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Abstract. Generating graphical displays for complex systems is a difficult task. 
The Ecological Interface Design framework provides guidelines for work 
domain analysis and visual design; however the visual design principles are 
quite abstract and sometimes difficult to apply. In a companion article, we 
propose a visual design methodology that extends ecological interface design 
and provides a structured approach to generating graphical forms. In this paper, 
an experiment compares an existing chart to a new design generated through 
application of the methodology. The aim is to determine whether the redesign 
affects the usability of the chart and to explore possible causes for these 
differences. The results suggest that the new design provides better support in 
terms of efficiency, accuracy and satisfaction for a range of key tasks. A 
discussion investigates general issues relating to the validation of ecological 
interface designs. 

1. Introduction 

Advancement in automation technology has increased the importance of graphic 
displays for monitoring complex systems. While improvements in charting 
applications reduce the technical difficulties associated with generating dynamic 
displays, understanding what information to display and what visual format to display 
it in remain difficult tasks. The Ecological Interface Design (EID) framework 
provides methods of work domain analysis and visual design guidelines for control 
displays in complex systems [1][2]. While the analysis phase of the framework 
provides distinct artifacts for revealing what information to include, the design 
guidelines are quite abstract making it difficult to know what visual format is most 
suitable.  

In a companion paper [3] a methodology is proposed that builds on the EID 
framework. This methodology combines work domain analysis with task analysis to 
reveal not only the information requirements, but also how they are used. This 
additional knowledge can inform a structured approach to the visual design of graphic 
forms based on data scale analysis, data transformations and visual scale matching. 
One of the key advantages of this approach is that it can be used with non-physical 
process systems where EID has traditionally been difficult to apply. A case study 
applied this methodology to a health monitoring system used in the semiconductor 
manufacturing industry, resulting in a new ecological design [3]. A control task 



analysis suggests that the new display should provide better support for many of the 
cognitive tasks carried out by process engineers during monitoring. Here a usability 
evaluation aims to reveal performance differences between the original and the 
redesigned display. 

1.1 Scope of the Study 
It has been noted that evaluation of ecological designs can be problematic [4]. The 
variability of real world scenarios is difficult to simulate in a laboratory environment 
and in many cases the EID approach can radically change usage models, hindering 
comparative analysis techniques. In this case, an evaluation has been carried out on a 
portion of the redesign, namely the On-Target Indicator (OTI) chart. There were a 
number of reasons for this. Firstly, the proposed methodology guides the design of 
individual interface components that make up the overall ecological display. As such, 
it is appropriate to test the usability of these outputs. Secondly, the original OTI chart 
and the new design use the same underlying data and share well-defined, measurable 
tasks which allow a comparative study to be carried out. Finally, a detailed study of a 
single graphic form permits us to explore the differences that can be attributed to 
visual presentation. This level of exploration cannot be carried out with an integrated 
multidisplay interface as it becomes difficult to differentiate between the effects of the 
different graphic forms. 

1.2 The Displays 
The original OTI chart (fig. 1) takes the form of a modified control chart, with 
parameters on the horizontal axis, values on the vertical axis and tools (machines) 
encoded by way of icons. Control charts are widely used in industrial settings and 
play an important role in statistical process control. During a task analysis, a number 
of problems were noted with the original design (see [3]). One of the main issues was 
that the display allowed the key users (process engineers) to identify problems with 
particular parameters, but did not provide adequate support for diagnosis of these 
problems. It also did not support the identification of specific tool performance, 
another desirable feature. This chart was originally selected from a range of templates 
provided by a charting application. 

One of the key ideas behind EID is to embed a model of the work domain within 
the visual design of the display. This externalised system model supports the user 
when dealing with unanticipated events. A work domain analysis of the on-target 
indicator chart revealed that the information it displayed related to two perspectives of 
the work domain; the functionality of the monitoring system and the physical 
organisation of the equipment. While the original design highlighted the former 
quality, the visual encoding of the tools made specific equipment issues difficult to 
discern. The redesigned OTI chart (fig. 2) is an ecological display that captures both 
perspectives, providing equal support for off-target parameter and tool detection and 
diagnosis of equipment issues. Through the proposed visual design methodology, data 
transformations were carried out. This reduced the quantitative data associated with 
the sensor readings to a set of ordinal ranges. Following this visual scale matching 
was carried out to generate a design space of potential solutions from which the 



redesign was chosen. This experiment studies whether the data transformations and 
subsequent scale matching have had an impact on the usability of the chart. 

