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ABSTRACT 

There are over 1 billion overweight adults globally, at least 300 million of them 

obese [18].  Overweight and obesity lead to adverse metabolic effects on blood 

pressure, cholesterol, triglycerides and insulin resistance.  It is a fast growing health 

problem, especially in the developed countries.  The most healthy method to control 

our weight is balancing the energy consumption and energy expenditure.  The energy 

consumption is about the eating and drinking.  Today, most food and drink we 

purchased from supermarket have nutrition information displayed on their packets.  

Therefore, it is very easy for us to monitor the energy consumption.  Letting people 

know their energy expenditure on different activities is the motivation of this project. 

The main purpose of this dissertation is designing and implementing a smart activity 

monitor, which can detect the user’s activities as well as calculating the energy 

expenditure on that activity.   The activity detection is the most challenging part of 

this project.  There are many solutions have been proposed from motion tracking to 

motion detection.   In this project I am using a single motion sensor “Inside-In” 

technique [1].    The sensor is tied beside the user’s ankle in order to collect the 

motion data.  The activity recognition is implemented by statistical pattern 

recognition with an unsupervised classifier.  It can recognise 3 different leg-only 

activities (walking, running and cycling) with over 88% accuracy.  The algorithm has 

been tested across 10 different people, with 80 different data sets and over 1800 

different tests.  The activity detection system is practical, reliable and can be adapted 

to many different context awareness application, which requires the user’ current 

activity information.    The whole system has been fully deployed on a handheld.  

The sensor is connected to a handheld, which is used to process the data as well as 

for the user interface via a serial interface.     
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Chapter 1:  Introduction 

According to the data from WHO (World Health Organization) [18], there are over 1 

billion overweight adults globally, at least 300 million of them obese.  The number is 

increasing very fast.  With current trends, the number will be doubled in 20 years 

time.  Are you one of the members?  This is very easy to assess using body mass 

index (BMI).   

BMI = 
)(

)(
22

mHeight

KgWeight
   

A BMI over 25kg/m2 is defined as overweight, and a BMI of over 30kg/m2 as obese. 

Overweight does not only affect people’s shape.  It will also damage our health.  

Overweight and obesity lead to adverse metabolic effects on blood pressure, 

cholesterol, triglycerides and insulin resistance.  It is more likely to get Type 2 

diabetes and hypertension for overweight people.  Approximately 85% of people 

with diabetes are type 2, and of these, 90% are obese or overweight.  High BMI also 

increases the risks of cancer of the breast, colon, prostrate, endometroium, kidney 

and gallbladder. 

Obesity is also one of the fastest growing health problems in Ireland [19].  According 

to the SLÁN survey in 2003, there are 47% Irish people reported being overweight or 

obesity.  Ireland has the fourth highest prevalence of overweight and obesity in men 

in the EU and the seventh highest prevalence among women.  One in eight Irish 

people are obese and every second person is overweight.  There are at least 2,500 

people dies coursed by obesity in Ireland every year.   
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1.1 Motivation 

From the facts introduced above we can see, overweight is a series problem.  It 

should be attached important to every people in the world.  People who are not 

overweight should prevent from obesity and keep weight.  People who are 

overweight or obesity should begin to fight fat and fight to be fit.   

How to keep weight or loss weight?  Basically, we should eat and drink healthier as 

well as doing more physical activities.  If the energy we consumed is much greater 

than the energy we expended, then time after time our weight will be increased.  

How to balance the consumption and energy expenditure is the key to control our 

weight. 

Today most food and drink we bought from supermarket has its nutrition information 

on its packet, e.g. a bar of chocolate, a can of 

Coke.  Figure 1-1 is an example of nutrition 

information on a food product’s packet.  It is 

very easy for us to know how much energy we 

have consumed.  The problem is it is difficult 

to know how much energy we have expended 

on physical activities.  If the energy we expend 

on physical activities is too little, we are still 

facing the overweight problem.  However, if 

we expend too much energy on physical 

activities, it is also bad for our health.   

 

Figure 1-1 Example of Nutrition Info. 

The motivation of this project is designing a smart activity monitor that can monitor 

the user’s physical activities and calculate the energy expenditure.   

There are many energy expenditure monitoring equipments has been built in the 

physiology science area.  Those equipments are designed for physiology researches.  

Most of them are either too big or too expensive or even both.  This project is 
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expected to using motion tracking techniques to detect activities and using current 

available energy expenditure equations from exercise physiology to calculate the 

energy expenditure.  Today the most motion tracking researches are in vision area.  

However, there is big disadvantage by using vision method to detect activity in this 

case.  We are monitoring the user’s physical activity here.  It is not convenient to 

have a camera to monitor the user all the time.  Another motivation of this project is 

researching in non-vision based human motion tracking.   

Beyond the scope of exercise physiology, the activity detector can provides very 

important context information for varies of context awareness applications.  Once the 

activity detector is successfully implemented, it can be embedded in any application 

that needs to know “WHAT physical activity is its user currently doing?”   

 

1.2 Project Objectives 

The primary objective of this project is to develop a human lower body physical 

activity monitor.  The lower body physical activity includes walking, running and 

cycling.  The goal for this project is accurately detecting the activity as well as 

correctly calculating the energy expenditure on that activity. 

In order to detect the human activity, I need to do research in motion senor and 

human activity recognition algorithms.  Once the activity detector is developed, it 

should be evaluated against its accuracy.  This part of project should be independent 

from the application level, including energy expenditure calculating.  In this case, the 

activity detector can be reused in other context awareness applications.  I also need to 

do research in the exercise physiology in order to find out how do calculate the 

energy expenditure.   

Considering the usability of the application, the project should be implemented on a 

handheld.  Therefore developing an application on a handheld will also be an 

challenge to this project. 
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1.3 Report Overview 

The remainder of the report shall follow the following structure: 

Chapter 1 

This chapter provides a brief overview of the project, stating the motivation and 

setting up the objectives. 

Chapter 2 

This chapter documents the background research which was completed, in order to 

understand the needs and requirements of this work.  The background chapter will 

discuss some popular motion tracking methods as well as some projects of using the 

motion tracking sensors.  

Chapter 3 

This is the design chapter.  There is a comprehensive description of design process 

documented in this chapter.  The design process includes three main stages, activity 

detection stage, energy expenditure stage and application architecture stage. 

Chapter 4 

The chapter will introduce the technologies that will be used in this project.  All the 

hardware including motion sensor and the handheld as well as the software and tools 

will be introduced.   

Chapter 5 

This chapter documents how the smart activity monitor is implemented.  The steps of 

implementation follow the sequence of design.  The detail of activity recognition 

algorithm, energy expenditure calculation as well as some problems solving will be 

documented in this chapter.   

Chapter 6 

In this chapter the accuracy of the activity recognition will be evaluated.  A series of 

tests will be carried out on the specifically designed testing bed.  The design of 
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testing bed as well as the tests results will be covered in this chapter.  Finally I will 

give the comments according to the tests results. 

Chapter 7 

In this chapter I will give the conclusion of the entire project, and I will also talk 

about the future work of this project.  

Appendix A 

This appendix contains screenshots of user interface from the Pocket PC. 

Appendix B 

This appendix contains a full bibliography pertaining to this dissertation. 
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Chapter 2:   Background 

The chapter provides background information related to human movement tracking 

and recognition.  The current available techniques will be discussed as well as 

evaluated against the objectives and scope of this project.  The projects that I came 

across which is using the MT9 will also be discussed in this chapter.   

2.1 A Review on Human Movement Tracking 

With current technologies, there are three types of human movement tracking 

systems available now [1].  The first system is the “Outside-In” system.  Such system 

uses one or multiple external sensors to exam the data source from human body.  The 

second system is the “Inside-Out” system.  The system uses one or multiple sensors 

fit on human body to detect the external artificial source.  The last type of system is 

called “Inside-In” system.  This system uses one or multiple sensors fit on human 

body to detect the data source also on the person’s body.  For example, Figure 2-1 

illustrates the 3 types of human movement tracking system in one picture. 

 

 Figure 2-1 Illustration of a real human movement tracking system [1] 
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The “Inside-Out” system is the only system that using the external data source.  

Therefore the accuracy of such system for tracking the actual human activity is low.  

The common examples of this system would be GPS and Ultrasound systems.  These 

systems can track the position and speed, but difficult to recognize the actual activity.  

Therefore, this type of system will not be reviewed in this project. 

2.1.1 Vision Based Tracking 

The typical “Outside-In” system is vision-based system.  As it is called, vision based 

system relies on one or multiple optical sensors (camera).  The vision based tracking 

system can be classified as “With-Marker” and “Without-Marker” [2].  The “With-

Marker” system has been used for over 30 years.  It was invented by G. Johansson in 

his physiological experiment.  He attached small reflective markers to human body, 

which allow these markers to be monitored during trajectories in order to perceive 

human motion.  This experiment is called “Moving Light Display (MLD)” [3].  Even 

until now, this technique is still very popular in movement tracking area.  If you 

watch any making of latest movies or games, you can often see people wearing many 

small reflective balls on his/her body while making the movie.  It is a milestone 

solution of tracking human movement.   

 

  Figure 2-2 Qualisys system [6] 
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There are many existing products available in market.  Qualisys is one of these 

systems.  Figure 2-2 is an example of Qualisys system.  We can see there are many 

cameras in the scene.  The Qualisys system consists of 1 to 16 cameras, each 

emitting a beam of infrared light.  The man standing in the middle of picture above 

wears many white balls.  These white balls are the reflective markers.  These small 

reflective markers will reflect the infrared light emitted from the cameras back to the 

cameras. The camera then will measure distance in order to calculate a 2-dimensional 

position of the reflective target.  By combining the 2-D data from several cameras a 

3D position will be calculated.  And then the 3-D human movement motion can be 

simulated by the application.  The activity type can also be recognized very easily.  

However, if we want to use such technique to design an activity monitor, which can 

be used by every body, that is very difficult.  Not because of the accuracy of such 

system will be low, but the cost and the condition of using this system are both very 

high.  Most the vision based tracking systems with marker are implemented for in 

door user.  Therefore we can only use such system to monitor the activity in gym.  

Before the system can be used, it requires the professional people to install the 

cameras and calibrate them.  The number of cameras will affect the accuracy of the 

result as well as the cost.  Another bad news for user is he/she has to wear many 

small markers on his/her body.  Although we can find some system with improved 

usability like CODA [5], which uses pre-calibrated sensors and intrinsic marker IDs 

to increase the mobility and the reduce the time cost in setting up and operating, this 

type of system still doesn’t meet the need of smart activity monitor in ubiquitous 

computing.   

The vision based without marker system is a less restrictive motion capture technique 

[2].  Such system only concerns the boundaries and features of human body.  This is 

a very active research area as there are many unsolved problems.  The researchers 

from Sejong University, Korea, used this technique to develop a ubiquitous smart 

home [7].  Inside the smart home, the location and motion of human can be tracked 

as well as recognized in real-time.  They use 3 images to analyze the human’s 

location.  The first image is the empty home image.  In the second image, all the 

furniture and appliances are put in, but without human.  The last image has 

everything including human.  In this case, the location of human can be analyzed 

according to these three images as well as which furniture the people is associated.  
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Figure 2-3 shows the structure of camera argument.  And then they use the support 

vector machine to predicate the human’s motion.   

 

 Figure 2-3 Structure of Ubiquitous Smart Home [7] 

 

The “Without Marker” based system is not suitable to use in this project as it can 

only predicate the activity.  The recognition accuracy of “With Marker” based 

system is much higher, because human skeleton is a highly articulated structure.  If 

the markers are put in right place, it can perceive human motion precisely [3].  

However, in the subject of mobility and pervasive, the vision based techniques are 

not quite suitable for design a daily use smart activity monitor.   

2.1.2 Non-vision Based Tracking 

The “Outside-In” system can also be non-vision based.  Thomas Dowad [8] from 

Before Technology, Canada, presented a Personal Action Wireless Sensor (PAWS) 

system.  This system is also used in the area of smart space in order to collect the 

important context information.  Instead of using cameras, it uses motion sensors 

within a wireless sensor network.  The user wears a watch-like sensor.  The sensor 

has an accelerometer built-in.  There are many locators are embedded in the different, 

which are the communication device.  The sensor will use Zigbee to communicate 

with the locator.  Figure 2-4 is an example of PAWS system.  The ‘W’ here means 

the user with the sensor.  The ‘node’ means the locator.  While the sensor is 

broadcasting a signal, the locator will tell the strength of the signal.  Base on this 
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information the location of the 

user can be estimated.  

According to the location and 

the current time, the 

probability of different action 

can be calculated.  The motion 

sensor will collect the motion 

data such as velocity, duration 

and repetition period.  Finally 

a host computer will recognize 

the action based upon motion, 

location and time.   

   

 

         Figure 2-4 PAWS System [8] 

Researchers from University of California [9] designed a similar system.  However, 

they used simple common sensors instead.  They sensors they used include door 

close sensors, IR motion sensors and floor pressure pads.  They also present a 

behavior model for predicting future sensor outputs and user location from previous 

data.  In conclusion of this type of non-vision human movement tracking system, it is 

a future technology.  If the pervasive sensors are embedded everywhere in our living 

environment in the future, our activity can be easily tracked.  However, this is not the 

best approach to implement an activity monitor to track the activity of user 

him/herself.   

The last human movement tracking technique I want to review is the “Inside-In” 

system.  The idea of this technique is using one or multiple wearable sensors to 

collect the source data from the user.  Nicky Kern and his colleagues from ETH 

Zurich, Switzerland [11] presented us a hardware platform which consists of multiple 

sensors and portable computer.  Figure 2-5 shows the user who has the sensor tied on 
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his body and holding a PDA.  The PDA is used for annotation. We can see he has a 

bag.  There is a laptop inside of the bag, which is used to record and process the 

incoming data.  The sensors they used for the project are the acceleration sensors, 

because of their weight, size and cost.   The system can store up to 48 hours 3 

dimensional acceleration data.  The activity will also be recognized as well as 

recorded.  They also point out that if we only 

want to recognize the leg-only activity, 

sensors should be placed on the leg.  J. 

Baek from Kyungpook National 

University, Korea [10] designed an 

activity estimator that can classify the 

acceleration data into 8 different states.  

The states include standing, sitting, lying 

back, lying on, walking, running, 

upstairs, and downstairs.  Figure 2-6 

shows the signal process steps of motion 

estimation. 

Figure 2-5 Multiple-sensors activity  detection system [11] 

 

Figure 2-6 Signal processing steps for motion state estimation [10] 

 

The “Inside-In” system can also use other different sensors.  J. Lester from University of 

Washington [12] designed a single sensor board which contains 7 different sensors.  The 

sensor board they designed is very small and light, which can be embedded into a mobile 

phone.  Once the user carried the mobile phone, his/her activity will be monitored.   
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After the study of these activity detection techniques I found that the “Inside-In” system is 

the most suitable technique that can be used in my project.  The smart activity monitor is 

designed to monitor a single user’s physical activities.  The “Outside-In” approach is facing 

mobility and installation requirement problems.  The vision-base approach is also facing cost 

of facility and cost of computation problems. Therefore I decide to use choose a wearable 

sensor to collect the motion data from the user in order to monitor his/her activities.  The 

scope and plan of this project does not allow me to design a unique sensor board.  From Dr. 

