σ, ´R) is a Σ-sorted Brs.

Associated with a place-sorting is a forgetful functor

U : B́igh(Σ) → B́igh(K)

which discards sorts and whose codomain is an s-category of pure bigraphs. Such a functor U is
called a sorting functor, is surjective on objects, and is faithful. This functor can be used to prove
properties of the sorting based on the pure bigraphs. The following two properties are desirable
for sorting functors.

Definition 3 (creating RPOs, reflecting pushouts). Let F be any functor on an s-category Á.

Then F creates RPOs if, whenever ~D bounds ~A in Á, then any RPO for F( ~A) relative to F( ~D)

has a unique F-preimage that is an RPO for ~A relative to ~D.
F reflect pushouts if, whenever ~D bounds ~A in Á and F( ~D) is a pushout for F( ~A), then ~D is

a pushout for ~A.
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Work by Leifer and Milner [21] and Ole Høgh Jensen led to the following.

Theorem 2 (useful place-sortings [25]). In ´Bigh(Σ,´R):

1. If Σ creates RPOs then ∼ST is a congruence.

2. If in addition Σ reflects pushouts and ´R is simple prime affine, then PE is adequate for ST.

The definitions of ∼ST, ST, and PE are beyond this document but the gist of this result is that
when the antecedents hold, the theorem can be used to show that: 1) bisimilarity is a congruence
and; 2) that one may ‘reduce’ some of the labelled transition systems without affecting bisimilarity.
This is why RPO creation and pushout reflection are desirable.

3.2 Kind sorting

Kind sorting [9] generalises the notion of atomicity in the place graph structure (the hierarchical
tree-like structure) of bigraphs. The controls in a pure bigraphical system are either non-atomic
(can contain nodes of any control) or atomic (cannot contain anything). The controls of a kind
system – a system under a kind sorting – may contain nodes of some subset of the set of controls.
Although we have defined and explored kind sortings, the initial idea was proposed by Jensen and
Milner [17].

Definition 4 (kind signature). A kind signature {K, arity, actv, vsbl, kind} is composed of a set
K of controls and four maps:

arity : K → N

actv : K → {passive, active}

vsbl : K → {vis, inv}

kind : K → P(K).

arity is the usual function assigning a number of ports to a control. We call kind(K) = sort(K)
the kind or sort of K. It is the set of controls that K-node can contain in a sorted bigraph. A
control K is said to be atomic if its sort is ∅, otherwise non-atomic. Atomic controls may not be
active. The function vsbl partitions K into two sets Kvis and Kinv of visible and invisible controls.

Definition 5 (kind sorting). A place-sorting ΣK = (K,Θ,Φ) over a kind signature K is a kind
sorting if Θ = P(Kvis) and Φ requires for all bigraphs G that:

K1 if p = G(v) then ctrl(v) ∈ sort(p);

K2 if p = G(s) then sort(s) ⊆ sort(p);

K3 if sort(v) = ∅, v has no children;

where p is a root or node, s a site, and v is a node.

We talk about the sort of a node meaning the sort of the control of that node and treat other
properties of controls similarly. The sort of a node v is denoted by sort(v) and similarly for roots
r and sites s. Given a bigraph G and a node v or site s, G(v) and G(s) denote the parent of the
node or site in the bigraph.

The notion of ‘multi-nodes’ was recently introduced by Milner [27] and allows an ordering of
the children of nodes in a bigraph. For example, the appA→B,A control in Figure 3 depicts a control
modelling a λ application. The function is stored in the left of the node and the argument in the
right. This is an example of a 2-node.
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The definition of kind sorting presented here is a slight generalisation of our previous definition,
paving the way for a proper interpretation of multi-nodes as elements of kind signatures. A node
of a bigraph is said to be exposed if it is a child of a root, otherwise hidden. By restricting the set
of interface sorts to P(Kvis) in the definition above, we force all nodes of invisible controls to be
hidden i.e. all invisible nodes are the child of some other node. In particular, they can never be
children of a root of a redex or reactum in a reaction rule. Invisible controls will allow us (in future
work – see Appendix B.1) to define multi-nodes as basic notions of kind signatures. For now, we
use a weaker ‘implementation’ in our encoding of Λτ

sub.
The kind sorting rules are preserved by identities, composition, and tensor product. An inter-

esting identity is id〈1,∅,X〉. This is semantically as good as a barren root and so maybe ∅ should not
be allowed as an interface sort in the subcategory of hard bigraphs. Kind bigraphs (bigraphs which
are kind sorted) have relative pushouts and there is a sorting functor, a forgetful, faithful functor
U from kind bigraphs to pure bigraphs which forgets the sorting of the signature and interfaces
and the vsbl function. Therefore, kind sorting is an example of place-sorting.

Definition 6 (kind sorted s-category/Brs). The ΣK-sorted (or kind sorted) bigraphs form a sub-
category of ´Bigh(K,Φ) denoted by ´Bigh(ΣK). We call ´Bigh(ΣK) a kind s-category. If ´R is a
set of ΣK-sorted reaction rules then ´Bigh(ΣK, ´R) is a ΣK-sorted (or kind sorted Brs.

3.3 Subcategories

In this section, we study subcategories of kind s-categories. Our motivation for studying subcate-
gories of kind s-categories is twofold.

First, we wish to identify subcategories which reflect pushouts. Kind s-categories create RPOs
but do not reflect pushouts in general [9]. This latter property may be too strong for some purposes
(a weaker property is discussed at the end of this section) but we cannot ignore it completely. The
reason why pushouts are not reflected in kind s-categories is that given a bigraph with an arbitrary
place graph, there is usually some choice as to how to sort the outer interface. There are thus
many commutative squares of bigraphs with the same underlying pure square. If the pure square
is a pushout then we at least need the property that all the sorted squares are isomorphic to prove
pushout reflection. This is not the case.

This leads us to consider restricting kind s-categories. A natural approach is to identify subcat-
egories where pushouts are reflected. This may be necessary when considering transition systems
where the labels are not only generated by IPOs.

Secondly, and more importantly, subcategories may allow a better modelling of some systems
or calculi. For example, Milner used a homomorphic subcategory to model finite CCS1 and we use
a partitioned subcategory to model simply typed Λsub. The use of subcategories may also reduce
the set of labels in a transition system which may be required to prove operational correspondence
with some calculus and its bigraphical modelling. We describe homomorphic and partitioned
subcategories below along with some more which may prove useful in the future.

Definition 7 ((set of) interface/control sorts). The (set of) interface sorts of a subcategory of a
kind s-category ´Bigh(ΣK) is the smallest set which contains the sort of any place of any interface
in the s-category and is defined by

{
θ | θ ∈ ~θ, 〈m, ~θ,X〉 ∈ obj(´Bigh(ΣK))

}
.

The (set of) control sorts of a kind s-category over signature K is the set comprised of the union
of the sorts of non-atomic controls K and is defined by

⋃
K∈K sort(K).

1We describe homomorphic sortings as a special case of kind sorting in Appendix D.
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Definition 8 (unioned s-category). A unioned s-category is a full subcategory of a kind s-category
´Bigh(ΣK) where if θ and θ′ are interface sorts then so is θ ∪ θ′.

Definition 9 (fitting s-category). A fitting s-category ´Fkbh(ΣK) is a subcategory of a kind s-
category ´Bigh(ΣK) with the following properties. Let G be a bigraph of the subcategory with outer
(sorted) interface I. Given U(G), the sort of I is the smallest choice such that U(G) may be sorted
according to the kind signature where θ is ‘smaller than’ θ′ if θ ⊂ θ′ or |θ| < |θ′.

The key property of fitting s-categories is that we always choose the ‘smallest’ outer interface
and that there is a smallest interface. In particular, no two interfaces of the same cardinality may
be used to sort the outer interface of the same bigraph. This means that two bigraphs in the fitting
s-category with identical parent maps and inner interfaces must have equal outer interfaces i.e.
they are in the same homset and are equivalent.

Remark. From now on, the term bigraph (resp. place graph) usually refers to a fitting bigraph
(resp. fitting place graph) of an arbitrary fitting s-category. When we talk of fitting s-categories, it
is always in relation to some kind s-category.

Definition 10 (examples of fitting s-categories). A fitting s-category is defined by defining the set
of sorts allowable for interfaces. The interface sorts must be a subset of P(Kvis). In the following,
we do not require that ∅ is an interface sort. A fitting s-category is:

• (a) meet (s-category) if for each pair θ, θ′ where θ is an interface sort and θ′ is an interface
sort or control sort, θ ∩ θ′ is an interface sort;

• downward closed if for each interface sort θ, any subset of θ is an interface sort;

• controlled if the set of interface sorts contains the set of control sorts which do not consist
entirely of invisible controls;

• unioned if the union of any pair of interface sorts is an interface sort;

• standard if the set of interfaces sorts is P(Kvis);

• partitioned if distinct interface sorts are pairwise disjoint;

• fully partitioned if it is partitioned and each visible control is an element of some interface
sort;

• homomorphic if it is sorted with a homomorphic kind sorting and the interface sorts are
exactly the homomorphic groupings (see Appendix D);

For brevity, we omit the qualifier ‘fitting’ when referring to (fully) partitioned or homomorphic
s-categories.

These definitions identify more types of fitting s-categories than in previous work. The notion
we previously called ‘fitting bigraphs’ [9] is now a particular case of the above definition, the
standard fitting s-category. The standard fitting s-category only removes arrows (bigraphs) from
the kind s-category. All other fitting s-categories remove objects (interfaces) as well.

There are two flavours of fitting s-category here. The standard fitting s-category is a par-
ticular downward closed s-category2 which are themselves examples of meet s-categories. These
s-categories satisfy the property that intersections of pairs of interface sorts always exist. A ho-
momorphic s-category is a special case of a fully partitioned category which is a special case of a

2It is also both a particular downward closed and unioned s-category and a downward closed and controlled
s-category.
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Subcategory of ´Bigh(ΣK) Creates RPOs Reflects pushouts

non-fitting
{

´Bigh(ΣK) ✓ [9] ✕ [9]

unioned ✓ ✕

fitting





meet ✕ ✓

downward closed ✕ ✓

– and controlled ✓ ✓

– and unioned ✓ ✓

standard fitting ✓ ✓

partitioned ✓ ✓

Figure 2: Proven properties of arbitrary kind s-categories

partitioned category. These s-categories satisfy the property that intersections of pairs of interface
sorts only exist when both sorts are equal. An important difference between general partitioned
s-categories and homomorphic categories is that the latter also implies restrictions on the sorting
of controls.

In previous work, we showed that both the standard fitting s-category and any homomor-
phic s-category reflect pushouts (Milner had previously proved that homomorphic sortings reflect
pushouts). These results are generalised in Appendix A. Figure 2 summarises the properties of the
various subcategories of an arbitrary kind s-category. A negative mark means that in the general
case, this property is not guaranteed. A counterexample for RPO creation of meet and down-
ward closed s-categories is given in the appendices and a counterexample for pushout reflection of
unioned s-categories is mentioned.

In this paper, we concentrate on the property of (strong) pushout reflection. Recent work by
Bundgaard and Sassone [8] introduces a definition of weak pushout reflection which is easier to
satisfy and still has positive implications for the labelled transition system based on ‘minimal’
labels. They focus on IPOs – which underlie much of the transition theory – rather than arbitrary
bounds in their definition.

We believe that their results will allow a wider class of subcategories of kind s-categories to
have tractable transition systems. In particular, we believe that some non-fitting subcategories,
including those mentioned in the figure, may weakly reflect pushouts. A proof would be based on
the property that the RPO interface (the centre of the triple) and the IPO interface of RPOs and
IPOs of kind sorted bigraphs is minimal. We do not pursue a proof here as we will be further
generalising the definition of kind sorting (see Appendix B.1). We will also be standardising our
terminology which may improve the communication of the proofs and relate them to recent work
by Birkedal, Debois, and Hildebrandt [2]. We will present proofs for the generalisation in future
work.

Before we proceed, we will make some observations about the prime product operator.

Remark. The prime product of two bigraphs in a fitting s-category is defined only when there
exists an interface sort which is a superset of the union of the outer interface sorts of the two
bigraphs. The prime product of two bigraphs is always defined in the standard fitting s-category. It
is defined in a partitioned s-category when all roots of both bigraphs have the same sort.
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4 Simply typed ′Λbig

We now revisit Milner’s bigraphical model [27] for Λsub, adding simply typed versions of Λsub

controls to the signature to define ′Λbigτ , simply typed ′Λbig.
We begin in Section 4.1 by defining the signature of ′Λbigτ and the kind sorting. The signature

is an infinite set – while bigraphs are themselves finite, the definition of a bigraphical reactive
system allows a signature based on an infinite set as well as an infinite set of ground reaction rules.
We seek a sorting which can properly represent the typing of Λτ

sub. In Section 4.2, we introduce
the sorted versions of the reaction rules of ′Λbig and identify the fitting s-category in which we will
work. All the definitions for ′Λbigτ are then collected concisely before we discuss the relationship
between the reaction relation of ′Λbigτ and ′Λbig in the next section.

4.1 Simply typed sorting

The signature for ′Λbigτ is based on an infinite set. Instead of introducing typing for bigraphs,
what we are essentially doing is taking the typing rules of Figure 1 and using them to generate a
corresponding sorted term grammar.

Definition 11 (′Λbigτ controls). The set of controls Kτ of ′Λbigτ is

⋃

A,B∈ τ

{
lamA→B : 1, appA→B,A : 0, varA : 1, subB,A : 1, defA : 1, 1A : 0, 2A : 0, DA : 0

}
.

The controls lamA→B and subB,A are binding for all A,B. The other controls are nonbinding. The
varA controls are the only atomic controls. All other controls are active.

There is at one control for each type of a λ constructor. lamA→B will be used to encode an
abstraction of type A → B where the binding variable of the abstraction has type A, appA→B,A

will encode applications of type B which take functions of type A → B and arguments of type
A, and varA will encode a variable of type A. There are two controls for each type of explicit
substitution. defA will encode a body of substitution of type A in an explicit substitution encoded
by subB,A of type B.

