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SUMMARY 

The data exchange between two nodes in infrastructure-based networks is often based 

on end-to-end links to implement communication models such as client-server. This 

approach relies on the availability of both end points at the same time and on a stable 

connection between the two nodes during the duration of the transfer. 

In wireless - and especially ad hoc - networks these assumptions do not hold. Two 

mobile hosts that attempt to employ the client-server model are open to problems introduced 

by the mobility of either node (e.g. unavailability of one host during migration, unavailability 

of a route between the two, etc.) 

The assumption of the "Meeting Places" approach is that mobile end points will always 

be able to connect to a "stable" (i.e. with a high connection reliability) node somewhere in the 

network. The key advantages of this model in situations of highly variable connectivity is that 

a few known and relatively stable nodes can be used to achieve point-to-point like 

communication requiring the two corresponding nodes to be available and able to 

communicate directly with each other. Moreover, the approach is scaleable through the 

introduction of more message points, and can accommodate a range of intermediary patterns 

to achieve various tradeoffs in performance. 

We started our work by analysing the currently existing enhancements to the TCP 

protocol for ad-hoc networks, and then identified the features needed at the application level 

and at the underlying network layer. We then produced a “protocol draft” document that 

describes all the requirements and the low-level protocol specifications that can be used in 

MPTCP-based software development. 

During the design process we kept in consideration the security outcomes of storing 

user’s data in the network and we modelled a specific end-to-end cryptographic system based 

on asymmetric algorithms and public key infrastructure. We also paid attention to the 

specific architectures of the devices that will be using MPTCP, considering in particular the 

case of embedded systems and sensor boards on which CPU processing power and available 

memory can be a constraint. 

We supported our implementation with a sample C++ implementation of the main 

protocol operation and we evaluated it with an analysis of the results of lab simulations.  
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Chapter 1:  Introduction 

MPTCP is an acronym for “Meeting Place Transport Control Protocol”.  

In this first chapter we will introduce the concept of “Meeting Place” and the notions 

needed to understand the protocol operation. We will also provide some details about the 

specific knowledge domain and explain the reasons that leaded the main decisions in the 

protocol design process. 

1.1 Background 

The data exchange between two nodes in infrastructure-based networks is often based 

on point-to-point link to implement communication models such as client-server. This 

approach relies on the availability of both end points at the same time and on a stable 

connection between the two nodes during the duration of the transfer. 

In wireless - and especially ad hoc - networks these assumption do not hold. Two mobile 

hosts that attempt to employ the client-server model are open to problems introduced by the 

mobility of either node (e.g. unavailability of one host during migration, unavailability of a 

route between the two, etc.) 

Many solutions have already been proposed to address the consequences for transport 

protocols resulting from mobility. These solutions result in new protocols that often require 

support from the underlying network layer or impose the introduction of a special API for 

the programmers, others are enhancements of TCP protocol that try to keep a high level of 

interoperability with standard network nodes. While the latter approach can speed up the 

deployment of a new protocol over an existing network, the resulting performances are often 

not too far from TCP, and “workarounds” are needed in order to perform mobility operations 

such as hand-offs, connection migration and disconnected operation handling. 

Our idea is a hybrid solution that takes advantages from both methods: MPTCP is a new 

transport protocol that features two different types of connection management, end-to-end 

security, variable header size and adaptive data compression while it adopts well-known and 
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extensively analyzed aspects of TCP such as three-ways handshakes, selective ACKs, flow and 

congestion control, etc. 

1.2 Motivations 

The typical motivation of a level-3 protocol is to provide a reliable or unreliable method 

to send data between two endpoints across a network. This concept assumes that both nodes 

are connected at the same time, directly via a single link or as part of a larger network. Our 

protocol focuses on situations in which two endpoints cannot be connected all the time, 

considering in particular, but not exclusively, scenarios where embedded systems are 

connected through “ad hoc” networks. 

For simplicity, in the following paragraphs we will call the two endpoints “Client” and 

“Server”, where the first is the “data producer” and the second the “consumer”. Although this 

is a very common scenario, the protocol remains valid in pure peer-to-peer environments 

where any nodes can be defined both as Client and as Server. 

The four motivations that drove the design of the MPTCP protocol were the followings: 

• Absence of contemporaneity between the Client and the Server. This assumes 

that the two endpoints are rarely attached simultaneously to a network and therefore 

cannot establish a direct connection. 

• Resilience to disconnections. Even if we assume that, for certain variable and 

unpredictable periods of time, the Client and the Server will be simultaneously 

connected to the network and therefore transfer data directly, this assumption can 

become false at any time. The two endpoints should be able to work without being 

affected by disconnections. 

• Minimize the processing power and transmitting time of the client. In 

case the data throughput provided from the Server or the network is far below the 

capacity of the Client, this will be forced to keep its receiving circuits (i.e.: a radio 

transmitter) on for an unnecessary period of time, thus wasting power. In this 

situation, it is advisable to cache the data in the network and collect it later with a 

higher throughput. 

• Reduce the load of the client, in case of periodical repeated requests. In 

case the Client needs to periodically poll a Server (e.g.: to get readings from a 
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sensor), it is a good idea to delegate to the network itself the task to place the 

requests to the Server and to store the data. 

 

1.3 Key concepts and Philosophy 

During the development of the protocol, we tried to focus on the following two key 

concepts: 

• “Intelligent Network, Simple Clients”. Our protocol aim to give an implicit 

intelligence to the network, by allowing the storage of information on the nodes 

themselves, without the need of level-5 proxies. 

• “Protect Against The Network”. Since we are delegating the data storage to the 

network itself, it is important to protect the data from malicious attacks. The only 

entity allowed to get the content is the Client, so a secure end-to-end encryption 

should be performed. 

Every single design decision has been motivated by these two notions and by the 

common ideas included in the previous paragraph. 

1.4 Dissertation Roadmap 

This dissertation is composed by six chapters and provides a linear approach to the 

design, implementation and testing of a Transport Protocol for ad hoc networks.  

Chapter 2 will discuss existing research that has influenced our work, and place our 

investigations in context. Comparing several protocols proposed to address the mobility 

problem also provides a motivation for our work and a guide to validate our initial 

assumptions.  

Chapter 3 discusses in detail the operations of MPTCP and the packet format. We will 

also introduce and analyze the cryptography concepts and data compression algorithms used 

to develop our model. 

Chapter 4 explores our attempts and results in implementing and testing a sample 

MPTCP stack for benchmarking purposes. This chapter includes a discussion about the 
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development environments that we took into consideration before finding a network 

software simulator suitable for our purposes. 

Chapter 5 investigates the results of our work including a discussion of the seven main 

usage scenarios that we expect. We will conclude by summarizing the features offered by our 

approach. 

Chapter 6 provides a final overview of the work. We will include some suggestions for 

possible future work in order to expand our protocol and include new features. 

Finally, in the Appendix we enclose the document “MPTCP Protocol Draft” that is 

intended as a technical description of the protocol specifications. We refer to this text for 

further details about the internal structures of the protocol and the low-level functions and 

header format. 
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Chapter 2:  Related Work 

In this chapter, we will briefly discuss prior work in related areas of mobile ad hoc 

networking that can be used as an introduction to our idea. This discussion includes the 

definition of a taxonomy for mobile applications in order to establish the requirements of the 

definition of common application types. We will categorize and individually review 

influential transport protocols for ad hoc networks and we will conclude the chapter with a 

global feature comparison table. 

2.1 Taxonomy for mobile applications 

When we started the development of a new transport protocol, we decided to identify a 

number of sample user scenarios in order to better understand the application domain and 

to carefully drive the development process. In general, we can identify user applications 

according to two main “usage patterns” that present different requirements about transfer 

throughput, latency and reliability. It is important to note that this line of reasoning is not 

exclusive to wireless networks but can apply for every networked application. We distinguish 

between: 

Interactive applications, in which the user or the system is continuously interacting 

with a remote system by sending commands and receiving answers. Typical examples for 

such applications are remote shells (e.g.: SSH, telnet), graphical user interfaces (e.g.: Remote 

Desktop, VNC) and interactive games. We include in this category also the software 

developed according to the Client/Server paradigm, for example an accountancy application 

with a remote UNIX server and a client installed on a local Windows box. The main network 

requirements of interactive applications are: 

• Low and constant RTT: it is very important to keep low network latency at all 

times, in order to give a good responsiveness to the user. 

• Small packet size: interactive applications tend to send small amounts of data 

with a high frequency rather than big packets once in a while. The size of the packets 
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passed from the upper layers is in general very small and data often exhibits a low 

“compressibility” ratio. It is also very important to support interactivity with the use 

of the Nagle’s algorithm [1], in order to give a good feedback to the user. 

• Large number of interactions: In many interactive user applications it is 

impossible to locally “cache” commands and send them at once. Instead, a single 

operation is composed by many transactions between the two endpoints, generating 

packets in both directions. Imagine for example a user entering a shell command via 

SSH: every single character need to be sent to the SSH server to be “echoed”, while it 

would be possible to send the complete string at the end of the line. 

Data transfer applications, such as FTP or HTTP transfers of big files or RSYNC of 

archives. In these cases, there is no need to ensure low latency nor for particularly responsive 

network links. The only factor considered by the user to evaluate performances is the data 

throughput, often directly measured by the end-user application, such as a Web browser. The 

main characteristics are: 

• Large amount of data: we include in the “data transfer” category all the 

applications that send and receive big amounts of data. 

• Asymmetric transfers: usually, a data transfer session implies sending data in 

only one direction over the network. Thus, one of the two endpoints can be clearly 

considered as a “sender” and the other as a “receiver”. 

• Large packets: data transfer applications tend to generate larger network packets 

and lead to reach the MTU of the network channel. 

• Few interactions: On the contrary of interactive applications, a data transfer 

operation is usually composed by only two interactions: a relatively small request 

and a typically bigger reply. 

To describe the protocol and to motivate the design decisions, it is useful to refer to 

these two categories of user applications. 
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2.2 Transport protocols for unreliable networks 

A possible classification of transport layers for ad hoc networks is suggested in [2] as a 

tree graph: 

 

Figure 2-1: Tree classification of ad hoc transport protocols 

The same publication reports also an analysis of the reasons for which TCP does not 

perform well in ad hoc networks, which we can resume in the following points: 

• TCP over ad hoc networks leads to a misinterpretation of packet loss due to factors 

such as high bit error rate on the wireless channel, increased collisions because of 

“hidden terminals”, presence of interference, location-dependent contention, 

unidirectional links, frequent path breaks due to mobility of nodes, etc. 

• The topology of an ad hoc network changes continuously over time because of the 

mobility of the devices connected. This process leads to the creation of new links and 

the disruption of existing ones, thus requiring incessant changes in the routing 

tables. Often, the route reestablishment process takes a significant amount of time 

that can be greater than the RTO period of the TCP sender, which then will assume 

congestion in the network and will retransmit the lost packets. The consequences of 
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this process are a waste of bandwidth, power and a low throughput because of the 

reset of the slow start algorithm. 

• A general idea is that in ad hoc wireless sensor networks “the shortest path-length, 

the better”. This is mainly motivated by two facts: path break probability and TCP 

throughput, while the first statistically increases with path length, the second 

degrades rapidly with an increase in the number of nodes. 

• In TCP, the congestion window is a measure of the transmission rate that can be 

handled by the receiver. In ad hoc wireless networks, the congestion control is 

invoked every time the network get partitioned or when a path break occurs, this 

reduces the congestion window and increases the RTO period. In case of frequent 

path breaks, the congestion window may not reflect the maximum transmission rate 

acceptable to the network. 

• Because of the asymmetric nature of radio links and of environmental effects on 

propagation, it is possible that a packet is delivered successfully to a node while the 

acknowledgement is not. This can lead to a wrong behaviour of the congestion 

control algorithm and to several unnecessary retransmissions. 

• Some routing protocols use multiple paths between a source-destination pair 

leading, as a consequence, to a significant number of out-of-order packets, duplicate 

acknowledgements and additional invocations of congestion control. 

• Some CSMA/CA media access protocols for wireless links show short-term 

unfairness: a node that has captured the channel has a higher probability of 

capturing the channel again. This can cause the delivery in succession of a number of 

ACK packets, thus creating bursts in the traffic patterns. 

We will now briefly review some TCP enhancements that can lead to a better 

management of network resources in ad hoc networks together with other transport protocol 

especially suited to handle disconnected operations and poor link conditions. Some of the 

techniques that we found require the adoption of specific routing protocols in order to give 

some kind of feedback to upper layers. For example, consider: 

• Feedback-based TCP (TCP-F) [3]. It requires the support of a reliable link layer 

and a routing protocol that can provide feedback to the TCP sender about path 

breaks. The main aim is to reduce the throughput degradation due to links breaks 

and, in order to achieve it, every intermediate node on the link that discovers a 

disruption became a “failure point” (FP) and sends back a “route failure notification” 
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(RFN). The protocol gets sender’s address from the TCP headers and it is able to 

identify link problems by considering the ACK packet forwarded and received. 

Feedback-based tries to minimize the problems arising out of frequent path breaks 

in ad hoc wireless networks. 

• TCP with explicit link failure notification (TCP-ELFN) [4]. For some aspects it 

is similar to TCP-F: a node that detects a link failure sends back a message (e.g.: 

ICMP DUR) or a RouteError message. After receiving the ELFN packet, the sender 

disables the retransmission timers and enters a standby state, then it tries to 

discover when the link is up again by periodically send a probe packet. The main 

advantage of TCP-ELFN over TCP-F is the independency from the routing protocol. 

• TCP with buffering capability and sequence information (TCP-BuS) [5] 

requires the presence of Associativity-based Routing (ABR). After detection of path 

break, a Pivot Node (PN) originates an explicit route disconnection notification 

(ERDN) message that stops the sender from any transmission. Packets in transit are 

buffered and the PN tries to find a new route to the receiver. When the route 

reconfiguration or repair process is completed, an Explicit Route Successful 

Notification (ERSN) message is sent back to the source that resumes the data 

transmission. 

Another approach to get better performances on ad hoc network is designing a new 

transport protocol from scratch without the problems of keeping a full compatibility with 

TCP. The following protocols are examples of such approach: 

• Ad Hoc TCP (ATCP) [6] uses a network layer feedback system to inform the TCP 

sender about the status of the network over which the packets are sent. Based on this 

information, the node changes its states between “persist”, “congestion control” and 

“retransmit”. ATCP is implemented as a thin layer residing between the IP and TCP 

protocols and it makes use of the Explicit Congestion Notification (ECN) to update 

the currently active state. The main advantages of this approach are the 

compatibility with the traditional TCP and that ATCP maintains the traditional end-

to-end semantics while introducing a new state machine to describe node’s 

behaviour. The protocol requires some changes to the operating system networks 

stack in order to be deployed and also requires functions to discover route changes 

and partitions from the network layer protocol. 