Madz Haahr’s “vision of ubiquitous computing” lecture, I meet the MT9.  The MT9 is a 

digital measurement unit that measures 3-D rate-of-turn, acceleration and earth-magnetic 

field.  The detailed introduction of the MT9 can be found in Chapter 4.  My project will this 

sensor to collect the motion data from the user. 

 

2.2 Prior MT9 Projects  

In this section I will introduce two projects that are using the MT9.  The purpose of 

studying these two projects is to make myself familiar with the sensor.  The first 

project I know, which is using MT9, is from Dr. Madz Haahr’s lecture.  It is called 

“Smart Sword” [13].  The sword here is a Japanese bamboo sword, which is used for 

Kendo.  The MT9 is tied with the bamboo sword, and it tracks the motion of the 

sword in 3-D.  They created a visualization application that can simulate the 

movement of the sword according the MT9 reading.   Figure 2-7(a) shows the user 

holding the smart sword.  Figure 2-7(b) shows the visualization application that is 

simulating the sword movement.   

          

Figure 2-7 (a) User Holding the Smart Sword      (b) Visualization Application [15] 
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They also created a training application that can record the professional kendo 

player’s move in order to train the beginners.   

Another project I came across is from my classmates Joe McKnight and Eoin 

Meehan’s pilot project [14].  They The project is a gesture controlled TV remote, 

which was implemented last year.  The project was using the MT9 in the area of 

gesture recognition.  They designed the system that allows the user to hold the MT9 

in his/her hand and doing the predefined gestures. The motion data that collected 

from the gesture will transfer to a PDA.  The PDA will evaluate the gesture and 

using the built-in IR to control the TV.   
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Chapter 3:  Design 

The design of the project has 3 main stages.  The first stage is the activity detection 

stage.  In this stage, a solution must be designed in order to recognize different 

activities.  The second stage is energy calculation stage.  How to calculate the energy 

expenditure must be designed in the second stage.  The final stage is the application 

stage.  In this stage, the application architecture must be designed.   

3.1 Activity Detection Stage 

3.1.1 Goal 

The goal of this stage is to design an appropriate and feasible solution to deal with 

the incoming MT9 data in order to detect different activities (Walking, Running and 

Cycling) in real time.  This solution should use as less resource as possible but 

making potentially highest accuracy.  

 

3.1.2 First Approach 

MT9 Data Analysis 

From the observation of people’s walking, running and cycling, a truth is discovered.  

The rotation of human’s legs and feet is only based on one axis with the human’s 

own coordination system.  From Figure 3-1 we can see, the rotation of the leg should 

only base on the Z axis, when the people is walking, running or cycling.  In the case 

of rotation on Y axis, this could indicate the person is turning around.  If the leg 
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rotates on X axis, the person might tumble.  The goal of this stage is about finding 

out a method to detect different activities.  Therefore the rest information including if 

the person is turning around or tumbling is not interested in this project.   

 

Figure 3-1 Human Leg’s Coordination System 

MT9 is a sensor that can calculate absolutely orientation in 3D.  It is the main tool 

that is used in this project.  The technique detail of the sensor will be introduced in 

the Chapter 4.  The sensor’s output can be presented in Euler Angles, which are pitch, 

roll and yaw.  These three terms can be easily explained by the diagram below (See 

Figure 3-2).  If we imagine the airplane as a human foot, the only rotation during 

walking, running and cycling is on pitch. 

 

Figure 3-2 Pitch, Roll, Yaw Systems [22] 

To design a solution that can detect different activities from the MT9 data, the first 

thing is studying on the MT9 data’s characteristic on that particular activity.  The 

MT9 sensor manufacturer Xsens Motion Technologies provides a simple software 

(See Figure 3-3).  This software can connect the MT9 senor and out the sensed data 

in text files.  The detailed introduction of the software can be found in Chapter 4.  
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Figure 3-3 Screenshot of MT9 Software 

After the MT9 software creates the two text files, one is orientation data another 

contains acceleration data, the data is graphed by using Microsoft Excel.  Because 

the investigation begins with differentia walking and running, so I only record the 

data sets for walking and running at this stage (See Figure 3-4, 3-5, 3-6). 
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Figure 3-4 Example of Walking Pitch Graph 
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Figure 3-5 Example of Running Pitch Graph 

-40

-30

-20

-10

0

10

20

30

40

50

60

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

Time

m/
s2

Acceleration Y  

Figure 3-6 Example of Walking Acceleration on Y axis Graph 

 



 

18 

-60

-40

-20

0

20

40

60

80

100

1 51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 851 901 951 1001

Time

m/
s
2

Acceleration Y  

Figure 3-7 Example of Running Acceleration on Y Axis Graph 

Feature Selection 

To design the activity detector, I begin with differentiate between walking and 

running.  What are the most significant features we use to tell about these two 

activities?  The simplest answer is running should be faster than walking.  Well, if 

we do not consider some special situation like walking very fast or running 

extremely slow, the previous statement is true.  However, it is not reliable if 

determine an object is a football, only based on its shape.  The same thing here, in 

case to make the detector more accurate, more features must be introduced.  What 

feature from the MT9 can tell if the activity is fast or slow is about to be discovered 

in this section.  The other things that can be considered as a feature will also be 

discussed here.   

It is normally true, that running should be faster than walking.  How do we know if 

the current activity is fast or slow base on the MT9 data?  From the observation of 

human walking and running, the reason that running is faster than walking is only 

because running has higher frequency and longer step compare to walking.  In this 

case, such information can be easily found from the MT9 data.  From Figure 3-4 and 

3.5,  we can see that these two graphs look like irregular sine wave.  We can clearly 

see the peeks and the periods.  Both walking and running graphs are in same amount 
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of time period, which is 10 seconds.  In the walking graph, there are 11 peaks.  Each 

action takes about 10/11 seconds.  By using the equation f = 1/T, the frequency of 

walking is about 1.1Hz.  The average amplitude is between 20° and 35°.  In the 

running graph, there are 14 peaks. Each action takes about 10/14 seconds.  The 

frequency of running is about 1.4Hz, which is higher than walking.  The average 

amplitude of running is much higher than walking, as we see it is between 70° and 

85°.  Therefore, Frequency and Amplitude are considered as two features to 

differentiate walking and running. 

The MT9 sensor has an accelerometer built in.  Therefore the acceleration data 

towards each orientation can be collected easily.  Because we only consider the Pitch 

value (the reason has been explained at very beginning of this section), so the 

acceleration data on Y axis is the only acceleration data I  will study.  If we graph the 

acceleration data on Y axis (see Figure 3-6 and 3-7), we can see it looks like a heart 

beat graph.  We can clearly count the peaks in the graphs.  There are same amount of 

peaks the number of peaks in the pitch graph.  Each peak in the acceleration graph is 

correlated to the peak in the pitch graph.  The acceleration value of walking is 

between 30 2/ sm and 70 2/ sm .  The value for running is higher, which is between 

55 2/ sm  and 110 2/ sm .  Therefore the Acceleration is also considered as a feature. 

 

Feature Extraction 

As I have selected the features, the problem now is how to extract these features 

from the MT9 incoming data.  The first feature is Frequency.  From the elicitation of 

the frequency equation, I found that to calculate the frequency it is necessary to know 

the time period T.  The time period here means the amount of time that is used to 

take a step.  To know the value of T, it is essential to find out the start and the end of 

the cycle (See Figure 3-8).  The start and the end of the cycle are the two troughs in 

the wave.  The trough for the wave graph is explained as the section which lies below 

the undisturbed position.  The searching for start and end of one cycle is about 

searching two adjacent local minima.  After the T is known, the frequency can be 

calculated as F = 1/T.   
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The next feature selected is Amplitude.  We move our leg both toward and backward 

when we are walking or running, so it is necessary to calculate both positive and 

negative amplitude.  As we’ve already get the two troughs when we were calculating 

the frequency, the other element we need to calculate the amplitude is the crest, 

which is the local maximum between the two troughs.  If the pitch value at the start 

is ΘΘΘΘs, the end is ΘΘΘΘe and the peak is ΘΘΘΘp, then the amplitude A = 
2

1
((ΘΘΘΘp - ΘΘΘΘs) + (ΘΘΘΘp - 

ΘΘΘΘe)).    
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Figure 3-8 Full Cycle of One Step from Pitch and Acceleration Graph 

In conclusion of calculating the frequency and amplitude of a step cycle, all we need 

to know is three points, which are two troughs and one crest.  If we can find the three 

points and their correspondent pitch value, we can calculate both frequency and 

amplitude.  One of the suitable common algorithms used in graph searching is the 

Hill Climbing.  The definition of Hill Climbing algorithm from the Oxford 

Dictionary of Computing is “A fast but sometimes unreliable optimization method.  

When searching for the minimum/maximum value of a function a random step is 

taken; if the value improves it replaces the current value, then another random step 

is taken.” [23] The reason I say Hill Climbing algorithm is suitable here is the 

characteristics of pitch value as well as the real time recognition requirement.  The 
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pitch value is not random numbers without orderliness.  It is the same in the real 

world, as people normally walk or run in similar pattern.  If we represent it in a graph, 

it shall looks like a wave(see Figure 3-8).  The crests and troughs can be found 

clearly on the graph.  The Hill Climbing algorithm is fast, which is helps a lot on the 

real time requirement.    

From the acceleration graph we can see, each point on the graph represents the 

acceleration of corresponding time.  The problem is which acceleration value do we 

really need?  Although the acceleration graph is not as simple as a wave graph, it is 

more likely be a heart beat graph.  In each cycle there is a very high value and a very 

low value.  They indicate the human foot is in the air, without touching the ground.  

The high value is high acceleration, which means that foot is beginning to taking the 

stride.  Therefore that local maximum and minimum is the target acceleration value.  

From Figure 3-8 we can see the acceleration maxima and minima are all happened 

within the pitch cycle.  In another word, the acceleration cycle should be related to 

the pitch cycle.  Searching for the local maximum/minimum should be locked within 

the corresponding pitch cycle.  Because the amount of data needs to search through is 

not very big, a simple list search algorithm like Linear Search is enough. 

 

Supervised Classifier with Fuzzy Logic 

After the features have been selected and extracted, it is time to make decisions.  A 

classifier must be defined in order to decide which activity it belongs to (See Figure 

3-9). 

 

Figure 3-9 Supervised Classifier Model   
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In the purpose of finding the best way to design a classifier, I wrote a program.  The 

program has a buffer to load the incoming MT9 data.  Because the MT9 is running in 

100Hz, it will store 100 set of data every second.  These data will be examined every 

3 seconds.  During the examination, the program will search for 3 stride cycles (if 

there is).  After the 3 cycles are found, it will use the Hill Climbing algorithm to get 

each crest and trough in order to find out the frequency and amplitude in average.  

Then based on the pitch cycle, the program will search the acceleration data set in 

order to find the local maxima and minima.  The tables(Table 3-1 to 3-6) below show 

the result output from the program. 

No. of Cycles Frequency Amplitude Acceleration Time Between 
1 1.10 13.97 12.47 0.99 
3 1.26 13.65 12.42 1.03 
3 1.35 11.75 16.00 1.09 
3 1.01 11.44 14.34 0.91 
3 1.67 16.28 26.71 0.48 
3 2.00 19.21 24.45 0.48 
3 1.42 16.40 23.04 0.31 
3 1.85 15.94 22.18 1.12 
3 1.86 15.81 28.17 0.90 
3 1.22 16.80 17.28 0.21 
3 1.95 20.11 20.60 0.14 
3 1.73 17.89 16.68 0.46 
3 1.36 16.24 17.18 0.16 
Highest 

Frequency 

2.00  Highest 

Amplitude 

20.11 Highest 

Acceleration 

28.17 

Lowest 

Frequency 

1.01  Lowest 

Amplitude 

11.44 Lowest 

Acceleration 

12.42 

Average 

Frequency 

1.52  Average 

Amplitude 

15.81 Average 

Acceleration 

19.35 

Table 3-1 Walking (A) Output Results 

No. of Cycles Frequency Amplitude Acceleration Time Between 
3 1.63 14.38 20.52 0.55 
3 1.65 13.80 15.65 1.18 
3 1.13 14.43 21.96 0.04 
3 1.90 18.11 21.20 0.72 
3 1.91 22.53 22.27 0.58 
3 2.45 20.92 23.69 0.07 
3 1.93 24.32 32.60 0.41 
3 2.18 26.91 27.31 0.66 
3 2.29 23.32 29.19 0.10 
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3 2.21 23.66 30.79 1.12 
3 2.13 28.50 36.09 0.29 
3 2.16 30.49 28.63 0.52 
3 2.42 30.15 32.66 0.14 
3 2.28 24.68 34.83 0.15 
3 1.50 28.09 41.61 0.81 
3 2.29 25.40 31.58 0.17 
3 2.01 24.65 31.58 2.81 
Highest 

Frequency 

2.45  Highest 

Amplitude 

30.49 Highest 

Acceleration 

41.61 

Lowest 

Frequency 

1.13  Lowest 

Amplitude 

13.80 Lowest 

Acceleration 

15.65 

Average 

Frequency 

2.00 Average 

Amplitude 

23.20 Average 

Acceleration 

28.36 

Table 3-2 Walking (B) Output Results 

No. of Cycles Frequency Amplitude Acceleration Time Between 
1 1.92 9.31 31.87 0.01 
3 1.61 15.02 13.02 0.32 
3 1.82 17.01 19.04 0.03 
3 2.12 21.89 28.43 0.04 
3 1.89 25.86 22.79 0.41 
3 2.03 23.30 26.15 0.46 
3 1.44 24.79 24.88 0.17 
3 1.94 23.83 29.18 0.08 
3 2.03 25.35 23.71 0.11 
3 2.11 23.33 29.27 0.10 
3 2.15 26.56 30.47 0.11 
3 2.24 21.94 28.24 0.12 
3 2.34 25.27 32.42 0.13 
3 1.95 25.15 23.53 0.49 
3 1.94 28.83 31.18 0.40 
3 1.91 26.11 26.05 0.27 
3 1.96 23.57 24.16 0.21 
3 1.99 27.30 27.96 0.19 
3 1.99 23.67 24.43 0.19 
Highest 

Frequency 

2.34 Highest 

Amplitude 

28.83 Highest 

Acceleration 

32.42 

Lowest 

Frequency 

1.44 Lowest 

Amplitude 

9.31 Lowest 

Acceleration 

13.02 

Average 

Frequency 

1.97 Average 

Amplitude 

23.06 Average 

Acceleration 

26.15 

Table 3-3 Walking (C) Output Results 
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No. of Cycles Frequency Amplitude Acceleration Time Between 
3 2.39 40.57 47.72 0.41 
3 2.54 50.49 52.44 0.22 
3 2.61 49.55 54.08 0.16 
3 2.69 41.22 31.31 0.17 
3 2.60 43.31 58.10 0.11 
3 2.68 46.27 51.88 0.12 
3 2.67 51.61 56.38 0.12 
3 2.68 45.06 40.59 0.12 
3 2.68 46.19 46.37 0.13 
3 2.67 47.55 48.51 0.13 
3 2.70 46.64 48.66 0.14 
3 2.32 24.00 21.75 0.55 
Highest 

