A Survey of P2P Middlewares

Atul Singh and Mads Haahr

Distributed Systems Group, Department of Computer Science. Trinity College,
Dublin
Atul.Singh@cs.tcd.ie, Mads.Haahr@cs.tcd.ie,
WWW home page: http://www.dsg.cs.tcd.ie

Abstract. This paper examines a range of existing middlewares avail-
able for developing Peer-to-Peer (P2P) applications. P2P middlewares
provide software components that can be used for rapidly developing
P2P applications. P2P applications developed using P2P middlewares
build upon tested components and services and hence tend to be more
reliable and bug-free. Current middlewares for P2P have different levels
of support and use different approaches, for developing P2P applica-
tions. The paper examines and analyses the prominent approaches taken
by P2P middlewares. Based on the survey of P2P middlewares, the key
concerns that a P2P middleware needs to address are identified. The con-
cerns can be used to evaluate the levels of support for P2P application
development provided by existing P2P middlewares. The concerns can
be used as a starting point for developing a new P2P middleware.

1 Introduction

The term P2P is used to refer to distributed systems without any central con-
trol, where all the nodes (called peers) are equivalent in functionality. In a P2P
system, peers can collaborate and communicate with each other without a cen-
tral authority and infrastructure. This self-organizing nature of P2P helps in
reducing the management cost of computer infrastructure. The workload can be
distributed across the equivalent peers, especially in the case of systems solving
Single Process Multiple Data (SPMD) problems [16], to improve the scalability
of the system.

Middleware is a term that is difficult to define. A popular definition given by
Bernstein [9] defines middleware as programming interfaces and protocols that sit
“in the middle”, in a layer above the operating system and networking software
and below industry specific applications. A middleware provides services that
can be used to rapidly develop and deploy distributed applications. CORBA,
J2EE, JMS and COM are some popular middleware solutions.

These existing middleware solutions were not designed for P2P computing.
The infrastructure provided by the existing middlewares can be used for syn-
chronous/asynchronous communication between peers, but they do not support
P2P specific concerns like overlay network management, message multicast and
resource discovery. P2P middlewares address these concerns which were not sup-
ported in the older middlewares, and provide services which can be used in the

II

P2P domain. P2P middleware can be developed using existing lower-level mid-
dleware solutions like SOAP or CORBA.

This paper evaluates existing P2P middlewares. Based on the study of the
middlewares, the paper identifies the concerns that a P2P middleware needs to
address. It evaluates the support provided by the existing P2P middlewares for
these concerns. The paper examines five P2P middlewares which are represen-
tative of the different directions taken by existing P2P middlewares.

The paper is organized as follows. Section 2 reviews the P2P middlewares.
Based on the study of the middlewares, section 3 presents the concerns that a
P2P middleware needs to address. It also summarizes how the P2P middlewares
reviewed in section 2 address these concerns. Section 4 analyzes the prominent
approaches for P2P application development, taken by P2P middlewares and
suggests possible improvements. Section 5 presents the conclusions of this paper.

2 P2P Middlewares

P2P applications can be divided into three major categories based on the appli-
cation domain : parallel computing, content-management and collaborative [16].
The paper examines in detail Jabber a P2P middleware for collaborative sys-
tems and JXTA a popular general-purpose P2P middleware which can be also
used for developing content-management applications. BOINC (Berkeley Open
Infrastructure for Network Computing) [7], [8] is a prominent middleware for de-
veloping parallel computing applications. While BOINC is sometimes classified
as P2P, applications developed using BOINC can not function in the absence of
a central server. Because of this strong control exercised by the central server,
the authors feel that it is not appropriate to classify BOINC as a platform for
developing P2P applications. The authors have not come across a truly P2P
middleware designed specifically for developing parallel computing applications.

The paper also examines in detail Speakeasy, AntHill and Pastry which pro-
vide interesting paradigms for developing P2P applications. Speakeasy provides
a framework which allows P2P applications to increase their capability (includ-
ing the ability to access new applications at runtime) by using mobile code.
Complex Adaptive Systems (CAS) are adaptive to changing environment and
resilient to deviant behavior which makes them an ideal solution for the dynamic
environment of P2P. AntHill allows P2P applications to use ideas from the CAS
world. Pastry can be used for reliable and efficient delivery of messages to a peer
on the overlay network using a Distributed Hash Table (DHT) managed by the
peers. Section 2.6 skims over other interesting P2P middlewares that can not be
examined in detail because of the constraint of space.