• Split TCP (S-TCP) [7] focuses on the problems due to the short-term unfairness of 

wireless MAC protocols and the 802.11 “channel capture” effect. The proposed 
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solution is splitting the transport layer according to two distinct goals: congestion 

control and end-to-end reliability. The first is solved locally to better exploit the 

knowledge about the local wireless link status, while to increase the probability of a 

successful connection S-TCP splits a long TCP connection into a chain of short 

concatenated TCP connections with a number of intermediate nodes. All these 

internal nodes act as a proxy by receiving a TCP packet, reading its contents, storing 

it in its local buffer and sending an ACK to the previous proxy or the source. By doing 

this, the protocol leave the responsibility of packet delivery to the proxy nodes and 

leads to improved throughput, fairness and lessened impact of mobility. The main 

drawbacks are the need of a modified networking stack and the performance 

dependency on the availability and available throughput of the proxy nodes. 

• Application controlled transport protocol (ACTP) [8] should be considered as 

a light-weight transport protocol instead of an extension of TCP and offers the 

possibility to assign different priorities to packets to be delivered. ACTP has the 

advantage that the application is free to choose the required reliability level and that 

it has a very large scalability for large networks because of its light-weight design. 

The main disadvantages are the lack of a congestion control algorithm and that 

ACTP is not compatible with TCP. 

• Ad hoc transport protocol (ATP) [9] uses a timer-based transmission to decide 

the transmission rate accordingly to the network congestion. To determine the 

congestion status, ATP uses a weighted average of the queuing delay and the 

contention delay of the packets at every intermediate node. SACKS packets are used 

to force the retransmission of lost packets and to ensure reliability of packet delivery. 

When a new node enters in the network, ATP gets information from the lower level 

of the network stack to estimate the transmission rate, to perform congestion control 

and avoidance and to detect path breaks. ATP does not offer any interoperability 

with TCP but offers improved performances on networks where packet prioritization 

is crucial. 

• Licklider Transmission Protocol (LTP) is a transport protocol “designed to 

provide retransmission-based reliability over links characterized by extremely long 

message round-trip times and/or frequent interruptions in connectivity” [10]. The 

most important intended usage for LTP are interplanetary Internet links but its 

properties make it useful also in ad hoc networks to handle disconnected operations. 

It is stateful, it does not include any negotiation or handshake procedure and it uses 

selective-acknowledgment reception reports. 
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• Indirect TCP (I-TCP) [11] is a protocol proposed to face disconnection issues when 

one of the links in a TCP connection is a wireless link. I-TCP partitions a connection 

in two segments: a regular TCP connection between the fixed host and a Mobile 

Support Router (MSR) and a dynamic segment between the MSR and the mobile 

host. Compared with traditional TCP, this protocol introduce the “Mobility Support 

Routers” (MSR) that performs some transport-layer functions, which in a normal 

version of the protocol would be carried out by the one of the end-points. To manage 

the hand-off, I-TCP uses socket migration techniques where two new sockets with 

the same characteristics of the previous ones are created on the new MSR.  

• TCP Snoop is a link-aware transport protocol [12] developed by UC Berkeley for 

wireless last-hop networks to address TCP problems due to the presence of wireless 

links. The protocol uses a “snoop agent” at the radio base station to detect and locally 

retransmit lost segment, without any intervention by the sender. Duplicate ACKs are 

suppressed to avoid unnecessary invocations of the congestion control procedures in 

the sender and, in case data is flowing from the mobile node to a fixed host in the 

backbone wired network, a mechanism called Explicit Loss Notification (ELN) is 

used to decouple the retransmission from the congestion control. 
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2.3 A global feature comparison 

In the following table we summarize the main characteristics of the protocols listed 

including our MPTCP. This table has been derived from a table presented by Murthy et al. [2] 

and extended with the result of our research. 

 

 1 - TCP-F 2 - TCP-ELFN 

References [3] [4] 

Packet loss due to BER or 
collision 

Same as TCP Same as TCP 

Path breaks RFN is sent to the TCP sender and 
state changes to snooze 

ELFN is sent to the TCP sender 
and state changes to standby 

Out-of-order packets Same as TCP Same as TCP 

Congestion Same as TCP Same as TCP 

Congestion window after path 
reestablishment 

Same as before the path break Same as before the path break 

Explicit path break 
notification 

Yes Yes 

Explicit path reestablishment 
notification 

Yes No 

Dependency on routing 
protocol 

Yes Yes 

End-to-end semantics Yes Yes 

Packets buffered at 
intermediate nodes 

No No 

Compatible with TCP No, it has an additional state in the 
finite state machine. 

No 

Table 2-1:  Transport protocol feature comparison 
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 3 - TCP-BuS 4 - ATCP 

References [5] [6] 

Packet loss due to BER or 
collision 

Same as TCP Retransmits the lost packets 
without invoking congestion 

control 

Path breaks ERDN is sent to the TCP sender, 
state changes to snooze, ICMP 
DUR is sent to the TCP sender, 
and ATCP puts TCP into persist 

state 

Same as TCP 

Out-of-order packets Out-of-order packets reached after 
a path recovery are handled 

ATCP reorders packets and hence 
TCP avoids sending duplicates 

Congestion Explicit message such as ICMP 
source quench are used. 

ECN is used to notify TCP sender. 
Congestion control is same as TCP 

Congestion window after path 
reestablishment 

Same as before the path break Recomputed for new route 

Explicit path break 
notification 

Yes Yes 

Explicit path reestablishment 
notification 

Yes No 

Dependency on routing 
protocol 

Yes Yes 

End-to-end semantics Yes Yes 

Packets buffered at 
intermediate nodes 

Yes No 

Compatible with TCP No Yes 

   

 

 5 – Split-TCP 6 – ACTP 

References [7] [8] 

Packet loss due to BER or 
collision 

Same as TCP Recalculates the priority status 
and then retransmit 

Path breaks Same as TCP Same as TCP 

Out-of-order packets Same as TCP Affect the priority status of the 
following packets 

Congestion Since connection is split, the 
congestion control is handled 
within a zone by proxy nodes 

No congestion control mechanism 

Congestion window after path 
reestablishment 

Proxy nodes maintain congestion 
window and handle congestion 

No congestion control mechanism 

Explicit path break 
notification 

No No 

Explicit path reestablishment 
notification 

No No 

Dependency on routing 
protocol 

No No 

End-to-end semantics No Yes 

Packets buffered at 
intermediate nodes 

Yes No 

Compatible with TCP No No 
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 7 - ATP 8 – LTP 

References [9] [10] 

Packet loss due to BER or 
collision 

Multiplicative decrease of the 
transmission rate triggered. 

Uses selective-acknowledgment to 
retrieve only missing packets. 

Path breaks An ELFN packet is sent to the ATP 
sender. 

No explicit notification. 

Out-of-order packets Same as packet loss. Accepted, stored and reordered.  

Congestion Modelled with 3 states that depend 
on the current transmission rate: 
increase, decrease and maintain.  

No congestion control mechanism 

Congestion window after path 
reestablishment 

It is recomputed from zero. No congestion control mechanism 

Explicit path break 
notification 

Yes No 

Explicit path reestablishment 
notification 

No No 

Dependency on routing 
protocol 

No No 

End-to-end semantics Yes Yes 

Packets buffered at 
intermediate nodes 

No Yes 

Compatible with TCP No No 

   

 

 9 – I-TCP 10 – TCP-SNOOP 

References [11] [12] 

Packet loss due to BER or 
collision 

It influences the congestion 
control only for the “wireless side” 

of the connection. 

The protocol uses SACKs over 
wireless links and performs local 

recovery. 

Path breaks Same as TCP No difference between packets lost  

Out-of-order packets Same as TCP Same as TCP 

Congestion Is modelled separately for wireless 
links and fixed networks. 

Intermediate nodes monitor every 
packet that passes through the 

path and asks the sender to reduce 
the transmission rate when packet 
losses are detected only at a wired 

link. 

Congestion window after path 
reestablishment 

It is recomputed after every hand-
off 

No windows are used, instead it 
forces rate-based transmission 

Explicit path break 
notification 

Yes No 

Explicit path reestablishment 
notification 

Yes No 

Dependency on routing 
protocol 

No No 

End-to-end semantics Yes Yes 

Packets buffered at 
intermediate nodes 

Yes Yes 

Compatible with TCP Yes Yes 
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Chapter 3:  Design 

After having analyzed some of the existing TCP enhancements for wireless networks in 

the last chapter, this section describes the idea behind our approach and the details of the 

protocol proposed. As a complement to this paragraph, we included the “MPTCP Protocol 

Specification” document in the Appendix that contains further details about the algorithm 

internals and the low-level packet formats. 

3.1 Connection types 

In a few word, our idea consists of splitting the end-to-end communication in two 

segments by inserting a “Meeting Place” node. By dividing the connection into two parts at 

the transport level, we can break the common assumption that the two endpoints need to be 

connected at the same time and we can instead delegate to the meeting place the work of 

caching the data while one of the two endpoints is disconnected or out-of-range. 

This approach affects the network operations in two ways: 

• First, in case we are allowed to assume that the nodes will always be able to connect 

to a “stable” node somewhere in the network, we are implicitly stating that two 

arbitrary nodes can be connected via a meeting place. 

• Second, the meeting places are not merely proxy or caching nodes but they include a 

basic “intelligence”, even if the previous assumption does not hold we could program 

a meeting place to do some operation with the server while the client will remain 

disconnected. 

The key advantages of this model on a highly variable network is that a few known and 

relatively stable network nodes can be used to achieve point-to-point communication 

without the otherwise necessarily persistent quality of network.  

We started our design by defining four different types of connections, as described in 

Table 3-1. 



 

16 

 

SDR 

Single Direct Request 

SRR 

Single Reverse Request 

MDR 

Multiple Direct Requests 

MRR 

Multiple Reverse Requests 

Table 3-1: Connection types in MPTCP 

The first letter in the acronyms simply specifies the number of requests that are to be 

carried out: a single request consists in only one operation from the Client to the Server and 

the relative answer. Instead, with a multiple request operation a Client could ask to a 

Meeting Place to collect data from a Server many times at specified intervals. 

The second letter defines the type of connection ongoing between the Client (C), the 

Meeting Place (MP) and the Server (S), as described in the following paragraphs. 

3.1.1 Direct Requests 

The client delegates the MP to get the data (once or more times) from a remote server 

and store it locally. The dialogue between the three actors assumes the following form: 

 Step 1. 

C to MP: "Please send my payload to S" 

MP to C: "Ok" 

Step 2. 

MP to S: "This is my payload" 

S to MP: "This is my data" 

Step 3. 

C to MP: "Please send me the data waiting for me" 

MP to C: "This is your data" 

Meeting Place

Client

Server 2

3

1

4

Figure 3-1: Direct Requests 
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3.1.2 Reverse Requests 

The client directly connects to the Server and asks to send the answer to its request to a 

Meeting Place. Later on, the client will get the data from the MP. 

 Step 1. 

C to S: "Please send the answer to this request to MP" 

S to C: "Ok" 

Step 2. 

S to MP: "This is data for C" 

MP to C: "Ok" 

Step 3. 

C to MP: "Please send me the data waiting for me" 

MP to C: "This is your data" 

3.2 MPTCP as a state machine 

Considering the creation and closure of the connection and the transactions between 

states, MPTCP’s behaviour is identical to TCP: they both share the same model for all the 

connection-oriented operations such as: opening and closing a connection, acknowledge the 

other end-point about sent data, etc. 

Thus, MPTCP uses a three-way handshake to establish a connection, as follows: 

• The server performs a passive open to be ready to accept incoming connections. This 

operation is usually done by creating a new socket, binding it to a network address 

and performing a “listen” instruction. 

• The client, using a connect function, performs an active open by sending a SYN 

packet which includes an initial pseudo-random sequence number. 

• When the server receives the client’s SYN segment, it answers with an acknowledge 

and its own SYN. 

Figure 3-2: Reverse requests 
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• To complete the procedure, the client sends an ACK for the server’s SYN segment 

notify the process that the socket is ready to send data. 

 

Figure 3-3: TCP handshaking for "OPEN" 

While the exchange of three packets is needed to open a connection, the closing 

procedure requires four, as follows: 

• One of the two endpoints calls the CLOSE interface (see paragraph 3.3), starting a 

process called active close. This involves sending a FIN segment that indicates the 

end of the data transmission on the current connection. 

• When the other endpoint receives the FIN, it executes a passive close and 

acknowledges the FIN packet with an ACK. This operation is also reported to the 

process that opened the socket as an “end of file” after any possible packet in the 

sending queue has been sent. 

• When the process receives this EOF message, it will call the close function to its own 

socket causing the transmission of another FIN segment. 

• The other endpoint will receive the FIN packet and will answer with an ACK. 
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Figure 3-4: TCP handshaking for "CLOSE" 

A MPTCP node has another option to abort a connection a node: it can send a packet 

with the RST bit set, the receiver will immediately abort the connection and warns the 

application program.  

The MPTCP operation can be represented by using the state machine of TCP. The 

establishment, maintenance and closing of a TCP connection requires TCP to remember state 

information, timers, and variables associated with each connection. A TCP connection state 

changes from a state to another in response to events. The events may be user commands 

such as SEND, RECEIVE, STATUS, expiring timers or received packets such as RST and 

SYN. Ten different states are defined: 

• CLOSED: For reference only 

• LISTEN: represents waiting for a connection request from any remote TCP 

• SYN-SENT: represents waiting for a matching connection request after having sent 

a connection request, 

• SYN-RECEIVED: represents waiting for a confirming connection request ACK 

after having both received and sent a connection request 

• ESTABLISHED: represents an open connection, data received can be delivered to 

the upper layer protocol (the normal state for the data transfer phase of the 

connection) 

• FINWAIT1: represents waiting for a connection termination request from the 

remote TCP or an ACK of the connection termination request previously sent 
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• FINWAIT2: represents waiting for a connection termination request from the 

remote TCP 

• CLOSEWAIT: represents waiting for a connection termination request ACK from 

the remote TCP 

• LASTACK: represents waiting for an ACK of the connection termination request 

previously sent to the remote TCP (which includes an ACK of its connection 

termination request) 

• TIMEWAIT: represents waiting for enough time to pass to be sure the remote TCP 

received the ACK of its connection termination request. 

