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Abstract

The paradigm of computational accessability where the world of devices available to us

are of an ubiquitous nature. Some questions arise naturally when we consider a world

where the environment around us can talk back

With the introduction of The Magic Wand metaphor in the ubiquitous envi-

ronment, this project is hoping to raise questions on how interaction might

be performed between the user and this environment through gestures that

would be considered intuitive
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Chapter 1

Introduction

1.1 Motivation

We go to shops, banks, childcare centers, photo booths and also interact with an array

of devices in the home too, like washing machines, TV’s, microwave ovens and lights,

etc. The defacto method of interacting with all these devices and contexts are by

a payment card, switches, remote controls, knobs and handles. This report asks if

another form of interaction by the Magic Wand metaphor is more suitable for this

interaction?

1.2 Metaphor for The Magic Wand

The wand is a pre-Norman unit of length used in the British Isles equal to approxi-

mately the modern metre, apparently dating from an early use as a yardstick [3]. The

wand is used in ceremonial or in official contexts where a mace, sceptre or staff is

used to symbolise authority or representation of power. This representation of power
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Chapter 1. Introduction

together with the magic elements from Harry potter where he makes a gesture and

points at an object of interest to perform that magic, is the association the author has

in mind at the development of The Magic Wand (called TMW in the rest of the paper).

1.3 Technical Challenges

The author had to research gesture recognition, gesture storing, Linux, C++, imple-

mentation for portable computers using Xscale, sensors and Tiny Linux, and commu-

nication technology and methods for interfacing with 3rd party libraries.

1.4 Tangible User Interface (TUI)

’Tangible interface give physical form to digital information, employing physical ar-

tifacts both as representations and controls for computational media. TUI’s couple

physical representations with digital representations, yielding user interfaces that are

computationally mediated but but not necessarily identified as the common perception

of a computer’ [8]

1.5 Dissertation Objective

This project sets out to prove that a computational tangible user interface, Magic

Wand, could be implemented as an extension of our will to manipulate objects of

interests.

2



Chapter 1. Introduction

1.6 Outlining the Dissertation

Chapter 2 covers the state of arts of current and past good projects in gesture recog-

nition by a device. Chapter 3 covers design alternatives and techniques with the final

UML project details. Chapter 4 is the final implementation and discussion of why some

solutions were selected. Chapter 5 Evaluation of user perception af TMW and TMW

met its criteria set in chapter 3. Chapter 6, concludes on the success of the project.

Chapter 7 covers where author recommendations for future work.

3



Chapter 2

State of The Art

2.1 XWAND

2.1.1 Implementation

This project went out to test several gesture recognition techniques to utilise a wand for

intuitive interaction. Several sensors were embedded on the wand to return orientation

and acceleration data, this data where sent to a main computer, that analysed the

data values to gestures. XWand [11] as shown in in figure 2.1 consists of a number of

embedded sensors that detect the orientation and acceleration of the wand. The data

from these sensors is transmitted wirelessely, when a button is pushed on the wand to

a remote computer. On analysing and interrupting the sensor data the computer can,

if a gesture is recognised, perform an action associated with gesture.

4



Chapter 2. State of The Art

Fig. 2.1: Hardware Overview of the XWAND

2.1.2 Software Architecture

XWand have implemented three different gesture recognition techniques, namely Linear

Time Warp, Dynamic Time Warp and Hidden Markov Model.

2.1.2.1 Hardware Architecture

Linear Time Warp (LTW) LTW algorithm matches a sequence of sensor values

S = S1, ...ST , with a stored prototype, p = p1, ..., pT . Where the prototype is the

trained gesture, it can be matched with a real world gesture by squared Euclidean

distance for every time t. The Matched is found through computing for the whole

sequence given time and scale, where maximum score over scale and warps is considered

5



Chapter 2. State of The Art

the match.

Dynamic Time Warping (DTW) DTW [28] got prototype gesture p = pi, ..., pt

and gesture for recognition is S = S1, ...ST , and we have a k-dimensional feature vector

with values collected from k sensor. Each element of grid contains a Euclidean distance

measure Dij representing the distance between si and pj. The best time warp will be

the minimised optimal distance.

Hidden Markov Model (HMM) The implementation of HMM [21] was compiled

by the HTK [26] library that retrieves gestures.

2.1.3 Feedback

Feedback is provided to the user in the room at a success or failure of the gesture being

recognised. This is displayed on a nearby screen. There a certain amount of lag in the

feedback due to the user inconsistencies by button press.

2.1.4 Analysis and Critique

As the paper went on to find gesture recognition techniques and generic gestures, they

where successful at finding the better technique and some generic gestures. However

they met some problems at the push button as users held the button in at various length

of time and distorted the gesture, as it is time and amplitude dependent. Other issues

at using the library and algorithms that were not addressed, were if they supported

multiple readings at time t. Since the architecture depends on a master computer to

analyse the gestures prior to routing a command to the correct device. The architecture

implies interconnected devices with infrared interfaces and a dedicated computational

6



Chapter 2. State of The Art

machine. Robustness can be said to be low, but the paper did not go in depth with

in to the pervasive elements other than in the introduction but is explored in depth

in later XWand research papers [4] Since the wand is only sending out data at button

press, battery life time can be similar to a common remote control if the sensors and

radio were turned on at button press.

2.2 An Inertial Measurement Unit (IMU) for User

Interfaces

2.2.1 Implementation

Gesture recognition based on atomic gestures [9]. A. Y. Benbasat’s M.Sc dissertation

describes how all atomic gestures are hard coded, and when performing a gesture the

application looks for all these atomic gestures that makes an advanced gesture. The

IMU for user interfaces project uses raw data from the sensor, that it filters by kalman

filtering, scales the sensor data and recognise by Matlab linear feature detection. This

feature data is then run through a windowing algorithm that checks how many features

are in this window. By combining these windows, by scripting, the results are the

identification of a trained gesture. The final application was 3D character walking and

performing some actions like kick etc from real world gestures performed on a physical

doll.

