
Presented at 10th IEEE International Conference on Information Visualisation (IV'06) 
© IEEE. Proceedings available at http://doi.ieeecomputersociety.org/10.1109/IV.2006.40   

 

Designing Usable Charts for Complex Work Settings 
 

Connor Upton & Gavin Doherty  
Trinity College Dublin 

{connor.upton@cs.tcd.ie, gavin.doherty@cs.tcd.ie} 
 
 

Abstract 
 
Advances in graphing applications, plug-ins and 

toolkits means that integrating charts and graphs into 
software is easier than ever before. However, selecting the 
optimal graphing technique for a workers task remains a 
difficult challenge. Information visualisation experts draw 
on research from cognitive engineering, perceptual 
psychology and human computer interaction when 
designing displays. For the increasing number of 
developers who are integrating visual displays into 
applications, there is for a lack of a general methodology 
that pulls together key activities from these diverse fields. 
In the absence of such a methodology, it is very difficult 
for software developers to identify if their choice of 
representation satisfies both the user’s tasks and 
perceptual limitations. We describe the approach taken in 
the redesign of an interactive chart used in a High Volume 
Manufacturing environment. We show how analyses of the 
work domain, the data and the users’ tasks are all crucial 
steps in the design process. 

1. Introduction 

Advances in sensor and communication technologies 
have lead to a data explosion in industrial environments. 
Information Visualisation provides us with a means for 
accessing and understanding this data. Graphic 
representations of data can improve user performance for 
a range of cognitive tasks [1] . As a result, Information 
Visualisation is becoming an integral part of control 
systems in a wide range of industries. 

In parallel with this, many data processing 
applications are starting to provide advanced graphing 
capabilities. MS Excel 2003 offers 14 basic chart types, 
each with multiple subtypes. These can be customized to 
produce relatively sophisticated interactive graphs, often 
through a wizard interface. Charting toolkits have made it 
easier for developers to integrate dynamic graphs into 
their software. As a result information visualisation is no 
longer the domain of a small group of experts. These 
technologies are popularising information visualisation in 
the same way that desktop publishing popularised graphic 

desi1gn. Unfortunately, while toolkits can help automate 
some of the technical aspects of graphing, the knowledge 
that is required to support usable visualisation design is 
not so easily transferable. 

1.1. Establishing Methodologies 

As a design practice, information visualisation is 
relatively young. Unlike architectural, industrial or 
graphic design, it lacks clear methodologies that can guide 
a practitioner towards a successful solution. At the same 
time, it is very much a design activity in the truest sense 
of the word. It involves real world problems that need to 
be solved through visual solutions. Currently information 
visualisation falls between being an art and a science. It is 
often seen as a craft carried out by multidisciplinary 
experts who draw on past experience and domain 
knowledge. This has lead to a strong focus on new 
interface solutions rather than the design process that led 
to their creation.  

This poses a problem for developers who need to 
incorporate interactive charts into software. Their issue is 
how to select visualisation techniques that will best 
support the tasks posed by their particular work domain. 
Without a general methodology to draw on, they have no 
way of knowing that their choice is appropriate or even 
whether an appropriate solution exists?  

It has been shown, that novice graphic designers 
working through a computer are more likely to take the 
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path of least resistance through the design process rather 
than following established design methodologies 
(sketching, reviewing, prototyping etc.) [2] . This results 
in a compromised design solution. In order to avoid 
similar mistakes when designing interactive charts, it is 
important that we establish methodologies and processes 
that capture the full range of requirements for information 
visualisation design. It is also critical that we present these 
in a practical and accessible manner so that they can be 
used by developers with varying levels of information 
visualisation expertise. 

1.2. Case study: Semiconductor Manufacturing 

In this paper we present the methodology taken in the 
redesign of an interactive chart used in a High Volume 
(Semiconductor) Manufacturing environment. We show 
how three activities; Work Domain Analysis, Task 
Analysis and Data Analysis, are required to inform the 
design rationale. Semiconductor manufacturing is an 
extremely complex process. Much of the software is 
developed in-house by programmers who have extensive 
knowledge of the system. As a result many of the charts 
are designed and developed by in-house teams. The 
complexity of the domain makes it difficult to bring in 
outside assistance such as visualisation expertise.  

