

The Visualisation of Adaptive Behaviour in

Ubiquitous Computing Experiments

Cormac Hampson

A dissertation submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

May 2006

DECLARATION

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been submitted as

an exercise for a degree at this or any other university.

 Name: Cormac Hampson

 Date: 31st May, 2006

ii

PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this dissertation

upon request.

 Name: Cormac Hampson

 Date: 31st May 2006

iii

ACKNOWLEDGEMENTS

Many thanks are due to my supervisor, Dr. David Lewis, for the considerable time

spent assisting me on this project, and for all the valuable advice and guidance

offered. Likewise, I would like to thank Austin Kenny, Eleanor O’Neill and Kris

McGlinn, for all their work and helpful feedback.

This project’s inception was assisted greatly by the comments and suggestions of

Peter Williams and Dr. Owen Conlan, for which I offer my sincerest gratitude. To

all my family and friends, and especially my fellow ubiquitous computing

classmates, I would like to thank you for all your support and encouragement

throughout the course of this dissertation.

Cormac Hampson

University of Dublin, Trinity College

May 2006

iv

SUMMARY

The creation of new ubiquitous computing systems has been hindered by the

considerable economic and logistical factors associated with their development.

Hence, 3D simulators (complete with virtual environments and sensors) have been

successfully employed so that rapid prototyping and evaluation of experiments can

take place in a reliable and efficient manner, before any real world implementation

need occur. However, a significant feature lacking in these simulators is an overview

visualisation tool that would enable researchers, at a glance, to understand what is

happening in their experiment at any moment in time.

The ubiquitous computing simulator developed by the Knowledge and Data

Engineering Group (KDEG) allows researchers to integrate their prototype services

into a virtual environment, providing a test bed for the evaluation of their context

aware applications. The complex nature of the interactions taking place on this

platform has meant that debugging new experiments and eliciting salient information

from the data can be a slow and difficult process. This dissertation describes the

development of a prototype SVG (Scalable Vector Graphics) visualisation tool that

responds directly to this need.

The SVG tool visualises a short experiment involving the interaction between a

Location-aware Instant Messenger and the 3D simulator, and a detailed evaluation is

undertaken. The results presented show that this application provides significant

benefits to developers of such experiments, and that future work based on this

prototype can lead to the creation of a robust and extensible tool, central to the

development of new ubiquitous computing environments.

.

v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION...1
1.1 Motivation ..1
1.2 Objectives:..3
1.3 Document Structure: ..3

CHAPTER 2: STATE OF THE ART ..5
2.1 Ubiquitous Computing Simulators ...5

2.1.1 KDEG Ubiquitous Computing / Context Awareness Simulator5
2.1.2 3DSim: Rapid Prototyping Ambient Intelligence ..7

2.2 SVG Information Visualisation..10
2.2.1 Dynamic Processes of the Gruben Glacier...10
2.2.2 GEMOS, A Building Management and Security system's SVG Interface...................13

2.3 Analysis..16
2.4 Conclusions ..17

CHAPTER 3: DESIGN ...18
3.1 Technologies Used ...18
3.2 Data Flow in Generic Visualisation System...20
3.3 Architecture of Visualisation System...20
3.4 System Under Test Architecture ..22
3.5 Types of XML Messages ...24

3.5.1 XandY Messages ...24
3.5.2 Location Message ..25
3.5.3 Event Message ...26
3.5.4 Access Control Decision Message:..27
3.5.5 Location Update Message..28

3.6 Design Principles..29
3.6.1 Interface and Controllers..29
3.6.2 Floor Plan...29
3.6.3 System Under Test...30

3.7 Interface Design ...30
3.7.1 Visualising the Floor Plan..31
3.7.2 Visualising the Animation Controls...32

3.8 SUT Visualisation ..34
3.8.1 Access Control Decision Visualisation..35
3.8.2 Location Updates Visualisation ...37

3.9 Separation of SUT and Floor Plan ...38
3.10 Integrating New Maps..39

vi

3.11 Supplementary Controls ...39
3.12 Security Considerations: ..40
3.13 Conclusion: ..41

CHAPTER 4: IMPLEMENTATION ..42
4.1 Converting Character Strings to XML ...42
4.2 Creating the SVG Floor Plan..43
4.3 Initialising Functions..44
4.4 Implementation of Animation Controls..45
4.5 Implementation of SUT..46
4.6 Implementation of Show All Locations ..47
4.7 Discussion of Implementation..47
4.8 Conclusion..48

CHAPTER 5: EVALUATION AND DISCUSSION...49
5.1 Overview..49
5.2 User Comments ..50

5.2.1 Colour Coding ...50
5.2.2 Animation Controllers ...51
5.2.3 Timelines ...51
5.2.4 SUT Visualisation..52
5.2.5 Room Numbers ..53
5.2.6 Show All User Locations ...53

5.3 Expert Users’ Suggestions ...53
5.3.1 SVG Graphs...54
5.3.2 Sensor Displays on the Floor Plan ...54
5.3.3 Synching Time Controls ..55
5.3.4 SUT Configuration ..55
5.3.5 Conclusion ...56

5.4 Evaluation of SVG ...56
5.5 Conclusion: ..57

CHAPTER 6: FUTURE WORK AND CONCLUSIONS ..59
6.1 Future Work ...59

6.1.1 Configurable SUT Component ..59
6.1.2 Automatic SVG Floor Plan Generation ...60
6.1.3 Multi-Storey Buildings ..60
6.1.4 Animation Controls & Automatic Graphs ...60
6.1.5 Website & Real-Time Visualisation ..61
6.1.6 Integrating Semantic Intelligence ..61

6.2 Conclusions ..62

APPENDIX A: EVALUATION QUESTIONNAIRE ..64

APPENDIX B: SUMMARY OF EVALUATION NOTES ..66

vii

APPENDIX C: SCREENSHOT OF VISUALISER INTERFACE...70

APPENDIX D: COMMONLY USED ABBREVIATIONS ...71

REFERENCES: ..72

viii

LIST OF FIGURES

Figure 1: Avatar inside the KDEG Ubiquitous Computing Simulator... 6
Figure 2: 3DSim display with an avatar looking at a SMART Board.. 8
Figure 3: Screenshot of Dynamic Processes of Gruben Glacier... 11
Figure 4: Graph (absolute) for a certain point in the elevation animation.. 12
Figure 5: GEMOS, Real-time floor plan display.. 14
Figure 6: GEMOS, Real-time floor plan display.. 15
Figure 7: High Level Interaction within a visualiser.. 20
Figure 8: Architecture of Visualisation System ... 21
Figure 9: Architecture of chosen System Under Test (SUT) ... 22
Figure 10: Visualiser Interface... 31
Figure 11: Visualisation of Floor Plan ... 32
Figure 12: Animation Control for Floor Plan... 33
Figure 13: Event-by-event animation controller, after room sensor has been triggered 33
Figure 14: Visualisation of SUT component.. 34
Figure 15: Visualisation of Access Control Decisions ... 36
Figure 16: Visualisation of Positive Location Update.. 37
Figure 17: Visualisation of Negative Location Update .. 38
Figure 18: Supplementary Controls ... 39

ix

Chapter 1: Introduction

This chapter introduces the dissertation topic and explores the motivation behind the

work. It is followed by an examination of the objectives hoped to be achieved by the

project, and concludes with a summary of the document structure.

1.1 Motivation

Ubiquitous Computing is an emerging field of research that concerns itself with

methods of “enhancing computer use by making many computers available

throughout the physical environment, but making them effectively invisible to the

user” [1]. This burgeoning research area has been to the forefront of developing

smart spaces; environments that have been equipped with sensors that can perceive

and react to individuals, without necessitating them to wear any special equipment.

Typically the development process for a new ubiquitous computing system involves

equipping a test environment with sensors, evaluating a variety of configurations,

and then rolling the system out to its intended location. There are numerous

challenges associated with this process, including the difficulty in creating

reproducible experiments to evaluate, and the significant issue of turning a small-

scale laboratory prototype into a real world implementation. Thus, the complex

nature of ubiquitous computing systems has meant that the development of such

environments is a very time consuming and expensive process.

Other factors that have exacerbated the slow development of smart spaces include

the logistics of finding suitable test locations to equip with sensors, and the relative

expense of such equipment. Hence there has been great interest in the development

of 3D computer simulations of smart-space environments, so that rapid prototyping

and evaluation of ubiquitous computing experiments can take place in a reliable and

efficient manner, before any physical implementation need occur. These simulators

generally contain virtual versions of real world environments complete with various

1

2

sensor types. Thus, they have had success in speeding up the development process,

reducing costs, and easing the significant logistical issues associated with the

evaluation of new ubiquitous computing environments.

This dissertation describes an SVG (Scalable Vector Graphics) [2] visualisation tool

that has been developed in order to aid the evaluation and development of

experiments in 3D ubiquitous computing simulators. Sensor network events and user

activity within the simulator can be correlated with reference to pre-defined goals,

and thus this dissertation will establish whether post-hoc 2D visualisation of the

experiment can increase the efficiency of developing scenarios, collating user

feedback and correlating results to design goals. Furthermore, the visualiser will

allow the XML output from the simulator to be viewed in an accessible and useful

manner, enabling more knowledge to be extracted from the data generated. This is

vital as the current presentation of data in large XML databases is not conducive to

effective debugging or collation of information. The need for intelligent

visualisation of sensor data will be exacerbated by sensors’ increasing prevalence in

our daily lives.

Sensors will result in an explosive increase in data flows as networks

become more ubiquitous… new data mining tools will need to be

developed in order to effectively extract value from the data… new

approaches for the visualization and representation of information will

be necessary so that people can clearly understand and communicate

the data’s value [3]

Other features of this application will be the ability for developers to replay previous

experiments at a later date, allowing for general comparisons, as well as more

forensic analysis of events. Moreover, this visualisation allows for spatiotemporal

relationships within the simulator to be more easily discerned, and opens up the

possibility for data to be quantified in graphs and charts. Currently the XML log

exported from the KDEG Ubiquitous Computing Simulator (see Section 2.1.1) is an

underused resource, and this paper highlights how SVG visualisation is a practical

way of deriving extra benefits from it.

3

Finally, this project will show how it is possible to implement different SUTs

(Systems Under Test) into the visualiser, so that external systems can have their

readings integrated with those of the simulator itself. The evaluation of these

systems in a virtual environment will be central to their successful implementation in

the real world. Hence, this dissertation will highlight the benefits visualisation can

bring to the development of such services, by juxtaposing simulator data with the

interactions that the SUT is having with the overall framework.

1.2 Objectives:

 In general, the objective of this project is to examine information visualisation in the

context of ubiquitous computing simulators, and to examine its usefulness as an aid

to developing and evaluating domain specific experiments. Specifically the aims for

this project are:

1. Design and develop software that can take XML output from the KDEG

Ubiquitous Computing Simulator and a System Under Test, and visualise this

data in an elegant and useful manner.

2. Access the level of benefit that the post hoc analysis of 2D visualisations can

bring to designers and developers of simulator experiments.

3. Investigate whether SVG is an appropriate technology in which to develop

such a visualisation tool in.

4. Elaborate on the potential that a more sophisticated version of this software

would have in enhancing the integration of various Systems Under Test into

the ubiquitous computing simulator.

1.3 Document Structure:

This chapter is followed by a survey of the State of the Art in the areas of ubiquitous

computing simulators and SVG data visualisation. Chapter 3 examines the design of

this visualisation tool, highlighting choices made regarding the technical

implementation of the software, and the visual representation of data. A complete

4

examination of the project’s implementation and problems encountered follows this

chapter, which is in turn followed by an evaluation of the project and discussion on

its merits and failures. The paper ends in Chapter 6 with some concluding comments

and a look at potential future work that could extend the development of this

software.

5

Chapter 2: State of the Art

This chapter presents work currently being undertaken in the two main topics

discussed in this paper, namely ubiquitous computing simulators and SVG

information visualisation. An analysis of these projects concludes this chapter.

2.1 Ubiquitous Computing Simulators

Because of the expense and practicalities associated with the design and testing of

ubiquitous computing applications, there have been recent developments in

simulators that allow applications to be evaluated in a more systematic and economic

fashion. This section presents two such simulators who exploit 3D technologies to

provide a viable alternative to real world prototyping of smart spaces.