 
 
 
 

 
Figure 1. The original OTI chart (Chart A) 

 
 
 
 

 
 

Figure 2. The redesigned OTI chart (Chart B) 



2. Method 

2.1 Participants 
A total of 20 participants, 14 males and 6 females, took part in the study. Their ages 
ranged from 22 to 40 years of age. 10 were postgraduate students from the computer 
science department of Trinity College Dublin and 10 were industry employees. None 
were considered to be domain experts as they had no knowledge of the process 
control health monitoring or the displays involved, however all were experienced 
computer users. Despite lacking domain expertise this group was considered suitable 
due to the perceptual nature of the experiment. The participants carried out the study 
during regular working hours but were not compensated in any other way for their 
time. Access to expert users was difficult, however the experiment was repeated on a 
much smaller group of four process engineers providing anecdotal evidence presented 
in the discussion section of this paper. 

2.2 Experimental Platform 

2.2.1 System Data 
During the interface design process a number of OTI charts, using real system data, 
were studied to identify key features indicating abnormal behavior. Twenty mock 
datasets were generated with specific features encoded in each. Each dataset involved 
300 sensors, consisting of 20 parameters on 15 tools. Process engineers validated 
these data sets as being representative of the scale and complexity involved in real-
world monitoring. 

2.2.2 Interfaces 
Two displays were studied in the experiment. The original OTI chart takes the form of 
a modified control chart. This was labeled chart A in the experiment. The redesigned 
OTI chart is a more ecological display incorporating the sensor values and their equal 
relationship to the physical system (tools) and the functionality of the monitoring 
system (parameters). This was labeled chart B in the experiment.  

2.2.3 Materials 
A custom web application was developed using Macromedia Flash software and a 
MySQL database to carry out the experiment. This application both presented the 
information to the participants and logged their performance. The study was carried 
out on desktop computers running Windows XP. The graphics were presented on 17" 
LCD Monitors with a 32bit colour setting. 

2.3 Tasks 
Four primary tasks were selected from the range of activities associated with the OTI 
charts.  
1. Select off-target sensors. This involves identifying individual sensor readings that 

lie outside of the control limits. These need to be brought back into control to keep 
the process stable. 



2. Select off-target tools. This involves identifying tools that contain sensors that lie 
outside of the control limits. A task analysis [3] showed that users often need to see 
the performance of a specific tool based on information from outside sources (e.g. 
machine technicians). While the action here reverses this process it provides a 
good indication of whether the relationship between tools and sensors is made 
explicit in the display. 

3. Select parameters that are off-target but matched. This involves (a) identifying 
parameter sensors (labeled ALL) that lie outside of control limits and then (b) 
identifying whether this parameter is matched. Matched parameters exhibit tight 
clustering of their tool readings. Unmatched parameters have a highlighted label. 
An off-target but matched parameter indicates that its control-limit were set 
incorrectly and need to be adjusted.  

4. Select tools with three or more off-target sensors. This state indicates a “dog” tool, 
one that exhibits erratic behavior. This involves identifying individual sensor 
readings on the same tool that lie outside of the control limits. This tool must be 
taken down for maintenance. 
In each case, the participant was required to identify features relating to their task 

by selecting the appropriate interface elements i.e. sensor icons, tool labels, parameter 
labels. A chart can contain from 0 up to 3 features. Once all features are selected a 
submit button must be pressed to mark completion of the task. 

