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Abstract 
Conceptual modeling is a key skill for the designers 
of business information systems; conceptual model-
ing techniques include UML class diagrams, entity-
relationship (E-R) diagrams and object role model 
(ORM) diagrams. It is usually easy to perform con-
ceptual modeling on simple problems but it becomes 
much more difficult in real, non-trivial business situa-
tions; training and experience are required. Increas-
ingly, however, conceptual modeling is being per-
formed by non-experts—including those without any 
formal IT skills, due in part to continuing growth in 
software development worldwide and also to the use 
of desktop data management products such as Micro-
soft Access. 
 In this study, ideas from psychology were applied 
with the goal of making it easier for non-expert mod-
elers to produce complete and correct conceptual 
models. A design framework consisting of twenty-
nine psychological principles was formulated, follow-
ing a review of the literature on cognition and group 
dynamics. The design framework was used to formu-
late and justify the design of an experimental model-
ing technique, Business Concept Modeling (BCM), 
and a supporting software tool. BCM incorporates the 
innovations of innate concept types and predictive 
modeling; it is similar in scope to object modeling but 
differs in manner of representation and method of 
application. 
 BCM and the software tool were tested alongside 
conventional object modeling in a series of field ex-
periments in which an expert modeler and nine non-
expert modelers used both techniques in real business 
situations. Qualitative and quantitative data were 
gathered using participant observation, question-
naires and interviews, and by analyzing the resulting 

models and their evolution. The effectiveness of mod-
elers was compared between the two modeling tech-
niques. The results show that, while the expert mod-
eler produced models of excellent quality using both 
techniques, non-expert modelers were able to pro-
duce good quality models only with BCM; the models 
they created using object modeling were so poor as to 
be effectively unusable. Productivity was universally 
greater when using BCM, by approximately 150% for 
the expert and 450% for non-experts. 
 The results indicate that we can substantially im-
prove the usability conceptual modeling techniques 
and the effectiveness of modelers using them. It ap-
pears that conventional modeling techniques such as 
UML and E-R are essentially too difficult to be used 
effectively—except by those with significant training 
and expertise. Yet this study also suggests that con-
ceptual modeling itself is not inherently difficult; 
these techniques need not require great expertise if 
they can be adapted according to psychological prin-
ciples. Future tools and techniques based on these 
principles could help non-experts to create non-trivial 
information systems with less need for skilled IT spe-
cialists. Such tools would not necessarily replace tech-
niques such as UML and E-R but could offer a more 
usable “front end” for less skilled practitioners to ap-
ply. 
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1. Introduction 
1.1. Motivation for This Research 
In the world of information systems (IS) develop-
ment, conceptual modeling has long been used to 
help analysts and users to develop a shared under-
standing of business domains, and to design software 
such as databases, ontologies, middleware and user 
interfaces. Modeling allows information about an or-
ganization and its business concepts to be captured in 
structured form. Most modeling techniques use dia-
grams, which have historically been considered easier 
to understand: “the chief merit in a diagrammatic tech-
nique is in user communication” (Olle et al 1991). The 
importance of using highly formal and rigorous tech-
niques has often been stressed: “descriptions should be 
stated in a formalism with unambiguous syntax which can 
be understood by a suitable processor” (Loucopoulos and 
Zicari 1992). Other opinion has held that models 
should be highly abstract so as to guarantee efficient 
solutions, with intuitive modeling being seen as er-
ror-prone and risky (Esculier and Friesen 1995). 
 More recently, doubt has been shed on the benefits 
of formality and rigor in conceptual modeling tech-
niques. Diagrams, though correct, may be misunder-
stood; more formal models seem less useful for com-
munication (Moody 2004; Hitchman 2004). It may be 
unclear why, or for whom, diagrams are being devel-
oped (Bell 2005). Clearly, further study is needed in 
this area (Topi and Ramesh 2002). The conceptual 
modeling techniques we use today have developed 
over many years of practice in a rapidly-evolving 
software industry. Perhaps now is a good time to look 
again at conceptual modeling, questioning some basic 
assumptions and taking a fresh perspective with an 
appropriate theoretical and empirical basis (Remenyi 
and Williams 1996). 

1.2. Conceptual Modeling (Definition) 
The term conceptual model is used in this paper to 
mean any object model or data model produced in IS 
development, when the model exists primarily to de-
fine mental concepts as opposed to software struc-
tures. This includes ontologies and other expressions 
of data structure that are intended to mimic the struc-
ture of mental concepts. The mental concepts in ques-
tion relate to things that an information system needs 
to store data about; they are typically defined in an 
abstract way as object classes or entity types that cor-
respond to named business concepts. This definition 
of conceptual models encompasses both UML class 

diagrams and E-R modeling. It excludes techniques 
that are not primarily intended for definition of men-
tal concepts, such as use cases and the “conceptual 
models” of Soft Systems Methodology (Wilson 2001). 

1.3. Conceptual Modeling and Subjectivity 
Conceptual modeling is sometimes thought of as the 
capture of facts about reality; this is essentially a real-
ist or objectivist point of view. But conceptual models 
normally represent the business as perceived by one or 
more end users (Everman 2005). Modeling is usually 
responsible for the formalization of previously intui-
tive thought; participants develop their ideas into 
fully-fledged concepts during the process. This, more 
realistic, view of conceptual modeling represents a 
subjective, nominalist position (Burrell and Morgan 
1979). It has been claimed that IT professionals un-
derstand “the implicit non-objectivist issues” in model-
ing but that researchers “tend to ignore them” (Hitch-
man 1997). 
 Psychology tells us that our experience of reality is 
inevitably subjective and dependent on context. We 
may assume that our senses give us access to reality 
but experience of the world is mediated by perceptual 
mechanisms which guarantee unconscious distortion; 
experiencing and interpretation are one and the same 
(Goldstein 2005). This insight has deep relevance to 
conceptual modeling. It means that every conceptual 
model represents a perspective and there is no “cor-
rect” or “actual” structure to model. Of course, that is 
not to deny the physical world in which people, 
places and physical objects exist. But the subject mat-
ter of conceptual modeling is the day-to-day business 
of organizations—things like business plans, agree-
ments, job titles, organizational structures and busi-
ness transactions. These things exist largely in the 
mind and their definition relies on consensus. Hence 
we refer to the social construction of reality; each person 
has their own perception of the world and organiza-
tional truths exist by agreement only (Berger and 
Luckman 1966). In the context of information systems 
this is far more than just a philosophical point. Its sig-
nificance for conceptual modeling is that we must 
find ways to expose and capture the mental concepts 
of business end users; we cannot simply hope to ob-
serve reality and to document it in our models. The 
distinction between mental concepts and reality is a 
crucial one for conceptual modeling, yet may be one 
that has received insufficient attention in the IS re-
search sphere thus far. 
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1.4. Why Improve Conceptual Modeling Practice? 
Conceptual modeling is one of the most fundamental 
skills for an IS designer. But conceptual modeling is 
difficult. It is an expert task, often performed by 
trained knowledge engineers, data analysts and sys-
tem architects. Modeling skills are in demand, with 
continued growth in the use of databases, object-
oriented software and ontologies. Yet, historically, 
many IT practitioners have been weak conceptual 
modelers (Venable 1996). The UML class diagram is 
perhaps the conceptual modeling technique most 
widely-used today—yet a solid understanding of ob-
ject-orientation is necessary to use it. In all popular 
conceptual modeling techniques, diagrams are often 
complex and restructuring them can be onerous. It 
can be difficult to apply modeling techniques with the 
speed and flexibility demanded by modern develop-
ment methods. It has long been recognized that tech-
niques like UML are typically off-putting for business 
users and novice modelers (Bansler and Bødker 1993). 
All of this gives us good reason to investigate ways of 
making models more understandable and making 
modeling easier to do. 
 The practice of conceptual modeling has been 
rather stable in recent decades. Most modeling meth-
ods are descended from techniques that emerged in 
the 1960s and 1970s in a very different technological 
landscape. For example, “box and arrow” notations 
like class diagrams are designed for pencil-and-paper 
or whiteboard; they were not intended to capitalize 
on the visual richness and interactivity that software 
tools can provide (McGinnes 1994). It could be that 
the very stability of modeling methods has led us to 
see conceptual modeling as inherently difficult and 
something that cannot be made easier. Or perhaps we 
are simply applying out-of-date tools; as in many 
spheres, once-useful business processes can threaten 
operational effectiveness when circumstances change. 
Table 1 suggests ways in which some symptoms of 
business process problems might apply to conceptual 
modeling (Hammer and Champy 2003); we feel that 
this analysis supports a case for rethinking the con-
ceptual modeling task to help make it easier and 
more available as a skill to a wider audience. 

Table 1  Conceptual Modeling as a Candidate for Process Reengineering 

Symptom Relevance to conceptual modeling 
Complexity To be practiced well, modeling requires extensive training and experi-

ence. Models use complex notations and different diagram types may 
be interrelated in complex ways. 

Extensive informa- IT specialists represent a bottleneck in the process of acquiring new 

tion exchange systems. Business information must be communicated to an analyst 
who translates it into one or more models, which must then be ren-
dered back into users’ terms for verification. Models are also translated 
into system specifications for technicians to work with. 

Data redundancy The same information is encoded multiple times in different models 
(e.g. the concept purchase may be represented in a data model as a 
data entity and in a functional model as a process). Facts may be 
expressed in prose for users, in diagrammatic form, and in technical 
form for technicians. 

Rekeying Models on whiteboard or flipchart may be transcribed to paper and/or 
keyed into a modeling tool. The same or related information may later 
be keyed into development tools. 

A high ratio of 
checking and 
control to value-
adding 

Models must be reconciled (e.g. data models checked against proc-
ess models). The analyst must ensure that users understand models 
sufficiently well to be able to check them against their own view of the 
business. Effort must be devoted to ensuring formal correctness in 
models, while the ultimate benefits of doing so are unproven. 

Poor quality end 
results 

The end result is highly dependent on the skill and insight of individual 
analysts. Novice analysts and end users typically produce poor quality 
models, which translate into poor software systems. 

1.5. Design Science Research 
This study is an example of design science in informa-
tion systems research. Design science research is dis-
tinguished from design per se by the “production of 
interesting … new knowledge” (Vaishnavi and Kuechler 
2006). In other words, we approach a relevant design 
task in a reflective manner and take the opportunity 
to derive useful insights from the experience. While 
philosophical underpinnings are important, the IS 
research community can also make a positive contri-
bution using design research to produce useful “arti-
facts” (Orlikowski and Iacono 2001). In this study we 
have generated several artifacts of interest including a 
design framework, containing psychological princi-
ples for the construction of conceptual modeling tech-
niques, and a modeling technique based on the de-
sign principles. Our research approach is summarized 
in Table 2, which is based on guidelines for design 
science research in information systems (Hevner et al 
2004). We see the present study as part of an ongoing, 
iterative research process in which the results will be 
recycled to formally produce and test a revised set of 
principles and a revised modeling technique. 