Controls 1A→B and 2A are respectively used to contain the function and argument part of
an application appA→B,A. Application nodes can then be seen as multi-nodes with an ordered
sequence of segments. This idea was proposed by Milner [27]. Similarly, controls 1B and DA are
respectively used to contain the target of substitution and body of substitution (defA) part of an
explicit subsitution subB,A

In our encoding, sub is a multi-node. This contrasts with Milner’s initial encoding. The reason
why we take this approach has to do with the sorting of interfaces discussed later. In order to
respect the sorting, we cannot allow an interface sort to contain both a defA control and any
other control. We could solve this by defining a subBA ‘ion’ as having two sites, one of which
can only contain defA controls and the other which cannot contain any. However, we wish to keep
our definitions of ions inner-injective i.e. that no two sites are siblings, so we use the multi-node
approach to separate the components of sub nodes.

The main controls are depicted in Figure 3, where an application control uses the 1A→B and
2A controls to order its components. The 1A→B and 2A controls are not explicitly shown in the
figure but are implied by the sectioning of 1A→B . The boxed labels on the holes denote that only
controls of type A or B can be placed inside them – we will make this notion more precise when
we discuss the fitting s-category in Section 4.2.
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lamA→B

appA→B,A
lamA→B

(x:A)

defA

defAx

subB,A

sub
B,A

(x:A)
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Figure 3: Ion schema for ′Λbigτ
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Figure 4: Parametric reaction rule schema for ′Λbigτ
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lamA→B defB 1B 2B

varB appC→B,C
subB,C lamB

appA→B,A
subB,A DB

1A→B 2A 1B DA defB

Figure 5: Representation of the simply typed ′Λbigτ sorting

Next, we need to introduce a notion of sorting on bigraphs which respects the typing rules. Thus
far, we have talked about kind sortings of pure bigraphs. ′Λbig is defined using local bigraphs [27]
which allow the modelling of bound names as in the λ-calculus. We also define ′Λbigτ as a local
bigraphical reactive system. We may still use a kind sorting as this sorting only affects the place
graph structure whereas local bigraphs differ from pure bigraphs in the link graph structure.
Therefore, among other things, the RPO construction for the place graph structure of kind local
bigraphs is the same as for kind bigraphs.

Definition 12 (simply typed ′Λbigτ sorting). ′Λbigτ is sorted with a kind sorting on the ′Λbigτ

signature where the kind function is defined by

kind(lamA→G) = kind(defG) = kind(1G) = kind(2G) = {varG} ∪
⋃

B∈ τ

{
appB→G,B , subG,B

}

kind(lamA→α) = kind(defα) = kind(1α) = kind(2α) = {varα} ∪
⋃

B∈ τ

{
appB→α,B , subα,B , lamα

}

kind(appA→B,A) =
{
1A→B , 2A

}

kind(subB,A) =
{
1B ,DA

}

kind(DA) = {defA}

kind(varA) = ∅

for any A,B,G, α, and the invisible controls are
⋃

A,B∈ τ

{
1A, 2A,DA

}
.

As a kind sorting is a relation, it can be visualised by a directed graph where nodes of the
graph are controls and edges represent the ‘can be contained in’ relation which arises from a kind
signature. Figure 5 depicts a schema for the graph of the sorting above where C is an arbitrary
type and the dotted lines are filled when B is a function type.

Note that our example of a multi-node is weaker than Milner’s intended proposal – the sorting
above allows an appA→B,A node to contain many or no 1A and 2B nodes. A more correct notion of
multi-node can be achieved by further generalising kind sortings. We consider this in Appendix B.1.

Remark (sorted links). There is an implied link sorting in our diagrams which we do not concen-
trate on in our discussions. We present the sorting in Appendix C and prove that it creates RPOs.
The sorting condition is that links connect points of the same sort. The sorting is on the link graph
structure of local bigraphs and so should combine with kind sorting to maintain RPO creation. In
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the case of ′Λbigτ , set of sorts is τ and the sort of the ports of lamA→B, subB,A, defA, and varA

controls is A.

So far, we have everything necessary to define a kind s-category of bigraphs. The next question
is whether or not we should use a fitting s-category. We have touched upon the fact that kind s-
categories do not reflect pushouts. We know that at least some fitting s-categories reflect pushouts
and it seems reasonable to try and find one which matches our model.

There is a good reason to use a fitting s-category. We wish for the encoding to respect the
typing rules of Λτ

sub and so we would like the set of interface sorts to have some relationship to the
set of types. Another point is that even though defA and varA have the same ‘type’, it does not
make sense from a modelling perspective to include them in the same interface sort as no control
which can contain a defA node can contain a varA node.

4.2 Sorting the interfaces

We will now identify a fitting s-category of ′Λbigτ bigraphs. This amounts of choosing the sorts
of interfaces we want to allow. This is not always a free choice. The task of sorting the interfaces
depends somewhat on the reaction rules of the system. Bigraphical reactive rules have the property
that the redex and reactum have equal outer interfaces. In order to define a kind sorted Brs, the
reaction rules must be well sorted i.e. the redex and reactum must have the same sort. This forces
the choice of interface sorts to some extent and affects the kind of fitting s-categories which can
be defined for some s-category of kind bigraphs.

Example 1 (not all kind reactive systems may be fully partitioned). Let

ΣK = (K, visK,P(K),Φ)

where K = {A,B,C,D} with all controls visible and of arity zero. Let Φ define A and B as atomic
and the kinds of C and D as {A,B} and {B} respectively. Define a ground reaction rule (A,B)
with interface ε → 〈1, {{A,B}}, ∅〉, transforming an A node to a B node. Let (R,R′) be a second
parametric reaction rule where the redex contains a D node containing a site of sort B and this
site is discarded in the reactum.

A fully partitioned s-category based on this signature and ruleset must both have a superset of
{A,B} as a sort to match the ground rule and a subset of {B} as a sort to match the parametric
rule. The only valid choice, letting the inner sort of the parametric redex be ∅, destroys the intended
meaning of the parametric rule.

We would like to use a fully partitioned s-category to model Λτ
sub so that the sorts correspond

in some way with the types. If we look at the schema for ′Λbigτ sorting in Figure 5, we see that
′Λbigτ has a similar property as in the example above – appA→B,A can contain a 1A→B and a 2A

whereas subA→B,A can only contain the former. Further, an appA→B,A node can contain 1A→B

and 2A nodes whereas an appA→C,A node can contain 1A→C and 2A nodes. It would appear that
we need different interface sorts for each 1A, 2A, and DA control which is not particularly desirable.
However, these controls are invisible and are not allowed to be elements of interface sorts which
fixes this problem. Invisible controls cannot affect whether a certain fitting s-category may be
found and in ′Λbigτ they are merely a means of proving some syntactic sugar – they are merely
used as a means of adding extra structure to the place graph. Leaving invisible controls out of
the interface sorts ensures that these controls are always tied to some lam or sub control in the
bigraphs of the system i.e. they cannot exist on their own.

The reaction rules for ′Λbigτ are depicted in Figure 4 (the meaning of the type labels on the
sites will be explained later). This figure is a rule schema – for every pair (A,B) of types there are
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corresponding rules AA,B,CA,CB, and DA,B. If we forget the simple type annotations and subB,A

being a multi-node, they depict Milner’s rules for untyped Λsub.
Ideally, we want a fitting s-category where the interface sorts are such that for any bigraph

which correctly models a Λτ
sub term:

1. there is exactly one choice of outer interface sort, and

2. the interface is related somehow to the type of the Λτ
sub term.

The first point implies that the interface sorts should be minimal in some sense and, with the
second point, this suggests a solution. We will examine the reaction rules to demonstrate this.

Consider the rule DA,B. The redex must have a sort containing subB,A. According to the typing
system of Λτ

sub and our sorting for ′Λbigτ , the site which persists in the reactum is able to contain
any var, app, lam, or sub nodes of ‘type’ B. Therefore, an appropriate sort for the rule seems to be
the set of all such nodes, or Θ(1B). It is sometimes possible for a DA,B reaction to follow a AA,B

reaction in Λτ
sub. Therefore, Θ(1B) also seems an appropriate sort for AA,B.

This suggests a sorting – we base the allowed sorts for interfaces on the simple types of Λτ
sub

and use a partitioned s-category. We need to take some care. No interface which contains a def

node should be able to contain any var, app, lam, or sub controls. Otherwise, under the rules of
the sorting, we would end up with a subcategory of ground bigraphs and identities as no ion can
be formed with a site of that sort. We therefore define the set of interface sorts as follows. For
each type A ∈ τ :

1. There is a sort which contains all var, app, lam, and sub controls which model a Λτ
sub construct

of that type (for example, Θ(1A) of Definition 12).

2. There is a sort {defA}.

Note how this definition resembles the diagram in Figure 5 if we ignore the invisible controls. This
choice of interface sorts defines a fully partitioned s-category which is not homomorphic.

4.3 ′Λbig
τ

Before continuing, we will gather all the definitions together.

Definition 13 (typed subsets of Kτ ). For any ground type G and function type α we define the
following.

KG = {varG} ∪
⋃

B∈ τ

{
appB→G,B , subG,B

}

Kα = {varα} ∪
⋃

B∈ τ

{
appB→α,B , subα,B , lamα

}

Definition (′Λbigτ signature). The set of controls of ′Λbigτ is

Kτ =
⋃

A,B∈ τ

{
lamA→B : 1, appA→B,A : 0, varA : 1, subB,A : 1, defA : 1, 1A : 0, 2A : 0, DA : 0

}
.

The controls lamA→B and subB,A are binding with arity 1 for all A,B. var and def controls have
arity 1 are are nonbinding. All other controls are nonbinding with arity 0. The varA controls are
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the only atomic controls. All other controls are active. All 1, 2, and D nodes are invisible, all
others are visible. The kind function is defined by:

kind(lamB→A) = kind(defA) = kind(1A) = kind(2A) = KA

kind(appA→B,A) =
{
1A→B , 2A

}

kind(subB,A) =
{
1B ,DA

}

kind(DA) = {defA}

kind(varA) = ∅

for any A,B.

We now explain the labelling of the sites in the reaction rules of Figure 4. For any type A, if a
site is labelled A then it has the sort KA. Note also that the redex and reactum of these reaction
rules are both well sorted and outer interfaces have equal sorts.

Definition 14 (′Λbigτ ). ′Λbigτ is the reactive system over the fully partitioned s-category of
´Bigh(ΣK), ΣK = (Kτ , vsblτ ,P(Kτ ),Φτ ) where the set of interface sorts is {defA |A ∈ τ} ∪
{KA |A ∈ τ} and the reaction rules are as depicted in Figure 4.

When a bigraph G of ′Λbigτ is prime and the root has one child, we write sort(G) for the sort
of the root.

5 Encoding Λτ
sub in ′Λbig

τ

We can now encode Λτ
sub in ′Λbigτ . The use of a partitioned subcategory is useful in forcing the

sort of an encoding of a term t to match the type of t under some environment Γ. By defining
′Λbigτ similarly to ′Λbig we can also easily recover the latter through a partial functor. Finally,
we use properties of Λsub to infer properties of Λτ

sub and the image of Λτ
sub in the encoding.

Note that while we use a partitioned subcategory and so have pushout reflection, the reaction
rules in ′Λbigτ are not all prime so that the Theorem 2.2 does not immediately apply.

5.1 The encoding

We can now model the simply typed λ-calculus with an explicit substitution bigraphical system.
We do this by giving a translation of Λτ

sub into ′Λbigτ , following Milner’s encoding of Λsub. The
translation [[t]]Γ of a term t is indexed by Γ, an environment which can type t in Λsub.

Our encoding uses the extension operator ⊕ on bigraphs, which adds localised names to a
bigraph. We implicitly generalise this operator to our link sorted interfaces by forming the union
of the environments (which always have disjoint domains). The extension operation on bigraphs
is defined as usual and preserves our link sorting.

Given two environments Γ and Γ′, if dom(Γ) ⊆ dom(Γ′) and both enviroments are compatible,
we overload notation and write Γ ⊆ Γ′. The encoding of a derivation Γ ` t : A is indexed with
an environment Γ′ where Γ ⊆ Γ′ and BV(t) ∩ dom(Γ′) = ∅. This indexing is required in order to
prove that Λτ

sub reduction matches ′Λbigτ reaction as the former loses free variables whereas the
latter does not.

Definition 15 (encoding type derivations as bigraphs). The encoding [[–]]Γ′ which takes a Λτ
sub

derivation Γ ` t : A with Γ ⊆ Γ′ to a prime, ground bigraph G : ε → {1,KA,dom(Γ′),Γ′} is defined
inductively on the inference of Γ ` t : A and presented in Figure 6.

The encoding preserves types in some way; if Γ ` t : A then sort[[Γ ` t : A]]Γ′ = KA.
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Derivation Encoding with index Γ′

Γ, x : A ` x : A varAx:A ⊕ Γ′

Γ ` t u : A appB→A,B ⊕ (idΓ′ | idΓ′)

◦ ([[Γ ` t : B → A]]Γ′ ‖ [[Γ ` u : B]]Γ′)

Γ ` t[x/u] : A sub
A,B

(x:B) ⊕ (idΓ′ | idΓ′)

◦
(
[[Γ, x : B ` t : A]]Γ′,x:B(defB

x:B ⊕ idΓ′)[[Γ ` u : B]]Γ′

)

Γ ` λx.t : A → B (lamA→B
(x:A) ⊕ idΓ′)[[Γ, x : A ` t : B]]Γ′,x:A

Figure 6: Encoding of Λτ
sub terms into ′Λbigτ

Proposition 3. The encoding [[Γ ` t : A]]Γ′ of a Λτ
sub derivation is well-sorted with outer kind sort

KA and link sort Γ′.

Proof. By induction on the derivation of t. We explain how the derivations of subterms in the
inductive cases are valid, then show that the encoding respects the sorting. Note that all ′Λbigτ -
ions are sorted and that composition preserves kind sorting. We can see from the definition that
the outer link sort is Γ′ in all cases.

1. [[Γ, x : A ` x : A]]Γ′ .

All ions are sorted.

2. [[Γ ` t u : A]]Γ′ .

The last step of the derivation Γ ` t u : A must have been an application of app. Therefore,
Γ ` t : B → A and Γ ` u : B for some B.

The encodings [[Γ ` t : B → A]]Γ′ and [[Γ ` u : B]]Γ′ have outer sorts KB→A and KB

respectively and are sorted by the i.h.. Hence, the entire term is sorted.

3. [[Γ ` t[x/u] : A]]Γ′ .

