OPTIMISING DATA MOVEMENT RATES FOR PARALLEL PROCESSING
APPLICATIONS ON GRAPHICS PROCESSORS

Owen Harrison
Computer Architecture Group
Trinity College Dublin
Dublin 2, Ireland
email: harrisoo@cs.tcd.ie

ABSTRACT

Graphics processing units(GPUs) are starting to play an
increasingly important role in non-graphical applications
which are highly parallelisable. With the latest graphics
cards boasting a theoretical 165GFlops and 54GB/s mem-
ory bandwidth spread across 48 ALUs it is easy to see why.
The GPU architecture is particularly suited to the parallel
stream processing paradigm of low levels of data depen-
dency, high data to instruction ratio and predictable mem-
ory access patterns. One largely ignored, yet key, bottle-
neck for this type of processing on GPUs is both down-
load and readback transfer performance to and from the
graphics card. Existing tools provide great developer as-
sistance in many areas of GPU application development,
though provide very limited assistance in gaining the best
bi-directional data transfer performance. In this paper, we
discuss these limitations and present new investigative tools
which allow general purpose processing GPU developers
to explore the complex array of configuration states which
affect both the download and readback performance.

KEY WORDS
Parallel Processing, High Performance Computing, Graph-
ics Processors, Transfer Rates.

1 Introduction

In 2003 Buck[1] and Venkatasubramanian[2] presented
some of the first observations that GPUs were becoming
faster at processing data parallel tasks than standard CPU
architectures. They predicted that this trend would continue
and that the performance gap would increase over time in
favour of the GPU. These predictions have proven correct
as GPUs continue to outperform Moore’s law. There is a
strong trend to make GPUs more programmable and more
feature rich, thus further expanding their application reach.
Correspondingly there is an increase in activity in using
GPUs for general purpose data parallelisable applications.
Currently GPUs are being used for data parallel problems
in fields as diverse as databases[3], computer vision[4], au-
dio and signal processing and data mining[5]. One of the
most popular projects running on GPUs is the Folding @
Home Stanford project[6]. This project has reported up to a
40 times speed increase over a single core 2.8GHz P4 pro-

Dr. John Waldron
Computer Architecture Group
Trinity College Dublin
Dublin 2, Ireland
email: john.waldron@cs.tcd.ie

cessor. For more information on general purpose process-
ing using GPUs and a survey of current application areas
see Owens et al.[7].

Traditional use of GPUs typically do not put great de-
mands on data transfer rates across the system bus. Also
any demands that are put on the system bus are largely in
the download(CPU to GPU) direction only. In compar-
ison, general purpose processing applications running on
the GPU can require large amounts of data transfer across
the system bus in both directions. Achieving optimum bi-
directional data transfer performance is a complex task in-
volving a large array of configuration states and transfer
methods. Slight mis-configurations can lead to unexpected
and difficult to detect significant drops in transfer perfor-
mance. We present two new tools in this paper focused on
download and readback transfer performance respectively.
The tools allow the user to create typical application trans-
fer scenarios by providing full control over relevant con-
figuration states such as texture dimensions, system mem-
ory alignment, transfer method, external and internal tex-
ture formats, data type, texture type, dummy work loads,
the use of fragment buffer objects, pixel buffer objects and
fragment programs/fixed function. By providing the abil-
ity to have full control over all the relevant configuration
states, the user can quickly simulate the majority of appli-
cation transfer scenarios thus allowing the exploration of
relevant states and their performance implications.

The tools are written using the OpenGL api, the rea-
son for using this api over DirectX is due to it being plat-
form independent and open, thus being the primary choice
for academic research. Section 3 covers optimisation of
download data and section 4 covers readback optimisation.
Both sections cover the corresponding tool details, typical
usage pitfalls and general performance observations. The
optimisation observations presented in this paper are based
on the following cards: Nvidia GeForce 5200Go(AGP4x),
6600GT(AGP8x) and a 6600Go(PCle). The paper is not
designed to be a complete survey of hardware and its trans-
fer capabilities, but rather an introduction to how these
tools can be used to help optimise bus transfer rates for
general purpose data parallel applications. For more tech-
nical details and access to these tools refer to the project’s
website[8].