Table 2  Hevner et al’s Guidelines for Design Science Research 

Guideline This Study Evaluated 
Design as  
an Artifact 

This study entailed the design of three artifacts: 
1. Design framework for conceptual modeling techniques (contain-

ing psychological principles) 
2. BCM conceptual modeling technique & supporting tool 
3. Metrics and a method of evaluating model evolution. 

Problem  
Relevance 

Conceptual modeling is difficult, yet there have been few innovations in 
conceptual modeling in recent years. Increasing numbers of non-
experts are designing systems. Trained IT staff are in limited supply and 
represent a bottleneck in the system acquisition process. There is a 
pressing need for modeling techniques that can be used by non-
experts, including those who use such techniques only implicitly as part 
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of some other task. There is also a need for research that looks more 
closely into the problems of conceptual modeling in practice. 

Design  
Evaluation 

The three major artifacts were subject to evaluation in this study: 
1. The design framework was evaluated both through argumenta-

tion using psychological theories and by being used to formulate 
the BCM technique. 

2. The BCM technique & tool were evaluated in field experiments 
using both quantitative and qualitative data gathering. 

3. The metrics and evaluation method were evaluated through use. 
Research  
Contributions 

The overarching contribution of this study is to show how our current 
conceptual modeling techniques are far from optimal and how they can 
be made available as a skill to a wider audience. We also present the 
psychological principles, the BCM technique, the metrics and model 
evaluation method and the “three patterns” analysis, all of which may be 
useful in subsequent research and/or practice. 

Research  
Rigor 

Rigor was applied in the selection of psychological principles through a 
systematic, comprehensive approach and the use of “bracketing”. In the 
development of the BCM technique rigor took the form of a conscien-
tious application of the chosen design framework. In the experimental 
portion of the study, rigor was introduced through bracketing and careful 
experimental design and measurement including due attention to 
sources of experimental bias, validity and reliability. 

Design as a 
Search Process 

This study could be described an example of satisficing in practice 
(Simon 1996). We have sought a solution to the “non-expert conceptual 
modeling” problem. This search involved the selection of suitable psy-
chological principles, the synthesis of a modeling technique according to 
the principles, and the search for appropriate metrics to measure the 
results. In each case, alternatives were evaluated. 

Communication 
of Research 

We hope that this paper is organized such that the main messages are 
communicated suitably for both a managerial and technical audience. 
Following Zmud (1997) and Hevner (2004) we have included technical 
details in appendices, allowing the main elements and especially the 
conclusions of this research to stand out more clearly in the main body 
of the paper. 

1.6. Relevance of Psychology 
To improve the practice of conceptual modeling we 
must understand it—not just in theory but as a work-
ing process. In other words it is insufficient to talk 
about how people ought to model; we must study 
how they actually model in practice. This implies, 
amongst other things, that we need to understand 
what happens in each participant’s mind as models 
are developed and used (remembering that many 
models are produced in or by groups). One major 
goal of conceptual modeling is communication. To 
know how well communication is achieved we must 
consider how models are perceived and understood 
by individuals and groups.  
 These are all areas that psychology can address. 
Psychology can help explain our cognitive strengths, 
such as automatic visual recognition, as well as our 
many cognitive limitations, such as constraints on 
attention and short-term memory (Solso, MacLin and 
MacLin 2004). Psychology illuminates the relation-
ship between business knowledge and mental models 
(Johnson-Laird 2005); it helps us understand the cog-

nitive demands of modeling and helps explain why 
modeling is difficult for non-experts (Figure 1).  

Figure 1  Cognitive Processes 
 Comprehension Perception

? 

Memory

The dog that man 
the bit died. 

 
 
Psychology is already an important reference disci-
pline for information systems. But for conceptual 
modeling in particular, psychology is pivotal. “Real-
world modeling practices can be informed by a deep 
understanding of cognitive facts” (Ramesh, Parsons 
and Browne 1999; Veres and Mansson 2005). 
 The comprehension of a model is primarily an un-
conscious process; it requires that perceptions be as-
sociated to memories, as illustrated in Figure 2. When 
we view a model, words and pictures stimulate asso-
ciative recall from memory, creating conscious mean-
ing (Solso, MacLin and MacLin 2004). This process 
relies on the presence of understandable words and 
pictures. It means that, depending on the representa-
tion used, interpreting a model can be analytical (dif-
ficult) or automatic (easy). “Decisions regarding the 
presentation of conceptual models are far from trivial and 
should be approached with as much care as decisions on 
their content” (Moody 2004).  

2. Theory Development and Testing 
2.1. Design Framework (Psychological Principles) 
Following a review of the literature on cognition and 
group dynamics, we formulated a design framework 
consisting of psychological principles with relevance 
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Figure 2  Interaction of Cognitive Processes during Perception 
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to conceptual modeling. Space does not permit a full 
account of this review but a representative selection 
of the resulting principles is outlined in Appendix A 
and summarized in Table 3. The principles represent 
distinct but related aspects of psychology as it applies 
to conceptual modeling; hence several themes recur 
in different guises.  

Table 3  Selected Psychological Principles 

Principle Brief explanation 
Preattentive  
Processing 

Maximize bandwidth using visuals Capitalize on automatic (parallel, 
unconscious) cognitive processing such as visual pattern recognition and 
avoid the need for analytical (sequential, conscious) thought where 
possible. 

Isomorphism Reduce cognitive load by matching conceptual and mental models 
Avoid the need for mental translation; use constructs which match con-
cepts that participants are likely to have already (typically, their everyday 
business concepts). Avoid systems-related concepts such as “object”, 
“table” etc. 

Reinforcement Maximize comprehension by combining words with pictures Syn-
ergistically increase the ease and speed of recognition—and therefore 
comprehension—by linking text with corresponding, recognizable images 
wherever either images or text can appear in a model representation. 

Consistency Consistently use each symbol with only one business meaning 
Allow a mental association between a symbol and its meaning to form 
through repetition. Avoid confusing this association by using multiple 
symbols per mental concept or multiple concepts per symbol. 

Chunking Support short-term memory with visual chunking strategies Avoid 
overloading limited attention resources; present the available items of 
information at any point as a small number of groups, where each group 
corresponds to a unique mental concept and has a recognizable label 
and/or symbol. Allow alternative grouping methods. 

Fuzzy  
Categories 

Support alternative concept definitions and concept instability Allow 
concepts to be defined in a variety of ways such as enumeration (exten-
sional definition), statement of rules (intentional definition) and exemplar 
objects, and any combination of these. Allow concepts to be redefined at 
will without penalty. 

Brainstorming Capture unstructured ideas and allow easy model restructuring 
Allow informal concept definitions, notes, pictures, annotations, links, etc. 
to form part of the formal model and to be transformed and transferred 
freely. Allow alternative structures to be built up and torn down easily and 
quickly at low cost. 

Error  
Tolerance 

Tolerate and reduce the likelihood of simple errors Offer a minimal 
construct set to avoid ambiguity about representation; prevent redun-
dancy by eliminating ways of representing the same information more 
than once. Highlight (and avoid penalties for) internal incorrectness, 
incompleteness and inconsistency. Use automated reasoning to default 
structures correctly. Provide modeling guidelines and restructuring sug-
gestions. 

Arousal and 
Attention 

Use all means available to maintain attention Maintain arousal at a 
moderate level; introduce color, sound, texture and movement (e.g. 
animation) in the user interface. Increase personal relevance by giving 
users control over modeling and image selection. Allow variation and 
enforced or elective interruption in task structure. 

Set To instill helpful sets, make the purpose and method of modeling obvious 
Specify models entirely in the user’s own business terms and language. 
Avoid IT jargon such as “object”, “entity”, “relationship”. Pick a visual 
metaphor for model representation and manipulation that the user will 
understand without explanation. Give early feedback, including end 
results (e.g. prototype user interface or database structures). 

 
In summary the principles cover concerns such as the 
use of preattentive processing (automatic, parallel 

and unconscious mental processing); improving the 
match between conceptual and mental models; 
maximizing comprehension by combining words 
with pictures; associating symbols and concepts more 
consistently than at present; supporting short-term 
memory with visual chunking strategies; providing 
alternative concept definitions and reflecting concept 
instability; allowing the capture of unstructured ideas 
and easy model restructuring; tolerating and reduc-
ing the likelihood of simple errors; maintaining 
arousal and attention, and instilling helpful mental 
sets in the minds of modeling session participants. 
 The process of formulating the psychological prin-
ciples was exhaustive, with many candidates being 
considered before a final set of twenty-nine principles 
was chosen. Principles were adopted if they seemed 
likely to have some potential impact on modeling 
practice and no attempt was made to prioritize them. 
In the following sections we describe how we applied 
the principles to design a modified conceptual model-
ing technique; following this we present an account of 
how the technique was tested in practice and we then 
reflect upon the results.  

2.2. Experimental Modeling Technique 
To evaluate the impact of the psychological principles 
in practice we formulated an experimental modeling 
technique, called Business Concept Modeling (BCM). 
BCM is a simplified version of object or data model-
ing, with certain innovations that can be justified in 
terms of the psychological principles (McGinnes and 
Amos 2001). BCM relies on a software tool to satisfy 
the various principles as far as possible. The business 
of defining BCM was conducted through “informed 
trial and error”; various ideas were examined and the 
psychological principles were used both as inspira-
tion and as support for argument in favor of (or 
against) each idea. Since the study was completed, 
BCM has been used on many commercial software 
development projects and we have continued to mod-
ify it during this time based on experience gained. 
 As Hevner et al (2004) rightly point out, one cannot 
sensibly do research about information technology 
without paying some attention to the technology it-
self. Space does not permit a full account of BCM in 
this paper; however, we present a summary in Ap-
pendix B. We hope to publish fuller details of BCM in 
due course. One of the main departures in BCM from 
conventional modeling practice is that BCM does 
away with the “box and line” diagram style, using a 
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window-icon representation instead. This is intended 
to present models in a more intuitively understand-
able way. BCM also introduces the idea of innate con-
cept types: pre-defined categories into which mental 
concepts fall; this is intended to mimic human “com-
mon sense” understanding of the nature of people, 
organizations, places, activity, and so on. The intro-
duction of innate concept types confers several bene-
fits including an enhanced ability to select suitable 
pictures for concepts and easy reuse of existing con-
cept definitions. It also permits “predictive model-
ing”: the automated interpretation and completion of 
models, while they are being edited, based on the sta-
tistical likelihood of specific relationship configura-
tions. 