2.1 Jabber

Jabber [3] [6] [10] provides specifications for developing instant messaging (IM)
applications. Jabber implementations provide a realization of these specifica-
tions. Jabber is intended for IM applications, but the infrastructure provided by
it can be used for developing other type of P2P applications.

111

Peers in Jabber can be uniquely identified by a Jabber Identifier (JID). A
JID is of the form [peername@|domain[/resource]. The domain name represents
the Jabber server to which the peer connects. Jabber enable any two peer on
the Internet to exchange XML documents containing communication messages
(message document), resource availability information (presence document) or
query /response messages (Info/Query (IQ) documents). The structure of these
XML documents is defined by Jabber. All the XML documents can be extended
to include extra information within a x tag. IQ(Info/Query) documents provide a
simple request/response framework within Jabber. It allows peers to pass XML-
formatted queries and responses back and forth. A query tag can be used to
extend IQ documents.

Jabber uses a hybrid P2P architecture. The Jabber server is used for authen-
ticating peers and resolving JID to a physical network address. However, peers
can exchange data directly by establishing a connection which is brokered using
Jabber servers.

2.2 JXTA

JXTA [1], [20] was conceived by Sun Microsystems Inc and has been developed as
an open source project. JXTA is a specification for developing P2P applications.
The specifications can be implemented as a framework which can be used for
P2P application development. The Project JXTA reference implementation [2]
is one such framework.

The JXTA protocol specifications are divided into three sections. The first
section is called JXTA Core Specifications and must be followed by an implemen-
tation to be JXTA compliant. An instance of an application which implements
the core JXTA protocol is called a peer. Surprisingly, JXTA specifications do
not guarantee interoperability among different JXTA implementations [1].

JXTA specifications define a set of six protocols for P2P applications. JXTA
protocols work together to perform services required by a peer. The protocols
use XML schema to describe the format of the messages exchanged between
peers to perform a service. JXTA is policy agnostic and does not specify how
the service provided by a protocol will be implemented. The standardization of
protocols ensures interoperability between peers.

Peer Resolver Protocol (PRP) defines the structure of XML request and
response messages which are exchanged between peers. The rest of the protocol
messages are embedded within a PRP message. The client may use Rendezvous
Protocol (RVP) to find peers if the message has to be propagated over the overlay.
If a direct connection to a destination peer cannot be found then Endpoint
Routing Protocol (ERP) is used to find intermediate hosts which can route the
information to the destination peer. A peer can advertise and discover resources
and services on the overlay network using Peer Discovery Protocol (PDP). Peer
Information protocol (PIP), can be used to enquire the status of a peer. JXTA
specifies the rules for exchanging messages using existing transport protocols like
HTTP, TCP/IP and TLS. The TLS binding can be used for secure transmission
of messages.

v

The JXTA id is a location independent, unique identifier for resources and
services in a JXTA network. In the reference implementation, the id is a 128
bit UUID and is generated by the peer. Resources and services in a JXTA net-
work are described using XML documents called advertisements. JXTA speci-
fies XML schemas which define the structure of the advertisements. JXTA peers
can dynamically organize themselves into virtual protected domains called Peer
Groups. The specifications also define an abstraction called Pipe which is similar
to the socket API. A Pipe creates a virtual communication channel like a socket
which can be used to send and receive messages between services or applications.

JXTA applications can enhance their capability (both as a server and a client)
using modules. A module is a piece of code that can be dynamically loaded and
instantiated at a peer to instantiate a new behavior. A module is represented
using advertisements.

The JXTA reference implementation uses a super peer architecture. The
super peers are used for searching advertisements and for connecting peers that
do not have a direct physical connectivity because of firewall, NAT etc. The
super peers organize themselves into a loosely-coupled network.