2.2.1.1 Hardware Architecture

Sensor unit for acceleration data and gyroscopic data, sends its raw data to an embed-

ded device for transmission to a master computer, figure 2.2. The master computer

7



Chapter 2. State of The Art

Fig. 2.2: Architecture of information flow of the atomic gestures, IMU project

identifies the gestures from stored training sets.

2.2.1.2 Software Architecture

The sensor data is collected by embedded code to a buffer of 24 bytes, then the data

is radio transmitted. Feature algorithm, with the generic windowing algorithm detects

sensor activity where a gesture recognition is applied for atomic gestures.

2.2.2 Feedback

Synthetic Character Group created by MIT Media Laboratory, where user controls

movement of a character based on gestures.

2.2.3 Analysis and Critique

The final application and testing showed a 87% [9] correctness where user got 2 trials

per gesture to get the right results. They proved atomic gesturing can be used to

infer more complicated gestures, however the atomic gestures are dependent on the

sensor raw data from some very specific sensors and thus the sensor parameters were

8
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implemented by method of qualified estimation. Since the implementation suggests

incremental atomic gestures must be recognised before a complete gesture model can

be reached, then there are issues when some gestures are equal to eachother except

in time. This system will recognise the shortest gesture first, so if the user continue

the gesture to a longer gesture, the recognition algorithm will think it has found the

gesture and will move on to the next gesture.

2.3 Glove is in the air

2.3.1 Implementation

Glove is in the air (Glisa) [17] is a project to integrate an analysis tool SciCraft with a

human computer interface enabled by gloves to control this virtual reality application.

2.3.1.1 Hardware Architecture

Hardware of Glisa, depicted in figure 2.3 consists of flock of birds orientation sensors

on gloves to utilise orientation information on a 3D virtual environment displayed on

a projected screen.

2.3.1.2 Software Architecture

The application is described to be a middleware consisting of orientation data, mouse

emulator and gesture recognition. Gesture recognition is done by the hidden Markov

model, visualised in figure 3.4.3, by using the Open Source, Generalised Hidden Markov

Model [5] developed by University of Berlin. Gesture information and orientation data

is fed directly into the virtual reality world and enables user to orientate and interact

with objects in this world. As the GHMM library will only accept one sensor reading

9



Chapter 2. State of The Art

Fig. 2.3: Hardware Architecture of Glisa

at time t. The average of several readings for time t were implemented to overcome

the limitations of the library. A threshold determines if the match is good or not so

the GHMM library will not output false positive gestures. A wrapper was created

to control the windowing system’s mouse pointer and then a 3D orientation to 2D

orientation coordinate was implemented. Data from the orientation of the fingerprints

was triggered by a threshold scheme to identify no more than 2 such postures. These

postures are used as mouse button 1 and 2.

2.3.2 Feedback

The Glisa project was divided into three parts. Part one handles the sensor drivers

for 2D and 3D space and device communication, part two is integration the glove on a

normal windows program and part three to enable gestures to a virtual environment.

10
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The two first parts of the project was to enable the glove and simply use it to point

and click on a 2D environment, where the mouse icon is the general feedback. The last

part where the glove interact in a 3D environment is actually done by 2D movement

together with 3D gestures. the visual feedback works similar as to the mouse icon, but

through gestures interactions with objects in a 3D environment are enabled.

2.3.3 Analysis and Critique

The customer driven project at NTNU developed a glove interface with 2D and 3D

computer environment, which is not in fact a new Human Computer Interface, the

integration of 3D interactions with a scientific tool and a virtual reality library and

gestures interaction is new.

The middleware that enabled the glove were implemented on Linux’s X window

system, the interaction with the VR lab [2] where a 3D visualisation was used, the

glove’s interaction was pretty rudementary by using a gesture linked to some action.

The HMM library did not utilise gesture recognition where several values must be read

at time t, so the way around that was to use a median value per time t, which, in

practical terms this means that it’s how the gestures are made determines recognition

rather than the gesture itself. See GHMM figure 4.1.2. False positives in gestures are

solely determined by a threshold of log(p) per gesture. A probability threshold of this

manner will indicate that few gestures will be used that does not look like each other

from the statistical data and is pre-set by the trial and error method.

Movement on the screen is 2D and movement with the glove is 3D. The direct

correlation from 3D to 2D was done, so to utilise the 2D screen the glove moves in a

2D coordinate system, not using the gloves 3D capacity. Gestures were quite limited

and was used to utilise a 3D environment where movement is still 2D.

11
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2.4 the magic wand

2.4.1 Implementation

The Virtual landscape with a flying carpet was implemented to display how the ’Magic

Wand’ and speech can enable user to travel through this landscape.

The sensor data gives orientation information for the Wand, while voice commands

will direct the simulator to act on wherever the wand is pointing. Voice recognition is

possible by speech recognition library.

Application consists of a virtual landscape that take orders from speech commands

and direction of orientation from the wand.

The Magic Wand [14] demonstrated how the concept of a ’Magic Wand’ can be

used to interface with a virtual landscape on a large screen. Where voice and wand to

aid interaction within environment and objects that occupy it.

2.4.1.1 Hardware Architecture

The hardware elements consists of headphones, a microphone, a wooden wand, a di-

rectional sensor and a computer connected to a large screen. A wooden wand is used

to eliminate data contamination a metal rod will cause the magnetic sensor. The mi-

crophone on a headset was the choice over a stand alone microphone, placed in the

centre of the room cause interference and echo.

2.4.1.2 Software Architecture

The Sensor fusion techniques analyses speech input and determines the correct wand

sensor orientation for the 3D landscape. These two different pieces of data is used to

manipulate the 3D objects and to maneuver through the 3D landscape. The Magic

12
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Wand’s architecture is outlined in figure 2.4

2.4.2 Feedback to user

When the interaction is dependent on two different actions, like speech and gesture

to perform an expected action. Some kind of feedback is vital when something goes

wrong or the expected actions is triggered. The feedback put in place where to warn

about error in speech, not however in gestures as they will work or not work.

The feedback should either be visual, audio or both, in an example the user says

a command word where the system do not recognise the word and returns an error

message and the user tries again until he gets the speech command right.