2.3. Evaluation of BCM Technique in Practice 
The overall aim was to determine the relative usabil-
ity of the psychologically-inspired BCM technique 
and the effectiveness of modelers using it, taking into 
account variables such as the modeler’s prior experi-
ence. We chose to do this using a field experiment, 
paying careful attention to process, validity and reli-
ability. In the absence of any established yardstick for 
the usability of conceptual modeling techniques we 
used object modeling as a control technique; BCM 
was therefore applied by modelers (expert and non-
expert) alongside object modeling. Qualitative and 
quantitative data were gathered about each model 
and each modeling session using participant observa-
tion, questionnaires and interviews. Raw quantitative 
values were also derived by inspecting every version 
of each model and comparing every version with a 
final corrected version of the model (Table 4).  

Table 4  Values from Measurement of Models 

Value Denoted by 
Number of components c 
Number of finished components cf 
Number of data items ca 
Number of relationships r 
Number of correct relationships rc 
Number of changes m 
Number of errors me 
Number of corrections mc 
Modeling time t 

 
The experiment consisted of nineteen modeling exer-
cises (Table 5) conducted by ten modelers (Table 6), 
each modeler working either alone or with a group of 
end users.  

Table 5  Models 

Business association administration 
College administration 
Consulting administration 
Data-related legislation 
Fund management 
Homeopathic medicine 
Human resources 
IT help desk 
Legal group administration 

Mobile phone billing 
Mobile phone network administration 
Mobile phone roaming 
Purchase orders 
Retail distribution 
Security standards 
Security/fraud management 
Stock control 
Theatrical productions 

 
Each model was developed using either BCM or ob-
ject modeling. Most modelers produced only one 
model but eight were developed by a single (expert) 
modeler. Model development took approximately 
eighteen months and required negotiation and plan-
ning with potential subject organizations and model-
ers over the prior two-year period. Coding and ana-
lyzing the resulting model versions occupied ap-
proximately fourteen months. A secondary experi-
ment was carried out for triangulation purposes (not 
described in this paper). More complete details of 
experimental procedure are set out in Appendix C 
(McGinnes 2000). 

Table 6  Modelers 

A  Company director/ex-lecturer 
B  Ex-personnel assistant in a retail bank 
C  Consultancy company administrator 
D  Trainee systems analyst 
E  Higher education college administrator (ex) 
F  Audio-visual technician 
G  Homeopathic medical practice administrator 
H  Project manager 
I  4th-year computer science student 
J  Senior IT consultant 

2.4. Measuring Effectiveness and Usability 
Various quality measures for conceptual models have 
been proposed. Some focus on internal correctness 
(e.g. Hussain, Shamail and Awais 2004) while others 
are more concerned with matching mental concepts 
accurately (e.g. Siau and Tan 2005). After reviewing 
alternatives we decided to focus on two factors: mod-
eler effectiveness and modeling technique usability. In or-
der to evaluate model development, normalized 
measures were calculated from the raw values ob-
tained from analysis of models; the normalized val-
ues include completeness, correctness, complexity, 
error rate and productivity. In Table 7, primed vari-
ables refer to values measured for the corrected ver-
sion of each model.  
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Table 7  Values Calculated to Evaluate Model Development 

Facet Description Formula 
Completeness 
(q1) 

The completeness of a model version is the per-
centage of model components and relationships in 
the finished version that are also present in this 
version.  









′+′
+

×
rc
rc cf100

 

Correctness 
(q2) 

The correctness of a model version is the percent-
age of components in the current version that are 
present and defined correctly (i.e. defined in the 
same way as in the finished version). 









+
+

×
rc
rc cf100

 

Attribute ratio 
(ra) 

The attribute ratio of a model version is the percent-
age of model components in the current version that 
are data items. 

c
ca

 

Volatility (v) The volatility of a model version is the total number of 
changes in the current version relative to the total 
number of components and relationships. 

)( rc
m
+  

Accuracy (a) The accuracy of a model version is the percentage 
of changes in the current version that are corrections 
(i.e. changes that cause the model to become closer 
to its completed form). 







×

m
mc100

 

Complexity (x) The complexity of a model version is the average 
number of relationships for each model component. 






×

c
r100

 
Error rate (e) The error rate for a modeler when producing a 

model is the proportion of changes made which were 
errors. A ‘perfect’ error rate is 0 (no errors at all) whilst 
a rate of 1 means that every change the modeler 
made was an error. 

c
m

v
e

′
∑

 

Productivity (p) The productivity of a modeler when producing a 
model is the average number of finished (i.e. correct) 
business concepts produced per hour of modeling 
time. 

t
c′

 

The measure effectiveness was calculated for each 
model using the formula below, where q1 and q2 are 
the completeness and correctness of the final uncor-
rected version of the model, p is the modeler’s pro-
ductivity, and e is the modeler’s error rate. 

200
)1(21 epqqessEffectiven −

=
 

The effectiveness value represents the modeler’s abil-
ity to construct a complete model, without making 
mistakes, in good time. It is divided by 200 simply to 
produce a figure comparable to the other measures in 
this study. Complexity is not taken into account since 
it is not causally linked in any obvious way with 
model quality. Table 8 classifies effectiveness scores 
into ranges labeled for convenience as excellent, good, 
poor and very poor.   

Table 8  Effectiveness Levels 

Level Score Typical description 
Excellent >150 Correct and complete. Suitable for use in system design without 

refinement. Produced quickly and with few errors. 
Good 101-150 Largely correct and complete, but typically usable only with further 

work (or produced relatively slowly). 
Poor 51-100 Coherent but substantially incomplete and incorrect. Typically usable 

only as a ‘first-cut’ model. 
Very poor 0-50 Incoherent and/or grossly incorrect. Produced very slowly and/or with 

many errors. Typically unusable even as a ‘first-cut’ model. 

To calculate the usability of a modeling technique, we 
note that a modeler’s effectiveness is governed by his 
or her own ability and skill together with the inherent 
usability of the method being employed. The contri-
bution of modelers’ abilities can be approximated by 
comparing effectiveness scores for different modelers 
who use the same modeling technique. This allows 
the impact of ability to be factored out to estimate the 
modeling technique’s usability as follows: 

Usability = Effectiveness – Ability 

3. Results 
Over one hundred separate model versions were re-
corded. It was found that novice modelers tended to 
produce somewhat smaller models using both tech-
niques. However, model size was roughly consistent 
between the modeling techniques for each type of 
modeler (Table 9). 

Table 9  Average Model size by Modeler’s Experience Level and Method 

Average model size (no. of concepts and data items in model) Experience level 
Object Modeling BCM 

Expert 70.2 81.7 
Non-expert 46.2 44.8 

3.1. Observations by Expert (Interview Notes) 
The expert modeler found BCM mentally taxing (“in 
respect of knowing where you are”) but felt the partici-
pants (i.e. the end users) found it easier to under-
stand. He attributed this to “the simplified view—the 
graphic view is more accessible than a diagrammatic view 
that the participants are probably not familiar with”. The 
participants were “intuitively … more in touch with the 
picture—they are not faced with a big wiring diagram, 
they are digesting it in chunks”. 
 With BCM, he found he had to call breaks to re-
view the model. The participants went for coffee 
while the expert modeler checked the model in detail. 
“If you have an object model on the board you can quickly 
see where the weak areas are, and where the relationships 
are. But with BCM you tend to follow a line from compo-
nent to component, and not really know if you are missing 
another line somewhere else”. While “there is nothing 
wrong with calling regular breaks”, he predicted that 
novice modeler would have difficulty finding areas in 
a model that needed work. The expert modeler re-
ported that more was achieved with BCM in the 
modeling sessions than with object modeling. But he 
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also felt that the BCM models probably needed more 
work after each session. 
 Despite initial reservations, the expert modeler ul-
timately expressed a preference for BCM over tradi-
tional object/data modeling. He reported that the 
quality of BCM models was better, which he attrib-
uted to improved understanding by the users. The act 
of classifying each concept (as a person, organization, 
document, etc.) aided understanding. It got the par-
ticipants engaged in discussion and helped them clar-
ify their ideas about what each concept actually 
meant. In this regard “it almost doesn’t matter what 
categories you have to choose from—it just helps to have 
categories so you have to have a discussion”. Conse-
quently, descriptions in BCM models were more ac-
curate and the attributes better thought out: “with 
BCM you are asking a more specific question—“what type 
is …?”—so you can get a more specific answer, not just 
general agreement to a description”. 
 The expert modeler perceived other aspects of 
BCM as helpful. Being reminded of existing compo-
nents was not particularly valuable for the modeler, 
but was useful for the participants. Choice of color 
and backgrounds assisted in recall and the ability to 
incorporate audio-visual material helped to increase 
arousal, providing “a visual jab in the ribs”. The expert 
modeler found the English-language interpretation an 
essential tool since it reduced the mental effort re-
quired to verbalize the model and made the model’s 
meaning more concrete. 

3.2. Questionnaire Responses  
Analysis of questionnaires suggests that participants 
generally understood the modeling process using 
both techniques. For object modeling two specific is-
sues were raised: “(It is) difficult not to go off on a tan-
gent and discuss outside (the) necessary area” and “(the 
exercise involved) attempting to develop something definite 
out of something that wasn’t very definite”. Respondents 
who had created a database before were more likely 
to judge their models as complete and correct and to 
correctly state the purpose of the modeling sessions, 
suggesting that creating a database provides insight 
into the reasons for modeling. For more details, 
please see Appendix D. 

3.3. Completeness and Correctness 
In the graphs that follow, each model has been allo-
cated to a group according to the modeler’s experi-
ence level and modeling technique (Table 10).  

Table 10  Modeler Groups 

Experience level   
Technique Novice  

(no experience) 
Intermediate 

(some experience) 
Expert  

(high experience) 
Object modeling Group 1 Group 2 Group 3 
BCM Group 4 Group 5 Group 6 

 
In summary, the expert modeler produced 100% 
complete models using both BCM and object model-
ing. All BCM models were at least 80% complete; in 
contrast most object models produced by non-experts 
were less than 40% complete (Figure 3). Correctness 
showed a similar pattern, at over 80% for all but one 
BCM model but less than 25% for most object models 
produced by non-experts (average 22%). Object mod-
els exhibited significantly greater overall variability in 
completeness and correctness than BCM models. 
 For comparison, in the secondary study a different 
group of object modelers achieved average 43% com-
pleteness. These modelers were closest in experience 
level to group 2 in the main study, who also achieved 
average completeness of 43%. While the precise 
agreement in scores is obviously coincidental, we 
conclude that the results from the secondary study 
seem to support the completeness figures from the 
main study.  