The last step of the derivation Γ ` t[x/u] : A must have been an application of subs.
Therefore, Γ, x : B ` t : A and Γ ` u : B for some B.

The encodings [[Γ, x : B ` t : A]]Γ′ and [[Γ ` u : B]]Γ′ have outer sorts KA and KB respectively
and are sorted by the i.h.. Hence, the bigraph is kind sorted. Finally, the binding port of
the sub node is linked to an inner name x of the same sort in the composition.

4. [[Γ ` λx.t : A → B]]Γ′ .

The last step of the derivation Γ ` λx.t : A → B must have been an application of abs.
Therefore, Γ, x : A ` t : B.

The encoding [[Γ, x : A ` t : B]]Γ′ has outer sort KB and is sorted by the i.h.. Hence, the
bigraph is kind sorted. Finally, the binding port of the lam node is linked to an inner name
x of the same sort in the composition.
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The following proposition follows by induction where λx.t ≡α λy.t{ y/x }, y /∈ FV(t) and t[x/u] ≡α

t{ y/x }[y/u], y /∈ FV(t) are the non-trivial cases.

Proposition 4. If t ≡α u and FV(t) ⊆ X then [[t]]X,Γ l [[u]]X,Γ.

Similarly to ′Λbig we have the following except that now each of the three rules for Λsub is
matched by an infinite number of ′Λbigτ rules. However, only the corresponding rule with the
correct type may be applied.

Proposition 5 (reaction matches reduction). [[t]]X,Γ _ g if and only if t −→ACD t′ for some t′

such that [[t′]]X,Γ l g.

5.2 Recovering Λsub

′Λbigτ was built by sorting ′Λbig. We can introduce a forgetful (but not faithful) partial functor
between the two systems.

Definition 16 (Uτ ). We define the partial functor Uτ :′ Λbigτ →′ Λbig as follows. On objects,
Uτ (I) = U(I) is the underlying (local) interface of I, forgetting kinds of roots and types of names.
On ground arrows, Uτ (G) is defined as G where the superscripts of controls are omitted and the
children 1B and DA of all subB,A controls are forgotten. Uτ (G) is called the underlying bigraph
of G. Given a ground reaction rule of ′Λbigτ , the underlying ground reaction rule is defined as the
pair of underlying redex and underlying reactum. The underlying ground reaction rules are exactly
the reaction rules of ′Λbig.

The partial functor is defined on ground terms. We can therefore compose it with the encoding
[[]]X,Γ from Λτ

sub to ′Λbigτ (we omit the side-conditions below).

Uτ [[x]]X]x:A,Γ
def

= varx ⊕ X

Uτ [[λx : A.t]]X,Γ
def

= (lam(x) ⊕ idX)Uτ [[t]]X]x:A,(Γ,x:A)

Uτ [[t u]]X,Γ
def

= (app ⊕ (idX |idX))(Uτ [[t]]X,Γ ‖Uτ [[u]]X,Γ)

Uτ [[t[x/u]]]X,Γ
def

= (sub(x) ⊕ idX)(Uτ [[t]]X]x:A,(Γ,x:A) | (defx ⊕ idX)Uτ [[u]]X,Γ)

For a term t of Λτ
sub, let U(t) denote the untyped term of Λsub which forgets the types of

abstractions.

Proposition 6. Uτ ◦ [[t]]X,Γ = [[U(t)]]X

Proof. Induct over the structure of t.

Proposition 7. ′Λbig reaction on [[−]]X,Γ-images strongly simulates ′Λbig reaction on [[−]]X-
images through Uτ .

Proof. The proof follows by the “commutative diagram” below. Proposition 6 proves the squares,
Proposition 5 proves the ‘top face’ of the cube, and the matching of Λsub reduction by ′Λbig
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reaction [27] proves the ‘bottom face.’

Λτ
sub

[[−]]X,Γ

U

′Λbigτ

UτΛτ
sub

ACD

[[−]]X,Γ

U

′Λbigτ

Uτ

Λsub

[[−]]X
′Λbig

Λsub

[[−]]X

ACD

′Λbig

This enables us to reflect some properties of ′Λbig back through Uτ .

5.3 Properties of ′Λbig
τ

We now use previous results for Λsub to prove properties of Λτ
sub and ′Λbigτ .

Proposition 8. Λτ
sub can simulate β-reduction, is confluent on terms without metavariables, pre-

serves strong normalisation of β-reduction, and has full composition of substitutions. ′Λbigτ has
these properties on [[−]]X,Γ-images of Λτ

sub terms.

Proof. These properties have been proven for Λsub [10]. Λτ
sub inherits the properties of Λsub. ′Λbigτ

gains these properties by Proposition 5.

Proposition 9. Λτ
sub is strongly normalising.

Proof. We use Herbelin’s approach [15] and Kesner’s translation [18].
The translation from Λsub terms to λ-terms is:

C(x) = x

C(t u) = C(t)C(u)

C(λx.t) = λx.C(t)

C(t[x/u]) = (λx.C(t))C(u).

The translation reverts all explicit substitutions to β-redexes. We have C(t) −→∗
B t for all t. By

inducting over the number of explicit substitutions in t, and using the fact that −→B preserves
types, we can prove that if Γ ` t : A then Γ ` C(t) : A. Moreover, the derivation of Γ ` C(t) : A uses
the rules of the simply typed λ-calculus. Therefore, C(t) is strongly normalising for β-reduction
[1]. As Λsub has PSN, we conclude that t is strongly normalising.

We have the following corollary of Propositions 5 and 9.

Corollary 10. ′Λbigτ is strongly normalising on [[−]]X,Γ-images of Λτ
sub terms.
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6 Conclusions

We have presented a bigraphical encoding of an explicit substitution calculus where typable terms
do terminate. This provides a significant theoretical application for kind sortings. We have also
identified subcategories of kind bigraphs which retain some important properties of the transition
theory of pure bigraphs and which we hope will be useful in future applications. The proofs of
retention generalise previous results by identifying a wider class of these subcategories which reflect
pushouts.

The notion of invisible controls pave the way towards modelling multi-nodes with kind bigraphs
and we continue in this direction in Appendix B.1.

We can make some observations about kind s-categories. They are very free sorted s-categories
i.e. allowing the sort of an interface to be any subset of a signature K which satisfies the kind rule
is not very restrictive. This has benefits and problems associated with it. The benefit is that some
very expressive reaction rules [9] can be written for these systems. The downside is that they do
not seem suitable for modelling sorted systems such as finite CCS or the simply typed λ-calculus.
For the latter applications, we have seen that subcategories have proven useful.

It seems that when using kind bigraphs, we can choose either to: i) have very expressive reaction
rules, which seem useful to model ‘abstract’ reactive systems; or else to ii) restrict attention
to subcategories, which seems to be necessary in order to model certain calculi, and lose some
expressivity. The trade-off between these choices is worth investigating.

7 Further and related work

A better model When introducing ′Λbigτ , we opted for the closest match to ′Λbig so that
we could easily (partially) recover ′Λbig through the functor Uτ . However, our design does not
use kind sorting to its best when modelling explicit substitutions. It may be better to modelling
explicit substitutions with a triple of controls sub,U,D instead of with sub, 1,D, and def. The new
sub would have no ports, U would model the left-hand side of sub and would bind the variable
of the explicit substitution. def controls seem redundant in ′Λbigτ as the D control models the
right-hand side of sub.

Sorting There are strong similarities between kind sorting and the definition of sorting for the
polyadic π-calculus [23]. We use the set K as the set of ‘subject sorts’ and subsets of K as the
set of ‘object sorts.’ In the polyadic π-calculus, the set of objects sorts is the set of sequences
of subject sorts. The definition of kind sorting with capacities in the appendices is closer to the
polyadic π-calculus approach.

Kind sortings are a particular example of Milner’s definition of place sorting [26] and generalise
homomorphic sortings which were used to model finite CCS. Sorting and binding disciplines for
link graphs have been studied by Jensen, Milner, and Leifer [16, 21] to model variants of the π-
calculus, Petri nets, and arithmetic nets. Work on binding led to local bigraphs [24], used to model
the λ-calculus. The definition of local bigraphs has been recently simplified by Milner and we have
used that definition here.

Birkedal et al. have proposed a method of modelling context-aware systems by describing
a single bigraphical system as a combination of three smaller component systems where each
component represents a different view of the world and agents interact with a context via a shared
proxy [4, 3]. To ensure compositional safety, they using a particular example of their rigid control-
sortings (which create RPOs).

Their definition of rigid control-sorting has similarities with a proposed variant of kind sorting
called stronger kind sorting [9]. If differs from kind sorting in that the containment relationship
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is between a root and the nodes below the root rather than the parent-child relationship of kind
sortings. For this reason, neither sorting can generalise the other except in trivial cases. However,
it seems likely that a combination of both approaches – where the sorting constrains containment
according to both roots and the parent-child relationship – may be useful. We present such a
combination in Appendix B.2 and prove that it creates RPOs.

Birkedal, Debois, and Hildebrandt [2] have introduced a general theory of sorting for reactive
systems over categories which will hopefully be extended to cover precategories and 2-categories
– bigraphs are defined in the former setting and the latter has been studied as an alternative
setting for reactive systems [31]. They introduce a sorting, predicate sorting, which generalises
any sorting where the sorting condition is retained by composition/decomposition of bigraphs
and prove predicate sorting creates RPOs. The relationship between kind sortings and predicate
sortings i.e. can kind sortings be couched as predicate sortings, deserves attention. So too does
the expressivity of their sorted reaction relations with respect to guaranteed absence, a notion we
explored previously for kind sortings [9]. We briefly relate some of their terminology with ours in
Appendix A.1.

Bundgaard and Hildebrandt’s bigraphical presentation of the Homer calculus [6, 7] is a presen-
tation of a typed version of Homer with explicit substitutions, Homerσ. However, the type of a
Homer term in this case is a set of names which contains the free names3of the term. The typing
is used to ensure that reduction in Homerσ does not lose free names so that reduction can match
reaction in the bigraphical model (where the notion of (outer) interface preservation is implicit in
the dynamics). This differs from the typing we are trying to model.

Recently, Bundgaard and Sassone presented a typed polyadic pi-calculus in bigraphs [8] where
the type system was based on Pierce and Sangiorgi’s capability types [28] with subsorting. They
introduce a new link sorting (called subsorting) which represents the first step in a theory of
link-subtyping with binding for bigraphs. The approach differs from previous work as the edges
of bigraphs are sorted rather than the ports. The sort of a node is then derived from the sorts
of the links to which it is connected. As a result, their presentation only uses one control to
model an input/output prefix of some message length. In comparison, this paper has introduced
a place-sorting where the controls are sorted and where we have one control per type per lambda
constructor.

Transition theory We have concentrated on proving (strong) pushout reflection here where any
bound whose pure image is a pushout must be a pushout. This may be useful when considering
the full transition system where all bounds involving redexes play a part in the labelled transition
system. However, results by Bundgaard and Sassone [8] have shown that proving this property
for IPOs alone still allows a tractable transition system. We believe that this weaker property
holds for the non-fitting (sub)categories in Figure 2, and could be readily shown, using the notion
of fitting bound [9] but defer this work. Fitting bounds lie between arbitrary bounds and IPOs
and seem to be the correct basis for a ‘full’ transition system for kind bigraphs. Bisimilarity
and adequacy theorems for this transition system should be investigated although in practice, the
transition system based on IPOs is more likely to be useful.

We have also concentrated on proving RPO creation and pushout reflection of composite func-
tors from a fitting subcategory to a sorted s-category to pure bigraphs. It may be simpler to merely
prove the property on the inclusion functor from the subcategory to the sorted s-category. It would
seem that this is enough to prove that the composite functor has the required property. However,
not all such inclusion functors I create RPOs e.g. if the RPO interface in the full s-category is not
an interface sort then the RPO cannot have an I-preimage and hence I would not create RPOs.
However, in some of these cases it may still be that the composite UI does.
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Further typing We have modelled the simply typed λ calculus with bigraphs using a relatively
simple sorting. This raises the questions of whether a simpler sorting would suffice and what the
limitation of kind sorting is with respect to modelling type systems. The latter question could be
investigated by attempting to model more simple types (products, coproducts), intersection types
[12], or recursion, although we believe that kind sorting can only take us so far. Examining the
encodings of typed λ calculi in the π-calculus [32, 30] may get us further.

The set of strongly normalising terms of Λsub does not yet have a neat characterisation. Typing
may provide this characterisation as intersection types have for the λ-calculus [12] and calculi of
explicit substitutions [22].

Explicit substitution calculi and proof-nets Milner’s Λsub is confluent on ground terms,
preserves strong normalisation of β-reduction, has full composition of substitutions [10], and has
a strongly normalising typed variant. It differs from most explicit substitution calculi as it does
not propagate explicit substitutions through terms. Besides being a well-behaved model of the
λ-calculus, is it of interest for the explicit substitution community? We do not have any answers,
intuitions, or expertise in this direction.

The connection between explicit substitution calculi with distributive rules for substitution and
cut elimination in proof-nets has provided insights into both areas of research. It has yielded nor-
malisation proofs for existing explicit substitution calculi [13, 14] as well as aided the development
of new calculi with some or all of the properties of preservation of strong normalisation (PSN),
open confluence, and full composition of substitutions [19, 18].

PSN for Λsub was proved by simulating reduction in a modified version of one of these later
calculi [10]. However, the proof itself does not yield much insight into the relationship between
Λsub and proof-nets. It has been suggested to us that this relationship should be explored.

Applications Conforti, Macedonio, and Sassone have considered bigraphical models of XML
data whose document order is irrelevant [11]. They then applied their spatial logic, inspired by
bigraphs, on the bigraphs to describe and reason about XML data. They remark that an extension
of bigraphs with a notion of “ordered locality” could be used to model XML data whose document
order is relevant. Our description of Milner’s multi-nodes in a kind sorting with capacities (see
Appendix B.1) extends bigraphs in this manner.

Controls in binding signatures have a number of binding ports and a number of non-binding
ports. With local bigraphs [27], a control either has binding ports or non-binding ports but not
both. Milner shows how this new approach can encode the old approach by using a sorting and a
pair of controls, one binding, one non-binding. The place graph component of that sorting can be
represent by a kind sorting with capacities where we would also define the inner binding node as
invisible.