2 Background and Related Work

A GPU’s primary source of computational power lies in
its fragment processors, each typically consisting of one or
more 32bit floating point processing units. Current cards
host a significant number of these fragment processors each
of which largely operate in isolation. This architectural de-
sign descision of isolated processing units leads to a greater
allocation of the chip transistor budget to data process-
ing rather than data movement and complex memory hi-
erachies with large caches. This allows GPUs to achieve
their high FLOP count. The high performance comes at the
price of a resricted programming model with traits such as
a high degree of data parallelism, limited program lengths,
patterned memory access, limited data gather and no data
scatter support.

These restrictions amongst others have lead to a diffi-
cult task of extracting the most performance from a GPU.
As a result most development assistant tools focus around
the shader processors and their optimum ALU and memory
usage. This combined with the traditional low bus require-
ments of applications using GPUs explain why the topic of
optimising data transfer to and from the graphics card is
largely overlooked. Data transfer between the system and
GPU must cross either an AGP or PCle system bus, both of
which provide relatively slow and high latency data move-
ment. Thus this type of data movement can present the first
bottlenecks to classes of applications which require high
levels of CPU-GPU communication.

Currently there exists only two reputable tools which
cover the area data transfer rates. These tools are designed
to be used solely as benchmarking tools for a number of
predefined configuration states. They are not designed to
give the user the flexibility required to simulate the virtu-
ally endless application data transfer scenarios. Stanford’s
GpuBench[9] suffers from aging and does not include crit-
ical recent GPU transfer features such as pixel buffer ob-
jects and asynchronous readback support. Nvidia’s Per-
formance Tool[10] does provide access to these features,
however they are exposed in a limited fashion, for exam-
ple the user cannot vary the amount of dummy CPU work
executed to measure the amount of performance gain from
asynchronous readback support. These tools are not de-
signed to help the developer achieve optimal data transfer
rates. The authors attempt to resolve this by the use of the
presented tools in this paper.

3 Download Optimisation
3.1 Tool Introduction

Data can be transferred from the system to the
GPU(downloaded) by means of texture transfer or direct
rendering of pixels to the active framebuffer. Highly paral-
lelisable applications which are data heavy and have a low
processing complexity per data unit are the most likely to
bottleneck at the data download stage. This is due to the

relatively slow CPU to GPU bus speeds when compared to
on-card data movement rates. With these applications it is
crucial to fully explore all download related options. The
use of this tool can show that slight variations in configura-
tion settings can result in large differences in transfer rates.
Each execution of the tool transfers 6.25GBytes of data
frame by frame to the active framebuffer, thus averaging
out any individual frame’s impact on the final result. Trans-
ferring the same amount of data for each execution allows
for easy comparison of various scenarios. The tool will
not transfer the full data allocation to the card if a scenario
is estimated to take longer than 3 minutes to complete, in
such a case an estimated rate for the full data transfer is
output. The tool generates these estimates by first running
the frame transfer loop an initial 10 times before running
the full scenario. These estimates are generally pessimistic
as the first frame transfer time occupies a larger percentage
of the run time.

At the start of each scenario execution, an initial test
frame is downloaded and subsequently read back from the
GPU using the user requested state. The readback data is
then compared against the downloaded data, taking into
account any padding bytes, see packAlignment below. If
there is any mismatch between the readback data and the
transmitted data a warning message is generated indicating
that the transfer rates are unreliable. This is especially per-
tinent regarding readback optimisation, see Usage Pitfalls
section 4.4.