 2. Work Domain Analysis 

The Semiconductor Fabrication Plant (Fab) involves 
a highly complex process flow, hundreds of machines 
(known as tools) and hundreds of workers. As an outsider 
the complexity of the domain can be daunting. Cognitive 
Work Analysis [3]  (CWA) is a framework for researching 
complex socio-technical systems such as these. A work 
domain model of the system is generated as the first 
output of a CWA. This is a design artifact that acts as an 
external model of the work domain. This model is not 
based on individual user tasks but rather describes the 
functional purpose of the overall system and the various 
constraints under which it operates. It uses an abstraction 
hierarchy, which combines a physical and functional 
decomposition of the system. Here we attempt to model a 
sub-domain of the fab which we describe as the 
engineering hierarchy. 

2.1. The Engineering Hierarchy 

Semiconductors are produced by laying down 
alternating layers of conductive, resistive and semi-
conductive materials. Hundreds of different operations are 
involved in this process and these are carried out by 
specialised, high precision process tools. Tools that carry 
out the same operation make up a toolset. A group of 
toolsets that share the same general functional activity (i.e. 
etching, lithography etc.) make up a functional area. The 

fab consists of several functional areas. A process 
engineer is responsible for the health and performance of 
process tools. Generally, he/she will be responsible for a 
module, a subset of ten to fifteen tools in a toolset carrying 
out the same operation on the same product type. They do 
not carry out physical maintenance on tools but they set 
targets, monitor performance levels, and diagnose 
problems. Most of this activity is carried out at remote 
workstations in an office environment rather than on the 
factory floor. The engineering hierarchy can be seen in the 
top half of figure 1. 

2.2. Parameters and Control Limits 

Parameters are factors within the tool that affect an 
operation (e.g. pressure, temperature). Semiconductor 
manufacturing now operates at the nanotechnology level; 
therefore even minor fluctuations in process parameters 
can have a deleterious effect on the product. For this 
reason it is desirable to keep them as stable as possible. 
Tools have a variety of sensors built into them that 
monitor critical parameters. On average a tool may have 
twenty to thirty parametric outputs. Each parameter will 
have a target indicating optimal performance. This target 
will be shared across a toolset. Some of these targets are 
stable; they are defined by engineering constraints. Others 
can change depending on a number of different factors. 
These targets are statistically derived and may be changed 
from time to time. A process engineer sets these targets 
and a series of control limits and assigns them to different 
monitoring templates that are then associated with a 
particular module. 

2.3. Structure of the Work Domain 

In previous work [4] we show that the Fab features 
some extremely complex relationships. Typically an 
abstraction hierarchy decomposes a domain from system 
to sub-systems to components. However within the fab, 
components often belong to multiple subsystems and a 
straightforward hierarchy is not an accurate depiction of 
the structure. Here again we are faced with elements (the 
sensors) being the lowest level of granularity in two 
structures (the engineering hierarchy and the parameter 
structure). It is difficult to produce a clear model of this 
structure without multiple meaningless intersections. 
Inspired by Bertin’s illustration of the “totemic operator” 
[1] we generated a 3D model that accurately described the 
relationships (fig. 1).  
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Figure 1 Work Domain Structure 

This model provided us with an external 
representation of the work domain that was invaluable 
during task analysis interviews. Workers frequently 
referred to the model when discussing the range of their 
responsibilities and data requirements. This artifact was a 
design deliverable from the work domain analysis phase. 

3. Task Analysis 

A process engineer’s goal is to maintain a high level 
of system health and performance. They carry out a range 
of different tasks to achieve this goal and a variety of 
decision support tools have been developed to help them. 
A series of interactive charts afford different perspectives 
on the data coming from tool parameters.  

3.1. The OTI Chart  

An On-Target Indicator (OTI) chart (fig. 2) allows 
engineers to monitor tools and ensure that they remain 
within control limits. While any sudden change in a tool 
parameter will result in the automated control system 
taking defensive action, a gradual drift from target may go 
undetected. Because of this, human intervention is 
required. A graphical representation not only allows 
engineers to deal with the high volumes of data; it also 
increases the potential for pattern recognition, whereby 
experienced engineers will start to recognize the signature 
of recurring  problems based on the shape of the datasets.  

Our task analysis was carried out in a number of 
stages. First using a “think aloud” verbal protocol we 
carried out a detailed walkthrough with a process engineer 
interacting with the chart. The user identified the main 
tasks and also mentioned some aspects of the design they 
found to be frustrating. The original charts were 
accompanied by a user manual that supplied us with a task 
list and a set of sub-task sequences. These backed up the 
information revealed by the walkthrough. Finally we 
carried out a number of semi-structured interviews with 

process engineers. Here we established the level of detail 
required to complete the tasks and gained a better 
understanding of the relationship between the work 
domain structures and the OTI data.  