2.4 Design 
This is a within-subject design. The four tasks were presented in a random order and 
the chart type order was alternated for each user and for each task. The tasks were 
repeated four times for each chart (8 in total) to capture the four different number of 
features (0-3). The order of the number of features was also randomized for each user. 
An increased number of features is thought to increase the complexity of the task. As 
a result, some interaction between the independent factors was expected. Separate 
models were used for measuring efficiency, accuracy and satisfaction and the 
analyses were carried out separately for each task.  

2.5 Performance Measures 
Efficiency relates to the amount of time taken to complete a task. This is measured as 
the time between the initial presentation of a chart and the selection of the submit 
button once the task is complete. Accuracy relates to the number of errors incurred. 
An error is the incorrect selection of an interface element or failing to select an 
element that corresponds to a feature. Satisfaction is a subjective judgment of the 
displays. Once the participant had completed the task with both displays they were 
required to select which one provided better support or if they were equal. All of these 
performance measures were recorded by the application during the experiment. 

2.6 Training & Supplementary Materials 
Each participant was presented with a short animation giving an overview of the work 
domain, the tasks and the chart types, including interaction techniques for each chart. 
Following this, they registered their name and were presented with the tasks in a 
random order. Each task was preceded by a description accompanied by two animated 



demonstrations of how to complete the task with either chart. At this stage the 
participants were asked to explain the task and their interaction strategies. If correct 
they were allowed to proceed, if not they were asked to re-read the instructions and 
were tested again to see whether they fully understood the task. The original design 
was labeled Chart A and the redesigned ecological display Chart B. 

2.7 Hypotheses 
Task 1, select off-target sensors, involves detecting ordinal differences between 
objects i.e. is a sensor greater or less than the control limit. Based on the basic tasks 
model of graphic efficacy [5] chart A, the original design, should give better 
performance results as it encodes the sensor values and control limits using position 
along a common scale. This encoding is shown to be the best for quantitative 
perceptual tasks. 

Task 2, select off-target tools, involves detecting ordinal differences between 
objects, then identifying nominal relationships between objects. While chart B may 
prove slower for the initial ordinal task, its matrix layout provides better support for 
the nominative association between icon and label. This layout also removes the risk 
of data occlusion, where icons of similar value lie on top of each other. Together these 
should result in faster completion times and less errors for chart B. 

Task 3, select parameters that are off-target but matched, involves identifying 
nominal relationships between labels and icons (i.e. finding the “ALL” reading), 
detecting ordinal differences between objects (position of “ALL” reading), then 
identifying a nominal state (matched status). The layout of Chart B separates the 
parameter reading from the sensor readings. It also presents the parameter reading 
beside the label where the matched status is encoded. Based on the proximity control 
principle [6] this should result in better performance for chart B. 

Task 4, select tools with three or more off-target sensors, involves identifying 
nominal relationships between objects, then detecting ordinal differences between 
objects. The task constitutes a global question and involves understanding the data 
from the quantitative and two nominal variables. As chart B follows Bertin’s rules for 
graphic construction [7], its visual form should make the target area pop out of the 
graphic form and result in better performance.  

3. Results 

The analyses were carried out separately for each task. For the efficiency (log of time) 
and accuracy (number of errors) measurements, generalised linear models were 
employed incorporating the repeated measures aspect of the design. As the 
satisfaction measurement was taken at the end of each task block, it had a smaller 
number of observations making a significance test unsuitable. Instead a confidence 
interval for the proportions is reported. 



3.1 Task 1: Select off-target sensors 

3.1.1 Efficiency  
An Analysis of Variance (ANOVA) shows effects for chart type F(1, 57) = 9.9918, p 
< 0.01 and number of features F(3, 57) = 16.954,  p < 0.001 but also a chart type by 
number of features interaction (3, 57) = 8.5018, p < 0.001. A Fisher LSD post hoc test 
on this interaction shows no significant difference between the charts (p=0.594) 
where no features exist, but mean performance time improvements for chart B were 
significant with 1 & 2 features (p<0.0001 & p<0.0005 respectively) and present but 
not significant (p>0.056) with 3 features. 