2.1.1 KDEG Ubiquitous Computing / Context Awareness Simulator

The success of a pervasive computing application largely relies on its ability to

dynamically adapt to the users’ context in an appropriate manner. This requires

extensive user-centred design and testing to ensure that the levels of adaptive

behaviour within the application are suitable for the services it’s providing. As a

result, the Knowledge and Data Engineering Group (KDEG) in Trinity College

Dublin have developed such a platform for the user-centred evaluation of context-

aware services [4]. This platform has been implemented as there is a need for the

development of systems that allow for repeatable experiments in ubiquitous

computing technology, which can then be evaluated in a systematic fashion. It aims

to speed up the development process, allow rapid prototyping of systems, and reduce

expenses associated with the evaluation of smart space applications.

The platform contains a 3D ubiquitous computing simulator, which is sufficiently

realistic to convey changes to the physical and social context of avatars. In addition

to this, simulated sensors can be configured to reside inside the virtual environment,

with their readings providing the basis for an electronically sensed view of this

world. The simulator also provides mechanisms for researchers to integrate their

prototype services (System Under Test or SUT) into it, providing a test bed for the

evaluation of these context aware applications.

Figure 1: Avatar inside the KDEG Ubiquitous Computing Simulator

The simulator uses a modified Half-Life 2 game engine [5] to display a virtual

environment (complete with models of ubiquitous computing sensors), and facilitates

the exporting of relevant data in the form of XML encoded messages. It is this XML

log that will provide the raw material for the visualisations implemented in this

project. The power and flexibility of simulators in comparison with real world

implementations, is highlighted by the ease in which a large number of

heterogeneous sensors (pressure mats, wireless access points, Bluetooth beacons) can

be situated throughout the environment efficiently and easily. These sensor

configurations can then be reused or adapted for different environments.

Researchers use a Java application or Proxy to interface their SUT to the simulator,

and can access multiple environments simultaneously. Likewise, multiple SUTs may

access a single environment. When an experiment is started, messages flow from the

virtual environment to the SUT at runtime, with the data leaving the simulator

providing the context information in which the SUT can base its decisions. Any

responses from the SUT that require changes to the 3D environment (i.e. switching

6

7

lights off if no user has been detected in a room for more than two minutes), is sent

back asynchronously, and actuated in the simulator.

One such SUT that has been implemented on this platform is a Location-aware

Instant Messaging service [6] that displays the location of other users if permitted by

the accompanying policy-based access control mechanism. The virtual environment

allowed the developer to test and debug the system from his own desk, without the

logistical problems or costs associated with a real world implementation.

Furthermore, running multi-user experiments can be done regularly and at short

notice, because the platform facilitates the manipulation of avatars’ location in an

easy an intuitive way for new learners. In this project, the XML output from the

Location-aware Instant Messenger, coupled with the simulator XML, will provide

the raw data for a unified visualisation of their interactions.

Problems associated with the KDEG simulator include the tedious and time-

consuming nature of reconfiguring connections between the four machines in the

framework, and the lack of a dedicated GUI to simplify this procedure. However,

with regards to its aim of enabling user-centred evaluation of context-aware services,

it has had some initial successes, and these can be built on to provide a more flexible

and robust framework.

2.1.2 3DSim: Rapid Prototyping Ambient Intelligence

In October 2005, Ali A. Nazari Shirehjini and Felix Klar presented 3DSim [7] to the

Joint sOc-EUSAI conference in Grenoble. This tool which aids the rapid prototyping

of Ambient Intelligence applications has a 3D simulator as a core feature. As in the

KDEG simulator, the main motivation for this work is to allow the verification of

pervasive applications in a virtual world, before deploying them in a physical

environment. This encourages rapid development cycles, and saves both on cost and

logistics. Moreover, it makes it feasible to test the same interaction solutions in

several domains (office, home, etc), not just limiting it to one focused experiment.

One major difference is that 3DSim allows both virtual sensors to be used, as well as

real-world sensors, which are connected via standardized interfaces. Thus any UPnP

(Universal Plug and Play) [8] control point may invoke actions on a virtual UPnP

device in the simulator. These devices are dynamically inserted into the environment

and can be removed at run-time. Because XML is core part of UPnP, enabling

device and service descriptions, control messages, and eventing, all interaction can

be stored in an XML log for later analysis. In order to detect changes in sensors and

act upon them, 3DSim has an integrated Environment Monitoring System (EMS)

which analyses the data, and if appropriate visualises the changed state in the virtual

world (i.e. its location, lighting, etc).

Figure 2: 3DSim display with an avatar looking at a SMART Board.

3DSim employs what it calls Context Visualisation to represent and animate events

received from real sensor components. This can be used to test accuracy in context

aware systems, such as sensors correctly recognising user activity, and objects

reporting their state accurately. Thus, a designer can monitor the awareness of an

environment he is setting up, and reconfigure accordingly until the space is reacting

appropriately to the sensor input. If the EMS identifies a user activity from the

sensors, an animation of an avatar doing that task (cleaning a whiteboard, presenting

in the boardroom, etc) is generated in the simulator. Likewise, environmental states,

such as light, are visualised in the virtual world by adjusting the 3D scene settings,

8

9

and device states, such as a door opening, are rendered in the scene with appropriate

changes to light and shadow. Another important feature of 3DSim is the ability for

multimedia artefacts to be displayed on screens within the virtual world.

The core of 3DSim consists of a CVE-server (Collaborative Virtual Environment)

which manages the simulated world, and a 3DSim-client which visualises and allows

interaction with the 3D world via a GUI. The CVE is based on HOUCOM [9] which

manages object lifecycles and provides event distribution. The platform is also

extensible, allowing modules containing new 3D objects to be added to, or removed

from, the environment dynamically at runtime.

Overall, 3DSim has some unique features which make it a valuable application for

developers of Ambient Intelligence to use. For instance, it facilitates the

development of PDA based control systems, adaptive user interfaces and goal-based

interaction systems. Furthermore, it renders scenes to give a photo-realistic

impression, and if components designed using it are developed with UPnP, it means

that they can be easily adapted to real world environments. These factors combine to

make 3DSim a flexible and innovative tool.

10

2.2 SVG Information Visualisation

SVG is a W3C recommended language for describing two-dimensional graphics and

graphical applications in XML. It has been used as a technology for numerous forms

of information visualisation and as has proved to be a flexible and efficient open

source method for such research. Vector formats such as SVG are small in size, can

be animated, and allow the skewing and enlarging of graphics without degradation.

Thus, it means that SVG or Adobe Flash’s SWF format [10] are the only viable

options for this project. A combination of a Java widget scheme (SWT [11], SWING

[12], etc) with a raster graphic format like PNG, JPEG or GIF, would not allow the

graphical flexibility required for this project.

Though SWFs are a powerful vector format who’s native scripting language,

ActionScript [13], has good XML support, the fact that it is a proprietary technology

militates against it. Furthermore, because SVG is an XML language, thus allowing

easy integration with other XML technologies such as XSL [14], meant that SVG

was chosen as the vector format of choice for this project. In this section I will

describe how this technology has been exploited to produce some innovative and

useful spatiotemporal visualisations.

2.2.1 Dynamic Processes of the Gruben Glacier

In 2003 Yvonne Isakowski produced a visualisation of dynamic glacier processes

using SVG animation [15]. Because geometric variations, increasing and decreasing

mass, and ice flows, are significant properties of glaciers, it was an ideal subject in

which to demonstrate the advantages that dynamic SVG animation could offer

cartographic visualisations. Previously cartographers had relied heavily on static

media to visualise glaciers, which meant they could only offer a snapshot of the

current status of these highly variable, non-static entities. In her dissertation,

Isakowski used the Gruben glacier in the Valais region of Switzerland as her test

location, as near homogeneous measurements from the area has been gathered

annually since 1970. This provided the ideal data to demonstrate the potential SVG

animation has in enhancing the visualisation and understanding of such dynamic

activity. Furthermore, this work would enable the discovery of difficulties and

problems associated with the technology, as well as its many positive attributes.

Figure 3: Screenshot of Dynamic Processes of Gruben Glacier

The initial stage in the development of the glacier visualisation system involved the

conversion of the base data from raw text files to an SVG format, which was done

using a PERL [16] script. Criteria for the representation of the glacier and its

interface were then drawn up (scale, legend, navigation, font, and colour), and

several SVG documents pertaining to each individual animation were created with

these criteria in mind. As a result, four separate animations were integrated into the

final piece, highlighting the absolute elevation change, relative elevation change,

surface velocity, and extent of the glacier, over a twenty five year period.

A combination of SMIL (Synchronised Multimedia Integration Language) [17] and

DOM (Document Object Model) [18] functions were implemented to control the

animation of the SVG. This was necessitated by a lack of flexible timing controls in

SMIL alone. By encoding information in SVG attributes (radius and colour), it was

possible to highlight the extent of the increase or decrease in the glacier in an

intuitive and effective manner. In addition, each individual point has a graph of

11

values associated with it that can be accessed, and because these graphs are

synchronised to the main animation, it allows them to be played in parallel. Drop

down menus are used to switch between different animation themes, but the lack of

GUI elements native to SVG were noted and showed some of its shortcomings as a

tool for interface design.

Figure 4: Graph (absolute) for a certain point in the elevation animation

Another attribute of SVG highlighted in the production of this application was that

animation parameters were stored as text, and thus didn’t bloat file sizes

unnecessarily. However, it was noticed that when animating a large number of

objects at once smooth motion was impaired, even on powerful machines, as

animations are calculated and rendered in real time. Furthermore, as interpolation

and rendering of animation objects were done just in time, allowing users to interact

with graphics dynamically, there were some inconsistencies in the drawing of some

complex data, especially when pausing the animation.

Notwithstanding these issues, the spatiotemporal visualisation of the Gruben glacier

is one of the best examples of dynamic data visualisation to be implemented in SVG.

It combined four animation topics, and integrated them with an interactive timeline

and intuitive user interface. The combination of allowing users to compare different

perspectives of the one event, with the ability to control the presentation of the data,

has resulted in a powerful application, albeit for a niche domain.

12

13

2.2.2 GEMOS, A Building Management and Security system's SVG Interface

In 2005 Christopher B. Peto presented GEMOS [19] to the SVG Open conference in

Enschelde the Netherlands. GEMOS exploits vector graphics created by architects in

CAD [20], to develop an SVG interface for a building management and security

system. The motivation for this was to use existing entities as the basis for a new

application, practical for everyday use.

Because all building plans today are created in vector format (such as AutoCAD,

DWG or DXG) they are easy to convert into SVG, which maintains the ability to

zoom into them without degrading the image quality, whilst also adding a significant

dynamic component to the plans. This adaptivity is the key that allows GEMOS to

monitor and control building systems in real time, via a web interface. For instance,

by interfacing devices such as fire sensors and intrusion detectors with the server, it

allows for their readings to be dynamically displayed over the static floor plan.

Thus, if a fire sensor is triggered in the building, an automatic script is called to

highlight the area in question, and to print out an updated sensor map. These can be

used to better inform administrators, and the fire department, as to the best plan of

action.

Figure 5: GEMOS, Real-time floor plan display

The entire process starts with the importing and converting of CAD data into a SVG

floor plan and database. It is essential at this stage that static graphics (walls, doors,

etc) are separated from the dynamic objects such as sensors. The CAD import

assistant, which is used at this point, ensures that any future changes to the building

plans can be updated in the SVG interface quickly and efficiently. When the base

floor plan has been added to the system, layers of sensors, organized by type, can be

categorized and superimposed on the map using the web interface. Once this has

been completed satisfactorily settings are saved to the GEMOS web server.

In order to edit floor plans and configure intelligent objects in the system, the SVG

editor is employed to interact with the GEMOS server. It consists of a HTML

frameset which loads objects from the database into session parameters when

instantiated. Once initialised the objects and map are loaded into the editor’s SVG

interface. Each type of object (Sensor, Circle, Line, etc) has an ECMAScript [15]

14

class associated with it, containing all its attributes, properties and DOM references.

All objects are then sorted into arrays, as this optimizes speed by limiting access to

the DOM, except when a change of position or style has been performed on an

object. New objects can be inserted at this stage as well, or else drawn directly using

native SVG tools, such as Text or Cubic Curve. Modifications follow a similar

process, and updates of attributes are shown directly. All changes can then be saved

to the database before the final visualisation occurs.