 

Figure 3-5: Finite state machine of TCP and MPTCP 
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3.3 Header structure and interfaces 

As we already explained in Chapter 2, the size and number of fields in the MPTCP 

protocol header is not constant but can vary to adapt the protocol according to the features 

needed in each situation while keeping the overhead low by avoid unneeded fields. In order 

to achieve this result, we classified all the allowed MPTCP options and parameters in options 

groups that we will call “subheaders” in the remainder of the document.  

The complete MPTCP header take the form of a “linked list” where subheader is 

identified by the value in the “next header” field of the previous one, using a technique 

similar to that implemented in the IPv6 protocol header [13]. At the moment, seven types of 

subheaders are defined, as explained in Table 3-2. 

NextHeader 
Value: 

Name: Purpose: 

n/a head_general Information about the content-id, the source and 
destination ports for layer-3 multiplexing, flow control 

information, session establishment and reset 
information and congestion control data. 

0x1 head_thirdaddress_v6 For direct requests, this header specifies the Server 
IPv6 address to store the data on. For reverse requests, 
it specifies the Meeting Place IPv6 address. It is called 
"third address" because it completes the set containing 

the Source and Destination addresses. 

0x2 head_mpaddress_v4 Same as head_thirdaddress_v6, but it uses 
IPv4 addresses. 

0x3 head_ttl Can be included by the client to specify how long the 
data should be stored on the Meeting Place. 

0x4 head_crypt Specifies the details for the data encryption, such as the 
encryption algorithm and the X.509 certificate that 

contains the node's public key. 

0x5 head_multiple Can be used in Multiple requests to specify the number 
of requests to be done and the time distance between 

them. 

0x6 head_answer Used by the MP to communicate Errors, Warnings and 
informative messages to the C. Eight "error levels" are 

defined to specify the seriousness of a problem. 

Table 3-2: MPTCP Subheaders 

We also impose the following rules for the use of the subheaders: 

• All the subheaders are optional, except head_general and one between 

head_thirdaddress_v4 or head_thirdaddress_v6 that must always be present. 

The size of each subheader is fixed and specified in this document. 

• The order of the subheaders is not relevant, except head_general that must always 

appear as first. 
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• All the subheaders except head_general can be present only in the first packet of a 

session. 

• Each of the subheader types can appear only once in the list except 

head_mpaddress_v4 and head_mpaddress_v6, that can appear an arbitrary number 

of times to indicate that this session will make simultaneous use of more than one 

meeting place. 

• The NextHeader value of the last subheader must be zero to indicate that the payload 

is following. 

• The subheader head_answer may be used by a Meeting Place to communicate 

warning or errors to the Client. 

All the details about the low-level format of each subheader are described in the 

document “MPTCP Protocol Specification” that we included in Appendix.  

An example is represented by the following MPTCP packet, which contains five 

subheaders liked together by the values in the NxtH  fields. The payload is at the end of the 

subheaders list and the last subheader has a zero value for NxtH . 
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   0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |  TYPE   |                  Content-ID                         | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |          Source Port          |       Destination Port        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                        Sequence Number                        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                    Acknowledgment Number                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |       |   |       |U|A|P|R|S|F|                               | 
   | NxtH  |GZ |Padding|R|C|S|S|Y|I|            Window             | 
   |       |   |       |G|K|H|T|N|N|                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |       Destination Port        |        Padding        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       MP Address                              | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |                   timestamp                           | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |                       timestamp (cont'd)                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   | NxtH  | SeLvL |                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Pre-secret                              | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       X.509 Cert. (cont'd)                    | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   //                           (...)                              // 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Padding, if needed                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |   num_times   |              time_diff                | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |                       Payload                                 | 
   //                           (...)                              // 

3.4 Flow and congestion control 

The flow control mechanisms allow the sender to determine the amount of data that it is 

allowed to transmit before receiving an acknowledgement from the receiver. MPTCP uses the 

same procedure of TCP based on a “sliding window” mechanism that contains the sequence 

numbers of the packet that the sender is allowed to transmit before waiting for an ACK. The 

window gradually slides open when wider ACKs are successfully returned. In case the 

receiver’s buffer is becoming full, the window size can be adapted by sending a small window 

size advertisement to the sender, which in turn will reduce its window to avoid receiver 

buffer overflow. As an extreme case, a receiver can advertise a window size of zero, causing 

the sender to stop transmission. 
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As an example we can suppose that, after the initial handshake, the receiver has a 

window size of 6 segments: 

• The sender transmits 6 segments to the destination: 

 

Figure 3-6: Congestion Control (step 1) 

• If the receiver gets only segments 1 and 2, it sends an ACK indicating that it is 

waiting for segment number 3. Because of this, the window moves by two segments 

so that segments 7 and 8 can be sent. If no ACK is received for the previously sent 

segments 3 to 6, the retransmission timer gets zero. When this happens, the 

segments are sent again doubling the timeout time. 

 

Figure 3-7: Congestion Control (step 2) 

• The receiver sends an ACK indicating segment number 8, meaning that it 

successfully received packets till 7. The window moves after segment 7 so that it is 

now possible to send packets 8 to 12. 
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Figure 3-8: Congestion Control (step 3) 

Using flow control techniques based on a “sliding window” allow us to get a performance 

improvement because the receiver can send a single ACK for more segments at once, thus 

reducing network traffic. The opposite situation, in which the window is too big, could lead to 

a higher packet drop and reduce the performances. 

Another problem that every reliable transport protocol should address is the “congestion 

control”: the possibility that the load applied to a network is higher than its possibilities. 

When congestion happens, the latency increases and the routers start to queue the packets 

until they cannot be routed and the only possibility is to drop them. Also, because both TCP 

and MPTCP include timeout mechanisms that imply retransmission of packets, the situation 

can get worst: if the traffic volume increases, the latency will increase as well, which will 

cause in turn an increase of the traffic until this “down spiral” makes the link overloaded. 

The first step in congestion handling is to notice an abnormal situation: a network node 

can deduce the presence of a congestion by observing latency and packet loss on the link. 

When such a situation is detected, a useful technique to use is “Multiplicative Decrease”. 

MPTCP maintains a second limit, beside the window size we described above, called 

“congestion window limit”, and it uses as size for the sending window the minimum value 

between these two. Every time a connection is established, the sender initialize the 

“congestion window” to the size of the biggest segment used on the connection, then send the 

first segment. If it receives an ACK before the timeout, the node doubles the congestion 

window value and sends out a packet with this size. If this packet gets delivered, it doubles 

the size again and again. The congestion window keeps growing until a timeout is triggered 

or the receiver’s window is reach. This well-known algorithm is called Slow Start and it is 

already deployed in all the existing TCP implementations. 

Beside the congestion and receiver’s windows, another threshold is used with the typical 

value of 64KB. In case of a timeout, this value is set to the half of the current congestion 

window. The Slow Start algorithm is used to determine the amount of data that can be 
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handled by the network and increased exponentially until that threshold is reached. Starting 

from that moment, the packets successfully sent makes the window increase linearly. 

3.5 Cryptography and Authentication mechanisms 

In the design of our transport level protocol we considered security as an important 

aspect since the first steps. Since we are explicitly storing data in the network, we want to be 

sure that no one else except the server and the client could access to it. We also addressed the 

problem of “node authentication” and we created a system in which the nodes can mutually 

authenticate themselves, leading the user to a trusted network environment. 

Our system also guarantees “perfect forward security” (PFS): imagine a scenario in 

which an attacker has overheard all the traffic on the network and obtained both public and 

private of all the nodes. Even in this worst case scenario, it is impossible for everyone except 

the Client and the Server to decrypt the data stored on the meeting place. This is achieved by 

encrypting data with “session keys” that are different for every transaction and unpredictable 

by external nodes. 

In deploying a security solution we wanted also to consider the domain in which MPTCP 

would be used more often: sensor networks, nodes composed by small embedded systems, 

etc. In these cases CPU power and memory can be very constrained so we decided for a 

solution in which: 

• The transport protocol is not dependent from the adoption of a specific 

cryptographic algorithm or key length. By doing this we can enable to MPTCP 

hardware platforms on which the use of a specific cipersuite is not feasible and even 

expand the protocol by introducing new cryptographic algorithms in the future. 

• It is possible for the user to define the level of security needed for any specific use of 

MPTCP. This is done by setting a “security level” variable called SeLvL, which 

specifies how strict the security checks should be. A SeLvL of zero means that 

cryptography is completely disabled. Higher levels provide complete mutual 

authentication between nodes. 

We decided to adopt a mechanism based on asymmetric cryptography and certificates in 

the X.509 standard [14] in order to delegate to an external Certification Authority the task of 

declaring a host as “trusted”. 
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To better understand the following paragraph, we remind the typical format of a X.509 

certificate. Consider for example the following X.509 certificate, decoded using the OpenSSL 

command line utility on Linux [15]: 

Certificate: 
   Data: 
       Version: 1 (0x0) 
       Serial Number: 7829 (0x1e95) 
       Signature Algorithm: md5WithRSAEncryption 
       Issuer: C=IE, ST=Dublin, L=Cape Town, O=Example Corporation, 
               OU=Certification Services Division, 
               CN=Example CA/Email=server-certs@example.com 
       Validity 
           Not Before: Jul  9 12:00:00 1998 GMT 
           Not After : Jul  9 12:00:00 2008 GMT 
       Subject: C=IE, ST=Ireland, L=Dublin, O=Giacomo Bernardi, 
                OU=TCD, CN=client1.mptcp.tcd.ie/Email=bernarg@cs.tcd.ie 
       Subject Public Key Info: 
           Public Key Algorithm: rsaEncryption 
           RSA Public Key: (1024 bit) 
               Modulus (1024 bit): 
                   00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 
                   33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
                   66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
                   70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
                   16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
                   c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
                   8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
                   d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: 
                   e8:35:1c:9e:27:52:7e:41:8f 
               Exponent: 65537 (0x10001) 
   Signature Algorithm: md5WithRSAEncryption 
       93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d: 
       92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92: 
       ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67: 
       d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72: 
       0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1: 
       5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7: 
       8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22: 
       68:9f 

It was issued by “Example Corporation” as stated in its Issuer field, and it regards the 

object stated in the “Subject” field, in this case the host “client1.mptcp.tcd.ie”. Next comes an 

RSA public key followed by the signature, computed by taking an MD5 hash of the first part 

of the certificate and encrypting it with Thawte's RSA private key. 

X.509 is now a very popular standard because it is used for the SSL encryption of HTTP 

traffic and, because of this, many tools are already available to manage certificates and 

libraries for all the main programming languages are freely available (consider for example 

OpenSSL and GnuTLS [16]). 

Please note that the MPTCP specifications do not describe how certificates are signed, 

distributed and revoked, so an external PKI is required. We made this design choice in order 
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to keep the transport protocol simple, while many certificate distribution systems are already 

existing and implemented. 

In the following paragraph we will use the abbreviations of Table 3-3, most of which are 

typical of system based of X.509. 

 

Component: Description: Needed by: Secret? 

PRIVc Private key of the Client. Client only. Yes 

PRIVmp Private key of the Meeting Place. Meeting Place only. Yes 

PRIVs Private key of the Server. Server only. Yes 

PRIVca Private key of the Certification 
Authority. 

Server only. Yes 

PUBc (from CRTc) Public key of the Client, included in its 
certificate. 

Meeting Place and, for 
higher SeLvL, Server. 

No 

PUBmp (from CRTmp) Public key of the Meeting Place, included 
in its certificate. 

Server and, for higher 
SeLvL, Client. 

No 

PUBs (from CRTs) Public key of the Server, included in its 
certificate. 

Client and, for higher SeLvL, 
Meeting Place. 

No 

PUBca (from CRTca) Public key of the Certification Authority, 
included in its certificate. 

All the nodes. No 

CRL (optional) Certificate Revocation List. All the nodes. No 

Table 3-3: Cryptography components abbreviations 

In our system, every node will be in possession of the following components: 

• A pair of private and public key, generated with a chosen algorithm and key length. 

We will call them {PRIVc, PUBc} for the Client, {PRIVmp, PUBmp}, for the MP and 

{PRIVs, PUBs} for the Server. 

• A X.509 certificate by which a commonly trusted Certification Authority (CA) signs 

the public key of the node. We will call them CRTc for the Client, CRTmp for the MP 

and CRTs for the Server.  

• The self-signed certificate of the CA, CRTca. 

We can also introduce the use of Certificate Revocation List (CRL), a standard format to 

blacklist “bad” certificates (e.g. stolen, old, etc) that must not be accepted by the 

authenticating peers. Such a list would be distributed periodically or the nodes can use an 

online checking protocol (such as the Online Certificate Status Protocol, OCSP [17]) to 

control the certificate validity by querying a central server. 



 

29 

It is important to note that in the MPTCP security architecture, certificates are used for 

two aims at the same time: to authenticate nodes by checking the signature in the CRT 

against a trusted CA and to exchange cryptographic keys that can be used to generate a 

shared session key. In MPTCP no other authentication system is available, we thus decided 

to exclude common techniques such as username and password pairs sent in clear text in 

order to maintain a high level of security even on insecure networks links and ad hoc 

networks. 

In the following two subparagraphs we describe the steps performed to ensure security 

on Direct and Reverse requests. 

3.5.1 Direct Requests 

 

Figure 3-9: Certificate exchanges on Direct Requests 

1. The Client sends a SDR or MDR packet to the MP attaching CRTc by using an 

mptcp_crypt header as described in Chapter 3.3. Optionally for SeLvL higher than 2, MP 

sends back CRTmp to C to ensure mutual authentication. 
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2. MP sends a SDR or MDR request to the Server attaching CRTc. For SeLvL higher than 

3, MP attaches also CRTmp and receives CRTs from the Server. 

3. The Server sends to MP the data encrypted with the public key of the Client. 

4. The Client requests data from the MP sending CRTc and, for SeLvL higher than 2, 

requesting CRTmp. 

We have thus defined the following security levels: 

Security 
Level: 

Description: 

0x0 No authentication at all. Cryptography disabled. 

0x1 Client sends CRTc to the MP. 

0x2 As above, plus MP sends CRTmp to the Client. 

0x3 As above, plus MP sends CRTmp to the Server and 
receives CRTs from the Server. 