Frequency 

2.70 Highest 

Amplitude 

51.61 Highest 

Acceleration 

58.10 

Lowest 

Frequency 

2.39 Lowest 

Amplitude 

24.00 Lowest 

Acceleration 

21.75 

Average 

Frequency 

2.60 Average 

Amplitude 

44.37 Average 

Acceleration 

46.48 

Table 3-4 Running(A) Output Results 

No. of Cycles Frequency Amplitude Acceleration Time Between 
3 2.97 29.06 42.27 0.37 
3 2.60 40.59 56.36 0.30 
3 2.68 45.23 52.92 0.29 
3 2.69 48.57 50.29 0.33 
3 2.67 43.27 43.67 0.33 
3 2.62 40.08 58.15 0.26 
3 2.67 37.79 39.58 0.29 
3 2.70 39.70 39.20 0.30 
3 2.67 38.89 33.63 0.27 
3 2.63 43.70 22.87 0.24 
3 2.74 41.01 40.00 0.30 
3 2.68 45.28 24.86 0.31 
3 2.70 47.60 39.40 0.36 
3 2.69 42.53 28.48 0.38 
3 2.69 44.55 22.10 0.43 
3 2.67 42.44 33.74 0.43 
3 2.80 48.87 29.10 0.57 
3 2.78 49.84 25.71 0.69 
3 2.68 44.65 23.93 0.72 
3 2.62 44.40 34.96 0.71 
3 3.11 35.92 46.64 0.28 
3 2.56 39.75 30.67 0.59 
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Highest 

Frequency 

3.11 Highest 

Amplitude 

49.84 Highest 

Acceleration 

58.15 

Lowest 

Frequency 

2.56 Lowest 

Amplitude 

29.06 Lowest 

Acceleration 

22.10 

Average 

Frequency 

2.71 Average 

Amplitude 

42.44 Average 

Acceleration 

37.21 

Table 3-5 Running(B) Output Results 

No. of Cycles Frequency Amplitude Acceleration Time Between 
3 2.43 31.42 37.56 0.39 
3 2.46 37.32 22.96 0.15 
3 2.60 33.15 24.06 0.15 
3 2.55 34.24 26.50 0.63 
3 3.06 32.66 25.54 0.09 
3 2.56 34.00 27.41 0.37 
3 2.54 37.89 18.95 0.24 
3 2.56 35.50 25.91 0.10 
3 2.67 31.17 41.20 0.11 
3 2.80 31.21 40.55 0.12 
3 3.03 30.25 37.99 0.13 
3 2.60 35.96 23.88 0.48 
3 2.68 41.32 27.75 0.49 
3 2.61 42.70 34.44 0.43 
3 2.68 42.32 35.54 0.47 
3 2.64 41.66 27.32 0.46 
3 2.64 41.15 27.87 0.46 
3 2.67 40.24 28.17 0.46 
3 2.56 37.25 53.90 0.37 
3 2.59 32.64 39.16 0.29 
3 2.60 33.06 45.54 0.23 
3 2.58 31.79 40.50 0.84 
3 3.00 36.78 28.99 0.25 
3 2.59 38.10 33.71 0.59 
3 2.48 44.29 36.03 0.42 
Highest 

Frequency 

3.06 Highest 

Amplitude 

44.29 Highest 

Acceleration 

53.90 

Lowest 

Frequency 

2.43 Lowest 

Amplitude 

30.25 Lowest 

Acceleration 

18.95 

Average 

Frequency 

2.65 Average 

Amplitude 

36.32 Average 

Acceleration 

32.46 

Table 3-6 Running(C) Output Results 
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The tables above show that there is no clear edge between walking and running in 

any features.  We cannot define a threshold on any feature.  Fuzzy Logic can be 

brought here to solve this problem.   

To use Fuzzy Logic, we need to find out the membership range for both walking and 

running.  Then the fuzzy membership range must be defined.  If the incoming 

activity belongs to the walking membership, then the probability of walking is 100% 

on that feature, the probability of running is 0% on that feature.  If the incoming 

activity belongs to fuzzy membership, then the probability on walking or running 

must be calculated against the fuzzy membership range.   

Pw = (Fr - F) / ((Fr – Fw) / 100) 

Pr = 1 – Pr 

Pw is the probability of walking on that feature.  Pr is the probability of running on 

that feature.  F is the incoming feature value.  Fw is the edge of walking membership 

as well as the start of the fuzzy membership.  Fr is the start of the running 

membership as well as the end of fuzzy membership. 

Figure 3-10 shows the fuzzy membership for each features.  E.g. if the incoming 

activity’s frequency is 2.3Hz, then it doesn’t belong to neither walking nor running.  

It is a fuzzy member.  Therefore the probability of walking can be calculated as Pw = 

(2.8Hz -2.3Hz) / ((2.8Hz -2.0Hz) / 100) = 62.5%.  The probability of running is Pr = 

1 – Pw = 37.5%. 
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Figure 3-10 Fuzzy Membership For Each Features 

After the probability on each feature is calculated, the probability on walking and 

running can be calculated base on the manually defined weight.  The feature with 

high distinct and high steady gets more weight.  In according to the observation on 

the previous data, the weight is defined as follow: Frequency (30%); Amplitude 

(50%); Acceleration (20%). 

Finally the decision making is based on comparing the probabilities.   

Problem with First Approach   

The first approach gets reasonably good accuracy on differentiating walking and 

running within same person.  However, it gives very bad recognition on different 

people.  People walking and running are in different style.  Different age group, 

different gender and different health condition are the facts that affect the moving 

style.  Even people are moving in same speed, some people prefer short stride with 

higher frequency, some people could prefer longer stride with lower frequency.  It is 

better to let the users use their own classifiers to differentiating the actives.   

The current three features has problem on classifying the cycling, as the feature of 

cycling is quite similar to running.  Base on these three features it is very hard to 
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distinct between cycling and running.  Therefore the feature selection must be re-

considered.   

The next section will give the design of the second solution.  The goal of the second 

solution should be overcome all the problems appear in the first approach.  Instead 

using a fixed, supervised classifier, I hope I can find a more flexible, more intelligent 

method.  More features will be introduced to increase the accuracy.   

 

3.1.3 Second Approach 

MT9 Data Re-analyze and Extra Feature Selection 

The main aim of this part is design a solution that can recognize people’s walking, 

running and cycling.  The features selected in the first approach are frequency, 

amplitude and acceleration on Y axis.  These three features are selected in order to 

detect walking or running.  However, there is not enough information to detect 

cycling according to these three features.  Therefore, the MT9 data must be re-

analyzed in the purpose of finding more features. 

By using the method introduced in the Section 3.1.2, I created following graphs for 

each actives.  Instead of using the fixed time as a boundary, this time I picked three 

cycles for each activities.  For each activity, there is a pitch graph, an acceleration 

graph and a combination graph.  From the pitch graphs (Figure 3-11, 3-14 and 3-17) 

and acceleration graphs(Figure 3-12, 3-15 and 3-18), once again it proves that the 

three features that selected in last approach are correct.   

If we comparing the pitch graph of walking(Figure 3-11) to the pitch graph of 

running(Figure 3-14) or cycling(Figure 3-17) here, we can see that the walking pitch 

graph is a bit unique.  There is a minor crest beside each main crest.  However, this 

feature cannot be selected, because this feature is very unstable.  If we take a look 

another pitch graph(Figure 3-4) in the previous section, there is hardly find any 

minor crest.  The minor crest can also found in the running pitch graph.   
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Figure 3-11 Pitch Graph of Walking 

Data from Figure 3-11 : T = 1.46”; F = 1 / T = 0.69Hz; A = (4.00 – (-11.42)) + 

(4.00 – (-11.33)) / 2 = 15.38° 
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Figure 3-12 Acceleration Graph of Walking 
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Data from Figure 3-12 : Acc = Amax – Amin = 5.81 – (-5.48) = 11.29 2/ sm  
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Figure 3-13 Pitch and Acceleration Combination Graph of Walking 

Data from Figure 3-13 : a = 60; b = 96; c = 146; d = 46 
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Figure 3-14 Pitch Graph of Running 
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Data from Figure 3-14 : T = 0.76”; F = 1 / T = 1.32Hz;  A = (59.37 – (-

6.26)) + (59.37 – (-3.49)) / 2 = 64.25° 
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Figure 3-15 Acceleration Graph of Running 

Data from Figure 3-15 : Acc = Amax – Amin = 15.41 – (-1.92) = 17.33 2/ sm  
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Figure 3-16 Pitch and Acceleration Combination Graph of Running  
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Data from Figure 3-16 : a = 52; b = 24; c = 76; d = 46 
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Figure 3-17 Pitch Graph of Cycling 

Data from Figure 3-17 : T = 0.68”; F = 1 / T = 1.47Hz;  A = ((-10.90) – (-

61.80)) + ((-10.90) – (-62.80)) / 2 = 51.40° 
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Figure 3-18 Acceleration Graph of Cycling 
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Data from Figure 3-18 : Acc = Amax – Amin = 2.87 – (-3.17) = 6.04 2/ sm  
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Figure 3-19 Pitch and Acceleration Combination Graph of Cycling 

Data from Figure 3-19 : a = 35; b = 33; c = 68; d = 15 

 

There is an obvious characteristic in the cycling pitch graph.  Every cycle of graph is 

equally distributed.  The slope of crest left side is similar to the slope of crest right 

side.  This is quite distinct from walking and running.  It is because when people 

cycling, the movement of his/her legs is more even and smoother than he/she is 

walking or running.  Therefore comparison of slope between left and right side of 

crest can be seen as a feature to distinct cycling from walking and running.   

According to the 3 combination graphs, there is another feature can be found.  That is 

the time distance between the crest on the pitch graph and the local maximum of the 

acceleration.  This piece of information indicates when the highest acceleration 

happens.  Does it happen before user’s leg rotate to the highest angle, or after?  The 

feature can distinct different activities by telling the time distance between the 

maximum rotation and maximum acceleration. 
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Extra Feature Extraction 

The two new features added in are 1.the slope comparison between left and right side 

of crest on the pitch graph; 2.time between the maximum leg rotation and the highest 

acceleration point.   

To calculate the slope, we can use line equitation y = mx + b, as we’ve already have 

two points.  One point is crest the other point is the one of two troughs.  After two 

slopes are calculated, we can compare them by give the proportion.  There is a 

simple way to make the comparison.  Instead of calculating the slopes, all I need to 

get is the time distance between the crest and the two troughs.  From the combination 

chart(Figure 3-13, 3-16 and 3-19), the time distance are represented by a and b.  This 

feature can be extracted as
b

a
.  From the examples we can see, 

b

a
of walking is <1; 

b

a
of running is >1; 

b

a
of cycling is ≈1. 

The second extra feature is just the time distance between the local maximum of 

pitch value and the local maximum of acceleration on Y axis.  d on the combination 

charts (Figure 3-13, 3-16 and 3-19) is the time distance.  Because the cycle for 

different activities is different, so we cannot compare d directly.  E.g. d for walking 

(Figure 3-13) is 46.  d for running (Figure 3-16) is 46 too.  Obviously, the distance in 

running is much longer on the chart.  That is because the cycle period for running is 

much shorter in this example.  Instead of comparing the d directly, c can be 

introduced here to standardize the comparison.  c is the distance between the two 

troughs, which is the cycle period of a movement.  The feature can be extracted as
c

d
.  

From the examples we can see, 
c

d
 of walking is ≈ 0.3; 

c

d
of running is ≈ 0.6; 

c

d
of 

cycling is ≈ 0.2. 

 

Unsupervised classifier 

The main problem of the first approach is on its supervised classifier.  It is extreme 

difficult to model different people’s activities in advance.  Age, gender, size and 
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health condition etc. are the facts that affect people’s activity style.  If we manually 

defined a classifier, this system possibly only work well with only certain group of 

users.   

If we want to use the monitor widely, we definitely need more than one classifier.  

One solution is testing the entire possible user delegate from that user group i.e. 

different age group with different gender, different body size and different health 

condition, etc.  And then build one unique classifier for each user group.  New user 

has to register to the system, and then the system would know which group the user 

belongs to.  The suitable classifier will apply to this user to monitor his/her activities.   

However, implementing such solution has huge difficulties.  Firstly, it is almost 

impossible to testing all different user groups.  Even if all the group delegates have 

been tested, the classifiers will be huge amount of data.  We possibly need to use 

database to maintain the classifiers.  To run a huge database on a mobile device is 

unreasonable.  The monitor is designed for personal use, therefore there is no need to 

have other people type of people’s classifier stored on his/her own monitor.  Another 

vital problem with such solution is the way it classify the user into groups.  Base on 

the user’s personal details like age, gender and body size, to reckon the user’s 

activity style is very imprecise.  People’s activity style is not only affected by the 

physical status.  People’s character and habit can also affect the activity style.   

If we grab two features (frequency and amplitude) and make a graph in the feature 

space(See Feature 3-20), we can see there are clearly regions for each activity.   

According to this characteristic, we can build an unsupervised classifier.  The 

activity monitor is designed to detect three different activities, therefore in the feature 

space there are only three clusters.  The classifier should know the centroid for each 

cluster in order to classify the activities by searching the minimum distance.   
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Figure 3-20 Activity Diagram in the 2-D Feature Space 

To build such classifier, the most important thing is finding the centroids in the 

feature space for each cluster.  An unsupervised training should be carried out, which 

means the activity monitor won’t be able to use until it finish a training process.  The 

training process will focus on learning each activity.  Let’s take training on walking 

as an example.  The learning process begins with initiating centroids for each feature 

by randomly creating a value for each feature.  When the user begins to walk, the 

MT9 data will be passed to the Feature Extractor.  The Feature Extractor will extract 

5 features from the raw data.  And then the new centroid will be calculated by getting 

the mean value between the new feature value and the old centroid value.  This 

process will be repeated many times until the centroid does not have big change.  

The number of times will be evaluated by testing in the feature. (See Chapter 5 

Evaluation) When all three activities have been trained, the classifier building 

process for this user is finished.  Although the method makes the monitor 

inconvenient to use, this will make the classifier act according to actual 

circumstances.  Such defect can be improved from the application layer, which will 

be introduced later in this chapter(See Section 3.3).  

 



 

37 

Statistical Pattern Recognition 

The decision making is achieved by the minimum distance classifier.  During the 

user is doing activity, the 5 features will be extracted from the MT9 raw data.  Then 

the distance to the every centroid of each feature will be calculated.  The distance is 

just the absolute difference.   