2.4.3 Analysis and Critique

This project utilises euler data for directions. The directions are divided into 5 sectors

where the middle one is the point of origin and the other sectors are divided into up,

down, left and right. In order to fly through the landscape a direction is chosen from

the point of origin, then a command is given ie ”fly”. The virtual landscape will then

let the user fly to the destination until a new command is given. The approach of

direction together with speech commands give some benefits where end users can use

the wand intuitively and the speech commands will not appear to be hard to learn as

they are relative few.

The projects used an early sphinx package that gave 30 Percent failure rate, this

degree of failure is quite substantial when regarding only 6 keywords where used.

Issues with the magnetic sensor, when calibrated for the room where the sensor

data are universal compared to the earths magnetic pole. When changing locations

the sensor will be off course, unless it was reset for its world.

13
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Fig. 2.4: Overview of ’The Magic Wand’ Architecture

This robustness question where the sensor is pointed to the centre of the image in

other locations than the prototype locations are solved easily by re calibrating when

pointing at the point of origin.

2.5 Evaluation

Where the XWand and IMU deals with finding the optimal gesture recognition tech-

niques and by comparing the different technologies, its safe to assume that they can be

used in similar applications, depending on architecture and hardware. XWand, Glisa

and The Magic Wand deals with calibrated sensor data, where focus is on sensor fusion

capability for application integration.
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The Techniques in Gesture recognition The Linear Time Warping received

only 40% correct gestures [11], Dynamic Time Warping received 71% [11] and Hid-

den Markov Model has received everything from 70 to 90% [11] [17] on its gestures.

The atomic gesture approach received in its study around 87% [9] although with ques-

tionable quantitative evaluation data.

2.6 Concluding State of the Art

In concluding the state of the art the author will deal with the papers in three categories

to get each papers contribution to the field.

Sensor Data The goal for any implementation is sensor data that are returned in

a manner that we can understand generically, that can be used for any sensor fusion

techniques. As such, the XWand, the Glisa and the magic wand all returned discrete

values, while the IMU project returned raw data that will need fusion techniques to

return discrete values.

Sensor Fusion For gesture recognition the Hidden Markov Model was the most

successful technique. HMM success depend on using the most suitable libraries that

supports advanced and unique gestures through sensor data accuracy. The IMU project

is parameter, threshold dependent on specific sensors and will prove more to more

labour intensive for a generic implementation by anyone who will attempt on using

other sensors and hardware but using the same technique.

Application The state of the art projects all implemented for an existing a 3D appli-

cation to prove gestures in the real world could manupulate object in the virtual world,
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the XWand started off as a proof of concept and is now considered to be implemented

with Microsofts XBox 360.
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Design

3.1 Overview of TMW

In this dissertation we propose to use the metaphor of a magic wand in figure 3.1 to

provide an intuitive tangible interface to an ubiquitous environment. In the following

chapter we describe and analyse some techniques available, hardware and finally design

the application.

3.1.1 User requirements

When the users need to interact with ubiquitous devices. This requires some minimum

requirements for the user to use the wand efficiently. The wand needs to interconnect

with devices in commercial and business contexts and be linked with the user making

the commands. The requirements for a Magic Wand interface to meet end user de-

mands, are, intuitive use, autonomy, performance and visual/audio feedback to confirm

some action.

To make end users more productive, TMW would need to be as common as the
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(a) TMW, wired to computer (b) TMW, wireless

Fig. 3.1: TMW
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mobile phone or available wherever it might be needed, like shops, museums, presen-

tations, visual or audio systems, payments, security, theme parks etc.

TMW in brief

• Tangible user interface

• Intuitive use

• Association of a gesture with a reaction

3.1.2 System requirements

Users must be able to take advantage of its autonomous quality and the mobility TMW

offers, the wand needs to be small, be computational, build in security and have wireless

connectivity.

Hardware requirements

• Inertial Measurement Unit

• Processing platform

• Wireless communication

Software requirements

• Discrete Sensor Data

• Sensor Fusion technique

• Gesture to command association
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• Communication application

3.1.3 Environment Devices

Ubiquitous enabled devices are any device that an end user would come across in almost

any interactive context. These devices can be activated by the user’s TMW and receive

commands for them to respond to.

3.2 TMW System

TMW interaction, occurs when a user choose a device to interact with and then what

action to take. TMW should keep details on gesture models, recognise such models

and return a command to the device. The problem that should be resolved before

implementation is how to best identify the correct device for interaction, as there

could be hundreds to choose from at any location.

3.2.1 TMW Application

TMW approach for interaction would be for the user to point at the device, then to

perform a gesture where the device would perform some kind of action. When trans-

mitting a command there are two alternatives on how the commands could be, the first

as raw data, where TMW transmits a perceived gesture, and the device receives all

raw data to post-process the information into useful commands. The second method

is when TMW itself identifies gestures, returns the command and transmit it. The

first method leaves all post processing at the device side and it is given that a ubiqui-

tous device should carry intensive processing capability and vice versa for the second

method.
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3.2.2 The Pervasive Environment

The ubiquitous environment must be enabled to meet a common standard for it to be

interfaced with by TMW. How can the user find, identify and communicate with these

devices that could be numerous and densely populated indoors and outdoors? These

are some of the issues.

How to distinguish a device from other devices:

• Listen on a specific IP address

• Activate on infrared channel

• Bluetooth activation

Examples of TMW communication techniques:

• UDP protocol

• TCP protocol

• Bluetooth

• ZigBee

3.3 TMW Gestures

The assumptions are, that users would use the wand on a regular basis where inter-

actions are the gestures performed by TMW as in figure 3.2. These gestures can be

familiar or unfamiliar, based on the users previous knowledge of gestures. Example
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of issues with gestures are a circle interpreted in many ways, as a fast small circle, a

large slow circle, an oval circle seen in figure 3.2(c). A square could be oval or it could

be a strict square with small pauses at each corner. To find out what type of gesture

pays off for the general public the author has considered two options, the first is where

the wand ships to the user ready with generic gestures, the second design could allow

end-users to create their own unique gestures from an available training mode.

(a) Squared gesture (b) Circle gesture (c) Circle interpret in two
ways

Fig. 3.2: Example of gestures

3.3.1 User Specific Gestures

This scenario is one where, the user picks his own gestures, and a few assumptions

must be made.