3.1.2 Accuracy 
An ANOVA shows strong interaction between chart type and number of features. A 
post hoc test was carried out with the following results. Chart A results in more errors 
than chart B in all cases where a feature exists. This difference is significant for 1 and 
2 features (p < 0.001 and p = 0.016 respectively) but not significant for 3 features. 

3.1.3 Satisfaction 
14 out of 20 participants chose the redesigned chart compared to 3 out of 20 each for 
both the original chart and no preference. A 95% confidence interval for preference of 
Chart B over the other two options ranges between 55% and 91%.*  

3.2 Task 2: Select off-target tools 

3.2.1 Efficiency  
An ANOVA shows effects for chart type F(1, 57) = 32.9, p < 0.001 and number of 
features F(3, 57) = 35.327,  p < 0.001 but again a chart type by number of features 
interaction F(3, 57)= 7.5698, p < 0.001. The mean performance time was better for 
chart B in all cases where a feature existed. A fisher LSD post hoc test on the 
interaction shows this difference to be significant for 1 and 2 features (both p<0.001) 
and for 3 features (p<0.01). 

3.2.2 Accuracy 
An ANOVA again shows a strong interaction between the two factors. As no errors 
were incurred when no features were present, this level was not included in the 
analysis. A post-hoc test was carried out on the other results and showed that chart A 
resulted in more errors than chart B in all cases and that this difference is significant 
for 1 feature (p < 0.001)  and 2 features (p =0.010) but not significant for 3 features. 

3.2.3 Satisfaction 
16 out of 20 users chose the redesigned chart compared to 3 out of 20 for the original 
chart and 1 out of 20 expressing no preference. This time the 95% confidence interval 
for chart B over the other two options ranges between 67% and 97 %.* 

                                                           
* generated using wilsons standard error 



3.3 Task 3: Select parameters that are off-target but matched 

3.3.1 Efficiency 
An ANOVA shows no-interaction between chart types and number of features F(3, 
57)= 1.0498, p < 0.3777.  However, a strongly significant main effect is reported for 
chart type F(1, 57) = 12.1, p < 0.005 with chart B giving significantly faster 
performance times than chart A, and a weaker effect for number of features F(3, 57) = 
3.1829,  p < 0.05. 

3.3.2 Accuracy 
An ANOVA showed a weak interaction between factors. The post hoc test showed a 
significant difference (p <0.001) in favor of chart B where no feature exists. Although 
the number of errors was greater for chart A than chart B for 1 & 2 features no 
significant difference between chart types was shown. For 3 features the number of 
errors incurred was matched. 

3.3.3 Satisfaction 
16 out of 20 users chose the redesigned chart compared to 3 out of 20 for the original 
chart and 1 out of 20 expressing no preference. This time the 95 % confidence 
interval for chart B over the other two options ranges between 67% and 97 %.* 

3.4 Task 4: Select tools with three or more off-target sensors 

3.4.1 Efficiency  
An ANOVA shows effects for chart type F(1, 57) = 24.2, p < 0.001 and number of 
features F(3, 57) = 29.8,  p < 0.001 and again a chart type by number of features 
interaction F(3, 57)= 5.5, p < 0.005. Mean performance time was faster for chart B in 
all occasions and a fisher LSD post hoc test on the interaction shows this difference to 
be significant for no features (p<0.001), one feature (p<0.05) and two features 
(p<0.001)  but not significant for 3 features (p=0.53). 

3.4.2 Accuracy 
An ANOVA showed no interaction between number of features and chart type. This 
task demonstrates a main effect for chart type with chart B having significantly fewer 
errors than A (p< 0.001) and a feature effect with 2 (p<0.05) and 3 features (p<0.01) 
having significantly more errors than 1 feature. In this analysis 0 features was 
omitted. 

3.4.3 Satisfaction 
16 out of 20 users chose the redesigned chart compared to 3 out of 20 for the original 
chart and 1 out of 20 expressing no preference. This time the 95 % confidence 
interval for chart B over the other two options ranges between 67% and 97 %.* 

 



 
 

Figure 3. Results for each of four tasks and three performance measures 



4. Discussion 

For most tasks both number of features and chart type have an effect on user 
performance. An interaction between these two factors is also present making it 
difficult to report main effects. We provide a general discussion of the results below.  