The next step is calculating the probability of certain activity on that feature.  Each 

feature is weighted according to the same circumstance as it states in the first 

approach.  The probability of one activity will be 100% under that feature’s weight if 

it gets the minimum distance to the incoming feature.  The probability of other 

activities will be calculated against the minimum distance activity.  E.g. the 

frequency of walking centroid is Fw, the frequency of running centroid is Fr, and the 

frequency of cycling centroid is Fc.  The incoming activity’s frequency is F, and 

then the distance of walking in the Frequency space is Dw = |Fw – F|; 

  distance of running in the Frequency space is Dr = |Fr – F|; 

  distance of cycling in the Frequency space is Dc = |Fc – F|; 

if the Min(Dw, Dr, Dc) = Dw, then the probability of walking P(w|Freq) under this 

feature is 100%.  The probability of running P(r|Freq) under feature of Frequency is 

equal to Dw/Dr.  The probability of cycleing P(c|Freq) under feature of Frequency is 

equal to Dw/Dc.   

The total probability of each activity is the sum of probability of the activity given by 

one feature multiple by its weight.  The activity with highest probability will be the 

recognized activity. 

 

Advantages of Second Approach 

The first advantage of second approach is its flexibility.  The approach makes the 

application on top it suit everybody.  The second advantage is about its extensibility.  

Such design makes the system much easier to add in new activity.  The new activity 

can be learned by the system itself, without manually learning and studying on its 
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features.  By using the second approach there is no need to model each activity for 

every user groups.  The Activity Monitor user can have his/her own classifier to 

detect his/her own activities.  Such design is much easier to implement and require 

much less resource.   

 

3.2 Energy Calculation Stage 

3.2.1 Goal 

The application purpose of this project is calculating the energy expenditure while 

the user is doing activities.  The goal of this stage is researching in the exercise 

physiology and finding out the equations that can calculate the energy expenditure 

based on recognized activities.   

 

3.2.2 Research in Exercise Physiology 

The purpose of researching in the exercise physiology is about understanding the 

human energy expenditure.  There are two questions should be answered after the 

research.  The first question is how to measure the human energy expenditure? The 

second question is what factors will effect the human energy expenditure?   

There are two methods for determining human energy expenditure.  One is direct 

method, which measures heat production in an appropriately insulated calorimeter.  

The other is indirect method, which measures energy expenditure from 

measurements of oxygen consumption and carbon dioxide production.  The direct 

method is beyond the scope of this project.  Therefore we need to use the indirect 

method, which is calculating the oxygen consumption, to measure the energy 

expenditure.  [20] 
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For each person, heart rate and oxygen consumption relate linearly throughout a 

large range of aerobic exercise intensities.  Therefore if we know the heart rate of 

user, we can estimate his/her oxygen consumption.  Then the energy expenditure can 

also be calculated accordingly.  However, this method requires extra hardware to 

detect user’s heart rate.  I want to use a method to measure energy expenditure with 

current available hardware only. 

There is exciting equation to calculate the oxygen consumption base on type of 

activity, speed, and the person’s weight.  At the moment we have already known the 

user’s activity type.  User’s weight cannot be detected directly, so we can ask the 

user to input his/her weight manually in advance.  About the movement speed, this 

will be discussed in the next section.  The equation of calculating the energy 

expenditure will be introduced in the Section 3.2.3.  

 

3.2.3 Speed Calculation  

From the research in exercise physiology, we know that it is very difficult to 

calculate human energy expenditure on certain activity without knowing the 

movement speed.  So far, speed is still an unknown element.  Although, the MT9 has 

a accelerometer built in, it will only return the acceleration value on certain axis.  It 

will not tell any information about the object speed. 

The initial design of calculating the speed is based on extra hardware support.  The 

easiest method is using a GPS.  By using the GPS, the distance of movement can be 

found.  And then, the speed can be calculated as distance divide by time.   However, 

there are two disadvantage of such method.  Firstly, such design does not work in 

gym.  If user walk or run on a treadmill, GPS will not detect any change in distance.  

Therefore, it will not be able to calculate the user’s movement speed.  If we use a 

GPS, all it does is checking distance.  The extra hardware will make the monitor cost 

much more， which is the second disadvantage.   
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In the purpose of utilize the MT9 adequately, a solution of calculating the speed by 

using current available information is under investigation.  By using the feature 

extractor, we can find out the frequency of the 

movement directly.  At the meanwhile, the sensor 

can return the angle of leg movement.  (See Figure 

3-21) The angle θθθθ can be found by calculating the 

difference between the maximum and minimum 

orientation change on pitch.  From geometry point 

of view, we can calculate the step length if we know 

the leg length of the user )
2

(2 legstep LSinL ×
Θ

×= .  

The speed of the user can be calculated 

as FreqLV step ×= .  This method cannot precisely calculate the user’s current speed, 

but estimate the speed.   

Figure 3-21 Estimating Speed 

Calculating the cycling speed is much easier, because every cycle of a leg movement 

will course same length of actual movement.  All we need to know is the frequency 

of the movement and the perimeter of the bicycle wheel.  Then the speed can be 

calculated as FreqPV wheel ×= . 

 

3.2.4 Energy Expenditure Calculation 

The basic equation for energy expenditure is Oxygen Consumption 2OV&  

=⋅⋅
−− )min( 11

kgmL Resting component ( 1MET 

[3.5 ])min 11 −−
⋅⋅ kgmL +Horizontal component (speed, ]min[ 1−

⋅m  × oxygen cost of 

horizontal movement) + Vertical component (percent grade × speed ]min[ 1−
⋅m  × 

oxygen cost of vertical movement). 
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2OV&  = Resting component + Horizontal component + Vertical component 

 

In the case of walking, Oxygen cost of horizontal component of movement equals to 

0.1 11 min −−
⋅⋅ kgmL , and 1.8 11 min −−

⋅⋅ kgmL  for the vertical component.  In the case 

of running, Oxygen cost of horizontal component of movement equals to 

0.2 11 min −−
⋅⋅ kgmL , and 0.9 11 min −−

⋅⋅ kgmL  for the vertical component. 

For example, a 60-kg person walks on a treadmill at 80 1min −
⋅m  up a 4% grade.  The 

energy expenditure of this person can be calculated as: 

Oxygen consumption 2OV&  = Resting component + Horizontal component + Vertical 

component 

2OV& = Resting 2OV& )min( 11 −−
⋅⋅ kgmL  + [speed( 1min −

⋅m ) × 0.1 11 min −−
⋅⋅ kgmL ] + 

[% grade × speed( 1min −
⋅m ) × 1.8 11 min −−

⋅⋅ kgmL  

 = 3.5 + (80 × 0.1) + (0.04 × 80 × 1.8) 

 = 17.26 11 min −−
⋅⋅ kgmL  

Energy Expenditure Kcal 1min −
⋅  = 2OV&  )min( 11 −−

⋅⋅ kgmL  × Body mass (kg) ×                                                                      

        5.05 kcal 1
2

−

⋅ LO  

             = 17.26 11 min −−
⋅⋅ kgmL  × 60kg × 5.05 kcal  

          1
2

−

⋅ LO  

             = 5.23 Kcal 1min −
⋅  

In this project, the vertical component will not be considered.  By only using one 

MT9 sensor, it is very difficult to detect the gradient of the movement surface.  

Besides, the testing environment for the project is in GYM, there is no facility to get 

the uphill or downhill walking/running data.   
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The equation for calculating energy expenditure of cycling is a bit different from 

walking and running.  Instead of considering horizontal and vertical component, the 

wind speed becomes a fact [19].  The equation can be represented as follow: 

2OV&  = -4.50 + 0.17 RV + 0.052
WV + 0.022 'R

W  

Where RV  is rider speed in kph, WV  is wind speed in kph (expressed as positive 

number for a headwind, negative number for a tailwind), and 'R
W is rider weight in 

kg.  

3.3 Application Architecture Stage 

3.3.1 Goal 

The goal of this stage is designing a real application on top of previous two stages.  

The application should provide user all necessary functions as well as a good 

interface.   

 

3.3.2 Function Overview 

There are 4 main functions that are provided by the application.  There is only one 

actor interact with the application, which is the user.   The use case diagram in the 

next page (Figure 3-21) briefly model the application architecture.  

 

3.3.3 Application Analysis and Design 

Login 
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The application is designed to have multiple users.  Each user will have a profile 

stored as a file in the local machine.  This file contains user’s personal information 

such as gender, weight, height etc. as well as user’s own activity detection classifier 

details.  Once the application is turned on, the login management is the first function 

provides to the user.  The application should promote the user to enter the user name.  

This username will be verified against local files.  If the profile is found, which 

means the user has registered before, and then the activity monitor will be turned on.  

If user input an invalid username, the user will be blocked.  On the login dialog, the 

application should also allow the new user to select the registration option.  There is 

no security issue within this application, so it is not necessary to have password to 

authenticate each user.  Figure 3-23 is the sequence diagram of the login 

management. 

User

Login

Registration

Monitoring Activity

Viewing Report

*

*

1 *1

*

1

*

Ener Username
<<uses>>

Enter User Detail

Train the Classifier

<<uses>>

<<uses>>

Reset the Report<<uses>>

Smart Activity Monitor

     

    Figure 3-22 Use Case Diagram 
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User S.A.M. User File

Login(username)

SeachUsername

Return(True/False)

Return(Treu/False)

 

Figure 3-23 Sequence Diagram of Login Management 

 

Registration 

Registration is required to every new user.  There are two steps during the 

registration.  The first step is called Personal Details.  The user is required to fill in a 

form during this step.  The form contains user’s personal information, which includes 

username, age, gender, height, weight.  The username here will be the key to login 

the system in the future.  The rest information will be used to calculate the energy 

expenditure.   

After the form is finished, the next step is called Training.  During this step the user 

will be asked to perform each activity in his/her normal way for a certain period of 

time.  During the user is doing activity, the application will record the MT9 data and 

call the lower API, which is the activity detector to analysis the data.  As soon as all 

the activities have been trained, the application will call the API to build a classifier 

for future activity detection (See Figure 3-25). 

Finally, the application will store the user profile and the training result as a file in 

the local machine.  Figure 3-24 shows the sequence diagram of registration. 
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User MT9 S.A.M.(Application) User File

Fill Form(User Details)

CreateProfile(User Details)

Return(True/False)

Return(True/False)

Start Training()

Return(MT9 Data)

UpdateUserFile(Classifier)

Return(True/False)

Return(True/False)

GetMT9Data()

Activity Detector

StartTraining()

Return(Classifier)

BuildClassifier()

 

      Figure 3-24 Sequence Diagram of New User Registration and Training 
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Figure 3-25 Classifier Training Component Overview 
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Monitoring 

This application is called activity monitor.  As the name tells everything, the 

monitoring is the core part of the application.  However, this is the smart activity 

monitor.  The most important and complex part does not mean is should be the most 

difficult part to use.  To make the monitor smart, it should be very easy to understand 

by the user as well as easy to operate by the user.  Basically the monitor should have 

one input and few outputs.  The input is the MT9 data from the sensor, which 

attached to user’s ankle.  The data will be processed by the Activity Detector API.  

And then the recognized activity will be returned to the application.  This 

information will be displayed on the monitor.  The application will also calculate the 

user’s speed and energy expenditure according to its activity type (See Figure 3-27).  

These two pieces of information should also be displayed on monitor in real time.  

The user should have the control of the monitor.  The user should be able to turn 

on/off the monitor easily.  Figure 3-26 is the sequence diagram of Monitoring. 

User MT9 S.A.M.(Application) User File

GetUserDetail(Username)

Return(User details)

Start Monitor()

GetMT9Data()

Return(MT9 Data)

Recognition(MT9 data)

GetSpeed(Activity, Features)

GetEnergy(Speed, UserDetails)

Return(Activity, Speed, Energy)

Activity Detector

Start Detecting()

Return(Activity)

 

    Figure 3-26 Sequence Diagram Activity Monitoring 
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Figure 3-27 Activity Monitoring System Component Overview 

Report Generation 

The application can generate a simple report.  This report will give user a summary 

of his/her previous activities.  The user can know how much energy in total has 

he/she been spent, how long has he/she been involved in certain activity.  The user 

can reset the report in order to start a new monitor.  Figure 3-38 is the Sequence 

Diagram of Report Generation. 

 

Figure 3-28 Sequence Diagram of Report Generation 
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3.3.4 Interface design 

In this section I’ve designed some wire frames for the interface on PDA screen.   

 

Figure 3-29 Map of Interface Navigation 

   

Figure 3-30 Wire Frame for Login  Figure 3-31 Wire Frame for Registration 
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Figure 3-32 Wire Frame for Training Figure 3-33 Wire Frame for Report 
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Figure 3-34 Wire Frame for Activity Monitoring 
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Chapter 4:  Implementation 

Following from the design and technologies review, it’s time to implement the 

activity monitor.  This chapter will document the decision made and the reasoning 

behind them. 

4.1 Overview on Implementation Process 

The implementation begins with studies on the technologies which will be used in 

this project.  The studies includes both the hardware and software.  The 

implementation process follows the steps of design process, which has 3 stages too.  

During the first stage, the activity detector must be implemented.  Feature Extraction, 

Building Classifier and Activity Recognition are the three main parts need to be 

focused on.  This part of project should be independent from the application.  The 

second stage will be implementing the energy calculation.  The last stage is the 

application level implementation.  During this stage, a file system and all the user 

functions should be implemented.   There will be also some extra functions added to 

this project to makes it more usable.  

  

4.2 Technology Overview 

This section describes the technologies that will be used in this project.  The 

hardware including motion sensor, handheld and some accessories will be introduced 

first.  And then the development environment and the SDK from the sensor 

manufacturer will be discussed.   
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4.2.1 Motion Sensor 

The motion sensor used in this project is the MT9-B from the Xsens Technologies 

B.V. [24]  The MT9-B contains 3 types of sensors, which are gyroscopes, 

accelerometers and magnetometers.  Therefore it provides serial digital output of 3D 

acceleration, 3D rate of turn (rate gyro) and 3D earth-magnetic field data.  The MT9 

SDK, supplied by the manufacturer, contains a proprietary algorithm tailor-made to 

the MT9 that can accurately calculate absolute orientation in three-dimensional space 

according to the 3 types of sensed data.  The picture below is the MT9-B (Figure 4-1). 

 

Figure 4-1 Picture of a MT9-B Sensor 

The size of MT9-B is very compact.  It’s only 39mm x 54mm x 28mm, which is 

slightly bigger than a match box.  It is also very light.  This makes the sensor quite 

easy to attach on human’s leg by using adhesive tape.  It has serial interface to output 

the sensed data.  The product does not support battery power supply.  It is not a 

wireless device.   
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4.2.2 Handheld 

The handheld used in this project is HP iPAQ 5500.  This PDA has a 400 MHz 

Intel® XScale™ technology-based processor and 48 MB Flash ROM Memory as 

well as 128 MB SDRAM, which makes it very powerful as a handheld.  This high 

specification mobile device is running on Microsoft Pocket PC 2003™.  The 

Microsoft Pocket PC OS support a wide range of programming language and many 

tools for compiling them are readily available.  The picture below is the HP iPAQ 

5500 running the Pocket PC (See Figure 4-2).  Another important feature of this 

handheld is it has 3 types of wireless communication interface on board, which 

includes Bluetooth, 802.11 and infrared. 