• The wand has knowledge of the commands

• The wand must be taught the gestures
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• The trained gestures need to be associated with commands

Some general system issues would need to be addressed as the receiving device would

have knowledge of the state of the gesture, the wand would need to process the gesture

and then send out the appropriate command. The training issue occurs where user

inconsistencies develop and trained gestures could end up as illegal gestures. Users

might also get things wrong regarding when to start and stop a gesture. The user might

select gestures that are too ambiguous and recognition system could fail to understand

the unique gestures from each other. Measures need to be put in place to force the

user to perform a valid and unique gesture. However, if the gesture requirements are

that they should be unique, easy to perform, and easy to remember, and the system in

place for training makes sure all these criteria are met, there will be a good argument

to implement generic gestures.

3.3.2 Generic Gestures

Generic [7] gesturing, in the context of TMW are intuitive, simple, unique and easy to

remember for any end user with just basic training. Generic gestures should be trained

by a sample of people, representing the many ways a gesture could be interpreted by a

user. Obviously, users should be guided to understand the scale and timeliness of the

gesture. The gestures of TMW should be neither too complicated, nor too numerous.

People remember 7, plus or minus 2 [22], so a number of generic gestures between 5 and

9 are reasonable to assume. The assumption is that fewer and more distinct gestures

are easier to remember, however this will force an operational constraint for operations

on ubiquitous devices. Some tested generic gestures are: Down, then Up, figure 3.3(a);

Circle, figure 3.3(b); Out, then In, figure 3.3(c); Left, then Right, figure 3.3(d); Up,

then Left, figure 3.3(e); Up, then Right, in figure 3.3(f);
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(a) Generic Circle (b) Down, then Up (c) Out, then In

(d) Left, then Right (e) Up, then Left (f) Up, then Right

Fig. 3.3: Generic Gestures
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3.3.3 Gestures and Interaction

With the assumption that 5 or 6 gestures are the maximum an end user would be

comfortable with, the ubiquitous environment would also be limited to performing 5 or

6 actions. These devices would need to be context aware, aiding TMW in enabling users

with a total intuitive performance. The ubiquitous device has knowledge of commands

and expects those commands from TMW, but depending on the context the commands

could mean different things. If we look at a device, in this instance an MP3 player,

the players functions are, load playlist, select playlist, select songs, add to playlist,

create playlist, play, stop, pause, fast forward, fast rewind, skip to next song, skip to

the last song, power on and power off. A washing machine’s functions are, open door,

select Celsius degrees (30, 40...90), select coloured, white or wool, select spinning cycle

(50,100...300), and power on. To operate these machines with 6 gestures could possibly

be quite cumbersome if applied directly without altering how the devices operate. As

it stands now, to operate the washing machine, it would be gesture 1 to open the door,

2 to select category Celsius degrees, gesture 3 to select clothing type, gesture 4 to select

spinning cycle category and gesture 5 to start the washing machine. Then gesture 1

to 6 selects different settings within the 3 categories. To operate a washing machine

this way would take at least 8 gestures, 9 if we need to abort the operation. Clearly,

operating anything with gestures needs a complete rethink on how gesture commands

perform on these devices. The author will not try to answer how ubiquitous devices

should perform, but will outline how to enable an ubiquitous element to everyday

devices.
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3.3.4 Enabling Devices for an Ubiquitous Environment

We need to simplify the user interactions to enable devices for TMW. The methods of

simplification are menu’s [24], context menus, [27] and context awareness [18]. When

interacting with a device the device should provide feedback on how well the user is

doing, this could be through GUI, voice or sounds. The context awareness with some

form of learning should take care of when to turn the music off, standby, genre of

music, favorites etc. Ubiquitous devices are examplified by an MP3 player, device

operations could narrow down behaviour of the mp3 player, to play, pause, play next

and play previous track. The washing machine example could be narrowed down to 1

gesture, whereby sensors know what type of clothes have been loaded, finds the right

temperature etc and starts when the door closes. The only reason to use a gesture in

this example could be to abort the cycle. Artificial Context Intelligence could detect

user profile and anticipate what actions to make. On a simpler level, the play music

command by gesture could mean different things depending on what the previous action

was or previous interaction has been over time, letting the device learn preferences.

3.4 Gesture Recognition Techniques

For this dissertation the authors aim is not to come up with a new middleware for

gesture recognition but to describe the different techniques considered and feature

availability of a good open source library for implementation in this project.

3.4.1 Bayesian Networks (BN)

No relevant libraries for gesture recognition exists for Bayesian Networks [15], but the

methods are well known. A BN covers variables that are called nodes, these nodes
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are linked in a network with parent and children relationships. Each of these variables

has a conditional probability distribution P (Xi|Parents(Xi)) for i = 1 to n If Xi

The Bayesian network can be said to be representing the conditional independence

relationships in the system being modeled.

3.4.2 Support Vector Machines (SVM)

The author found no relevant open source library in gesture recognition or equivalent

for Support Vector Machines [10]. The method requires to scale the data to apply

values within a uniform scale. The method for data classification embodies training

prototype with features and one target value, and classification is performed by a model

predicting the target value for the training sets. To classify data, the user must choose

between the kernels or models available, linear, polynomial, radial basis function, and

sigmoid.

3.4.3 Hidden Markov Model (HMM)

The author found the HTK [26] and GHMM open source library [5] for general use.

HMM is another statistical pattern recognition, that returns a probabilistic value for a

given sequence of observations given a specific HMM. To answer an HMM [21], there

are three problems of interest.

• Problem 1: Given the observation sequence O = O1, O2..OT and model λ =

(A,B, π), how would we compute P (O|λ)?

• Problem 2: Given observation sequence O = O1, O2..OT and model λ, how do we

choose corresponding state sequence Q that best explains Observations O?
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• Problem 3: How do we adjust the model parameters λ = (A,B, π) to maximize

P (O|λ) the probability of the observation sequence?