Table 3-4: Security Levels in Direct Requests 

3.5.2 Reverse Requests 

 

Figure 3-10: Certificate exchanges on Reverse Requests 
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1. The Client sends a SRR or MRR packet to the Server attaching CRTc by using an 

mptcp_crypt header. Client and Server exchange then the pre-secrets keys in order to create 

a session key. At this point, the Client and the Server are mutually identified and they share 

the knowledge of a secret key. 

2. The Server sends to the MP: its own certificate CRTs and data encrypted using the 

shared key (that MP ignores). Optionally, for SeLvL higher than 3, MP sends back CRTmp to S 

to ensure to be trustworthy. 

3. The Client gets the data from the MP by using its own CRTc as identifier. Optionally, 

for the SeLvL 4, MP sends its own CRTmp to C. 

We define the following security levels: 

Security 
Level: 

Description: 

0x0 No authentication at all. Cryptography disabled. 

0x1 Client sends CRTc to the Server. 

0x2 As above, plus Server sends CRTs to the Client. 

0x3 As above, plus MP sends CRTmp to the Server. 

0x4 As above, plus MP sends CRTmp to the Client. 

Table 3-5: Security Levels in Reverse Requests 

3.6 Adaptive Compression 

When we started to design our transport protocol we realized that it would have had to 

face several constraints on two different sides: first, because it is a protocol especially 

developed for embedded systems and sensor networks, we must take into account the limited 

CPU power and memory resources that any node of the network can be limited to. Also, since 

MPTCP is designed to work on ad hoc networks, we have to consider the limited throughput 

that an end-to-end link can offer to upper layers. 

In order to increase network availability while addressing both the problems exposed, 

we evaluated the possibility of implementing an adaptive compression mechanism that can 

optimize the compression ratio according to the type of data transmitted and, for more 

accurate results, to the current network characteristics.  

We started the design process by analyzing the existing technologies for self adaptively 

compression over remote links (e.g. OpenVPN [18]) and with a search for academic 
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publications that leaded to the following results, mainly taken from [19] and [20]. To begin, 

we can consider the three main factors that influence the choice of an optimal compression 

ratio: 

• The ratio by which data can be compressed, 

• The CPU processing power and available memory on the sender and on the receiver, 

• The network end-to-end latency. 

By combining these three values we are able to determine a compression level that could 

reduce the total data transmission time. Consider for example the case in which data is 

predominantly uncompressible or pre-compressed (e.g.: FTP or HTTP transfer of a large 

compressed archive): the compression can only introduce a computational overhead without 

giving any significant advantage in size or transmission time, so the ratio should be set to 

zero or to a low value. 

It is possible to better define the compression trade-off by doing the following 

definitions, using the notation of [19]:  

• Τ is the type of data we want to send. If we know Τ , we could choose a compression 

algorithm designed for this type of data. 

• Ρ is the parameter set controlling the compression algorithm. 

• ),,( PTCPUfC =  is time to compress one byte, given the currently available CPU, 

type of data Τ  and parameter set Ρ . 

• τ is the time to send one bit, i.e. 1/bandwidth. 

• ),( PTg=ρ  is the compression ratio we achieve for the type of data Τ  and 

parameter set Ρ . 

• ),( ρUCPfC ′′=′  is time to decompress one byte, given the currently available 

CPU and the compression ratio ρ  of the input data. 

• b is the amount of data we want to send. 
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Thus, the time needed to send the uncompressed data will be )( b×τ  and, for 

compressed data, )( b′×′τ . The time we have available to process data is the reduction in 

sending time and if: 

bbCbCb ×<′+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×+ τ
ρ

τ  

then compressing data before sending it would lower the total transfer time. To control 

the process we can modify the parameter Ρ depending on the current network conditions. 

We did not discuss an implementation of any specific compression algorithm because we 

consider this beyond the scope of the dissertation and we leave this extension as a future 

work, but for the moment we suggest two possible logics to determine the compression 

parameters: 

• Continuous compression benchmarking: MPTCP will periodically sample the 

compression process to determine its efficiency, measured as 
b
b′

. If the data being 

sent over the tunnel is already compressed, the resulting efficiency value will be low 

and the algorithm will disable the compression for a period of time until the next re-

sample test. The sampling rate and the size “gain” threshold are not specified by the 

protocol but are implementation-dependant. It is anyway advisable to let the user 

“tune” these values if required. 

• Compression based on network throughput: without any modification to the 

protocol, it is possible to derive an estimation of the current network throughput 

(i.e.: by analyzing the trend of the sequence numbers ACKed by the receiver or by 

directly counting the number of octets in the payload). Adjusting the compression 

ratio on this value may be a good idea if the network condition varies: the value can 

be increased if the network is slow or reduced if there is no real advantage against 

sending uncompressed data. 
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This behaviour of the compression system can be controlled using the parameter GZ in 

head_general, as follows: 

Hex value: Mnemonic: Description: 

0x0 OFF Compression is always off 

0x1 ON Compression is always on. 

0x2 AUTO Compression is adaptive. 

Table 3-6: Values for the GZ field in head_general 
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Chapter 4:  Implementation 

After the protocol design step was completed and the description of the low-level 

specifications was ready, we wanted to implement a simple MPTCP stack in order to test the 

main programmable interfaces and evaluate the protocol performances in sample user 

scenarios. Our experiments were first focused on the development of a complete transport 

layer on a Linux box but were slowed by the complexity of the network stack and the need of 

handling the protocol internals such as buffers, sliding windows, etc. We then opted to 

modify a user-space TCP stack and finally to use a network simulator that would allow us to 

concentrate on the protocol evaluation without spending excessive effort on the interfaces 

with the Operating System and the internal memory management. This chapter analyzes in 

detail the evaluation of the various experiments we ran during the implementation step. 

4.1 Guidelines for an implementation 

In order to simplify the deployment of MPTCP in existing network stacks, we reserved a 

paragraph in the “MPTCP Protocol Specification” document to give a guideline for the 

implementation of the protocol. Assuming a Unix-style Operating System, in that section we 

suggest three approaches that would represent an efficient protocol implementation: 

• Using “IP raw” sockets in a user-space software to accept incoming packets from 

the network. To generate the new segments to be sent, the program would have to 

explicitly generate the headers, the checksums and manage ACKs and buffers, 

• Writing an external shared library that could be included by user-space software 

to handle MPTCP operation. Such a library would provide to the programmers a set 

of APIs to create and manage MPTCP sockets, 

• Developing a kernel module that can be loaded into memory to handle the MPTCP 

protocol and provide functions to create network sockets that use our protocol. 



 

36 

Each of these approaches offers advantages and generates specific issues. The first 

method requires the development of a complete architecture able to manage all the required 

networking functions, such as: parsing the packets coming from the underlying network 

layer, fragmenting data, generate headers, set retransmission timers, send and receive ACKs, 

handle flow and congestion control, etc. While it is a complex technique that requires a 

substantial programming effort, it is suitable for deploying MPTCP on embedded platform 

running an Operating System that offers limited functionalities. 

Instead, writing an external shared library would allow the reuse of the produced code 

and it would simplify the support of the transport protocol by third-party applications. By 

distributing the binary version of the “MPTCP library” and some API documentation, every 

programmer would be able to link the support routines from his own code without having to 

implement any of the low-level functions needed. 

The third option can be considered the most “elegant” in Unix-based systems, since the 

MPTCP functions would be managed directly by the Operating System kernel in the same 

fashion of the other well known protocol such as TCP, UDP, etc. For non-monolithic systems, 

there are two common ways to add the support for a new protocol that we will call “patching” 

and “loading”. The former is the most “direct”, since it requires hacking the kernel code and 

producing a “patch” file that can be later applied to other systems. The latter consists in 

writing an external kernel module that is loaded by the user at runtime. While both these 

approaches are architecture-dependant, a direct hack of the kernel source is also strictly 

version-dependant and could require code modifications to support newer OS versions. 

4.2 Experiments with MPTCP 

In the next four sections we describe the different attempts we made in order to develop 

a test implementation of MPTCP. We show the details of each of them, explaining the 

advantages of each solution and illustrating the reason for which we thought them as not 

optimal.  

We ran all our experiments, especially those which required any software development, 

on systems with Linux kernels 2.6 for x86 architectures. 
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4.2.1 Hacking the kernel-space network stack in Linux 

The first solution we decided to evaluate was to modify a “vanilla” Linux kernel in order 

to add the support for MPTCP. Since in the Linux architecture the TCP/IP stack can be 

compiled only as “built-in” feature and not as a loadable module, adding a new protocol from 

scratch would require a modification of the kernel code. It is not possible to write an external 

kernel module that can be loaded in memory by the end-user and thus the deployment of 

MPTCP on existing systems would require one of the following actions: 

• Distributing a specific “MPTCP-enabled” version of the kernel, as source code or as 

binary executable. 

• Providing a patch for a given version of the “vanilla” kernel. 

We must also consider that in case the characteristics of the architecture on which 

MPTCP is to be deployed are not known in advance, the kernel cannot be distributed as a 

binary because this would make impossible for the user to add or modify the device drivers 

he needs for his hardware or user-space applications. 

 

Figure 4-1: The TCP/IP networking option in the Linux kernel 

At the moment of writing, the latest kernel version is 2.6.16 and, on this release, the 

networking code is spread over around 2,017 files reaching a total of 612,288 lines of code, 

while the files in net/ipv4/tcp_* are only 16. From these figures it easy to understand the 
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amount of code that a developer would have to look into in order to implement a new 

transport protocol. Most of the networking code is included in the directories shown in bold 

in Figure 4-2, a graph taken from Rio et al. [21]. 

Since the MPTCP protocol would be included in the built-in network functions, testing 

even a single line of code would require a complete recompilation of the kernel and a system 

reboot in order to load the new binary. Such development model requires spending a 

significant amount of time in compiling and testing the code, thus making more difficult a 

rapid application deployment. 

Finally, it is important to note the set of instructions includes dependencies to the 

current system architecture for low level instructions (e.g.: for Little/Big Endian bits 

alignment), so a portable MPTCP implementation must include the support for each of them 

using techniques such as multiple #define to compile the proper code for the current 

platform.  

 

Figure 4-2: Networking code in the Linux kernel 
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4.2.2 Using a user-space TCP stack  

Because of the problems explained in the previous paragraph, the development of a new 

protocol in the Linux kernel cannot be considered an optimal solution for testing purposes, 

while it offers performance advantages and direct access to the kernel internals. 

To overcome the limitations of a kernel-space approach we then evaluated a solution 

based on the development of a network stack completely in user-space. This method allows a 

more rapid development cycle because there is no need to compile a complete kernel and 

reboot the system in order to test the program, and also grants a higher portability to 

different architectures. 

By doing a search for academic papers, we found a similar project named “Daytona” 

[22], initially developed by the IBM Watson Research Center, the University of Illinois and 

the Princeton University. The development was then abandoned and is currently maintained 

by Prashant Pradhan and Srikanth Kandula, which we contacted for an advice. The authors 

define Daytona as a complete “stack TCP stack for Linux” and describe it to be “an invaluable 

tool for TCP performance research, network performance diagnosis, rapid prototyping and 

testing of new optimizations and enhancements to the TCP protocol, and as a tool for 

creating adaptive application-level overlays”. 

Daytona is basically the same TCP networking code of the kernel extracted and 

assembled in a way that can be compiled as stand-alone and run in user-space. The last 

version is developed to run on kernels of the series 2.4 and includes a “fake” kernel module 

that integrates many functions of the operating system. When we started our experiment we 

realized that the available code could only be compiled with old versions of GCC 2.3.x and 

that it included many deprecated constructions and paradigms, so we spent a couple of days 

to modify the code to make it compatible with the latest GCC 4.x on a Linux 2.6 series kernel. 

From the resulting source it would have been possible to develop an MPTCP 

implementation by using the TCP code as a starting point and writing from scratch all the 

new features. While it is difficult to imagine a real large-scale deployment of a new transport 

level protocol based on this solution, Daytona represents a good technique to shorten the 

development and testing times. One last open question we have is related to the lack of 

maturity of the Daytona code that, in many occasions, makes assumptions about the system 

on which the protocol is to be ran and that all the incoming packets are in a correct format. 
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4.2.3 Using raw-sockets in Linux 

According to our purposes of developing MPTCP applications that are able to run on 

embedded systems, remote sensors and portable clients, we targeted one of our experiments 

to a lightweight implementation of the transport protocol features. The resulting solution 

should contain all the main characteristics of the algorithm and should be completely 

platform and architecture independent, while maintaining a full compatibility with the 

protocol specifications. In order to reach these targets, we aimed for an implementation fully 

contained in the user-space and written in a high-level programming language which 

compilers are available for various platforms.  

The use of raw-sockets is an efficient and low-level approach to network programming 

without using the transport level functionalities offered by the Operating System. The 

developer is requested to program the entire code needed to handle the incoming packets, 

parse their headers, allocate buffers in order to rejoin and store fragmented data and 

explicitly manage congestion windows and retransmission timers. With raw-socket, the 

programmer passes a “protocol identifier” to the OS declaring that his software is willing to 

receive the incoming network layer segments with the given identifier in the “protocol” field 

of the IP header. 

The main tasks that the algorithm would have to perform are: 

• Accepting data from the local application, fragmenting it into segments, generating 

the headers list and assembling outgoing packets before sending them to the 

destination using the Operating System network layer. 

• Handling incoming MPTCP packets from the network, parsing their headers and 

passing them to the application level 

• Managing data encryption and the authentication procedures, including the 

generation of session keys, X.509 certificates validity checks, etc. 

• If the local node is a Meeting Place, it is also necessary to implement some sort of 

storage of user’s data. In real scenarios, this procedure has high efficiency 

requirements because data should be stored safely and retrieved quickly not to 

represent a communication bottleneck. 

There are already a good amount of TCP implementations in high-level languages such 

as C and Java, and most of them are distributed as “open source” or are part of the public 

domain. A valuable starting point we evaluated is the C implementation of the complete 
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TCP/IP stack designed by Comer and Stevens [23]. While it is programmed for the Xinu 

operating system, it is reasonably easy to adapt to any other platform. The documentation of 

their algorithms is very detailed and extensively covers all the internal functions to simplify 

modifications from programmers.  

Comer’s code is available as a tar.gz archive that contains 656 C and headers files, with 

the tendency of including a single function for each source file. For this reason and because 

the code has been initially developed for educative purposes, many of the functions are self 

explicatory. 