 

Specifications: 

� 400 MHz Intel® XScale™ 
technology-based processor 

� 48MB ROM and 128MB RAM 
� 240 x 320 (64k) touch-sensitive TFT 

color display 
� Built-in Bluetooth/Infrared/WiFi 
� SD Expansion Port, and ability to 

support a compact flash expansion 
jacket 

� Integrated Biometric Fingerprint 
Reader 

� Microsoft Pocket PC 2003 
� 4.68” x 2.95” x 0.73” 
� 206.8g [25] 
 

 

Figure 4-2 Picture of HP iPAQ 5500 
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4.2.3 Accessories 

The iPAQ itself does not have RS232 serial interface built-in.  However, it support 

the PCMCIA interface by user the Dual PC Card Expansion Jacket (see picture ).  

There are many serial I/O PC card available in the market.  The one I am using is a 

Dual serial I/O PC card with 2 RS-232 COM ports manufactured by Socket™ (see 

Figure 4-3).   

 

Figure 4-3 Accessories  

 

The picture in the next page shows all the hardware needed for running the smart 

activity monitor (See Figure 4-4).     

 

4.2.4 Development Environment 

The application is designed to run on a Pocket PC.  Although the Microsoft Pocket 

PC supports many different programming languages, we need to choose a most 

appropriate one.  The application will process a big number of data in real time.  The 

program speed must be concerned.  Although the MT9 is language independent, the 
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MT9 SDK is written in C.  The SDK has very good support in C++.  Therefore I 

decide to develop the project in C++.  And comparing to many other programming 

language like JAVA, C++ do have its advantage in speed. 

 

 

Figure 4-4 Whole System 

Microsoft provides a good IDE that can program the Window CE and latest version 

Pocket PC.  The tool is called embedded Visual C++.  The version I am using is 4.0.  

The interface of this version is quite similar to the Visual C++ 6.0, which is quite 

easy to use.  Before we can program on the Pocket PC, there are two pieces of 

software must be installed in advance.  One is the Pocket PC SDK.  The Pocket PC 

SDK can be downloaded from the Microsoft’s website.  The version I am using for 

this project is Pocket PC SDK 2003.  Another one is called Microsoft ActiveSync.  

This software is used to synchronies data between desktop and the Pocket.  The 

complied program will be sent to the PDA via this software.   
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Before the project is deployed on the PDA, all the developing is on desktop.  That is 

because I am designing and implementing the recognition algorithm first.  This part 

of programming is platform independent.  The desktop has many advantage in 

developing, therefore the early work are all on desktop.  I am using embedded VC++ 

to develop the application on Pocket PC, so it is more convenient to do the early job 

in a similar environment.  I am using Microsoft Visual C++.NET 2003 for 

developing the early algorithm.  I also used the desktop development environment to 

develop the testing bed to test the accuracy of the algorithm.  This will be discussed 

in detail in Chapter 5 Evaluation. 

 

4.2.5 MT9 SDK 

The MT9 SDK contains a proprietary algorithm developed by Xsens tailor-made to 

the MT9 that can accurately calculate absolute orientation in three-dimensional space 

from miniature rate of turn sensors (gyroscopes), accelerometers and magnetometers 

in real-time [26].  The orientation that calculated by the algorithm is claimed as 

driftless (See Figure 4-5).   

 

Figure 4-5 Sensor SDK Components  



 

56 

The MT9 SDK provides support so that we can integrate the capabilities of the MT9, 

attached directly to desktop or PDA.  The functionality of the MT9 and the MT9 

Software are made available trough a COM object.  Through the motion tracker 

object we can set up the sensor as well as obtain the sensed data.   

The MT9 SDK provides good support for Visual C++.  It also provides the source 

code of some demo software that is using the running the MT9.  However, there is 

not support for mobile device like Pocket PC on the company’s website.  The SDK 

downloaded from its website doesn’t support the embedded VC++.  Therefore I 

queried the company’s technical support.  And then they send me a Beta version of 

MT9 SDK for Pocket PC.  There is one extra in the SDK file that must be copied to 

the iPAQ before it can run the motion tracker object.   

 

4.3 MT9 Implementation 

4.3.1 MT9 COM-Object 

To make the MT9 data available in this project, there are a few steps need to follow.  

The first step is copying the necessary files from the MT9 SDK folder to the project 

folder.  They are ‘IMTObj.h’, ‘IMTObj.c’, ‘sink.h’ and ‘sink.cpp’.  The next step is 

including these files in the pre-processor.   

Now we can construct the Motion Tracker Object by: 

IMotionTracker* pMT; 

The next step is initializing the local motion tracker object. 

 HRESULT hRes; 

 hRes = CoInitializeEx(NULL, COINIT_MULTITHREADED);  

 if (FAILED(hRes)) 

 { 



 

57 

  AfxMessageBox(_T("Could not initialize COM library!")); 

  return FALSE; 

 }   

 // Create instance of MTObj COM object 

hRes = CoCreateInstance(CLSID_MotionTracker, NULL, 
CLSCTX_INPROC_SERVER, IID_IMotionTracker, (void**) &pMT); 

 if (FAILED(hRes)) 

 { 

  CString csError; 

 csError.Format(_T("Error %x in CoCreateInstance for MT object!"),hRes); 

  AfxMessageBox(csError); 

  return FALSE; 

 } 

The MT9 offers two mechanisms to retrieve the data available in the MT9 COM-

Object.  One is called the polling.  This mechanism will continuously query the 

Motion Tracker Object.  The user can define the own sampling rate of query the 

Object.  Once the Object is queried, it will return the most recently calculated data.  

Another mechanism is called event.  The event mechanism will not continuously 

query the Object.  Instead, it will notify the sink as soon as there is a new data 

calculated.  In this project, the event mechanism is used.  Instead of using a 

predefined sampling rate to query the data, we rely on MT9’s own sampling rate to 

return the data.  Because the updating rate of monitor can be adjusted according to 

the sampling frequency of the MT9.  As we are using the event mechanism, we need 

to initialize the sink object. 

 // Create instance of internal sink object 

 CMotionTrackerSink* pCob = NULL; 

 if (SUCCEEDED(hRes))  

 { 

  // Create CMTObj Sink object to receive CMTObj events 

  pCob = new CMotionTrackerSink(NULL,this,0); 
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  if (NULL != pCob)  

  { 

  // Save a pointer to the COMotionTracker IUnknown interface. Addref 

  // because of this saved copy. 

   m_pCMotionTrackerSink = pCob; 

   m_pCMotionTrackerSink->AddRef(); 

  } 

  else 

   hRes = E_OUTOFMEMORY;   

 } 

Now we have finished the initialization step.  It’s time to start the MT9.  Before we 

call to start the MT9, there are a few important parameters we can set, such as the 

com port number, output mode, etc.  By default the acceleration data from the 

calibrated data will not be outputted.  This also can be set by changing the Object 

parameter.  Then the following piece of code much be called in order to connect the 

MT9 to the sink.   

HRESULT MainPart::ConnectMTSink(void) 

{ 

 HRESULT hr = E_FAIL; 

 DWORD dwKey; 

 IConnectionPoint* pConnPoint;  

 // Connect the MotionTrackerSink to the server MTObj COM source. 

 if (!m_dwMotionTrackerSink)  

 { 

  // Get MotionTracker Sink connection point. 

  pConnPoint = GetConnectionPoint(IID_IMotionTrackerEvents); 

  if (NULL != pConnPoint)  

  { 
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 // Connect the object in the server to the Motion Tracker Sink in this client 

  hr = pConnPoint->Advise(m_pCMotionTrackerSink, &dwKey); 

   if (SUCCEEDED(hr))  

    m_dwMotionTrackerSink = dwKey; 

   // Release the connection point. We're done with it 

   pConnPoint->Release(); 

   pConnPoint = NULL; 

  } 

 } 

 return hr; 

} 

Finally we can call the following method to start the MT9 processing: 

pMT->MT_StartProcess(); 

The MT9 SDK also provides the method that stops the MT9 processing.  Once the 

MT9 COM-Object is no longer needed, there is a destruction method will be called.   

 

4.3.2 MT9 Data Retrieving 

Due to the event mechanism, once the new data is calculated it will be stored in a 

safearray.  Therefore the MT9 data can be retrieved from the safearray.  Before we 

access the safearray, we need to create a local variable.  Therefore we can copy the 

value from the safearray to the local variable.  E.g. fData[9] = 0;  The following code 

shows how to access the safearray. 

// Variable of VARIANT type to retrieve data from output of COM object 

VARIANT buffer; 

// Pointer to array data 
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void* pDest; 

m_pMT->MT_GetOrientationData(&nNew, &buffer); // Or MT_GetCalibratedData 

if (nNew == MT_NEWDATA) { 

 //check if array is empty 

 if (buffer.vt != VT_EMPTY) 

  SafeArrayAccessData(buffer.parray, &pDest); 

 // Copy data from the VARIANT array to the local fData array 

 memcpy(fData, pDest, buffer.parray->rgsabound->cElements); 

 //invalidate pointer 

 SafeArrayUnaccessData(buffer.parray); 

 //Data now is copied to the fData 

 } 

} 

else if (nNew != 0) 

//Check error code (nNew) when no new data 

 

4.4 Activity Recognition Implementation 

4.4.1 Feature Extractor 

In order to extract features, we need to have a container to store the MT9 sensed data.  

The simple way to implement to the container is using an array.  The size of the array 

is according to the monitor’s refresh rate i.e. if the MT9’s sampling rate is 100Hz and 

the monitor’s refresh rate is 1Hz, then the size of the array should be 100.  This 

simple method doesn’t work!  If we define the array size according to the monitor’s 

refresh rate, then we will either get to few data to examine or have too low refresh 

rate.  This problem can be solved by using a big sized array with a counter.   The size 
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of array must be big enough to get all the necessary information.  The number of 

counter is according to the monitor’s refresh rate.  As the project is designed to 

monitor the real time activity, it is more important to know the current activity.  

Therefore the examination will be carried out backward, which is from the most 

current received data first.  E.g. if the monitor’s refresh rate is every 3 second, then 

the counter number will be 300.  In this case, if we define an array size 900, then 

there are 300 sets of data for the first examination index from 299 to 0, 600 for the 

second index from 599 to 0 and 900 for the third index from 899 to 0.  However, 

such design always has n number of examinations, that don’t have enough data sets, 

for every N number of examinations.  In the case of the example above, there is one 

examination that only has 300 data sets, every 3 examinations.  We probably cannot 

completely resolve the problem, but we can definitely improve it by changing the 

data structure.   

Circular Buffers are used for data transfer between two processes. The Producer 

process places items into the Circular Buffer and the Consumer process removes 

them.  Initially there is a tail and a head on the buffer; they are both at index 0.  The 

index of head will be increased along with the producer.  The producer keeps writing 

the data sets into the buffer, the counter, which is the timer, will interrupt the 

producer every certain amount of time.  When the buffer is full, the producer will 

overwrite the buffer.  During the interrupt, the consumer will examine the data sets 

from the head to tail.  If overwrite happens, the tail will be offset.  E.g. if the head is 

299, the tail is 600 and the overwrite is true, then the data sets on the buffer will be 

index from 299 to 0 as well as index from 899 to 600.  Both samplingrate and 

samplewindow are pre-defined constant, one indicates the monitor’s refresh rate and 

the other indicates the size of the buffer.   

The next step is extracting features from the buffer.  According the features selected 

in the design stage, these features can be extracted by searching the cycle of step on 

the pitch graph.  The hill climbing algorithm is used to search the graph.  The 

searching process won’t begin until it adjacent element has higher pitch value.  

However, some noise must be filtered.  It will check the following n number of 

elements to see if it keeps increasing.  If the start of increasing is found, it will mark 

the index.  And then it will begin the hill climbing.  The hill climbing includes two 
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processes.  One is searching for the peak; another is searching for the end of the 

cycle.  The algorithm can be described as follows:  

1. Start with current-state = initial-state.  
2. Until current-state = goal-state OR there is no change in current-state do:  

a) Get the successors of the current state and use the evaluation function to 
assign a score to each successor.  

b) If one of the successors has a higher (lower) score than the current-state then 
set the new current-state to be the successor with the best score.  

 
Searching for the peak begins at the start of the cycle; the index of the peak is 

initially set as the index of start plus one.  The temporary peak will compare with its 

left side neighbor.  If its neighbor is larger than itself, the index will be increased by 

one.  If the left neighbor is smaller than itself, it will check the flowing n number of 

element in order to filer noise.  If all the left elements are smaller, then the peak is at 

current index.  Otherwise, the temporary peak index will be the left side elements, 

which has larger value than the current temporary peak.  Once the peak is found, it 

will begin to search for the end of the cycle.  Searching for the end is similar as 

searching for the peak.  It starts from the peak index, then shifting to the left 

searching for the index of minimum value on the graph.  The function will return the 

index of start, peak and end of the cycle as well as if the offset is allowed.   

After the cycle is found another filter will be applied.  This filter will quickly 

calculate the amplitude and the length of the wave.  Noise will be filtered out, i.e. 

tiny waves.   

The eligible wave will be carried out calculation.  The direct calculations include 

frequency, amplitude.  Then a linear search is used to get the local maximum and 

minimum of the acceleration.  The slope ratio is just the length between index of start 

and the peak against the length between peak and the end. 

 

4.4.2 Unsupervised Classifier 

Basically, k-mean algorithm is used here to calculate the most suitable value of each 

feature in order to represent one activity.  Firstly, an object array is defined to store 
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the features that extracted by the Feature Extractor (see last section).  The size of the 

array presents how long the monitor will be trained.  This will be discussed in the 

Chapter 5 Evaluation.  The code below shows the training on walking.  Once the user 

select to train on walking, he/she begin to walk.  As soon as the feature of walking is 

extracted, the value of each feature will be recorded locally.  

Once the array is filled, the training on that activity is finished.  Before we begin to 

train the next activity, the centroids of that activity must be calculated.   