Describing the Elements in HMM

• The model is λ = (A,B, π)

• ai,j = P [qt +1 = Sj|qt = Si], 1 ≤ i, j ≤ N which is the state transition probability

distribution, where A = ai,j

• bj(k) = P [vkatt|qt = Sj], 1 ≤ j ≤ N, i ≤ k ≤ M where the observation symbol

probability distribution in state j, B = (bj(k))

• Initial state distribution π = πj = P [q1 = Si], 1 ≤ i ≤ N

Solution to problem 1, 2 and 3

• Problem 1: Forward-Backward Algorithm, calculates the probability of the par-

tial observation sequence until observation Ot finishes at OT . This gives calcu-

lation of αT (i), which is P (O|λ). Problem 1, solves recognition probability of a

sequence given a model.

• Problem 2: Optimal states are found by some criteria the developer or user

decides on. Viterbi Algorithm is considered the best practice to find the best

state sequence given an observation sequence. The state sequence is used to

train new models or to return a probability with a given model.

• Problem 3: Baum-Welch algorithm is utilized to train prototypes in statistical

patterns. It works by maximizing the probability of state sequence until a critical

point is reached. max
λ

[Q(λ, λ)] ⇒ P (O|λ ≥ P (O|λ)
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HMM overview To utilize the HMM we need Observations over time T, calculated

to a state sequence ST that can be either trained with the Baum-Welch algorithm or

the state sequence can be used to return a probability for the observations given a

model.

3.4.4 Concluding Gesture Classification and Recognition

The gestures made by TMW will be limited to 6 to cover most situations, with assump-

tions that the ubiquitous devices are enabled for TMW communication. Classification

and recognition of these gestures would benefit most from a library using the Hidden

Markov Model, due to the freely available libraries and continuing success rate.

3.5 TMW Communication

Device wireless transmission is necessary for TMW’s criteria of autonomous usage by

its independent form factor.

3.5.1 Traditional IP Transfers

With IP transfers, TMW could connect by ad-hoc network or connect in an expected

IP range, and by multi-casting finding the appropriate available devices. When these

devices are found they will need to reply their IP, then identify where they are according

to their IP address, some kind of activation flag will be necessary to implement when

TMW requests interaction mode.

UDP As UDP [19] is quite well known and documented the Author will not delve

into the technical specifications. The pro’s for using this protocol with TMW are the
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send and forget attribute and eliminating the latency of acknowledgement messages.

However, we need to answer how an acknowledgement for a successful transmitted

command could be resolved, like response commands, light or sound.

TCP The well known TCP protocol [20] has the drawback in TMW, style ad-hoc

connectivity that the client on the wand side needs to wait for acknowledgements before

it can terminate the opened port. This protocol is not recommended.

3.5.2 Bluetooth

Bluetooth [1] has been successfully implemented in an array of different devices and

in 2006 is still considered de-facto standard for lightweight mobile wireless commu-

nications. The biggest problems for the Bluetooth protocol is the time lag it suffers

from when searching for new devices to actual device to device communication, from

13 seconds and upwards. The second issue is limitations on how many slaves a Magic

Wand master can have. With capability to support 7 devices where connection time

lag is 13 seconds, is considerably limiting the ubiquitous element of interaction with

devices. On the capability side the protocol can be trimmed to handle specific wand

and device communication faster and lighter.

3.5.3 Infra red

A similar concept to a remote control, with transmission capability of 16 mbps. The

IrDa protocol [13] is directional and therefore contradicts TMW non-directional gesture

application.
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3.5.4 ZigBee

ZigBee [12] is an ad-hoc network protocol with attributes like low power consumption,

great ad-hoc capabilities and low cost. The main reason to investigate ZigBee is its

ad-hoc routing capability for networking if needed, it also features low latency due

to direct sequence spread spectrum [23]. ZigBee is simpler than Bluetooth, has lower

cost, and is more energy efficient, it allows for only 256 Kbps compared to Bluetooths

1Mbps, but features support for 254 nodes.

3.5.5 Concluding on TMW Communication

The design for TMW should allow for it to activate a device it points to or is in

proximity with, then a gesture command should be sent out to the correct ubiquitous

device. To meet these criteria the user should select the device of interest, this device

could be activated by infrared, RFID [6], hand touch or Bluetooth. Device activation

should ideally include identification of the wand or user or both allowing authorised

commands only. The commands could be transmitted by ZigBee, Bluetooth, or UDP,

in ad-hoc mode.

3.6 Magic Wand Architecture

TMW design is divided into layers, figure 3.4, where sensor consists of calibrated ac-

celeration data from the MTx, Inertial Measurement Unit. In the sensor fusion layer,

the sensor data is scaled, then applied to the Hidden Markov Model for training or

recognition. For the application layer the gesture models are utilised for TMW com-

munication. The last layer is communication where the gesture command is sent to

the right device.
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Fig. 3.4: Layers of TMW
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3.6.1 Use Cases

When the user makes a choice from the initial menu in the system, depicted in figure

3.5, making a new gesture to re-training a current gesture, they must have knowledge

of gestures, their names and how to perform them in order to not get out of the gesture

scale. The first gesture sets the standard for gestures and will not get scale errors. The

recognition mode takes in continuous gestures where each gesture is unique within a

frame of time. It then returns a model with the highest probability, where it transmits

the probable command UDP protocol to an expecting device server.

3.6.2 Sequence Diagrams

These sequences in figures 3.10, 3.11, 3.12, 3.13, 3.14 describe the flow of each of the

use cases in figure 3.5 and 3.7. The first sequence diagram 3.10, where the MP3 player

listens for incoming commands, and TMW waits to send commands until a valid gesture

has been found. The second sequence 3.11, where user creates a new gesture, by first

performing the gesture, then select the appropriate choice in the menu, and entering

in the gesture name. The third sequence diagram 3.12, depicts where users re-estimate

an already stored gesture, called Markov model. The user can perform a gesture, then

choose the appropriate option in the menu. Here a model must be loaded and be re-

estimated with the new gesture data. The fourth sequence diagram 3.13, depicts how

the sensor fusion life cycle works. Firstly after sensor data has been read, it’s being

scaled to three symbols, then the observation set is stored to memory, then assigned

to a Markov sequence and finally memory is reset. The fifth sequence diagram, depicts

semi continuous gesture recognition. The life cycle starts when a gesture is performed

and a flag is turned on by the user to enable semi continuous recognition, where it
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Fig. 3.5: TMW, use cases for application
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Fig. 3.6: Use Case narrative, Device connection
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Fig. 3.7: Use Case narrative, Training or New model
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Fig. 3.8: Use Case narrative, interact with the ubiquitous environment
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(a) TMW, use cases for sensor fusion

(b) TMW, narratives for sensor fusion

Fig. 3.9: Use case narratives38
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starts out by loading all of the gesture models and return the model with the highest

probability. This Markov model name is transmitted to an IP address.