Many other open source implementation of the TCP/IP stack is available in books and 

on the Internet, so it is very unlucky that a developer would have to write a full MPTCP code 

from the beginning. Another starting point is represented by the networking code of the 

Linux kernel, which is freely available. Because of its complexity, it has a steep learning curve 

but many books (such as Stevens [24]), websites and guides include a complete explication of 

the algorithm. 

4.2.4 Using OPNET Modeler 

Our experiments focused also on the use of network simulators to reproduce the 

behaviour of MPTCP on a controlled environment and thus get statistics about the global 

overhead imposed by the protocol and other performance values. Simulate a network 

protocol is also useful for demonstrative purposes, to explain the functioning of the 

algorithms and to better understand the finite state machine model and the interaction 

between hosts. 

Among all the network simulators that would be suitable for MPTCP, we chose to use the 

OPNET Modeler [25], a commercial software produced by OPNET Technologies, Inc. 

The application describes each simulation as a series of discrete events over time and 

includes ready to use libraries with network objects ranging from wireless antennas to wired 

hosts including many well-known protocols for each of the ISO/OSI levels. It is possible to 

add new modules to the simulation by defining a state machine and writing C code to 

manage the transaction between states and send and receive packets. The software has a very 

modular approach and several modules, which mutually interact, compose a single object. As 

an example, in Figure 4-3 we can observe the internal structure of a standard LAN host. 
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Figure 4-3: The TCP layer in the OPNET networking stack 

As we can see, the TCP module is directly connected to the network layer and the 

application layer as in the normal ISO/OSI stack and furthermore the TCP state machine is 

very similar to the one defined in RFC 793 (see paragraph 3.2), as reported by Figure 4-4. 

 

Figure 4-4: The OPNET representation of the TCP state machine 
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We spent several days on implementing a sample version of MPTCP that included only 

the most basic components and while the OPNET modelling approach looks simple at a first 

glance, its programming language derived from ANSI C sometimes shows to be problematic. 

The most difficult operations to implement in the simulator were the creation of a list of 

variable subheaders and some complex functions like the authentication procedures. Because 

of the constraint of the C-like language, it was also difficult to implement “storage” functions 

to memorize data on the meeting place nodes. 

4.3 Simulations in OMNeT++ 

Because of these difficulties, we made a survey to find a network simulator with a better 

programmability. We then tried OMNeT++ [26], a software developed by András Varga and 

distributed as open-source under the GNU license. 

 

Figure 4-5: The OPNeT++  Workspace 

OMNeT++ is available as source or as binary for Linux, Windows and many other 

platforms, and also includes libraries to support the most famous network protocols, wired 

connections and host mobility. 
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A single OMNeT++ simulation is composed by various components with different 

syntaxes and stored on physically different files. The two essential parts that are needed even 

for a basic simulation are: 

• one or more NED file, that describe the objects used in the network and define the 

connections between them, 

• omnet.ini, a simple text-file that includes all the parameters for the objects used in 

the network. 

If the user needs to develop new modules, for example to support a new transport 

protocol as in our case, it is possible to do so using standard C++ code in the application 

framework provided by the simulator. In figure Figure 4-5 we can see the components of the 

working space: on the left the main simulation window with the grey playground area and 

the controls to start the action and to control the simulation speed, on the right the main 

program window with a tree graph of the used modules and an area for the debug output. On 

the top of the main window there is the timeline on which events such as packet 

transmissions, timers, and host mobility are represented as red dots. 

In the playground we can notice the presence of a mobile Client, a Meeting Place and six 

sensor nodes. Each of the hosts has an 802.11 wireless interface which range of coverage is 

shown as a black circle. The experiment consists in the following steps: 

1. A MPTCP-enabled mobile client, shown with the icon of a PDA, is initially out of the 

scene. 

2. The client gets in the area of coverage of a Meeting Place and issues a Single Direct 

Request asking for the reading from the six sensors. It then moves out of range. 

3. The Meeting Place queries each sensor and stores the data locally. 

4. The client returns on the scene and gets the sensor readings that the Meeting Places 

had stored. 

To shorten the development time we made several simplifications and assumptions that 

not affect directly the aim of the simulation, for example the sensors readings always return 

zeros, no authentication is used and no cryptography or data compression are implemented. 

Another scenario we prepared is MPTCP_basic, in this case the playground includes only 

three nodes connected with wired PPP links. The purpose of this experiment is simply to test 
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and demonstrate the correctness of the protocol and to measure some quantities as packet 

sizes.  

 

Figure 4-6: The mptcp_basic scenario 

Using wireless communication in a simulated environment can lead to a difficult 

analysis of the performances of a protocol, since it is hard to identify the packet exchanges 

destined to the correct nodes. For example, imagine a situation with three nodes (A, B and C) 

is each in the coverage area of the other two. When host A sends a wireless packet to node B, 

the simulator will show two distinct messages: one travelling from A to B and the other from 

A to C. While this behaviour is correct because in reality both B and C antennas will receive 

the wireless message but only host B will recognize it as valid and will pass it to the upper 

network layers, it generates confusion in the observer because the number of packets showed 

in the playground window is potentially bigger than expected.  

To overcome the problem, in our MPTCP_sensor_wired scenario (see Figure 4-7) we 

replaced the wireless connections between the Meeting Place and the sensors with standard 

wired links, which use is straightforward.  

We regard this simplification as reasonable because the purpose of the simulation is not 

benchmarking transmission times but a verification of the protocol correctness. 
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Figure 4-7: The mptcp_sensors scenario 

The modular organization of OMNeT++ can be easily understood by double clicking on a 

network host in the playground in order to open the detail widows reported in figure X. On 

the right we see the internal composition of the network stack, with a PPP interface at the 

bottom, the IP network layer in the middle just below the three supported transport 

protocols: TCP, MPTCP and UDP. In this case, a MPTCP application is sitting on top of the 

stack and the connections are showed as black arrows. Further details about the memory 

occupation and internal organization of the components can be obtained by double-clicking 

their icons, as an example on the left side we notice the “Info” panel of the MPTCP 

application showing the Stack size in Bytes, the current state and other information while on 

the bottom the “Gates” panel reports the communication links between the transport layer 

and the network and applications. 
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Figure 4-8: MPTCP component in the  OMNeT++ stack 

To better understand the functioning of the simulator, consider the C++ instructions 

needed to open a MPTCP socket listening on a specific port: 

1. As in normal Unix sockets, in case the node has more than one IP address or 

network interface (“multihoming”), we can bind the socket to a specific address by 

doing: 

socket.bind(Address, port) 

2. The process of listening on a port is called "passive open", and is done simply by: 

socket.listen() 

3. To wait until a valid incoming connection is created, the application can use the 

following while() loop which literally means "process all incoming messages until a 

connection is made. If we get a SOCKERROR message, give up". 

while (socket.state() != MPTCPSocket::CONNECTED) { 
    socket.processMessage(receive()); 
    if (socket.state() == MPTCPSocket::SOCKERROR) 
        return; 
} 

4. To send data on the socket, we use the “send” command, where “msg” is a reference 

to an object of type “cMessage”. 



 

48 

socket.send(msg); 

5. To close the connection: 

socket.close(); 

The client will instead perform an "active connection" to contact the Server. The 

procedure is similar to the one explained above except about step 2, where we need to use:  

socket.connect(Address, port)  

in order to establish a connection with the node of given address on the specified port. 

All the socket objects are of type MPTCPSocket and exports their active states as public 

variables such as: 

MPTCPSocket::NOT_BOUND 
MPTCPSocket::BOUND 
MPTCPSocket::LISTENING 
MPTCPSocket::CONNECTING 
MPTCPSocket::CONNECTED 
MPTCPSocket::PEER_CLOSED 
MPTCPSocket::LOCALLY_CLOSED 
MPTCPSocket::CLOSED 
MPTCPSocket::SOCKERROR 

Our implementation work in OMNeT++ began by duplicating the TCP model to have a 

starting point for the MPTCP development. We then developed a script to modify all the 

references to the TCP structures by the use of regular expression that substitutes all the 

“TCP” strings with “MPTCP”, respecting the context in which the replacement is done. After 

that we changed the packet header format to include the new fields and we developed two 

basic applications that are useful for testing the protocol. We also created two host objects 

that include the support for our protocol, one with an only a PPP wired interface and another 

including also one or more 802.11 wireless cards and the support for host mobility. 

To summarize, the following are the component that have been developed: 

• Transport/MPTCP/ and Transport/Contract/MPTCP*, that contains the actual C++ 

implementation of the MPTCP transport layer. 

• Applications/MPTCPApp/ that contains the C++ code of the MPTCP sample 

applications. 
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• Nodes/INET/MobileHostMPTCPEnabled.ned, which is a mobile node offering the 

support for mobility and a wireless interface complying with the 802.11 standard. 

• Nodes/INET/StandardHostMPTCPEnabled.ned, which is a modified version of the 

OMNeT++ standard node including the support for MPTCP, zero or more PPP 

interfaces, zero or more Ethernet connections and any number of 802.11 wireless 

receivers. 

• The three showed scenario are stored in the directories 

Examples/INET/MPTCP_basic/, Examples/INET/MPTCP_allwifi/ and 

Examples/INET/MPTCP_wiredsensors/. 

While it is not a full implementation of the protocol because we did not include 

authentication procedures nor the support for cryptography and data compression, the 

resulting MPTCP model is valid for demonstration purposes and as framework for further 

developments. 
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Chapter 5:  Evaluation 

After the experiments discussed in Chapter 4 and after the analysis of a basic MPTCP 

implementation in a network simulator, we faced the questions about how to properly 

evaluate a transport protocol which main aims are not performance results such as 

throughput or latency but instead offering new characteristics like disconnection handling 

and local data storage. Since benchmarking would not be possible to demonstrate the validity 

of those operations, our evaluation approach will be an analysis of the feature list of MPTCP. 

We will conclude the chapter including a review of the security issues addressed, an 

estimation of the overhead induced by protocol headers and a comparison table between our 

protocol and others, using the format we discussed in Chapter 2. 

5.1 Sample scenarios 

MPTCP uses are potentially unlimited, ranging from unreliable wireless links to high-

availability wired networks. In the following seven paragraphs we will illustrate various 

different scenarios in which we believe MPTCP can give a valuable contribution. 

5.1.1 Sensor Networks 

In the last years, a number of “smart dust” solutions have appeared on the market. 

These small devices, often only few centimetres long, are equipped with a radio and one or 

more sensors to get readings of the current temperature, air pressure, humidity, acceleration, 

etc. In a typical environment, the boards would be connected via wireless links to form an ad-

hoc network in which the routing is done by all the nodes by re-broadcasting the incoming 

packets.  

Programming a software application for a sensor network is difficult for several reasons: 

the embedded operating system running on the sensor boards usually is very constrained 

and offer scarce network functionalities, available memory and CPU power are limited, the 
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network does not offer any speed or reliability guarantee and it is often mandatory to bound 

the number of calculations and packets sent to the network in order to save energy. It is also 

important to develop a stable application before arranging the sensors on the field of 

operations because in many cases it would be extremely difficult or impossible to modify the 

boards once deployed. 

All these issues lead to a difficult development lifecycle during which the need for a 

reliable data transport protocol face with a very constrained programming environment. 

MPTCP provides two efficient methods to save sensor readings. Assume that the user is 

carrying a mobile device such as a PDA to collect the data periodically, for example to get the 

temperature values of ten sensors in an area with an interval between two values of an hour.  

Normally, the boards would have to store the readings in the local memory and, every 

hour, the user would need to physically reach the area of monitoring to download the data on 

his PDA. Following the MPTCP paradigm we can imagine to program and deploy a Meeting 

Place, such as a small board equipped with a wireless radio and a storage chip, that will 

periodically query the sensors and store the received data. The user will then be able to 

download on his PDA all the readings of the last few days or weeks at once. 

A different approach uses Multiple Reverse Requests: the sensor boards can be 

programmed to actively transmit their readings to a Meeting Place, which will store them on 

the disk. Later, the user will be able to collect all the gathered data directly from the Meeting 

Place.  

5.1.2 Requests for time-consuming services. 

Many mobile applications are developed following a Client/Server approach in which a 

small software client is installed on a portable device (i.e. a PDA, a Java-enabled mobile 

phone, a gaming console etc.) in order to interact with a remote server.  

The Server applications can offer several services at once and will typically interact with 

other remote resources such as databases, archives, web services, etc. We can thus divide a 

single request from a mobile device in three steps: first, the user sends a command to the 

remote server, then the data is processed and the results are computed and finally the data is 

sent back to the portable application. In many situations the second step we just defined will 

require a variable amount of time for its completion and the user must remain connected to 

the network in order not to loose the answer.  
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An example can be represented by a mobile application for financial trading running on 

a mobile phone. The remote server handles the “buy”, “sell”, “get price of” commands by 

querying a complex SQL database with the details of each stock option, investment fund, and 

analyst ratings before sending back to the user a confirmation of the command or a numeric 

requested value. 

A valid enhancement to this Client/Server application is represented by “SQL over 

MPTCP”, according to which the database operations on the Server can be performed while 

the client is disconnected. At first, the user can ask to store the data on a meeting place then 

disconnect from the network. Later, the Client will connect again to the network and 

download the data from the Meeting Place. 

5.1.3 Large Requests to Servers with low bandwidth.  

In mobile networks, no assumption can be made about the bandwidth available to a 

remote server for providing a service. Moreover, if data routing is based on packet 

forwarding, it is even possible for a single mobile client to have get bandwidth than a central 

server.  

As an example we can consider that the Operating System of a PDA is connecting to a 

remote file storage using an 802.11 wireless connection in order to automatically download 

software updates. If the file being downloaded is large and the server is overloaded, the data 

transfer will require more time than necessary thus reducing the general network efficiency. 

As a matter of fact, even if the client would be able to download at a faster rate, the server (or 

the network, if many PDAs are updating the software at the same time) cannot dedicate more 

bandwidth forcing the user to wait for a longer time and wasting battery power. 

By using “HTTP over MPTCP”, a client that wants to download a large file from a slow 

server can delegate a Meeting Place to get the file, then disconnect and collect it later at a 

higher speed. 

5.1.4 Many requests, one collection.  

Many network applications are composed by a pattern of requests that repeats 

constantly over time. Common examples are administrative protocols that periodically 

gather statistics about the status of links and hosts, such as SNMP. 
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For instance consider a user application which queries every 5 minutes each of the 

routers in the network to obtain a value of the bandwidth utilization of each Ethernet link.  

In this case, with the adoption of “SNMP over MPTCP” the client can instruct a Meeting 

Place to send an SNMP payload to a list of IP addresses every 5 minutes and to store the data 

on the local disk. The user software will then download all the gathered readings at once. 