Figure 6: GEMOS, Real-time floor plan display

GEMOS enables real-time status information to be viewed and navigated through its

SVG interface, which is displayed using the Adobe SVG viewer [21] and Microsoft

Internet Explorer. By combining ECMAScript [22] with SVG, zooming and panning

functionality has been added to the display, as has layer showing/hiding, which is

facilitated through DOM manipulation. If an object’s status changes, i.e. an intrusion

15

16

has been detected, a predefined refresh script is pushed to the browser, which locates

and updates the relevant attributes of the object. Overall this system represents one

of the most impressive implementations of SVG to date, with its integration with

databases and ECMAScript highlighting the powerful potential that SVG

applications have.

2.3 Analysis

Though it has been shown that ubiquitous computing simulators enable the rapid

development of context-aware experiments, there is a noticeable lack of an overview

visualisation tool included in them. Such an application would enable researchers, at

a glance, to understand what is happening in the experiment at a particular moment

in time, or to save visual representations of a test for posterity. Furthermore, the

visualisation of data would aid the debugging process, give a greater insight into

spatiotemporal interactions, and could represent sensor events in more accessible

fashion than plain text, which allows for trends to be determined. SUT integration,

or the testing of new interaction models, would also benefit from their juxtaposition

with simulator events.

As has been shown, SVG visualisation offers a viable way of presenting such data to

users of ubiquitous computing simulators. Indeed the goals of the Gruben Glacier

experiment (visualisation of a dynamic data set, and the investigation of the

suitability of SVG for such a purpose) are similar to aims of this dissertation, though

in a vastly different domain. However, the Gruben Glacier visualisation was

designed as a once-off representation of a specific data set, rather than a generic tool

for the visualisation of glaciers. This is in contrast to the ubiquitous computing

visualiser, which will allow any XML output from the test experiment to be

visualised onscreen.

How extensible the visualisation system should be (allowing configuration of new

maps and SUTS) will be explored in this project, as extensibility would make the

software an extremely flexible tool for developers of experiments to use. Such

extensibility has been implemented in the GEMOS system, in relation to adding new

maps, but it currently has no facility to integrate SUTs into its framework.

Moreover, GEMOS’ visualisation of complex data is not as elegantly displayed as it

17

might be, and its lack of availability for this project meant adapting an existing

version of its system was rejected as a viable approach.

2.4 Conclusions

Chapter 2 introduced state-of-the-art ubiquitous computing simulators and how they

can be used to speed up the design and implementation of pervasive computing

systems. By reducing the cost and logistics associated with such developments,

rapid prototyping and user-centred evaluation of platforms can take place. However,

limitations in the presentation of such heterogeneous data were highlighted, and

examples of SVG visualisation were introduced to show how visual representation of

dynamic data can be a valuable asset to researchers in ubiquitous computing.

18

Chapter 3: Design

This chapter introduces the design principles and core technologies used in this

project. The visualiser’s architecture and the types of XML messages used are also

discussed, as are the various components that make up the system. The chapter

concludes with an examination of pertinent security issues relating to the visualiser.

3.1 Technologies Used

This section briefly describes the technologies used in this project and how this

combination has resulted in a flexible and versatile framework. For instance, the

employment of XSL allows users to customise what messages to filter out of the

XML log, which is important for extensibility. Likewise, if any PHP functions need

to be called (such as character replacement in text), the mechanisms are already in

place.

The use of Internet Explorer and Adobe SVG Viewer creates a cohesive platform for

SVG, JavaScript, HTML and DOM to interact, which is core to the operation of this

software. Furthermore, if new SVG or JavaScript needs to be created (for floor plan,

SUT or interface), it only requires this code to append or replace the current content,

and then for it to be loaded into the viewer. Finally, all the technologies used are

freely available, and the ample documentation and support available for each will

ease system implementation. A short description of each follows:

Adobe SVG Viewer is a plug-in for web browsers that allows users to view and

interact with SVG content.

Document Object Model (DOM) allows XML files to be represented in a tree form.

The entire content of the document must be parsed and stored in memory, allowing

elements and nodes to be accessed and manipulated via scripting languages like

19

JavaScript. This project uses the ActiveX DOM Object preinstalled with Microsoft

Internet Explorer.

JavaScript is an extension of the ECMA-262 standard. It is a scripting

programming language that runs at the client-side, is interpreted, and is loosely-

typed. JavaScript functions can be embedded or included in HTML pages, and they

allow interaction with DOM objects.

HyperText Markup Language (HTML) is a markup language that allows the

creation of web pages that can embed objects such as SVG. It needs to be displayed

in a web browser such as Microsoft Internet Explorer or Mozilla Firefox.

Scalable Vector Graphics (SVG) is an open standard created by the W3C that

allows static and animated vector graphics to be represented in XML.

Extensible Markup Language (XML) is another open standard recommended by

the W3C, which allows the creation of user-defined markup languages capable of

describing any data. Its main purpose is to enable interoperability on the Internet,

and the sharing of data across different systems.

Extensible Stylesheet Language (XSL) is a family of languages which allows the

transformation of XML documents. A new file is created based on the content of the

original file, and this allows the conversion or filtering of XML data.

PHP is an open source programming language that enables dynamic web content and

server-side programs. It has good support for a large number of databases including

MySQL, Oracle, Microsoft SQL Server and PostgreSQL.

Apache is a popular open source HTTP web server that runs on many platforms.

There is excellent support for applications using Apache and PHP.

Sablotron is an open source XML toolkit that provides XSL extensions for the PHP

programming language.

3.2 Data Flow in Generic Visualisation System

A variety of different technologies could have been used to develop this ubiquitous

computing visualisation system. Figure 7 below, describes the flow of data through

such a framework in generic terms, and highlights how different technologies are

needed to facilitate the transport, editing, storing and display of raw data.

Figure 7: High Level Interaction within a visualiser.

1. Raw data is outputted from the simulator and SUT.

2. This is filtered and altered in the pre-processor until it is in the requisite

format.

3. The processed data is stored and made available to the visualiser’s

template

4. The visualiser interacts with the processed data to update its display

3.3 Architecture of Visualisation System

When an experiment is run on the ubiquitous computing simulator, the positioning of

avatars and their interactions with sensors are recorded in an XML log. A SUT that

is integrated with the simulator can also have its readings interspersed into this XML

log. Figure 8 displays the system architecture, and the processes of the visualisation

tool.

20

Figure 8: Architecture of Visualisation System

1. When the application’s HTML holder file is opened by the Internet Explorer

Browser, a PHP script is automatically called on the Apache 2.0.52 HTTP

Server.

2. This filters the XML log (using the Sablotron XSL extension for PHP 4.42)

according to the XSL file created by the experiment developers.

3. Because of restrictions with special characters, this PHP file also replaces any

‘<’ strings with a ‘<’ character and any ‘>’ strings with a ‘>’ character.

This allows the entire log to be used as XML, because it converts any

relevant character strings to XML elements.

4. The processed XML file is returned by this PHP script, and is automatically

loaded into an ActiveX DOM object. If there is also SUT information

interspersed in the XML log, steps 1-4 are repeated using a second PHP

script. Similar XSL filtering and string replacement is performed, before this

SUT related XML is loaded into a DOM object.

5. The HTML holder file has the SVG file embedded in it, and this is displayed

using the Adobe SVG Viewer 3.0.3. The SVG file has some base elements

and local JavaScript functions that it can call, as well as functions it can

access from the head of the HTML file. When required, the SVG extracts

21

information from the DOM objects, and appends this new information to

itself.

3.4 System Under Test Architecture

The system under test visualised in this project is based on the Location-aware

Instant Messenger described in Section 2.1.1 of this document. It consisted of a

number of separate entities (including the Simulator) interacting as described below.

Figure 9: Architecture of chosen System Under Test (SUT)

What this system allows is for different users to simultaneously use the simulator,

and find out the locations of other users on their team. Conversely, any users who

are not on the team will have their location in the simulator blocked from them. In

order for this to operate, a user must first use the Instant Messaging Server to select

another person they would like to locate. This sends an Access Control Request to

the Trust Management and Community Management Servers, which makes a

decision as to the success of the request. An Access Control Decision (ACD) is sent

back to the user, and if positive, it results in the requested user’s location in the

22

23

simulator being updated in the instant messenger, each time the user changes room.

These messages containing new location information are referred to as Location

Updates.

In choosing what elements of the SUT to use, Access Control Decisions and

Location Updates were prioritised for visualisation, as it was felt that the most

important thing from a developers’ perspective was to know what access a person

had to the locations of other users at any moment in time, and when did they receive

updates of their location. Other messages that are used in this system include Jabber

Messages, Elvin Messages, Community Control Requests and Community Control

Decisions. It would be reasonable to represent any of these messages that propagate

through the system, depending on what the researcher was using the visualiser for

and what they wanted to better understand. For instance, it would be possible to

visualise the time latencies it took for a single request to traverse each part of the

system, and to return a reply to the sender. However, due to time constraints and the

fact that it would not have added significantly to the concept under test, it was

decided to concentrate purely on the Access Control Decision and Location Update

elements of the SUT. Once the main principals of the concept have been proved, all

future implementations can use a similar visualisation mechanism.

24

3.5 Types of XML Messages

As has been mentioned, the 3D ubiquitous computing simulator outputs a number of

different messages, representing different actions that occur within it. These include

the location of users and the events they trigger, such as entering rooms. These two

messages are what were utilised in the implementation of the system, but it would

have been possible to include a variety of other messages had they been available,

such as wireless sensor propagation levels, motion detectors and heat sensors. As

well as the Simulator itself producing XML messages, the SUT also generates its

own, depending on its configuration. For the purposes of this application, the SUT

messages that were visualised were ACDs and Location Updates.

3.5.1 XandY Messages

XandY messages are sent out periodically, and contain either location information

for users inside the simulator, or event information for actions occurring within the

3D environment.

25

3.5.2 Location Message

The message below is identifying the X, Y and Z coordinates for user4@jabber at a

specific point in time of an experiment.

<Term typeID="XandY">

 <ReceivedFrom>SIMULATOR</ReceivedFrom>

 <SendingTo>ELVIN</SendingTo>

 <Date>27/4/2006</Date>

 <Time>2:13:9:328</Time>

 <TimeUTC>1146147189000</TimeUTC>

 <UserName/>

 <Direction>IN</Direction>

 <Message>

 <msg>

 <users>

 <user>

 <id>user4@jabber</id>

 <location>

 <x>449.717224</x>

 <y>-400.385742</y>

 <z>-296.968750</z>

 </location>

 </user>

 </users>

 <event>

 <none/>

 </event>

 <time>693.299988</time>

 </msg>

 </Message>

</Term>

26

3.5.3 Event Message

The following message is instantiated when user2@jabber enters the Atrium at a
specific time.

<Term typeID="XandY">

 <ReceivedFrom>SIMULATOR</ReceivedFrom>

 <SendingTo>ELVIN</SendingTo>

 <Date>27/4/2006</Date>

 <Time>2:13:28:734</Time>

 <TimeUTC>1146147208000</TimeUTC>

 <UserName/>

 <Direction>IN</Direction>

 <Message>

 <msg>

 <room>Atrium</room>

 <location>

 <x>485.791443</x>

 <y>773.135742</y>

 <z>-296.968750</z>

 </location>

 <user>user2@jabber</user>

 <event>

 <enter/>

 </event>

 <time>711.195007</time>

 </msg>

 </Message>

</Term>

27

3.5.4 Access Control Decision Message:

This message is the reply generated to an Access Control Request that has been made

by a user. In this example user4@jabber has had its request to be made aware of the

location changes of user1@jabber declined.

<Term typeID="1146147133000-85">

 <ReceivedFrom>ELVIN</ReceivedFrom>

 <SendingTo>CLIENT</SendingTo>

 <Date>27/4/2006</Date>

 <Time>2:12:13:484</Time>

 <TimeUTC>1146147133000</TimeUTC>

 <UserName />

 <Direction>IN</Direction>

 <Message>

 <ELVIN-NOTIFICATION>

 <ACCESS-CONTROL-DECISION>ID</ACCESS-CONTROL-DECISION>

 <ACD-PAYLOAD>DECLINE</ACD-PAYLOAD>

 <ACD-TARGET>user1@jabber</ACD-TARGET>

 <ACD-SERVICE>LOCATION</ACD-SERVICE>

 <ACD-SUBJECT>user4@jabber</ACD-SUBJECT>

 </ELVIN-NOTIFICATION>

 </Message>

</Term>

If the Access Control Decision had been successful for user4@jabber it would have

meant that the <ACD-PAYLOAD> element would have looked like this instead:

 <ACD-PAYLOAD>*</ACD-PAYLOAD>

28

3.5.5 Location Update Message

This message is sent to users updating them on the location of other users in the

simulator.