3.6.3 Class Diagram

The classes outlined here are the classes on TMW side, excluding the GHMM [5] library

and the MTComm [29] library.

3.7 Design Summary

This chapter is answering capabilities and limitations in techniques on each implemen-

tation layer of TMW. In the lowest layer, the sensor data is calibrated. The sensor

fusion layer implement sensor data scaling, then a technique will classify and recognize

statistical patterns, preferably in near real time. The technique most popular by other

gesture recognition has been HMM. For the application the author will need to make

use of the gestures taken, recognise and train for an actual new tangible user inter-

face. The communication outlined will depend on available hardware for the wireless

platform.
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Fig. 3.10: Sequence diagram, alignment of wand and device
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Fig. 3.11: Sequence diagram, user create new gesture
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Fig. 3.12: Sequence diagram, user reestimate an existing model

42



Chapter 3. Design

Fig. 3.13: Sequence diagram, sensor Fusion sequence
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Fig. 3.14: Sequence diagram, communication, wand to device
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Fig. 3.15: TMW, class diagram
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Implementation

Implementation was carried out by dividing the project into four layers, Sensor Data,

Sensor Fusion, Application, and Communication.

4.1 Overview of TMW

TMW is drawn up to be an autonomous device, seen in figure 4.1, with wireless only

access to and from the ubiquitous-enabled devices. The battery, a computer, sensor,

and a wireless card, depicted in 4.2 need t be on the same wand. The only suitable

wand like shape which will fit these components is a tubular shape, components can be

fitted and protected within the tube. A cardboard tube, made for posters, was finally

chosen as seen in figure and painted gold, figure 3.1(b).

4.1.1 Inertial Measurement Unit (IMU)

An IMU from Xsens, called MT, seen in figure 4.3, was ordered by the college and

chosen for this implementation for its quality of calibrated output data. The MT
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Fig. 4.1: TMW’s components
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Fig. 4.2: TMW’s connected components
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sensor returns accelerated, gyroscopic, magnetic and gravity data.

MTx Sensor This is Xsens newest human motion tracking IMU, it’s shipped as a

standalone sensor module with the sise of a matchbox. The MTx comes with its own

library to interface with the sensing data, as it is IP of Xsens and not open source.

The C++ compiled library was the only means to return sensor data.

MT9 Sensor This obsolete Xsens sensor has a simpler library, with less sophisticated

configuration alternatives available.

4.1.2 Platform Hardware and Software

To meet requirements of autonomy and independence from wires, a small computer

was essential. The choice was between a PDA and the Gumstix, figured in 4.4. The

Gumstix was the obvious choice, with low cost, less than (200$), small composite

and features Tiny Linux [16] with support for wireless, serial ports, sound, Bluetooth

with much more. The capability for Gumstix was the CPU card featuring a 400 Mhz

ARM CPU and a USB port, 2 additional cards could be placed on its pin connectors.

The authors choice for the additional cards was the serial card and the flash adapter,

which is compatible with a wireless card (due to the fact that Bluetooth card was out

of stock) and the serial was necessary for the serial-only interfaced MTx sensor, and

wireless communication to meet the autonomous TMW requirement.

x86 Preliminary testing and implementation were done on a Pentium 2, 800 Mhz,

256 MB ram with serial interface for the sensor.
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Fig. 4.3: MTx and MT9 Sensor Specifications
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Fig. 4.4: TMW’s Computational Platform
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ARM Final implementation was compiled for ARM, and installed to operate totally

autonomous.

GHMM and the HTK Library The rudimentary GHMM library was finally se-

lected by default after the HTK library proved dependent on the X window to install on

Linux. Our Tiny Linux was incompatible with the X window and the GHMM library

was then chosen for implementation.

4.1.3 Communication Device and Protocol

The wireless device the author purchased was the D-Link 802.11b Wireless Compact

Flash Adapter, which at the time was the only wlan card that would be available within

a short time, at a low cost. For a future implementation TMW would connect to the

devices within close proximity where ideally a Bluetooth device could be most bene-

ficial. The author chose UDP for the 802.11b device. A future transfer to Bluetooth

would be a simple process, because the application sends a command to whichever

device is nearby. It is expected the device in question should be enabled for the generic

commands of TMW.

4.1.4 The Device, Representing the Environment

The ubiquitous enabled device was implemented as a MP3 player called XMMS, which

features a C++ compiled control header. A UDP server was also developed to greet

commands by TMW and execute upon them by interfacing with the control header.
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4.2 Sensor Layer

The data layer covers sensor data. The MTx delivers fully calibrated gyroscopic data,

acceleration data, magnetised data, and temperature. For TMW project we would

need acceleration data. Acceleration data is delivered in X, Y and Z axis and only

delivers data when a motion in space is performed, for this reason, acceleration data

was the reasonable choice for reading gestures.

4.2.1 MTComm Library

The MTComm library for the MTx Inertial Measurement Measurement that allows for

configuring the data output.

Capabilities The configuration is set to 1 sensor, 40Hz, acceleration data, where at

startup the alignment is reset.

Limitations When attempting a sensor reset with MTx firmware 1.09 which failed

and an upgrade to 1.11 was necessary for the reset code to work.

4.2.2 Challenges at Implementation

The limited accessability for the sensor created a situation where the author had to

make a sensor simulation of the data output. When the author had access to the MT9

sensor for a few days, the calibrated data log was stored for 3 different gestures. These

log files where then used to simulate the sensor data for the sensor fusion techniques.