To calculate the centroids for each feature, we begin with initializing the centroids 

with a random number.  A for loop then is used to go through all the elements in the 

array.  The mean value of each feature will be calculated accordingly and replace the 

current centroid.  When the ‘for loop’ is finished, the difference between the previous 

centroid and the current centroid will be calculated by using a distance function.  If 

the difference is above a threshold, the ‘for loop’ will be gone through again.  The 

purpose of doing this is increasing the accuracy of the centroids.  The code below 

shows the entire process.  Once the difference is small enough, the centroids are 

found.   

void MainPart::UnsuperviousLearning(Feature learningSet[], Feature *centriod) 

{ 

centriod->setFrequency(((float) rand())*(((float) 5.0)/((float) RAND_MAX))); 

centriod->setAmplitude(((float) rand())*(((float) 100.0)/((float) RAND_MAX))); 

centriod->setAcceleration(((float) rand())*(((float) 70.0)/((float) RAND_MAX))); 

centriod->setRatio(((float) rand())*(((float) 2.0)/((float) RAND_MAX))); 

centriod->setAccRatio(((float) rand())*(((float) 1.0)/((float) RAND_MAX))); 

 float tempFreq = centriod->getFrequency(); 

 float tempAmp = centriod->getAmplitude(); 

 float tempAcc = centriod->getAcceleration(); 

 float tempRatio = centriod->getRatio(); 

 float tempAccRatio = centriod->getAccRatio(); 

 float difference = 999999.9999f;  
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 while(difference > 10.0){ 

  for ( int i = 0; i < TrainingSampleNumber; i++) 

  { 

   float x = learningSet[i].getAmplitude(); 

   float y = learningSet[i].getRatio(); 

   tempFreq = (tempFreq * ((float)i) + 
((float)learningSet[i].getFrequency())) / ((float) i + 1.0f); 

   tempAmp = (tempAmp * ((float)i) + 
((float)learningSet[i].getAmplitude())) / ((float) i + 1.0f); 

   tempAcc = (tempAcc * ((float)i) + 
((float)learningSet[i].getAcceleration())) / ((float) i + 1.0f); 

   tempRatio = (tempRatio * ((float)i) + 
((float)learningSet[i].getRatio())) / ((float) i + 1.0f); 

   tempAccRatio = (tempAccRatio * ((float)i) + 
((float)learningSet[i].getAccRatio())) / ((float) i + 1.0f); 

  } 

  difference = DistanceTo(tempFreq, tempAmp, tempAcc, centriod-
>getFrequency(), centriod->getAmplitude(), centriod->getAcceleration()); 

  

  centriod->setFrequency(tempFreq); 

  centriod->setAmplitude(tempAmp); 

  centriod->setAcceleration(tempAcc); 

  centriod->setRatio(tempRatio); 

  centriod->setAccRatio(tempAccRatio); 

 } 

} 
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4.4.3 Recognition Decision Making 

After the classifier is built, we can now recognize the activity according to its 

features.  The decision making rule is very simple, which is ‘shortest distance’.  

However, there are 5 different features, with different level of importance.  The 

question is how to combine them all together, so we can have one single rule to make 

decision.   

The features are weighted as follow: 

Frequency   15% 

Amplitude   20% 

Acceleration   20% 

SlopeRatio   30% 

AccRatio   15% 

 

There are 3 different activities excite in this project.  The classifier we have here 

contains 3 different sets of centroids.  Now it’s time to compare the distances.  Once 

the features of current activity are extracted, they will be compared to each set of 

centroids.  E.g. if the current frequency is f, then f will be compared to the frequency 

centroid of walking, running and cycling separately.  If the distance between f and 

walking centroid is closest, then we believe the probability of walking on frequency 

is 100%.  The probability of other activities will be calculated against distance to 

walking.  The following code is the ‘if statement’ of when distance to walking in the 

frequency feature space is shortest, then the probability of walking WalkProb is 

equal to itself plus 100% under the weight of feature frequency.  In this case the 

probability of running and cycling can be calculated by using the same method.  The 

probability of rest activity is equal to the ratio of distance to the walking against the 

distance to the target activity multiple to the weight of frequency.  Therefore, the 

lower distance will get higher probability.   

 



 

66 

if(distanceFrequencyW < distanceFrequencyR && distanceFrequencyW < 
distanceFrequencyC) 

{ 

   WalkProb = WalkProb + FrequencyWeight; 

   RunProb = RunProb + ((distanceFrequencyW / 
distanceFrequencyR) *     FrequencyWeight); 

   CycleProb = CycleProb + ((distanceFrequencyW / 
distanceFrequencyC)    * FrequencyWeight); 

} 

The other features will use the same method to calculate the probability of each 

activity on the particular feature.  The total probability of each activity is cumulated.  

The activity with highest probability will be returned as recognized activity.  

 

4.5 Energy Expenditure Implementation 

This part of implementation is about using programming language to represent the 

physiology equation.  In this stage, we have already known what kind of activity the 

user is doing.  By loading the user’s profile, we can also get the necessary personal 

information about the user.  Before we apply the energy expenditure equation, there 

is one more thing need to do, which is calculate the speed. 

 

4.5.1 Speed Calculation 

Base on the speed equation designed in the previous chapter (Chapter 3 Design), the 

implementation of speed calculation is simple.  There are two functions, one is used 

to calculate the speed of walking and running, another is used to calculate the speed 

of cycling.  The source code below is the function that calculates the speed of 

walking and running.  There are two parameters are passed in.  They are frequency 

and amplitude, which are extracted from the activity.  To calculate the speed here, we 
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need to know the distance of movement.  There is no way to measure the distance 

directly.  All we can do is based on current available information to predicate the 

distance.  The equation of predicating the step length has been explained in Section 

3.2.3. Once the distance is known, we can use the speed equation v =d/t to calculate 

the speed. 

float MainPart::GetSpeed(float freq, float amp) 

{ 

 float s; 

 double stepLength; 

 float angle = float(( amp * PI / 180 ) / 2 ); 

 double Length = (height / 100) * HeightWeight; 

 stepLength = 2 * ( sin(angle) *  Length ); 

 s = float(float(stepLength) * freq * 3.6); 

 return s; 

} 

 

The speed calculation for the cycling is even easier.  All we need to know is the 

perimeter of the wheel.  According to the frequency of running wheel, we can know 

the length of movement (see code below).   

float MainPart::GetCyclingSpeed(float freq) 

{ 

 float s; 

 s = float(freq * WheelPerimeter * 3.6); 

 return s; 

} 
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4.5.2 Energy Expenditure Calculation 

Base to the equation, implementation the calculation of energy expenditure for 

walking and running is very straight forward.  As we don’t consider grade level when 

doing activity in this project, all we need to calculate is the horizontal component and 

the resting component.  The following source code is function of calculate the energy 

expenditure for walking.   

float MainPart::GetWalkingEnergy() 

{ 

 float e; 

 double horizontalComponent = ( speed / 3.6 ) * 60 * 0.1; 

 double RestingComponent = 3.5; 

 double vo2 = RestingComponent + horizontalComponent; 

 e = float((float(vo2) * weight / 1000) * 5.05); 

 return e; 

} 

 

The equation for calculating energy expenditure of cycling is also simple.  However, 

there is a problem when implement it.  The problem occurs when the speed of 

cycling is low.  The result of energy expenditure could get a zero of a negative 

number.   

If we graph the equation, we will get the following diagram (see Figure 4-6).  We 

can find a clear threshold that divide the entire graph.  If the speed is above the 

threshold, we can still use the cycling energy equation as normal.  However, if the 

speed is below the threshold, a new liner equation will be applied.  We calculate the 

energy expenditure when the speed is on the threshold.  And then we connect this 

point and the origin, as a result we will get a line.  The energy expenditure on the low 

cycling speed will be found on this line according to the speed.   
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Figure 4-6 Analysis on Low Speed Cycling 

 

4.6 File System Implementation 

The project is about monitoring human’s activities as well as calculating the energy 

expenditure during the activities.  The purpose of having a file system here is making 

the monitor easier to use.  Due to the nature of unsupervised classifier, the monitor 

must be trained by the user before it can be used.  In order to calculate user’s energy 

expenditure, the monitor needs to know some personal information about the user, 

e.g. weight.  Without file system these information must be inputted to the monitor 

every single time the user need to user it.  Such system is very inconvenient to use, 

especially the training process, which takes about 3-5 minutes.  Therefore a file 

system is suggested here to make the user’s life easier.   

The file system here is simple with no security issue involved.  Therefore sequential-

access file is chosen to implement here.  Sequential files are so named because data 

is stored on a first come, first served basis.   

The file system consists three parts.  The first part is creating the file.  This part 

happens in the new user registration.  The second part is verification.  This part 

happens in the user login.  The last part is loading the file.  This part happens as soon 

as the user is verified.   

Speed 

E
nergy Threshold 
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The system will ask the new user to fill a form, including the user name and some 

personal details.  Then it will ask the user to do different activity in order to train the 

classifier.  Once everything is finished, it’s time to create the file.  All the files are 

stored in a folder called “UserData”.  The file name is the username.  And then all 

the information about the user, including the user personal details and classifier data, 

will be written to the file in a specific sequence.   

The login verification is about checking the files in the “UserData” folder.  Because 

the system is using the user name as every file’s name, therefore once the user input 

a user name in the Login dialog, the system can simply check if such file exists in the 

folder.  If the file is found, the system will begin to load the file.  If the file name is 

not found, it will signal the user that the user name is wrong.   

Loading file is similar to writing a file.  It begins with creating local variables.  Then 

copy the value from the file to local variables.  There is one rule, that the sequence of 

reading the file must be exactly same as it is written.  Otherwise, it will get the wrong 

value.   

 

4.7 Additional Features Implementation 

4.7.1 Push graph 

Once the current energy expenditure is calculated, it will be displayed on the monitor.  

Therefore the user can always know how intensity he/she is doing.  The initial design 

of the monitor is displaying the energy expenditure value directly on the monitor as 

number.  However, the problem is the screen of PDA is very small.  There are many 

different information need to display on such small screen at the same time.  So it is 

not possible to use huge font to display the energy expenditure.  Another problem is 

it is very difficult to read for users while he/she is doing activity.  It is also very 

dangerous if the user pay too much attention on reading while he/she is doing 

outdoor activity.  Therefore a more intuitive display method is required here.   
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A 2D Push Graph is decided to use in here.  There is no existing push graph control 

available in the embedded VC++.  I can either create my own custom control or use a 

third party control.  Because creating a complex custom control is beyond the scope 

of this project, so I decide to use a third party control.  The push graph control I am 

using is created by Stuart Konen.  It is published on The Code Project [27].   

 

Figure 4-7 Basic Push Graph Components [27] 

The picture above is the basic components of the push graph.  The graph is quite 

similar to the push graph from the 

Windows Task Manager.  Once the 

monitor is started, a line will be added 

into the graph.  The boundary of the 

graph is set between 0 Kcal/h and 700 

Kcal/h.  The graph refresh rate is same as 

the monitor’s refresh rate.  Therefore 

every time the monitor is refreshed, a new 

value on the graph will be calculated and 

a line will be drawn as well.  The picture 

on the left is the screenshot of the push 

graph implemented on the PDA. 

Figure 4-8 Push Graph Screenshot 
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4.7.2 Audio Assistant 

The purpose of having audio assistant in this project is making the monitor easier to 

use.  The monitor is quite difficult to use for the new user, as it requires the user to 

train every single activity once.  Without audio assistant, the user must keep 

watching the screen and waiting for different commands as text.  For the first time 

user, it is very difficult to concentrate on the activity and watch the command at the 

same time.  It is the same as the first time you go the gym.  You will feel panic 

without an instructor tell to what to do.  Therefore I implement an audio assistant that 

helps the new user to finish the whole training process.   

The implementation involves two jobs.  The first job is record the voice.  There is no 

professional audio record facility available to this project.  Therefore I used the 

Windows Recorder to collect my voice as the instruction.  The voices are saved as 

Wave files.   

The second job is playing these Wave files at the right time.  It is very simple to play 

Wave file under MFC.  All we need to do is call the PlaySound function.   The code 

below is an example of playing the “ask user to run” command from the “Sound” 

folder. 

PlaySound(_T("Sound/trunbegin.wav"), NULL, SND_ASYNC | SND_FILENAME); 
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Chapter 5:  Evaluation 

In this chapter, I shall evaluate the design and implementation of the project.  All the 

problems encountered during the course of this project will be discussed.  A series of 

tests will be carried out in order to check how well the project has achieved.  The 

method of testing and the testing results will be documented in this chapter.   

5.1 Testing Bed 

5.1.1 Goal  

The purpose of testing bed is testing the accuracy of activity recognition.  Therefore 

the goal here is designing a testing software that can run the activity detector, which 

has been implemented, as well as evaluate the results.    

 

5.1.2 Offline Processing 

The testing bed will use offline processing of MT9 data.  Instead of processing the 

MT9 data from the senor directly, it will read the MT9 data from binary files.   

It is not possible to design a testing bed that can tell the accuracy of the activity 

detector base on the direct sensed data.  If we are using online processing, how can 

the testing bed tell us if the recognition results are correct or not?  If we can 

implement such testing bed, which means we can implement a 100% accuracy 

activity detector.  And then the testing is meaningless.  Therefore if we want the 

testing bed to be online processing, then we have to judge the result manually.  The 



 

74 

problem of such method is taking too much time.  Every online test takes about 15 to 

20 minutes.  We expect to takes as many tests as possible here so we can get a 

convictive evaluation.  If a single test takes such long time, this will make the 

evaluation out of project plan.  Another draw back of online processing for testing 

bed is it is very inflexible.  All the test data can only be used once.  If we change any 

thing in the program, we have to do the whole tests once again from the very 

beginning.  Therefore we use the offline processing for the testing bed.  The idea of 

offline processing is letting us to label the binary files in advance.  Then we can 

compare the recognition results with the label, so we can know the accuracy.  E.g. 

suppose we have a binary file that is 30 seconds walking.  If the activity detector 

returns 10 walking (refresh rate of the monitor is every 3”), then the accuracy is 

100% on this file.   

The binary files can be obtained by using the MT9 Demo Software while the testing 

user is doing activities.  The MT9 SDK also provides the support for offline 

processing.   

5.1.3 Data Sets 

There are 10 volunteers contribute to this project as testing users.  The data sets used 

for testing are collected from these 10 people in the GYM.  Every testing user will be 

asked to walk, run and cycle for certain period of time.  At the end of the day, there 

will be 3 sets of walking data, 3 sets of running data and 2 sets of cycling data for 

every testing user. 

10 * (3 Walking + 3 Running + 2 Cycling) 

 

5.1.4 Manual Testing Bed Design 

According to the structure of data sets, we can get following table to represent data 

sets for one testing user. 
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Walking Running Cycling 

W1 R1 C1 

W2 R2 C2 

W3 R3  

Table 5-1 Table of Data Sets Structure 

The first thing need to do is categorizing the data sets.  All the files will be stored 

according to its type of activity.  Therefore, we can easily know what kind of activity 

in the program in advance.  All the folders that belong to one person will be stored 

under this person’s folder.   

All the available testing users will be shown on the testing bed dialog as a choosing 

option.  Once the testing user is chosen, all the files will be shown on the dialog box 

for choosing.  Due to the nature of the unsupervised learning, before the system can 

recognize different activities, it requires training on different activities.  To finish a 

test we must select the files to be the training data and a file to be the testing target.  

According to the table above, we can combine 18 different classifiers as following 

table: 

W1+R1+C1 W1+R1+C2 W2+R1+C1 W2+R1+C2 W3+R1+C1 W3+R1+C2 

W1+R2+C1 W1+R2+C2 W2+R2+C1 W2+R2+C2 W3+R2+C1 W3+R2+C2 

W1+R3+C1 W1+R3+C2 W2+R3+C1 W2+R3+C2 W3+R3+C1 W3+R3+C2 

Table 5-2 Table of All Possible Classifiers 

Each classifier can test the rest 5 data files.  E.g. Classifier W1+R1+C1 can test W2, 

W3, R2, R3 and C2.   

We are using the offline processing here.  Instead of reading the data from MT9 

sensor, the binary files will be simulated as MT9 sensed data.  The selected training 

files will be used to train the classifier.  And then it will try to recognize the selected 

target file.  The testing bed will read the target file from the beginning to the end.  

The first 6 seconds of data will be ignored.  That is because people cannot do the 
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activity as soon as the test begins.  When the file reaches the end, the recognition 

results will be judged against the target file’s label. 