<Term typeID="1146147213000-120">

 <ReceivedFrom>ELVIN/SOAP</ReceivedFrom>

 <SendingTo>CLIENT</SendingTo>

 <Date>27/4/2006</Date>

 <Time>2:13:33:296</Time>

 <TimeUTC>1146147213000</TimeUTC>

 <UserName>user1@jabber</UserName>

 <Direction>OUT</Direction>

 <Message>

 <message-with-applied-access-control>

 <LOCATION-SERVICE>LOCATION</LOCATION-SERVICE>

 <PAYLOAD>Lobby_Nth</PAYLOAD>

 <SUBJECT>user3@jabber</SUBJECT>

 </message-with-applied-access-control>

 </Message>

</Term>

If the Location Update message had been unsuccessful for user1@jabber (i.e. it

hasn’t received a successful Access Control Decision) the <PAYLOAD> element

would have looked like this instead:

 <PAYLOAD>DECLINE</PAYLOAD>

29

3.6 Design Principles

When planning the design for this visualisation tool it was essential that all elements

of the interface (both visual and functional), were conducive to users getting

increased knowledge from the information in an easy and intuitive fashion. The

combination of good interface design with information visualisation enables this.

For information to become knowledge, we need to interpret and

understand it. Visualization in general responds directly to this need [23]

This section contains the design principles that were followed in the creation of the

interface and controllers, and the visualisation of the floor plan and SUT.

3.6.1 Interface and Controllers

• Best effort should be made to keep the interface design as clean as possible.

• There should be a clear separation between the SUT and the simulator

components.

• All references to an avatar (iconic or textual) must maintain the same colour

scheme throughout the interface.

• Timelines should clearly show the temporal context an event occurred at.

• Standard icons for controlling animations should be used throughout.

• Visual representations should be backed up by a textual explanation, if it

clarifies the intended meaning.

3.6.2 Floor Plan

• The floor plan should only contain objects that are absolutely vital to that

particular experiment.

30

• Any map data superfluous to the experiment should be deleted or have its

opacity set to zero.

• The event timeline should contain all simulator events, even if they are many

different types

• Labels on the floor plan should be numerical and a have a corresponding

legend.

• The main static elements of the map (floor and walls) should only be drawn

in black, grey, or white, so that superimposed sensors or avatars can be

clearly contrasted against the background.

3.6.3 System Under Test

• SUT visualisations should use the simplest shapes as possible to convey their

meaning, as long as this does not hinder cognition.

• If SUT visualisation comprises of more than one component, it should be

obvious to users which region is active

• The SUT timeline should contain all SUT events, even if they are many

different types

• The choice of colours in the SUT should complement the rest of the interface,

reinforcing the knowledge already conveyed.

3.7 Interface Design

It was important that the interface for this application allows researchers to get an

instant overview of what is happening in the experiment, as well as facilitating a

more detailed analysis of events occurring. Thus, the optimal visualisation of the

floor plan, its controls, and their positioning in the interface is central to the success

of this application. Furthermore, it is essential that there is a clear separation

between the information relating to the simulator and that relating to the SUT,

though allowing the two sections to work in tandem is paramount. Several interface

designs were tested on paper before an implementation on computer, with Figure 10

showing the final layout of the interface and its various components (See Appendix

C, for larger version). The design of each part of the interface is discussed in the

next sections.

Figure 10: Visualiser Interface

3.7.1 Visualising the Floor Plan

In order to maintain perspective and maximise clarity for users, an overhead

projection was used to visualise the map of the ground floor. Information essential to

the experiment was maintained in the map, which meant that only walls and doors

were visualised in this minimalist design. Superimposed on top of each room was a

number that could be cross-referenced with a list of room names, meaning the extra

clutter of text did not have to be visualised. If users triggered a room sensor while

walking in the simulated building, the corresponding room would change colour to

green to signify that they had entered.

The grey and white colour scheme is deliberately understated to allow the colours of

the doors, avatars and sensors stand out more during animation. Consistency in

colour is also catered for in the circular icons representing avatars in the simulator.

Thus, the colour of each user is maintained in all visual and textual references to it in

the interface. Though the Adobe SVG Viewer has inbuilt zooming and panning

31

controls, they are not going to be essential to the use this visualisation, as the floor

plan and controllers are compact enough to appear on a single screen, yet large

enough to display information with clarity.

Figure 11: Visualisation of Floor Plan

3.7.2 Visualising the Animation Controls

In order to give users more flexibility as to how they viewed interactions within the

simulator, two separate animation controllers were implemented in the interface.

Figure 12 shows the control a user would use if he wanted to play the floor plan

animation. It uses standard icons for the play, pause and stop functions, which

32

means that new users will be instantly familiar with the visual metaphor on display.

A thumb moves along the timeline when the animation is in motion, which informs

users of the temporal context current actions are occurring. Finally, the current time

of the animation is displayed in the right hand side of the controller beneath the

timeline.

Figure 12: Animation Control for Floor Plan

The second floor plan controller is designed to allow users to step through the

animation on an event-by-event basis. This allows a more forensic analysis of the

information than the overview animation offered by the other controller. Each event

is represented by a red vertical line on the timeline, with the current event turned

green and enlarged to make it more visible. Again this allows users to now the

temporal context of an event. Users can navigate forward and back along the

timeline using the standard buttons, and the corresponding event time is updated on

the right hand side of the controller. If an event signifies an avatar entering a room,

as opposed to its x and y coordinates, the name of the user (in the appropriate colour)

is printed, as is the room being entered.

Figure 13: Event-by-event animation controller, after room sensor has been triggered

It was decided not to synchronise the floor plan animations with the SUT

visualisations, because events can occur in rapid succession, sometimes with just a

few milliseconds between them. This would result in the interface blinking rapidly,

proving a distraction to users, and not allowing new knowledge to be conveyed. The

33

best mechanism for allowing close comparison of SUT and simulator events was to

allow users to synch the two event timelines manually, as required.

A decision was also made not to interpolate between location readings of avatars in

the simulator, which would have been possible using SMIL. This choice was made,

because it may have resulted in avatars walking through walls if the frequency of

their location messages was not high enough. Moreover, it would have given an

unrealistic visualisation of user interactions within the simulator, and wouldn’t have

visualised correctly the limitations of location sensors.

3.8 SUT Visualisation

The aim of visualising the SUT was to allow developers to see the current state of the

system at a glance. As mentioned previously, a decision was made to separate this

component from the animation controls of the floor plan for reasons of clarity,

though both parts still do complement each other. The next aspect to be finalised

was the placing of events relating to both Access Control Decisions and Location

Updates together on the one timeline. Because both event types were intrinsically

linked to each other, it was felt that this was an appropriate solution. Furthermore,

their connection would be further reinforced by placing their respective visualisation

components just beneath the timeline.

Figure 14: Visualisation of SUT component

34

35

Because there are two types of messages being represented on the one timeline

(ACDs and Location Updates) it was important for users to be able to distinguish

which event on the timeline corresponded to what SUT visualisation. Hence, when

an ACD is being visualised the Location Update section is greyed out and visa versa.

This accentuates the active component, while still allowing the other visualisation

component to be seen. This is vital in order for researchers to spot that Location

Updates are not contradicting what the ACD component is displaying.

For continuity with the rest of the application, the look and feel of the timeline was

identical to that of the event based controller for the floor plan. The user was able to

scroll forward and back through events with the relevant event on the timeline

highlighted in green. Again the corresponding time would be displayed just beneath

the timeline.

3.8.1 Access Control Decision Visualisation

Numerous design iterations were undertaken for this component before a

representation was finalised. It was vital that with minimal learning a prospective

user would grasp the visual metaphor employed. Each of the four users is

represented by a circle whose colour is consistent with their representation elsewhere

in the application. They are accompanied by the text of their name to reinforce in the

mind of researchers which colour is representing each user, but it is anticipated that

quite quickly they will associate users with the colour, negating them having to read

the text.

In essence, each circle (representing a particular user) has three lines protruding from

it pointing towards the other three circles. If a line is coloured green it means that

that user has had a positive ACD received from the user the line is pointing at. If the

line is red it means that the ACD was negative, and if the line is grey it means no

ACD at all had been received from the user it is pointing towards.

Figure 15: Visualisation of Access Control Decisions

For instance, in Figure 15 it is clear that user1@jabber has received a positive ACD

from user3@jabber (i.e. it can receive Location Updates for user3@jabber) and that

it has also been delivered a negative ACD from user4@jabber. This means that it

will not receive any information as to the location of user4@jabber, because it is not

on the same team. Furthermore, user4@jabber has received a positive ACD from

user3@jabber, and negative ACDs from user2@jabber and user1@jabber.

User2@jabber has not received any ACDs at all from user1@jabber, so the default

is that it does not receive any Location Updates from him. Thus, this design will

allow users of the simulator to see at a glance the current state of affairs regarding

ACDs at any point of time in the experiment lifecycle.

36

3.8.2 Location Updates Visualisation

As with the visualisation of the Access Control Decision component it was decided

after numerous design attempts to strip the visualisation of the Location Updates to

the bare minimum in order to enhance the clarity of the information conveyed. To

ensure design continuity, users inside the simulator were again represented by

colour-coded circles, with their names printed in the corresponding colour.

Whenever a Location Update event occurred, the visualisation component was

invoked as in Figure 16, where user1@jabber received an update from

user2@jabber that he was in “hall_Nth”. The green line connecting the two circles

reinforces the meaning that these users have an agreement that Location Updates

should be sent from user2@jabber to user1@jabber, and echoes their linkage in the

ACD panel.

Figure 16: Visualisation of Positive Location Update

37

In Figure 17 it is clear that user4@jabber has received a Location Update from

user2@jabber declining it any information regarding its location. The red line

joining the circles reinforces this information and again should be consistent with the

colours of the ACD component at that moment in time.

Figure 17: Visualisation of Negative Location Update

3.9 Separation of SUT and Floor Plan

The design of this system will ensure that there is a separation between the SUT

component and its floor plan counterpart. They both use separate DOM objects to

populate their displays and they both have distinct clocks. Thus, the only linkage

between the two is the universal colour scheme of the avatars. Users work these

components in tandem by aligning their clocks together, and analysing the two

displays. Because there is nothing intrinsically linking the SUT to the floor plan, this

design will allow the integration of a different SUT with minimal, if any, disruption

to the floor plan code.

38

3.10 Integrating New Maps

Because of the design used in this project, it should be possible to replace the current

floor plan with any SVG map. All that is needed, is the scale of the SVG floor plan

in comparison to the 3D original, and the correct offset for X and Y values. This

ensures that all avatar locations can be superimposed correctly onto the map.

Furthermore, if adjustments need to be made to the existing floor plan (new sensors

or furniture added), this can be accomplished easily by appending the relevant SVG

code to floor plan document.

3.11 Supplementary Controls

It was clear that there needed to be a section of the interface that would allow

supplementary functions, not central to the animation of the floor plan, be stored.

Figure 18 highlights the Show all locations widget, which allows all the locations of

an avatar, or group of avatars, to be displayed on the floor plan at the same time. A

researcher can simply select or deselect any avatar they want using the checkboxes,

and by then pressing the Show User(s) button, the appropriate locations will be

superimposed on the map. The avatars’ names are again colour co-ordinated with

the rest of the interface to maintain consistency. A link to the map legend is also

positioned in this section (a pop-up window displays the correlation between floor

plan numbers and room names), and any additional visualisation functions can have

their controls located here.

Figure 18: Supplementary Controls

39

40

3.12 Security Considerations:

Because the information the software relies on to visualise data comes from the XML

output of the simulator and the SUT, any viewer of the 2D visualisation is relying on

this log to be correct and uncorrupted. It is envisaged that the 2D visualisation will

become a key component in evaluating the success of various SUTs and sensor

configurations, thus in any large scale implementation there could be vested interests

in effecting the results of such experiments. For instance it would be possible for a

malicious user of the simulator to doctor the log, skewing the results to their benefit.

As the integrity of the data is paramount to the success of a fully implemented web

based version of this application, it should be insisted that the database have no direct

contact with the Internet, employing a DMZ as a buffer zone. All relevant databases

should be hardened against attack with default/unused accounts deleted, insecure

passwords changed, and access to the files limited to those with the correct authority.

Furthermore, any important information stored should be backed up at regular

intervals according to a strict backup policy, so that there can be easily retrievable in

the case of data being corrupted. A final measure that should be employed, would be

to ensure that all XML logs be digitally signed, in order to maintain their integrity

and allow authentication.