When the MTx came back from repairs after it short-circuited, the author could then

set the Hz of the readings and implement a semi continuous sensor reading.
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4.3 Sensor Fusion

The sensor data varies between ±10 G’s [25], displaying the data as X, Y and Z with

8 decimals. As there are some limitation set on the Generalised Hidden Markov model

library [5] as discrete data, rounding up of data to nearest integer was implemented.

To solve how users might perform the gesture fast, slow etc. scaling was implemented.

4.3.1 Generalised Hidden Markov Model Library (GHMM)

The library is coded in C, with obsolete C++ wrappers, but features support for PHP

on all new versions. As the hardware platform was a limited device, computational

efficiency was a higher priority than functionality. The library core is made in C, fea-

turing classes and methods for the various hidden Markov functions, like re-estimating,

forward-backward algorithm, models and sequences. A C++ wrapper was developed

to append observations to sequences, training of models, re-estimating thos models and

recognising models.

Additonal development Functions that were developed allowed saving and loading

of models to be used at any time. The sensor data was scaled to three symbols with

the same amount of states, which actually eliminates the hidden states, to simplify

processing. An issue that remained were that sensor data returned X, Y and Z value

per time t, and the GHMM library only accepts one value at time t. Instead of

calculating a mean average, the choice was to insert all the sensor values, in effect

multiplying the data per time t, by three. Since the HMM is using distribution, the

values that actually change are the ones that are being weighted, and hence better

results were obtained than averaging techniques that compromised gesture accuracy.
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Capabilities The core C library allows for the developer to utilise the HMM algo-

rithms. The PHP feature functions to read, store, write to screen or files. It simplifies

a lot of the practical processes in treating data and files.

Limitations For the core C library, the developer has to create all support facilities.

The GHMM library is limited to read in discrete numbers, one value at the time.

4.3.2 Concluding implementation

In testing, the memory and CPU footprint for the sensor fusion was almost non-

detectable, and would most likely allow for a higher level programming/scripting lan-

guage like PHP to make use of the continuous models function, for an improved ap-

plication layer. When scaling was implemented, a lot of the gesture accuracy got lost,

but it kept the observation data simple and manageable. The author investigated the

X, Y and Z values per time t, by averaging the values, but it proved difficult to return

gestures that would actually be distinctive. This can be thought about, as data for a

circle looks and has the same distribution as a square or and oval, and this can happen

with more or les any gesture. There are plans to make the library support multiple

values at time t, this is an ultimate requirement for high quality gesture recognition.

4.4 Application Layer

The observations are made into Markov Sequences, and then added to models or recog-

nition functions, at application layer this data must be made into a viable program

that meets the requirements in autonomous user interface. The observations are read

into time segments of 2.4 seconds which is enough time for most gestures to finish,
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then the data is made into a Markov sequence ready to be used. An initial menu sets

TMW in either recognition mode or training mode, where a trained person can make

new gestures or train pre-defined gestures to make its models better. The recognition

is semi continuous, it loads the observation data into a sequence that is being measured

against every model, this returns a log probability value where the highest value is the

most likely gesture. This model also works as a command that will be transmitted to

the MP3 player when successfully identified.

4.4.1 Autonomous Usage in a Tangible User Interface

By definition, autonomy in the context of TMW means independence from a graphical

user interface and wires. The user’s will however need some verification that the gesture

was performed and performed correctly. The gesture verification was implemented on

a remote screen where the MP3 player was set up.

4.4.2 Concluding Implementation

Observations are read into a time slot, then recognised by comparing Markov models

and finally a command is returned. The nature of the implementation means it has a

time slot where the gestures have to conform to rigid start and end times. The MP3

player would need to aid the user with those start and end time slot for performing

gestures.

4.5 Communication Layer

A UDP server on port 2000 was set up to interact with the XMMS developer control

head. Three gestures were recognised with over 80% positive recognised gestures. Down
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and up gesture plays the track, left and right pauses, and then out and in skips the

track.

4.6 Programming Methods and Tools Used

The author had no experience in development for Linux, but it was necessary to de-

velop in Linux to accommodate the Gumstix implementation. C++ was the chosen

language as the author wanted to learn and improve skills of this language. The MT-

Comm, XMMS was C++ and The GHMM library was a C library, a C++ wrapper

was developed where needed, to implement all layers of the implementation in a com-

mon language. Another learning curve was integrating user made classes with already

existing libraries in a correct manner. For the physical implementation the application

for all levels had to be compiled for ARM, transferred to the Gumstix platform, and

run on the Gumstix. The success of the implementation was obvious when gestures

were made by TMW and the gestured commands were sent over the wireless link to

start the mp3 player, pause it, skip to next song and do nothing when a bad gesture

was performed.

4.6.1 Hardware Implementation

The design was created to be fitted in a limited device, Gumstix. The allocated memory

was 64 MB, and hard drive was a meager 4 MB, however we extended this space by

NFS mounted drive. The wireless card was set up to start at boot up, connect to NFS,

and then by SSH remote login, the author could run the software on TMW. The MTx

sensor worked very well, but some issues were discovered with the reset alignment code

that were approved by Xsens, it did not work before a factory reset were made for every
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Fig. 4.5: The components of TMW

time it was used in a different project. The Gumstix gave the author some challenges,

to build the kernel on a host, then uploading the image to Gumstix, configure the

Gumstix and the wireless card. The Gumstix in itself has a small physical form, but

with the battery, the serial card, flash adapter card, the wireless interface and the

battery, the Gumstix became quite heavy with a substantial form factor, in figure 4.5.

4.7 Problems and Issues During Implementation

The MTx sensor arrived in the middle of July, so a few weeks were spent testing

different ways of getting the data at a speed comfortable for the Gumstix to process

in conjunction with the HMM library. However, the MTx sensor was short circuited

in a different project team after only a few days and a backup sensor, the Xsens MT9,

was borrowed from another project, for short periods as this sensor performs in similar

ways. The library for both the MTx and the MT9 are very different and both were

developed so they could perform equally with the same tasks.
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Evaluation

In post implementation, TMW project featured wireless, autonomous user interface,

and communication with a remote MP3 application. This evaluation will answer if the

project met requirements set for the project, and if the project answered the expecta-

tions of TMW as the extension for our will on the ubiquitous environment.