Productivity 
Using BCM, the expert’s average productivity was 
147% greater than when using object modeling 
(Figure 3). For non-experts, average productivity was 
366% greater than when using object modeling. Most 
BCM models were produced at a rate of over 3.5 con-
cepts/hour; for object models the rate was less than 
1.5 concepts/hour. With object modeling, the non-
experts’ productivity fell significantly short of that of 
the expert. But for BCM, productivity was more uni-
formly high for all modelers. Productivity figures 
were not available for three of the models since their 
total modeling time had not been recorded; therefore 
no effectiveness figures were calculated for these 
models (see below). 

3.4. Errors 
The expert modeler made few errors using either 
technique. Non-experts using object modeling made 
0.59 errors per change; in contrast, non-experts using 
BCM made 0.29 errors per change (Figure 3). For 
most BCM models the figure was below 0.3; no object 
model achieved a value below 0.5 except those pro-
duced by the expert. In other words, nearly two-
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thirds of the actions by non-expert object modelers 
were mistakes while less than one-third of actions by 
novice BCM modelers were mistakes. 
 

Table 11  Error Frequencies 

Error Object  
modeling 

BCM 

Incorrect relationship added 73% 69% 
Incorrect component added 20% 25% 
Relationship wrongly removed 3% 2% 
Cardinality altered wrongly 2% 2% 
Component wrongly removed 1% 2% 

 
The proportion of each type of error was very consis-
tent between the two techniques (correlation .997). 
The most common type of error was creation of incor-
rect relationships—chiefly redundant relationships 
and relationships where participating concepts were 

wrongly chosen. Creation of incorrect (e.g. badly 
named or redundant) concepts occurred less fre-
quently but was also significant. Other types of error 
occurred infrequently (Table 11). 

3.5. Calculating Effectiveness and Usability 
Based on the rubric in Table 8, the average effective-
ness of modelers using object modeling was very poor 
(non-experts) or poor (expert) whilst that of modelers 
using BCM ranged from good (non-experts) to excel-
lent (expert) (Figure 3). Looking at each model, the 
expert modeler was less effective using object model-
ing (four poor scores and one good) than with BCM (all 
excellent) (Table 12). This is not an indication that his 
object models were faulty but reflects the fact that 
they took longer to produce.  
 The “quality” measures used to calculate effective-
ness—completeness, correctness and error rate—were 
strongly correlated (.95). Hence these measures may 
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be regarded as facets of a single factor (Bryman 1990). 
For novices, productivity was correlated strongly 
with quality (.92) whereas, for the expert, quality was 
high irrespective of other factors. Complexity was 
inversely correlated with all other measures, espe-
cially for the novice modelers (.73). 

Table 12  Summary of Effectiveness Levels Achieved 

Effectiveness (no. of models) Method Modeler’s  
experience Very poor Poor Good Excellent 
None  1 1  
Some  1 1  

BCM 

High    3 
None 2    
Some 2    

Object modeling 

High  4 1  

 
Table 13 calculates the differences between effective-
ness values. From this analysis, the contribution of 
experience amounts to approximately 34-38% of an 
average modeler’s overall effectiveness. The contribu-
tion of the model technique’s usability is 46-50%, or 
about 33% greater than the contribution of experience 
(please note the relatively large margins of error for 
these figures, however). 

Table 13  Average Effectiveness (as % of nominal maximum effectiveness) 

Method Novice  
modelers 

Expert  
modeler 

Difference 
(experience) 

Object modeling 2%  (± 02) 40%  (± 14) 38%  (± 14) 
BCM 52%  (± 20) 86%  (± 25) 34%  (± 25) 
Difference (usability of technique) 50%  (± 20) 46%  (± 25)  

3.6. Discussion 
The results suggest that the introduction of psycho-
logical ideas in BCM had a significant impact on ef-
fectiveness, which was comparable to or exceeded the 
contribution of experience. BCM allowed non-expert 
modelers to emulate the performance of an expert 
modeler who was using industry-standard tech-
niques. It allowed all modelers, regardless of experi-
ence, to be roughly two to five times more produc-
tive.  
 The results are striking, but are they meaningful? 
There are probably alternative ways of calculating 
effectiveness that would give different results. In par-
ticular, our measures (of completeness, correctness, 
error rate and productivity) seem too coarse to effec-
tively register variations in the expert’s performance 
other than productivity. This may help explain why 
the expert modeler was found to be somewhat less 
effective when using object modeling than non-

experts using BCM. However, it seems likely that any 
method based on the same four factors would be sub-
ject to the same trends and would give broadly simi-
lar results. Overall, the quantitative results tally with 
qualitative observations of modelers during the ex-
periment. This is especially true for non-expert mod-
elers, where a stark difference in performance was 
observed between those using BCM and those using 
object modeling.  

4. Analysis 
A motive behind this research is to find out if the 
level of expertise needed to perform conceptual mod-
eling can be reduced. It seems that the answer is 
“yes”; under the right circumstances, novice modelers 
with little or no prior experience can perform as well 
as an expert modeler with extensive experience. De-
spite the limited sample size, quite compelling results 
were obtained.  

4.1. Helping Novices to Emulate Experts? 
Psychology tells us that experts have mental frame-
works for problem-solving and internalized skills that 
can be applied without the need for conscious 
thought. Non-experts lack both. In recent years it has 
been claimed that novices can emulate expert behav-
iors successfully (Tosey 2005). We approached the 
same kind of goal using three main strategies: (a) by 
adjusting the content of models to obtain a better 
match with mental concepts (e.g. by adding innate 
concepts), (b) by representing models in a way that 
people might understand more easily, and (c) by try-
ing to make the modeling process simpler and easier 
(Backhouse 1988; McGinnes 1994). The aim was to 
empower non-experts by giving them predefined 
frameworks and by allowing them to use skills they 
already have, such as visual recognition. 
 Surveying the literature on conceptual modeling, 
one might be forgiven for thinking that all modelers 
are specialists who embark on modeling only once 
they are armed with the requisite skills. The focus has 
historically been on issues like formality, economy of 
representation and rigor rather than simplicity or ease 
of use (Gregory 1995; Herbst 2000). But we suspect 
that a good proportion of conceptual models are pro-
duced by non-experts, some explicitly and others im-
plicitly during the design of end-user systems using 
products such as Microsoft Access and Lotus Notes. 
With constant change and growth in the IT industry, 
demand for trained staff often outstrips supply, yet 
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information systems must still (and will) be devel-
oped. 
 Another implicit assumption is that modelers will 
continue to work on models until they are correct, 
before implementing them in databases and applica-
tions. In this study the non-expert modelers were 
typically unaware of their mistakes and therefore did 
not fix them. In practice, IT professionals are subject 
to deadlines and resource constraints which can pre-
vent them from spending sufficient time on design. 
This is one reason why production systems often con-
tain significant structural flaws. In this study, the 
novice modelers using BCM produced models that 
were 80% complete and correct. We speculate that 
this level of quality may not be far from current pro-
fessional practice. 

4.2. Emergent Patterns of Expertise 
During detailed analysis of the models, three distinct 
patterns of model evolution were observed (Error! 
Reference source not found.). 
 Pattern A: Expert modeler (both techniques): This 
pattern appeared for all models produced by the ex-
pert modeler. It demonstrates the kind of behavior 
that one might expect of someone who is experienced 
and capable. The expert goes straight to a correct so-
lution with confidence and efficiency; accuracy, com-
pleteness and correctness quickly climb to 100%. The 
error rate tends rapidly towards zero. Complexity is 
high but this seems not to affect performance and de-
clines slightly as the model is completed satisfacto-
rily. 
 Pattern B: Non-expert modeler (object modeling 
only): This pattern appeared for object models pro-
duced by non-experts; it presents a picture of a mod-
eler who is unsure of what to do. The modeler makes 
a series of mistakes and seems unable or unwilling to 
correct them. Errors accumulate until the modeler 
either gives up or wrongly judges the model to be 
complete. The model quickly becomes over-complex 
and accuracy, completeness and correctness remain 
low. The model fails to reach a satisfactory state.  
 Pattern C: Non-expert modeler (BCM only): This 
pattern appeared for all models produced by non-
experts using BCM. It is similar to pattern A (expert 
modeler) in that the model reaches a satisfactory 
state. However, pattern C appears to show evidence 
of learning and improvement while the modeling 
progresses. After an initial period of growth the 
number of errors remains roughly stable in a “pla-

teau” phase. Most of the errors are incorrect relation-
ships. Eventually the modeler fixes the errors and 
goes on to complete the model. Model complexity 
initially rises quickly but the model does not become 
over-complex. Completeness and correctness show 
overall increasing trends. The modeler’s accuracy 
fluctuates but improves as the modeling progresses.  
 Comparison of patterns: The typical profile for 
each type of modeler is summarized in Table 14. We 
note that patterns B and C, for non-expert modelers 
using object modeling and BCM respectively, are very 
different. In a typical example of pattern B (object 
modeling) the novice modeler created a model that 
was not structured meaningfully. Reasonably correct 
classes were identified but few, if any, relationships 
were correct. Models of this nature were generally not 
completed, as stated above. In contrast, pattern C 
models (BCM) did proceed to satisfactory completion. 

Table 14  Summary of Typical Performance for Each Type of Modeler 

Object modeling BCM  
Expert Non-expert Expert Non-expert 

Pattern: A B A C 
Productivity: Low Very low Very high High 
Effectiveness: Poor Very poor Excellent Good 

 
The similarities between patterns A (expert modeler) 
and C (non-expert using BCM) suggest that BCM 
helped non-expert modelers to behave like the expert 
in some important ways. An expert can go directly to 
a good solution; as we might expect, the curve for the 
expert (pattern A) shows a continuously decreasing 
error level.  But a novice cannot behave identically to 
an expert since he or she typically does not know in 
advance how best to model. The non-expert modelers 
using object modeling accumulated errors and were 
unable to correct them (pattern B). Novice modelers 
using BCM also made errors (pattern C), especially in 
the early stages, but were able to recognize their er-
rors and eventually correct them. So it seems that 
what is crucial is not whether a modeler makes mis-
takes, but whether he or she is ultimately able to iden-
tify and correct those mistakes.  