A more general issue relating to the integrity of the XML log (though one which

could be an exploitable security vulnerability) is the synchronisation of timestamps

from the simulator, and timestamps from the various SUTs connected to it. In order

for researchers to garner reliable information from their experiments, it must be

ensured that each timestamp is accurate, and that their reliability has not been

affected by a malicious user or a platform malfunction. Because the platform

supports many separate components working in tandem over a distributed network,

mechanisms must be put in place to guarantee that either a central log maintains

accurate information, or that separate logs can have their timestamps co-ordinated for

future visualisation.

Another obvious vulnerability of the web application is that there is a potential for

hackers to eavesdrop on potentially sensitive information whilst in transport, such as

41

the XML log. Hence I would recommend that TLS [24] be used to encrypt any

information sent from the client to the web server, in order for its contents to remain

private. It might be prudent to include client authentication for some administrator

accounts as another step to protect against malicious remote access. Finally, as the

translation of XML to SVG is the central function of the application, it should be

ensured that the XSL files within it are protected from any tampering, as if not, it

would be possible for an attacker to change these files resulting in misleading

visualisations, despite the XML input being accurate and its authenticity verified.

3.13 Conclusion:

This chapter has introduced and discussed all the design aspects relating to this

project. The technologies used and the underlying architecture of the system were

examined, as were the types of XML messages that are central to the frameworks

operation. General design principles were drawn up, and the design of each

component of the visualisation tool presented in detail. Finally, relevant security

considerations were discussed, as well as issues relating to the software’s

extensibility.

42

Chapter 4: Implementation

The implementation of the visualiser’s design posed numerous challenges that

needed to be overcome in order to satisfy the project objectives set out in chapter

one. This chapter describes the implementation process and the issues encountered

in the course of its construction.

4.1 Converting Character Strings to XML

The format of the messages being outputted from the simulator meant that a lot of

important data was contained in character strings rather than in XML. This meant

that a Find and Replace operation needed too occur on the file before it could be

loaded into a DOM object. The following code shows an example of the XML

output, before and after the character replacement algorithm was implemented.

Before PHP Find and Replace algorithm is applied:

<Term typeID="1146147133000-85">
 <ReceivedFrom>ELVIN</ReceivedFrom>
 <SendingTo>CLIENT</SendingTo>
 <Date>27/4/2006</Date>
 <Time>2:12:13:484</Time>
 <TimeUTC>1146147133000</TimeUTC>
 <UserName/>
 <Direction>IN</Direction>
 <Message><ELVIN-NOTIFICATION><ACCESS-CONTROL-
 DECISION>ID</ACCESS-CONTROL-
 DECISION><ACD-PAYLOAD>DECLINE</ACD-
 PAYLOAD><ACD-TARGET>user1@jabber</ACD-
 TARGET><ACD-SERVICE>LOCATION</ACD-
 SERVICE><ACD-SUBJECT>user4@jabber</ACD-
 SUBJECT></ELVIN-NOTIFICATION>
 </Message>
</Term>

43

After PHP Find and Replace algorithm is applied:

<Term typeID="1146147133000-85">
 <ReceivedFrom>ELVIN</ReceivedFrom>
 <SendingTo>CLIENT</SendingTo>
 <Date>27/4/2006</Date>
 <Time>2:12:13:484</Time>
 <TimeUTC>1146147133000</TimeUTC>
 <UserName/>
 <Direction>IN</Direction>
 <Message>
 <ELVIN-NOTIFICATION>
 <ACCESS-CONTROL-DECISION>ID</ACCESS-CONTROL-DECISION>
 <ACD-PAYLOAD>DECLINE</ACD-PAYLOAD>
 <ACD-TARGET>user1@jabber</ACD-TARGET>
 <ACD-SERVICE>LOCATION</ACD-SERVICE>
 <ACD-SUBJECT>user4@jabber</ACD-SUBJECT>
 </ELVIN-NOTIFICATION>
 </Message>
</Term>

4.2 Creating the SVG Floor Plan

Having exported a 2D raster image of the building floor plan from the Half Life 2

engine, Adobe Illustrator [25] was used to resize and trace the outline of the building.

It was hoped that there would be an automatic tool that would parse the 3D map

format and export out a 2D SVG version, however when this was attempted the

resulting file was over 6MB in size, as opposed to a hand traced version of only 11K.

This was largely due to thousands of smaller lines being created by the parser, where

one larger one would be have been more efficient. Moreover, the parser missed

some sections of the map altogether, which meant that it was not a viable option to

use its output as the floor plan for this project. However, it is not unfeasible that an

automatic tool could be developed in the future which would mean that the manual

tracing of SVG maps would be eliminated.

A decision to deliberately strip down the map to a minimum of lines as possible was

taken and the only the walls and doors were shown in the final version. This was

essential to reduce visual clutter and noise. Numbers representing each of the rooms

were superimposed onto the map, as well as an additional layer of room shapes that

would turn green if a room sensor was triggered by a user entering the room.

Though Adobe Illustrator produced the desirable result visually, it added a lot of

superfluous SVG metadata which was unnecessary, as well as doubling the file size.

44

Hence a further processing step was taken by editing the file in Exchanger XML 3.2

[26] so that all that remained was the core SVG needed for the experiment.

Because this application was limited to one floor of the simulator it meant that the Z

coordinate remained the same throughout the experiment, and that only the X and Y

coordinates needed to be aligned with the SVG floor plan. The SVG map produced

was scaled down by a factor of five from the simulator floor plan so that it would be

small enough to fit comfortably on a screen without necessitating scrolling, but large

enough to allow the clear visualisation of user and sensor activity within the

simulator. In order to get the right mapping from the X and Y coordinates in the

simulator to those in the SVG floor plan required some trial and error in getting the

correct offset to apply, but once these figures were attained (x + 105, y + 284), it was

straightforward to superimpose user movement onto the map.

4.3 Initialising Functions

Once the XML files have been loaded into a DOM object, a function is called to

iterate through the XML and extract out all the event times and load them into an

array. Because the timeline was 500 pixels long, it required subtracting the time of

the first event from the last event to find out the duration of the experiment, and then

dividing this figure by 500 to find out what unit of time a single pixel along the

timeline would represent. Hence it was possible to position each event at an

appropriate place on the timeline, so that users would be able to see in what context

that particular event occurred. The same procedure was followed in the production

of the SUT timeline.

In addition, another array was created that contained the IDs of the user relating to

each event. After each ID was added, it was checked whether this was the first time

this user had caused an event in the simulator; if so it was assigned a new colour to

represent it from then on. As the IDs of users were being extracted from the XML,

their X and Y co-ordinates were done so likewise. These were used to superimpose a

relevant coloured circle on the map. However, once appended to the SVG file, each

circle had its opacity set to zero. It would only become visible if triggered by the

45

play, next event or previous event buttons. Thus in essence, when the map is loaded

up, all events are already visualised on it, but they have their opacities set to zero.

If the next event occurring is an enter room event, then the name of the user and the

room entered is passed to the appropriate function. This function locates the room in

the SVG document by comparing the name with each room's unique ID. It then

changes the rooms’ colour attribute to green, and turns it back to white when the next

event occurs. A textual display of this event i.e. user2@jabber is entering the

Atrium is also appended beneath the event timeline, with the text of the avatar’s

name shown in the appropriate colour.

4.4 Implementation of Animation Controls

In this application there are two mechanisms implemented to control the animation

of the map. One allows the user to play through the animation in real time, with

further options to pause or stop the motion. The other allows for the animation to be

progressed forwards or backwards on an event by event basis, which allows for a

more forensic analysis of the interactions within the simulator.

With regards to the former, once the play button is hit, a JavaScript timer is

instantiated which increases indefinitely. If the time of this counter is equal to or

exceeds the time of the next event in the array of event times, then the circle

representing this event is located on the map, and its opacity set to 100%. If the user

responsible for this event has already had a previous event visualised, the older event

has its opacity set to 0%.

As the animation is playing, the thumb of the timeline moves along from left to right

to inform users of where the current part of the animation comes in relation to the

entire piece. This was achieved by storing the final event time of the animation, and

then continually passing the current time to a function which calculated what

percentage of the animation had been completed. It was thus possible to position the

thumb at the correct distance along the 500 pixel timeline.

If the pause button is hit during the animation, the time of the counter at that instant

is stored, so that when play is resumed, it restarts from the correct position. Pressing

46

the stop button resets the counter to zero and repositions the thumb of the timeline to

the extreme left.

The other control mechanism uses forward event and back event buttons to progress

the animation in either direction. There is also an event index which keeps track of

what is the current event on display. Thus, when either button is pressed, the

appropriate event has its opacity increased to 100%, and the event index increased or

decreased depending on which button has been pushed. If another event by the same

user is already on display on the map, it has its opacity reset to 0%.

When the animation is progressed forward or back, its representation on the timeline

(as opposed to the map) is highlighted in green and enlarged slightly so that it gives

users’ the context of this events position in time. A similar mechanism of forward

event and back event buttons is used to control the movement of time of the SUT

events. Likewise its timeline follows the same structure as its map counterpart.

In order to reduce learning time for new users of the system, the control mechanisms

were based upon standard icons and timeline metaphors that have been employed in

countless applications. Hence, the play, stop and pause functions were instantly

recognisable, and the combination of the timeline changing colour when either the

next event or previous event buttons were pressed meant that controlling the

animation was straightforward. The main technical challenge was to ensure that the

three elements (buttons, timeline and clock) were working in tandem with each other,

and not referencing separate events.

4.5 Implementation of SUT

In visualising the output of the SUT that was under consideration for this experiment,

a number of issues had to be considered. It was essential that researchers could be

aware of the current status of users at a glance, and that the meaning was intuitive for

them. The SUT component was activated by users pressing on the next event or

previous event buttons beneath the SUT timeline. When this occurred, it was first

necessary to use a conditional statement to check what type of event (ACD or

Location Update) needed to be visualised in the SUT component. If it was an ACD,

the subject, the target, the verdict, and the time, were extracted from the DOM

47

object. Likewise, if it was a Location Update, the subject, the username, the

payload, and the time were the relevant fields.

Each of these nodes extracted from the DOM tree had a corresponding SVG element

to reference. Thus if there was a new ACD, the SVG text holders for subject, target

and time were updated with their new entries, and the corresponding verdict line had

its colour attribute changed to green if the decision was positive, and red if negative.

If a new Location Update needed to be visualised, then the SVG text holders for

subject, username, payload and time were updated, and the payload line and arrow

changed to green if positive and to red if declined. Furthermore, the circles

representing the sender and the receiver had their colours matched to those of the

subject and the username respectively.

4.6 Implementation of Show All Locations

In order to allow users see all the locations that an avatar (or avatars) had been

sensed in the simulator, a combination of HTML check boxes, JavaScript, DOM and

SVG were used. A researcher can select any number of users they want to see using

checkboxes, and once this is submitted using the HTML form, a JavaScript function

is automatically called. This function uses DOM to locate all the relevant circles in

the SVG file, and sets their opacity to 100% if their checkbox has been ticked, and to

0% if not.

4.7 Discussion of Implementation

The implementation of the design described in the previous chapter was limited to a

short experiment of less than two minutes, where avatars roamed around the

simulator whilst the SUT (a Location-aware Instant Messenger) was operating. This

was the only file available during the implementation period, but longer experiments

would have been able to slot into the framework, without necessitating code changes.

Some informal user testing also occurred during the implementation process, which

resulted in the circles representing avatars being enlarged to make them easier to see.

Furthermore, a version which showed the trails of avatars’ movement in the

48

simulator (fading in opacity the older the reading) was discontinued, after users

found it cluttered the screen and created confusion.

Because many events were only milliseconds apart from each other, when signifying

a current event on the timeline (by colouring the red line green, and enlarging it), it

was often partially covered by the events immediately following it. However,

despite this problem, it was still always possible to make out where on the timeline

the active event was residing. Initially when text needed to be appended to the

screen, such as updating the clock time, the previous SVG text node was removed

and an updated text node appended. However, during implementation a more

efficient method was discovered, which involved using a JavaScript command to

update the content of an SVG text placeholder.

Throughout the implementation process, the lack of detailed JavaScript error

messages hindered debugging, though was not detrimental to the overall result.

However, due to time constraints, it wasn’t possible to implement a fully debugged

feature, that allowed users skip to anywhere in the animation by clicking on the

timelines themselves. Hence it was left out of the final version, as it was more

productive to devote time to other aspects of the project. However, the means to

create such functionality does exist in this visualisation framework.