 

Figure 5-1 Manual Testing Bed Screen Shot 

The screen shot above is the manual testing bed’s interface.  All the options are 

displayed as Radio Button.  Once the option is chosen, the option group will be 

disabled.  The recognition results will be displayed in the list box.  The test will be 

stopped automatically when the file is end.   

 

5.1.5 MT9 Sampling Frequency 

The MT9 sampling frequency can be set between 25Hz to 512Hz.  The default 

sampling frequency is 100Hz.  Before the project is deployed on the PDA, it is using 
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the default setting.  However, when monitor is implemented on PDA, I found that the 

iPaq 5500’s processing ability cannot handle 100Hz MT9 sampling frequency.  The 

project is supposed to be real time.  Although the monitor has a fixed refresh rate, the 

result should reflect the last few second until now.  The 100Hz sampling rate will 

make the monitor has big delays, which is not what we expect for this project.  

Therefore the activity detector’s accuracy on reduced sampling rate should also be 

evaluated.  

All the data sets collected early on are recorded at 100Hz.  It is not possible to collect 

another group of data sets at this stage.  Therefore I am still using the 100Hz binary 

files.  But instead of reading the entire files, I read every 4th data.  This will also 

make the 25 data readings every second.   

 

5.1.6 Training Data Size 

The size of training data will affect how long does the user need to train the monitor.  

If the size is too small, the training might be inadequate, which will affect the 

recognition results.  If the size is too big, the user will spend too much time in 

training, which will affect the usability of the application.  In this section I am going 

to find out a most appropriate size for the training data.   

I ran a small test on the manual testing bed.  I choose one of testing user’s data sets.  

And I randomly pick up 3 files as the training file and one file as the testing target 

file and begin the test.  Before I run the program, I change the number of exemplars 

as 3. And then increase 1 every time until the result is stable.  The following table 

shows the testing results: 

Exemplars Accuracy 
3 50% 
4 62.5% 
5 66.7% 
6 70.8% 
7 79.2% 
8 87.5% 
9 91.7% 
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10 91.7% 
11 95.8% 
12 95.8% 
13 95.8% 
14 95.8% 

Table 5-3 Results of Exemplar Size Testing 

The results begin to reach its best when I using 11 exemplars.  In the purpose of 

giving the best recognition I am using 12 exemplars as my training data size.  

Because the refresh rate of the monitor is every 3 seconds, therefore 12 exemplars 

will takes about 36 seconds.  The overall net training period will be 108 seconds. 

 

5.1.7 Automatic Testing Bed Design 

According to the data sets we have, there are 3 walking files, 3 running files and 2 

cycling files.  These files can combine 18 different classifiers.  Each classifier can 

test 5 different target files.  Therefore we can have 18 * 5 = 90 different test for each 

testing user.  We can 10 volunteers as testing users.  So we can have 90 * 10 = 900 

different tests.  If we want to test different sampling rate, we will have N number of 

900 tests.  This is an impossible number for manual testing bed.  Therefore an 

automatic testing bed is desired.  

The automatic testing bed still have some options need to choose in advance.  The 

target testing user and the sampling frequency must be chosen before the test.  Once 

the test starts, it will train all the possible classifier at the beginning.  These 

classifiers will be stored in local memory.  Once the training is finished, it will take 

each classifier in turn to recognize the rest files.  After the 900 tests, the program will 

give the results before it stops.  Figure 5-3 is a screenshot of automatic testing bed, 

which has less options comparing  to the manual version. 

I made some change on the automatic testing bed.  Instead of testing the entire files, 

it will only read the 30 seconds from each file.  This will make the testing result 

more convictive.  Figure 5-2 is an example of automatic testing results from the 

testing bed. 
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Figure 5-2 Example of Testing Results From Automatic Testing Bed 

 

 

Figure 5-3 Automatic Testing Bed Screen Shot 
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5.2 Testing Results 

In this section all the testing results will be documented.  I will give the testing 

results from the manual testing bed first.  According the project plan, I only did 

manual tests for 3 testing users.  And then I will show the testing results for all the 

testing users from the automatic testing bed. 

5.2.1 Testing User Profile 

There are 10 volunteers have contributed to this project as the testing users.  There 

are four female testing users age between 24 to 27 years old.  Their heights are 

between 160cm and 166 cm.  Their weights are between 50kg and 70kg.  The rest 6 

male volunteers are aged between 19 and 30 years old.  Their heights are between 

173 cm and 188 cm.  Their weights are between 60kg and 85kg. 

 

5.2.2 Manual Testing Bed Results 

The data sets from 3 persons have been manually tested.  I give the result details for 

the first testing user as an example.  The rest people I only show its summary.  The 

tests involve both 100Hz MT9 sampling rate and 25Hz.   

Person 1 (100Hz) 

Training Data Sets Results 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.48 14.56 19.45 0.42 0.049 

Walking 2 1.78 19.24 23.44 0.42 0.021 

Walking 3 1.78 20.75 22.93 0.33 0.018 

Running 1 2.23 35.38 38.01 0.39 0.050 

Running 2 2.47 37.32 39.91 0.40 0.064 

Running 3 2.36 30.09 26.49 0.37 0.068 

Cycling 1 1.76 15.76 4.57 0.76 0.205 
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Cycling 2 1.81 19.60 4.86 0.87 0.192 

 

Walking 1 Data Sets  

Time Period:  48.93” 

Total States:  16 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W2+R1+C1 11/16 W2+R2+C1 13/16 W2+R3+C1 10/16 

W3+R1+C1 12/16 W3+R2+C1 12/16 W3+R3+C1 10/16 

W2+R1+C2 12/16 W2+R2+C2 13/16 W2+R3+C2 12/16 

W3+R1+C2 12/16 W3+R2+C2 12/16 W3+R3+C2 11/16 

Summary 140 / 192 72.9% 

 

Walking 2 Data Sets 

Time Period:  54.01” 

Total States:  18 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C1 15/18 W1+R2+C1 16/18 W1+R3+C1 15/18 

W3+R1+C1 11/18 W3+R2+C1 15/18 W3+R3+C1 11/18 

W1+R1+C2 15/18 W1+R2+C2 16/18 W1+R3+C2 15/18 

W3+R1+C2 11/18 W3+R2+C2 15/18 W3+R3+C2 11/18 

Summary 166 / 216 76.9% 

 

Walking 3 Data Sets 

Time Period:  56.81” 

Total States:  19 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C1 13/19 W1+R2+C1 17/19 W1+R3+C1 06/19 

W2+R1+C1 19/19 W2+R2+C1 19/19 W2+R3+C1 15/19 

W1+R1+C2 12/19 W1+R2+C2 17/19 W1+R3+C2 06/19 

W2+R1+C2 19/19 W2+R2+C2 17/19 W2+R3+C2 15/19 

Summary 175 / 228 76.8% 
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Running 1 Data Sets 

Time Period:  45.25” 

Total States:  15 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R2+C1 13/15 W1+R3+C1 08/15 W2+R2+C1 15/15 

W2+R3+C1 15/15 W3+R2+C1 15/15 W3+R3+C1 15/15 

W1+R2+C2 13/15 W1+R3+C2 08/15 W2+R2+C2 15/15 

W2+R3+C2 15/15 W3+R2+C2 15/15 W3+R3+C2 15/15 

Summary 162 / 180 90.0% 

 

Running 2 Data Sets 

Time Period:  81.71” 

Total States:  27 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C1 18/27 W1+R3+C1 12/27 W2+R1+C1 22/27 

W2+R3+C1 19/27 W3+R1+C1 27/27 W3+R3+C1 27/27 

W1+R1+C2 18/27 W1+R3+C2 12/27 W2+R1+C2 22/27 

W2+R3+C2 19/27 W3+R1+C2 27/27 W3+R3+C2 27/27 

Summary 250 / 324 77.2% 

 

Running 3 Data Sets 

Time Period:  81.16” 

Total States:  27 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C1 21/27 W1+R2+C1 21/27 W2+R1+C1 24/27 

W2+R2+C1 24/27 W3+R1+C1 25/27 W3+R2+C1 25/27 

W1+R1+C2 21/27 W1+R2+C2 22/27 W2+R1+C2 24/27 

W2+R2+C2 24/27 W3+R1+C2 26/27 W3+R2+C2 25/27 

Summary 282 / 324 87.0% 

 

Cycling 1 Data Sets 

Time Period:  93.96” 

Total States:  31 
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Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C2 31/31 W2+R1+C2 31/31 W3+R1+C2 31/31 

W1+R2+C2 31/31 W2+R2+C2 31/31 W3+R2+C2 31/31 

W1+R3+C2 31/31 W2+R3+C2 31/31 W3+R3+C2 31/31 

Summary 279 / 279 100% 

 

Cycling 2 Data Sets 

Time Period:  73.12” 

Total States:  24 

Classifier Accuracy Classifier Accuracy Classifier Accuracy 

W1+R1+C1 22/24 W2+R1+C1 22/24 W3+R1+C1 22/24 

W1+R2+C1 22/24 W2+R2+C1 22/24 W3+R2+C1 22/24 

W1+R3+C1 20/24 W2+R3+C1 20/24 W3+R3+C1 20/24 

Summary 192 / 216 88.9% 

 

Person 1 Summary 

Walking 481 / 636 75.6% 

Running 694 / 828 83.8% 

Cycling 471 / 495 95.2% 

Overall 1646 / 1959 84.0% 

Table 5-4 Manual Testing Results for Person 1 at 100Hz 

Person 2 (100Hz) 

Training Data Sets Results 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.70 25.34 9.08 2.06 0.352 

Walking 2 1.68 11.36 30.83 1.99 0.362 

Walking 3 1.58 45.63 12.10 2.43 0.091 

Running 1 2.34 47.41 30.83 1.99 0.362 

Running 2 2.39 53.68 22.34 1.88 0.379 

Running 3 2.46 50.64 28.21 1.94 0.393 

Cycling 1 2.24 33.95 10.78 1.09 0.125 

Cycling 2 2.48 34.13 15.66 1.03 0.140 
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Person 2 Summary 

Walking 483 / 792 61.0% 

Running 726 / 756 96.0% 

Cycling 243 / 243 100% 

Overall 1452 / 1791 81.1% 

Table 5-5 Manual Testing Results for Person 2 at 100Hz 

Person 3 (100Hz) 

Training Data Sets Results 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.05 55.86 6.74 2.63 0.030 

Walking 2 1.08 62.66 6.76 2.50 0.023 

Walking 3 1.08 59.43 7.01 2.72 0.023 

Running 1 2.44 53.99 19.37 2.39 0.377 

Running 2 2.37 53.38 20.77 2.37 0.356 

Running 3 2.55 54.67 23.01 2.19 0.321 

Cycling 1 2.68 43.12 16.82 0.97 0.128 

Cycling 2 3.23 45.50 27.18 1.00 0.117 

 

Person 3 Summary 

Walking 768 / 768 100% 

Running 851 / 876 97.1% 

Cycling 414 / 414 100% 

Overall 2033 / 2058 98.8% 

Table 5-6 Manual Testing Results for Person 3 at 100Hz 

100Hz Summary 

Walking 1732 / 2196 78.9% 

Running 2271 / 2460 92.3% 

Cycling 1128 / 1152 97.9% 

Overall 5131 / 5808 88.3% 

Table 5-7 100 Hz Manual Testing Results Summary 
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Person 1 (25Hz) 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.50 12.90 13.74 0.39 0.110 

Walking 2 1.77 16.98 23.44 0.41 0.053 

Walking 3 1.75 19.00 15.87 0.34 0.039 

Running 1 2.23 29.09 26.14 0.40 0.098 

Running 2 2.56 29.90 26.84 0.40 0.086 

Running 3 2.36 25.27 18.62 0.37 0.158 

Cycling 1 1.70 15.48 4.39 0.78 0.141 

Cycling 2 1.86 18.66 4.59 0.87 0.233 

 

Person 1 Summary 

Walking 385 / 636 60.5% 

Running 712 / 828 86.0% 

Cycling 438 / 495 88.5% 

Overall 1535 / 1959 78.4% 

Table 5-8 Manual Testing Results for Person 1 at 25Hz 

Person 2 (25Hz) 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.59 23.30 6.38 1.99 0.194 

Walking 2 1.69 25.93 9.00 2.37 0.042 

Walking 3 1.57 40.36 10.37 2.49 0.019 

Running 1 2.39 40.94 14.95 2.07 0.201 

Running 2 2.40 47.35 15.60 1.90 0.239 

Running 3 2.42 45.44 13.40 1.91 0.223 

Cycling 1 2.21 32.87 10.93 1.12 0.105 

Cycling 2 2.60 31.30 14.06 1.07 0.106 

 

Person 2 Summary 

Walking 443 / 792 55.9% 

Running 670 / 756 88.6% 

Cycling 240 / 243 98.8% 

Overall 1353 / 1791 75.5% 
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Table 5-9 Manual Testing Results for Person 2 at 25Hz 

Person 3 (25Hz) 

File Frequency Amplitude Acceleration Ratio AccRatio 

Walking 1 1.08 51.57 6.08 2.62 0.030 

Walking 2 1.09 58.88 5.48 2.57 0.012 

Walking 3 1.08 53.96 6.15 2.79 0.019 

Running 1 2.44 47.80 14.90 2.38 0.160 

Running 2 2.39 47.92 14.49 2.36 0.167 

Running 3 2.63 49.44 15.08 1.92 0.150 

Cycling 1 2.66 40.00 15.67 0.98 0.101 

Cycling 2 3.21 40.45 25.46 0.92 0.096 

 

Person 3 Summary 

Walking 740 / 768 96.4% 

Running 849 / 876 96.9% 

Cycling 405 / 414 97.8% 

Overall 1994 / 2058 96.9% 

Table 5-10 Manual Testing Results for Person 3 at 25Hz 

25Hz Summary 

Walking 1568 / 2196 71.4% 

Running 2231 / 2460 90.7% 

Cycling 1083 / 1152 94.0% 

Overall 4881 / 5808 84.0% 

Table 5-11 25Hz Manual Testing Results Summary 

Comparison between 100Hz and 25Hz  

  100Hz 25Hz 

Walking 75.6% 60.5% 

Running 83.8% 86.0% 

Cycling 95.2% 88.5% 

Person 1 

Overall 84.0% 78.4% 

Person 2 Walking 61.0% 55.9% 
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Running 96.0% 88.6% 

Cycling 100% 98.8% 

Overall 81.1% 75.5% 

Walking 100% 96.4% 

Running 97.1% 96.9% 

Cycling 100% 97.8% 

Person 3 

Overall 98.8% 96.9% 

Walking 78.9% 71.4% 

Running 92.3% 90.7% 

Cycling 97.9% 94.0% 

Overall 

Overall 88.3% 84.0% 

Table 5-12 Manual Testing Results Comparison Between 100Hz and 25Hz 

5.2.3 Automatic Testing Bed Results 

In this section I will show all the testing results generated by the automatic testing 

bed.  The personal details of the first 3 testing users have been written in last section. 