Some other suggestions are described in Appendices B.1, B.3, and B.4.
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A Proofs for section 3.2

This section contains some proofs identifying fitting s-categories which create RPOs or reflect
pushouts. These require different properties. For RPO creation, we need to be able to build an
RPO interface (by this, we refer to the interface Î at the center of an RPO ~B : ~I → Î , B : Î → L)
whose sort is large enough to sort the ‘legs’ ~B of the RPO. For pushout reflection, we have a
pushout interface but need to prove that it is small enough to ‘fit’ the mediating arrow between
the pushout and any other bound.

A.1 Useful lemmas

Lemma 11. Let G be a bigraph of a partitioned s-category. For any root r of G, if G(s) = r for
some site of G then sort(s) = sort(r).

Proof. By condition K2, sort(s) ⊆ sort(r). As the interface sorts are disjoint, sort(s) = sort(r).

Lemma 12. Given two bigraphs D : H → J and A : H → I of a meet s-category ´Fkbh(ΣK), let
B′ : Iu → Ju be a pure bigraph such that Du = B′ ◦ Au. Then there exists a bigraph B : I → J of
´Fkbh(ΣK) such that Bu = B′ and D = B ◦ A.

J Ju

I

B

Iu

B′

H

D

A

Hu

Du

Au

Proof. Any such B has the same prnt map as B′. We show that B is an arrow of F́kbh(ΣK) i.e.
that it obeys the kind sorting conditions and is fitting. In the following, v and v′ are nodes, r is a
site of B, s is a site, and p is a root or node of B.

K1 Let p = B(v). Then p = D(v) and since D is sorted, B obeys the sorting.

K2 Let p = B(r). We must prove sort(r) ⊆ sort(p).

As A is sorted, the sort of r is defined as

sort(r) = Kr ]
( ⋃

v<Ar

ctrl(v)
)
∪

( ⋃

s<Ar

sort(s)
)

where by the definition of fitting s-category, Kr is the smallest possible set. As Du = B′ ◦Au,
we have v <A r implies v <D p and s <A r implies s <D p. As D is sorted, the sort of p can
be therefore be defined as

sort(p) = Kp ]
( ⋃

v<Ar

ctrl(v)
)
∪

( ⋃

s<Ar

sort(s)
)
.

As F́kbh(ΣK) is a meet s-category, the interface sort

sort(r) ∩ sort(p) = K′ ]
( ⋃

v<Ar

ctrl(v)
)
∪

( ⋃

s<Ar

sort(s)
)

is defined. This sort can sort the root r in A and as sort(r) ∩ sort(p) ⊆ sort(r), and
sort(r) is the smallest sort to sort r, it must be that sort(r) = sort(r) ∩ sort(p). Thus,
sort(r) = sort(r) ∩ sort(p) ⊆ sort(p).
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K3 Trivially follows from Du = B′ ◦ Au.

We now prove B is fitting. Let t be a place in J . The smallest interface sort to sort t in D must
contain the control of all children of t in D and the sorts of all sites which are children of t in D.
The same sort is also the smallest interface sort to sort t in B. This can be seen by examining the
composition B ◦A and by the following argument – for any site s of B where s <B t, all elements
in sort(s) are necessary to sort A as otherwise we can find a smaller sort sort(s) ∩ sort(t).

The next four paragraphs are for those familiar with the recent work of Birkedal, Debois,
and Hildebrandt on predicate sortings and their general RPO theorem for sorted reactive systems
[2, Thm. 12]. While they worked in categories, we assume here that their results generalise to
precategories. Their definitions capture and generalise notions in our work and so we shall adopt
some of their terminology in the future.

The notions of inflations, cospans, and fitting pairs in ´Bigh(ΣK) [9] correspond to (and are
generalised by) verticals, nearly jointly opcartesian cospans, and jointly opcartesian cospans.

Lemma 12 seems to imply that the sorting functor U of meet s-categories is a weak opfibration
(and further implies that all cospans in meet s-categories are jointly opcartesian with respect to
the sorting functor). A similar lemma holds for the fitting s-category [9].

It would seem that any pair of kind bigraphs with common codomain such that the codomain has
the least sort to sort both bigraphs is jointly opcartesian – this is the basis for the RPO construction
in all the s-categories of Figure 2 which create RPOs. Further, all bigraphs in ´Bigh(ΣK) are
nearly opcartesian as they can decomposed into a fitting bigraph (which is opcartesian [9]) and an
inflation (which is a vertical) and thus the sorting functor from this s-category is a weak opfibration.
´Bigh(ΣK) reflects prefixes (use the interface with the smallest sort) whenever no invisible controls
are present. Fibres have pushouts in ´Bigh(ΣK) (union the sorts to form the pushout interface),
and we believe that a special case of the RPO construction would prove that these pushouts are
pushouts in ´Bigh(ΣK). This all sits nicely with their general RPO theorem.

Not all fitting s-categories reflect prefixes (an interface which sorts the decomposition may not
exist). Similarly, a kind s-category cannot reflect prefixes whenever invisible controls exist in the
signature as these are not allowed in interface sorts (this may possibly be resolved by forgetting
these in the sorting functor in cases where it is still possible to be faithful). These examples fall
outside the general RPO theorem. We examine some of them in the next section.

A.2 RPO creation

Example 2 (fitting s-categories do not create RPOs in general). Let ´Fkbh(ΣK) be a fitting
s-category over

ΣK = (K, visK,P(K),Φ)

where K = {A,B,C,D} with all controls visible and of arity zero. Let Φ define A, B, and C as
atomic and the sort of D as {A,B,C}.

Consider the commuting diagram on the left of Figure 7 where the node of control A is shared
in A|B and A|C and we write θ for the interface 〈1, θ, ∅〉 and omit the sorts in the identity arrows4.
The three bigraphs inside the outer square form an RPO of pure bigraphs. However, this is only an
RPO in ´Fkbh(ΣK) when the missing interface is defined as {A,B,C}. If this is not an interface
sort then an RPO is not created.

As an aside, we have not consider fitting unioned s-categories in this paper. Such s-categories
do not create RPOs (see below) but may reflect pushouts. As unioned s-categories do create RPOs
(Proposition 13) and we believe they weakly reflect pushouts, they seem preferable.

4We take some liberties with terminology here – they are only identities on places, not interfaces.

24



ε

A|B A|C

{A,B}

id1|C

D◦(id1|C)

{A,C}

id1|B

D◦(id1|B)

?

D◦id1

{D}

ε

A A|B|D

{A,C}

id1|B|D

E◦(id1|B|D)

{A,B,D}

id1

E◦id1

?

E◦id1

{E}

Figure 7: Diagrams for Example 2 (left) and Example 3 (right)

Example 3 (fitting unioned s-categories do not create RPOs in general). Let ´Fkbh(ΣK) be a
fitting s-category over

ΣK = (K, visK,P(K),Φ)

where K = {A,B,C,D,E} with all controls visible and of arity zero. Let Φ define A, B, C, and
D as atomic and the sort of E as {A,B,C,D}.

Consider the commuting diagram on the right of Figure 7 where the node of control A is shared
in A and A|B|D. The three bigraphs inside the outer square is an RPO of pure bigraphs. However,
this is only an RPO in ´Fkbh(ΣK) when the missing interface is defined as {A,B,C,D}. But
then the bigraph id1 : {A,B,D} → {A,B,C,D} is not fitting.

Construction 1 (building RPOs). Let ~A : H → ~I have a bound ~D : ~I → L in a subcategory Á of

a kind s-category ´Bigh(ΣK). We define an RPO ~B : ~I → Î , B : Î → L for this square as follows
when:

1. Á is a downward closed and controlled s-category;

2. Á is a downward closed and unioned s-category;

3. Á is a unioned s-category (non-fitting);

4. Á is a partitioned s-category.

The first steps for the different cases are the same. We start by building a pure RPO ( ~B′, B′)

for ~A
u

to ~D
u

[17, Construction 7.7]. From this we shall construct a kind sorted bound ( ~B,B) for
~A to ~D, such that ( ~B,B)u = ( ~B′, B′). Then in the next proposition we shall prove the universal
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property of this relative bound. The situtation is depicted below.

〈l, ~CL, Z〉 〈l, Z〉

〈n, ~CJ , Y 〉

B

〈n, Y 〉

B′

〈m0, ~CI0
,X0〉

D0

B0

〈m1, ~CI1
,X1〉

D1

B1

〈m0,X0〉

Du
0

B′

0

〈m1,X1〉

Du
1

B′

1

H

A0 A1

Hu

Au
0 Au

1

For each case, we will define the sorts of places in the interface Î and then prove that triple
( ~B,B) is kind sorted and consists of bigraphs in the s-category we are working in. In order to
define the sorts, we must revisit Jensen and Milner’s construction and see how each place of Î
arises in the construction.

Let r̂ be a place of Î. r̂ is not barren in either B′
0 or B′

1
5. Let ri denote a site of Bi, i ∈ {0, 1}.

The controls of nodes of B′
0 which are children of r̂ and the nodes of B′

1 which are children of r̂
are respectively defined as

VB′

0
=

⋃

r1<B′

1
r̂

( ⋃

v<A1
r1

ctrl(v)
)
,

VB′

1
=

⋃

r0<B′

0
r̂

( ⋃

v<A0
r0

ctrl(v)
)
.

In order that r̂ respects the kind rules for both B0 and B1, we must have

sort(r̂) = Kr ]
((

VB′

0
∪ VB′

1

)
∪

( ⋃

r0<B′

0
r̂

sort(r0)
)
∪

( ⋃

r1<B′

1
r̂

sort(r1)
))

for some smallest set Kr such that sort(r̂) is an interface sort. However, as B′
0 ◦ Au

0 = B′
1 ◦ Au

1 , if
v1 <B0

r̂ then v1 <A1
r1 for some r1 <B′

1
r̂. As A0 and A1 are sorted, we can then rewrite the

equation above as

sort(r̂) = Kr ]
(( ⋃

r0<B′

0
r̂

sort(r0)
)
∪

( ⋃

r1<B′

1
r̂

sort(r1)
))

. (1)

Before we break the remainder of the construction over the cases, we state the following sub-
proposition:

If an interface which satisfies the equation (1) exists in the s-category this interface
defines B0 and B1 as kind sorted bigraphs i.e. conditions K1-K3 are satisfied. (P1)

By the definition of sort(r̂), K1 and K2 are satisfied when p is a root. If p is a node, then the
commutativity of the diagram above proves K1, K2, and K3. Similarly, commutativity of the
diagram and the fact that no place of Î is barren in B0 or B1 proves that K1 and K3 are satisfied
in B.

5This is a familiar property in colimits of diagrams of sets and set-like categories.
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We now explicitly define the sort of a place r̂ of Î for the separate cases. For the fitting s-
categories, we must also show that this sort is the smallest sort satisfying (1) in order that B0 and
B1 are arrows of that subcategory. We must also show that B satisfies K2.

1. For a downward closed and controlled s-category Á, we define

sort(r̂) =
( ⋃

r0<B′

0
r̂

sort(r0)
)
∪

( ⋃

r1<B′

1
r̂

sort(r1)
)
. (2)

We first prove that this is an interface sort.

Let r̂ <B′ p where p is a root or node. For any ri, ri <B′

i
r̂, i ∈ {0, 1}, we have sort(ri) ⊆

sort(p) as Di is sorted. Therefore, sort(r̂) ⊆ sort(p). As Á is downwards closed and each
control sort is an interface sort, sort(r̂) is therefore an interface sort and does not break K2

in B. We must prove that it is also the smallest sort for B0 or B1 individually i.e. that B0

and B1 are arrows of Á.

Say K ∈ sort(r1), r1 <B1
r̂. We will prove that either v <B0

r̂, ctrl(v) = K or K ∈
sort(r0), r0 <B0

r̂. This suffices to prove that sort(r̂) is the smallest interface sort for B0.
Similar reasoning holds for B1. As K ∈ sort(r1) then either:

(a) v <A1
r1, ctrl(v) = K.

If v is a shared node then, by the RPO construction, there exists a site r0 ∈ m0 such
that v <A0

r0 and r0 <B0
r̂. Therefore, K ∈ sort(r0).

If v is not shared then it is also a node of B0 such that v <B0
r̂ and so it is necessary

to sort B0.

(b) s <A1
r1,K ∈ sort(s).

This case is the same as for a shared node.

(c) K is some other control unnecessary to sort A1.
As all subsets of an interface sort are interface sorts, this case never occurs in this fitting
s-category.

Therefore, the sort above is the smallest interface sort of the fitting s-category which sorts
B0 and B1 and so these are arrows of the category. By Lemma 12, so is B.

2. For a downward closed and unioned s-category Á, we define sort(r̂) as in equation (2) above.
This is an interface sort by definition and clearly the smallest which sorts both B0 and B1.
The remainder of this case proceeds as in the last case.

3. For a unioned s-category Á, we define sort(r̂) as in equation (2) above. This is an inter-
face sort by definition and clearly the smallest which sorts both B0 and B1 (although not
necessarily the smallest sort for B0 or B1 individually). We must now prove that B satisfies
K2.

Let p be a node or root of B′. We must prove that if r̂ <B p then sort(r̂) ⊆ sort(p) for
some r̂ ∈ Î. Let K ∈ sort(r̂). Then K ∈ sort(ri) for some ri ∈ mi where ri <Bi

r̂ and
i ∈ {0, 1}. But ri <Di

p and Di is sorted so K ∈ sort(p). Therefore, any element of sort(r̂)
is an element of sort(p) and B is sorted.

4. For a partitioned s-category, we begin by proving that all places in equation (1) have the
same sort.

From the pure RPO construction, r̂ must be the parent of at least one site in either B0 or
B1.

27



If r̂ has no sites as children in B1 then it must have exactly one site r0 as a child in B0 and
so sort(r̂) = sort(r0). This sorts B0 as r̂ has no other children in B0. The children of r̂ in
B1 are the children of r0 in A0 and so B1 is also sorted.

Let r̂ have a non-zero number of sites as children in both B0 and B1. If we examine the
equivalence relation ∼= over these sites defined in the pure construction, we can see that the
relation that the equivalence relation is based on relates sites which both parent a shared
node. In a partitioned s-category, this implies they have the same sort. Therefore, for any
pair (r0 ∈ m0, r1 ∈ m1) such that r0 <B0

r̂, r1 <B1
r̂, sort(r0) = sort(r1). Therefore,

sort(r̂) = sort(ri) where ri <Bi
r̂, i ∈ {0, 1}. As above, this sorts B0 and B1.