3.2 Tool Details

The full list and description of configuration states which
the tool exposes is presented below. These provide suf-
ficient control to simulate the majority of data download
scenarios. The controllable states are presented as the fol-
lowing input parameters to the download tool.

pixelDimension Un/packAlignment transMethod
glExtFormat glExtType glintFormat glTexTarget FBOState
PBOState FPState

The parameter pixelDimension allows the user to
specify the dimension of the buffer sizes and texture sizes
involved in the transfer. Currently to simplify the num-
ber of parameters this is restricted to square 2D textures,
though this could easily be extended. Un/packAlignment
allows the user to specify the alignment in system mem-
ory that the data will be unpacked from, this is de-
scribed in full in The OpenGL Programming Guide[11],
see glPixelStore(). In general, architectures experience
greater system memory read performance when the reads
are aligned to some byte boundary, this setting should cor-
respond to the user’s system’s recommendations. trans-
Method indicates the choice of method for downloading
data to the graphics card, the tool supports DrawPixels
and TexSubImage(recommended over TexImage for re-
peated transfers). The glExtFormat and glExtType spec-
ify both the format and type of data that is held in sys-
tem memory. glIntFormat specifies the requested inter-

nal storage format and resolution on the graphics card.
The glTexTarget parameter specifies the type of texture
target to use to bind the texture to, the supported and
tested targets are GL_TEXTURE_RECTANGLE_ARB and
GL_TEXTURE_2D. FBOState can be set to FBO_ON or
FBO_OFF, indicating whether or not the data is to be trans-
ferred into a texture attached framebuffer object(FBO). The
internal format and texture target can be set to NONE if the
transfer method is set to DrawPixels, unless a framebuffer
object is being used. FPState specifies whether a fragment
program is bound and used or whether the fixed function
pipeline is used. Both FBOState and FPState make most
sense in the context of DrawPixels, during TexSubImage
mode only a point is used as the rendering operation to
flush the texture transfer. The PBOState parameter allows
the user to select whether a pixel buffer object is used to
unpack data from during the transfers.

3.3 Usage Pitfalls

False increases in reported transfer rates for simulated ap-
plication scenarios are the most common problem when us-
ing the download and readback tools. These can occur due
to transparent driver optimisations and restrictions, which
are difficult to detect, and must be taken into account.

When rendering to the default visible framebuffer
there are many opportunities for false rates to be reported.
If the screen display size does not encompass the entire vis-
ible rendering window then the data which corresponds to
the cropped region of the window do not need to be trans-
ferred. If drawing to a position outside of the area specified
when creating the render window, the data transfer does not
need to take place. Also when another window obscures
the visible window, the obscured region’s corresponding
data do not need transferring. These three issues affect the
DrawPixels mode by artificially increasing the download
rates, TexSubImage does not result in a speed up as only
a point is drawn to screen in this mode, the texture is still
transferred but the omission of a single fragment rendering
makes little performance difference. The verification stage
of both the DrawPixels and TexSubImage modes fails due
to the data not being transferred and consequently not be-
ing correctly read back. The tool user must take care not
to obscure the visible window with any gui objects for any
portion of time and to ensure the visible area of the screen
can encompass the render window. The use of a frame-
buffer object removes these obscuring issues as rendering
doesn’t target a visible window.

3.4 Download Observations

An array of scenarios were run using the author’s hard-
ware resulting in the following observations across signif-
icant groupings of scenarios. These are designed to act as
a guide to the type of insight that can be gained from using
the download tool. Note that no existing tool allows the

user to gather such insights into the transfer behaviour of a
system.

Pixel Buffer Object: In general using pixel buffer
objects while in TexSubImage mode and transferring floats
with an internal format from the OpenGL float buffer ex-
tensions(ARB or Nvidia) or unsigned bytes results in the
best performance. When using pixel buffer objects, Tex-
SubImage mode for data transfer is vastly superior, 3 times
faster, compared with DrawPixels mode. The use of in-
teger or short data type shows poor performance and is
not improved with the use of PBOs. Under no scenario
did DrawPixels experience a speed up when switching be-
tween PBO_OFF and PBO_ON. Part of the difference in
speed between these modes can be explained by DrawPix-
els resulting in fragment generation and subsequent pro-
cessing whereas TexSubImage does not produce fragments
but transfers directly to texture memory. However when
testing TexSubImage using texture mapped quad render-
ing, there still existed a 2 times speed up: thus the main
difference in speed must be explained by the lack of affect
PBOs have with DrawPixels.