4.1 Task 1: Select off-target sensors 
Chart B gave faster performance times in all cases except where no feature was 
present; in this case chart A was faster. In general, chart B resulted in fewer errors 
than chart A and gave a higher rating for satisfaction. It was originally expected that 
chart A would outperform chart B for this task. The results show that this is the case 
only when no features are present i.e. when the system is in control. While chart A’s 
use of position on a shared scale should improve detection of a feature, the large 
number of icons may create visual noise that reduces performance. Chart B’s 
encoding method causes off-target sensors to increase in scale and saturation. This 
improves the salience of these features. Their presentation within a matrix display 
eliminates the potential for data occlusion which may have resulted in the 
improvements in accuracy.  

4.2 Task 2: Select off-target tools 
Again chart B was faster in all cases where a feature existed but this time the 
differences are greater. Chart B resulted in fewer errors than chart A and again gave a 
higher rating for satisfaction. This was the expected result and is attributed to the 
matrix presentation. This layout makes it easier to relate the sensors to their tools as 
they are located on a shared spatial axis. 

4.3 Task 3: Select parameters that are off-target but matched 
As predicted the results show a significant improvement in efficiency for chart B and 
better accuracy in all cases except where three features exist. In this case equal 
numbers of errors are committed. This was the most complex task as is evident from 
the high number of errors committed with both charts. We attribute the improvements 
in chart B to the graphic encoding that makes it easier to detect the “ALL” (parameter 
mean) icon and to integrate it with the matched parameter status.  

4.4 Task 4: Select tools with three or more off-target sensors  
It was predicted that chart B would give a better performance due to the spatial 
encoding of the tools. This eliminates the need to temporarily store values in short 
term memory and allows the user to assess a tool by scanning the chart vertically. The 
results show that this is the case with a strong chart effect for accuracy and general 
improvements for efficiency.   

 

4.5 The Number of Features Effect 
At the outset of the experiment an effect was expected for number of features. The 
strong interaction between the two main factors was not expected as it was assumed 



that an increase in features would increase difficulty incrementally for both charts. 
The results clearly show that this is not the case. If we look at number of errors we 
can see that this assumption only holds for task 4. For chart A with tasks 1 and 2 the 
number of errors increased from one to two features, but dropped off with three 
features. This is an interesting result requiring further exploration. It is possible that 
with three features present, the additional noise in the display causes the user to 
change their task performance strategy. While the current study can only identify 
different responses, future investigations of the displays using methods such as eye-
tracking may provide useful information on viewing and task perforamce strategies.  

4.6 Supplementary Study 
While it was difficult to access a reasonable number of expert users, four process 
engineers agreed to carry out the experiment. The small study was carried out as a 
validation exercise to tesk the acceptability of the new design to the target users. We 
expected a certain amount of bias towards chart A due to their familiarity with the 
display. In fact, when presented with the new design (chart B) one engineer stated, “I 
don’t like it and I don’t think it will work”. While the numbers were not sufficient to 
generate a statistical model, we observed some interesting results. There was a similar 
pattern of behavior between this test group and the main group for efficiency. In all 
tasks chart B gave faster mean response times than chart A where a feature existed. 
There was too much variation in the errors figures to draw significant conclusions, but 
the satisfaction measurement showed chart B was preferred for tasks 1 and 4, chart A 
and B were considered equal for task 2 and chart A was preferred for task 3. This is 
an encouraging result considering the engineers were more familiar with chart A. 