Finally, let p >B′ r̂. Say r̂ is the parent of a place ri ∈ mi in Bi. Then p >Di
ri and since

Di is sorted, sort(r̂) = sort(ri) ⊆ p. Therefore, B is sorted.

�

We will now prove that the constructions above indeed build RPOs. A crucial point is that the
interface sort of the RPO interface is constructed to have the minimum available interface sort of
the sub-category.

Proposition 13 (creation of RPOs). Whenever ~D bounds ~A in a subcategory Á of ´Bigh(ΣK),

then any RPO for U( ~A) relative to U( ~D) has a unique U-preimage that is an RPO for ~A relative

to ~D if:

1. Á is a downward closed and controlled s-category;

2. Á is a downward closed and unioned s-category;

3. Á is a unioned s-category;

4. Á is a partitioned s-category.

H
A0 A1

I0

D0

C0

I1

D1

C1

J

F

K

Hu
Au

0 Au
1

Iu
0

Du
0

Cu
0

Iu
1

Du
1

Cu
1

Ju

F ′

Ku

Proof. The proof is similar for all cases. Start by using Construction 1 to build a canidate RPO
( ~B,B). The interface defined by the construction is the same as for the construction of RPOs
in the full s-category ´Bigh(ΣK) [9]. Therefore, given any other relative bound (~C,C) in the
subcategory, there is exactly one arrow F from the codomain of ~B to the codomain of ~B such that
F ◦ Bi = Ci, i ∈ {0, 1}. We need to prove that F is an arrow of the subcategory.

1. By Lemma 12.

2. By Lemma 12.

3. This is a full subcategory.

4. This follows as F is well-sorted.
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A.3 Pushout reflection

Example 4 (fitting s-categories do not reflect pushouts in general). Let ´Fkbh(ΣK) be a fitting
s-category over

ΣK = (K, visK,P(K),Φ)

where K = {A,B,C,D} with all controls visible and of arity zero. Let Φ define A, B, and C as
atomic and the sort of D as {A,B,C}. Define the set of interface sorts as P(K) \ {A,B,C}.

ε
A|B A|C

{A,B}

id1|C

D◦(id1|C)

{A,C}

id1|B

D◦(id1|B)

{A,B,C,D}

{D}

Consider the commuting diagram above where the node of control A is shared in A|B and A|C
and we write θ for the interface 〈1, θ, ∅〉 and omit the sorts in the identity arrows. The lower square
is a pushout of pure bigraphs. Therefore, there is a unique mediator D ◦ id1 from {A,B,C,D}u

to
{D}u

from the inner bound to the outer bound. However, there is no such sorted mediator as the
sort of D does not contain D.

The problem in this example is that the minimum sort which contains the sort of some control
D is a strict superset of sort(D). This example led to the definition of meet s-categories. In that
definition, it is important that θ′ ranges over both interface sorts and control sorts as otherwise
we can find a counterexample to pushout reflection.

A more general intuition may help. Consider a pushout for a pair of bigraphs (A0, A1) with
common domain. If we examine the pushout construction [26] for pure place graphs, the pushout
is the least identification on roots. By this, we mean that the roots of the outer interface of the
pushout correspond to the equivalence classes of an equivalence relation on the roots of A0 and
A1 (in fact, this is very similar to the construction of a pushout in the category of sets). It is the
least identification in that it only puts two roots in the same equivalence class when necessary to
form a bound. It also does not add any ‘extra’ roots.

When all the equivalence classes contain exactly one root then pushout reflection should follow.
For example, let an equivalence class contain only the root r of A0. By the pushout construc-
tion [26], A0 = π(P ⊗ G), B0 = π′(idsort(r) ⊗ G′), and B1 = π′′(P ⊗ G′′) for some prime P with
outer sort sort(r), permutations π, π′, π′′, and bigraphs G,G′, and G′′. Pushout reflection is then
easily proved – for any other bound (C0, C1) for (A0, A1), the unique mediator from the pushout
to (C0, C1) is a reflection of the corresponding pure mediator (see the following proofs). We must
prove that this mediator is well-sorted and an arrow of the subcategory. The only hard condition
to satisfy is K2 and the facts that C0 ◦ A0 is well-sorted and that each equivalence class has one
member is enough to guarantee K2.

A general proof fails, as the example above shows, as roots may be identified in the pushout.
According to our definition of fitting s-category and the pure pushout construction, if two roots
with sorts θ and θ′ are identified, then the place of the pushout interface which parents these in
the pushout has the sort KP ] (θ ∪ θ′) for some smallest set KP . In a general proof argument,
where the set of interface sorts is not known, we do not know what the set KP contains and our
argument falls over. In the example above, the sorts {A,B} and {A,C} were merged into a sort
{A,B,C,D}. The inclusion of {D} = KP is what broke the example.
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Unioned s-categories do not reflect pushouts either. In the s-category of Example 4, {A,B,C}
and {A,B,C,D} are both interface sorts and both can sort the bottom square of the diagram.
However, these two bounds may only both be pushouts if they are isomorphic which is not the
case as they have different sorts. Therefore, pushouts are not reflected in general in unioned s-
categories. The problem here is that we do not force outer interfaces of bigraphs to be minimal as
we do in fitting s-categories. However, unioned s-categories may weakly reflect pushouts

Proposition 14 (reflection of pushouts). Whenever ~D bounds ~A in ´Fkbh(ΣK) and U( ~D) is a

pushout for U( ~A), then ~D is a pushout for ~A if:

1. ´Fkbh(ΣK) is a meet s-category;

2. ´Fkbh(ΣK) is a partitioned s-category.
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Proof. To prove that ~D is a pushout for ~A, we first show that for any other bound ~C for ~A, there
exists a sorted mediator F such that F ◦Di = Ci and then prove the uniqueness of F . The situation
is depicted in the diagram above.

Assume that ~C is another bound for ~A. Let F ′ be the unique (pure) mediating arrow from
(Du

0 ,Du
1 ) to (Cu

0 , Cu
1 ). Let F have the same prnt map as F ′.

First, we must show that F is an arrow of F́kbh(ΣK) i.e. that it is sorted.

1. The proof follows from Lemma 12.

2. We break the proof over the kind sorting conditions. In the following, v and v′ are nodes, r
is a site of F , and p is a root or node of F .

K1 Let p = F (v). Then p = C0(v) and since C0 is sorted, F obeys the sorting.

K2 Let p = F (r). We must prove sort(r) ⊆ sort(p).

To prove this, we will examine the construction of pushouts in pure place graphs [26].
The root r must be a parent of a site s ∈ I0 or a node v in D0.

Let s <D0
r. By Lemma 11, sort(r) = sort(s). As Cu

0 = F ′ ◦ Du
0 , s <C0

p. Therefore,
sort(r) = sort(s) ⊆ sort(p).

Let v <D0
r. Then, by the construction of pushouts, v <A1

s′ ∈ I1 and s′ <D1
r.

By Lemma 11, sort(r) = sort(s′). As Cu
1 = F ′ ◦ Du

1 , s′ <C1
p. Therefore, sort(r) =

sort(s′) ⊆ sort(p).

K3 Follows from Cu
0 = F u ◦ Du

0 .

F is a sorted mediator between the two bounds ~D and ~C. Lemma 12 and the definition of
partioned s-categories imply that F is an arrow in the s-category. The uniqueness of F follows
from the fact that U is faithful and that F ′ is a unique mediator.
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B Two generalisations of kind sortings

In this section, we present two generalisations of kind sortings. We defer proofs of RPO creation
and weak pushout reflection for the first until later (in case we further generalise) but we are
confident that the existing proofs for kind sorting need only be slightly modified.

B.1 Kind sorting with capacities

The first generalisation allows the number of children of a node to be bounded. This allows us to
properly model multi-nodes which in turn allows us to model ordered tree structures in bigraphs.
An immediate application of this sorting would be to model XML data whose document order is
relevant. It also allows us to better model the λ-calculus as we will suggest below.

The idea behind the sorting is as follows. It allows us to specify the number of K ′-nodes that a
K node will contain in a bigraph, for each K ′ in some signature K. We can specify a lower bound
and/or an upper bound, and the upper bound may be “arbitarily many.” We also specify a separate
pair of bounds per control. The minimum capacity of K is the number of arbitrary nodes that a
K-node must at least contain. The maximum capacity of K is the number of arbitrary nodes that
a K-node may at most contain. Again, the maximum capacity is allowed to be “arbitarily many.”

This idea is uncomplicated but we need to ensure that the sorting is preserved by composition.
We therefore introduce some machinery to ease the definition of, and hopefully the reasoning about,
the sorting.

Definition 17 (N�). We define the set N
� = N∪ {�}. We extend the partial order ≤ by defining

n ≤ �, n ∈ N
� and extend the addition operation with n + � = �, n ∈ N

�.

The symbol � represents “non-zero.” This will be used to specify that a node of a bigraph may
contain finitely many other nodes.

Notation (projections). For every product S1 ×· · ·×Sn of n sets there are n canonical projection
maps πi : S1 × · · · × Sn → Si, 1 ≤ i ≤ n. We extend this notation to any subset T ⊆ S1 × · · · × Sn

of an n-ary product in the obvious manner. We sometimes write πi(P ) meaning instead the image
of the projection.

In other words, given a tuple c ∈ T ⊆ S1 × · · · × Sn, πi(c) denotes the ith element of c.

Notation. For the remainder of this section we use the following notation.

1. We write (N × N
� × S)≤ to denote the largest subset of N ×N

� × S where π1(c) ≤ π2(c) for
all elements.

2. We write P(N × N
� × S)≤ to denote the largest subset of P((N × N

� × S)≤) where for all
elements T and c ∈ T , π3 : T → S is a bijection.

3. We write (N×N
�×P(N×N

�×S))≤ for the largest subset of (N×N
�×P(N×N

�×S)≤)≤,
on which the following condition also holds on elements T :

∑

c∈π3(T )

(π1(c)) ≤ π1(T ) ≤ π2(T ) ≤
∑

c∈π3(T )

(π2(c)).

These definitions help us to reason about lower and upper bounds on capacities. The first
definition states that we will be considering triples where the first element is a lower bound and
the second an upper bound. Informally, every time you see a triple, the first element (an integer)
is going to be smaller than the second (an integer or �).

31



The injectivity of π3 in the second definition ensures that the definition below is unambiguous
– that the sort of a control may only contain one triple (m,n,K) for each control K. This triple
states that a control must contain at least m nodes of K and may at most contain n nodes, where
m ≤ n. The surjectivity of π3 is unnecessary but makes the following theory simpler.

The final definition is more involved. Informally, the first inequality will state that the number
of controls a node must at least contain is (possibly) greater than the sum, ranging over K, of
the number of controls of type K ∈ K it must at least contain. Similarly, the last inequality will
state that the number of controls a node may contain is (possibly) less than the sum, ranging
over K, of the number of controls of type K ∈ K it can contain. These inequalities relax the
idea of lower and upper bounds somewhat, where the “space between” both sides may be filled in
arbitrarily. The middle inequality is redundant (due to the first definition) but we include it to
help the presentation.

Definition 18 (kind signature with capacities). A kind signature with capacities
{K, arity, actv, vsbl, cpc} is composed of a set K of controls and four maps:

arity : K → N

actv : K → {passive, active}

vsbl : K → {vis, inv}

cpc : K → (N × N
� × P(N × N

� ×K))≤

We define mincpc(K) = π1(cpc(K)), maxcpc(K) = π2(cpc(K)), and kind(K) = π3(cpc(K)).

We call cpc(K) = sort(K) the capacity or sort of K and kind(cpc(K)) the kind of K6. The
first two elements of the sort specifies a minimum capacity mincpc(K) and a maximum capacity
maxcpc(K) for each control K. These respectively represent how many nodes of any control a
K-node must at least and may at most contain. The third element is a subset of P(N×N

�×K) ≤
which associates two positive quantities with each control K ′ that K may contain. These quantities
respectively represent how many K ′-nodes a K-node must at least contain and may at most contain.
We ignore listing elements of K when they cannot be contained.

Convention. When we are discussing the kind of a control or interface sort (see below), we
typically ignore triples (0, 0,K) for arbitrary K.

Again, there is a difference between the minimum (resp. maximum) capacity and the sum of
the controls a K-node may at least (resp. must at most) contain. For example, we may wish to
specify that a K-node may contain exactly one node, either a K ′-node or a K ′′-node. We can then
define cpc(K) = (1, 1, {(0, 1,K ′), (0, 1,K ′′)}) which satisfies this specification.

A control K is said to be atomic if its kind is {0} × {0} × K (and thus its minimum and
maximum capacities are zero), otherwise non-atomic. Atomic controls may not be active. The
function vsbl partitions K into two sets Kvis and Kinv of visible and invisible controls.

The definition generalises kind signatures. Kind signatures are now a special case where
cpc : K → {0} × {�} × P({0} × {�} × K).

We can now define multi-nodes as elements of a kind signature with capacities.

Definition 19 (m-node of a kind sorting). In a kind signature with capacities K, if a visible control
K has the sort (m,m, ({1, 1} × {K1, . . .Km}), where each Ki, 1 ≤ i ≤ m is invisible, then we say
that K is an m-node of K.

6Defining cpc(K) = sort(K) makes the sorting condition easier to write. However, the name cpc is not considered
redundant as it allows us to distinguish different sorts in e.g a paired sorting (see Appendix B.2).
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Definition 20 (join, g). Let T0, T1 ∈ P(N×N
� ×S)≤ for some S. We define the join T0 g T1 as

T0 g T1 = {(m0 + m1, n0 + n1,K) | (m0, n0,K) ∈ T0 and (m1, n1,K) ∈ T1}

The join operation is part sum, part union and is commutative and associative. It is closely
related to the the join operation of unordered multisets (bags) but as the symbol ] has another
meaning in the bigraph literature, we use g.

Definition 21 (subkind, superkind). The subkind relation v on the set P(N×N
�×S)≤ is defined

as the smallest equivalence relation containing the relation

T1 ∼ T2 if for (m1, n1, s) ∈ T1, (m2, n2, s) ∈ T2 we have m1 ≥ m2 and n1 ≤ n2

where T1, T2 ∈ P(N × N
� × S)≤. The superkind relation w is defined as the inverse of v.