3.2. The Tasks 

This chart aims to support situations where a fleet of 
tools may be drifting off-target as well as detecting “dog” 
(erratic) tools. These are two very different perspectives 
on the data with the first taking a parameter based view of 
the system and the latter, an engineering (tool) based 
approach. Here we outline three major tasks that the 
engineer must carry out.  

Task 1: Spot off-target tools parameters. Here the 
engineer must locate any tool parameters (sensors) that lie 
outside of the control limits (set at one standard 
deviation). These tools need to be returned to an in-control 
state to avoid damage to product. 

Task 2: Detect unmatched parameters. Here the 
engineer must look at the spread of a parameter reading 
across the tools. It is important that the tools perform in 
the same manner. If the sensors for a parameter across the 
tools have a wide range they are said to be unmatched. 
Unmatched parameters cause variance that may result in 
problems in upstream process steps or faulty product at 
end of line. Tools within a widely spread parameter need 
to be brought closer to target to avoid such problems. 

Task 3: Find matched but off-target parameters. 
In certain situations an entire fleet of tools may be off-
target for a parameter. There are two probable causes for 
this. An incorrect target may have been set in the monitor 
template, or a change in the product has had a knock on 
effect on the processing requirements. In either case the 
target for the process parameter needs to be checked and 
adjusted.   

 

 
 

Figure 2 Original O.T.I. Chart Design 

3.3. Task Analysis Review  

During our analysis we noticed that the user manual 
explained the tasks in terms of the chart rather than in 
terms of the goals of the user. More importantly the users 



Presented at 10th IEEE International Conference on Information Visualisation (IV'06) 
© IEEE. Proceedings available at http://doi.ieeecomputersociety.org/10.1109/IV.2006.40   

themselves explained their tasks in terms of what was 
achievable through the chart rather than their job needs. 
The wider work domain was not referred to until it was 
asked about in the interview. Had we not carried out the 
work domain analysis we might not have been aware of 
the overall structure in which these tasks were occurring. 
As we will see later this structure plays an important role 
in guiding the design. 

The output from the analysis is the list of tasks 
identified above. These may seem very high level as, 
unlike Hierarchical Task Analysis [6] , the tasks have not 
been decomposed into sub-tasks and actions. Such 
detailed decomposition can only be achieved after the 
representation has been designed. We want to focus on the 
nature of the tasks before we consider how the data can be 
converted to visual form. By combining these with the 
outputs of the work domain and data analyses we can 
construct a design rationale matching the visual design to 
the users needs.  

4. Data Analysis 

Bertin’s provides us with guidelines for converting 
data to visual form [5] . He proposes that data exists on 
three perceptual scales; Nominative, Ordinal, and 
Quantitative. He describes the visual variables, the basic 
elements of graphic composition, namely the spatial 
variables (position) and the retinal variables: size, value 
(tone), texture, orientation, shape and hue. These visual 
variables can be matched to the perceptual data scales. 
Zhang and Norman [7] demonstrate how data that is 
correctly matched to a visual variable will dramatically 
improve performance for certain cognitive tasks. They 
also note that the spatial variables are unique in that they 
provide the best support for all data scales. Here we 
outline the data types involved in the OTI chart and the 
visual variables that can be used to represent them. 

Parameters and Tools: Both of these data types 
exist on the Nominative scale (category). They can be 
supported by all visual variables. However the most 
suitable are colour, shape and spatial position 

On Target Indicator (OTI) Values: This data exists 
on the Quantitative scale which is the highest perceptual 
scale and can only be supported through spatial position 
and size. 

Additional Data: Looking at the OTI chart, it 
appears that the three datasets mentioned above are the 
only information required to support the tasks. However 
the control limits are used to judge when a parameter is 
off-target and their presence on the chart is essential. 
Another aspect is the structural relationships of the work 
domain which was revealed earlier. This is non-essential 
for spotting off-target tools so from a data analysis 
perspective its display may be considered unnecessary.  

5. Current Chart Review  

On the original OTI chart design (fig. 2) the 
quantitative OTI values are displayed on the y-axis. The 
nominative parameter data are displayed in the x-axis. The 
nominative tool data are encoded through icons by 
combining colour and shape variables. The original chart 
design is a version of a scatter plot, a graphing technique 
that is incorporated into a wide range of spreadsheet 
applications and graphing toolkits. Engineers in the fab 
are very familiar with these applications and their charts. 
In the absence of a methodology that takes a wider set of 
analyses onboard, it would be entirely reasonable to use 
such a display technique that is familiar to both 
developers and users.  