5. General Discussion 

Many psychophysical theories e.g. [5][6] give general guidelines for representing 
data based on specific cognitive tasks. The original OTI chart was constructed in-line 
with these guidelines using position to support quantitative judgments between datum. 
However, the results suggest that the new design is at least equal, and in many cases 
better, for carrying out the required tasks. This raises the question whether traditional 
approaches to cognitive graphics processing are too narrow for interactive displays? 
Many of these approaches rank visual variables in terms of their ability to support a 
specific task, but cognitive tasks rarely occur in isolation when working with dynamic 
charts and often a range of tasks can occur in quick succession. Also, while earlier 
theories have tended to focus on quantitative relationships, ordinal and nominal 
relationships play an important role in understanding complex systems. The proposed 
methodology suggests that the visual encoding of information requirements should be 
defined by both their position within a work domain model and the tasks for which 
they are used and the results are supportive of this. 



5.2 Evaluation Issues in EID 
The same characteristics that make it difficult to apply simple graphics guidelines also 
make it difficult to evaluate visual displays for complex systems. While carrying out 
this experiment a number of specific evaluation challenges were identified.  

Firstly there is a difficulty in accurately representing work scenarios. While this 
experiment measures performance for a range of tasks associated with the OTI chart, 
this is just part of a larger health monitoring system that is used by process engineers. 
The engineers have access to a much wider set of resources including tacit knowledge 
and information from co-workers. These factors are beyond the scope of this 
experiment which can only show what an individual can understand through the 
displays. A similar issue relates to data. Original data is often unavailable for use in 
experiments for confidentiality reasons. Even when it is accessible the format is often 
unusable. In our case users had to identify stable and unstable system states. 
However, the frequency and severity of problems is unpredictable so it would be 
unreasonable to expect participants to monitor real world data. As a result mock 
datasets had to be generated. 

Secondly there is a trade-off between representing the real-world and the practical 
limitations associated with experimental evaluation. The number of features factor 
was introduced to make the study more representative of a real-world monitoring 
scenario, but the interaction between number of features and chart type makes it 
difficult to generate statistically significant results for the main effects. A smaller 
range in the number of features factor would make it easier to obtain significant 
results but would reduce the validity of the case study. In light of this it is better to 
think of the experiment in terms of exploration and validation of potential design 
solutions rather than purely and evaluation study. 

Finally, there is an issue as to whether the metrics of efficiency, accuracy and 
satisfaction provide the best means for evaluating an ecological interface. While these 
metrics tend to be pervasive in usability testing, the results can only inform us in 
general terms about the differences between displays. Knowing that one design 
performs better than another is obviously very helpful when choosing a system to 
implement, however usability metrics do not reveal the actual strategies that users 
employ when working with graphics. In sections 4.1-5 we attribute possible causes 
for the performance differences between displays. Alternative measurement 
techniques such as eye-tracking could help to accurately identify these causes and 
increase our understanding of how graphic forms are used during decision making. 

6. Conclusions 

This aim of this experiment was to study whether a redesign of a chart following 
the proposed design methodology would affect its usability. The results suggest that 
the new design provides better support in terms of efficiency, accuracy and 
satisfaction for a range of key tasks. While the experimental design resulted in strong 
interactions, post-hoc analyses suggest that chart type is responsible for the 
improvements in the performance metrics, providing evidence that the design 
methodology can result in a more usable design. 



References 
[1] Burns, C. M., Hajdukiewicz, J. R., 2004. Ecological Interface Design. CRC Press, Boca 

Raton, FL. 
[2] Vicente, K. J., Rasmussen, J., 1992. Ecological interface design: theoretical foundations. 

IEEE Transactions on Systems, Man and Cybernetics 22, 589-606. 
[3] Upton, C., Doherty, G. Extending Ecological Interface Design Principles: A Manufacturing 

Case Study, submitted for publication 
[4] Vicente, K. J., 1999. Cognitive Work Analysis: Toward Safe, Productive, and Healthy 

Computer-Based Work. Erlbaum and Associates, Mahwah, NJ. 
[5]  Cleveland, W. S., 1985. The elements of graphing data. Wadsworth, Monterey, CA. 
[6] Wickens, C. D., Carswell, C. M., 1995. The Proximity Compatibility Principle: Its 

psychological foundation and relevance to display design, Human Factors 37, 473-479. 
[7]  Bertin, J., 1983. Semiology of Graphics. The University of Wisconsin Press, Madison. 

 
 

 