Definition 22 (interface sorts). To every kind signature with capacities K, we associated a set of
interface sorts defined as

ΘK = (N × N
� × P(N × N

� ×Kvis))
≤.

If a place r is assigned a sort θ ∈ ΘK, we define mincpc(r) = π1(θ), maxcpc(r) = π2(θ), and
kind(r) = π3((θ)).

Lemma 15. If R0 v T0 and R1 v T1 then R0 g R1 v T0 g T1.

Proof. Let i range over {0, 1} and define ı̄ = 1 − i. All sets are elements of P(N × N
� × S)≤ for

some S.
Let (h, k, s) ∈ R0 g R1 and (m,n, s) ∈ T0 g T1. We need to prove that h ≥ m and k ≤ n.

Let (hi, ki, s) ∈ Ri with h = h0 + h1, k = k0 + k1. As Ri v Ti, (mi, ni, s) ∈ Ti with m =
m0 + m1, n = n0 + n1, hi ≥ mi, and ki ≤ ni. Therefore, h = h0 + h1 ≥ m0 + m1 = m and
k = k0 + k1 ≤ n0 + n1 = n.

The subkind relation captures our intended notion of smaller kind. If kind(w) v kind(p) then
this means that p is required to contain less K-nodes and can contain more K-nodes than w.

Definition 23 (kind sorting with capacities). A place-sorting ΣK = (K,Θ,Φ) over a kind signature
with capacities K is a kind sorting with capacities if Θ = ΘK and Φ requires for all bigraphs G
that:

KC1 mincpc(p) ≤
∑

K∈K

pK,G +
∑

s<Gp

mincpc(s)

KC2 maxcpc(p) ≥
∑

K∈K

pK,G +
∑

s<Gp

maxcpc(s)

KC3 kind(p) w
⋃

K∈K

(pK,G, pK,G,K) g

j

s<Gp

kind(s)

where p is a root or node, pK,G is the number of nodes v with control K where v <G p, and s is a
site.

In order, the conditions ensure that each root or node:

1. reaches at least the minimum capacity;

2. does not exceed the maximum capacity;

3. contains only K-nodes it is supposed to and in an allowed quantity.
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This sorting is satisfied by identities and preserved by tensor product.

Proposition 16. Composition preserves kind sorting with capacities.

Proof. Let D = B ◦ A with A and B sorted. We will prove that D is sorted. Let pK,G denote the
number of nodes of control K under a root or node p in a bigraph G. Let r denote sites of B and
s denote sites of A. The definition of composition yields the two equations below.

∑

K∈K

pK,B◦A =
∑

K∈K

(
pK,B +

∑

r<Bp

rK,A

)
(1)

{s | s <B◦A p} = {s | s <A r, r <B p} (2)
KC1

〈A is sorted〉

⇒ ∀r <B p.
(
mincpc(r) ≤

∑

K∈K

rK,A +
∑

s<Ar

mincpc(s)
)

⇒
∑

r<Bp

mincpc(r) ≤
∑

r<Bp

( ∑

K∈K

rK,A +
∑

s<Ar

mincpc(s)
)

⇒
∑

r<Bp

mincpc(r) ≤
∑

K∈K

∑

r<Bp

rK,A +
∑

r<Bp

∑

s<Ar

mincpc(s)

⇒
∑

K∈K

pK,B +
∑

r<Bp

mincpc(r) ≤
∑

K∈K

(
pK,B +

∑

r<Bp

rK,A

)
+

∑

r<Bp

∑

s<Ar

mincpc(s)

〈equations (1) and (2)〉

⇒
∑

K∈K

pK,B +
∑

r<Bp

mincpc(r) ≤
∑

K∈K pK,B◦A +
∑

s<B◦Ap

mincpc(s)

〈B is sorted〉

⇒ mincpc(p) ≤
∑

K∈K

pK,B +
∑

r<Bp

mincpc(r) ≤
∑

K∈K pK,B◦A +
∑

s<B◦Ap

mincpc(s)

KC2 As above, changing mincpc to maxcpc and ≤ to ≥.

KC3 Let pK,G denote
⋃

K∈K

(pK,G, pK,G,K).

〈A is sorted〉
⇒ ∀r <B p.

(
kind(r) w rK,A g

b

s<Ar kind(s)
)

〈repeated application of Lemma 15〉

⇒
j

r<Bp

kind(r) w
j

r<Bp

(
rK,A g

j

s<Ar

kind(s)
)

⇒
j

r<Bp

kind(r) w
j

r<Bp

rK,A g

j

r<Bp

j

s<Ar

kind(s)

〈Lemma 15〉

⇒ pK,B g

j

r<Bp

kind(r) w pK,B g

j

r<Bp

rK,A g

j

r<Bp

j

s<Ar

kind(s)

〈equations (1) and (2)〉

⇒ pK,B g

j

r<Bp

kind(r) w pK,B◦A g

j

s<B◦Ap

kind(s)

〈B is sorted〉

⇒ kind(p) w pK,B g

j

r<Bp

kind(r) w pK,B◦A g

j

s<B◦Ap

kind(s)
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The sorting functor which forgets sorts is surjective on objects and faithful as usual. Kind
sorting with capacities is another example of place-sorting and forms s-categories of bigraphs.

Definition 24 (kind sorted s-category/Brs with capacities). The kind sorted bigraphs with capac-
ities (or ΣK-sorted bigraphs) form a subcategory of ´Bigh(K,Φ) denoted by ´Bigh(ΣK). We call
´Bigh(ΣK) a kind sorted s-category with capacities. If ´R is a set of ΣK-sorted reaction rules
then ´Bigh(ΣK, ´R) is a ΣK-sorted (or kind sorted Brs with capacities.

We will not present a proof of RPO creation here. We believe that RPO creation and weak
pushout reflection hold but not (strong) pushout reflection.

The trick as usual is to identify which bigraphs have the least outer interface sort, or to use the
proper terminology [2], to identify the opcartesian arrows of B́ig(ΣK). This question is answered
by Definition 23 and the definition of subsort. The smallest interface sort to sort a bigraph in the
s-category will have, on each root: i) the maximum minimum capacity; ii) the minimum maximum
capacity; iii) the smallest kind i.e. will only contain triples (m,n,K) where K is necessary, m is
maximum, and n is minimum. In short, the inequalities in Definition 23 will be equalities for this
sort.

To prove RPO creation, we require that each cospan H0 : I0 → J,H1 : I1 → J is nearly jointly
opcartesian meaning that there exists a minimal cospan G0 : I0 → J ′, G1 : I1 → J ′ and a mediating
arrow F : J ′ → J such that F ◦ Gi = Hi, i ∈ 0, 1. We believe that this is the case for B́ig(ΣK)
and that it should not be hard to prove – the outer interface sort of a jointly opcartesian cospan
should have the same properties as the outer interface sort of opcartesian arrows, except that we
now take minimum and maximum numbers which properly sort both bigraphs. The numbers may
not be maximum/minimum for both bigraphs, but will be for the pair.

Subcategories We can consider subcategories of sorted s-categories based on those in Definition
10. The notion of least sort of a root would seem to fall out of Definition 23 by replacing the
inequalities in the conditions with equalities, leading to a definition of the standard fitting s-
category. However, other odd subcategories may exist which create RPOs (assuming the full
s-category does). For example, the subcategory where each number in the components of an
interface sort θ is a multiple of some integer. Such combinatorics introduce a whole range of weird
subcategories. However, we do not take a stance as to whether or not they could be useful for
modelling.

Applications We have mentioned modelling XML data. Another application is to better model
various calculi in bigraphs. For example, we could specify that all lam, def, 1, 2, and D controls in
′Λbigτ have a minimum and maximum capacity of 1 and that all nodes of control app (resp. sub)
can contain exactly one 1 node and one 2 (resp. D) node. This removes many “junk” bigraphs.
Most or all of the remaining junk can be eliminated by reducing the set of interface sorts, forming
a subcategory. However, care must be taken here to preserve the transition theory. Constraining
interface sorts to have a minimum and maximum capacity of one should yield a close match between
Λsub terms and prime bigraphs.

Bundgaard and Hildebrandt posed the question of whether the sorting used for the bigraphical
presentation of the Homer calculus with explicit substitutions could be expressed in any other
sorting scheme [6, 7]. It seems that our extension of kind sorting is able to express the place graph
restrictions of their sorting, using a sorting represented in Figure 8. In the figure, the labels on
edges specify that nodes of the target control will contain exactly one node of the source control
in each bigraph.

Jensen and Milner describe a method of turning an s-category of bigraphs into an s-category
of hard bigraphs by adding a special atomic control, a place node M, as a child of any barren
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tname

Figure 8: Representation of the place graph sorting of Homerσ

roots or barren non-atomic node [17]. Kind sorting with capacities could also be used as a means
of specifying a certain kind of hard bigraph where each non-atomic node and interface sort must
contain exactly one place node. This yields a different s-category than Jensen and Milner’s as Ms
are added to all roots and non-atomic nodes. It would be interesting to see whether or not this
s-category could be used for the same technical purposes as theirs (a proof of engaged congruence
in soft abstract Brss).

Further generalisation We could also consider treating sites like special types of controls and
adding them to the signature. For example, the cpc function would be defined as

cpc : K → (N × N
� × P(N × N

� × (K ] {site})))≤

allowing us to specify how many sites a control can contain. The sorting extends similarly to
interface sorts. It is not clear whether this would be useful.
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B.2 Paired sorting

The second generalisation is a combination of kind sorting with the rigid control-sorting of Birkedal
et al. [4], an instance of which has been proposed as a means of modelling context-aware systems.
We first introduce a simple notion of combining sortings based on the definitions of link sorting
and place sorting. The combination pairs two sortings without mixing any of their properties.

Definition 25. We define the product ~θ1 × ~θ2 of two vectors ~θ1 and ~θ2 of equal length n as the
pointwise product {θ1

1 × θ1
2, . . . , θ

n
1 × θn

2 }.

Definition 26 (paired sorting). Given two sortings Σ1 = (K,Θ1,Φ1) and
Σ2 = (K,Θ2,Φ2) over compatible signatures7, the paired sorting is the sorting
Σ1 × Σ2 = (K,Θ1 × Θ2,Φ1 ∧ Φ2) on Θ1 × Θ2-sorted bigraphs over K.

The condition (Φ1 ∧Φ2)(G) on G : 〈m,X, ~θ1 × ~θ2〉 → 〈n, Y, ~θ′1 × ~θ′2〉 ∈ B́igh(Σ1 ×Σ2) is true
exactly when for any pair of arrows

G1 : 〈m,X, ~θ1〉 → 〈n, Y, ~θ′1〉 ∈ ´Bigh(Σ1),

G2 : 〈m,X, ~θ2〉 → 〈n, Y, ~θ′2〉 ∈ ´Bigh(Σ2)

with the same underlying bigraph, Φ1(G1) ∧ Φ2(G2).

When we are discussing paired sortings, we will let i range over {1, 2}. If sort(r) = (θ1, θ2) for
some place r (in a paired sorting of place-sortings) then we define sort1(r) = θ1 and sort2(r) = θ2.

Associated with a paired sorting are two forgetful functors UΣ1
and UΣ2

which forget a sort.
These functors are surjective on objects and faithful and we have the following commuting diagram:

B́igh(Σ1) U1

B́igh(Σ1 × Σ2)

UΣ1

UΣ2

B́igh(K).

B́igh(Σ2)
U2

Lemma 17. (Φ1 ∧ Φ2)(G) ≡ Φ1(UΣ2
(G)) ∧ Φ2(UΣ2

(G)).

Proof. By Definition 26.

Proposition 18. If the functors Ui : ´Bigh(Σi) →´Bigh(K) create RPOs then so does Ui ◦ UΣi
.

Proof. To save space, we will use the symbols � and 4 to respectively represent a commuting
square and a relative bound/RPO for the square in B́igh(Σ1 × Σ2) and talk about the image of
these shapes under different functors. The situation is depicted in Figure 9.

The square Ui(UΣi
(�)) = �

u has a pure RPO 4u. Therefore, there are sorted RPOs 41 and
42 such that U1(41) = U2(42) = 4u where the respective interface sorts of the RPO interface
are ~θ1 and ~θ2. Define the candidate RPO 4 for � as the underlying RPO 4u with the interface
sort ~θ1 × ~θ2.

We first prove this triple is sorted. We have UΣi
(4) = 4i. By Lemma 17, 4 is a triple of

arrows in B́igh(Σ1 × Σ2) and is a relative bound for �.
Now, let 4′ be any other relative bound for �. As 4i is an RPO, there are unique mediators Fi

from 4i to UΣi
(4′) where Φi(Fi) such that U1(F1) = U2(F2). By Definition 26, there is a unique

mediator F from 4 to 4′.
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Figure 9: Constructing a paired sorted RPO

The definition of paired sorting and the proof of RPO creation are easily generalised for com-
binations of multiple sortings. This is perhaps unsurprising since the paired definition treats the
two sortings somewhat separately and so the two different RPOs can be combined easily into one
paired RPO, all with the same underlying bigraph.

Proposition 19. If the functors Ui : ´Bigh(Σi) → ´Bigh(K) (weakly) reflect pushouts then so
does Ui ◦ UΣi

.

Proof. We will prove that Ui◦UΣi
strongly reflects pushouts. For a proof of weak reflection, replace

‘bound’ with ‘IPO’ in the argument below, noting that Proposition 18 implies that the UΣi
-images

of an IPO are IPOs.
Figure 10 depicts the situation as in the last proposition. This time, 4 represents a bound (the

lower left triangles of arrows in the diagram) which we will prove is a pushout and � represents
some arbitrary bound (the squares of arrows in the diagram). Proving 4 is a pushout means
proving that there is a unique mediator F : I → J .

Let the bound Ui(UΣi
(4)) = 4u be a pure pushout. As Ui reflects pushouts, the bounds 41 and

42 are pushouts. There are then unique mediators Fi : Ii → Ji between 4i and �i where Φi(Fi).
These mediators have the same underlying pure bigraph since 4u is a pushout. By Definition 26,
there is a unique mediator F : I → J between the bounds.