4.3. Other Evidence 
Other observations support the hypothesis that BCM 
helped non-experts to emulate expert behavior. All 
non-expert modelers defined fewer relationships per 
concept than the expert. But the ratio for non-expert 
modelers using BCM was closer to that of the expert. 
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Similarly, non-experts using object modeling tended 
to make proportionally many more changes than the 
expert modeler, whereas for BCM the number of 
changes they made was (in most cases) closer to that 
of the expert. Complexity seems to be particularly 

problematic for non-expert modelers; those using ob-
ject modeling were unable to prevent the complexity 
of their models from increasing in an unbounded 
way. In contrast, non-expert modelers using BCM 
were able to keep the complexity of their models to 
manageable levels. 
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5. Conclusions 
The results of this study seem to support the use of 
psychologically-inspired innovations in conceptual 
modeling both for experts and for non-experts. Using 
BCM, people with little or no prior experience pro-
duced conceptual models of near-expert quality at 
least as quickly as an expert. The models were smaller 
and less complex than those produced by the expert 
but still of a realistic and useful size. For the expert 
modeler, BCM allowed significant productivity im-
provements.  
 We would caution against too literal an interpreta-
tion of the experimental results. Although efforts 
were made to control the study, in the scientific sense, 
it was subject to all of the “messiness” of real-life 
business situations; subjectivity was unavoidable, for 
instance, in the correction of models. It could also be 
that our measurements lacked the sensitivity to detect 
small but crucial differences in model structure which 
have a large impact on the downstream usefulness of 
a model. However, in general we can say that evi-
dence supports the idea of applying psychological 
principles to conceptual modeling. The results do not 
tell us specifically which factors, whether psychologi-
cal innovations or other factors, led to the observed 
benefits. However, we can speculate on the likely 
causes of performance improvement by comparing 
qualitative observations with the quantitative meas-
urements. Some comments in this direction are given 
below. 

5.1. Reflections 
It appears that the non-experts using BCM were able 
to learn by trial and error. They frequently consulted 
the English-language interpretation and experimenta-
tion was easy using the BCM tool; hence the “plateau 
phase” visible in pattern C. They made mistakes 
(mainly wrong relationships) but identified and fixed 
them. In contrast, non-expert object modelers had no 
such support and redrafting was onerous. They failed 
to learn or correct their mistakes, as reflected in pat-
tern B. 
 To structure a conceptual model correctly requires 
one to employ logic. Experiments have suggested that 
logic and causality are not innate modes of thought 
and may be a ‘syllogistic game’. “In highly-
industrialized Western societies, people are trained to prove 
arguments about reality on the basis of representational 
propositions. In less industrial societies … the form of 
proof is tied more directly to sensory impression” (Solso, 

MacLin and MacLin 2004). In other words, people do 
not necessarily think analytically. Indeed, it can be 
exhausting to think in an analytical mode continu-
ously. All non-expert modelers in this study lost con-
centration and forgot the meaning of model con-
structs from time to time. The idea of a model as a 
series of logical propositions was clearly foreign to 
several of them. Perhaps expert modelers are more at 
home with the analytical mode of thought and can 
switch between formal and intuitive modes at will, 
using intuitive thinking for creation and discovery, 
and formal thinking when checking and correcting 
meaning. If so, it might be better if non-experts were 
not forced into a continuously analytical mode of 
thinking; BCM’s use of recognizable images may have 
allowed the non-expert modelers to use intuitive in-
terpretation for at least part of the time. 
 BCM inherently restricts the view one has of a 
model since each concept has its own window. Par-
ticipants were “intuitively … digesting it in chunks”. 
The expert modeler’s language is telling since he was 
apparently unaware of the psychological concept 
“chunking”. The restricted view helped non-expert 
modelers to pay attention to a single concept at a 
time. Presumably this was beneficial since their lim-
ited cognitive resources could be selectively focused. 
The natural-language interpretation in BCM can be 
viewed for a single concept and this was undoubtedly 
useful to modelers; they were able to see a brief, un-
cluttered summary of each concept’s meaning with-
out other potentially confusing information (this is 
not as simple to achieve as it might sound, when we 
remember that each concept is defined in terms of 
other concepts). The restricted view in BCM also cre-
ated a need for navigation between windows, which 
seemed beneficial for non-experts. It provided a 
physical and intuitive way for modelers to remember 
where they had placed concepts. Non-expert object 
modelers suffered from a lack of focus, often attempt-
ing to read their model as if its meaning could be 
stated in a single sentence—which is incorrect and 
was one reason why they misinterpreted their dia-
grams. 
 The expert modeler formulated generic concepts 
(supertypes) as a way of factoring out common prop-
erties when using both techniques. Non-experts did 
not do this; they defined concepts instead at an eve-
ryday level of generality, despite support in both 
BCM and object modeling for this construct. Since the 
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use of supertypes can be beneficial in a conceptual 
model, we speculate that additional support in BCM 
could help non-expert modelers use supertypes more 
effectively. 
 The predefined set of innate types in BCM helped 
to remind non-expert modelers to look for concepts 
under each heading. Non-expert object modelers had 
no such checklist and often missed important aspects 
altogether (e.g. identifying people and organizations 
but failing to identify important activities). In BCM, 
non-experts seemed most at home with the more con-
crete types: person, organization, document, place and (to 
a lesser extent) system. Other innate types, particu-
larly physical object, category and conceptual object, 
seemed too general to be understood well; they were 
used indiscriminately by the non-experts. The innate 
type activity also seemed problematic for some non-
experts. In object modeling, non-experts seemed to 
have trouble grasping the (very generic) concepts 
class and association. All of this accords with psycho-
logical evidence that people are typically most com-
fortable with categories pitched at an everyday level 
of generality. It suggests that the more generic innate 
types could usefully be refined to make them less ge-
neric.  
 BCM is designed for tool support and cannot easily 
be practiced without it. In this study we decided to 
use the BCM tool in modeling sessions but object 
modeling tools outside of sessions. The primary reason 
for this was that we felt that non-experts had enough 
to do in learning how to model without also having to 
master a traditional CASE tool. It is arguable that this 
decision introduced experimental bias; differences in 
modeling performance may have been due to the ab-
sence of a modeling tool in some sessions. Intuitively, 
however, this seems unlikely; our experiences with 
non-experts suggest that they would have been even 
more “at sea” if confronted by a typical CASE tool 
without the opportunity for proper training. The lit-
erature tends to support this view (Jarzahek and 
Huang 1998; Kline, Seffah, Javahery, Donayee and 
Rilling 2002). 

5.2. Future Research 
We have circumstantial evidence that the psychologi-
cal innovations led to improvement in modeling ef-
fectiveness but we have no direct evidence of each 
factor’s impact. As a priority we would like to look 
more closely at each innovation to determine 
whether, and how much, it contributes to the ob-

served benefits. More specific knowledge will allow 
BCM to be tuned and may suggest further innova-
tions; it may also allow us to discard certain aspects 
of BCM if they provide no particular benefit in them-
selves. This is desirable from a pragmatic standpoint 
since we would wish to obtain the maximum im-
provement with the minimum of difference from es-
tablished best practice (i.e. object and data modeling). 
 In this study, non-experts using BCM produced 
models that were 80% complete and correct. How can 
we improve on this figure? One route would start 
with a more detailed analysis of the specific errors 
made by non-experts. It may be that certain clichés 
(repeated sequences of actions) occur; identifying 
these could suggest how to encourage “correct” mod-
eling and avoid the error scenarios. Other ideas in-
clude creating a cookbook method to support the 
modeling technique, enhancing tool support with 
wizards for common business scenarios, and provid-
ing a stronger conceptual framework through more 
prescriptive model structures.  
 As a starting point, we know that non-expert mod-
elers have particular difficulty in modeling relation-
ships (Wand, Storey and Weber 1999). Over two-
thirds of errors made in this study by modelers in-
volved incorrect relationships, many of which were 
redundant. Therefore some support for correct mod-
eling of relationships would be likely to confer bene-
fit. Potentially redundant relationships exist where 
two concepts are explicitly or implicitly linked in 
more than one way. Perhaps BCM could help to 
avoid this type of error by identifying and highlight-
ing potentially redundant relationships, thereby as-
sisting the modeler in resolving them. 
 Another way of helping non-experts with relation-
ships relies on the fact that one concept reminds us of 
another. This reminding typically indicates the pres-
ence of a relationship of interest between the two con-
cepts. It is useful therefore to capture the linkage 
automatically, sparing the modeler the effort of re-
membering to create a relationship manually. This 
can be done if the BCM tool automatically displays an 
empty window for each new concept after it has been 
defined. The next concept that is defined will auto-
matically be placed in the previous concept’s win-
dow, creating an association between the two con-
cepts. This “depth-first” approach has been tried and 
yields apparently acceptable results; however, we 
have yet to measure whether it results in more correct 
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structures than the default approach, where (typi-
cally) several concepts are identified before any are 
related. 
 Why did non-experts using BCM succeed in cor-
recting their mistakes while those using object model-
ing failed to do so? One factor may have been confi-
dence, perhaps brought about by the relative ease or 
difficulty of making changes and obtaining feedback. 
The concept of self-efficacy has previously been linked 
with success in learning conceptual modeling skills; it 
hinges on feedback and early success (Bandura 1997): 
“if individuals were successful in the past they were more 
likely to believe they could accomplish similar tasks in the 
future” (Ryan, Bordoloi and Harrison 2000). We 
speculate that BCM users were given confidence by 
the positive feedback they got from the BCM tool and 
were therefore more incline to persevere. 
 Statistical analysis of models shows that certain 
patterns occur repeatedly in the relationships be-
tween concepts. For example, each pair of innate 
types occurs most frequently with a specific set of 
cardinalities. To take advantage of this fact the BCM 
tool defaults to the most likely relationship if cardi-
nalities are left unspecified. The “most likely” rela-
tionships have been calculated in advance by examin-
ing a large set of models. This is predictive modeling; 
the use of probabilities to interpret and complete cer-
tain aspects of a model while it is being edited, saving 
the modeler the effort of specifying them explicitly. 
Predictive modeling has been implemented in the 
BCM tool and is apparently useful. It would be 
enlightening to test how often the assumed relation-
ships are correct and to determine what other aspects 
could also be defaulted. 
 Although this study did not encompass application 
development, BCM can be used to build software ap-
plications directly from models and has successfully 
been used in this way on a variety of commercial pro-
jects. Further research could assess the use of BCM in 
model-driven application development by non-
experts such as end users. This may bring us closer to 
the goal of collapsing the development and use of 
applications into a single process. Although current 
thinking on software project structure envisages ap-
plication development as an iterative process, the de-
velopment and use of software applications are still 
considered as separate activities that must be done by 
different people. With end-user tools based on the 
BCM principles we may be able to achieve a closer 

integration between the two, making a distinction in 
task and role less necessary.  
 Conceptual reuse is also a compelling area for fur-
ther research. This is the idea of building new models 
(or applications) from existing concept definitions. 
When using BCM it is rarely necessary to construct a 
model from scratch since the BCM tool incorporates 
features that make it relatively easy to reuse existing 
concept definitions—or even whole models—in new 
models. There are two main advantages in this ap-
proach: firstly one does not need to reinvent the 
wheel and therefore much time is saved; secondly, 
existing concept definitions have already passed 
through a review process and are therefore (one 
would hope) well thought-out. The downside is that 
reused concepts may be inappropriate in detail. 
However, the strongly visual aspect of BCM models, 
and the availability of the English-language interpre-
tation and form preview functions, seem to make it 
easier to determine if existing concept definitions are 
suitable for new needs, and the modeler can easily 
alter an existing definition to suit a new situation. 
 The expert modeler pointed out that BCM lacks the 
ability to provide an overview of a model; there is no 
view that shows everything in context. He predicted 
that non-experts would have trouble finding the parts 
of a model that needed work. Intuitively he seems 
correct; however, we did not see any evidence that a 
lack of “big picture” hindered the modelers. Perhaps 
the benefits of information hiding outweighed the 
disadvantages of not seeing a big picture. Although 
the expert’s prediction was not borne out in the evi-
dence, it may nevertheless be that a “whole model” 
view could be beneficial under certain circumstances; 
one possibility that has been considered is an ad-
vanced model navigation facility which allows mod-
els to be visualized and traversed in three-
dimensional space. 