5.1. Satisfying the Tasks 

On initial inspection the chart seems to satisfy the 
requirements. Task 1; selecting off-target tool parameters, 
is easy to achieve. The user scans the chart and selects the 
points that lie above or below the control limits. Task 2; 
detecting unmatched parameters can be achieved by 
visually estimating the vertical spread of the readings. 
Unmatched parameters can also be mathematically 
detected so further support is provided by highlighting 
their labels. Task 3; finding entire parameters that are 
matched but off-target can be estimated by the vertical 
position of a parameter cluster and can be further clarified 
by looking at the position of the mean value shown as the 
ALL icon.   

5.2. Problems with the Original Design 

Despite the fact that the basic tasks were achievable 
through the chart, users were having difficulty. Certain 
additional tasks not mentioned in the user manual were 
not encouraged by the design and as a result workarounds 
were used. For example the selection of a specific sensor 
in the graph based on tool & parameter reference is very 
difficult. These tasks were not deemed possible to achieve 
through the original design. During our interviews further 
problems were revealed. These are listed below. 

Problem 1: Selecting icons. Clicking on an icon 
brings up a more detailed graph showing the specific 
sensor’s (tool parameter) performance history. Users 
found it difficult to click on the icons as they were very 
small. Increasing the size would make it difficult to 
estimate its’ y-position and worsen problem 2. 

Problem 2: Occlusion of icons. Icons with the same 
or similar OTI values tend to overlap making it difficult to 
click on any icon other than the foremost. This meant 
incorrect selections were frequent. 

Problem 3: Detection of “ALL” icon. The ALL icon 
shows the mean reading for the parameter across all tools. 
Users had difficulty locating this icon as it generally lay at 
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the centre of a cluster. This was particularly problematic 
when a parameter cluster lay close to a control limit.  

Problem 4: Ability to locate a specific sensor. 
Sometimes an engineer obtains information about tools 
from external sources (co-workers, automated systems 
etc.). The current design makes it difficult to locate icons 
based on the tool reference rather than the value.  

Problem 5: Ability to view performance across a 
tool. In a situation where an engineer identifies a “dog” 
tool, it can be useful to see how that tool is performing 
across other parameters. Again the current design makes it 
difficult to achieve this.  

5.3. Problem Sources 

The chart used a correct matching of data scales to 
variables so where did the design go wrong? The problem 
lies in the nature of the perceptual tasks being carried out 
and the added need for interaction. Selective perception is 
a process by which all instances of a category can be 
isolated and visually grouped into a single image. This is 
the activity required when looking for specific icons (the 
core problem in 5.2.3, 5.2.4 and 5.2.5 above). While shape 
does allow the encoding of nominative data it does not 
permit selective perception [8] . Interaction places an 
additional challenge on displays. Targets have a lower-
limit to their area before they become unclickable. Any 
situation where targets are placed on a numeric scale runs 
into the risk of target occlusion and the loss of interaction. 

During our interviews, we discovered another issue. 
In the work domain analysis we showed that engineers are 
responsible for modules of tools, however the OTI chart 
displayed parameter readings for entire toolsets. This 
raised the question of how engineers become aware of 
issues that might only be affecting their modules. On 
enquiry we revealed that many engineers generated their 
own custom graphs of their modules for individual 
parameters.  

6. Redesign of Chart 

The original OTI chart accurately depicted the data 
collected by the sensors. The problem lies in the matching 
of the perceptual scales that the data exists on, and the 
perceptual scales required for the cognitive tasks. The 
important step of data transformation [9] has been missed. 
Data transformation is a process by which data values are 
transformed into derived values or derived structures. It is 
carried out to make relationships in data easier to 
understand. We propose that the information required for 
a data transformation is revealed though both the task and 
work domain analyses.  

6.1. Data Transformation 

The OTI values are originally calculated as 
quantitative data. However, at no stage are quantitative 
cognitive activities such as addition, subtraction or 
multiplication required. In the first task the aim is to 
identify tools that lie outside the control limits. The 
second and third tasks relate to the spread of tools within 
parameters. This deals with the relative distance of tools 
from each other and the control limits. The perceptual 
scale for this activity is ordinal. By transforming the OTI 
values into a series of ordinal classes we reduce its 
complexity and permit the use of a wider range of visual 
variables. The display of ordinal data can be supported by 
the spatial variables, size and value (tone).  