Our definition of paired sorting is based on link sorted and place sorted bigraphs. These have
a pure bigraphical structure. The definition and proofs are general enough to transfer to pairs
of sortings on local bigraphs. However, our definitions above do not apply to a combination of
local bigraphs and kind sorted bigraphs as their structures are different – the former have no
edges. However, the definitions and proofs should hopefully adapt to this situation quite easily. In
general, place-sortings and local bigraphs should mix well as local bigraphs only change the link
graph structure.

7They share the same set of controls and agree on arity, binding, etc.
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Figure 10: Pushouts are (weakly) reflected

Definition 27 (Rigid control-sorting [4]). A place-sorting ΣK = (K,Θ,Φ) is a rigid control-sorting
if it is equipped with a predicate φ and

• Θ ⊆ P(K).

Then Φ requires for all bigraphs G that:

P1 if r = G∗(s) then sort(s) = sort(r);

P2 if r = G∗(v) then φ(ctrlG(v), sort(r));

where r is a root, s a site, v is a node, and G∗ is the function which takes each site or node of G
to the unique root above it.

Definition 28 (kind rigid control-sorting [4]). A place-sorting ΣK = (K,Θ,Φ) is a kind rigid
control-sorting if it is defined over a kind signature and with a predicate φ and

• Θ = P(Kvis) × Θ2 where Θ2 ⊆ P(K).

Then Φ requires for all bigraphs G that:

K1 if p = G(v) then ctrl(v) ∈ sort1(p);

K2 if p = G(s) then sort1(s) ⊆ sort1(p);

K3 if sort1(v) = ∅, v has no children;

P1 if r = G∗(s) then sort2(s) = sort2(r);

P2 if r = G∗(v) then φ(ctrlG(v), sort2(r));

where p is a root or node, sort1(v) is the sort of a node, r is a root, s a site, v is a node, and G∗

is the function which takes each site or node of G to the unique root above it.
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Kind rigid control-sorting is a paired place-sorting of kind sorting and rigid control-sorting. We
have the following corollary of Proposition 18.

Corollary 20. Kind rigid control-sorting creates RPOs.

We can see that kind rigid control-sorting is a generalisation of both sortings. Kind sorting
is the special case where |Θ2| = 1 and φ is always true (one particular example is Θ2 = P(K),
φ(k,K) = k ∈ K). Rigid control-sorting is the special case where all controls are visible, each
non-atomic control receives sort P(K), each atomic control sort ∅8.

It is important to consider which sortings to combine. The pointwise nature of our combination
allows us to combine sortings with conflicting conditions. This will reduce the allowable bigraphs
which may or not be what is wanted.

We finally note that the combination of kind sorting and rigid control-sorting is not ideal due
to this pointwise combination. It would make sense to add another rule to Φ

KP1 sort1(t) ⊆ sort2(t)

where t is a site or root of the bigraph G. This would eliminate some arrows of the s-category
whose kind interface sort has some useless elements. It forms a subcategory of our combination.
We have not taken this approach here as we have seen that forming subcategories can break RPO
creation. It is likely that this extra rule is well behaved but it needs to be proven.

B.3 Location-aware Printing System

Corollary 20 allows us to combine kind sorting with Plato-graphical sorting (a special case of rigid
control-sorting) and maintain RPO creation. We believe that this may be useful to model some
context-aware systems that the latter sorting has been designed for. For example, the sort of a
place of a kind sorted interface specifies which types of controls the place can contain when it is
a root of some bigraph. This allows extra expressivity in parametric reaction rules – as the sites
are sorted, the omission of a control in a site’s sort guarantees that no parameter which will be
placed in the hole has an exposed node with that control i.e. we can specify the absence of certain
controls.

Another useful side-effect of the combination is that we remove more “junk” bigraphs which do
not match real-life models.

As a motivating example, we present a kind sorting of the signature of the Location-aware
Printing System [4] in Figure 119. As an example of a use of the expressivity of kind parametric
reaction rules, consider the rule (5’) below that Birkedal et al. present for the Location-aware
Printing System

jobs(docz,x|−0)‖prtsy(pcl)‖loc(devx|prty(pcl)) −→
jobs(−0)‖prtsy(pcl)‖loc(devx|prty(pcl|datz)). (5′)

This rule models a rule where a print job (docz,x) in a pool of pending jobs (jobs) is not sent to
a printer (prty) until the printer and the device which submitted the job (devx) are colocated. In
the reactum, the print job has been sent to the printer as datz. The first change we will make is
trivial, we will just add a site into the rule.

jobs(docz,x|−0)‖prtsy(pcl)‖loc(devx|prty(pcl)|−1) −→
jobs(−0)‖prtsy(pcl)‖loc(devx|prty(pcl|datz)|−1). (5′2)

8This retrieval of rigid control-sorting is suboptimal as many bigraphs with different kind interface sorts corre-
spond to one rigid control-sorted bigraph. If the full subcategory of a kind s-category with the one interface sort
P(K) creates RPOs – and it probably does in this case – this would yield a better match.

9We use kind sorting with capacities here which we hope to prove has RPOs in the future.
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Figure 11: Kind sorting for the Location-aware Printing System

In Ireland, we suffer from an odd time dilation phenomenon – in our university, most print
jobs are submitted to a printer hours before the guilty party arrives to extract them from the now
treacherous mountain of paper. People get hurt. Rules (5′) and (5′2) above could be useful to model
a system where the users, modelled with dev controls, are somehow linked to the documents they
submit. The documents are then printed when the user enters a printer room (this could create a
queue of people but maybe we could include a coffee machine and some biscuits in the model).

This brings up the question of what to do with printers when there are no users present. Perhaps
we would like to switch them off when there are no users present and wake them up when one
arrives (assume a hardware controller exists for this purpose). In the following, we write ¬K for
a site where the kind interface sort does not include the control K.

Assume a control prtoff with the same kind sort as prt which models a printer which is switched
off (but whose network card is still receiving power). The rule for putting printers to sleep (one
by one) can be written as:

loc(prty(−0)| ¬dev 1) −→ loc(prtoff
y (−0)| ¬dev 1).

The rule for waking the printers up (again, one by one) is:

loc(prtoff
y (−0)|devx|−1) −→ loc(prty(−0)|devx|−1).

These two rules demonstrate how kind sorting partially answers the problem mentioned by
Birkedal et al., that “it is generally very difficuly... to observe the absence of something in the
context directly.” The kind sorts of sites can express which controls may not be placed directly
under the site in a composition.

B.4 “Find them and kill them”

Imagine a bigraphical system consisting of a nesting of locations and devices where we want to
ask “what devices are present within location l.” There is no simple, internal way to answer this
question using the theory. However, Birkedal et al. have presented a set of bigraphical rules which
implement the query [3]. It is a very nice example of a bigraphical tree-traversal ‘algorithm.’ It
works by using a pair of controls f and s to traverse a tree of locations and one-by-one find a device
and add it to the output of the query.
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Figure 12: Kind sorting for the “copy all devices” query

We can use their technique to define a similar algorithm to implement an operation which finds
and moves (or copies or deletes) all devices in a building to an output location. In the context
of their model, this set of rules does not make much sense (unless we consider it to represent
“throw all PDAs and PCs out the window” which is certainly tempting) but we introduce it to
demonstrate how certain operations can be done in one step using a kind sorting and Milner’s
idea of multi-nodes. Further, their example was based on the assumption that locations can only
contain either devices or other locations – this assumption can be enforced using a kind sorting10.

The kind sorting (with capacities) in described in Figure 12 with locations loc and devices dev.
The multi-node top (defined like the loc except that it is missing the dev section) represents a
top location. The two controls in and out represent input and output nodes. The control g is a
dummy control used to represent that a query operation is in progress. The control f is used to
mark the location where the algorithm is currently operating. The control s is used to keep track
of the locations in the tree which have been visited by collecting them.

Combining multi-nodes with kind sorting allows us to separate loc and s nodes into areas
which can each contain one type of control. If a model required locations to contain other types of
controls, more sections could be added to the multi-nodes. We consider multi-node ions as having
multiple sites, ordered in the obvious way. This example requires kind sorting with capacities the
theory of which we still need to investigate.

Multi-nodes can be written as e.g. locx(−0 ‖ −1 ‖ −2 ‖−3). When a section of a multi-node
is empty, we denote this with blank space as usual so locx( ‖ ‖ ‖ ) denotes a multi-node loc

with no contents.
10In fact, ‘real-life’ models like this were our motivation to explore kind sortings.
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The set of rules for the copy algorithm is as follows:

initialise

in(f) ‖ top(−0 ‖ ‖ ) ‖out()

−→ in(g) ‖ top(−0 ‖ f ‖ s( ‖ )) ‖out()

dig from top

top(locx(−1 ‖ −2 ‖ ‖ ) | −0 ‖ f ‖ s( ‖−3))

−→ top(locx(−1 ‖ −2 ‖ f ‖ s( ‖ )) | −0 ‖ ‖ s( ‖−3))

copy colocated devices

locx(−0 ‖ −1 ‖ f ‖ s( ‖−2)) ‖out(−3)

−→ locx( ‖ −1 ‖ f ‖ s(−0 ‖−2)) ‖out(−3 | −0)

dig

locx( ‖ locy(−3 ‖ −4 ‖ ‖ ) | −0 ‖ f ‖ s(−1 ‖−2))

−→ locx( ‖ locy(−3 ‖ −4 ‖ f ‖ s( ‖ )) | −0 ‖ ‖ s(−1 ‖−2))

climb

locx( ‖ locy( ‖ ‖ f ‖ s(−0 ‖−1)) | −2 ‖ ‖ s(−3 ‖−4))

−→ locx( ‖ −2 ‖ f ‖ s(−3 ‖ locy(−0 ‖ −1 ‖ ‖ )|−4))

climb to top

top(locx( ‖ ‖ f ‖ s(−0 ‖−1)) | −2 ‖ ‖ s( ‖−3))

−→ top(−2 ‖ f ‖ s( ‖ locx(−0 ‖ −1 ‖ ‖ )|−3))

clean up

in(g) ‖ top( ‖ f ‖ s( ‖−0))

−→ in() ‖ top(−0 ‖ ‖ )

The algorithm implements a copy operation where the hierarchy is not copied (a ‘flattened
copy’). Instead of taking copying one device at a time as would be done in pure bigraphs, the fact
that a site only contains dev controls means that we can copy the entire site to the output node.
Using kind sorting with capacaties, we can avoid copying empty sites in the copy rule (which would
otherwise create infinite loops) by requiring that the site contains a minimum of one control.

We can describe when to apply the rules from the point of view of f as below.

Rule Do when

initialise query is pending
dig from top at top, locations here

copy colocated devices not at top, devices here
dig not at top, no devices here, locations here

climb not at top, no devices here, no locations here, location above
climb to top below top, no devices here, no locations here

clean up at top, no locations here

This table displays how the rules fire under separate criteria and is why we call the set of rules an
algorithm. The algorithm is non-deterministic as the digging rules allow any colocated location to
be explored.

The sequence in Figure 13 shows this algorithm at work on the tree

InitialTree = top(loc(dev1 ‖ loc(dev2) | loc(dev3 |dev4)) | loc()).
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in(f) ‖ InitialTree ‖out()

= in(f) ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4)) | loc()) ‖out()

→ in(g) ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4)) | loc() ‖ f ‖ s()) ‖out()

→ in(g) ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4)) | loc(f ‖ s()) ‖ s()) ‖out()

→ in(g) ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4)) ‖ f ‖ s(loc())) ‖out()

→ in(g) ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4) ‖ f ‖ s()) ‖ s(loc())) ‖out()

→ in(g) ‖ top(loc(loc(d2) | loc(d3 |d4) ‖ f ‖ s(d1)) ‖ s(loc())) ‖out(d1)

→ in(g) ‖ top(loc(loc(d2 ‖ f ‖ s()) | loc(d3 |d4) ‖ s(d1)) ‖ s(loc())) ‖out(d1)

→ in(g) ‖ top(loc(loc(f ‖ s(d2)) | loc(d3 |d4) ‖ s(d1)) ‖ s(loc())) ‖out(d1|d2)

→ in(g) ‖ top(loc(loc(d3 |d4) ‖ f ‖ s(d1 ‖ loc(d2))) ‖ s(loc())) ‖out(d1|d2)

→ in(g) ‖ top(loc(loc(d3 |d4 ‖ f ‖ s()) ‖ s(d1 ‖ loc(d2))) ‖ s(loc())) ‖out(d1|d2)

→ in(g) ‖ top(loc(loc(f ‖ s(d3 |d4)) ‖ s(d1 ‖ loc(d2))) ‖ s(loc())) ‖out(d1|d2|d3|d4)

→ in(g) ‖ top(loc(f ‖ s(d1 ‖ loc(d2) | loc(d3 |d4))) ‖ s(loc())) ‖out(d1|d2|d3|d4)

→ in(g) ‖ top(f ‖ s(loc(d1 ‖ loc(d2) | loc(d3 |d4)) | loc())) ‖out(d1|d2|d3|d4)

→ in() ‖ top(loc(d1 ‖ loc(d2) | loc(d3 |d4)) | loc()) ‖out(d1|d2|d3|d4)

= in() ‖ InitialTree ‖out(d1|d2|d3|d4)

Figure 13: Example run of the flattened copy operation

We unambiguously omit the names and empty sections of multi-nodes to make the example easier
to read and colour the node currently holding f in blue. We write dev as d to save space. When
following the sequence, it may help to recognise that according to the rules, an f node can only dig
or climb if there are no colocated devices and can only climb to the top if there are no colocated
devices or locations. This expressivity in the rules comes from the use of the specific kind sorted
multi-nodes loc, top, and s where each section contains a unique type of control.

One assumption we have made in the rules of the algorithm is that there is one f query
propagating through the hierarchy. The rules could be modified to allow simultaneous queries but
these may interfere with each other. A possible solution is to add capacities to rigid control-sorting
which would allow us to specify that only one f query exists below a given root and also use a
link sorting where inputs and outputs are linked to at most one query. Because the clean up rule
destroys an f agent, we would need to be able to specify ‘at most one f agent’ rather than ‘exactly
one f agent.’ This relaxed sorting would probably not reflect pushouts (similarly to kind sortings,
minimal interfaces are not enforced) but may still weakly reflect them.

44



C Typed links

In this section we will present a link sorting for local bigraphs which creates RPOs. The elements
of the set of sorts are called types as they are used to model simple types. The sorting has the
simple condition that points are connected to links with the same type.

We start by repeating Leifer and Milner’s definition of link sorting, adding some notation for
convenience.