5.3. Conclusions 
The synthesis of new techniques and tools has in re-
cent years been somewhat out of favor in the IS re-
search world. Yet, in software, nothing is given; we 
are free to imagine alternative ways of doing things 
and limited only by our ability to formulate them. 
There is great scope in IS research for creativity, and 
creative research can make a genuinely positive con-
tribution to practice. It is gratifying to have the oppor-
tunity to present the results of design-oriented re-
search to an IS readership. 
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 This study has demonstrated ways of improving 
both the quality of conceptual models and the per-
formance of conceptual modelers. We have seen that 
conceptual modeling is not a black art but a relatively 
predictable activity where the outcome depends 
largely on controllable factors. For non-expert model-
ers, the choice of modeling technique has a significant 
impact on model quality, making the difference be-
tween results that are adequate and results that are 
essentially unusable. For both expert and non-expert 
modelers, the choice of modeling technique can sig-
nificantly improve productivity. 
 We conclude that there is great scope for improve-
ment in the usability of conceptual modeling tech-
niques. Conceptual modeling is practiced by signifi-
cant numbers of non-experts, including less experi-
enced IT professionals and end-users with products 
such as Microsoft Access. The complexity of our exist-
ing modeling techniques presents a barrier to these 
people. Today’s conceptual modeling techniques ne-
glect our innate, automatic visual recognition capa-
bilities and they place unrealistic demands on mem-
ory. They seek to capture end users’ knowledge and 
business concepts but fail to offer any clear corre-
spondence with mental models. They are typically 
hard for non-experts to understand and practicing 
them requires great mental effort. 
 The good news is that conceptual modeling can be 
simpler, quicker and less error-prone for both experts 
and non-experts. Psychology, particularly in the areas 
of cognition and group dynamics, offers much to aid 
our thinking about conceptual modeling—provided 
that we can apply what we know about how the 
world is perceived and how meaning is created 
within the mind. 
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7. Appendix A: Selected Psychological 
Principles 

Twenty-nine psychological principles were formu-
lated in total. The following set of ten principles is 
illustrative. 

7.1. Principle 1: Preattentive Processing 
Maximize Bandwidth Using Visuals. Preattentive 
processing is the unconscious, automatic processing 
of sensory inputs (Schweizer 2001). Graphs and rapid 
visual searching rely on our capability for preatten-
tive processing to convey complex data efficiently, 
using variation in color, shape and position. Preatten-
tive processing is effectively instantaneous and re-
quires little cognitive effort. But it has limitations; 
important visual features cannot be varied in combina-
tion since this forces the use of attentive (i.e. con-
scious, analytical) processing. Figure 6 illustrates how 
the brain gathers information more easily when it is 
presented in visual form. Perhaps the potential for 
conceptual modeling lies in allowing these capabili-
ties to be used in the interpretation of models. To 
permit preattentive processing, conceptual models 
would need to be expressed using visual construc-
tions that non-experts can interpret automatically and 
unconsciously. 

Figure 6  Information Presented in both Numerical and Graphical Form 

 Aug-86 Sep-86 Oct-86 Nov-86 Dec-86 Jan-87 
Albany, NY $28,675  $28,675  $29,575  $31,875  $31,675  $31,650  
Memphis, TN $28,200  $28,200  $23,400  $25,900  $22,900  $22,900  
Houston, TX $54,500  $58,000  $58,500  $63,500  $58,500  $58,500  
Boise, ID $27,250  $27,250  $27,250  $27,900  $27,250  $27,250  
Minneapolis, MN $72,950  $74,500  $74,500  $78,500  $75,425  $77,525  

 

7.2. Principle 2: Isomorphism:  
Reduce Cognitive Load by Matching Conceptual and 
Mental Models. Conceptual models help the software 
designer to gain an accurate mental model of the 
business, so that the resulting systems fit the organi-
zation well; inaccurate models can be expensive and 
damaging. To verify a conceptual model we must 
form a mental model of it using familiar concepts 
(Solso, MacLin and MacLin 2004). We are then free to 
compare mental and conceptual models (Figure 5). 
Discrepancies lead us to revise either the conceptual 
model, our interpretation of it, or our mental model 
of the business. 
 An expert performs these mental gymnastics both 
rapidly and unconsciously; the skill has become in-
ternalized. But novices must attend to each part of a 
model separately, just as a learner car driver remem-
bers how to change gears as a sequence of discrete 
actions. The great effort needed for this kind of think-
ing has been likened to “using a helicopter to hold up a 
clothes line” (Sowa 2000). A model may be expressed 
in terms so unfamiliar that too much cognitive effort 
is needed to understand it, as anyone who has strug-
gled to understand a badly-written specification will 
appreciate (Veres and Mansson 2005; Alexander and 
Stevens 2002). Mental models are thought in some 
way to resemble “real life” situations (Johnson-Laird 
2005). But today’s conceptual models do not resemble 
the situations they describe; they are more like ab-
stract statements of fact. In this regard they may be 
poorly matched with mental models. To minimize 
cognitive load, perhaps conceptual models should 
more closely resemble the situations they represent. 
Interpretation could then become largely unconscious 
and instantaneous (Burek 2005). 
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7.3. Principle 3: Reinforcement 
Maximize Comprehension by Combining Words with 
Pictures. Verbal and visual sensory inputs are proc-
essed independently but the two cognitive systems 
are thought to interact to improve recognition when 
both visual and verbal cues are present (Medin, Ross 
and Markman 2004). This is why combining images 
with words is superior to the use of words alone; an 
image acts as a powerful stimulus for association 
(Siau 2005). The images need not be photographic in 
nature since the mind fills in details automatically; 
simple drawings can easily stimulate recognition. Re-
search into the visual processing of cartoons has 
shown that only a small portion of the information in 
an image is required for recognition. As in graphic 
design, visuals need only be rich enough to convey 
the necessary information (Goldstein 2005). When 
used well, icons and other pictorial representations 
exemplify this principle (Chen 1999). 

7.4. Principle 4: Consistency 
Consistently Use Each Symbol with Only One Busi-
ness Meaning. Meaning is created when an observer 
receives sensory cues and recalls knowledge by asso-
ciation. For this to happen reliably, the cues must 
have well-defined and distinct associations. Therefore 
there must be consistency in the way that symbols are 
used; we must take care to link each symbol with 
only one concept and vice versa. In a conceptual 
model the requirement for consistency means that 
each distinct end user concept (such as purchase, cus-
tomer, and product) should be represented using its 
own meaningful and distinct symbol. This idea goes 
against current practice; most conceptual modeling 
methods do not relate a unique symbol with each 
concept. The same concepts may be represented using 
different symbols at different times and any given 
symbol may mean several things (Shanks, Tansley 
and Weber 2004). To illustrate, Error! Reference 
source not found. shows symbols representing the 
concept purchase. Several of the symbols are used 
with multiple meanings. Each symbol represents 
some abstract aspect of the mental concept purchase 
rather than the concept itself.  
 The lack of a 1-1 correspondence between mental 
concept and symbol creates confusion and makes 
mental association impossible; therefore it is harder 
for a non-expert to understand the model. The poten-
tial for preattentive processing, with rapid compre-
hension and visual searching, is lost. Even experts 

may expend more cognitive effort than necessary in 
interpreting models. 

 

7.5. Principle 5: Chunking 
Support Short-Term Memory with Visual Chunking 
Strategies. Our limited attention capacity makes it 
easy to become overloaded by information; according 
to cognitive load theory we can focus on only a few 
items simultaneously (Bannert 2002). We are there-
fore obliged to filter information or to translate it into 
a more easily-assimilated form. This is called chunk-
ing: to avoid attending to many concepts simultane-
ously, we place them into meaningful groups and 
then treat each group as a single concept (Gobet 
2005). 
 Chunking naturally forms hierarchical relation-
ships between concepts. Hierarchies improve com-
prehension and retention; they mimic the expert’s 
organization of knowledge and assist recall (Gold-
stein 2005). Chunking could be described as the “di-
vide and conquer” strategy: tackling a large problem 
by dividing it into sub-problems. One criticism is that 
this approach militates against a holistic view and can 
result in poorly integrated, partial solutions. There-
fore, it is important to have a way of retaining the 
“big picture” when chunking is used. 
 In conceptual modeling, diagrams routinely con-
tain hundreds of items and information overload is 
common. It is difficult to deal with large diagrams, 
especially when associations are represented as lines, 
which can make it hard to place items optimally. 
Techniques for hiding complexity are needed (Moody 
2004). Table 15 summarizes the rather limited support 
in some standard modeling techniques for the main 
chunking strategies summarizing, filtering and parti-
tioning, suggesting that such support for chunking is 
patchy. For instance, no technique offers filtering 
strategies; one cannot easily simplify a class diagram 
by hiding all classes except those representing people 
and organizations, unless suitable inheritance hierar-
chies happen to be present. Arguably, no current con-
ceptual modeling technique permits easy and flexible 
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Figure 7  Representations for Aspects of Concept Purchase 
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generalization about situations and processes as sug-
gested, for example, by the theories of situational 
memory and scripts (Schank 1999). 