Thus, instead of sending a request and obtaining an answer for each data sampling, the client 

will only send out a request to the Meeting Place and then get only one cumulative reply. 

5.1.5 Implicit redundancy, keeping a local copy of the data.  

The transport protocol that we developed can also be used for operations typically 

carried out by higher levels of the network stack. In case the network administrator wants to 

improve network reliability by increasing the redundancy of user data, MPTCP provides an 

automatic technique to mirror information and store it on the Meeting Places of the local 

network. 

A good example is Database replication: a mobile device accessing a remote database 

can request to the Meeting Place to store a copy of the tables on its disk. By doing this, the 

user will be able to work even in case of a failure of the remote network link. 

5.1.6 Reduce bandwidth requirements for external networks.  

Sometimes, mobile and ad hoc networks do not have a direct upload to the Internet nor 

to any Wide Area Network but only include hosts that are geographically near to each other. 

An “uplink” to other public networks is often included for management purposes and it is 

typically constituted by a GSM or GPRS connection. 

The adoption of links that have a direct correlation between costs and produced traffic 

must be planned in advance to avoid unnecessary high network costs. Imagine the case in 

which dozens of PDA are programmed to download firmware updates from the Corporate 

FTP server: if each client downloads a copy of the file, the accounted traffic on the dial-up 

link will be elevated.  

The use of MPTCP for file repositories leads to an optimization of the external network 

resources, since a keeping a copy of the data on the local Meeting Place reduces the demand 

for external connectivity. 
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5.1.7 Transmitting data between mobile users.  

In the last sample scenario we point out an end-user application developed with MPTCP 

support. 

Instant Messaging software are very popular for both mobile clients (e.g.: SMS, 

Bluetooth paging, etc.) and public networks (e.g.: software like ICQ, Microsoft MSN, Jabber, 

etc.) and they represent an effective communication tool. 

Since most of the IM applications are based on a Client/Server paradigm, their 

deployment on generic mobile networks is more difficult because of the poor links reliability 

and because the user can connect and disconnect from the network at any time. This problem 

is even more evident for pure peer-to-peer messaging protocols in which no central server is 

used but the clients directly connect to each other. 

By developing an IM software that uses MPTCP, the programmer can exploit the 

presence of the Meeting Places in the network and use them as a temporary “base point” to 

transfer data between two mobile user that can be disconnected at any time because of 

insufficient network coverage, hand-off errors, etc. 

5.2 Overhead considerations 

As previously explained in Chapter 3, MPTCP includes a communication model based on 

variable size headers and on the use of a linked list of optional “subheaders”. This approach 

was adopted in order to include in the transmission only the options that are actually needed 

in order to reduce the packet size and thus increase the throughput, reduce the transmission 

times and save power. The following table gives a rapid overview of the admitted subheaders, 

the number of times each of them can appear in a packet and the size of each in octets. 

Subheader name Number of 
occurrences 

Size (octets) 

head_general {1} 24 

head_thirdaddress_v6 {0, ∞} 20 

head_thirdaddress_v4 {0, ∞} 8 

head_ttl {0, 1} 8 

head_crypt {0, 1} Variable 

head_multiple {0, 1} 4 

head_answer {0, 1} 4 

Table 5-1: MPTCP subheaders sizes 



 

55 

It is important to note that in MPTCP all the headers have a fixed size except 

head_crypt that contains the X.509 certificates and the session keys used for cryptography. 

In order to be considered valid, a packet need only to contain head_general and one 

between head_thirdaddress_v4 or head_thirdaddress_v6, so the size of the smallest 

accepted packet in MPTCP, assuming an empty payload, is of 32 or 44 bytes respectively. 

Another technique that our transport protocol incorporates in order to reduce the packet 

size consists in sending all the subheaders only once in the first packet sent to the 

destination, thus the first with the “SYN” bit set. After the sender receives an ACK for this 

segment, all the subsequent packets include only head_general, having thus an overhead of 

only 32 bytes. 

As a comparison, we recall that TCP has a fixed header size of 20 octets, IPv4 is from 20 

to 60 bytes long and IPv6 has a minimum length of 40 bytes. By considering all these values, 

the minimum size of a MPTCP packet once encapsulated by the network layer is 20+32=52 

bytes for MPTCP over IPv4 and 40+44=84 bytes for MPTCP over IPv6. 

5.3 Security aspects of MPTCP 

Paragraph 3.5 analyzes in detail the security features of MPTCP, explaining the 

operation needed for authentication and data cryptography. In this section we will examine 

some scenarios in which an external malicious “actor” tries to overhear, change, corrupt or 

destroy data running over a MPTCP-enabled network by performing attacks aimed to the 

transport layer. 

In the first scenario we imagine an attacker node that tries to impersonate a legitimate 

network node in a reverse request, as shown in Figure 5-1. 



 

56 

 

Figure 5-1: MPTCP security attack based on IP spoofing 

The attacker will try to “spoof” the IP Address of the authentic Meeting Place in order to 

take its place and to direct towards itself the traffic coming from the Server. As a 

consequence, two different situations are possible: 

• If the security level (variable SeLvL) is bigger or equal to 3, mutual authentication 

between the Meeting Place and the Server is in place, therefore the Meeting Place 

must send its certificate CRTmp to the Server, which will check its validity. By 

requiring this extra check, the Server will identify the Meeting Place as fake and it 

will refuse the connection or trigger an external security countermeasure. 

• If the security level is less than 3, the Server does not have any method to control the 

Meeting Place validity and thus the attacker could impersonate it successfully. 

In both cases, it is important to remember that the malicious node will not be able to 

read in clear the data sent by the server since it is encrypted at the source using a session key 

known only to the Server and the Client. As a result, with SeLvL >= 3 no attack is possible 

using the “spoofing” technique while with SeLvL < 3 the attacker can only receive and 

destroy data but not decrypt it. 

In the second scenario, we imagine an attack that exploits the properties of insecure 

wireless links. Typically, sensor networks do not use any encryption at the MAC layer to 
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prevent data stealing from unauthorized hosts, on the contrary to infrastructure based 

wireless network where often standard protection systems like WEP or WPA are enabled. It 

is often difficult to implement any data encryption scheme at the physical or media access 

layer when the hardware characteristics of an embedded system are very constrained, 

therefore sensor and on-the-field applications often transmit data on the air without any 

encryption at all. In this case, it is easy for an attacker to “sniff” all the packets it is able to 

hear and potentially it is even possible to capture every single octet sent in the transaction 

between the Client, the Meeting Place and the Server. This attack is easily feasible with 

limited computing power also on 802.11 network protected with the WEP standard, because 

of the well documented flaws of this standard [27]. 

 

Figure 5-2: MPTCP attack based on traffic sniffing 

With the MPTCP protection scheme based on asymmetric cryptography and certificate 

exchange, even if an eavesdropper can capture all the data send from the beginning of the 

transaction, it would be still impossible for the attacker to determine the session key that is 

used to encrypt the data. Consequently, it is completely useless for an unauthorized node to 

perform an attack based on the systematic and extensive capture of the network traffic and 

the only data it could gather are statistics about the number of connections, network 

addresses and other header fields that are sent as clear text. 
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The third security scenario we propose is an extension of the second, since we suppose 

that a malicious node has captured all the network traffic relative to a full MPTCP 

transaction. After the transaction is finished and the Client has got its data from the Meeting 

Place, the attacker manage to get a copy of the both the X.509 certificates and the private 

keys of each of the three nodes.  

 

Figure 5-3: MPTCP attack based on certificate stealing 

At this point, the node would be able to “forge” any type of packet and impersonate any 

other node by using their private key. Despite this, since data destined to the Client is 

encrypted directly on the Server using a temporary session key that is known only to the 

Client and the Server and never sent in clear over the network, MPTCP ensures “perfect 

forward secrecy” of the data stored on the Meeting Place disk and sent between the hosts. 

Because of this approach the data can be deciphered only by the Client and the Server by 

using the session key and any other approach based on network “sniffing” would fail.  

The only scenario in which knowing both the public and private keys of all the nodes 

represents an advantage is one where an attacker gets a copy of the keys before the MPTCP 

transaction begins. Nevertheless, if the hosts use a “Certificate Revocation List” or an online 

certificate validity protocol and their discover that the Private keys have been stolen, it would 

be possible to revoke their certificates on the fly and consequently deny any further use. 
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5.4 Feature list and protocol comparison 

While MPTCP includes performance enhancements and techniques to adapt the 

transmission to the network capacity, it is a transport protocol that does not aim directly to 

deliver a better throughput, latency or reliability but it is intended to offer new qualities to 

existing networks.  

In this paragraph we analyze the main features offered by the protocol, comparing them 

with the other protocols we discussed in Chapter 2. 

The central functionalities introduced by MPTCP are:   

• The support for handling multiple, periodical requests by issuing one command in a 

single transaction. This result can be achieved by using Multiple Direct Requests 

(MDR) or Multiple Reverse Requests (MRR) or by including more than one 

head_thirdaddress header in the packets. 

• MPTCP maintains the end-to-end paradigm of the traditional transport protocols 

while offering two different operation modes: direct and indirect connections 

between the Client, the Meeting Place and the Server. 

• To reduce protocol overhead and subsequently require less power and transmission 

time, the protocol uses headers with variable length to include only the options 

needed by the current transaction or supported by the actual implementation. 

• A transparent and adaptive payload compression algorithm is supported, but can be 

disabled by using a specific flag in the headers. 

• MPTCP works over unmodified IPv4/IPv6 networks and does not require any 

modification to the network layer of the hosts or the use of a specific routing protocol 

on the network. 

• Security features are included in the protocol specification. A scheme using X.509 

certificates and asymmetric cryptography is used to avoid many common attack 

patterns and to ensure Perfect Forward Security (PFS) of the data stored in the 

network. The implementation is independent from the adoption of a specific 

“cipersuite” and no encryption algorithm nor key lengths are enforced. 

The table reported in the following page presents a basic comparison of the features of 

MPTCP with other two transport protocols, following the scheme adopted in paragraph 2.3. 
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 MPTCP TCP-BuS Split-TCP 

References n/a [5] [7] 

Packet loss due to BER 
or collision 

On a single link: same as 
TCP. Note that between C 
and S no contemporaneity 

is needed. 

Same as TCP Same as TCP 

Path breaks Thanks to the MP 
paradigm, the user does 

not experience any single 
link disconnection. 

ERDN is sent to the TCP 
sender, state changes to 

snooze, ICMP DUR is sent 
to the TCP sender, and 

ATCP puts TCP into 
persist state 

Same as TCP 

Out-of-order packets Same as TCP Out-of-order packets 
reached after a path 
recovery are handled 

Same as TCP 

Congestion Same as TCP Explicit message such as 
ICMP source quench are 

used. 

Since connection is split, 
the congestion control is 
handled within a zone by 

proxy nodes 

Congestion window 
after path 

reestablishment 

Recomputed for every 
transaction 

Same as before the path 
break 

Proxy nodes maintain 
congestion window and 

handle congestion 

Explicit path break 
notification 

No Yes No 

Explicit path 
reestablishment 

notification 

Yes Yes No 

Dependency on 
routing protocol 

No Yes No 

End-to-end semantics No Yes No 

Packets buffered at 
intermediate nodes 

Yes Yes Yes 

Compatible with TCP No No No 

Table 5-2: Comparison table including MPTCP 
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Chapter 6:  Conclusions 

This chapter discusses the purpose of the thesis and how the objectives were achieved. 

The first paragraph lists the contributions to the state of the art in the area of transport 

protocols for delay-tolerant links and Ad Hoc networks, we then analyze the completed work, 

the results of the experiments discussed in Chapter 4 and the evaluation presented in 

Chapter 5. The final section on future work suggests any further development which could be 

carried out on the protocol. 

All the protocol specification documents and the developed C++ code can be 

downloaded from the project website, at the URL: http://mptcp.sourceforge.net 

6.1 Contribution 

At the beginning of the thesis we briefly introduced ten existing transport protocols that 

were designed to improve the performances of the traditional TCP stack in scenarios such as: 

ad hoc routing systems, wireless degraded links, “interplanetary” networks and generic 

architectures with delay-tolerant properties. All these standards are based on the assumption 

that two endpoints connects between them, directly or by packet forwarding with the help of 

other nodes, thus creating a single link over the network. In some cases (such as S-TCP or 

LTP), intermediate nodes that lie on the path between the sender and the receiver can act as 

transparent “proxies” by locally caching data before passing it to the next node, increasing 

thus the overall network reliability. The user is not aware of the mechanism and what he sees 

is only a direct connection to a remote node. 

The transport protocol that we developed follows a different paradigm in which is the 

user (or the application he is running) that directly controls data caching on the network 

hosts. It is also important to note that, while in traditional TCP a connection can occurs only 

between two endpoints, in MPTCP a “transaction” can include a minimum of three end-to-

end packet exchanges without any upper maximum. 
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To conclude, we believe that the introduction of MPTCP in an existing network can 

represent a useful aid for scenarios like the seven described in Paragraph 5.1. Whilst all these 

situations can be solved using only traditional transport protocols and possibly delegating 

the packet delivery to upper layers, a technique based on Meeting Places provides a more 

accurate control of the data transfer.  

6.2 Completed Work 

Alongside this dissertation we prepared a separate document, “MPTCP Protocol 

Functional Specification”, that is reported in Appendix I and includes a formal description of 

the algorithm and structure used. A central part of the text is dedicated to describe the finite 

state machine used to model the protocol. The format of all the low-level structures used by 

MPTCP is specified in detail, including also the headers layout and the allowed options of 

each. 

Starting from that document it is possible to develop an actual implementation of the 

transport protocol in virtually any programming language that offer networking support. As 

described in Chapter 4, we evaluated several solutions for testing purposes, including a Linux 

kernel modification, a user-space application which can be compiled without modifying or 

rebooting the system and a shared library in C that uses IP RAW sockets. We completed by 

producing two simulation environments using OPNET and OMNeT++ and by running 

various scenarios including wired and 802.11 wireless networks. 

To conclude, a new delay-tolerant transport protocol has been designed, formalized in 

the “Protocol Specs” document and tested by the use of network simulators. We believe that 

MPTCP can represent a useful technique in the deployment “on the field” of many 

applications.  