Definition 29 (sorted link graphs [21]). A signature K is Θ-sorted if it is enriched by a sorting
sortK : arity(K) → Θ for each control K. We abbreviate sortK(p) to sort(p) when K is understood
or irrelevant. We write Kτ for a signature K equipped with a sorting for each control. An interface
X is Θ-sorted if it is enriched by ascribing a sort sort(x) to each name x ∈ X.

A link graph is Θ-sorted over K if its interfaces are Θ-sorted, and for each K, i the sort sortK(i)
is ascribed to the ith port of every K-node.

Ĺig(Θ,K) denotes the monoidal precategory of sorted link graphs whose identities, composition
and tensor product are defined in the obvious way in terms of the underlying (unsorted) link graphs.

Definition 30 (link sorting [21]). A (link)-sorting (discipline) is a triple

Σ = (K,Θ,Φ)

where K is Θ-sorted, and Φ is a condition on Θ-sorted link graphs over K. The condition Φ must
be satisfied by the identities and preserved by both composition and tensor product.

A link graph in Ĺig(Θ,K) is said to be Σ-sorted if it satisfies Φ. The Σ-sorted link graphs form
a monoidal sub-precategory of Ĺig(Θ,K) denoted by Ĺig(Σ). Further, if Ŕ is a set of Σ-sorted
reaction rules then Ĺig(Σ, Ŕ) is a Σ-sorted LRS.

Definition 31 (simply typed link sorting). In a simply typed link sorting Σ = (K,Θ,Φ), Θ is
some arbitrary set whose elements are called types and K is a Θ-sorted binding signature. The
condition Φ is:

• if link(p) = l then sort(p) = sort(l)

for points p and links l.

This sorting extends to local bigraphs [27] in the obvious manner and is satisfied by identities
and preserved by composition and tensor product. We denote the s-category of simply typed link
sorted local bigraphs over a signature K as ŚBGloc(K

τ ). The forgetful functors

ŚBGloc(K
τ )

Utype

B́Gloc(K)
Uloc

B́Gpure(K
u)

respectively forget sorting and locality of interfaces. See Milner’s work [27] for a definition of Uloc.

Notation. From now on any mention of sorting implies a simply typed link sorting and sorted
bigraphs refer to local bigraphs sorted with a simply typed link sorting in an arbitrary s-category
of sorted bigraphs. When discussing sorted bigraphs, we write type(q) = sort(q) where q is a port
or a name. A local interface sorted over Σ = (K,Θ,Φ) is written as I = 〈m,X, loc, typeI〉 where
type : X → Θ assigns types to names.

The underlying local bigraph of a sorted local bigraph G is defined as Utype(G). The underlying
pure bigraph of a sorted local bigraph G is defined as (Uloc ◦ Utype)(G) and denoted Gu.

The parallel product of two sorted local interfaces is defined when the union of their type
maps is single-valued. The parallel product of two sorted local bigraphs G and G′ is defined when
the parallel product of their interfaces and Utype(G) ‖Utype(G

′) are. Essentially, parallel product
respects typing.
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Lemma 21. Given two sorted bigraphs D : H → J and A : H → I where A has no idle links, let
B′ : Utype(I) → Utype(J) be a local bigraph such that Utype(D) = B′ ◦ Utype(A). Then there exists
a unique sorted bigraph B : I → J such that Utype(B) = B′ and D = B ◦ A.

Proof. The situation is depicted below.

〈h,W, locH , typeH〉
A

D

〈m,X, locI , typeI〉
B

〈n, Y, locJ , typeJ〉

Define B as B′ with inner interface I and outer interface J . We will prove that B is well-sorted.
Let x ∈ X and linkB(x) = l for some link l of B. x is not idle in A so there exists a point

p in A such that linkA(p) = x and so linkD(p) = l. As A and D are sorted, we conclude that
type(p) = type(x) = type(l). Therefore, B is well-sorted on inner names.

Let p be a port of B and linkB(p) = l for some link l of B. Then linkD(p) = l and type(p) =
type(l). Therefore, B is also well-sorted on ports and hence well-sorted.

We have a bigraph defined B : I → J such that Utype(B) = B′. As Utype is faithful, B is
unique.

In the following, i ranges over {0, 1} and ı̄ = 1 − i.

Construction 2.

Let ~A : H → ~I have a bound ~D : ~I → J in a s-category of sorted bigraphs with H =
〈h,W, locH , typeH〉, Ii = 〈mi,Xi, loci, typei〉, and J = 〈n, Y, locJ , typeJ 〉. We construct an RPO
( ~B,B) for ~A to ~D as follows.

First build a local RPO ( ~Bloc, Bloc) for Utype( ~A) to Utype( ~D) where the inner face of B is
〈m,X, locI〉.

The set X is defined as in the pure construction [17] for link graph RPOs as follows. Let Vi

be the nodes of Ai, V2 = V0 ∩ V1, and Vı̄ − V2 ] V3 be the nodes of Di. Edges Ei (recovered from
Uloc ◦ Utype) are treated similarly and ports Pi are treated like their nodes. First, they define:

X ′
i

def

= {x ∈ Xi |Di(x) ∈ E3 ] Y }.

Next, they define ∼= to be the smallest equivalence on the disjoint sum X ′
0 + X ′

1 for which

(0, x0) ∼= (1, x1) whenever A0(p) = x0 and A1(p) = x1 for some p ∈ W ] P2

and define X
def

= (X ′
0 +X ′

1)/
∼=. For each x ∈ X ′

i the ∼=-equivalence class of (i, x) is denoted by î, x.
We define the function typeI as type(0̂, x0) = type(x0). typeI is well-defined as follows. If

(0, x0) ∼= (1, x1) then A0(p) = x0 and A1(p) = x1. Since A0 and A1 are sorted, type(p) =
type(x0) = type(x1). This implies that all ∼=-equivalent names xi have the same type. The sorted
RPO is then defined as ( ~Bloc, Bloc) lifted to the sorted setting and with the inner interface of B
defined as 〈m,X, locI , typeI〉.

�

Proposition 22 (valid RPO construction). Construction 2 builds RPOs in ´SBGloc.

Proof. We first prove that the construction yields a sorted triple ( ~B,B). We do this by referring
to the pure construction of link graph RPOs [17].

We first prove that B0 is well-sorted. The proof for B1 is similar. We break the proof over the
cases in the construction.
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• Let x ∈ X0.

– If x ∈ X ′
0 then B0(x) = 0̂, x and type(x) = type(0̂, x) by construction.

– If x /∈ X ′
0 then B0(x) = p1 is a binding port where p1 ∈ P1 − P2. Then D0(x) = p1 and

since D0 is sorted, type(x) = type(p1).

• Let p ∈ P1 − P − 2.

– If B0(p) = 1̂, x then A1(p) = x. As A1 is sorted, we have type(p) = type(x) = type(1̂, x)
from the construction.

– If B0(p) = p′ then D0(p) = p′ and as D0 is sorted, type(p) = type(p′).

Neither B0 nor B1 have idle names. Therefore, by Lemma 21, B is well-sorted. Therefore ( ~B,B)
is a relative bound.

Let (~C,C) be a candidate RPO with mediating interface K. There is a unique mediator
Utype(K) : Utype(I) → Utype(C). As neither B0 nor B1 have idle names, there is then a unique
sorted mediator K : I → C by Lemma 21. Hence, Construction 2 builds an RPO.
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D Homomorphic sortings

A homomorphic sorting was successfully used to model finite CCS [26]. In this appendix, we de-
scribe why a homomorphic sorting cannot be used to properly encode Λτ

sub using our signature
(Definition 11). We must emphasise that this is not surprising – homomorphic sorting was intro-
duced and used to model finite CCS which has a simple sorting and introducing a stronger sorting
would have been unnecessary – but we believe that the next section may serve to better explain
kind sorting.

D.1 Homomorphic sortings as kind sortings

A homomorphic sorting is a type of place-sorting [26]. It has the property that the children of a
root or node all have the same sort and, further, a root has the same sort as all of its children. We
present the definition slightly differently – and worse – here to fit our previous definitions.

Definition 32 (homomorphic signature). A [homomorphic signature {K,Θ, arity, actv, kind, sort, prnt}
is composed of a set K of controls, a set Θ of sorts, and five maps:

arity : K → N sort : K → Θ
actv : K → {passive, active} prnt : Θ → Θ
kind : K → {atomic, non-atomic.}

where atomic controls must be passive. Without loss of generality, we will assume sort is surjective
(a partition). We denote an arbitrary homomorphic sorting with (K,Θ) with assumed functions
arity, actv, kind, sort, and prnt.

Definition 33 (homomorphic grouping). Let (K,Θ) be a homomorphic signature. For each control
K ∈ K, the set (sort−1 ◦ sort)(K), the homomorphic grouping of K, is denoted by ΘK .

If K1 and K2 have the same sort then ΘK1
= ΘK2

.

Definition 34 (homomorphic sorting [26]). A place-sorting ΣK = (K,Θ,Φ) over a homomorphic
signature (K,Θ) is a homomorphic sorting if for each site or node w in a bigraph G:

– if G(w) = v then sort(v) = prnt(sort(w));

– if G(w) = r then sort(r) = sort(w).

where v is a node and r is a root.

K
srt

Θ

prnt

K
knd P(K)

⊆

srt(parent(v)) = prnt(sort(v)) {v′ | parent(v′) = v} ⊆ knd(v)

Figure 14: Containment conditions of homomorphic sortings and kind sortings
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Homomorphic sorting can be used to encode finite CCS in bigraphs [26]. It may be described
as a kind sorting. Figure 14 may help to illustrate this by summarising the main conditions on
each sorting (parent denotes the parent map of the place graph). Note that for each non-atomic
K ∈ K, the set (sort−1 ◦ prnt−1 ◦ sort)(K) is the set of controls which nodes of K may be a
parent of according to the homomorphic sorting.

The following definition fixes a mistake in previous work [9] where our interpretation of homo-
morphic sortings as kind sortings only worked for homomorphic sortings where prnt : Θ → Θ is
injective.

Definition 35 (homomorphic kind signature). Let {K,Θ, arity, actv, kind, sort, prnt} be a homo-
morphic signature. The corresponding homomorphic kind signature {K, arityh, actvh, vsblh, kindh}
is the kind signature where:

• arityh = arity, actvh = actv;

• vsblh is the constant function assigning vis to each control;

• kindh is defined by:

kindh(K) = (sort−1 ◦ prnt−1 ◦ sort)(K) if kind(K) = non-atomic,
kindh(K) = ∅ if kind(K) = atomic.

The associated kind sorting satisfies most of the conditions of a homomorphic sorting. The final
condition is that the roots are sorted. For this, we use the homomorphic s-category associated with
the sorting (where the interface sorts are the homomorphic groupings of the signature).

D.2 Homomorphic sorting and Λτ
sub

One property we want of our model is that typing is somehow preserved (Proposition ??). We
cannot achieve this with homomorphic sorting.

Example 5 (Kτ cannot be sorted homomorphically for our purposes). We will try to homomor-
phically sort Kτ . Give varG the sort θ1 for some A. In our model, varG should be able to be a child
of both 2G and defG. According to the definition of homomorphic sorting, both 2G and defG must
have the same sort θ2. Let appG→G,G have the sort θ3. In our model, appG→G,G should be able to
contain 2G. However, as 2G and defG have the same sort, the homomorphic sorting allows defG to
be a child of lamG→G. This breaks the sorting of the controls (Definition 12) leading to bigraphs
which do not represent Λτ

sub terms (this will happen anyway e.g. with non-prime bigraphs, but we
wish to restrict it as much as possible).

The problem gets worse. Let G′ 6= G. In our model, varG should be able to be a child of lamG′→G

as well. Therefore, the sort of lamG′→G is also θ2. This means that using the homomorphic sorting
allows lamG′→G to be a child of appG→G,G which does not respect the typing of Λτ

sub.

The problem with using homomorphic sorting for our model is that the sorts are merged –
degeneracy creeps in. In the example above, the function prnt : Θ → Θ is (partially) defined as

prnt(θ1) 7→ θ2, prnt(θ2) 7→ θ3, prnt(θ3) 7→ θ2.

This looping structure (θ2 7→ θ3 7→ θ2) comes from prnt being an endomap (see Lawvere and
Schanuel’s book [20] for some graphical intuitions). Endomaps can be seen as a special sort of
restricted directed graph. Kind sortings are essentially relations and relations may be described
by directed graphs. This intuition fits the fact that homomorphic sortings are special cases of kind
sortings [9]. Put another way, homomorphic sortings are based on functions whereas kind sortings
are based on relations.
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E Typing ′Λbig

Our approach in modelling simply typed Λsub was to use sortings of bigraphs. Here, we present
another idea. We extend interfaces with types A ∈ τ and use the rules of Figure 15 – based on
those of Figure 1 – to identify prime bigraphs which are related to simply typed Λsub terms.

Using the rules, we have something approaching a static correspondence. If X ⊇ FV(t) and
Γ ` t : A then we can build a corresponding ′Λbig term of type A and, repeatedly applying the
first rule, with a set of idle names X \ FV(t).

For dynamic correspondence we require that if Γ ` t : A and t −→ACD t′ then if G is an
encoding of t with type A, G _ G′ with G′ an encoding of t′ with type A. As reduction can lose
variables, the first rule in the table allows these to be added as idle names.

The rules below cannot derive parametric redexes or reactums, only prime bigraphs. However,
the reaction relation is defined on ground rules so the rules seem a good match. Rules to allow
λ-contexts could be similarly defined.

G : I → 〈1,X,A〉

(id ⊕ {x : A}) ◦ G : I → 〈1,X ] {x : A}, A〉
varx:A : ε → 〈1, {x : A}, A〉

G : I → 〈1,X ] {x : A}, B〉

(lam(x:A) ⊕ idX) ◦ G : I → 〈1,X,A → B〉

F : I → 〈1,X,A → B〉 G : J → 〈1, Y, A〉

(app ⊕ (X|Y ))(F ‖G) : I ‖J → 〈1,X ∪ Y,B〉

F : I → 〈1,X ] {x : A}, B〉 G : J → 〈1, Y, A〉

(sub(x:A) ⊕ idX)(F | (defx:A ⊕ idX)G) : I |J → 〈1,X ∪ Y,B〉

Figure 15: Typing rules for ′Λbig
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