4.8 Conclusion

This chapter described the implementation process of both the visual and technical

aspects of the project. Problems that were overcome in the course of the

development and issues not resolved due to time constraints were also examined.

Overall, the implementation of the design set out in chapter three was largely

successful, and many of the techniques employed could be replicated in future

versions of the software.

49

Chapter 5: Evaluation and Discussion

This chapter describes the qualitative evaluation of the visualisations employed and

the functionality of the application. Expert users of the ubiquitous computing

simulator, as well as those with little experience of the domain, were utilised,so as to

get a wide opinion on the usability of the interface, and the choice of visual

representation. All comments and suggestions were noted and the main findings

described below.

5.1 Overview

In order to determine how effective the visual metaphors chosen were at conveying

the correct information in an intuitive manner, a qualitative study of the project was

undertaken. In all, thirteen users were involved in the evaluation of the visualisation

system. Ten of these users had little or no familiarity with the ubiquitous computing

simulator, whereas three of them (two PhD candidates who develop for the

simulator, and one MSc candidate who designs SUTs) had considerable experience

working with the platform.

The format of the evaluation was as follows. Users were presented with a short

written description of the visualiser’s function to read (see Appendix A for a full

copy of the description, and tasks/questions set for evaluators) and then a brief

tutorial regarding its operation was given. They then had two to three minutes to

browse the interface at their own will. The participants were then given eight brief

tasks to complete which involved interacting with the visualiser, and attempting to

elicit the correct answers from the display. These tasks covered a range of operations

that the visualiser provided, and offered an insight into how easy users would learn to

correctly identify salient information. For instance, they were set tasks like “Three

Location Updates were sent at Thu, 27 Apr 2006 14:13:20 UTC, what were they?”,

and “Does the Location Update at Thu, 27 Apr 2006 14:13:22 UTC contradict the

50

information displayed by the ACD panel at that time, or confirm it?”. Further to

this, there were two additional questions which offered participants the opportunity

to suggest ways of improving the clarity of data presentation, and the usability of the

interface.

The cooperative evaluation observational technique was used while users performed

the tasks, which meant encouraging them to think aloud and talk through their

thought process [27]. The evaluator was able to ask the user for clarification of their

actions, and the user could ask for help if they were having difficulty in completing a

task. All comments and thought processes made by participants were noted for

analysis later. Because three of the thirteen users were developers of systems for the

ubiquitous computing simulator, there were four supplementary questions for them to

answer, which explored the usefulness of a visualiser from the perspective of an

expert user.

5.2 User Comments

The first thing that could be inferred from the evaluation was that there was no

appreciable difference between the expert users and novice users in understanding

the visual metaphors. However, because the experts were already familiar with the

differences between Location messages and Location Updates, and the symbiotic

relationship between Location Updates and Access Control Decisions, it meant that

there was understandably a slightly shorter learning curve for them.

5.2.1 Colour Coding

The consistent colour coding of users in the simulator throughout all parts of the

interface was very successful, with many evaluators commenting on the ease in

which they could correspond avatars’ activities on the floor plan, to those in the

SUT. Likewise the use of green and red to signify positive and negative actions in

the SUT panel meant that users got an immediate understanding of the information

being conveyed.

51

5.2.2 Animation Controllers

Currently there are two separate animation controllers for the floor plan, one which

allows the automatic playing of events, and one which permits an event-by-event

analysis of simulator interactions. In order to maximise screen real estate, a

suggestion was made to combine these two controllers into one master controller,

which would have the functionality of both. Though both controllers were found to

be intuitive to use, it was clear that users would have appreciated the option to click

anywhere on the timeline with the animation continuing from that point, rather than

always having to begin at the start. Likewise, if a slow motion or double speed

option had been implemented, users would have found the automatic playing of the

animation more versatile.

Navigation wise, the consensus was that the interface and controllers were in

appropriate locations, with the clear separation of the SUT component not affecting

its ability to work in tandem with the floor map animation. In undertaking the tasks

for evaluation it wasn’t necessary for users to play the automatic map animation.

However, depending on the type of sensors in the simulator and the type of SUT,

evaluators mentioned how they envisioned that this functionality would be useful for

focussing their attention on the relevant area, and allowing them to step back and get

an instant overview of all interactions.

5.2.3 Timelines

Though both the SUT timeline and the simulator-events timeline each contain two

different types of event (ACD & Location Update, and, avatar location & enter room

respectively), all events are represented by a red line on their respective timelines.

Some users felt that it would be an improvement to have a different colour or shape

for each event type, which would mean that at a glance it could be determined where

clusters of specific event types occurred. This technique would contrast favourably

with having to search through a large XML file for specific event types.

Because many events happened within milliseconds of each other, it meant users

couldn’t distinguish a gap between some pairs of events on the timeline, however

this did was not cited as hindrance to user understanding. However if longer

52

experiments were to be visualised in the future, it would be prudent to offer a facility

to zoom into the timeline, without using the inbuilt zoom function of Adobe SVG

Viewer, which zooms that entire document.

5.2.4 SUT Visualisation

Though the overall consensus was that the ACD and Location Updates were

visualised in an elegant manner, some users felt that the lines in the ACD component

could have been thicker to ease visibility, and that an arrow on each line facing

towards the circle would have reinforced the direction the ACD was coming from.

Furthermore, when an ACD or Location Update event occurred, some felt that a

textual display similar to one that occurs when an avatar triggers an enter room

sensor should appear. By placing this beneath the SUT timeline, similar to the way

the enter room text appears beneath the simulator-events timeline, it would improve

clarity slightly.

With regards to the SUT component some users felt that the greying out of the

inactive component was not clear enough, though the vast majority were able to

distinguish between the two. Because the ACD display showed the state of all

received ACDs, and not just new events as they occurred, as in the Location Update

component, users agreed that it should always be displayed onscreen. However, a

minority of users felt that instead of greying out the Location Update component, it

should not appear at all unless it is active.

All users were able to comprehend easily how you could check for contradictions

between what Location Update had been sent, and what the ACD status was at that

time. They could see the potential this would have in debugging new SUTs, and it

was suggested that a warning flag should appear automatically if contradictory

information occurred, thus simplifying the debug task for developers. Though this

warning flag would be specific to ACDs and Location Updates, future

implementations could have a generic warning system that would be available for

any type of SUT, if so required.

53

5.2.5 Room Numbers

When asked to locate the name of a room when given its number, a significant

portion of users anticipated that the quickest way to do this would be to click, or

hover, over the number on the map, so that a popup window or tool tip would display

the room name. Though not a core feature of the system, tool tips containing the

room name should be activated by hovering over the room number and this useful

function should be implemented in future versions.

5.2.6 Show All User Locations

Because of SVG’s lack of native support for interface widgets such as drop-down

menus and check boxes, it was necessary to implement the Show user locations

function in HTML. This was located on the top right hand side of the interface, and

some evaluators felt that there wasn’t enough cohesion between it and the floor plan

it controlled. In hindsight, a more central location would have reinforced its

connection with the map, though because of SVG’s limitations it would not have

been as straightforward to implement.

5.3 Expert Users’ Suggestions

The users of the ubiquitous computing simulator offered some valuable suggestions

so that future implementations could be of maximum help to their work. The benefits

of 2D visualisation were already apparent to users when they noticed redundant

Location Updates were being sent out, which would not have been as easy to spot

from looking at the XML log. With this new knowledge (easily inferred through

visualisation) it’s possible to reduce the number of unnecessary messages

propagating through the system, increasing platform performance. It was also

mentioned that the visualisation technique used for Location Updates could easily be

adapted to represent new features of the Location-aware Instant Messenger, such as a

users’ mood at a particular time. Another immediately obvious advantage that

visualisation brought was the ability to see that that enter room messages were been

triggered by sensors, even though an avatar was already present in that room. Again

54

it was cited that this would not have been so apparent from looking at an XML

database.

One benefit of 2D visualisation that became apparent to developers of ubiquitous

computing experiments was that it would be much easier to isolate problems within

the 3D simulator, as the Half-Life 2 game engine doesn’t allow you to pause its

output messages. Because these messages appear rapidly it can be hard to locate

problems within them, and the task of debugging involves scouring a large text file.

Thus the visual representation of XML messages means the complexity of this task is

eased significantly. One suggested feature to add to the visualiser interface was the

facility to have the current XML being visualised displayed onscreen in text, perhaps

in a popup window. This would be applicable to both simulator and SUT messages,

allowing direct comparison of the XML and its visual representation, thus ensuring

that there has been no error in the transformation.

5.3.1 SVG Graphs

The use of graphs to display both simulator and SUT information was also suggested

as another function that would add value to the visualisation tool. For example, it

was mentioned that while testing a new SUT, it would be useful for graphs to display

the latencies of messages propagating through the system. By automatically

computing statistics and outputting them as graphs, it would be easier to spot trends

and isolate areas of interest. Moreover, it was said that the ability to filter by

message type would enhance this further, making it possible to infer from spikes in

the graph that system performance was hindered by an overload of certain message

types propagating through the platform.

5.3.2 Sensor Displays on the Floor Plan

Because there is potential for numerous types of sensors to reside inside the

simulator (some outputting continuous fluctuating readings, others changing from

one fixed state to another), developers stated that it would be useful to be able to

display the current state of all sensors in layers above the map. The importance of

being able to control whether these layers were visible or not was stressed by

55

simulator users, as they wouldn’t want the 2D floor plan to be crowded with

unnecessary information. Furthermore, graphs of a sensors’ (or group of sensors’)

readings against time, were suggested as something that would help developers

evaluate the setup of their experiments, and allow them to optimise their

configurations. For instance, in a simulation of an emergency in a pervasive

computing enabled building, graphs could help highlight the movement of users

towards exits and give an insight into why the spread was not optimal.

5.3.3 Synching Time Controls

Other suggestions made by researchers included the recommendation of a switch that

would allow users to lock the time of the animation component with its SUT

counterpart, thus allowing greater flexibility in viewing experiments. Because the

SUT example in this project gets its timestamp from the same machine as the

simulator this would be relatively straightforward to implement. However,

implementing this with other SUTs, who use a separate clock for timing, would mean

that all times must be offset from the same point, so that they run in synch with each

other. Furthermore, having the floor plan animation running in synch with a video

capture of the simulator events was also mentioned as a useful way of reviewing

experiments, as you could directly correlate the 3D world (with a first person point-

of-view perspective) with its 2D overview counterpart.

5.3.4 SUT Configuration

The ability for users to configure the SUT component to their own needs was cited as

a feature that would make this a powerful and flexible application for developers.

For instance, a developer could create a network diagram through simple shapes in

SVG, and associate each element of the map with an XML tag from the SUTs’

output. Thus it would be possible to view how messages were propagating

throughout the entire system, giving researchers complete knowledge of the

framework, and allowing the platform to be debugged in a much more efficient

manner. The need for such a tool is exacerbated by the increasing complexity of the

platform, and its aim of integrating many separate components (eXist databases [28],

56

Interlocutor, Half-Life 2 simulator, Jabber Instant Messenger [29], etc) into one

cohesive whole. It was stressed that this generic SUT tool should be built around the

XML available and not visa versa.

5.3.5 Conclusion

Though there was agreement that visualisation offered considerable benefits in both

the design and analysis of new experiments, it was stressed that the users would have

to have full confidence in its robustness, and be able to adapt the software to their

needs in an easy and intuitive manner. If too complicated to use, the end benefits

wouldn’t justify the learning curve, and if the integrity of the data displayed was not

guaranteed, then it merely becomes another potential source of error in an already

complicated framework.

5.4 Evaluation of SVG

There were a huge number of advantages to using SVG as the visualisation

technology in this project. First and foremost, it is open source, text based and

written in XML, which meant that it was easy to work with, and complemented the

XML output coming from the simulator and its SUT. Moreover, it is easy to

integrate with JavaScript and XSL, thus enabling graphics to be dynamically

updated, which was essential to the work undertaken in this project.

One negative aspect of SVG is that its animation of big files can be sluggish if the

computer does not have enough free memory. Other limitations include its lack of

native GUI widgets (there are implementations, but they not part of the W3C

specification and are still not robust), and the need for a separate plug-in, in order for

most browsers to display SVG. There are also some minor cross-browser issues

relating to SVG, thus this implementation is currently limited to running in the

Adobe SVG Viewer on Microsoft Internet Explorer. However, since these are by

some distance the most popular SVG Viewer and browser on the market, this is not a

major issue at present.