Table 15  Strategies for Reducing Complexity 

Technique Summarizing  Filtering Partitioning  
Object modeling (e.g. UML) Inheritance None Aggregation; Packages & 

subset diagrams (informal) 
Data modeling (e.g. E-R) Supertypes None Subject areas (informal) 
Process modeling (e.g. DFD) None None Decomposition 
Behavior modeling (e.g. STD) Nested states None None 

 
In practice, models are divided into arbitrary subsets, 
typically by drawing partial diagrams on separate 
pages. The subsets are not necessarily meaningful in 
themselves. Managing the parallel evolution and rein-
tegration of separate and potentially conflicting 
model subsets is a challenge (Ramesh and Dennis 
2002). It can be difficult to retain an overview. Object 
modeling offers the formal grouping construct aggre-
gation, which may better reflect real-world relation-
ships. However, like all of the currently-available 
chunking strategies, aggregation is a static construct; 
it affects model structure and cannot be applied dy-
namically as required. Hence the modeler is limited at 
present in the choice of chunking strategies and must 
make structural decisions to use them. This is not 
ideal, since structures like inheritance and aggrega-
tion have implications for the further development of 
models and the systems designed using them. There 
may be benefits in visual chunking strategies that can 
be employed flexibly and without the need for struc-
tural change to a model. 

7.6. Principle 6: Fuzzy Categories 
Support Alternative Concept Definitions and Concept 
Instability. Mental categories are inherently fuzzy. 
We may know what we mean by a category but find 
it difficult to state the criteria we use to categorize 
(Eysenck and Keane 2005). Some things seem more 
typical of their categories than others and some prop-
erties more important than others in governing cate-
gory membership (Burek 2005; Solso, MacLin and 
MacLin 2004). Categories may be defined intension-
ally (e.g. tricycle: a three-wheeled vehicle propelled by ped-
aling) or extensionally, by enumerating the members 
of the group, or in terms of prototype or exemplar 
objects (Medin, Ross and Markman 2004). It seems 
that we unconsciously apply a combination of these 
methods. Context is also important: the tendency to 

classify things in different ways according to context 
is termed concept instability.  
 The connectionist view of brain function suggests 
that categories are not a primary mechanism for cog-
nition. Instead, we seem to use a form of pattern 
matching; one thing reminds us of another. The com-
bined effect of interacting neurons results in this be-
havior without any need for mental categories or con-
ceptual structures. Like the human mind, artificial 
neural networks also categorize effectively on the ba-
sis of exposure to known patterns. Like humans they 
learn by experience and can generalize their knowl-
edge to new areas, and they do this without forming 
rules or conceptual structures. According to this view, 
categories are emergent, conscious, verbal phenom-
ena, and come into being only when we consciously 
try to formulate them or attempt to define a term. The 
bulk of mental activity is unconscious, yet our under-
standing of categories may be modified by conscious 
reasoning; for example, a dolphin may intuitively 
seem to be a fish but we may know consciously that it 
is a mammal. 
 All of this is problematic for conceptual modelers, 
who operate from the ontological position that con-
cepts are well-defined (“crisp”) and, in some sense, 
pre-existent. The inflexibility of our conceptual mod-
eling techniques makes it difficult to model mental 
concepts satisfactorily. We must fit fluid ideas into 
static conceptual models and even invent concepts to 
satisfy the rigors of the technique (the introduction of 
“intersection entities” to replace many-to-many rela-
tionships in a data model is a classic example of this). 
It might be more useful if modeling techniques 
worked more like the brain, perhaps allowing con-
cepts to be defined using multiple strategies or even 
to remain undefined, at least for some of the time. 

7.7. Principle 7: Brainstorming 
Capture Unstructured Ideas and Allow Easy Model 
Restructuring. It is often difficult for groups to reach 
consensus; research shows that effective groups seek 
compromises rather than optimal solutions. Groups 
are more productive when criticism and competition 
are reduced, and participants are more likely to con-
tribute if the work is aimed at exploration and learn-
ing rather than unanimity. In brainstorming, an ab-
sence of judgment and editing is known to encourage 
group creativity (Zander 1994).  
 A similar situation occurs in conceptual modeling; 
especially during the earlier stages, when ideas are 
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thrown around and experimentation with alternatives 
is often needed. Substantial revision is normally nec-
essary. Yet conceptual modeling tools typically re-
quire ideas to be expressed formally at the time they 
are recorded. We have to model in correct syntax; ill-
formed class definitions cannot be recorded. To work 
informally one must abandon the model and resort to 
flip chart and whiteboard. Once a model has been 
started it can be difficult to change tack and to re-
structure it along new lines; there is a penalty for not 
getting it right first time. Arguably, this need for early 
rigor is counterproductive when used in a group set-
ting, since it prevents the very tolerance and lack of 
editing that groups need to function well. Perhaps 
conceptual modeling techniques and tools should 
tolerate incompleteness, incorrectness and inconsis-
tency. Modelers should be able to refine models at 
their own pace until they reach a satisfactory state. 
They should be able to attend to the problem at hand 
and not be forced to resolve inconsistencies and fix 
syntax at any particular stage. 

7.8. Principle 8: Error Tolerance 
Tolerate and Reduce the Likelihood of Simple Errors. 
It goes without saying that modelers are imperfect 
and rarely get it right first time; the modeling process 
is inherently iterative. Attention cannot be sustained 
indefinitely and modelers inevitably make mistakes 
(Leung and Bolloju 2005). This is not too problematic 
for expert modelers, who find it relatively easy to 
identify and resolve errors. But it is much more diffi-
cult for non-experts to correct mistakes, especially 
when the mistakes are not obvious. Conventional 
conceptual modeling techniques offer plenty of op-
portunity for error; for instance, techniques which 
incorporate built-in redundancy create the possibility 
of inconsistency. One example occurs in data model-
ing, where the association of two entity types is 
equivalent to the presence of a foreign key attribute; 
novice modelers often fail to recognize this equiva-
lence and define attributes that contradict associa-
tions. For the expert, redundancy may be a boon, 
since it can highlight inconsistency and thereby reveal 
inadequate analysis; double-entry accounting is based 
on this principle. But for non-experts redundancy is 
typically confusing and often leads to inconsistency 
which remains unresolved. 
 Other common problems centre on naming and 
terminology: model elements with distinct meanings 
may be named identically and the same facts may be 

encoded several times in different ways. Lacking a 
clear mental framework for modeling, the novice is 
unlikely to spot errors of this type without external 
assistance (Rosenberg and Scott 2001). Yet current 
modeling techniques allow “semantic” errors like 
these to occur and leave it up to the modeler to iden-
tify them. 
 Greater opportunities for error and inconsistency 
exist when multiple modeling techniques are com-
bined, as is common with UML and similar methods. 
For example, information in a use case diagram can 
contradict that in a class diagram. Often, the conflict 
is not obvious and recognizing it can require detec-
tive work together with the kind of insight that de-
velops only with experience. Perhaps it might be bet-
ter if conceptual modeling techniques were robust 
enough to ignore or tolerate errors like these. Ideally, 
the notation would make at least some errors impos-
sible; one way of reducing the likelihood of error is to 
reduce the number of ways in which any given fact 
can be expressed. Another suggestion is to introduce 
semantic “intelligence” into the technique so that it 
can be self-checking to some extent; tool support can 
then bring errors to the modeler’s attention and assist 
in their resolution. 

7.9. Principle 9: Arousal and Attention 
Use All Means Available to Maintain Attention. 
Arousal refers to the level of activity within an indi-
vidual’s brain, corresponding roughly to the individ-
ual’s degree of alertness. A moderate level of arousal 
is necessary for effective comprehension; too little 
and too much arousal are both counter-productive. 
Arousal is increased by stimulating factors such as 
surprising or novel events, and by the use of certain 
drugs, movement, noise and bright lights. It is de-
creased by monotonous or boring tasks and repetitive 
stimuli. 
 Working groups typically need to maintain atten-
tion for sustained periods. But in a group setting, 
with diminished individual responsibility, it is easy to 
become bored and distracted; concentration (i.e. 
arousal) tends to decrease. Traditional conceptual 
modeling sessions are often sedate affairs that use 
static, monochrome diagrams, resulting almost inevi-
tably in lowered attention levels. The modeler can 
address this issue, however. Attention can be recap-
tured, for example, by introducing colorful, animated 
model representations and novel events into model-
ing sessions. Increased personal involvement by 
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group members and frequent, enforced changes in 
task and posture can also help ensure that arousal is 
stimulated.  
 Research has shown that personally relevant in-
formation is much more interesting than other infor-
mation. The issue of personal relevance can be ad-
dressed by expressing subject matter in the user’s 
own language rather than that of the modeler, and by 
using notations that seem meaningful to the user 
rather than to the modeler. This would point, for ex-
ample, to the use of realistic images rather than neu-
tral symbols to denote concepts, and to the use of 
meaningful categories such as “person”, “document” 
and “place” rather generic terms such as than “class” 
and “property”. These actions may also tend to create 
the right “set” in the mind of the user; this is ad-
dressed in our final principle, below. 

7.10. Principle 10: Set 
To Instill Helpful Sets, Make the Purpose and 
Method of Modeling Obvious. One of the most im-
portant factors affecting success in problem-solving is 
the range of characteristics known as set, a predisposi-
tion towards viewing a situation in one particular 
way. In conceptual modeling, framing influences can 
easily create sets which affect problem understanding 
and decision-making (Adams and Avison 2003). 
These sets limit the ability of both analyst and end 
user to view a problem situation holistically. One 
consequence is loafing; end-users often feel that mod-
els are ‘technical’ and the property of systems devel-
opers. The intention may be to capture relevant as-
pects of the user’s world but participants view the 
models as more relevant to the analyst’s work than to 
their own (Bansler and Bødker 1993). 
 This type of set has several origins. Users may be 
more interested in their day-to-day work and fail to 
understand the modeling process. Conceptual model-
ing may use unfamiliar notations and terms. The re-
sult can be confusion; analysts persist with inappro-
priate models, thinking mistakenly that they reflect 
the user’s reality, while users “go along with” models 
they understand poorly. Few researchers have inves-
tigated the ability of end users to understand concep-
tual models (Topi and Ramesh 2002). However, it 
seems that these problems could be reduced by 
avoiding technical terms and abstractions in favor of 
the user’s own concepts and language. Making mod-
els more intuitively understandable may allow non-

experts to work with them and thereby develop a 
sense of ownership. 
 Another problem for conceptual modelers is set of 
function. This set hinders problem-solving: individu-
als fail to recognize the tools to resolve a situation if 
they must be used in unconventional ways. Experts 
often use ingenuity to model complex situations 
whereas novice modelers may not have sufficient 
knowledge to do this. Education can help, but in-
depth training may be onerous and impractical (Den-
nis et al 1999). Perhaps the problem could be eased by 
making models more intuitively accessible so that the 
method of modeling is more obvious. As in user in-
terface design, a well-designed model may be the one 
that needs least explanation (Nielsen and Loranger 
2006). 
 Another way of helping to ensure that end users 
understand conceptual models might be to make end 
users responsible for their own models. This would 
certainly reduce the risk of social loafing (Dennis et al 
2005). However, it would require modeling tech-
niques to be no more difficult than, say, building 
spreadsheets. It would also require a change in set by 
IT professionals, who may see modeling as a technical 
process that they must regulate (Bansler and Bødker 
1993). Modeling would have to be viewed instead as 
a user-controlled process in which the user’s own 
concepts, terminology and agenda were paramount. 