Person 1 

 100Hz 25Hz 

Walking 1 51/120 48/120 

Walking 2 112/120 74/120 

Walking 3 90/120 89/120 

Walking Summary 253/360 (70.28%) 211/360 (58.611%) 

Running 1 88/120 91/120 

Running 2 66/120 70/120 

Running 3 108/120 96/120 

Running Summary 262/360 (72.78%) 257/360 (71.38%) 

Cycling 1 90/90 83/90 

Cycling 2 81/90 81/90 

Cycling Summary 171/180 (95.00%) 164/180 (91.11%) 

Overall 686/900 (76.22%) 632/900 (70.22%) 

Table 5-13 Automatic Testing Results for Person 1 

Person 2 
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 100Hz 25Hz 

Walking 1 92/120 102/120 

Walking 2 67/120 57/120 

Walking 3 70/120 77/120 

Walking Summary 229/336 (63.61%) 236/360 (65.56%) 

Running 1 120/120 101/120  

Running 2 116/120 109/120 

Running 3 117/120 115/120 

Running Summary 353/360 (98.06%) 325/360 (90.28%) 

Cycling 1 90/90 90/90 

Cycling 2 90/90 90/90 

Cycling Summary 180/180 (100%) 180/180 (100%) 

Overall 762/900 (84.67%) 741/900 (82.33%) 

Table 5-14 Automatic Testing Results for Person 2 

Person 3 

 100Hz 25Hz 

Walking 1 120/120 108/120 

Walking 2 120/120 96/120 

Walking 3 120/120 108/120 

Walking Summary 360/360 (100%) 312/360 (86.67%) 

Running 1 120/120 120/120 

Running 2 120/120 117/120 

Running 3 119/120 101/120 

Running Summary 359/360 (99.17%) 338/360 (93.89%) 

Cycling 1 90/90 87/90 

Cycling 2 90/90 90/90 

Cycling Summary 180/180 (100%) 177/180 (98.33%) 

Overall 889/900 (99.89%) 827/900 (91.89%) 

Table 5-15 Automatic Testing Results for Person 3 

Person 4 

 100Hz 25Hz 

Walking 1 120/120 116/120 

Walking 2 111/120 118/120 

Walking 3 109/120 114/120 

Walking Summary 340/360 (94.44%) 348/360 (96.67%) 
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Running 1 120/120 119/120 

Running 2 108/120 94/120 

Running 3 120/120 110/120 

Running Summary 348/360 (96.67%) 323/360 (89.72%) 

Cycling 1 84/90 87/90 

Cycling 2 90/90 90/90 

Cycling Summary 174/180 (96.67%) 177/180 (98.33%) 

Overall 862/900 (95.78%) 848/900 (94.22%) 

Table 5-16 Automatic Testing Results for Person 4 

Person 5 

 100Hz 25Hz 

Walking 1 108/120 110/120 

Walking 2 116/120 112/120 

Walking 3 117/120 112/120 

Walking Summary 341/360 (94.72%) 334/360 (92.78%) 

Running 1 120/120 120/120 

Running 2 119/120 109/120 

Running 3 120/120 114/120 

Running Summary 359/360 (99.72%) 343/360 (95.28%) 

Cycling 1 88/90 89/90 

Cycling 2 85/90 82/90 

Cycling Summary 173/180 (96.11%) 171/180 (95.00%) 

Overall 873/800 (97.00%) 848/900 (94.22%) 

Table 5-17 Automatic Testing Results for Person 5 

Person 6 

 100Hz 25Hz 

Walking 1 98/120 91/120 

Walking 2 106/120 98/120 

Walking 3 110/120 113/120 

Walking Summary 314/360 (87.22%) 302/360 (83.89%) 

Running 1 117/120 119/120 

Running 2 103/120 98/120 

Running 3 119/120 107/120 

Running Summary 339/360 (94.17%) 324/360 (90.00%) 

Cycling 1 90/90 89/90 
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Cycling 2 90/90 90/90 

Cycling Summary 180/180 (100%) 179/180 (99.44%) 

Overall 833/900 (92.56%) 805/900 (89.44%) 

Table 5-18 Automatic Testing Results for Person 6 

Person 7 

 100Hz 25Hz 

Walking 1 120/120 118/120 

Walking 2 118/120 109/120 

Walking 3 115/120 113/120 

Walking Summary 353/360 (98.06%) 340/360 (94.44%) 

Running 1 120/120 119/120 

Running 2 120/120 120/120 

Running 3 120/120 118/120 

Running Summary 360/360 (100%) 357/360 (99.17%) 

Cycling 1 88/90 84/90 

Cycling 2 90/90  98/90 

Cycling Summary 178/180 (98.89%) 172/180 (95.56%) 

Overall 891/900 (99.00%) 869/900 (96.56%) 

Table 5-19 Automatic Testing Results for Person 7 

Person 8 

 100Hz 25Hz 

Walking 1 108/120 99/120 

Walking 2 87/120 108/120 

Walking 3 113/120 104/120 

Walking Summary 308/360 (85.56%) 311/360 (86.39%) 

Running 1 119/120 120/120 

Running 2 109/120 94/120 

Running 3 120/120 117/120 

Running Summary 348/360 (96.67%) 331/360 (91.94%) 

Cycling 1 90/90 90/90 

Cycling 2 87/90 87/90 

Cycling Summary 177/180 (98.33%) 177/180 (98.33%) 

Overall 833/900 (92.56%) 819/900 (91.00%) 

Table 5-20 Automatic Testing Results for Person 8 
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Person 9 

 100Hz 25Hz 

Walking 1 119/120 118/120 

Walking 2 120/120 119/120 

Walking 3 120/120 120/120 

Walking Summary 359/360 (99.72%) 357/360 (99.17%) 

Running 1 120/120 100/120 

Running 2 118/120 117/120 

Running 3 120/120 98/120 

Running Summary 358/360 (99.44%) 315/360 (87.50%) 

Cycling 1 90/90 88/90 

Cycling 2 90/90 90/90 

Cycling Summary 180/180 (100%) 178/180 (98.89%) 

Overall 897/900 (99.67%) 850/900 (94.44%) 

Table 5-21 Automatic Testing Results for Person 9 

Person 10 

 100Hz 25Hz 

Walking 1 115/120 90/120 

Walking 2 120/120 115/120 

Walking 3 98/120 111/120 

Walking Summary 333/360 (92.50%) 316/360 

Running 1 99/120 107/120 

Running 2 96/120 84/120 

Running 3 102/120 89/120 

Running Summary 297/360 (82.50%) 280/360 (77.78%) 

Cycling 1 81/90 85/90 

Cycling 2 88/90 88/90 

Cycling Summary 169/180 (93.89%) 173/180 (96.11%) 

Overall 799/900 (88.78%) 769/900 (85.44%) 

Table 5-22 Automatic Testing Results for Person 10 

Overall Summary 

 100Hz 25Hz 

Walking 3190/3600 (88.61%) 3067/3600 (85.19%) 
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Running 3383/3600 (93.97%) 3193/3600 (88.69%) 

Cycling 1762/1800 (97.99%) 1748/1800 (97.11%) 

Overall 92.61% 88.98% 

Table 5-23 Automatic Testing Results Summary 

5.2.4 Comments 

From the testing results we can see, the accuracy of the activity recognition is high.  

92.61% for the desktop processing and 88.98% for the Pocket PC is very good 

achievement.  Because of the using the unsupervised learning, the high accuracy of 

activity recognition is applied to almost every testing users.   

The accuracy on recognition of walking is the lowest.  Especially for the first two 

testing users, the accuracy is about 60% to 70%.  The main reason for this 

phenomenon is because of bad training.  When I first time collecting the data from 

the testing users, I ask them to walk a bit fast.  That is because I want the activity 

detector to be able to detect the fast walking as walking.  However, if I am using the 

fast walking data sets to train the classifier, it will make it believe that his/her 

walking should be such intensive.  That is why we have so many bad recognitions 

from the first two testing users.  The accuracy is increased for the rest of testing users 

when I slow down a bit on training of walking.  The accuracy for both running and 

cycling is very high.   

I have carried out the tests in both 100Hz MT9 sampling rate and 25Hz.  The 

accuracy from 100Hz MT9 sampling rate is higher than 25Hz.  However, the 

advantage of using high sampling rate is not very evident.  It is below 5% difference 

between these two sampling rate.  However, the 25Hz sampling rate has reduced 

75% of incoming data.  The result of 25Hz convict us that the smart activity monitor 

can be built on PDA with its current processing ability. 

One downside to the evaluation of this project is the inability to test the energy 

expenditure calculation part of the project.  To get a precise energy expenditure 

figure, I need to have many physiology and medical equipments.  And then I can 
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compare the results that calculated by my project to the equipments’ results.  There is 

a shortage on both facilities and related knowledge of testing the energy expenditure.   

 

5.3 Performance Evaluation on Pocket PC 

In order to evaluate the application performance on iPAQ, a third-party profiler 

software is used.  This software is called SpeedDemon Profiler, which is developed 

by NoctemWare [16].  This is commercial software, which cost $299.  I am using its 

trail version in this project.  The goal of using this profiler software is finding out 

how much time needed to detect activity.  FeatureExtraction() and 

ActivityRecognition() are the two main parts of activity detector.  If we know the 

time consuming on these two functions and their sub-functions, we’ll know the time 

needed for detecting activity as well as how much delay we have on the monitor. 

Function Max. F time Min. F time Avg. F time 

FeatureExtraction() 0.04927 ms 0.01747 ms 0.02653 ms 

ActivityRecogniton () 0.00070 ms 0.00002 ms 0.00330 ms 

Table 5-24 Profiling Results On Two Main Functions 

The average amount of time spends on extracting features and recognizing activities 

is about 0.03 milliseconds.  In the case of refresh rate at every three second, there 

will be a 0.03 milliseconds delay every 3 seconds accumulatively.  Such performance 

is reasonably good as the amount time delay is very short.  The user will not feel the 

delay even use the monitor for an entire day.   
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Chapter 6:  Conclusion 

From the introduction chapter I have shown that overweight is a huge health problem 

worldwide.  People who have willing to control their weight have difficulties in 

knowing the energy expenditure.  Unbalancing between energy consumption and 

energy expenditure will affect people’s weight and health.  In this project I’ve 

successfully designed and implemented a smart activity monitor to overcome this 

problem.  The smart activity monitor is using a MT9 sensor to collect the motion 

data from human’s lower body.  The MT9 data then will be transferred to a HP iPAQ 

5500 running a Microsoft Pocket PC 2003 and processed by the software application.  

Finally the activity type as well as the activity speed and energy expenditure will be 

displayed to the user in real time.  In this project, I have achieved detecting 3 types of 

leg-only avidities, including walking, running and cycling as well as estimate the 

speed and calculate the energy expenditure. 

There are many human activity detection techniques available.  I found the “Inside-

In” system [1] which placed one or multiple sensors on the user’s body to collect the 

source data from the user, is the most appropriate approach to this project.  Such 

system is easy to set up, low computation and it can be mobile. 

The activity detector I designed using unsupervised learning to built classifier and 

using the statistical pattern recognition to recognize activities.  The reason of using 

the unsupervised learning here is because I found that different people’s movement 

style is different.  It is not possible to build a perfect classifier with predefined 

threshold which suits everyone.  The classifier I designed requires user training in 

advance.  Features of each activity for that user will be learnt during the course of 

training.  This activity detector has achieved very good recognition accuracy.  The 

unsupervised classifier is also easier to learn new activity.  I have fully evaluated the 

algorithm by using a specific designed testing bed.  I’ve collected data sets from 10 

volunteers.  Each person has 6 different data sets on different activities.  I used 
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technique that combines different data sets as classifier to test the rest of data sets.  In 

this case, I can carry out 900 different tests.  I’ve also made the tests fully automatic, 

which saves huge amount of time.  The overall accuracy on 100Hz MT9 sampling 

rate is 92.61%.  The activity detector part of project is independent from the 

application. This makes the activity detector adaptable to any context awareness 

application which requires the user’s activity information.   

The system has been successfully implemented on a handheld.  During the course of 

deployment, there are many problems have been solved.  Because the processing 

ability of handheld is much lower, I found that it had difficulty in handling the 

100Hz MT9 data flow.  Therefore I decide to reduce the sampling rate of MT9 to 

25Hz.  The accuracy of activity detector under 25Hz MT9 data has also been tested 

by using the automatic testing bed.  The overall accuracy is 88.98%.  The 

performance of the monitor on the handheld is as good as its accuracy.  I’ve achieved 

a real-time monitoring based a fixed refresh rate.  There is only 0.03 millisecond 

delay every time the monitor refreshes.   

Base on the activity detector, I’ve also designed and implemented the application that 

can estimate the user’ speed by using the specific designed algorithm as well as 

calculate the energy expenditure.  The application is also supported by a file system, 

which is used to store the users’ profile.  The file system increases the usability of the 

application as the user does not have to train the classifier every time he/she uses the 

monitor.   

According to the complex evaluation of the project as well as comparing to the 

original proposal defined at the very beginning, I believe I have completed my 

project and achieved my goal.  However, anything can be perfect in this world.  If we 

consider this project as a beginning of using motion sensor to monitor human activity, 

there are many work can be carried out in the future. 
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6.1 Future Work 

The future improvement of this project can be both in hardware and software.  The 

current smart activity monitor can only detect the energy expenditure on leg-only 

activities.  However, we spend energy all the time even when we are sleeping.  If we 

want to monitor our energy expenditure 24/7, the smart activity monitor I designed 

can only reflect the energy expenditure when the users are standing, sitting or 

sleeping.  That is because I am using an indirect method [20] to calculating the 

energy expenditure.  If we want monitor that part of energy expenditure in the future, 

we can add in a cardiotachometer.  We can monitor the energy expenditure according 

to the heart rate changes.  By add-in a cardiotachometer, we can monitor the energy 

expenditure directly.  The accuracy of energy expenditure calculation can also be 

improved.   

Both the sensor and handheld used in this project is still very big in their size.  HP 

iPAQ 5500 is used as the data processor as well as for the annotation in this project.  

I hope in the future we can use mobile phone to handle this job instead of PDA, 

because mobile phone is a more pervasive device.  The communication between the 

MT9 and the handheld is wired in this project.  This is also a draw back, because it is 

both uncomfortable and dangerous to have cable tied on user’s body when the user is 

doing activities.  If the sensor itself can be smaller, lighter and have a wireless 

communication interface built-in, it will be more likely be accepted by users.  The 

communication between the sensor and mobile phone can be carried out by some low 

power wireless communication technique.  In the future I hope we can find out a 

better power supply solution for the sensor, such as kinetic power.   

From the software aspects, a more optimizer algorithm can be carried out for further 

development.  For example, the current activity detector is using an unsupervised 

classifier to classify the activities.  However, the weight of each feature is predefined.  

If I can have more time for this project, would optimize the feature weighting scheme.   
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Appendix A: Screen Shots 

  

Figure 6-1 Login Screen   Figure 6-2 Registration Screen  

  

Figure 6-3 Training Screen   Figure 6-4 Training Screen 
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Figure 6-5 Activity Monitoring Screen  Figure 6-6 Report Screen 
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