Requirements were:

• Intuitive use

• Autonomy

• Performance

• Visual or audio feedback
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5.1 Architecture Evaluation

The architectural points for this project that weighted down, was that it ran in one

process in cycles, the opening and closing of the MTx port every 3 seconds caused the

port to fail within minutes. A better solution would have been to return the observation

data continuously in a thread. The opening and closing of the port also opted for a

sleep function to wait 0.5 seconds for the port to initialise properly, otherwise the port

would fail within the first cycles.

5.2 Quantitative & Qualitative Evaluation

For user evaluation we brought in 10 people from various backgrounds. All test subjects

were given a short introduction and demonstration of the unique gestures, then they

were allowed to practice each gesture twice. For the test, the author asked test subjects

to perform each one of the gestures when a visual aid would tell the user to start.

User Interaction - Qualitative Report In this part of the evaluation the author

was evaluating, seen in table 5.1, the users as they performed the gestures, circle,

down-up, left-right, out-in.

Table 5.1: Evaluation of the end users performance
Question Answers

Does the subject know how to use gestures 7/Yes
Has the subject performed gesture before? 10/Yes

Getting the gestures one by one from memory? 10/Yes
Returning correct gesture from memory? 6/Yes

60



Chapter 5. Evaluation

User Interaction - Quantitative Report The test subjects all saw past the pro-

totype form sise and had an idea of the concept, they all thought integration to their

mobile phone was sensible as they brought it with them everywhere figured in table

5.2.

Table 5.2: End user Questionnaire
Question Answers

Would you like to use this concept regularly [yes/no]? 10/Yes
I found the system unnecessarily complex [yes/no]? 9/Yes

The system was easy to use [yes/no]? 10/Yes
I would need the support of a technical person to use this system [yes/no]? 10/No

I think most people would learn this system quickly [yes/no]? 10/Yes
I thought the concept was cumbersome to use [yes/no]? 10/No

What if TMW was embedded into your mobile phone [yes/no]? 10/Yes

5.3 Results from Evaluation

The users felt at once comfortable using TMW to operate devices once they received

training in what gesture did which action. It became apperant that gestures could

be more intuitive than they were, when some users got confused for down-up, and

out-in gestures. As such, some changes would have to be made. The new gestures

after the evaluation would be Up-Down instead of Down-Up and Out-In would have

to be disregarded for a better gesture that would require a better sensor fusion library.

The user interaction by TMW with an MP3 player worked well and it proved a Magic

Wand interface could be used for device interaction. The end users also were more

comfortable to activate a device if it became embedded into their mobile phone. To

illustrate this for the end users, were shown a motorola SLVR phone and asked to

imagine that it had embedded acceleration sensor built in to it.
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5.4 Did TMW Meet Requirements?

The first requirement was intuitive usage of TMW, and with training, the end users

were comfortable with the gestures right away. The second requirement was autonomy

of TMW; TMW was implemented to function with computational and wireless capa-

bility and it therefore became autonomous up to the point that it needed a network

infrastructure in place, and it couldn’t yet select the device of interest. The perfor-

mance could be considered low as the user had to wait for a time slot to perform a

gesture instead of intuitively swinging the wand in a gesture pattern. The gesture

recognition was good for three gestures, but above that the rates of wrong gesture

were more than randomly chosen gestures would be. This gesture recognition problem

can be traced back to the limitations of the GHMM library that reads in one mean

value per time t and the authors scaling down to three symbols. Physical feedback was

evident as the device of interaction was an MP3 player, and onscreen display told the

user when a gesture time slot was open and closed. The result of a successful gesture

was also put on the display window.
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Conclusion

This final chapter draws a conclusion from chapter 2 (State of the Art) and TMW’s

design, implementation and testing. The conclusion is divided into 4 layers, Sensor

Data, Sensor Fusion, Application, and Communication.

Sensor Data The sensor data provided by the MTx and MT9 was very accurate,

and had no drift problems. The issue which arose was the complexity to perform

relatively simple tasks like reset or set Hz, this has to be done in configuration mode

where measurement data must come to a halt.

Sensor-Fusion Scaling the data down to three symbols did not perform too well, a

better solution could be to keep the number of states to three, but increase the number

of values to return more accurate data. Better data accuracy also means it is harder

to repeat a gesture and a lot more training examples would be needed. The GHMM

library limited the accuracy by only allowing one gesture value per time t, where ideally

a gesture could have three values per time t or more.
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Application The software trains gesture models and returns most probable mod-

els from a given gesture. The approach taken is one where the process does all the

computations in the cycle, the gesture is read, it is returned to Markov sequence and

recognised, and the recognised command is transmitted wirelessly. This approach gave

a latency for the next gesture time slot to begin of almost 1 second. With 2.4 sec-

ond recognition time slot, the users would depend on a prompt from visual or audio

references.

Communication Transferring the commands was done with pre configured addresses,

where the UDP server would wait on a remote device, to recognise the commands it

could use. The MP3 player working from gestures was received quite well, and UDP was

the correct choice of IP protocols as TMW would not wait for connection termination

to go back to gesture recogntion.

Hardware Platform Gumstix worked well, it received gesture data without any

memory overflow, and its component cards worked after specifications. The add on

cards for the Gumstix were quite chunky, but during the summer of 2006 new smaller

cards became available and specially made batteries are available too for future work.

64



Chapter 7

Future Work

Hardware The XWand button from chapter 2 works well to start a gesture reading,

and by forcing each gesture reading to last a maximum of 2.5 seconds the length of

time the user holds down the button, will not impact on the gesture reading. 2.5

seconds is long enough to make even complicated gestures like up-left-up or circles.

The ubiquitous device could be activated by infrared signal and data could be sent

through ZigBee, saving power and limiting the number of computational devices on

the wand.

Software For the gestures we should consider upgrading to a library that is com-

patible with multi valued gestures per time t. Future research should be carried out

on continuous gestures and model recognition. The program could benefit from using

threads for sensor data and sensor fusion to eliminate latency on sensor port connec-

tions.
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