8. Appendix B: Business Concept  
Modeling (BCM) Technique 

BCM is a modeling technique whose subject matter is 
similar to that of E-R diagrams and UML class dia-
grams. However, BCM is more business-oriented and 
this is reflected in the information content of models. 
BCM relies for model representation and manipula-
tion on the use of a supporting software tool. One 
hallmark of BCM is its support for easy reuse of busi-
ness concept definitions; this means that it is rarely 
necessary to construct a new model completely from 
scratch.  
 By virtue of the supporting tool, BCM honors the 
error tolerance and isomorphism principles (see Appen-
dix A) using meaningful pictures to represent busi-
ness concepts and associating each business concept 
with an “innate type” (Table 16). The innate types 
consist of nine predefined categories, corresponding 
to commonly-understood ideas that we might expect 
most people to have. The list of innate types is com-
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parable with the “people, places, things and events” 
of object modeling (Bolloju 2004) and with upper on-
tologies based on philosophy or natural language 
(Everman 2005; Shanks, Tansley and Weber 2003).  

Table 16  BCM Innate Concept Types 

Concept type Represents Example 
Person Individual person Claims adjuster 
Organization Identifiable group of people Insurance company 
Activity Event, process or activity; something that happens Purchase 
Place Physical location Supermarket 
Physical object Concrete, physical object Car 
Document Information on paper or in electronic form Bank statement 
Category Way of grouping or classifying things Gender 
Idea   Conceptual object, information in abstract form Law 
System Technology such as computer-based IS Payroll system 

 
BCM partially honors the fuzzy categorization principle 
by allowing concepts to be freely associated and re-
associated with different types and with each other. 
This flexibility in concept definition also helps fulfill 
the brainstorming principle. In addition, color, texture 
and task variety are used to retain interest in accor-
dance with the arousal and attention principle.  

To meet the consistency principle, BCM allows each 
business concept in a model to be represented using a 
unique image. The modeler selects images from alter-
natives suggested by the tool (Figure 7). The images 
are semantically linked (thesaurus-style) so that the 
modeler can browse through associated terms to find 

potentially suitable images. This feature is especially 
useful since some concepts are best expressed 
through visual metaphors; semantic links allow users 
to find tangentially-related images which can often be 
used with a metaphorical relationship to the concept 
of interest.  
The requirement to use a distinct image for each con-
cept is an important one: apart from capitalizing on 
the power of preattentive processing it helps to meet 

the reinforcement principle, especially when support-
ing text is used (Figure 7). The images can include 
icons as well as any other graphics that the user 
would like to use. 
 Relationships are added to a model by placing im-
ages in windows; each window represents a distinct 
concept (visual chunking principle). Relationships be-
tween concepts are defined by the presence of images 
in windows rather than by lines or arrows. This capi-
talizes on the commonly-understood “containment” 
relationship between windows and icons; it is in-
tended to make model structure more intuitively un-
derstandable.  
 The example in Figure 9 illustrates relationships 
between three concepts: store, video tape and video loan; 
the three dots next to a concept indicate many whilst 
the absence of dots indicates one. The pointing hand 
indicates concepts that are most typically used to lo-
cate or select instances of the corresponding win-
dow’s concept (for example, a store can be located by 
store name). 

Figure 8  Choosing an Image 

Figure 9  Use of Images and Text to Represent 
C  



24 

 
Overall, BCM is designed to avoid the culture shock 
that many users experience when confronted by “box 
and arrow” notations. The images and familiar win-
dow-icon interface help fulfill the set principle. An 
English-language interpretation (Figure 10) provides 
an alternative, non-technical, way of understanding 
the model.  

Additionally, a form preview feature (Figure 11) lets 
users visualize the result of their model in the form of 
prototype form designs. The form preview feature 
applies heuristic algorithms to generate reasonably 
usable form layouts.  

For more advanced users, the BCM tool incorpo-
rates a hierarchical concept explorer, a model check-
ing facility and a UML-style class diagram view. The 

tool also allows models to be converted into working 
software applications automatically; the user chooses 
which platforms they want to run the application on. 
The tool currently supports Microsoft Access data-
bases and forms, Oracle databases and Java/J2EE 
web applications; Microsoft ASP and SQL Server 
have also previously been supported.  

9. Appendix C: Experimental Procedure 
The goal was to observe modelers in action and to 
analyze their performance as they developed models. 
To this end a number of modeling sessions were con-
ducted; each model was produced using either BCM 
or object modeling. Quantitative data was captured 
about each model and interpreted in the light of 
qualitative data gathered during the modeling ses-
sions using participant observation, questionnaires 
and interviews.  

9.1. Participants 
Ten of the models were produced by modelers in ses-
sions with groups of business end users (Justice and 
Jamieson 2006); group members were chosen accord-
ing to the relevance of their business knowledge and 
experience. Nine models were produced by individ-
ual modelers working alone, using their own business 
knowledge or consulting with users in interviews. All 
modelers were screened in advance for prior knowl-
edge of object or data modeling. They ranged from 
business people with little IT knowledge to an experi-
enced data analyst who was expert in object and data 
modeling (Table 6). None of the modelers had any 
prior knowledge of BCM. The possibility of knowl-
edge transfer between the two techniques was 

Figure 12  Form Preview 

Figure 11  English-Language Interpretation 

Figure 10  Relationships Between Concepts 
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avoided by exposing each participant to only one 
technique (except for the expert modeler, who used 
both).  

9.2. Method 
Each modeler constructed a model from scratch, re-
vising it in subsequent sessions until it was consid-
ered complete and correct. This process resulted in a 
series of versions for each of the nineteen models. 
Every version was numbered and dated; subject area, 
session time, venue and participants were recorded 
for each group session. When each modeler deemed a 
model to be complete it was inspected and any defi-
ciencies noted. A final “corrected” version of the 
model was produced by making the least disruptive 
changes required to bring the model into a correct 
state. This final version represented the baseline 
against which prior versions of the model would be 
compared. The correction process was repeated in an 
effort to help ensure an unbiased result.  
 Object modeling was supported for group sessions 
by whiteboard and overhead projector, and object 
models were rendered using the System Architect 
CASE tool outside of modeling sessions. BCM was 
supported by the specially-designed software tool in 
modeling sessions. 
 Each modeler received a 60-minute practical intro-
duction to the relevant modeling technique, followed 
by periodic reviews to assess progress and to assist 
where possible. To avoid uncertainty, the scope of 
each model was agreed in advance; modelers were 
told that the goal was to state data requirements for a 
database which would support the specified business 
area. As a starting point modelers were asked to think 
about (or get group members to talk about) their 
work and organizations and to identify relevant con-
cepts which would form the basis of their model. 
Questions about modeling technique were answered 
fully at all stages; however, modelers were not told 
specifically how to model their business areas. Since 
assistance was a potential source of bias, efforts were 
made to avoid giving greater assistance to one group 
of modelers over the other. 
 To help ensure a representative result, modelers 
were matched between groups (Table 17) and trian-
gulation was used between the quantitative data 
(from model analysis) and the qualitative data in 
which participant observation and interpretation 
played a key part. A secondary study was conducted 
for comparison. Care was taken to provide a fair and 

rigorous comparison between the two modeling 
techniques; preconceived ideas were ‘bracketed’ (Le-
Vasseur 2003). Reliability could also have been af-
fected by the number of participants in each model-
ing session, by the choice of participants, and by the 
time spent on each modeling session. Efforts were 
made to keep these factors constant between the two 
modeling techniques. 

Table 17  Distribution of Models by Experience Level and Technique 

Number of models  
Technique No experience Little experience Expert 
Object Modeling 2 3 5 
BCM 3 2 4 

9.3. Quantitative Measures 
Each model version was analyzed to determine the 
raw measures listed in Table 4. To help ensure reli-
ability, models were coded electronically; this al-
lowed them to be analyzed and compared automati-
cally by a specially-designed tool. The results were 
plotted graphically and this helped emergent patterns 
and correlations to be observed. It also permitted ex-
ploratory analysis; for example, graphs showing 
emergent relationships between model size and 
change rates were produced only after a number of 
alternative analyses were done. 

9.4. Qualitative Measures 
Qualitative results came from three main sources: 
questionnaires completed by modelers and group 
members, notes from interviews with modelers and 
observations by the researcher. Each participant was 
asked to complete an initial questionnaire; the aim 
was to determine attitudes and assumptions as well 
as prior knowledge of relevant areas such as business 
and requirements analysis. After each session, par-
ticipants commented in a further questionnaire about 
their impressions and understanding of the tech-
niques used. They rated the completeness and cor-
rectness of the models. The purpose was to establish a 
snapshot of participants’ thinking against which later 
results could be compared. In particular, this was in-
tended to allow subjective assessments of model qual-
ity to be compared with more objective measures 
from the analysis of models. Notes taken by the ex-
pert modeler also provided a qualitative record of the 
proceedings in group sessions. The modeler assessed 
each participant’s contribution as well as their specific 
areas of difficulty or clarity. 
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10. Appendix D: Questionnaire Responses 
from Group Members 

Analysis of responses was hampered by a rather low 
number of returned questionnaires. Overall, there 
seemed few qualitative differences between the re-
ported experiences of group members who used ei-
ther method; it is clear that participants generally un-
derstood the process they were part of.  
 Respondents who had created a database before 
were more likely to judge their models as complete 
and correct. The value of the sessions was rated more 
highly by those who had created databases before 
and those who were educated to diploma or degree 
level. Those who participated in a second (i.e. follow-

up) session were more likely to judge the model as 
complete and correct.  
 57% of those with experience of creating a database 
were able to correctly state the purpose of the ses-
sions whereas only 25% of those without experience 
could identify the purpose of the modeling sessions. 
Participants who had never created a database were 
more likely to state the purpose of the sessions as 
modeling processes rather than data, suggesting that 
creating a database provides insight into the reasons 
for modeling. Respondents who correctly identified 
the purpose of the modeling session were more likely 
to judge the models as complete and correct and to 
rate the sessions as valuable. 

 1 