2.3 AntHill

Anthill is a framework for development and evaluation of P2P applications based
on ideas borrowed from multi-agent systems (MAS) and Complex Adaptive Sys-
tems (CAS) [17] [18]. Anthill uses terminology from ant colony metaphor. An
Anthill consists of a network of interconnected nests. Nests are peer entities
which share computational and storage resources. Nests provide services to lo-
cal applications. An application uses the local nest’s Nest Interface to request a
service and listens for replies.

Services are implemented by entities called ants. An ant is a piece of mobile
code. In response to a request one or more ants may be generated. The ants travel
through a society of interconnected nests, and use the computational and storage
resources of the nests to process a request. Ants may carry with them the request,
result and other data. The ant algorithm may be transmitted along with the ant
if the destination is not aware of the algorithm. Ants do not communicate directly
with each other. Instead they communicate indirectly by leaving information in
the appropriate resource manager on the nest.

In Anthill, emergent behavior manifests as swarm intelligence, whereby the
collection of simple ants of limited individual capacity achieves intelligent col-
lective behavior. But developing ant algorithms is more of an art than a science.
There is no theoretical framework to predict the emergent behavior of an ant al-
gorithm. An ant algorithm is evaluated in the simulation environment provided
with Anthill, to test whether the algorithm is suitable for solving a particular
problem. The evaluations can be used to improve (evolve) the ant algorithm.
Ant algorithms can be evolved only in the simulation environment.

AntHill’s technical framework is implemented using JXTA. AntHill provides
a set of API’s for application development. It comes with an implementations of
a nest. Services can be implemented by developing appropriate ant algorithms.

2.4 SpeakEasy

SpeakEasy [12], [21] (available commercially as ObjE) is a technical framework
for developing P2P applications which support ad-hoc collaboration. P2P sys-
tems do not require a centralized infrastructure which makes them an ideal
choice for spontaneous ad-hoc collaboration. However the current generation of
P2P applications like Jabber have not exploited the spontaneous ad hoc collab-
oration aspect of P2P networking. Current P2P applications are constrained to
use only a limited types of shared resources, such as files or processing power.
P2P applications developed using SpeakEasy can use new devices and services
on the network without having any special knowledge about them. Applications
access the devices and services using the mobile-code supplied by them. The
mobile code can also be used by the aplication to add the capability to provide
a new service.

In SpeakEasy any entity that can be accessed over a network (eg, printer, file
URL) is cast as a component. Components provide discrete elements of function-
ality and are used by applications or other components. All components expose
their functionality through four interfaces specified by SpeakEasy. The interfaces
are: Data Transfer, Aggregation, Context and Control. Components implement
one or all of these four interfaces. The interfaces can be used to exchange data
including mobile code, get metadata information about the components and
retrieve a user interface which can be used to access the components.

Speakeasy provides a security layer. The security layer ensures that all com-
munications are encrypted and authenticated. Authentication is mutual between
client and server. The service provider makes the final decision about access and
the decision is made on the machine running the service. The access decision are
determined by the semantics of the application. So the security layer calls an
application provided security manager.

Discovery of components is not a part of SpeakEasy. SpeakEasy has an appli-
cation called Casca, which provides framework and user interface for component
discovery.

2.5 Pastry and Scribe

Pastry [19] is a decentralized object location and routing sub-system for P2P
applications. Pastry provides an API which can be used to develop P2P appli-
cations. Each node in the pastry network is assigned a unique node id. When
presented with a message and an id, Pastry efficiently routes the message to a
peer with the node id that is numerically closest to the key, among all currently
live pastry nodes. The expected number of routing steps is O(logys N) where N
is the number of peers in the network and b is a constant. Eventual delivery
of a message is guaranteed in Pastry. Pastry chooses a route which is likely to
be ”good” with respect to proximity metrics. Pastry expects each application
to implement a function which determine the distance of a Pastry peer with a
given IP address to itself. When a peer has a choice of addresses to which it can
forward a message then it chooses the address which is closer to it.

VI

Pastry is self-organizing. New nodes joining a pastry network send a join
message with a key to the network through a boot strap node obtained through
external means. The join message is routed to the numerically closest node. All
the nodes in the route path of the message respond with their state tables (used
for routing messages) and the information is used to populate the state tables
of the new node.