57

Some new aspects of SVG elicited during this project, included the fact that complex

SVG graphics could be drawn in packages such as Adobe Illustrator, CorelDRAW

[30] and WebDraw [31], negating much tedious work. Likewise, Geographic

Information System (GIS) [32] software can export their maps in SVG format

allowing them to be integrated into SVG applications. Other features of SVG that

weren’t utilised in this incarnation of the visualiser were: its ability to have sound

associated with visual elements; to have its graphics exported to print; to allow its

text to be searched and indexed; and to have metadata associated with its elements.

These have potential to become central components of any future implementation. In

conclusion, the advantages of SVG far outweighs the negatives associated with it,

and it is clear that it provides a powerful set of features that can be exploited in a

dynamic data visualisation application.

5.5 Conclusion:

As has been shown in this chapter, there are a number of improvements that could be

made to the visualisation techniques employed, and the functionality offered in this

application. Fortunately, many of these changes though important, are relatively

trivial to implement, and would enhance the potential of a future version of this

software to become a central part of testing and evaluating new ubiquitous

computing applications.

Some of the recommendations are very easy to undertake due to the flexible nature

of SVG itself. For instance, changing the appearance of SVG elements, like the

thickness of lines in the ACD component, and the colour of events along the

timelines, is just a matter of editing their attributes in the SVG document. Likewise,

making text appear on the SUT timeline whenever a new ACD is received, involves

just a few lines of code to create a text holder for it, and then a short function to

allow the new SVG text to be appended.

Because the SUT component is independent of the floor plan animation, it means

that you could design a new SUT panel and slot it in place of the current one. Any

new functions that need to be written can simply be appended to the SVG file.

Likewise, because the XML data is loaded into a DOM object, if graphs of data need

58

to be visualised, the raw information is already accessible, and all it requires is a

template for the graph to be added to the document. Again, any new functions that

need to be written can be attached to the SVG file, and their output visualised in the

graph template.

If the new SUT contains completely different messages to the one in current use, a

new XSL file to filter the XML can be created to replace the current one. Any new

sensors that need to be added to the simulator, merely have there SVG representation

added to a new layer of the floor plan. Each sensor is given a unique ID which can

then be referenced by any function that needs to change their attributes. Because the

floor plan is stored as an SVG text file, the task of updating maps with new features

or sensors can be done so very efficiently.

Other features mentioned, such as a configurable SUT component would take

considerably longer to implement. It is envisioned that this would allow users to

construct their own visualisation component out of SVG shapes, and associate each

element with an SUT output message, thus allowing them to visually represent the

XML. This could take the form of a network diagram or of a more abstract shape,

depending on which is more appropriate. It would be technically challenging to

develop such a component, especially as an intuitive configuration menu is essential.

This menu would allow users to associate SUT messages with SVG shapes, and for

them to input the attribute changes they would like occur in their visualisation.

However, as has been shown in this project, the combination of SVG, JavaScript,

HTML and XSL is versatile, and should enable such a tool to be implemented.

Because of time constraints it wasn’t possible to implement the changes discussed

above; however the major visualisations and functionality desired had already been

achieved. Moreover, the overwhelming consensus was that the main objective of

visualising the XML output in an elegant and useful manner had been completed.

59

Chapter 6: Future Work and Conclusions

This dissertation represents an initial investigation into an application with

considerable potential for improving the efficiency of developing and evaluating

ubiquitous computing simulators. In this final chapter, ideas for the future

development of the visualisation tool are presented followed by some concluding

remarks about the design and success of the project.

6.1 Future Work

Perhaps the most important thing to come out of the evaluation of this dissertation is

the confirmation that a fully extensible version of this tool would be a large help to

users of the ubiquitous computing simulator. Thus, it is vital for future versions to

facilitate the easy integration of new floor plans and SUTs.

6.1.1 Configurable SUT Component

As touched briefly upon in the evaluation chapter, what would be of great benefit to

researchers would be a configurable SUT visualisation component. It is envisioned

that this would allow users to configure a visual representation of part, or all, of their

SUT. This would be facilitated by allowing developers to drag and drop basic SVG

elements (circles, squares, lines etc) and to connect them up into a visualisation of

some SUT activity. By associating XML messages from the SUT output with the

SVG elements, it would be possible to adjust their attributes (colour, size, etc) so as

to visualise activity within the SUT in a meaningful manner. An intuitive menu

system would have to be designed in order to make this process as straightforward as

possible.

60

6.1.2 Automatic SVG Floor Plan Generation

In tandem with this easy configuration of new SUT visualisation components, a more

automated process of importing new floor plans into the system would further

improve the flexibility and extensibility of the platform. By automatically

converting the BSP [33] files used by the Half-Life 2 gaming engine into SVG,

rather than having to hand trace floor plans in Adobe Illustrator, it would reduce the

time taken to create new maps considerably, though it is unlikely that it would

completely eliminate the need for some human input. Tools such as wad2svg [34]

exist for such a purpose, but unless the output is guaranteed to be of a high enough

quality, the benefits gained by the automatic conversion may not outweigh the cost

of having to fix them up to the requisite standard.

6.1.3 Multi-Storey Buildings

Other work that needs to be done relating to maps includes the necessity to integrate

multiple floors from the same building into the one display. Because the Z values of

avatars will change once they ascend or descend, it would be easy to transfer their

icon from one floor plan to another. A more pressing issue would be how to

maximise screen real estate when there are multiple floor plans to contend with.

Depending on circumstances, it might be more prudent to adapt a 2.5D view of the

building, with floors stacked on top of each other at an angle, or else to continue with

the straight overhead projection of each floor. As this decision will be vital to the

success of a multi-floor visualisation, it is important that the pros and cons of each

are weighed up in detail before proceeding. In order for new floors to be integrated

into the visualisation system smoothly, it is essential that the correct X and Y offset

is found, thus allowing the coordinates of avatars moving in the simulator to be

visualised in the correct location. Hence, it is recommended that a unique reference

point in original maps is used, thus making it easier to integrate further floor plans.

6.1.4 Animation Controls & Automatic Graphs

With regards to functionality, the visualiser’s controls should allow users to jump to

any part of the animation and play it back at a number of different speeds. It should

61

also be possible to skip to any event on the timeline with just one click, rather than

having to shuttle through them one event at a time. As discussed in Section 5.3.1,

expert users of the simulator also responded positively to the idea of adding graphs

of sensor and SUT information to the application. SVG is the ideal technology to

deliver such functionality [35], and as such, future versions should incorporate this

feature into the system.

6.1.5 Website & Real-Time Visualisation

As mentioned in Section 3.12 (Security Considerations:), it is envisioned that future

versions of this software would be made available via a website, as well through

copies running on local machines. The website would enable researchers to log on

remotely to the system and load up XML output of experiments they had already

conducted, or else use the website to configure new SUT visualisation components.

Though the tool is currently designed to aid the post-hoc analysis of simulator

experiments, there is the prospect of using it for real-time visualisation of events.

This would involve using a SAX (Simple API for XML) [36] parser instead of DOM,

and a certain amount of reconfiguration to the system, but nothing overtly

complicated. SAX is event based (call-backs are triggered by predefined tags) and is

faster and more memory efficient than DOM. Thus, a real-time visualisation tool

receiving a sequential stream of XML messages from the simulator and SUT, would

be an ideal framework to employ SAX. This real-time visualisation could also be

integrated into a management suite for ubiquitous computing systems that are

implemented in real world. Thus administrators could use it to monitor a smart space

environment, and perhaps as a tool to control the operation of sensors.

6.1.6 Integrating Semantic Intelligence

Another area of rich potential for future visualisation would be to integrate semantic

intelligence to the rendering of simulator and SUT data. Current visualisation

techniques attempt to address the problems associated with representing and

interpreting large data sets. However, these techniques are semantically ignorant of

the data sets, and are not sufficient to address the visualisation needs of highly

62

dynamic information generated by contextually-driven ubiquitous computing

environments. Through the application of semantic models to the visualisation of

such dynamic information, the end user can cognitively understand and manage

highly dynamic environments more efficiently and easily.

6.2 Conclusions

This project has shown how XML output from the KDEG ubiquitous computing

simulator can be transformed into an elegant SVG visualisation of events. Both

internal simulator events and their SUT counterparts can be represented, resulting in

the previously underused XML log having a vital role in easing the complex process

of configuring and evaluating new experiments. As well as visualising the XML

data, the application allows users to view these events over time, either through an

automatic playing of an animation, or by manually traversing the timeline event-by-

event.

While this dissertation represents only the earliest stages of a complete solution to

visualising virtual environments and their components in 2D, it has highlighted how

future work based on this project can provide researchers with a robust, extensible

tool, capable of visualising multi-floor simulations and various SUTs. Furthermore,

it opens up the possibility of combining real-time analysis of experiments, as well as

post-hoc, into one application. Such software would truly offer developers engaged

in research with ubiquitous computing simulators a practical insight into their

experiments, and would enable them to design and evaluate their work with

considerable more efficiency.

Overall, the four objectives set out in the first chapter of this dissertation have been

met: Simulator and SUT XML were visualised in a useful manner; post hoc analysis

of these visualisations were shown to be of value to designers of simulator

experiments; SVG, though not without its flaws, was shown to be an appropriate

technology in which to undertake data visualisation; and extensive features that

should be integrated into a more extensible future version were discussed. Thus, in

conclusion, the work undertaken for this project, though challenging, has proved to

63

be a worthwhile experiment and one that highlights the extra knowledge that data

visualisation can bring to this burgeoning field of research.

64

Appendix A: Evaluation Questionnaire

The KDEG research group, in Trinity College Dublin, have built a 3D simulator

which allows ubiquitous computing experiments to be developed and evaluated

before being implemented in the real world. For instance, they are currently testing a

Location-aware Instance Messaging system which allows users who have the correct

permissions to see the location of other users on their team. To initiate this, a user

sends a request which is either replied to positively or negatively depending on a

number of factors. If a user receives a positive Access Control Decision (ACD) it

means that they will periodically receive Location Updates for that person requested.

What the visualiser is doing is recording all the interactions from such an experiment

in a coherent and accessible fashion so that developers have a better understanding of

how successfully their test system worked. It consists of two main parts, the floor

plan and its controls, and the system-under-test and its controls. The floor plan

visualises the physical location of all users inside the simulator and highlights any

time an enter room event has been triggered. This map animation can be played

through or else examined on an event-by-event basis. You can also view all the

locations that a user was at by utilising the show all locations function on the right

hand side of the interface.

The System-Under-Test (SUT) section highlights the information being passed

around in relation to the Location-aware Instant Messaging system. It visualises two

important aspects of this, ACDs and Location Updates, and allows users to view

them on an event-by-event basis. The ACD visualisation shows (at a specific point in

time) which other users each person has either been granted access, refused access or

has not asked for access yet. The Location Updates visualisation shows which user

was sent it by whom, and if the user receiving had already received a positive ACD it

shows the senders’ location also. Thus the SUT visualisation is used in tandem with

the floor plan to provide an all round view of what information the ubiquitous

computing simulator and the SUT are providing its developers.

65

Usage and Interpretation Questions.

1. What happened in the simulator at Thu, 27 Apr 2006 14:13:21 UTC?

2. What is the name of the room marked 25?

3. Three Location Updates were sent at Thu, 27 Apr 2006 14:13:20 UTC, what
were they?

4. At that time (Thu, 27 Apr 2006 14:13:20 UTC) what was the state of affairs
with user1@jabber’s Access Control Decisions?

5. When was the first time that user2@jabber and user3@jabber were in the
same room?

6. What happened in the SUT at Thu, 27 Apr 2006 14:13:07 UTC?

7. Does the Location Update at Thu, 27 Apr 2006 14:13:22 UTC contradict the
information displayed by the ACD panel at that time, or confirm it?

8. How many rooms did user2@jabber visit in the experiment?

9. What would you change about the visualisation in order to improve its
usability?

10. What would you change about the visualisation in order to improve clarity?

Questions for Developers of Ubiquitous Computing Experiments.

1. Do you think a visualisation tool would be useful in debugging the XML
output from SUTs?

2. As a developer of experiments in the Ubiquitous Computing simulator is it
useful to have the facility to replay a visual overview of interactions and
events of past tests?

3. What functionality would you require from a visualisation tool in order to
maximise its usefulness to you?

4. Would graphs based on the readings of sensors in the simulator be of benefit
to the configuration of experiments while developing prototype services?