6.3 Future Work: How to expand MPTCP 

During the course of our research, many opportunities for future investigations were 

made clear. First of all, a full implementation of the MPTCP functionalities would allow the 

deployment of the transport protocol in a testing environment and the measurement of 

performance values. The suggested approaches have been described in Chapter 4 for Linux 

platforms but of particular interest is also the implementation of MPTCP on embedded 

hardware such as sensor motes running TinyOS [28], µCLinux [29] or similar. 
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As explained in the last chapter of the “Protocol Specification” document, a useful 

extension to MPTCP would be the development of a new sub-layer that the Meeting Places 

could use to communicate among them. The exchanged information is mainly constituted by 

routing and signalling data for the following purposes: 

• Synchronization, to copy the stored data on more than one Meeting Place in order 

to achieve higher redundancy, 

• Failover. In case a node suddenly becomes unavailable, neighbouring hosts can 

signal the problem to the Server, the network administrator or the other Meeting 

Places. 

• Administrative routing. If a Meeting Place has to be shut down, the 

administrator could notify the other hosts to avoid sending data to the offline node. 

Example scenarios are scheduled maintenance works, software upgrades, etc. 

• Traffic redirection between Meeting Places. When a node get too busy to manage 

the incoming data, store it on the local disk and notify the user, the signalling 

protocol would allow the routing of requests to other nodes. This function creates a 

“load-balancing” solution that also solves storage related problems such as full disks, 

RAID problems, etc. 

Because of the security issues that such a routing problem can generate, it is advisable to 

exchange all the information using asymmetric cryptography and verifying the X.509 

certificates that are already used in the protocol. 

The development of a signalling sub-protocol would allow for a better management of 

the requests coming from the Clients and of the data being sent by the Servers, with both 

performance and reliability improvements. 
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Appendix A: MPTCP Protocol Draft 

In the following pages we include “MPTCP Protocol Specification” document, which 

contains the formal description of the protocol operations and of the low level structures 

used such as headers, interfaces, states, etc. 

This text represents a useful documentation for developing a real MPTCP 

implementation in a high-level programming language. 
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MPTCP 
MEETING PLACES TRANSMISSION CONTROL PROTOCOL 

PROTOCOL SPECIFICATION 
 
 

1. INTRODUCTION 
 

1.1 Background 
 
 
  The communication between two nodes in infrastructure-based networks is 
often based on point-to-point communication to implement communication 
models such as client-server. This approach relies on the availability of 
both nodes at time of the communication and on a stable connection between 
the two nodes during the duration of the communication. 
 
  In mobile networks – and especially mobile ad hoc networks – these 
assumption do not hold. Two mobile nodes that attempt to employ the client-
server model are open to problems introduced by the mobility of either node 
e.g. unavailability of one node during migration, unavailability of a route 
between the two nodes, etc. 
 
  The assumption of the “Meeting Places” approach is that mobile nodes will 
always be able to connect to a “stable” node somewhere in the network. The 
key advantages of this model on a highly variable network is that a few 
known and relatively stable network nodes can be used to achieve point to 
point like communication without the otherwise necessarily persistent 
quality of network. Moreover, the approach is scaleable through the 
introduction of more message points, and can accommodate a range of 
intermediary patterns to achieve various tradeoffs in performance. 
 
  We started our work by analyzing the currently existing enhancements to 
the TCP protocol for ad-hoc networks and then we identified the features 
needed at the application level and at the underlying network layer.  
 
  This document represents a formal description of the operation of the 
algorithm that can be an aid to the understanding, implementation and use of 
the protocol. We are supporting our work publishing a sample implementation 
as a standard C library for Linux operating systems.  
 
 
1.2 Motivations 
   
The typical motivation of a level-3 protocol is to provide a reliable or 
unreliable way to send data between two endpoints across a network. This 
concept assumes that both nodes are connected at the same time, directly via 
a single link or as part of a bigger network. Our protocol focuses on the 
situations in which the two endpoints cannot be connected at all times 
considering in particular, but not exclusively, scenarios where embedded 
systems are connected trough “Ad-hoc” networks. 
 
For simplicity, in the following paragraphs we will call the two endpoints 
“Server” and “Client”, where the first is the “data producer” and the second 
the “consumer”. Although this is a very common scenario, the protocol 
remains valid in pure “peer-to-peer” environment where any nodes can be 
defined both as Server and as Client. 
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The four motivations that drove the design of the MPTCP protocol were the 
followings: 
 
a. Absence of contemporaneity between the Client and the Server.  
    This assumes that the two endpoints are never connected  
    simultaneously to a network and therefore cannot establish a 
    connection. 
 
 b. Resilience to disconnections. 
    Even if we assume that, for certain variable and unpredictable  
    periods of time, the Client and the Server will be simultaneously  
    connected to the network and therefore transfer data directly, this  
    assumption can become false at any time. The two endpoints should  
    be able to work without being affected by disconnections. 
 
 c. Minimize the processing power and transmitting time of the client. 
    In case the data throughput provided from the Server or the network  
    is far below the capacity of the Client, this will be  
    forced to keep its receiving circuits (i.e.: a radio link) on for a  
    unnecessary period of time, thus wasting power. 
    In this situation, it is advisable to cache the data in the network 
    and collect it later with a higher throughput. 
 
 d. Reduce the load of the client, in case of periodical repeated  
    requests. In case the Client needs to periodically poll a Server    
    (e.g.: to get readings from a sensor), it is a good idea to  
    Delegate to the network itself the task to place the requests  
    to the Server and to store the data. 
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2. PHILOSOPHY 
 
This chapter gives some general concepts and guidelines about the MPTCP 
specification and implementation to better understand its operations. 
 
 

2.1 Key concepts of MPTCP 
 
During the design of the protocol, we tried to focus on the following key 
concepts. 
 
   a. “Intelligent Network, Simple Clients”.  
      Our protocol aim to give an implicit intelligence to the network,  
      by allowing the storage of information in the network nodes  
      themselves without the need of level-5 proxies and enforcing  
      end-to-end cryptography. 
 
   b. “Protect Against The Network”.  
      Since we are delegating the data storage to the network itself,  
      it is important to protect the data from malicious attacks.  
      The only entity allowed to get the content is the Client, so a 
      secure end-to-end encryption should be performed. 
 
 

2.2 Implementation guidelines 
 
This document describes the operations of the protocol and the programmable 
interfaces that an implementation must provide to the upper layer.  
 
It is possible to implement the protocol in three ways: using “raw” sockets 
directly inside the user software (if the Operating System allows this), 
writing an external library or developing a kernel module that will handle 
the MPTCP protocol when opening a new socket. Each of these approaches 
offers advantages and issues. 
 
In the paragraph 4.8 we describe the high layer interfaces that a MPTCP 
implementation must support, anyway the actual MPTCP API functions could 
differ because of the differences between operating systems. 
 
 

2.3 Application examples 
 
To further clarify the purposes of the protocol, we point out some typical 
usage of MPTCP. 
 
   a. Sensor Networks.  
      Imagine a scenario with “sensor motes” deployed on the field and a  
      mobile device to collect the data periodically. MPTCP provides two 
      solutions for this scenarios: the sensors could be programmed to  
      send their reading to a Meeting Place so that the user will be  
      able to collect them later. Alternatively, the user application  
      can delegate the MP to collect the data periodically from each       
      sensor and store it locally. 
 
   b. Requests for time-consuming services.  
      For example: SQL over MPTCP. A Client that requests a complex  
      database operation to the Server could ask to store the data on a  
      meeting place then disconnect from the network. Later, the Client  
      will connect again to the network and download the data from the    
      meeting place. 
 
   c. Large Requests to Servers with low Bandwidth.  
      For example: HTTP over MPTCP. A client that wants to download a  
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      large file from a slow server could delegate a meeting place to  
      download the file then disconnect and collect it later. 
 
   d. Many requests, one collection.  
      For example: SNMP over MPTCP. A client that wants to get a SNMP  
      reading from a remote host every 5 minutes for many days could  
      delegate a meeting place to do so, and then collect all the data  
      together later. 
 
   e. Implicit redundancy, keeping a local copy of the data.  
      For example: database replication. A mobile device accessing a  
      remote database could request a replication on the local meeting  
      place, to be able to work even in case of a failure of the  
      remote network link. 
 
   f. Reduce bandwidth requirements for external networks.  
      For example: file repositories. By keeping a copy of the data on  
      the local meeting place, it is possible to reduce the demand for  
      external connectivity. 
 
   g. Transmitting data between mobile users.  
      For example: Instant Messaging in Ad Hoc networks. A meeting place  
      could be used as a temporary base point to transfer data between  
      two mobile user that can be disconnected at any time. 
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3. OPERATION OF THE ALGORITHM 
 

3.1 Types of Connections 
 
In MPTCP four different types of requests are defined, they can be 
classified as follows: 
 

+----------------------------+-----------------------------+ 
|            SDR             |            SRR              | 
|   Single Direct Requests   |   Single Reverse Requests   | 
+----------------------------+-----------------------------+ 
|            MDR             |            MRR              | 
|  Multiple Direct Requests  |  Multiple Reverse Requests  | 
+----------------------------+-----------------------------+ 

 
 
The first letter in the acronyms specifies the number of requests to be 
carried out. A single request consists in only one request from the Client 
to the Server and its relative answer. Instead, with a multiple request a 
Client could ask to a Meeting Place to collect data from a Server many times 
at specified intervals. 
 
The second letter defines the type of connection ongoing between the Client 
(C), the Meeting Place (MP) and the Server (S), as follows. 
 
   - Direct Requests: The client delegates the MP to get the data (one    
     time or more) from a remote server and store it. The dialogue  
     between the 3 actors assumes the following form: 
 

+--------+  <====(1)====>  +---------------+                 +--------+ 
| Client |                 | Meeting Place |  <====(2)====>  | Server | 
+--------+  <====(3)====>  +---------------+                 +--------+ 

 
     1) C to MP: “Please send my payload to S” 
        MP to C: “Ok” 
     2) MP to S: “This is my payload” 
        S to MP: “This is my data” 
     Later... 
     3) C to MP: “Please send me the data waiting for me” 
        MP to C: “This is your data” 
 
 
   - Reverse Requests: The client directly connects to the Server and  
     ask to send the answer to its request to a Meeting Place. Later  
     on, the client will get the data from the MP.  
 

+--------+  =======================(1)====================>  +--------+ 
| Client |                 +---------------+                 | Server | 
+--------+  <====(3)=====  | Meeting Place |  <====(2)=====  +--------+ 

+---------------+ 
 
     1) C to S: “Please send the answer to this request to MP” 
        S to C: “Ok” 
     2) S to MP: “This is data for C” 
        MP to C: “Ok” 
     Later... 
     3) C to MP: “Please send me the data waiting for me” 
        MP to C: “This is your data” 
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3.2 Authentication procedures 
 
In this paragraph we describe the security mechanisms integrated in MPTCP in 
order to provide the identification of the “actors” involved and the secrecy 
of data. 
 
MPTCP uses a mechanism based on asymmetric cryptography and certificates in 
the X.509 standard. MPTCP specification does not describe how certificates 
are signed, distributed and revoked, so an external PKI becomes required.  
 
For the purposes of this document, we assume that every node in the system 
has the following elements: 
 - a pair of private and public key, generated with a chosen algorithm   
   and key length. We will call them {PRIVc, PUBc} for the Client,  
   {PRIVmp, PUBmp} for the MP and {PRIVs, PUBs} for the Server. 
 - a X.509 certificate by which a commonly trusted Certification  
   Authority (CA) signs the public key of the node. We will call them  
   CRTc for the Client, CRTmp for the MP and CRTs for the Server. 
 - the self-signed certificate of the CA. 
 
MPTCP uses the CRT for both authentication and authorization, since no 
account names nor password are defined. 
 
Every single MPTCP operation has a “security level” specified by the 
variable SeLvL contained in the head_crypt subheader. The user can decide 
how strict the security checks should be by modifying its value. A SeLvL of 
zero means that cryptography is completely disabled. Higher levels provide 
complete mutual authentication between nodes. 
 
In the following paragraphs the steps performed for Direct and Reverse 
requests are described. 
 
   3.2.1 Direct Requests 
 
1. The Client sends a SDR/MDR packet to the MP attaching CRTc by    
   using a mptcp_auth header. Optionally for SeLvL >= 2, MP  
   sends back CRTmp to C to ensure mutual authentication. 
 
2. MP sends a SDR/MDR request to the Server attaching CRTc. For  
   SeLvL >= 3, MP attaches also CRTmp and receives CRTs from  
   the Server. 
 
3. The Server sends to MP the data encrypted with the public key of the  
   Client. 
 
4. The Client requests data from the MP sending CRTc and, for  
   SeLvL >= 2, requesting CRTmp. 
 
We define the following security levels: 
 
           SeLvL     | Description 
     ----------------+------------------------------------------------- 
            0x0      | No authentication at all. Cryptography disabled. 
            0x1      | Client sends CRTc to the MP. 
            0x2      | As above, plus MP sends CRTmp to the Client. 
            0x3      | As above, plus MP sends CRTmp to the Server and  
                     | receives CRTs from the Server. 
 
   3.2.2 Reverse Requests 
 
1. The Client sends a SRR/MRR packet to the Server attaching CRTc by    
   using a mptcp_auth header. Client and Server exchange then the  
   pre-secrets keys in order to create a session key. 
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At this point, the Client and the Server are mutually identified and they 
share the knowledge of a secret key. 
 
2. The Server sends to the MP: its own certificate CRTs and data  
   encrypted using the shared key (that MP ignores). Optionally, for  
   SeLvL >= 3, MP sends back CRTmp to S to ensure to be  
   trustworthy. 
 
3. The Client gets the data from the MP by using its own CRTc as  
   identifier. Optionally, for the SeLvL 4, MP sends its own  
   CRT to C. 
 
 
We define the following security levels: 
 
           SeLvL     | Description 
     ----------------+------------------------------------------------- 
            0x0      | No authentication at all. Cryptography disabled. 
            0x1      | Client sends CRTc to the Server. 
            0x2      | As above, plus Server sends CRTs to the Client. 
            0x3      | As above, plus MP sends CRTmp to the Server. 
            0x4      | As above, plus MP sends CRTmp to the Client. 
 
By using these security measures we can avoid the following attack patterns: 
 
 a. A malicious node could “spoof” the IP Address and take the place of  
    the actual MP to direct towards itself the traffic coming from the    
    Server. This attack is not feasible because: 
    - the malicious node cannot read the data since it was encrypted  
      with a session key known only to the Server and the Client. 
    - with SeLvL >= 3, MP must send CRTmp to the Server. 
 b. Even if an eavesdropper would capture all the data send in the three  
    steps above, it would be impossible for it to find the session key. 
 c. In case the Server or the MP or both would become compromised, MPTCP  
    ensures “perfect forward secrecy” of the data stored on the MP’s  
    disk, since they are encrypted with different and unknown session  
    keys. 
 