Pastry can be used to quickly and deterministically locate an object whose
node id is available, but pastry can not be used to multicast messages on the
overlay to search for an object matching a search criterion. Scribe [5] [13] is an
application level multicast infrastructure build on top of Pastry. It can be used
to send messages (including search queries) to all the nodes in a Scribe group.

2.6 Others

XNap [4] is an open source plugin enabled framework for P2P application devel-
opment. The plugins are developed using XNap API and can be used to develop
a P2P application. The plugins are loaded into the XNap client application which
provides a GUI based frontend for the application. XNap plugins are available
for popular P2P networks like Gnutella and Overnet. Windows P2P Networking
[14] from Microsoft is a freely available general-purpose P2P middleware from
Microsoft. It is the only middleware which provides support for handling topol-
ogy related issues such as partitions in the overlay network and removing a peers
less useful connections. Groove [11] is a P2P based proprietary collaboration so-
lution. It can also be used for developing collaborative P2P applications. JINI
[15] is an architecture for developing distributed systems. It can also be used
for developing P2P applications which use mobile code to access services on the
network.

3 Concerns

Based on the study of the existing P2P middlewares the authors have identi-
fied the concerns that a P2P middleware needs to address. The concerns can be
divided into five groups. Table 1 gives an overview of these concerns. The con-
cerns are the use-cases that a P2P middleware needs to address. The concerns
can be used as a starting point for developing the architecture of a P2P mid-
dleware. The concerns can also be used for a comparative evaluating of existing
P2P middlewares. The groups along with the concerns belonging to them are
discussed below. Table 2 presents a synoptic view of how some of these concerns
are handled by the P2P middlewares discussed earlier.

3.1 Naming

The concerns belonging to this group are: assigning identification to the entities
in a P2P system (identification) and resolving (resolution) an entity’s identifica-
tion to its physical network address. P2P systems assign a network (underlying

VII

Group Concern
Naming Identification of entities in a P2P system.
Resolution of entity id to a physical address.
Overlay Search for a connected peer on the overlay network.
Management Handle join requests.
Service Advertise services/resources to share.
Management Discovery of shared services/resources.
Access the service/resources.
Message Maintain the topology.
Routing Routing of messages.
Security Authentication of peers
Authorization of peers to access a resource/service.
Secure transmission of messages.

Table 1. The concerns that a P2P middleware needs to address.

physical network) and location independent id to the entities in a system. The
id’s allow P2P systems to take care of entities whose physical location (IP ad-
dress) on the network changes with time. The id’s are dynamically resolved to
determine the current physical location of the entity.

Jabber, JXTA and Pastry have their own rules for assigning id’s to entities.
Jabber uses the domain server to resolve the physical location of the entity.
Pastry maintains a Distributed Hash Table (DHT) which can be used to locate
the entity with a given id. JXTA uses a combination of a central server (called
rendezvous server) and IP multicast to locate the physical address.

3.2 Overlay Network Management

The concerns in this group are: search (search) for an existing overlay network
to join and handling of requests to connect to the network (join). Peers join an
overlay network through another peer which is already connected to the overlay
network. Connected peer’s address may be a well known information or it can
be obtained by an IP multicast. The peer accepting the connection may redirect
the incoming peer to a new peer. The connecting peer may also be supplied with
information relevant for it.

In hybrid solutions like Jabber peers connect to a well know server to join the
overlay network. JXTA uses the combination of a well known server (rendezvous
server) and IP multicast to locate the connected peer’s address. In pastry the
connected peer’s address is an information which has to be obtained from out-
of-band sources.

The connecting peer in Pastry receives information which it can use to popu-
late its routing table. In Jabber the connecting peer receives presence information
about other peers.

VIII

3.3 Service/Resource Management

The concerns in this category are: advertising (advertise) the services/resources
that the peer shares to the overlay network, discovering (discovery) the ser-
vices/resources to use on the network and accessing (Access) the service/resources.
A peer uses an overlay network to advertise its resources and services and to dis-
cover new resources and services which it can access.