Texture Format and Type: There are hundreds of
combinations of internal and external texture formats and
types all of which have performance implications. The
following covers some points of note regarding the mix
of formats and types. With regard to floats usage with
PBOs, swizzled external formats leads to no performance
increase. Also, the use of RGBA or RED delivers improve-
ments though the external formats must be accompanied by
a resolution specific internal format from the OpenGL float
buffer extensions. Use of non specific resolutions cause
down conversion, loss of precision, and a failure to verify,
see section 4.4. It is worth noting that there is a consistent
6-7% performance advantage using internal formats from
NV _float_buffer extension over ARB_texture_buffer. Un-
signed byte transfers can be accelerated using PBOs, how-
ever concerning 4 component transfers BGRA external for-
mat must be used. If padding is avoided for a single byte
component by using LUMINANCES as the internal format,
speed up can also occur.

Fragment Program: The use of a fragment pro-
gram(FP_ON) has no significant impact on TexSubImage
mode as expected, however when using DrawPixels mode
there is a dramatic slow down compared to the fixed func-
tion pipeline. The fragment program used is a simple
colour in colour out pass through program. No explanation
could be found for this behaviour. It is assumed some con-
figuration error is causing a part of the rendering process to
resort to software mode.

Data Padding: Scenarios which result in data
padding, i.e. increased number of components in the in-
ternal format compared to the external format, lead to no
speed up when using PBOs. To compound this, component
padding also causes a slow down compared to scenarios
that don’t pad when PBOs are turned off.

Texture Size: Varying texture sizes that are trans-
ferred can have a significant effect on overall trans-

Texture Size Download Rate Comparison (6600GT)
1800 T

ARB.PBO.OFF

a s

1600 | ARB.PBO.ON - A
1400 | NV.PBO.OFF oo goxion”
NV.PBOON o =

1200 L
1000 r /
800 r
600 r
400
200

Transfer Rate (MB/s)

10 100 1000
Texture Size

Figure 1. Download Rates For Varying Texture Sizes

fer rates. To demonstrate this, Figure 1 shows the re-
sults of running four scenarios, with and without the
use of PBOs and the use of two different internal for-
mats, FLOAT_RGBA32_NV and RGBA32F_ARB on the
6600GT AGP card. It was noted that for small textures
non PBO use results in higher rates of transfer. Also
when using FLOAT_RGBA32_NV there is a significant in-
crease in performance at powers of two texture sizes, where
as RGBA32F_ARB shows no correlation. In general the
larger the buffer size the faster the download rate, though
over a certain size, depending on the memory availability
on the card, the performance drops severely.

4 Readback Optimisation
4.1 Tool Introduction

Traditional graphical use of GPUs have little demand for
high transfer rates and what demand there is exists largely
for download data transfer. Thus readback rates are con-
siderably lower due to hardware optimisations. This can
present a challenge to general purpose applications which
require their output to be consumed in a non visual way, ie.
the results must be readback to the system. New advance-
ments such as the introduction of PCle and the addition of
asynchronous readback transfer has somewhat helped this
situation. Asynchronous readback allows CPU and GPU
pipelining of data processing spread across both proces-
sors. The previously mentioned tools are either missing
asynchronous support or provide it in a switch on/off man-
ner. The presented readback tool provides two modes of
operation, one for readback transfer rates and the second
for analysing the asynchronous readback behaviour of the
current configuration. Both modes provide a similar full
control mechanism to the download tool for simulating var-
ious transfer scenarios. In both modes the same amount of
data, as in the download tool, is readback from the GPU
frame by frame. Also, the same verification stage and ini-
tial time limiter trial phase is executed. The specific modes
of operation, transfer rate and asynchronous behaviour are
discussed in the following sections.

4.2 Transfer Rate Mode

The transfer rates mode only outputs the rate of data read-
back from the GPU. It attempts to minimize the amount of
data downloaded to the GPU, using a non texture mapped
quad draw operation to ensure no driver optimisations are
occurring to eliminate the repeated readback of the target
buffer. The tool uses input parameters to calculate the
number of readback iterations required to transfer a fixed
amount of data as in the download tool. The input parame-
ters are as follows:

pixelDimension un/packAlignment glExtFormat
glExtType glintFormat glTexTarget FBOState num-
berPBOs PBOUsagePattern [workLoad] [drawMode]
[blockingDetail]

The last three parameters are optional and are cov-
ered in the asynchronous behaviour section below. When
FBOState is set to FBO_ON or FBO_OFF the glReadPix-
els command is used to retrieve data from a texture attached
FBO or the default framebuffer respectively. The FBOState
can also be set to FBO_ON_GTI which allows the user to
specify that the glGetTexImage command should be used
to read from the texture attached FBO. The first five param-
eters are used similarly to the download tool and configure
the draw, read and store OpenGL commands. numberP-
BOs allows the creation of multiple PBOs which are used
as readback packing buffers used on a rotational basis. The
sequence of actions within the transfer loop when PBOs
are being used is: bind PBO[n], draw frame, read frame,
bind and map PBO[n - x], unmap PBO[n - x], where x is
the number of PBOs requested. This pattern of use is rec-
ommended in Nvidia’s Fast Texture Transfers article[12].
The PBOUsagePattern parameter is used to specify the
expected usage pattern of the pixel buffer object, see the
BufferData command in the OpenGL Programming Guide.

4.3 Asynchronous Behaviour Mode

To expose a scenario’s pipeline potential the tool can in-
sert variable amounts of dummy work to simulate CPU
side processing during data readback. The user can vary
the amount of work load processing by entering an inte-
ger as the workLoad parameter. Table 1 shows an example
output of the tool when running in asynchronous mode. It
includes the total amount of map and read command block-
ing times, and also the time spent in the dummy work loop,
all times are reported in micro seconds. To maximise the
pipeline potential, a scenario ideally would reduce the total
amount of blocking time by the same amount of dummy
work time increase, thus maintaining the same transfer rate
while gaining free CPU cycles. This can only happen until
the amount of dummy work time is greater than the total
transfer time.

The default draw mode used during the execution of
the readback tool is a non texture mapped quad render op-
eration as mentioned previously. This is suitable for mea-
suring pure readback rates, however it is not always suit-

Table 1. Example output of readback tool in asynchronous
mode

Map Blocking Time = 164279

Read Blocking Time = 52159259
Map+Read Blocking Time = 52323538
Dummy Work Time = 44455106

Bytes Transferred = 6710886400
Transfer Time = 97553896

Transfer Rate = 65.60MB/s

able for measuring the pipeline potential of a scenario. The
asynchronous efficiency depends largely on how the partic-
ular hardware system handles DMA memory transfers dur-
ing bus contention and how the graphics driver behaves.
A drawing mode called PIXEL_DRAW can be used via
the drawMode parameter, which instructs the tool to use
DrawPixels to fill the entire window each frame. This gen-
erates download traffic to contend with DMA readbacks
thus simulating an application which requires bidirectional
data transfer. The default QUAD_DRAW mode can be used
to more closely simulate the bus traffic during a render to
texture ping-pong[13] application which largely uses the
results generated on the GPU for the next frame’s input.
The blockingDetail parameter when used generates logging
messages for each frame displaying the blocking times in
detail.

4.4 Usage Pitfalls

The following pitfall is applicable to both download and
readback transfers, though is discussed here as it is more
likely to cause false speed ups for readback. The internal
format used to store data within the graphics card is im-
plementation dependent. According to the OpenGL spec-
ification an implementation can use the input parameters
such as external format, external type and internal format
merely as a guide. The graphics driver makes this process
transparent and thus when specifying these parameters the
user cannot be sure exactly what form the data will take
when transferred from and to the card. The result being
that data can be down converted into a lower precision rep-
resentation before being transferred over the bus, leading
to false speed ups.

An example of this pitfall on is the mapping of the
internal format GL_RGBA to GL_RGBAS, meaning that
floats, ints, shorts all get down converted to an 8 bit rep-
resentation when this internal format is used. There is
no way of programmatically knowing a smaller resolution
is being used apart from using a strict verification stage
which requires an exact match between data downloaded
and readback from the GPU. When a verification failure is
detected the tools continue, however a warning message is
outputted to instruct the user of this danger. The reason for
not aborting the run on verification failure is that 32 bit in-
tegers, even when using a 32 bit internal representation on

currently available GPUs, will still loose precision on the
round trip. To aid this judgement the internal formats na-
tively supported on the GPU should be known, for Nvidia
this information can be found in the Nvidia Programmers
Guide[14].

Window obscuring affects readback in the same man-
ner as it affects download transfers, care must be taken to
ensure when using the default framebuffer that the entire
window is visible, otherwise the verification stage will fail
and artificial increases in transfer rates can occur. Also, it
was noted that for asynchronous behaviour to function the
most recent graphics drivers must be used. Namely, with
regard to Nvidia running on Linux, driver versions ;= 1.0-
8762.

4.5 Readback Observations

As the array of runnable scenarios and hence their results
are virtually limitless, we present the notable observations
across groups of scenarios rather than individual results.

4.5.1 Transfer Rate Observations

Short and integer data type scenario transfers all under
perform by a minimum of 50% compared to byte and
float scenarios. Single external components suffer a four
times reduction if the internal format is not explicitly re-
quested as a single component due to all four compo-
nents being transferred across the bus and filtering oc-
curring within the driver. When using GetTexImage to
readback there is a large drop in performance compared
to using ReadPixels. When transferring bytes, the use of
TEXTURE_RECTANGLE_ARB consistently out performs
TEXTURE_2D by 6-7%. Note that this performance dif-
ference does not exist when using the extended internal
formats for float transfer such as FLOAT_RGBA32_NV or
RGBA32F_ARB. When varying the size of buffer dimen-
sions, there is a notable performance increase using higher
numbers of PBOs for small buffer sizes. Also there are
large rates increases when using sizes which are powers of
two, though in general the larger the buffer size the faster
the readback rate.

4.5.2 Asynchronous Behaviour Observations

Asynchronous Support: On the tested hardware the vast
majority of scenarios do not support asynchronous read-
back. The notable groups which don’t are: all scenar-
ios with an external type of unsigned byte that don’t use
BGRA external format; all scenarios with an external type
of signed byte; all scenarios with external types of signed
and unsigned shorts and integers; all scenarios with an ex-
ternal type of Luminance; all floats without a specific inter-
nal resolution formats, e.g. those from the float_buffer or
arb_texture_float extensions; all scenarios which use Get-
TexImage to readback data.

22
RGBA FLOAT 512x512 2 PBOs
21 ¢ RGBA FLOAT 1024x1024 2 PBO -

19
18 +
17
16 -
15 -
14
13
12 | o

11

Readback Time of 6.25GB (Seconds)

2 4 6 8 10 12 14 16 18
Dummy Work Load (Seconds)

Figure 2. PCle Async Comparison of 512x512 versus
1024x1024 Buffers

Pipeline Efficiency: The ideal behaviour of scenarios
which support asynchronous readbacks would be that for
every second added to the dummy work time, blocking time
is reduced by a second. However in practice this is not true
and varying settings such as number of PBOs and buffer
sizes used affects how close a scenario comes to this ideal.
On the AGP cards the number of PBOs used, buffer sizes
and drawing mode have a significant effect on the pipelin-
ing efficiency. For example, using a 512x512 buffer size in
quad draw mode, as the number of PBOs used increases the
more efficient at hiding the extra work time the scenario be-
comes. However when the same scenarios use pixel draw
mode, there is no difference between the pipelining effi-
ciency as the number of PBOs used increases. Using the
PCle card eliminates the vast majority of the behavioural
differences regarding the number of PBOs and draw modes
used. Though in Figure 2, one can see that there is a signifi-
cant difference between the asynchronous behaviours when
buffer dimensions are varied with 512x512 outperforming
1024x1024 in terms of pipeline potential.