 

4. FUNCTIONAL SPECIFICATION 
 
This chapter formally describes the format of the packets, in order to make 
different MPTCP implementation fully compatibles. Please note that the 
ordering of the bytes “on the wire” follows the standard used in the lower 
layer and that in this document we keep a data alignment of 32 bits words (4 
octets) for presentation purposes. 
 
 

4.1 Header format 
 
The size and number of fields in the header of the MPTCP protocol is not 
constant but can vary to adapt the protocol to each situation while keeping 
the overhead low. 
 
The fields allowed in the MPTCP header are classified in “options groups” 
that we will call “subheaders” in the remainder of this document.  
 
Please note the following constraints: 
   1. All the subheaders are optional except head_general and one  
      between head_thirdaddress_v4 or head_thirdaddress_v6, that must   
      always be present..  
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   2. The size of each subheader is fixed and specified in this document 
   3. The order of the subheaders is not relevant, except head_general 
      that must always appear as first. 
   4. All the subheaders except head_general can be present only in the  
      first packet of a session. 
   5. Each of the subheader types can appear only once in the list  
      except head_thirdaddress_v4 and head_thirdaddress_v6, that can  
      appear an arbitrary number of times to indicate that this session  
      will make simultaneous use of more than one server or meeting  
      place by sending a copy of the payload to each of them.  
   6. The NextHeader value of the last subheader must be zero to  
      indicate that the payload is following. 
   7. The subheader head_answer can be used by a MP to communicate  
      warning or errors to the C. 
 
The subheaders present in a packet take the form of a “linked list”, where 
each one is identified by the value in the “next header” field of the 
previous subheader. Note that this technique is similar to the IPv6 
protocol, described in RFC2460. 
 
In the current protocol description, seven groups are present. 
 
       NextHeader Value  |  Name  
     --------------------+-------------------------- 
             n/a         | head_general 
             0x1         | head_thirdaddress_v6 
             0x2         | head_thirdaddress_v4 
             0x3         | head_ttl 
             0x4         | head_crypt 
             0x5         | head_multiple 
             0x6         | head_answer 
 
We will describe them in detail in the following paragraphs. 
 
 
   4.1.1 The MPTCP head_general Subheader 
 
This header is mandatory and must appear in each packet of the session, 
always in the first position of the subheader list. The first bit of the 
“TYPE” field must be the first bit of the underlying network layer. 
 
The head_general subheader contains information about the content-id, the 
source and destination ports for layer-3 multiplexing, flow control 
information, session establishment and reset information and congestion 
control data. 
    
   0                   1                   2                   3 
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |  TYPE   |                  Content-ID                         | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |          Source Port          |       Destination Port        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                        Sequence Number                        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                    Acknowledgment Number                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |       |   |       |U|A|P|R|S|F|                               | 
   | NxtH  |GZ |Padding|R|C|S|S|Y|I|            Window             | 
   |       |   |       |G|K|H|T|N|N|                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                             data                              | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
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Fields specification: 
 
   - TYPE: 5 bits. Defines the type of request issued by the client, as  
     described in section 3.1 of this document. The allowed values are: 
       
       Hex Value  |  Mnemonic  |  Description 
     -------------+------------+------------------------------------- 
          0x1     |    SDR     | Single Direct Request 
          0x2     |    MDR     | Multiple Direct Request 
          0x3     |    SRR     | Single Reverse Request 
          0x4     |    MRR     | Multiple Reverse Request 
          0x5     |    GET     | Get Content 
          0x6     |    NFY     | Notify Content Availability/Errors 
          0x7     |    SIG     | Signalling Between MPs 
 
   - CONTENT-ID: 27 bits. It is a unique identifier for the information  
     that the client is requesting. 
 
   - GZ: 2 bits. For requests packets, defines if the payload data  
  should be compressed in the answer. In answer packets, it defines  
  if the payload is compressed. The compression algorithm is  
  described the standard GZIP algorithm. 
 
      Hex Value | Mnemonic |  Description 
     -----------+----------+---------------------------- 
         0x0    |   OFF    | Compression is always off 
         0x1    |   ON     | Compression is always on 
         0x2    |   AUTO   | Compression is adaptive 
 
  
   4.1.2 The MPTCP head_thirdaddress_v6 Subheader 
 
For direct requests, this header specifies the Server address to store the 
data on. For reverse requests, it specifies the Meeting Place address. It is 
called “third address” because it completes the set containing the Source 
and Destination addresses. 
   
   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |       Destination Port        |        Padding        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Third Address                           | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Third Address (cont'd)                  | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                       Third Address (cont'd)                  | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |                       Third Address (cont'd)                  | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
Fields specification: 
 
   - Destination Port: 16 bits. It specifies the layer-3 endpoint  
                       on the Server or the Meeting Place. 
 
   - Third Address: 128 bits. The IPv6 address of the Server or Meeting  
                    Place. 
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   4.1.3 The MPTCP head_thirdaddress_v4 Subheader 
 
For direct requests, this header specifies the Server address to store the 
data on. For reverse requests, it specifies the Meeting Place address. It is 
called “third address” because it completes the set containing the Source 
and Destination addresses. 
   
   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |       Destination Port        |        Padding        | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Third Address                           | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
Fields specification: 
 
   - Destination Port: 16 bits. It specifies the layer-3 endpoint  
                       on the Server or the Meeting Place. 
 
   - Third Address: 32 bits. The IPv4 address of the Server or Meeting  
                    Place. 
 
 
   4.1.4 The MPTCP head_ttl Subheader 
 
This subheader can be included by the client to specify how long the data 
should be stored on the Meeting Place. This Time-To-Live value is expressed 
as the number of integer seconds since the Unix Epoch (01/01/1970 at 
0:00GMT). Using this standard and allocating 60 bits for the timestamp 
field, we are able to describe time without compatibility problems in the 
future. Also, by using this approach, the 64bit implementations could just 
copy the system timestamp and removing the 4 most significant bits. 
      
   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |                   timestamp                           | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
   |                       timestamp (cont’d)                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
 
 
Fields specification: 
 
   - timestamp: 60 bits. Number of seconds since Unix Epoch. 
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   4.1.5 The MPTCP head_crypt Subheader 
 
This header specifies the details for the data encryption, such as the 
encryption algorithm and the X.509 certificate, that contains the node’s 
public key. 
    
   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  | SeLvL |                                               | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Pre-secret                              | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       X.509 Cert. (cont'd)                    | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   //                           (...)                              // 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+    
   |                       Padding, if needed                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
 
 
Fields specification: 
 
   - SeLvL: 4 bits. Define the security level of the operation, with the  
            values described in paragraphs 3.2.1 and 3.2.2. 
 
   - Public Key: contains the X.509 Certificate with the public key of  
                 the node, its technical details (cipersuite used, key  
                 length, hashing algorithm, etc) and a “common name”.  
 
 
   4.1.7 The MPTCP head_multiple Subheader 
 
This subheader can be used in Multiple requests (see paragraph 3.1) to 
specify the number of requests to be done and the time distance between 
them. 
   
   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  |   num_times   |              time_diff                | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
 
Fields specification: 
 
   - num_times: 8 bits. It express the total number of requests that  
                must be performed. 
   - time_diff: 20 bits. It is the number of seconds between each  
                request. Thus, the maximum delay between two consecutive   
                requests is 2^20 seconds (more than 12 days). 
 
 
   4.1.8 The MPTCP head_answer Subheader 
 
This subheader is used by the MP to communicate Errors, Warnings and 
informative messages to the C. Eight “error levels” are defined to specify 
the seriousness of a problem. Higher levels are simply informative and do 
not affect the operation of the protocol. 
A Warning is considered a non-blocking error given to the C to signal a 
unusual condition (i.e. space quota almost full). An Error requires the 
closing of the connection, with the use of the FIN and RST fields. 
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   0                   1                   2                   3    
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   | NxtH  | Lvl |               Message Code                      | 
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+  
 
Fields specification: 
 
   - Lvl: 8 bits. Specifies the level of the table, according to: 
 
       Level  |  Name  
     ---------+-------------------------- 
        0x0   | Blocking errors 
        0x1   | “Strong” warnings 
        0x2   | “Soft” warnings 
        0x3   | Notice 
        0x4   | Debug 
 
   - Message Code: 25 bits. A code associated with the specific  
                   situation. 
 
        Code   | Description  
     ----------+-------------------------------------------- 
         0x0   | General Error, no other details given 
         0x1   | User quota full 
         0x2   | High user quota usage 
         0x3   | Storage-related general problem 
 
 
                   4.2 Establishing a connection 
 
The MPTCP behaviour in point-to-point connections (e.g. from the Client to 
the Meeting Place) follows the TCP state machine as described in RFC 793.  
 
To establish a new connection, a "three-way handshake" procedure is 
initiated by one end-point. This consists in sending a packet with the SYN 
flag set in the head_general header. 
 
Please note that MPTCP specifications allow the node that actively opens the 
connection to send optional subheaders in the same SYN packet. Another 
option is waiting for the connection to be in the ESTABLISHED state before 
sending any optional data. 
 
 
                      4.3 Closing a connection 
 
As in TCP, CLOSE is an operation meaning "I have no more data to send". 
 
Since MPTCP imply a full-duplex connection, the user who CLOSEs may continue 
to RECEIVE until he is told that the other side has CLOSED also. 
 
The three cases of: 
    1) User telling the TCP to CLOSE the connection, 
    2) Users sending a FIN control signal and 
    3) Both users sending a CLOSE command simultaneously 
are discussed in section 3.5 of RFC 793, and MPTCP strictly comply to the 
TCP specifications. 
 
 
                  4.4 Flow and Congestion control 
 
MPTCP provides a means for the receiver to govern the amount of data that 
the sender writes on the communication channel. This is achieved by the use 
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of a "window" indicating a range of acceptable sequence numbers beyond the 
last segment successfully received. The window indicates an allowed number 
of octets that the sender may transmit before receiving further permission. 
 
MPTCP strictly comply with the TCP specification for the sliding window 
internals, as described in RFC 793. 
 
 
                      4.5 Payload compression 
 
MPTCP features an adaptive compression algorithm that tries to optimize the 
compression ratio according with the type of data transmitted. 
In the case the data is predominantly uncompressible or pre-compressed (eg: 
FTP or HTTP transfer of a large compressed archive) the compression can only 
introduce a computational overhead without giving any significant advantage 
in size or transmission time. 
 
With adaptive compression, MPTCP will periodically sample the compression 
process to measure its efficiency. If the data being sent over the tunnel is 
already compressed, the compression efficiency will be very low and the 
algorithm will disable the compression for a period of time until the next 
re-sample test. 
 
This behaviour can be controlled using the parameter GZ in head_general, as 
follows: 
 
      Hex Value | Mnemonic |  Description 
     -----------+----------+---------------------------- 
         0x0    |   OFF    | Compression is always off 
         0x1    |   ON     | Compression is always on 
         0x2    |   AUTO   | Compression is adaptive  
 
The sampling rate and the size “gain” threshold are not specified by the 
protocol but are implementation-dependant. It is advisable to let the user 
“tune” these values if required. 
 
 
                          4.6 Interfaces 
 
As in every transport protocol, there are two types of interfaces to 
describe: the user/MPTCP and the MPTCP/lower-level interface. We specify 
only the first since the latter is dependant on the lower level protocol and 
the system in which MPTCP is deployed. 
 
Following the example of the standard TCP, we identify the following 
abstract user procedures: 
 
 - OPEN  
   Parameters: local port, foreign socket, active/passive, timeout 
   Description: If “active”, this command starts the creation of a new  
                connection, in “passive” mode the system listens for  
                incoming connection on the specified port. It returns a  
                reference to the newly created connection. 
 
 - SEND 
   Parameters: connection identifier, buffer address, byte count. 
   Description: Copy the specified amount of bytes from the buffer  
                starting address to the socket specified.  
 
 - RECEIVE 
   Parameters: connection identifier, buffer address, byte count 
   Description: Read the specified number of bytes from the socket and  
                copy them to the buffer. 
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 - CLOSE 
   Parameters: connection identifier 
   Description: This command causes the connection specified to be  
                closed, if open. 
 
 - STATUS 
   Parameters: connection identifier 
   Description: This command returns the status of the specified socket  
                to the user. 
 
 - ABORT 
   Parameters: connection identifier 
   Description: This causes all pending SEND and RECEIVE to be aborted.  
                Also, a RESET message is sent to the other side of the  
                connection. 
 
We also introduce the following abstract interfaces: 
 
 - SET_CONNECTION_OPTION 
   Parameters: connection identifier, parameter name, parameter value 
   Description: This command set a value for the specified parameter,  
                inserting a new subheader in the following packet if  
                needed. 
    
 - GET_CONNECTION_OPTION 
   Parameters: connection identifier, parameter name, parameter value 
   Description: With this command the user gets the current value of a  
                given option sent in the packets of the specified  
                connection. 
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                   5. BETWEEN-MEETING-PLACES OPERATIONS 
 
MPTCP includes also a sub-layer that the MPs can use to communicate between 
them in order to manage the requests coming from the Clients and the data 
being sent by the Servers. 
 
These “between-meeting-places” operations include: 
   1. Synchronization, to support redundancy, 
   2. Failover, in case a MP suddenly become unreachable,  
   3. Routing of request between MPs. 
 
We plan to describe this communication sub-layer specifically in a further 
document. 
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GLOSSARY 
 
In this section we report the meaning of the main abbreviations used in the 
document. 
 
 
  C        Client 
 
  S        Server 
 
  MP       Meeting Place 
 
  NxTH     Next Header 
 
  SDR      Single Direct Request 
 
  SRR      Single Reverse Request 
 
  MDR      Multiple Direct Requests 
 
  MRR      Multiple Reverse Requests 
 
  PRIVc    Private key of the Client 
 
  PRIVmp   Private key of the Meeting Plac 
 
  PRIVs    Private key of the Server 
 
  PUBc     Public key of the Client 
 
  PUBmp    Public key of the Meeting Place 
 
  PUBs     Public key of the Server 
 
  CRTc     X.509 Certificate for the Client 
 
  CRTmp    X.509 Certificate for the Meeting Place 
 
  CRTs     X.509 Certificate for the Server 
 

 