P2P systems generally maintain a directory of services and resources. A peer
can publish the details of the resources and services it is offering to the directory.
The directory could be maintained on one (eg. Jabber), more than one or all
the peers (eg. casca). Alternatively the directory can be distributed across some
(eg. JXTA) or all the peers in the network. The peers maintaining the directory
can be chosen (eg. through an algorithm), or they can be specialized peers re-
sponsible for maintaining the directory. Peers can discover the details about the
shared services/resources by sending a query message to the peers responsible
for maintaining a directory. Peers may also send a multicast message to all the
peers on the network to find the details about a service/resource available on the
network. The service/resources can be accessed by using mobile code (eg JXTA,
SpeakEasy) or by doing a remote process call (RPC). Middlewares using RPC
(eg. JXTA, Jabber, pastry) may define the structure and semantics of the mes-
sages exchanged. Middlewares using mobile code allow the peers to dynamically
extend their capability (both as a client and a server).

3.4 Message Routing

The concerns related to routing are: manage the connection to other peers (topol-
ogy) and routing the messages (routing). A peer can directly send the message
to the destination peer if the destination peer’s address is available. If the des-
tination peer is not accessible or its physical address is not available then the
source peer may route the message to one or more known peers on the network
which can route the message to the destination peer. The intermediate peers
can be chosen from the known peers randomly or by using an algorithm (eg pas-
try), or they might be well know specialized peers (eg peers in JXTA for routing
messages to peers inaccessible because of firewalls).

Peers in decentralized P2P systems maintain connection to other peers in
the network. The graph formed by these connections makes the topology of the
overlay network. The connections are used to route messages. New connections
are established when the old connections fail. The peers for connection may be
selected randomly or by using an algorithm (eg pastry).

3.5 Security

The concerns related to security are: authentication of peers to ensure the iden-
tity of a peer (authentication), checking the authorization of a peer to access a
resource/service (authorization), and secure transmission of message (security).
Authentication and authorization can be mutual between the interacting peers
(eg SpeakEasy) or a central peer can be used (eg Jabber).

IX

Features Jabber Speakeasy JXTA Pastry
search well-known| through 1P Out of
server invitation | multicast, | band
well-known
server
join presence resources none other
(information |information| shared peers
received by state
by joining others tables
peer)
advertise well-known | all peers |well-known| none
(directory server in a server, I[P
maintained on) shared space| multicast
access messages | mobile-code | messages |messages
defined by defined by
Jabber JXTA,
mobile-code

Table 2. This table describes how some of the concerns are addressed by the P2P
middleware described in this paper. AntHill is implemented using JXTA and hence is
not presented in this table.

4 Discussion

CAS systems are adaptive to changing environment conditions and are resilient
to deviant behavior. Ideas used in CAS systems can be extremely useful in
P2P systems which have a dynamic environment with a constant flux of nodes.
AntHill builds upon JXTA to provides a mobile-code based approach for devel-
oping P2P applications inspired by ideas from CAS.

The ability to extend the ability of the peers so that they can offer and access
new services that they were not programmed to is useful for peers especially in
ad-hoc collaboration scenarios. Existing P2P middlewares like JXTA, SpeakEasy
and Jini provide this ability using mobile code. However mobile code is inher-
ently untrustworthy which limits this approach to trustworthy environments. In
untrustworthy environments using a dynamic invocation approach (like DII in
CORBA) is more appropriate to access a service the peer was not programmed
to access. To the authors knowledge only JXTA supports this approach partially.
Module specification advertisement can contain details necessary to invoke a ser-
vice, written in a low-level middleware like CORBA or SOAP, using a dynamic
invocation approach. Peers can use the information in the module-specification
advertisement to access the new service dynamically.

Instead of building upon a low-level middleware, P2P middlewares like JXTA
and Jabber reinvent the wheel for messaging . JXTA and Jabber specify the
format of the messages exchanged between the peers and the transport bind-
ings that can be used to exchange the messages using protocols like HT'TP and
TCP/IP. Type safe invocation which is standard in most of the low-level middle-
wares is not provided by these P2P middlewares. Lack of type safe invocations

X

can lead to bugs that are difficult to track. JXTA and Jabber lack a standard
format like CORBA IDL or WSDL for describing services offered by other peers.
This makes it difficult to program peers to access services offered by others. A
P2P middleware build upon a low-level middleware will benefit a lot by using
the mature messaging infrastructure provided by the low-level middlewares.
Most existing P2P middlewares lack support for topology management tasks
such as handling partitions and ensuring optimal grouping of peers. To the au-
thors knowledge Windows P2P networking is the only P2P middleware that
provides support for detecting and handling overlay network partitions. How-
ever none of the existing P2P middlewares provide support for controlling the
type of peers which are connected together. This may lead to a suboptimal
topology of peers. For example, in a file-sharing application, peers with high
bandwidth capacity may be connected together with peers with low bandwidth
capacity, which may lead to a degradation in performance. Also peers which are
geographically distant (in terms of the underlying network infrastructure) may
be connected together, increasing the cost of communication between them.
Interoperability between applications developed using different P2P middle-
wares will be a major challenge for future P2P middleware developers. JXTA
specifications were a step in this direction. By standardizing the structure of the
messages exchanged between peers to perform different services, JXTA expected
to provide interoperability among peers. But JXTA is still a developing specifi-
cation and implementing it does not guarantee interoperability among peers.

5 Conclusions

The paper has reviewed the state of the art in P2P middlewares by discussing
five prominent P2P middlewares, which give an overview of the state of P2P
middlewares. Based on the study of the middlewares, the paper presented the
concerns that a P2P middleware needs to address. The paper also discussed the
directions that P2P middlewares are taking.

References

Jxta v2.0 protocols specification. http://spec.jxta.org/nonav/v1.0/docbook/JXTAProtocols.html.
Project jxta 2.0 superpeer virtual network. http://www.jxta.org/project/www/docs/JXTA2.0protocolsl.pdf.
What is jabber? http://www.jabber.org/about/overview.php.
Xnap. http://www.xnap.org.
M. Castro A. Rowstron, A-M. Kermarrec and P. Druschel. Scribe: The design of
a large-scale event notification infrastructure. NGC2001, UCL, London, 2001.
DJ Adams. Programming Jabber. O'Reilly and Associates, 2002.
D. P. Anderson. Public computing: Reconnecting people to science.
8. D.P. Anderson. Boinc: A system for public-resource computing and storage.
IEEE/ACM International Workshop on Grid Computing, (5), 2004.
9. Philip A. Bernstein. Middleware: A model for distributed system services. Com-
munications of the ACM, (39(2)):86-98, 1996.

Al S

o

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

XI

Cathreine Dodson. Jabber technical white paper. http://xml.coverpages.org/, Aug
2000.

James Edwards. Peer-to-Peer Programming On Groove. Addison-Wesley, 2002.
W. Keith Edwards et. al. Using speakeasy for ad hoc peer to peer collaboration.
November 2002.

A-M. Kermarrec M. Castro, P. Druschel and A. Rowstron. Scribe: A large-scale and
decentralised application-level multicast infrastructure. IEEE Journal on Selected
Areas in Communications (JSAC) (Special issue on Network Support for Multicast
Communications), 2002.

Microsoft. Introduction to windows peer-to-peer networking. Technical report,
Microsoft Corporation, 2003.

Sun Microsystems. Jini technology architectural overview. Technical report, Sun
Microsystems, 1999.

Dejan S et. al. Milojicic. Peer-to-peer computing. Technical report, HP Labs, 2002.
Alberto Montresor. Anthill: a framework for the design and the analysis of peer-
to-peer systems. Proceedings of the 4th FEuropean Research Seminar on Advances
in Distributed Systems, Bertinoro, Italy, May 2001.

Hein Meling Ozalp Baboglu and Alberto Montresor. Anthill: A framework for the
development of agent based peer-to-peer systems. ICDCS2002, 2002.

A. Rowstron and P. Druschel. Scalable pastry scalable, decentralized ob-
ject location and routing for large-scale peer-to-peer systems. Proceddings
of the 18th IFIP/ACM International Conference on Distributed Systems Plat-
forms(Middleware 2001), 2001.

Bernard Traversat Scott Oaks and Li Gong. JXTA In a Nutshell. O’Reilly and
Associates Inc., 2002.

Mark W. Newman W Keith Edwards and Jana Z. Sedivy. The case for recombinant
computing. Technical report, Xerox Palo Alto Research Center, 2001.