5 Conclusions

The use of graphics processors for data parallel processing
applications can result in major increases in performance
over conventional architectures. However, there is a high
risk of failure to realise this potential gain due to the com-
plex programming environment of GPUs. One of the pri-
mary bottlenecks to overcome is efficient movement of data
onto and off the graphics card. The use of the tools pre-
sented in this paper allows the user to uncover a great deal
of insight into data transfer related idiosyncrasies. This in-
sight can be used to identify optimal state configurations
for data movement and thus help avoid such bottlenecks.

Future work includes the use of these tools to present
a comprehensive survey of existing hardware and their data
transfer capabilities. Required for the survey is testing on
ATI based hardware. The tools can also be extended to sup-
port colour index mode and to include more internal for-
mats, external formats and external types. Also the ability
to define non square textures and addition of more texture
targets to encompass more than just two dimensional ones
would be useful.

References

[1] I. Buck, Data parallel computing on graphics hard-
ware, Siggraph: Graphics Hardware Panel, San
Diego, USA, 2003.

[2] S. Venkatasubramanian, The graphics card as a
stream computer, DIMACS Workshop on Manage-
ment and Processing of Data Streams, San Diego,

USA, 2003.

[3] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha,
Gputerasort: High performance graphics coprocessor
sorting for large database management. ACM SIG-
MOD/PODS, Chicago, USA, 2006.

[4] J. Fung, S. Mann, and C. Aimone, Openvidia: Par-
allel gpu computer vision, ACM Multimedia, Singa-
pore, 2005.

[5] N. K. Govindaraju, N. Raghuvanshi, and
D. Manocha, Fast and approximate stream mining of
quantiles and frequencies using graphics processors.
ACM SIGMOD/PODS Baltimore, Maryland, USA,
2005.

[6] Stanford University, Folding At Home on ATI GPUs,
http://folding.stanford.edu/fag-ati.html.

[7] J. D. Owens, A survey of general-purpose computa-
tion on graphics hardware. Eurographics, Dublin, Ire-
land, 2005.

[8] O. Harrison, J. Waldron. TransferBench Tool -

available online at https://www.cs.tad.ie/
“herrisoo/research.himl .

[9] I. Buck, K. Fatahalian, and P. Hanrahan, Gpubench:
Evaluating gpu performance for numerical and scien-
tifc applications. ACM Workshop on General Purpose
Computing on Graphics Processors, LA, USA, 2004.

[10] Nvidia. Nvidia’s PBO Texture Performance Tool,
http://download.developer.nvidia.com/developer/sdk/
individual_samples/featured_samples.html #tex-
tureperformancepbo.

[11] OpenGL ARB, D. Shreiner, M. Woo, J. Neider, and
T. Davis,OpenGL Programming Guide: The Offi-
cial Guide to Learning OpenGL, Version 2, Boston:
Addison-Wesley Professional, 2005.

[12] Nvidia. Fast texture downloads and read-
backs using pixel buffer objects in
opengl, http://developer.nvidia.com/object/
fast_texture_transfers.html, 2005.

[13] D. Goddeke, Render To Texture(inc. ping-
pong) Tutorial, http://www.mathematik.uni-
dortmund.de/goeddeke/gpgpu/tutorial.html.

[14] Nvidia. GPU programming guide,
http://developer.nvidia.com/object/
gpu_programming_guide.html, 2005.

Conference Proceedings:

This work was subsequently published as Optimising Data Movement Rates for Parallel Processing Applications
on Graphics Processors, Harrison O and Waldron J.

Proceedings of the 25th International Conference on Parallel and Distributed Computing and Networks, PDCN
2007, February 13-15 2007, Innsbruck, Austria. pages 251-256. ISBN: 978-0-88986-637-9