6.2. Visual Scale Selection 

While the spatial variable has been shown to be 
perceptually dominant, we have chosen to use size to 
encode the OTI data (fig.3). The spatial variable had other 
advantages; it makes it easy to indicate targets and control 
limits by drawing horizontal lines, thus dividing the graph 
area into a series of sub-areas. We have chosen to encode 
these extra dimensions using multiple visual variables 
within the OTI icon. Distance from target has been 
encoded using size, plus or minus values have been 
encoded using two hues (red & blue) and icons outside of 
control limits are marked by a dramatic change in value 
(tone). What advantages does this icon have over the 
previous one?  

 

Figure 3:  New O.T.I. Chart  

6.3. Rationale for New Design  

The original chart encoded the tools by combining 
two visual variables into a single icon. This lead to a 
redundant visual variable which could be mistaken for 
another categorization of the data (e.g. yellow icons are 
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off-target?).  In the new design (fig. 3) each variable 
encodes a different perceptual scale relating to the data, as 
outlined above. Size and Value are dissociative visual 
variables [8] (i.e. they are perceptually dominant over the 
other retinal variables). They are used here to indicate 
distance from target and tool state. Their combination will 
make the off-target readings highly salient causing them 
to pop-out of the display. They also present a much larger 
target making it easier to select individual sensors and 
drill into further detail. Most importantly, by creating an 
icon of the OTI value, we free up the spatial variable for 
the encoding of the tool data. This spatial encoding of the 
two nominative data types creates a matrix display of the 
dataset. This eliminates the occlusion of icons due to 
overlapping again improving the selection of icons. It also 
makes it possible to read the chart from the perspective of 
locating specific tools or sensors (tool parameters) thus 
eliminating the last three original problems with the chart.  

6.4. Additional Advantages  

The changes brought about by the data 
transformations allowed us to introduce a number of 
additional features not available in the original design.  

Firstly, it is possible to organise the sequence of tools 
on the x-axis into modules. By introducing a second series 
of module labels we can embed the structure of the 
system, revealed by the work domain analysis, into the 
chart. This means that users can now focus on their own 
tools while maintaining a view of the wider toolset.  

Secondly, the matrix allows us to detect sensors that 
are not giving out readings. In the original chart these 
sensors would generally go unnoticed as they may be 
present but occluded. Because of this, the new design 
gives the user a better understanding of the system state.  

Thirdly, the new design makes a much more efficient 
use of space, making it suitable for display on small form 
factor devices. In the old design, the parameters needed to 
be well spaced out to allow for the reading of the sensor 
clusters. This sometimes led to the need for horizontal 
scrolling. Also, the design featured a lot of negative space 
in the areas outside of the control limits. In the new design 
each sensor takes up a maximum area of 16 pixels and 
even the empty spaces have a semantic meaning for the 
system state. This spatial efficiency could prove to be a 
critical advantage as there is a lot of interest in supplying 
decision support information on mobile devices [10] . 

7. Evaluation 

A second round of interviews was carried out at 
which the users were presented with a number of paper 
prototypes of the redesign. Initial feedback was very 
positive with users being able to identify situations in the 
dataset following a very brief explanation of the elements. 

There was enthusiasm for the appearance of modules in 
the display and the ability to see non-reporting sensors. 
We have prepared a series of experiments involving fully 
interactive versions of the old and new designs. The two 
designs will be evaluated against each other for a range of 
tasks and different datasets. Users will be measured for 
efficiency, accuracy and satisfaction on both displays. 

8. Conclusions 

In this paper we have looked at a real-world example 
of how interactive charts are being developed and applied 
within industry. In the absence of practical methodologies, 
developers are relying on familiar graphing techniques 
and/or application wizards for the production of charts and 
graphs. This approach can lead to applications 
incorporating visual displays that are not well suited to the 
user’s tasks. We propose a three stage approach involving 
Work Domain, Data and Task analyses as the first steps in 
information visualisation design methodology. A work 
domain analysis can provide us with a structure that 
outlines relationships between data and allows us to chart 
ranges of responsibility. A data analysis reveals the 
variable types and the volume of data involved. A task 
analysis guides us in our data transformation allowing us 
to select visual variables at the appropriate perceptual 
scale. Using this approach we can ensure that the 
information visualisation techniques we use are suited to 
the cognitive tasks being carried out. In situations where 
existing techniques do not fully support our tasks, this 
approach can guide us in the generation of new visual 
interfaces that fit the user’s needs. 
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