66

Appendix B: Summary of Evaluation Notes

Questions Notes
1.) What happened in the
simulator at Thu, 27 Apr
2006 14:13:21 UTC?

All users found controls easy to use, though 2
suggested combining the two map controllers. 10
users mentioned how they would like to have been
able to click ahead on the timeline. All 13 users
found easily that an enter room sensor had been
triggered.

2.) What is the name of the
room marked 25?

9 out of 13 users went to the map expecting
rollovers. 2 could not locate answer at all. Tool tips
or popup window with name of room was
suggested by 10 users

3.) Three Location Updates
were sent at Thu, 27 Apr
2006 14:13:20 UTC, what
were they?

Some non-expert users had to be reminded of the
difference between location messages and Location
Updates but all users got correct answer eventually.
The use of green and red to signify whether it was
positive or negative was said to be intuitive. Two
expert-users mentioned how they could see
superfluous Location Updates being sent which
would not have been easy to spot in the XML log.
This could now be prevented, thus improving
system performance. The visualisation technique
used for Location Updates could be adapted to
represent new features of the Location-aware
Instant Messenger, such as a users’ mood at a
particular time.

4.) At that time (Thu, 27
Apr 2006 14:13:20 UTC)
what was the state of affairs
with user1@jabber’s Access
Control Decision

12 users commented very favourably on the SUT
visualisation, words such as
elegant/neat/intuitive/clean/clever were used. All
users got the correct answer.

5.) When was the first time
that user2@jabber and
user3@jabber were in the
same room??

The consistent colour coding made it easy to equate
avatars on the map with their names on the
controls. 10 users mentioned this fact. 2 expert
users noticed that "enter room" messages were been
triggered by sensors, even though an avatar was
already present in that room. It was mentioned that
this would not have been easy to spot in the XML
log.

67

Questions Notes
6.) What happened in the
SUT at Thu, 27 Apr 2006
14:13:07 UTC?

4 users mentioned that an arrow on each line facing
towards the circle would reinforce who received
ACD. 3 users felt that the lines in the ACD
component could have been a bit thicker as wasn’t
as clear as it could be. 12 users got the correct
answer

7.) Does the Location
Update at Thu, 27 Apr 2006
14:13:22 UTC contradict
the information displayed
by the ACD panel at that

3 users felt that the greying out of the inactive
component was not clear enough. All users felt that
the ACD should be permanently onscreen because
it displays state information as well as events. 2
users would have preferred Location Updates to
disappear altogether when not active. All users
were able to get the right answer and saw the
potential this would have in debugging new SUTs.
2 users suggested that a warning flag should appear
automatically if contradictory information
occurred. An expert user commented that future
implementations could have a generic warning
system that would be available for any type of
SUT.

8.) How many rooms did
user2@jabber visit in the
experiment?

2 users thought that they would have to play
through the animation keeping note as they went
along. People found it easy to understand the
information coming out of "show all users" but
some struggled to find the control because of its
location on the right hand side.

9.) What would you change
about the visualisation in
order to improve its
usability?

A Slow of Fast motion option for the animation
was mentioned by 5 users. Being able to skip to any
region of the timeline was mentioned by 10. This
would be even more necessary if the experiment
was longer. 4 users mentioned that though they
hadn't used the play animation feature, though they
could see how it would provide a very useful
overview in other experiments. 2 users
recommended a switch that would allow them to
lock the time of the animation component with its
SUT counterpart.

68

Questions Notes
10.) What would you
change about the
visualisation in order to
improve clarity?

3 users thought that text should pop up on the SUT
controller to accompany an event so that users
wouldn’t have to look away from the timeline. 4
users felt that it would be an improvement to have a
different colour or shape for each event type on a
timeline. This would allow it to be determined at a
glance where clusters of specific event types
occurred, which is difficult to do with a text log. 3
users mentioned that you couldn’t distinguish a gap
between some pairs of events on the timeline,
however this did not hinder them much. Might be
an idea to have a dedicated zoom tool for longer
experiments. 8 users mentioned the clear separation
of the SUT component did not affect its ability to
work in tandem with the floor map animation.

11.) Do you think a
visualisation tool would be
useful in debugging the
XML output from SUTs?

It was stressed that the users would have to have
full confidence in its robustness, as if the integrity
of the data displayed was not guaranteed it would
become another potential source of error. It was
also mentioned that it would be much easier to
isolate problems within the 3D simulator, as that
doesn’t allow you to pause its system messages
which output rapidly. Debugging involves scouring
a large text file so a visual representation of XML
messages would be great. The comparison of
ACDs with Location Updates highlighted was
nicely done and could be extended to other
messages.

12.) As a developer of
experiments in the
Ubiquitous Computing
simulator is it useful to have
the facility to replay a visual
overview of interactions and
events of past tests?

Really depends on type of experiment and what
you're trying to prove. Having the floor plan
animation running in synch with a video capture of
the simulator events would also be a useful way of
reviewing experiments, as you could directly
compare the 2D and the 3D.

69

Questions Notes
13.) What functionality
would you require from a
visualisation tool in order to
maximise its usefulness to
you?

It would be useful to be able to display the current
state of all sensors, in layers above the map.
Should be able to make these layers visible or not,
so that the map doesn't get overcrowded. The
facility to have the current XML being visualised,
displayed onscreen in text would also be good. It
would ensure that there has been no error in the
transformation. The ability to configure the SUT
component to their own needs was cited as
paramount. A network diagram made through
simple shapes in SVG could show how messages
were propagating throughout the entire system. It
was stressed that any generic SUT configuration
tool should be built around the XML available, not
forcing the XML to be changed.

14.) Would graphs based on
the readings of sensors in
the simulator be of benefit
to the configuration of
experiments while
developing prototype
services?

While testing a new SUT it would be useful for
graphs to display the latencies of messages
propagating through the system. Should be able to
automatically compute statistics and output them as
graphs so it would make spotting trends easier.
Should also be possible to filter by message type. A
sensor's readings graphed against time would help
developers evaluate the setup of their experiments
and allow them to optimise their configurations.

Appendix C: Screenshot of Visualiser Interface

70

71

Appendix D: Commonly Used Abbreviations

SVG Scalable Vector Graphics

SUT System Under Test

ACD Access Control Decision

DOM Document Object Model

SMIL Synchronised Multimedia Integration Language

KDEG Knowledge and Data Engineering Group

72

References:

1. Weiser, M., Some Computer Science Issues in Ubiquitous Computing.
Communications of the ACM 1993. 36(7): p. 74-84.

2. W3C. Scalable Vector Graphics (SVG), XML Graphics for the Web.
http://www.w3.org/Graphics/SVG/

3. Accenture. Executive Summary of Sensors. 2004
http://www.accenture.com/Global/Research_and_Insights/By_Subject/Radio_F
requency_Identification/Sensors.htm

4. O'Neill, E., et al. Rapid user-centred evaluation for context-aware systems.
The XIII International Workshop on Design, Specification and Verification of
Interactive Systems. 2006. Dublin.

5. Valve Corporation. Half-Life 2. 2004
http://www.half-life2.com/

6. Kenny, A., D. Lewis, and D. O’Sullivan. Interlocutor: Decentralised
Infrastructure for Adaptive Interaction. in 3rd International Workshop on
Managing Ubiquitous Communications And Services. 2006. Cork.

7. Nazari Shirehjini, A.A. and F. Klar. 3DSim: Rapid Prototyping Ambient
Intelligence. in Joint Smart Objects & Ambient Intelligence Conference. 2005.
Grenoble.

8. Universal Plug and Play.
http://www.upnp.org/

9. HOUCOM, Framework for Collaborative Environments.
http://www.igd.fraunhofer.de/igd-a9/projects/houcom/index.html

10. Adobe. Flash Homepage.
http://www.adobe.com/products/flash/flashpro/

11. Eclipse. SWT: The Standard Widget Toolkit.
http://www.eclipse.org/swt/

73

12. Creating a GUI with JFC/Swing
http://java.sun.com/docs/books/tutorial/uiswing/

13. The Flash ActionScript Developer Community
 http://www.actionscript.com

14. W3C. The Extensible Stylesheet Language Family (XSL).
http://www.w3.org/Style/XSL/

15. Isakowski, Y. Visualisation of dynamic glacier processes with SVG animation.
in SVG Open 2005 conference. 2005. Enschede.

16. O'Reilly. The official Perl home page.
http://www.perl.com/

17. W3C. Synchronized Multimedia Integration Language (SMIL) 1.0
Specification
http://www.w3.org/TR/REC-smil/

18. W3C. Document Object Model (DOM).
http://www.w3.org/DOM/

19. Peto, C. GEMOS Building Management and Security system's SVG Interface.
SVG Open 2005 conference. 2005. Enschede.

20. Association For Computer Aided Design in Architecture.
http://www.acadia.org/.

21. Adobe. Adobe SVG Viewer Homepage.
http://www.adobe.com/svg/.

22. ECMA. Standard ECMA-262, ECMAScript Language Specification
 http://www.ecma-international.org/publications/standards/Ecma-262.htm.

23. Carpendale, T., et al., Extending Distortion Viewing from 2D to 3D.
IEEE Computer Graphics and Applications, 1997. 17(4).

24. IETF. Transport Layer Security (TLS).
http://www.ietf.org/html.charters/tls-charter.html

25. Adobe. Adobe Illustrator Homepage.
http://www.adobe.com/products/illustrator/.

26. Cladonia. Exchanger XML Homepage.
http://www.exchangerxml.com/.

74

27. Dix, A., et al., Human-Computer Interaction, Third Edition. 2004,
Harlow, England: Pearson Prentice Hall.

28. Open Source Native XML Database.
http://exist.sourceforge.net/.

29. Jabber Software Corporation, Jabber Homepage.
http://www.jabber.org/

30. Corel Corporation. CorelDraw Homepage
 http://www.corel.com

31. Uniforce Software. WebDraw Homepage.
http://webdraw.digitalcreation.us/default.htm

32. ESRI. The Guide to Geographic Information Systems.
http://www.gis.com/

33. BSP Homepage.
http://sourceforge.net/projects/doombsp

34. Phipps, C. Wad2svg Homepage.
http://doombsp.sourceforge.net/wad2svg/

35. Adobe. SVG Interactive Chart.
http://www.adobe.com/svg/demos/chart.html

36. SAX Homepage
http://www.saxproject.org/

	Introduction
	Motivation
	Objectives:
	Document Structure:

	State of the Art
	Ubiquitous Computing Simulators
	KDEG Ubiquitous Computing / Context Awareness Simulator
	3DSim: Rapid Prototyping Ambient Intelligence

	SVG Information Visualisation
	Dynamic Processes of the Gruben Glacier
	GEMOS, A Building Management and Security system's SVG Inter

	Analysis
	Conclusions

	Design
	Technologies Used
	Data Flow in Generic Visualisation System
	Architecture of Visualisation System
	System Under Test Architecture
	Types of XML Messages
	XandY Messages
	Location Message
	Event Message
	Access Control Decision Message:
	Location Update Message

	Design Principles
	Interface and Controllers
	Floor Plan
	System Under Test

	Interface Design
	Visualising the Floor Plan
	Visualising the Animation Controls

	SUT Visualisation
	Access Control Decision Visualisation
	Location Updates Visualisation

	Separation of SUT and Floor Plan
	Integrating New Maps
	Supplementary Controls
	Security Considerations:
	Conclusion:

	Implementation
	Converting Character Strings to XML
	Creating the SVG Floor Plan
	Initialising Functions
	Implementation of Animation Controls
	Implementation of SUT
	Implementation of Show All Locations
	Discussion of Implementation
	Conclusion

	Evaluation and Discussion
	Overview
	User Comments
	Colour Coding
	Animation Controllers
	Timelines
	SUT Visualisation
	Room Numbers
	Show All User Locations

	Expert Users’ Suggestions
	SVG Graphs
	Sensor Displays on the Floor Plan
	Synching Time Controls
	SUT Configuration
	Conclusion

	Evaluation of SVG
	Conclusion:

	Future Work and Conclusions
	Future Work
	Configurable SUT Component
	Automatic SVG Floor Plan Generation
	Multi-Storey Buildings
	Animation Controls & Automatic Graphs
	Website & Real-Time Visualisation
	Integrating Semantic Intelligence

	Conclusions

	Appendix A: Evaluation Questionnaire
	Appendix B: Summary of Evaluation Notes
	Appendix C: Screenshot of Visualiser Interface
	Appendix D: Commonly Used Abbreviations
	References:

