
A Programming Model for Mobile, Context-Aware

Applications

Gregory Biegel

A thesis submitted to the University of Dublin, Trinity College

in fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

October 2004

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or any

other University, and that unless otherwise stated, it is entirely my own work.

Gregory Biegel

Dated: May 19, 2005

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Gregory Biegel

Dated: May 19, 2005

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor, Prof. Vinny

Cahill, for the invaluable expertise, interest, patience, and encouragement that he has invested

in me over the past four years. Throughout my time in Dublin, Vinny has provided me with

exceptional assistance and guidance in every respect, his faith in my ability never waning,

even when my own did. I would also like to thank him for his expert arrangement of funding

and adept management of the research group, allowing myself and others to concentrate on

research.

To all of my colleagues in the Distributed Systems Group, I would like to say a huge thank

you for the contributions made to this thesis, both direct and indirect, as well as for all the

interesting debates, discussions, and fun over the years - being in DSG has been the highlight

of my education, and about so much more than just distributed systems. I am especially

grateful to Mélanie Bouroche for her patient and expert assistance with the sentient couch,

to Neil O’Connor for his masterful help with the sentient car, and to Dr. René Meier for

always making himself available to answer my questions on event systems. Thank you too

to the rest of the F.32 lab, Dr. Raymond Cunningham, Barbara Hughes, Peter Barron, and

Vinny Reynolds, for making it such a cool place to come to every morning. Thanks also go

to all members of the CORTEX team within DSG for hours of fruitful discussions, as well

as to the European project partner institutions I have had the privilege of working with and

learning from.

To my parents half the world away in Zimbabwe, and my sister many thousands of miles

away in Australia, thank you for the endless love, support, and optimism you have selflessly

provided, despite facing your own challenges. Your strength is an inspiration.

iv

The Beit Trust made it possible for me to come to Ireland in the first place through the

generosity of a fellowship award, and I will always be grateful to the trustees for their faith

in me, and for giving me the opportunity and rare privilege of attending one of the finest

universities in Europe.

Last, but by no means least, thank you Hannah for the continuous love, patience, and

understanding you have shown in the time it has taken me to complete this research.

Gregory Biegel

University of Dublin, Trinity College

October 2004

v

Abstract

Continuing advances in hardware miniaturisation and networking technologies have con-

tributed to the widespread deployment of a range of mobile computing devices. Ad hoc com-

munication between mobile devices enables the deployment of networks anywhere, without

the need for pre-installed infrastructure. In contrast to the traditional stationary, desktop-

bound model of computing, mobile computing applications experience frequent changes in

location and execution environment, i.e., their context. At the same time, advances in minia-

turization, and cost-effective fabrication of sensor technology, have led to the emergence of

small, low-cost sensors, enabling applications to measure a host of environmental parame-

ters. These advances have led to the emergence of a new class of application which may

dynamically alter their behaviour based on the execution environment, as perceived through

sensor input, in a computing paradigm known as context-aware computing. In addition to the

complexity introduced by the dynamic nature of ad hoc networks, context-awareness raises a

further set of challenges related to the acquisition and fusion of sensor data and the inference

of appropriate behaviours.

Existing mobile context-aware applications tend be built in an application-specific man-

ner and there is a lack of a generic, and commonly-accepted, programming model that may

be applied across the domain. As a result, such applications remain difficult to build and

deploy, with developers often having to deal with low-level issues not directly related to ap-

plication development. Whilst a small number of approaches to supporting the development

of such applications deal with the abstraction of low-level sensor data, there remains no

generic programming model providing systematic support to the developer for the capture,

representation, and use of context data.

vi

This thesis describes a model for the development of context-aware applications in mobile

ad hoc environments known as the sentient object model. A domain-specific programming

model is developed, based on a set of high-level abstractions defined within the sentient

object model, that provides a systematic approach to developing context-aware applications

in mobile, ad hoc environments. The programming model supports the developer in the areas

of sensor and actuator abstraction, sensor fusion and intelligent inference for applications

operating in a mobile ad hoc communication environment.

In addition, this thesis describes a high-level graphical programming tool based on the

sentient object model that exposes the programming model in an intuitive graphical manner,

significantly reducing the need for the developer to write low-level syntax and aiding the

rapid development of applications, through its code-generation ability.

The main contribution of this thesis is the provision of a domain-specific programming

model that aids in the development of context-aware applications, in mobile ad hoc environ-

ments. The programming model assists in the realisation of a vision of pervasive computing

by easing the development of mobile, context-aware applications and making application

development accessible to a wider range of developers.

We validate our contribution through practical application of the programming model

to representative context-aware applications. These applications illustrate how the sentient

object model is applied in practice and validate the contribution of the model in easing the

complexity of developing mobile, context-aware applications.

vii

Publications Related to this Ph.D.

1. Aline Senart, Mélanie Bouroche, Gregory Biegel and Vinny Cahill A Component-based

Middleware Architecture for Sentient Computing Workshop on Component-oriented

approaches to Context-aware computing, ECOOP ’04, Oslo, Norway, June 14 2004

2. Maomao Wu, Adrian Friday, Gordon Blair, Thirunavukkarasu Sivaharan, Paul Okan-

daj, Hector Duran-Limon, Carl-Fredrik Sørensen, Gregory Biegel and René Meier

Novel Component Middleware for Building Dependable Sentient Computing Applica-

tions Workshop on Component-oriented approaches to Context-aware computing, EC-

OOP ’04, Oslo, Norway, June 14 2004

3. Gregory Biegel and Vinny Cahill A Framework for Developing Mobile, Context-aware

Applications in Proceedings of 2nd IEEE Conference on Pervasive Computing and Com-

munications, Percom 2004, Orlando, FL, March 14-17 2004

4. Gregory Biegel and Vinny Cahill Sentient Objects: Towards Middleware for Mobile,

Context-aware Applications European Research Consortium for Informatics and Math-

ematics, ERCIM News No. 54, July 2003

5. Vinny Cahill and Gregory Biegel Sentient Objects for Context-aware Business Process

Management 2003 SAP Innovation Congress, Miami, Florida February 2003

6. Adrian Fitzpatrick, Gregory Biegel, Siobhán Clarke and Vinny Cahill Towards a Sen-

tient Object Model Position Paper Workshop on Engineering Context-Aware Object

Oriented Systems and Environments (ECOOSE), Seattle WA, USA November 2002

viii

Contents

Acknowledgements iv

Abstract v

List of Tables xix

List of Figures xxi

Chapter 1 Introduction 1

1.1 Pervasive computing . 1

1.2 Pervasive computing as environmental interaction 2

1.2.1 Context . 3

1.3 Aims and objectives . 5

1.4 The sentient object model . 6

1.5 Contribution . 6

1.6 Roadmap . 7

Chapter 2 Overview of the Research Area 9

2.1 Mobile computing . 9

2.1.1 Characteristics of mobile computing 11

Bandwidth and latency . 11

Resource poverty . 13

Address and locality migration . 13

ix

Security . 14

2.1.2 Mobile network models . 15

The infrastructure model . 15

The ad hoc model . 15

2.2 Context-aware computing . 17

2.2.1 Definition of context . 18

2.2.2 Definition of context-awareness . 19

2.2.3 A working definition of context . 21

2.2.4 The role of proximity . 22

2.2.5 Challenges to developing context-aware applications 23

Capture of context data . 23

Uncertainty of context data . 24

Representation of context data . 26

Privacy . 26

Scalability . 26

Synchrony . 27

Extensibility and reusability . 28

Summary . 28

2.3 Supporting development of mobile, context-aware systems 29

2.3.1 Loosely coupled communication . 29

Event-based communication . 30

2.3.2 Sensor abstraction . 30

2.3.3 Sensor fusion . 31

Mono-modal sensor fusion . 31

Multi-modal sensor fusion . 32

2.3.4 Context representation . 33

Key-value pairs . 33

Tagged encoding . 33

Object-oriented . 34

x

Logic-based . 35

2.3.5 Inference . 35

Rule-based systems . 36

Machine learning . 37

2.3.6 Actuator abstraction . 38

2.3.7 Developer support . 39

2.3.8 Requirements . 41

2.4 Summary . 42

Chapter 3 State of the Art 43

3.1 Scope of this review . 43

3.2 Stick-e note Architecture . 44

3.2.1 Analysis . 44

3.3 Mobile Computing in Fieldwork Environments (MCFE) 45

3.3.1 Analysis . 46

3.4 SPIRIT project (Bat Ultrasonic Location System) 47

3.4.1 Analysis . 48

3.5 The Context Toolkit . 49

3.5.1 Analysis . 51

3.6 Technology for Enabling Awareness (TEA) 52

3.6.1 Analysis . 53

3.7 Multi-Use Sensor Environments (MUSE) . 54

3.7.1 Analysis . 55

3.8 Context Based Reasoning (CxBR) . 56

3.8.1 Analysis . 59

3.9 GUIDE . 59

3.9.1 Analysis . 60

3.10 Context Fabric . 60

3.10.1 Analysis . 62

3.11 Target Recognition using Image Processing (TRIP) 63

xi

3.11.1 The Sentient Information Framework 64

3.11.2 Event-Condition-Action (ECA) Rule Matching Service 65

3.11.3 Analysis . 66

3.12 Gaia . 67

3.12.1 Context Model . 68

3.12.2 Context Infrastructure . 69

3.12.3 Analysis . 70

3.13 Solar . 71

3.13.1 Solar architecture . 71

3.13.2 Analysis . 72

3.14 Observations . 73

3.14.1 Existing support for requirements . 74

3.15 Summary . 75

Chapter 4 The Sentient Object Model 76

4.1 Introduction . 76

4.2 Loosely coupled communication . 78

4.2.1 Scalable Timed Events and Mobility (STEAM) 80

Proximity groups . 82

Limitations of STEAM . 83

4.2.2 Fulfillment of Requirement 1 . 83

4.3 Sensor abstraction . 84

Real-world events . 86

Sensor processing . 86

Software events . 87

4.3.1 Fulfillment of Requirement 2 . 87

4.4 Actuator abstraction . 87

Software events . 88

Actuator processing . 89

Real-world events . 89

xii

4.4.1 Fulfillment of Requirement 6 . 89

4.5 Sentient objects . 90

4.5.1 Data capture and fusion . 91

Event filtering . 91

Sensor fusion . 92

Bayesian networks for sensor fusion in sentient objects 97

Example . 99

Fulfillment of Requirement 3 . 101

4.5.2 Context hierarchy . 102

Sensor fusion and the context hierarchy 106

Fulfillment of Requirement 4 . 107

4.5.3 Inference engine . 107

Context representation . 108

Inference and the context hierarchy . 109

Event production . 110

Fulfillment of Requirement 5 . 110

4.5.4 Developer support . 111

Fulfillment of Requirement 7 . 111

4.6 Summary . 111

Chapter 5 A Programming Tool for Mobile, Context-Aware Applications 112

5.1 Implementation considerations . 112

5.1.1 Event middleware . 113

5.2 Sensor development . 114

5.2.1 Sensor descriptor . 114

5.3 Actuator development . 116

5.3.1 Actuator descriptor . 117

5.4 Sentient object definition . 118

5.4.1 Input events . 118

5.4.2 Context hierarchy . 119

xiii

5.4.3 Sensor fusion network . 120

5.4.4 Output events . 121

5.4.5 Inference rules . 122

Transition rules . 122

Behavioural rules . 123

5.4.6 Object descriptor . 124

5.5 Code generation . 125

5.5.1 Sentient object . 125

5.5.2 Contexts . 128

Event consumption . 128

Context representation . 128

5.5.3 Sensor fusion . 130

5.5.4 Inference rules . 131

Temporal validity of context data . 133

5.5.5 Object descriptor . 134

5.5.6 Runtime flow of control in a generated object 134

5.6 Code generation within the sentient object model 135

5.6.1 Advantages . 135

Quality . 136

Consistency . 136

Productivity . 136

Abstraction . 136

Customisable . 137

5.6.2 Drawbacks . 137

Limited flexibility . 137

Maintenance . 137

Narrow applicability . 138

5.7 Summary . 138

xiv

Chapter 6 Applications and Evaluation 139

6.1 Sentient psychiatric couch . 140

6.1.1 System overview . 141

Previous implementation . 142

6.1.2 System design . 143

6.1.3 Sensors . 143

Load cell sensor . 144

Keyboard sensor . 146

6.1.4 Actuators . 147

Speech actuator . 147

6.1.5 Couch sentient object . 147

Data capture and fusion . 148

Context hierarchy . 150

Inference engine . 152

Output events . 155

6.1.6 Recogniser sentient object . 156

Data capture and fusion . 156

Context hierarchy . 156

Inference engine . 157

Output events . 158

6.1.7 Extending the application . 158

6.1.8 Comparison with existing implementation 159

Code size . 159

Decoupling of components . 160

Extensibility . 160

Maintenance . 160

6.1.9 Development challenges . 160

A ’living’ environment . 161

Privacy . 161

xv

6.1.10 Perspective . 161

6.2 Sentient vehicle . 162

6.2.1 System overview . 162

Forward obstacle detection . 162

Forward obstacle avoidance . 163

Traffic signal obeyance . 163

Autonomous navigation . 163

6.2.2 System design . 164

6.2.3 Sensors . 165

Distance sensor . 165

Location sensor . 165

Traffic light sensor . 166

Heading sensor . 166

6.2.4 Actuators . 166

Vehicle movement actuator . 167

6.2.5 Vehicle sentient object . 167

Data capture and fusion . 168

Context hierarchy . 168

Inference engine . 170

Custom behaviour . 172

Incorporating custom behaviour . 172

Output events . 174

6.2.6 Evaluation . 174

Ease of development . 175

Accessibility . 176

Extensibility . 176

Heterogeneity . 177

Reusability . 177

Ad hoc interaction . 177

xvi

Proximity based communication . 178

Sensor fusion . 178

6.2.7 Perspective . 178

Extending the application . 179

6.3 Applicability of the approach . 179

6.3.1 Requisite abilities . 179

6.3.2 Applicability to other types of application 181

6.3.3 Limitations of the approach . 182

6.4 Summary . 183

Chapter 7 Conclusion 184

7.1 Contribution . 184

7.2 Future work . 186

Appendix A DTD for a sentient object XML descriptor 188

Appendix B Example components 190

B.1 Actuator . 190

B.1.1 SMTP actuator . 190

B.1.2 SMTP actuator delivery callback . 190

B.2 Sensor . 191

B.2.1 Barcode sensor . 191

Appendix C Sentient couch application 194

C.1 Hardware . 194

Appendix D Sentient vehicle application 196

D.1 Hardware . 196

SRF08 Ultrasonic range finder . 196

OOPIC-R microcontroller . 199

HP iPAQ 5550 . 199

xvii

Magellan GPS receiver . 200

Electronic compass . 200

D.2 Navigational formulae . 200

D.2.1 Distance between two points . 201

D.2.2 Bearing between two points . 201

D.3 Experimental setup . 202

D.3.1 Forward obstacle avoidance . 202

Sensor fusion . 203

D.3.2 Traffic signal obeyance . 206

D.3.3 Waypoint navigation . 206

D.3.4 Testing and debugging the application 207

Bibliography 208

xviii

List of Tables

2.1 Comparison of bandwidth in wired and wireless networks 11

2.2 Categories of context-aware applications [SAW94] 20

3.1 Features provided by state-of-the-art approaches to developing mobile, context-

aware applications . 74

4.1 Conditional probability table for Node X1 in Figure 4.8 101

6.1 Format of PT650D reading . 144

6.2 Example 18 byte PT650D reading indicating a mass of 1234.56 kg (overload) 145

6.3 Event types produced by LoadCellSensor . 145

6.4 Event type produced by KeyboardSensor . 147

6.5 Event types consumed by SpeechActuator . 148

6.6 Conditional probability table for Node B in Figure 6.5 153

6.7 Event type produced by SentientCouch object 155

6.8 Schema of the Couch table . 156

6.9 Event type produced by DistanceSensor . 165

6.10 Event type produced by LocationSensor . 166

6.11 Event type produced by TrafficLightSensor . 166

6.12 Event type produced by HeadingSensor . 166

6.13 Event type consumed by CarMovementActuator 167

6.14 Conditional probability table for Nodes B, C and D in Figure 6.10 170

xix

B.1 Event type consumed by SMTPActuator . 190

B.2 Event type produced by BarcodeSensor . 191

C.1 Characteristics of the LPX 100 load sensor 195

D.1 Devantech SRF08 characteristics . 197

D.2 Devantech SRF08 registers . 198

xx

List of Figures

2.1 A mobile, ad hoc network consisting of three nodes 16

2.2 Quantisation of an analog signal to a digital signal 24

2.3 Inherent uncertainty in an ultrasonic range finder reading 25

2.4 Architecture of a rule based system adapted from [FH03] 36

3.1 Context Toolkit components and their relationships 50

3.2 Layered architecture of TEA system [SAT+99] 52

3.3 MUSE fusion service Bayesian network . 56

3.4 A CxBR context hierarchy . 57

3.5 CxBR system diagram [GA99] . 58

3.6 Architecture of the context fabric [Hon00] . 62

3.7 The SIF architecture [dIn00] . 64

3.8 The ECA Server system [dInK01] . 66

3.9 Gaia Context Infrastructure [RC03a] . 68

3.10 An example Solar operator graph . 72

3.11 Solar architecture [CK02c] . 73

4.1 STEAM event model (adapted from [Mei03]) 81

4.2 Event dissemination bounded by proximity in STEAM 82

4.3 A sensor component . 85

4.4 An actuator component . 88

4.5 The sentient object model . 90

xxi

4.6 An example Bayesian network . 95

4.7 A Bayesian fusion network . 98

4.8 An example fusion network fusing the output of three sources of identity data 100

4.9 The context hierarchy . 104

4.10 Sensor fusion in the context hierarchy . 106

5.1 Support for sensor descriptor definition . 115

5.2 The main interface to the programming tool 118

5.3 Context definition screen . 119

5.4 Event filter definition screen . 120

5.5 Fusion network specification . 121

5.6 Transition rule definition screen . 123

5.7 Behavioural rule definition screen . 124

5.8 Major components of a generated sentient object 126

5.9 Flow of control at runtime in a generated sentient object 135

6.1 Sentient couch system design . 143

6.2 Possible weight distributions on the couch . 150

6.3 Context hierarchy for the sentient couch . 151

6.4 Context determination based on load sensing, showing a subset of potential

contexts . 152

6.5 Sensor fusion network for major context In Use 153

6.6 Context hierarchy for the recogniser sentient object 157

6.7 Sentient vehicle system design . 164

6.8 Configuration of the sentient vehicle application 168

6.9 Context hierarchy for vehicle sentient object 169

6.10 Sensor fusion network for major context Avoid obstacle 170

6.11 Waypoint acquisition . 173

C.1 LPX 100 industrial load sensor . 194

C.2 The sentient couch in use . 195

xxii

D.1 Devantech SRF08 ultrasonic range-finder . 197

D.2 OOPic-R microcontroller board . 198

D.3 2 SRF08 sensors connected to an OOPic-R microcontroller via an I2C bus

[O’C04] . 199

D.4 Magellan GPS receiver . 200

D.5 Sentient vehicle hardware . 202

D.6 Configuration of forward facing ultrasonic sensors 203

D.7 Experimental setup to determine prior probabilities for forward facing sonar

sensors . 204

D.8 Obstacle positions tested in experiments . 205

D.9 Waypoint navigation course . 206

D.10 Car debug interface . 207

xxiii

Listings

5.1 Sensor base class . 114

5.2 DTD for an XML sensor descriptor . 115

5.3 Actuator base class and ActuatorDeliveryCallback base class 117

5.4 DTD for an XML actuator descriptor . 117

5.5 A generated Java bean representing an event of type Mass 129

5.6 A generated delivery callback for event of type Mass 130

5.7 A generated fusion network in EBayes format 132

5.8 Example of a generated behavioural rule . 133

6.1 Smoothing function in load cell sensor . 145

6.2 XML descriptor for a load cell sensor . 146

6.3 XML descriptor fragment for a speech actuator 148

6.4 Event delivery updates a Java Bean representing a shadow fact 149

6.6 Generated transition rule for the transition In Use-Bottom 154

6.5 Generated behavioural rule for sub context Bottom 154

6.7 Fusion rule calculating total and average mass on couch 155

6.8 Generated behavioural rule in sub context Request Registration 157

6.9 Transition rule for the transition Unknown Person-Request Registration 158

6.10 Generated behavioural rule for sub context Left turn 171

6.11 Generated transition rule for the transition Avoid obstacle-Left turn . . . 171

6.12 Custom rule written to access a navigation helper class 173

6.14 Algorithm to determine which direction to turn to acquire waypoint 174

6.13 Transition rule to acquire a waypoint . 174

xxiv

A.1 DTD for an XML sentient object descriptor 189

B.1 SMTPActuator.java . 191

B.2 SMTPActuatorDeliveryCallback.java . 192

B.3 BarcodeSensor.java . 193

xxv

Chapter 1

Introduction

There remains no generic and commonly-accepted programming model supporting the re-

quirements for the development of context-aware computing applications in mobile, ad hoc

environments, resulting in the continuing adoption of impromptu, application-specific ap-

proaches by application developers.

This thesis describes a programming model that is specifically designed to support and

ease the development of context-aware applications in mobile, ad hoc environments, making

the development of such applications accessible to a wider audience, and in the process aiding

in the realisation of the vision of pervasive computing [Wei91].

This introductory chapter explores the origins of pervasive computing and the importance

of context-awareness as a subset of pervasive computing. The aims and objectives of the thesis

are outlined, and our contribution defined.

1.1 Pervasive computing

There have been a number of clearly discernible eras in the field of computing since the

development of modern electronic computers in the 1940s. The first era was characterised by

large mainframe-based computing, leading up to the minicomputers of the 1960s and early

1970s. The development of the microprocessor in 1971 began what can only be described as

a revolution in the industry characterised by the emergence of the personal computer in the

1

Chapter 1. Introduction

1980s. As Saffo noted [Saf97], up until the 1990s the industry was defined by processing of

data by independent machines. The next discernible era was one of access to information

via the global Internet, precipitated by cheap lasers delivering large quantities of bandwidth

[Saf97] and the development of the Hypertext Markup Language (HTML) [BLC95] and the

Hypertext Transfer Protocol (HTTP) [BLFF96], enabling global deployment of the World-

Wide Web, as the favourite application of the Internet. The new millennium has witnessed

the emergence of mobile computing symbolized by compact, portable devices networked via

wireless communication interfaces. Mobile computing is still primarily concerned with access

to information, addressing inherent challenges such as security and resource-poverty.

A new era is now emerging, both driven by and dependent on mobile computing. This

era is variously termed pervasive [Sat01, NAU93], ubiquitous [Wei91], or invisible [Bor00]

computing and may be defined as the saturation of the physical environment with computing

and communication ability and the graceful integration of these systems with human users

[Sat01]. As such, pervasive computing is predicated on the universal availability of vast

numbers of cheap and compact devices, both mobile and stationary, dispersed throughout the

physical environment. A variety of very similar interpretations of pervasive computing have

been made, but it is commonly accepted within the research community that the field lies at

the intersection of hardware miniaturisation and networking. A number of research challenges

exist in the broad field of pervasive computing, but this thesis is primarily concerned with

the interaction of computers with their physical environment. Interaction in this sense is

defined as awareness of the physical environment via sensors, combined with actuation on the

environment via actuators, in a context-aware manner. We envisage such interaction taking

place opportunistically via mobile ad hoc networks operating in a dynamic environment.

1.2 Pervasive computing as environmental interaction

There are a number of factors that contribute to the perceived importance of interaction

with the environment in the emerging field of pervasive computing. First and foremost,

saturation of the environment with computing devices make environmental parameters an

important system input and enables applications to be aware of the context in which they

2

Chapter 1. Introduction

operate. The importance of environmental awareness is truly realised when we consider

mobility and consequently a rapidly changing environment. Whereas stationary desktop

computers of the last era operated in a constant physical environment, rarely if ever changing

location, administrative domain, or proximity to other devices, the opposite is true of mobile

devices. Ad hoc mobility causes rapid changes in execution environment and awareness of

these changes can be used to enhance the flexibility, adaptiveness, effectiveness, and efficiency

of existing applications, whilst making a host of new applications possible, e.g., [SSF+03].

Furthermore, although the value of environmental awareness is realised in mobile computing,

the mechanisms by which it is achieved are due to recent progress in the miniaturisation

and fabrication of sensor components. Advances in manufacturing processes leading to low

cost-to-performance ratios coupled with novel signal processing methods and high-speed,

low-cost electronic circuits have provided cheap, compact sensors able to measure a range of

environmental parameters [TK01].

In addition to sensing of the environment, devices may also be provided with a means to

effect environmental changes via electro-mechanical actuators, enabling true environmental

interaction. Associated advances in the fabrication of components including piezo materials

and Micro-Electro-Mechanical Systems (MEMS), have led to the growing emergence of cheap

and compact actuators.

1.2.1 Context

A central tenet of pervasive computing is that the computing infrastructure should fade

into the background of consciousness and become part of the environment [Wei91]. Current

infrastructure clearly falls well short of this goal with a great deal of explicit input still required

from a small set of devices (e.g., mouse and keyboard). For infrastructure to truly fade into the

background, application components which act autonomously and proactively based solely on

the acquisition of information from the environment and their own knowledge, are necessary.

Context is the commonly accepted term used to describe the state of the environment in

which an application operates and in order to be minimally intrusive, an application needs to

be context-aware, defined as the ability to sense and react to context. Context is potentially

3

Chapter 1. Introduction

made up of a number of attributes describing location, identity, activity, bandwidth, power

and a host of other parameters. Extensive treatment of the definition of both context and

context-awareness are offered in section 2.2.1.

Existing context-aware applications typically rely on a set of sensors that deliver infor-

mation gathered from the environment, to the application. Many applications, e.g., Active

Badge [HH94], FieldNote [RJD99], and GUIDE [DMCF99] rely exclusively on location sen-

sors to influence application behaviour, whilst other applications such as TRIP [dIn99], and

Smart-Its [GSB02], use multiple, heterogeneous sensors to measure the environment. Such

applications are challenging to develop, requiring developers to interact with low-level sensor

protocols, and devise schemes to fuse sensor data, in addition to writing application logic.

Several approaches have been proposed to ease the development of context-aware appli-

cations, predominantly through abstracting away from the complexity of low-level heteroge-

neous sensors. Most notable amongst these is the Context Toolkit [SDA99], which separates

context acquisition from the rest of the application, through abstractions known as context

widgets. Other approaches, such as Gaia [RHC+02], provide support for sensor fusion and

intelligent inference in addition to sensor abstraction. A significant disadvantage of exist-

ing approaches to supporting context-aware applications is that although interaction with

sensors is simplified, the application developer still has to know the source of sensor data

at development time. In mobile ad hoc networks, this assumption that the identities and

addresses of various data sources is known in advance does not hold, and consequently such

applications require a highly decoupled communication method [PRJ04].

In addition, current approaches to supporting the development of context-aware appli-

cations have a disproportionate focus on environmental sensing, neglecting actuation on the

environment and rather focusing exclusively on the manipulation of user interfaces. The re-

alisation of technology which truly fades into the background indicates a more autonomous

style of interaction is required, with less emphasis on user interaction.

Despite the maturity and availability of enabling technologies, the development of per-

vasive computing applications remains a highly application-specific process, with a lack of

systems and services support and no generally-accepted programming model available. This

4

Chapter 1. Introduction

thesis recognises existing limitations and proposes a programming model providing systematic

support for the development of context-aware applications in mobile, ad hoc environments.

1.3 Aims and objectives

The broad aim of this thesis is to provide a generic programming model to support the

development of context-aware pervasive applications in mobile, ad hoc environments. We

propose that awareness of the environment via sensors coupled with environmental interaction

via actuators together constitute context-awareness as the basis of pervasive computing.

Furthermore, we assert that pervasive computing is both predicated on, and dependent upon,

mobile, ad hoc networks of devices. Static and infrastructure-based networks neither have the

flexibility to support dynamic interactions between devices, nor provide the mobility patterns

that make the physical environment an important input to the system.

In order to achieve our aim, we have identified a number of characteristics of applications

that should be supported by our model:

• Sentience. The model should support development of applications with the ability to

perceive the state of the surrounding environment through diverse, multi-modal sensors.

• Decentralisation. The model should support inherently distributed applications with

no centralised processing or control.

• Extensibility. The model should be extensible, implying loose coupling between com-

ponents and an ability to easily incorporate additional functionality.

• Scalability. The ability for applications to scale to the very large and dynamic numbers

of devices envisaged in pervasive environments should be provided by the model.

• Usability/applicability. Pervasiveness implies popular adoption and consequently im-

plementations of the model should be powerful enough to enable sophisticated applica-

tion and yet remain usable to ensure accessibility to a wide audience.

5

Chapter 1. Introduction

1.4 The sentient object model

In this thesis, we describe a generic object model for the development of context-aware

applications in mobile, ad hoc environments. This model is known as the sentient object

model and is based on sentient objects - mobile intelligent software components that accept

input from a variety of different sensors and interact with the environment via a variety of

actuators. The sentient object model was proposed within the CORTEX1 project, which also

examined other aspects of pervasive computing in real-time environments.

The sentient object model defines software abstractions that ease the use of sensor in-

formation, and associated actuation by context-aware applications. The model provides a

systematic approach to the challenges of context capture, fusion, representation, intelligent

inference, and actuation.

The challenges introduced by ad hoc mobile computing environments in particular, are

addressed by the use of an event-based communication mechanism, which does not rely on

centralised control and provides loose coupling between objects, supporting object mobility

and application evolution.

1.5 Contribution

Within this thesis we have developed a programming model that supports the development

of context-aware pervasive applications in mobile, ad hoc environments. Our programming

model develops the sentient object model, as an architectural model for mobile, context-aware

applications, and provides a graphical application development tool, easing the development

of applications based on the sentient object model. Our programming model supports the

application developer in the following key ways:

• It provides abstractions for sensors and actuators, thus relieving the developer of the

burden of low level interaction with various hardware devices.
1The CORTEX (CO-operating Real-time senTient objects: architecture and EXperimental evaluation)

project is supported by the Future and Emerging Technologies programme of the Commission of the European
Union under research contract IST-FET-2000-26031, http://cortex.di.fc.ul.pt

6

Chapter 1. Introduction

• It provides a probabilistic mechanism for fusing multi-modal fragments of sensor data

together in order to derive higher-level context information.

• It provides an efficient approach to intelligent reasoning based on a hierarchy of contexts.

• It provides an event-based communication mechanism, designed for mobile ad hoc net-

works, for interaction between sensors, objects and actuators.

• It provides an easily accessible visual programming tool for developing applications

reducing the need to write code.

The programming model fulfills the two major goals recently identified by Dey and Sohn

[DS03] as being necessary for the successful development of ubiquitous, context-aware appli-

cations, namely:

1. Applications are easier to design, prototype and test, supporting a faster iterative de-

velopment process.

2. Designers and end-users are empowered to build their own applications.

The main contribution of the thesis is the provision of generic support for the development

of context-aware applications in mobile ad hoc environments. Our programming model pro-

vides a systematic approach to application design and implementation, and in doing so, aids

the realisation of the vision of truly pervasive computing by significantly easing application

development, and making it accessible to a wider audience.

1.6 Roadmap

The remainder of this thesis is organised as follows. Chapter 2 gives an overview of the area

in which the research is performed, providing necessary background and introduces a set

of requirements for supporting development of mobile, context-aware applications. Chapter

3 describes state-of-the-art approaches to supporting the development of such applications,

analysing the extent to which they implement the requirements identified in Chapter 2.

7

Chapter 1. Introduction

Chapter 4 introduces our architectural model, the sentient object model, and describes it in

detail. Chapter 5 describes the implementation of a graphical programming tool based on the

sentient object model. In Chapter 6 we evaluate our model by applying it to the development

of representative applications. Finally, Chapter 7 concludes and details open questions and

opportunities for further research.

8

Chapter 2

Overview of the Research Area

This chapter provides an overview of the research area with which this thesis is concerned.

The intention is to provide a background for the discussion of related work in Chapter 3, and

the programming model presented in Chapter 4.

Mobile computing is introduced as an important technology underlying context-aware

computing due to the fact that mobility causes frequent and interesting changes in applica-

tion context, which may be used to proactively influence application behaviour. The chal-

lenges posed by mobile computing in general are characterised with respect to application

development, and the importance of mobile, ad hoc networking in the realisation of pervasive

computing is outlined, as well as the challenges imposed by this form of communication.

An extensive treatment of context and context-awareness, as well as discussion of the

important issues arising in the development of context-aware applications follows. Based on

this discussion, a set of requirements for the provision of generic support for the development

of context-aware applications for mobile ad hoc environments, is derived.

2.1 Mobile computing

The remarkable advances made in the last decade in the fields of portable computers and

wireless communications precipitated what is generally accepted as a major advance in in-

formation technology, namely, the emergence of mobile computing. The continuing relentless

9

Chapter 2. Overview of the Research Area

advance towards ever smaller and more powerful devices enabled by faster microprocessors,

more memory and greater storage at a greater economy is matched by an increase in the

bandwidth and global coverage of wireless networks, leading to increased interconnection

between devices. We define mobile computing as networked computing that uses common

carrier frequencies to permit wireless devices to move within the broadcast coverage area

whilst remaining connected to the network. Additionally, we constrain our definition of mo-

bile computing to on-line mobile computing, that is computing dependent on a real-time,

live, network connection1, with short periods of disconnected operation.

Although truly pervasive computing could conceivably be realised to some degree through

widespread deployment of fixed computing and networking technology, we take the view that

this is highly unlikely, due to two major considerations. Firstly, the cost of deploying fixed

ubiquitous networking infrastructure throughout the environment is prohibitive, and secondly

it would be physically impossible to network mobile entities such as vehicles and aircraft in

this way. Current trends indicate the increasingly widespread adoption of wireless networking

between mobile devices, and we believe future advances in pervasive computing will be based

predominantly on mobile computing. Furthermore, we believe that these advances will be

based on ad hoc mobile networks, obviating the need for extensive deployment of gateway

infrastructure.

Additionally, in a consideration biased towards context-aware computing as a subset of

pervasive computing, mobility causes frequent changes to the context in which an applica-

tion executes. In marked contrast to stationary systems, mobile systems may experience

rapid changes in location, administrative domain, bandwidth availability and economy, tem-

perature, speed, proximity to other devices, and a host of other environmental parameters.

Related to this consideration is the fact that awareness of the dynamic execution context by

an application on a mobile device allows the application to initiate specific activity, for in-

stance, reallocation of resources. As a result, mobile computing environments exhibit a range

of characteristics that both challenge the developer of applications for such environments, as

well as providing a source of input to applications that may be used to control behaviour.
1In contrast to off-line processing on mobile devices coupled with intermittent synchronisation of data at

points of connectivity.

10

Chapter 2. Overview of the Research Area

Network type Nominal bandwidth
Wired Gigabit Ethernet 1000 Mbps

Fast Ethernet 100 Mbps
DSL 1.5 Mbps

Wireless IEEE 802.11b (2.4 GHz) 11 Mbps
Bluetooth to 1 Mbps †
GPRS 0.056 Mbps ‡

Table 2.1: Comparison of bandwidth in wired and wireless networks
†Raw data rate

‡Nominal bandwidth at mobile speeds

2.1.1 Characteristics of mobile computing

Mobile computing poses a set of fundamental technical challenges to software design stemming

primarily from the use of wireless communication (limited bandwidth), the ability to change

locations (address management), and the need for portability of the device (resource con-

straints). There has been extensive research carried out in the field of mobile computing and

the challenges posed therein have been understood for some time [IB92, Duc92, FZ94, Sat96].

As Badrinath et al. note, although these constraints are becoming less noticeable, the porta-

bility of mobile devices will always induce additional constraints relative to stationary com-

puting [BW95].

Bandwidth and latency

The wireless networks on which mobile computing is predicated invariably provide less band-

width than wired networks. By way of comparison, widely deployed fast Ethernet (100 Mbps)

provides bandwidth almost ten times that of consumer grade wireless networking technology

(11 Mbps). Table 2.1 illustrates the difference in bandwidth available in wired and wire-

less networks by listing the nominal bandwidth of a subset of wired and wireless network

technologies. In practice, the bandwidth available on wireless channels is often less than the

nominal rate due to interference on the channel.

Limited bandwidths may be effectively further reduced by high latency, defined as the

11

Chapter 2. Overview of the Research Area

temporal delay between the transmission of data and its reception. Wireless networks typ-

ically have a high degree of latency, due to factors such as radio interference, and the fact

that network protocols are often optimised for wired networks. For instance, the Transmis-

sion Control Protocol (TCP) [(Ed81b] performs poorly in wireless networks [BSAK95] due to

assumptions made regarding packet loss. Most TCP implementations interpret packet loss

as being a result of network congestion, rather than lost packets, and consequently reduce

transmission rates to reduce the network load2. In the case of wireless networks, packet

loss is generally due to the unreliability of the wireless link and a better response to packet

loss would be to increase packet transmission rate in order to increase overall throughput

[Tan96]. TCP throughput in mobile, ad hoc networks (see section 2.1.2) was found to drop

significantly when node mobility caused link failures, due to TCP’s inability to differentiate

between link failure and congestion [HV02].

Another characteristic of mobile devices is that they often have multiple network interfaces

and the bandwidth available to them is highly variable dependant on which interface is active.

For instance, the HP iPAQ H5550, a popular consumer Personal Digital Assistant (PDA),

has an infrared interface, Bluetooth, and 802.11b WiFi, all of which offer different bandwidth

and latency at different ranges and different economy.

Consideration of the limited, variable bandwidth and high latency characteristics of wire-

less networks are important to the developer of mobile, context-aware applications for two

major reasons. Firstly, awareness of the constraints of the underlying communication mech-

anisms by the developer allow appropriate design decisions to be taken so that best possible

use is made of the limited resources. Secondly, awareness of the current state of the com-

munication system by the application allows application-specific activity to be performed

at run-time in a context-aware manner. In other words, the state of the communication

substrate contributes to the context of the application.
2Due to Jacobson’s slow start algorithm [Jac88]

12

Chapter 2. Overview of the Research Area

Resource poverty

Despite recent and continuing advances in the design and fabrication of components, mobile

devices will continue to have less resources available to them than stationary computers.

Some resources, such as a smaller user interface and less storage capacity, are due to the very

nature of the mobile device, but probably the biggest constraint to resource availability in

mobile devices remains power. The fundamental trade-off is between batteries that are light

enough to be truly mobile, yet still have power enough to enable useful computation. Both

Badrinath et al. [BAI93] and Satyanarayanan [Sat96] observe the challenges of powering

a mobile device, whilst Forman et al. [FZ94] note that the power consumption of dynamic

components is proportional to CV 2F where C is the capacitance of the wires, V is the voltage,

and F is the clock frequency. Power consumption can thus be reduced through a reduction in

any of C, V or F . Up until recently, microchip manufacturers have focused on increasing F for

stationary systems, but are now concentrating on reducing V in view of power constraints on

mobile systems. The PentiumR© M processor incorporated in Intel’s CentrinoTM architecture

significantly reduces the voltage of the chip and provides accompanying power savings [Cor03].

The resource poverty inherent in mobile computing is important to the developer of

mobile, context-aware applications for much the same reasons as awareness of limited band-

width and high latencies. Awareness of constrained resources both allows developers to design

around the fact, as well as providing an additional source of context data to the application

at run-time. Whereas system power might not be considered as an interesting input to a sta-

tionary system, it becomes a highly valuable input in a mobile system, allowing for example

an application to minimise communication to conserve failing batteries.

Address and locality migration

Mobile devices change their point of connection to the network infrastructure frequently, in

contrast to stationary systems which seldom, if ever, make such changes. The hierarchical

routing system in use by the Internet Protocol (IP) [(Ed81a] uses host addresses which belong

to specific physical networks, and as such the physical location of the host is encoded in its

address.

13

Chapter 2. Overview of the Research Area

The Domain Name System (DNS) [Moc87] provides some level of indirection through

mapping the network address of a host to a name [Haa03], but addresses are typically cached

with a long expiration time and with no way to invalidate out-of-date entries, with the

result that human intervention is required to coordinate the use of addresses [FZ94]. This

is highly undesirable in a ubiquitous computing environment where the intention is to have

computation fade into the background.

Much effort has been made towards providing support for mobility, at both the macro

mobility (mobility between administrative domains) and micro mobility (mobility within an

administrative domain) levels, at various positions within the protocol stack [RB01]. A

popular approach to supporting macro mobility at the network layer, Mobile IP [Per97],

deals with addressing problems through the four basic mechanisms of broadcast, centralised

location registers, home bases and forwarding pointers [FZ94]. Whilst Mobile IP provides a

solution to macro mobility issues, it has the disadvantages of introducing extra latency and

a centralised location register.

The issues raised by address and locality migration in mobile environments are important

to developers of mobile, context-aware applications both in terms of the potential challenges

in addressing application components, and in terms of the additional context information

that such migration may provide to an applications.

Security

Security in mobile computing environments is important for three major reasons. Firstly,

the air interface (the physical layer) of wireless networks is more difficult to secure and more

prone to eavesdropping, which may compromise the privacy of data communications. The

recent proliferation of wireless LANs has created an entire subculture dedicated to mapping

the coverage and security characteristics of these networks3. Such activities are not confined

to the benign activity of mapping wireless coverage, but may extend to malicious attacks on

network resources. The shared wireless medium is also more vulnerable to denial of service

(DoS) attacks which are more difficult to control than in wired networks. Such DoS attacks
3http://www.wardriving.com

14

Chapter 2. Overview of the Research Area

may not just be aimed at denying access to the communication medium, but additionally at

depleting the sparse power resources of nodes under attack. Lastly, the very nature of mobile

devices makes them more prone to theft and accidental damage.

Security considerations are important to the developers of mobile, context-aware applica-

tions that will need to interact with unknown entities, often whilst disconnected from their

home networks and associated security infrastructures. Applications will have to be able

to take autonomous security decisions without reliance on security infrastructures such as

certificate authorities and authorization servers [CGS+03]. One approach being explored in

providing decentralised security management to mobile entities is based on a human notion

of trust [Jen02].

2.1.2 Mobile network models

Wireless networks may adopt one of two models for communication [CWKS97], which are

differentiated by the level of infrastructure deployed in the environment. As [Haa03] notes,

the two models are not mutually exclusive and a given environment may contain both types.

The infrastructure model

In the infrastructure network model, a set of stationary access points co-ordinate communi-

cations between mobile devices and provide gateway access to a fixed network. Access points

have both fixed and wireless network interfaces, and to connect to the network a mobile

device has to be within transmission range of an access point. This requirement imposes a

severe restriction on the infrastructure model, since it may only operate in close proximity

(hundreds of meters at best) to fixed infrastructure.

The ad hoc model

In the ad hoc network model, the network is composed only of a set of mobile nodes inter-

connected by wireless links, which may move randomly leading to rapid and unpredictable

changes to the network topology. Perkins et al. define an ad hoc network as ”the co-operative

engagement of a collection of mobile nodes without the required intervention of any centralised

15

Chapter 2. Overview of the Research Area

Fig. 2.1: A mobile, ad hoc network consisting of three nodes

access point or existing infrastructure” [PR99]. Ad hoc networks are becoming popular due

to the ease with which they may be deployed, as well as the flexibility they offer in contrast

to the overhead of setting up traditional fixed networks. Such networks are particularly

attractive in situations where fixed infrastructure is not deployed, or has been destroyed,

and communication ability is required rapidly, e.g., a disaster area or war zone. The ad hoc

network model is vital to the realisation of pervasive computing where multitudes of mobile

devices interact with each other in a dynamic and unpredictable manner in the absence of

costly fixed infrastructure.

Each mobile node in a mobile ad hoc network (MANET) can combine the functionality

of a router and a host, forming the network routing infrastructure in an ad hoc manner,

or simply share a common broadcast region in a limited spatial area. The union of nodes

forms an arbitrary graph in which nodes may move randomly. Fixed and infrastructure-based

wireless networks use protocols that leverage their relatively static network topology and the

fact that links between nodes in the network are reliable. Such assumptions do not hold in

ad hoc networks and result in the following characteristics:

1. Network partitions - as a result of rapid and unpredictable mobility, partitions can

occur frequently in the network, whereby the network is split into a set of disconnected

16

Chapter 2. Overview of the Research Area

portions. For example, a mobile ad hoc network consisting of 3 nodes, each with

transmission range t is illustrated in Figure 2.1. It can be seen that if node B, at position

p continues to move in the direction indicated by the arrow →, when it reaches position

p′, it will be out of range of the other nodes in the network and will be partitioned from

them. Network partitions can cause severe disruption to network routing if they are

not merged rapidly, which in turn affects higher level applications.

2. Routing - most routing protocols, designed for networks with infrequent topology

changes, rely on the proactive exchange of topology information between nodes and

the use of routing algorithms to inexpensively compute routes through the network.

However, in a MANET, where the topology changes constantly and bandwidth, power,

and transmission range are constrained, traditional routing protocols do not perform

well and both reactive [PR99, JM96] and proactive [CP94] ad hoc routing protocols

have been proposed.

We argue that the ad hoc network model is of particular value to the developers of

mobile, context-aware applications in pervasive environments, where application components

may collaborate anywhere, potentially in the absence of any fixed network infrastructure.

The characteristics of mobile, ad hoc networks may also be used by the application developer

to react to contextual events such as an impending network partition.

2.2 Context-aware computing

The emergence of mobile computing has given rise to applications which can exist in a range

of different environments or contexts, during execution. In contrast to stationary computing,

an application on a mobile device may experience rapidly changing physical conditions such as

location, bandwidth availability and economy, and logical conditions such as administrative

domain. The increasing availability of a wide range of diverse sensors allow applications to

be aware of further environmental parameters such as velocity, orientation, temperature and

a host of others, leading to a new class of application which is able to sense and adapt to its

context.

17

Chapter 2. Overview of the Research Area

2.2.1 Definition of context

Although research into context-aware computing was performed as far back as 1992 with the

Olivetti Active Badge project [WHFG92], the first work to introduce the term context-aware

was that by Schilit and Theimer [ST94], with their work on active maps. This work takes

a user-centric approach to context and defines context-aware computing as ’the ability of

a mobile user’s applications to discover and react to changes in the environment they are

situated in’ [ST94]. This definition of context includes the computing, user and physical

environment. A later refinement of this definition lists the three important aspects of context

as being (1) where you are; (2) who you are with; and (3) what resources are nearby [SAW94].

Brown [BBC97] and Castro [CCKM01] both define context as being information about lo-

cation, the identity of people in close proximity, physical conditions, and accessible resources,

whilst Pascoe [Pas98] gives a broad definition of context as the subset of physical and con-

ceptual states of interest to a particular entity. Ryan et al. introduce the notion of time in

their definition of context which encompasses information about location, time, identity and

physical environment [RPM97]. Hull et al. [HNBR97] define context in a similar manner to

be aspects of the situation of an application including identity, location, companions, com-

puting resources and physical environment. The use of situation goes beyond the capture

of physical conditions. This is reinforced by Dix et al. [DRD+00] who provide a detailed

treatment of context which includes infrastructure context, system context, domain context

and physical context. This definition considers the nature of the application itself (e.g., pace

and interaction), as well as semantics of the application domain (e.g., style of use) in addition

to physical and infrastructural considerations. Gellersen et al. [GSB02] note that confusion

can arise from use of the term context at different levels of abstraction to denote either the

real world situation of an application, or one aspect of the situation such as location, or a

specific instance of some aspect, such as a place. Their definition of context is information can

be acquired from the real world through sensor capture and fusion, as opposed to situation

which is what information exists in the real world and is a slightly more restrictive definition

than [DRD+00].

A hierarchical approach to context is proposed by Schmidt et al. [SB98] who structure

18

Chapter 2. Overview of the Research Area

context using the model that (1) a context describes a situation and the environment a device

is in; (2) a context is identified by a unique name; (3) for each context a set of features is

relevant; and (4) for each feature a range of values is determined by the context. They [SB98]

define a hierarchy for context data with the top level consisting of the two broad categories of

human factors and physical environment and providing three sub categories to each of these.

It is argued that this model provides structure for dealing with context.

Perhaps one of the most popular definitions of context currently in use is that of Dey

et al. [DA99] who define context as ”any information that can be used to characterize the

situation of an entity, where an entity is a person, place, or object that is considered relevant

to the interaction between a user and an application, including the user and the application

themselves”. This definition is intended to ease the enumeration of context for a given

application scenario by an application developer, but the definition is in danger of being too

broad. As Winograd [Win01] points out, the term any information means just that and

could encompass any information from that about the electric power grid to system files used

in compilation. Dey et al. elaborate their definition of context by providing four categories

of context that they feel are more practically important than others. These are location,

identity, activity and time and are equivalent to those proposed by Ryan et al. [RPM97],

except that activity replaces environment in Ryan et al.’s definition.

Chen and Kotz [CK00] differentiate between environmental information that determines

the behaviour of mobile applications and that which is relevant to the application in their

definition of context as ’the set of environmental states and settings that either determines

an application’s behaviour or in which an application event occurs and is interesting to the

user’.

2.2.2 Definition of context-awareness

Schilit and Theimer provide the first definition of context-aware computing in the literature as

’the ability of a mobile user’s applications to discover and react to changes in the environment

they are situated in’ [ST94]. Schilit et al. go on to describe four categories of context-aware

applications, as illustrated in Table 2.2. These categories are positioned along two orthogonal

19

Chapter 2. Overview of the Research Area

manual automatic
information proximate selection + automatic contextual

contextual information reconfiguration
command contextual commands context-triggered actions

Table 2.2: Categories of context-aware applications [SAW94]

dimensions representing whether (1) the task is the retrieval of information or the carrying

out of a command; and (2) whether it is carried out automatically or manually.

This classification yields the following four categories of context-aware applications:

1. Proximate selection is a technique used in user-interfaces whereby objects located

nearby a user are emphasised.

2. Automatic contextual reconfiguration refers to the process of adding or removing com-

ponents or the connections between them due to changes in an application’s context.

3. Contextual commands are commands whose execution is modified based on current

context data.

4. Context-triggered actions are actions which are executed automatically when a certain

context exists and are based on if-then rules.

Brown et al. [BBC97] define context-aware applications as those that change their be-

haviour according to the user’s context. In some respects this is a broader definition than

that of Schilit et al. since it does not deal with the discovery or acquisition of context and

does not explicitly mention mobility. This definition is also restricted to adaptation to the

context of the user. Since user and application may be physically or logically distributed,

this condition may be overly restrictive.

Pascoe defines context-awareness as the ability of a program or device to sense various

states of its environment and itself [Pas98]. Implicit in this definition is the fact that the

program or device uses the sensed context in some way during the course of its execution.

Whilst Schilit et al. identify classes of context-aware application, Pascoe proposes a set of

20

Chapter 2. Overview of the Research Area

four features of context-aware applications, or core generic capabilities, which can be used as

a vocabulary to identify and describe context-awareness independently of application, func-

tion, or interface [Pas98]. This first of these features is contextual sensing which refers to

the detection of environmental states and their presentation to the user. This is similar to

the proximate selection class of context-aware application defined by Schilit et al. Contextual

adaptation refers to the adaptation of application behaviour to the current context and is

similar to Schilit et al.’s context triggered action class of application. Contextual resource

discovery is the use of context data to discover other resources within the same context. This

category bears some resemblance to Schilit et al.’s automatic contextual reconfiguration class

of application, except that Schilit et al.’s definition does not take into account awareness

of the contexts of other entities. The fourth and final capability defined is that of contex-

tual augmentation in which the environment is augmented with digital data associated to a

particular context.

Dey and Abowd [DA99] propose a categorization of the features of context-aware ap-

plications that combines the ideas of Schilit and Pascoe whilst addressing the differences

between the two. They consequently define three categories of features that context-aware

applications may support as (1) presentation of information and services to the user; (2)

automatic execution of a service; and (3) tagging of context to information for later retrieval.

The definition of context-aware given by Dey et al. is ’the use of context to provide relevant

information and/or services to the user, where relevancy depends on the user’s task’ [DA99].

Chen et al. divide context-aware computing into two broad categories in their definition

[CK00]. Active context-awareness refers to the automatic adaptation of application behaviour

according to context, whilst passive context-awareness refers to the storage and presentation

of context data to the user.

2.2.3 A working definition of context

We note that the majority of existing definitions of context in the literature take a user

interaction-centric view of context as being information that influences the way in which a

user interacts with an application. The commonly accepted vision of pervasive computing as

21

Chapter 2. Overview of the Research Area

’disappearing’ into the background of everyday use [Wei91] suggests that a continuing reliance

on explicit user interaction can only serve to hinder the realisation of this vision. We argue

that the pervasive computing function should necessarily be autonomous and proactive, and

therefore propose a definition of context that is less centered in user interaction.

We define context as environmental information that an application may use to au-

tonomously and proactively fulfill its goals. This definition encompasses the fact that context

determines the state of the application and constrains the set of useful behaviours and ac-

tions at a particular point in time. Environmental information in this regard means both

information from the physical environment, as well as infrastructural information from the

underlying execution environment of an application. The type of environmental information

of interest is influenced by Dey et al.’s categorization [DA99]. It is our belief that this defin-

ition of context, being less user-centric than previous definitions, recognises the requirement

for pervasive computing not to rely on explicit human-system interaction. Our definition of

context-awareness follows as the use of context information by an application in the fulfillment

of its goals.

2.2.4 The role of proximity

The central role played by location in context-aware applications today is due in part to

the fact that mobility has made location an important variable, the role of which is well

understood, and in part to the fact that a wide range of location-sensing technologies are

fairly mature and accessible, e.g, GPS [HWLC94], GSM [Wil98], ultrasonic positioning sys-

tems [WJH97], and positioning using IEEE 802.11 wireless networks [CCKM01]. Context-

awareness benefits both from the notion of absolute location, which is exact location described

by a co-ordinate system, and relative location, which is location with regard to some refer-

ence point, both of which in turn benefit from a notion of proximity, which may be defined

as the property of being close together. Proximity is important in context-aware applications

since many of these applications make use of spatial locality in behaviour adaptation, e.g.,

[WJH97, CMD99, AAJ+97], and most definitions of context include some notion of proximity

[BBC97, SAW94, GSB02]. The notion of proximity is not necessarily constrained to spatial

22

Chapter 2. Overview of the Research Area

proximity, but includes logical proximity where entities may be physically remote, but close

together in some other way, e.g., administrative domain.

2.2.5 Challenges to developing context-aware applications

Whilst the incorporation of context data into applications to make them context-aware is

key to the realisation of pervasive computing as is the disappearance of the computing func-

tion into the background, building mobile, context-aware applications remains a challenging

undertaking. This is due to the fact that at present, application developers are required to

develop, from scratch, software to capture, represent, and process context data in a mobile

environment. There is no commonly-accepted programming model promoting scalability, ex-

tensibility, and reuse of application components, and most importantly, ease of development.

In this section we discuss the major challenges to developing context-aware applications

in mobile environments that must be addressed by a programming model.

Capture of context data

In addition to identifying the relevant sources of context data for a particular application, the

application developer often has to write low-level code to interact with sensor hardware at

device protocol level, e.g., [SF99, RJD99]. Such development is time-consuming, error-prone,

and only accessible to fairly experienced programmers, and whilst a number of approaches to

developing context-aware applications define abstractions to assist in context capture [DSA01,

CM00, Hon00, SAT+99], most do not provide support to the developer for the representation

and processing of context data.

A usable abstraction for dealing with the capture of context data from low-level sensor

hardware is essential for developers of mobile, context-aware applications, as is the incorpo-

ration of the abstraction into an overall programming model supporting the representation

and processing of context data.

23

Chapter 2. Overview of the Research Area

Fig. 2.2: Quantisation of an analog signal to a digital signal

Uncertainty of context data

Measurements made of the real world by sensors based on physical transducers will always

contain a degree of uncertainty and incompleteness, which together result in an inherent un-

reliability of context data based on such measurements. Uncertainty regarding the true value

of what the sensor is measuring is inherent in data resulting from a physical measurement

and stems from hardware limitations in the manufacturing of the sensor and the fact that

the physical operation of the sensor is too complex to model. Hardware sensors typically

produce a continuous time, continuous amplitude analog signal, with infinite precision. In

order to use this analog signal in a computer, it has to be converted into a digital signal, in

a process known as quantisation whereby the state is constrained to a set of discrete values,

rather than varying continuously. A digital signal is thus a discrete-time, discrete amplitude

signal defined only at sampling times with finite precision. Figure 2.2 illustrates the process

of analog to digital signal processing. A continuously varying voltage output by a tempera-

ture sensor is sampled at intervals of t, to produce a digital signal which is an approximation

24

Chapter 2. Overview of the Research Area

Fig. 2.3: Inherent uncertainty in an ultrasonic range finder reading

of the signal by a set of discrete temperature readings. It is easy to see how the process of

analog to digital conversion involves the systematic loss of data, since the conversion process

only has a finite resolution. This quantisation error is one source of uncertainty in sensor

data, with others arising from measurement errors made by the sensor.

A classic example of the uncertainty inherent in a sensor reading is given by [Vis99] for an

ultrasonic range finding sensor, as illustrated in Figure 2.3. This type of sensor can detect the

distance to an obstacle within its ’cone’ of vision, but is not able to determine the position of

the obstacle. In the figure, the sensor would not be able to discriminate between the position

of obstacle O1 and obstacle O2 - the range value R will be the same for both obstacles. In

addition to the inherent uncertainty of sensor data, each type of sensor performs a narrow and

specific sensing task and is unable to capture completely all aspects of a particular context.

For example, for the sensor illustrated in Figure 2.3, if one obstacle lies slightly closer to the

sensor than the other, the sensor will only detect the nearest obstacle.

It is important to provide systematic support for dealing with uncertainty to developers

of context-aware applications. Whilst numerous approaches have been proposed for context-

aware applications [WSSY02, WSA02, RAMC04, CM00, DMAC02, CSG99] there remains no

commonly accepted and generic approach that is part of an overall programming model, with

most developers rather managing uncertainty in an ad hoc and application-specific manner.

25

Chapter 2. Overview of the Research Area

Representation of context data

In order to process, reason about, and react to context data, a systematic approach to the

representation of context data is required by the application developer. The selected represen-

tation format should be efficient to process and reason about by the application. A variety of

approaches to representing context data have been proposed [Win01, Rya99, FVB02, HIR02,

RC03b, Bro96, SAT+99, Hon00, RMCM03, dInK01], but no commonly accepted approach

has emerged.

Developers of context-aware applications need a systematic and powerful approach to

the representation of context data within applications, in order to efficiently make useful

inferences on this data. Furthermore, the representation format should be closely integrated

with the inference process, promoting efficiency.

Privacy

Traditional concerns regarding privacy are amplified in context-aware applications which are

predicated on access to a wide range of sensitive data, and involve ad hoc collaborations

between entities. Context-aware computing connotes the storage of more data, with the

associated increased risk of theft and misuse.

The explicit incorporation of location, activity, and identity data into applications raises

serious privacy concerns [Lan02] which have been voiced right from early applications [Coy92].

If context-aware computing is to be embraced as a mainstream technology, privacy of sensi-

tive data has to be assured, and application developers require appropriate tools to manage

privacy and security. Although approaches to managing privacy in context-aware applica-

tions have been proposed [OR03, Can02], there remains no common approach to managing

these concerns as part of an overall programming model.

Scalability

Scalability refers to the ability to incrementally increase the abilities of a system, whilst

maintaining, or improving, performance. Context-aware applications in mobile ad hoc envi-

ronments will form a part of an overall pervasive computing infrastructure consisting of very

26

Chapter 2. Overview of the Research Area

large and dynamic distributed populations of entities, and thus scalability of communication

is an important consideration to application developers.

Scalability is a significant challenge in the mobile ad hoc networks we envisage as being

crucial to pervasive computing environments, due to the large increase in the network pro-

tocol control overhead experienced with an increase in the number of nodes in the network

[LBC+01]. Within such an environment, the provisioning of QoS is a significant challenge,

and a number of proposals have been made to address the characteristics of such networks

[ACVS02, LAZC00, XTB+03].

It is essential that developers of context-aware applications in mobile environments have

appropriate abstractions and system support available to ensure the scalability, and ubiqui-

tous adoption, of their applications.

Synchrony

Most existing distributed applications are based on synchronous operation whereby an oper-

ation has to wait for a response before execution can continue. This method of operation is

not entirely adequate for context-aware applications which need to be notified asynchronously

when new context data is available. Synchronous operations in context-aware applications

imply expensive polling behaviour in order to determine when the requisite information is

available [BMB+00]. Such expensive communication behaviour is not suited to the resource

constraints inherent in mobile devices.

Support for both synchronous and asynchronous communication is important for the de-

velopers of mobile, context-aware applications, although most current approaches to context-

aware application development are tightly coupled client-server architectures based exclu-

sively on synchronous invocations using mechanisms such as HTTP [DSA01] and CORBA

[RC03a], and their remains poor programmer support for developing context-aware applica-

tions based on asynchronous communication.

27

Chapter 2. Overview of the Research Area

Extensibility and reusability

Extensibility may be defined as the ability to add new functionality to an application, whilst

reusability may be defined as the ability of a piece of functionality to be used again, un-

modified, in a different system than it was originally written for [Eng97]. It is likely that in

the future multiple, unanticipated types and sources of context will become available, whilst

new applications will emerge that use existing sources of context. The ability to seamlessly

integrate new sources of context data into applications, whilst at the same time re-using ex-

isting functionality is essential to the realisation of pervasive computing. Current approaches

to context-aware application development with ad hoc integration of devices and application

logic results in applications that are neither extensible, nor reusable.

Support for extensibility and reusability is an essential requirement of a programming

model for context-aware applications. Facilitating extensibility and reusability of application

components, enables the incremental evolution of applications, reducing development effort

and reducing the need to develop from scratch.

Summary

The fundamental challenge to the development of mobile, context-aware applications re-

mains the lack of a widely accepted, domain-specific programming model, providing sup-

port for the challenges discussed above. Whilst extensive support exists for addressing in-

dividual challenges such as the capture of context data [DSA01, SAT+99], the management

of uncertain context data [CM00, RAMC04], the efficient representation of context data

[GA99, RMCM03], the management of privacy and trust [KFJ01, OR03], and scalable asyn-

chronous communication in mobile, ad hoc networks [MC03], there is no unifying model

providing this support to the programmer in an easily accessible manner to enable the devel-

opment of context-aware applications.

28

Chapter 2. Overview of the Research Area

2.3 Supporting development of mobile, context-aware systems

The previous section has discussed the major challenges faced by developers of context-aware

applications in mobile ad hoc environments. In this section, we identify a set of requirements

based upon these challenges, which we believe are necessary in providing domain-specific

support to the developers of mobile, context-aware applications. We acknowledge the criti-

cality of privacy and security within such environments, but scope our research to specifically

exclude privacy and security considerations at this point. Privacy and security are excluded

at this point, since they constitute a vast research area in and of themselves, with sepa-

rate projects dealing exclusively with this area being undertaken, e.g, the SECURE project

[CGS+03]. It is envisaged that support for security and privacy will be incorporated into the

programming model at a latter date.

2.3.1 Loosely coupled communication

The communication paradigm adopted by context-aware applications in mobile, ad hoc envi-

ronments as envisaged in pervasive computing scenarios should be dynamic, supporting the

frequent mobility and unpredictable interaction patterns characteristic of such networks. Ap-

plications operating in such environments cannot rely on traditional distributed computing

communication paradigms where the sender of a message knows the identity of the intended

recipient a priori. Traditional methods of communication based on point-to-point, request/re-

ply models are infeasible since (1) the address of all interacting entities has to be known a

priori; and (2) this paradigm only supports one-to-one communication semantics and does

not scale well to the large numbers of entities envisioned in pervasive environments.

An anonymous, generative event-based communication paradigm is well suited to mo-

bile ad hoc environments. This type of communication paradigm is anonymous since an

entity producing an event need not know which entities (if any) have subscribed to the type

of event and will thus receive it. The anonymity and many-to-many style of event-based

communication addresses both scalability and extensibility issues.

29

Chapter 2. Overview of the Research Area

Event-based communication

The event-based communication paradigm provides anonymous, loosely coupled, many-to-

many communication between application components via asynchronous event notifications

[BMB+00]. Event notifications represent a change in the state of the sending application com-

ponent, and are propagated from producers (sending application components), to consumers

according to subscriptions made by consumers [MC02a]. Events typically have a name and a

set of typed attributes, and event filters provide a mechanism to scope the delivery of events

to consumers based on declared interest.

Event-based communication in an ad hoc wireless environment poses additional challenges

since the event middleware cannot rely on the presence of access points to route messages,

nor can it rely on intermediate components which may apply event filters or enforce non-

functional attributes [MC03].

It is crucial to provide developers of context-aware applications in mobile, ad hoc en-

vironments with both system support for loosely coupled communication in mobile, ad hoc

environments, as well as tool support for developing applications based on this communication

paradigm.

2.3.2 Sensor abstraction

A number of enabling technologies have contributed to the rise of cheap, ubiquitous and

high-performance sensors [Saf97]. Among these technologies are MicroElectroMechanical

Systems (MEMS), piezo materials, charge-coupled devices (CCD), and at a higher level,

Global Positioning System (GPS) [HWLC94] satellites for location sensing.

A sensor is defined as a device that responds to some form of physical stimuli (such as

a change in temperature), by producing an electrical signal. As such, a sensor is essentially

a transducer, a component which converts one type of energy to another. For example, a

temperature sensor may convert a change in physical temperature to an analog electric signal,

such as a varying voltage. In addition to the traditional definition of a sensor as responding

to physical stimuli, context-aware applications often depend on components which respond

to digital stimuli from software rather than the physical environment, e.g, a web service that

30

Chapter 2. Overview of the Research Area

reports estimated journey time between two towns.

Hardware sensors usually produce numerical output using low-level, device-specific pro-

tocols (e.g., see sections 6.1.5 and 6.2.1). Integrating the output of sensors into applications

typically requires significant low-level knowledge, and often results in tightly coupled applica-

tions and limited reusability. Crucial in easing the development of context-aware applications

is the provision of software components which abstract away from physical device protocols,

and support the conversion of numerical protocols into a higher-level symbolic representation.

Few application-level developers have experience of working with low-level hardware and to

ensure the development process is accessible to as wide an audience as possible, it is essential

that some way of abstracting away from individual devices is provided.

2.3.3 Sensor fusion

As discussed in section 2.2.5, sensor data obtained from a transducer is inherently unreliable

primarily due to the conversion of a continuous time, continuous amplitude analog signal

with infinite precision, to a digital signal with finite precision, within the sensor hardware.

Whilst expensive sensors may offer a high degree of reliability, by definition pervasive com-

puting implies the adoption of inexpensive sensors, whilst requiring resolution and accuracy

commensurate with human perceptive ability [WSA02]. A scheme which manages the unrelia-

bility of inexpensive sensors is consequently an essential requirement of a programming model

for context-aware applications in pervasive environments. A proven approach to managing

sensor uncertainty is the combination of readings from multiple sensors, or multiple readings

from the same sensor. This technique is known as sensor fusion4, and allows inferences to

be made that might not be possible from a single reading from a single sensor. In general,

there are two broad categories of sensor fusion.

Mono-modal sensor fusion

The potential uncertainty present in a single reading produced by a single sensor may be

reduced by fusing multiple readings from the same sensor at different points in time, using
4Alternately referred to in the literature as data fusion and information fusion

31

Chapter 2. Overview of the Research Area

techniques such as the Kalman filter [Kal60]. This provides a more accurate description of

the measured parameter than a single reading and may be applied by using sensor readings

to successively update the estimation of the parameter being measured.

The uncertainty of readings from an individual sensor may further be reduced by fusing

the output of a set of redundant sensors measuring the same parameter at the same point

in time, using numerical techniques such as sum and average. Mono-modal sensor fusion

reduces the uncertainty of sensor data and increases its accuracy.

Multi-modal sensor fusion

The incompleteness of sensor data may be mitigated by fusing the output of several disparate

sensors measuring different environmental parameters in a complementary approach known

as multi-modal sensor fusion.

Whilst the majority of approaches to sensor fusion deal with fusing the output of multiple

sensors of a similar type, fusing sensory output of different modalities is a substantially more

difficult task. Context-aware systems typically rely on a wide range and type of sensors

in order to accurately derive their context, so for example, may need to fuse the output

of a PIR (passive infrared) sensor, a pressure sensor, and a light sensor to determine the

action currently taking place within an office. Mono-modal techniques which exploit the

similarity of their inputs, extracting features and merging these together, are not applicable.

The difficulties inherent in fusing sensor readings of different modalities has led to most

solutions being highly application-specific and not extensible beyond a specific set of sensors

and a specific task. A number of approaches to fusing multi-modal sensor data in context-

aware applications have been proposed, including rule-based approaches [SAT+99, dInK01],

Dempster-Schafer Theory [WSSY02], and probabilistic networks [CM00, RAMC04], but until

now these have been tightly integrated with specific applications.

It is essential to provide application developers with a generic yet systematic approach

to managing the uncertainty inherent in a single sensor reading. In order to support the

development of future systems, a generic approach has to be provided that is applicable

across a range of applications, whilst ensuring accessibility to a range of developers.

32

Chapter 2. Overview of the Research Area

2.3.4 Context representation

Context data obtained from sensors needs to be represented and stored within the applica-

tion using some data structure. Chen and Kotz [CK00] argue that although most existing

applications use ad hoc data structures to represent context data, they typically fall into one

of the following broad categories.

Key-value pairs

Context data may be represented as a set of key-value pairs, as in pioneering work by Schilit

at al. in [STW93], where the key represents an environmental variable of interest to the

application, and the value its current value. An example set of key-value pairs representing

a geographical location presented as a latitude/longitude pair is illustrated below:

latitude=’1750.0000’
longitude=’3130.0000’

This approach provides a simple and extensible approach to representing context data,

but is unstructured and attaches no semantics to the data represented.

Tagged encoding

This approach models context data as Standard Generalised Markup Language (SGML) [fS86]

documents containing tags and corresponding fields. One approach to the representation of

context data using tagged encoding, is the use of an application-specific schema.

The disadvantage of developing application-specific schemas is that they are not accepted

as standard and thus are not interoperable with other systems. Another approach is to use a

standardised schema, such as the resource description framework (RDF) [MSB04], developed

by the W3C. RDF is an XML-based foundation for describing metadata used for semantic

knowledge modelling and provides a simple data model for describing resources. A resource

is an object that can be referenced and is identifiable by a URI. Resources have associated

properties which in turn have a value. A value may itself be atomic, or may be another

resource, which in turn has its own properties.

33

Chapter 2. Overview of the Research Area

Whilst the primary application of RDF has been as a universal data format for the Web

used to describe web resources such as HTML pages and graphics, it has been applied to the

representation of real-world context data [FVB02]. An RDF fragment describing the location

of a resource is illustrated below.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:location="http://www.dsg.cs.tcd.ie/location">
<rdf:Description about="http://www.dsg.cs.tcd.ie/~biegelg">
<location:latitude>1750.0000</location:latitude>
<location:longitude>3130.0000</location:longitude>

</rdf:Description>
</rdf:RDF>

Composite capabilities preference profiles (CC/PP) [BHK04] is another standard devel-

oped by the W3C to support content negotiation between browsers and servers and is based

on RDF. CC/PP currently provides a model and vocabulary for describing device capabilities

and user preferences for mobile devices, but there has been work carried out to incorporate

other types of context data [IRRH03, OR02].

The major advantage of an approach to context representation based on tagged encoding

is that it is extensible and can be used to describe virtually any context data. Furthermore,

ontological approaches to representation permit the association of semantics with the data.

A disadvantage of this approach is that the verbosity of the representation format is not well

suited to resource constrained environments, and the data is not easily reasoned about.

Object-oriented

Context data may be represented as a set of objects encapsulating variables, and associated

accessors and mutators. A class describing an object which represents location context data

as a pair of variables representing longitude and latitude is illustrated below:

class Location{
private double latitude, longitude;
public double getLatitude(){}
public double getLongitude(){}
public void setLatitude(double newLatitude){}
public void setLongitude(double new Longitude){}

}

34

Chapter 2. Overview of the Research Area

An object oriented approach to context representation is adopted in the GUIDE project

[CMD99] where a position sensor object represents location context data based on signals

received from remote base stations, as well in [HHS+99] to model real-world objects in a sen-

tient application. This approach has the features associated with object-orientation, namely

inheritance, encapsulation, and polymorphism.

Logic-based

Following this approach, context data is expressed as a set of facts in the working memory of

a rule-based system. By storing context data as facts directly within the rule-based system,

context data is closely coupled with the rules that perform inference based on it. This

approach is successfully adopted in [dInK01] to store sensor data. An example of a fact,

representing a fragment of context data, being asserted in a knowledge base is illustrated

below:

(assert (location (latitude ’1750.0000’) (longitude ’3130.0000’)))

The greatest advantage of this approach to context representation is that the context

data may efficiently be reasoned about since it is stored directly in the knowledge base of a

rule-based system, which is used by an inference engine to make decisions.

It is vital to provide developers of context-aware applications with a systematic and structured

approach to the representation of context data within applications. The selected represen-

tation format should be integrated with the inference mechanism to allow the application to

reason efficiently about context data.

2.3.5 Inference

Context-aware systems perform actions based on context data derived from sensor inputs.

This requires the system to reason from observations made by sensors, to conclusions in a

process known as inference. Whilst there are a wide range of possible approaches to providing

inference capabilities to context-aware applications, rule-based systems and machine-learning

approaches have emerged as the major contenders.

35

Chapter 2. Overview of the Research Area

Fig. 2.4: Architecture of a rule based system adapted from [FH03]

Rule-based systems

Rule-based systems provide one approach to inference which is widely adopted amongst

context-aware systems [dInK01, RC03a]. In such systems, the reasoning process uses a set

of facts, and knowledge captured as rules applied to these facts to draw conclusions, given

a set of observations. For example, from a very early age humans use the observation that

someone is crying, combined with rules learned by experience, to infer that the person is

unhappy. The certainty of an inference is based on the quality of both the observation and

the underlying rules.

Rule-based systems are programmed declaratively, i.e., the programmer specifies a set of

conditions and actions, leaving it to the system to work out how to fulfill them - the order in

which the logic is specified is not important. Declarative programming provides a higher level

of abstraction than procedural programming and is more flexible when inputs are incomplete

or poorly specified. A typical rule-based system is composed of the 3 major components

illustrated in Figure 2.4.

1. The knowledge base contains the set of rules against which make inferences are made.

2. The working memory contains a set of facts representing the fragments of information

with which the system is currently working.

3. The inference engine implements algorithms that apply rules contained in the knowl-

36

Chapter 2. Overview of the Research Area

edge base to facts present in the working memory. Within the inference engine a pattern

matcher matches rules with facts, to determine which rules are fired to form the agenda,

the set of rules which will be fired.

Rules-based systems are programmed by specifying the knowledge base through a set of

rules. Facts are then supplied to the system, either by the programmer or by the application,

and the inference engine provides output after applying the rules to the facts.

Machine learning

Machine learning refers to the use of a set of algorithms to infer a model from a set of

data. In terms of inference in context-aware applications, machine learning algorithms are of

interest both in the classification of contexts from noisy sensor data, and in the learning of

appropriate behaviour in different contexts, rather than relying on behavioural rules specified

by developers. Although not yet widely employed as an inference mechanism in context-aware

applications, some machine learning algorithms have been adopted.

1. Näıve Bayes classifier - this is a simple classification method based on a probabil-

ity model derived from Bayes’ Theorem [Bay58], and making strong independence as-

sumptions. The use of Näıve Bayes classifiers has previously been proposed for deriving

context classifications from sensor data, e.g., [RC03a].

2. Reinforcement learning - broadly speaking, reinforcement learning algorithms map sit-

uations into actions guided by trial and error. According to [KLM96], in the standard

reinforcement learning model, an entity is connected to it’s environment via perception

and action. At each interaction step the agent receives input i as indication of the state

s of the environment, and generates an action a as output. The action changes the

state of the environment, communicated to the entity by reinforcement signal r. The

entity then chooses behaviours which increase the sum of values of r in the long term

[KLM96].

3. Artificial neural networks - artificial neural networks are parallel computing devices

consisting of many interconnected simple processors (nodes) [Cal03]. Interconnections

37

Chapter 2. Overview of the Research Area

between the nodes make up a large part of the intelligence of the network, and the

network has to be trained to enable useful computation to take place. Artificial neural

networks have previously been applied in context-aware applications, e.g., [Moz98].

Machine learning has been proposed as a more flexible approach to inference in context-

aware applications, allowing applications to ’learn’ behaviours in different contexts, rather

than following a rigid rule-set defined by an application developer.

Developers of context-aware applications should be provided with a structured means to rea-

son about context data. None of the inference mechanisms described are readily accessible

to average developers due to their relatively complex programming models, and higher-level

support is necessary in order to offer this functionality to developers.

2.3.6 Actuator abstraction

Actuators provide a useful abstraction for talking about the actions taken by context-aware

applications. A traditional definition of an actuator is a device which responds to an electri-

cal signal by producing a mechanical action, such as motion, or acoustic or thermal energy.

This fairly narrow definition constrains actuation to effecting a change in the physical envi-

ronment and in its current form is not adequate for context-aware applications, since not all

applications’ actions effect a change in the physical environment. Many context-aware appli-

cations only perform actions that effect a change in software, e.g., customising a Graphical

User Interface (GUI), and this needs to be taken into account when considering actuation.

Interaction with most hardware actuator devices is via low-level, device-specific protocols,

whilst interaction with software actuator devices is via custom APIs. Programming actuator

devices is a complex task, which is only available to experienced developers with experience of

either the hardware or relevant API. It is thus essential that any approach to supporting the

development of context-aware applications provides an appropriate abstraction for interacting

with actuator devices. The major function of such an actuator abstraction is the conversion of

high-level, symbolic commands, into low-level commands based on numerical, device-specific

protocols.

38

Chapter 2. Overview of the Research Area

2.3.7 Developer support

Consolidating the set of other components, developer support is required in the form of a

programming environment which exposes the components to the application developer in a

coherent and easily accessible manner. Support has been offered to developers to some degree

for a subset of the requirements discussed above, e.g., [DS03, DSA01, RC03a, SAT+99] but

often this support is inaccessible to all but the most experienced of developers, or does not

provide comprehensive support for all the requirements identified in the preceding sections.

Domain specific languages A domain specific language (DSL) is a programming lan-

guage which is closely related to a particular problem domain, in contrast to general-purpose

programming languages that may be applied to range of problem domains. DSLs are charac-

terised by high-level, domain-specific constructs and have very specific goals in their design

and implementation. The rationale behind DSLs is a reduction of application development

complexity through the provision of high-level, domain-specific abstractions, easing the spec-

ification of application functionality. DSLs are not a new concept, having been proposed and

discussed since the beginning of computing [Lan66], and provide a promising approach to

providing support to developers of mobile, context-aware applications.

An excellent overview of the commonly accepted advantages and disadvantages of DSLs

is provided by [vDKV00], with the major advantages of DSLs with regard to the provision

of developer support summarised from [vDKV00] as follows:

• DSLs embody domain knowledge, enabling the conservation and re-use of this knowl-

edge by application, without the need for developers to explicitly code it into each

application

• DSLs enhance developer productivity, as well as increasing the reliability, maintainabil-

ity, and portability of application code

• DSLs allow applications to be specified in terms of domain abstractions, making ap-

plication development more accessible to domain experts who are generally not skilled

programmers

39

Chapter 2. Overview of the Research Area

The major general disadvantages of DSLs summarised from [vDKV00] are as follows:

• The major initial cost associated with the design, implementation, and maintenance,

of a DSL

• The need to train developers in the use of a DSL

• The potential for loss of efficiency when compared to hand-coded software that may

provide for low-level, application-specific optimisations

The major advantage provided by a domain specific language to developers of mobile,

context-aware applications is abstraction away from low-level complexities through domain-

specific constructs, making application development accessible to a much wider audience.

A wider audience in this regard is considered as experienced computer users, who do not

necessarily have significant exposure to low-level programming. For example, the range of

users who have experience of composing formulae in a spreadsheet application, is significantly

wider than those with experience of opening a socket and specifying a network protocol, or

designing and implementing an object-oriented application. It is such accessibility to a greater

majority of people that we believe is crucial in the widespread deployment of context-aware

applications in the realisation of truly pervasive computing.

Code generation Many domain specific languages include a code generation step, the

function of which is to transform a domain-specific specification into a lower-level target

language, such as Java. The advantages of code generation from a domain-specific model in-

clude the speed of generation, and the consistency and stability of the generated code. Most

importantly, the provision of high-level, domain-specific abstractions which are subsequently

transformed to low-level code removes the need for application developers to develop low-level

implementations themselves - a time-consuming and error-prone process, accessible only to

skilled developers. Important disadvantages related to automatic code generation that need

to be borne in mind include the notable disadvantage that the initial development of the code

generator requires substantial, complex, development effort, and there will always be some

code that cannot be automatically generated and must be hand-crafted.

40

Chapter 2. Overview of the Research Area

In order for Weiser’s vision of pervasive computing to be fully realised, application devel-

opment has to be made accessible to as wide a range of potential developers as possible.

Domain specific languages with their associated target language code generators are a proven

approach to providing high-level support to application developers within a specific domain.

Such support typically makes application development significantly more widely accessible to

those without explicit low-level programming experience.

2.3.8 Requirements

Based on our discussion of the challenges faced by the developers of mobile, context-aware

applications, the set of requirements we have derived as essential in the development of a

programming model for such applications is summarised below:

• R1: Loosely coupled communication - the programming model should support

the development of application components that communicate using a loosely coupled

communication mechanism that addresses mobility, as well as application scalability

and extensibility.

• R2: Sensor abstraction - the programming model should provide a suitable high-

level abstraction to facilitate the incorporation of sensor data from a range of sensing

technologies, implemented both in hardware and software.

• R3: Sensor fusion - the programming model should provide a systematic and efficient

approach to fusing the output of potentially multi-modal sensors as a way of mitigating

the uncertainty of individual sensor readings in a timely manner. The approach should

be generic, i.e., applicable to a wide range of potential application scenarios, whilst at

the same time remaining accessible and usable.

• R4: Context representation - the programming model should provide an effective

means to represent context information within the application. Given the potentially

large volumes of data, efficiency should be emphasised in the approach.

41

Chapter 2. Overview of the Research Area

• R5: Inference engine - a systematic and efficient approach to reasoning about context

data should be provided by the programming model at a high level of abstraction.

• R6: Actuator abstraction - the programming model should provide a suitable ab-

straction for developers to specify interaction with the environment via a range of

actuator devices, both hardware and software.

• R7: Developer support - an accessible and usable development environment should

expose the support offered in the programming model, to the application developer.

2.4 Summary

This chapter began by introducing the mobile computing paradigm and discussing the chal-

lenges inherent therein, bringing forward the additional challenges posed by operation in an

infrastructureless, ad hoc network. Context-aware computing was then introduced through

examination of common definitions of context and context-awareness in the literature. A

number of issues pertaining to context-aware computing were then considered, before a set of

requirements considered to be crucial in supporting the development of context-aware appli-

cations in mobile ad hoc environments were postulated. Popular approaches to fulfilling some

of the requirements were presented where they exist. Support for this set of requirements

is considered crucial in the provision of generic and accessible support to the developer. In

the next chapter we analyse state-of-the-art approaches to supporting the development of

context-aware applications with regard to this set of requirements.

42

Chapter 3

State of the Art

This chapter examines state-of-the-art projects that each go some way to providing an ap-

proach to supporting the development of context-aware applications. We discuss the extent

to which each of these existing projects provides support for the core requirements required

to facilitate the development of context-aware applications in mobile, ad hoc environments,

as identified in the preceding chapter.

Whilst a number of state-of-the-art projects exist that offer support for the development

of context-aware applications, our conclusion is that no single approach offers support for

the complete set of requirements needed by the developers of context-aware applications in

mobile ad hoc environments.

3.1 Scope of this review

Pervasive computing research has now entered its second decade and as a result many projects

have been undertaken that deal with a wide variety of topics within what is undoubtedly a

very broad research area.

We thus direct our attention to the subset of pervasive computing research that focuses on

providing generic support for the development of context-aware applications to some extent.

In this review, we are particularly interested in the extent to which the research supports the

requirements we identified in Section 2.3.

43

Chapter 3. State of the Art

3.2 Stick-e note Architecture

The stick-e note software infrastructure developed at the University of Kent at Canterbury

provides one of the first approaches to support the development of context-aware applica-

tions. The aim of the infrastructure is to significantly simplify the creation of context-aware

applications using the electronic equivalent of a Post-it note [BBC97] and, as such, it focuses

on information presentation and in particular discrete context-aware applications, i.e., those

in which the information presented to the user does not change continuously. In such ap-

plications, separate pieces of information are attached to specific contexts (location, states,

temporal ranges, adjacency) and are presented to the user when the appropriate context is

entered. The infrastructure is aimed at mobile users carrying small computing devices, such

as PDAs, enhanced with environmental sensors, but is essentially an off-line system and does

not explicitly address mobility issues.

A stick-e note is created as an SGML [fS86] document that uses a set of SGML mark-up

tags, defined in a Document Type Definition (DTD) specification, to define the context in

which it is valid as a set of rules [Bro96]. An example stick-e note is shown below specifying

a short note to be displayed in a particular context.

<note>
<with>Joe</with>
<at>Dublin University</at>
<content>Arrange meeting</content>

</note>

When the rules evaluate as true based on sensory input, i.e. the context is reached,

the note is displayed to the user (in a contextual retrieval or inference process known as

triggering [PRM99]). The use of SGML eases the process of publishing and exchanging

notes, so a repository of notes may be kept on a network server accessible from a user PDA

by a wireless link.

3.2.1 Analysis

The stick-e note infrastructure was one of the very first approaches to supporting and simpli-

fying the development of context-aware applications. As such, it succeeds in de-skilling the

44

Chapter 3. State of the Art

creation of context-aware applications, although the infrastructure is designed predominantly

to control the display of textual content to the user. The infrastructure provides SeSensor

components for the abstraction of sensor data, converting sensor readings to SGML frag-

ments. Basic multi-modal sensor fusion is achieved through conjunction of sensor outputs

that must be true in order for a context to be active, but no approach is provided to man-

age the uncertainty of sensor readings. Context data is stored as SGML fragments received

from sensors, but no further interpretation is made on the data supplied by sensors to derive

higher-level information. The infrastructure does not explicitly provide an inference engine

and associated knowledge base, but determination of context is performed by the SeTrig-

ger component, which provides a simple inference function. The stick-e note infrastructure

provides a simple actuator abstraction in the form of the SeShow component that can send

commands to any existing program, e.g., to display a note on the screen, and actuation

is confined to the presentation of information to a user. Stick-e notes are programmed by

creating SGML documents that provide a fairly high-level programming model, but still re-

quire significant skills to use. Although the exemplar applications were deployed in mobile

environments, the architecture does not provide support for ad hoc mobility.

3.3 Mobile Computing in Fieldwork Environments (MCFE)

The Mobile Computing in Fieldwork Environments (MCFE) project [PMR98] at the Univer-

sity of Kent at Canterbury identifies four generic capabilities required of context-aware appli-

cations, namely, sensing, adaptation, resource discovery, and augmentation [Pas98]. Sensing

of context and adaptation of application behaviour to context are capabilities shared by all

context-aware applications and indeed may be considered base capabilities that make an

application context-aware. Resource discovery refers to the capability of an application to

discover and exploit other resources relevant in a particular context and is core to the vision

of ubiquitous computing [Wei91] where devices dispersed in the environment interact with

each other. Contextual augmentation refers to the association of digital data with particular

contexts [Pas98], and arises from the nature of the project which is primarily concerned with

user interfaces in a fieldwork environment.

45

Chapter 3. State of the Art

The FieldNote system [RJD99] was developed as part of the MCFE project, as a tool for

mobile fieldworkers observing wildlife behaviour in Kenya [PRM98, PRB98] and is based on

the stick-e note architecture [BBC97], also developed at the University of Kent. The system

runs on a handheld computer and augments data collection in the field with location and

time information determined using a GPS receiver as a sensor. The system uses a novel

XML-based protocol, known as the Context Markup Language (ConteXtML) [Rya99] for

exchanging contextual information and field notes between mobile handheld clients and a

server. The language also allows context enriched field note data to be queried at the server

using spatial and temporal constraints.

The project acknowledges the difficulties of incorporating context information into appli-

cations in a generic manner and proposes the Contextual Information Service (CIS) [Pas98]

as a dynamic model of contextual information that provides a common access point to the

current context for any application. The goals of the CIS are to gather, model, and provide

contextual information [PRM99] and the concept is described in some detail as an object-

oriented model, but no implementation description or evaluation of the service is available.

3.3.1 Analysis

The MCFE project extends from the early attempts of the stick-e note infrastructure to

provide generic support for the integration of context into applications. The context data

supported in the project is predominantly geographical location and allied GPS data, with

no generic sensor abstraction for the easy incorporation of other sensors. Due to the reliance

on a single type of sensor, the project does not provide any treatment of multi-modal sensor

fusion. In fact, mono-modal sensor fusion to reduce the uncertainty of individual sensor

readings is not dealt with either.

Perhaps the most important contribution of the project is in its approach to the repre-

sentation of context data by way of ConteXtML. Context information gathered from GPS

sensors is represented in this format and stored in persistent storage where it may be accessed

and utilised by a range of clients. A similar approach to the stick-e note infrastructure is

adopted with respect to inference, although the definition of context-awareness taken by the

46

Chapter 3. State of the Art

project as ’imbuing a device with the capability to sense the environment’ [PRM98], places

less emphasis on inference and the simple triggering approach suffices. Actuation is once

again confined to presentation of information to a user and no generic actuator abstractions

are defined. The project is specifically focused towards mobile devices, but predominantly

supports off-line operation with periodic on-line synchronisation and provides no support

for ad hoc mobility. The MCFE project does not attempt to provide a high level program-

ming model and in this respect fails to be accessible to a range of developers. Application

development requires specialised skills.

The Context Information Service (CIS) model for the integration of context into applica-

tions, although promising, appears to have remained conceptual and does not appear to have

been implemented or evaluated.

3.4 SPIRIT project (Bat Ultrasonic Location System)

Research into context-aware computing in Cambridge started at Olivetti Research Ltd.

(ORL) between 1989 and 1992 with the design and implementation of the Active Badge

indoor location system [WHFG92] which used small infrared transmitters (badges) that peri-

odically broadcast their unique identifiers. The broadcast signals are picked up by a network

of sensors around a building and by determining which badge was seen by which sensor, the

location of the badge and its owner may be inferred. Whilst Active Badge technology al-

lowed location to be determined at the granularity of a room, more interesting context-aware

applications required finer-grained location information.

A new indoor location system was subsequently developed by the University of Cambridge

Computer Laboratory and ORL that is based on measurement of time-of-flight of sound pulses

from an ultrasonic transmitter [WJH97]. The system, known as the Bat system [HHS+99]

uses a set of small badges (Bats), containing a radio transceiver and ultrasonic transducer.

Ultrasound sensors are networked at known locations around a room and monitor incoming

ultrasound signals. These signals are transmitted by the Bats when they periodically receive

a radio message from a base station. The system is able to determine the 3D location of

Bats using a multilateration algorithm, with an accuracy of approximately 3cm [ACH+01].

47

Chapter 3. State of the Art

Coarse orientation information may also be determined.

The Bat location system was used by AT&T Laboratories in Cambridge, as the basis

for implementing a sentient computing system. The term sentient computing is used in this

context to define an application that appears to share the user’s perception of the environment

and reconfigures itself appropriately [ACH+01]. The sentient system maintains a detailed

model of the world containing information about real world entities, modelled using object-

oriented techniques. This world model is updated through location information received from

Bats and may be used by applications to provide location-aware services such as follow-me

systems or a 3D visualisation of the current state of the environment.

The Bat system also uses a form of context-aware quality-of-service adaptation in the

location update process. The base stations preferentially allocate location update resources

to those Bats that are changing their location (moving) frequently. This is achieved through a

scheduling algorithm in the base station, which determines when a Bat will next be addressed

to determine its location [ACH+01]. Those Bats moving infrequently may go into a powered

down mode to prolong the lifetime of their battery, which in itself is a form of context-aware

behaviour.

3.4.1 Analysis

The use of ultrasonic location technologies in the Bat system has enabled very precise indoor

positioning and the development of a number of context-aware applications based on loca-

tion. In addition, a number of resource monitors [HHS+99], in effect software sensors, have

been installed on networked machines to allow measurement of parameters such as machine

activity, resource utilisation, and bandwidth and latency. The system provides some level

of abstraction of sensor data, such as conversion of absolute spatial facts to relative spatial

facts, although it is not clear how extensible the system is and whether new types of sensor

may be incorporated. A systematic approach to sensor fusion is not provided in the system,

although sensor data from the ultrasonic badges is filtered before use. Context is represented

in the form of a centralised, detailed object-oriented model of the location of entities in the

environment and their possible interactions. This abstract model is then made available to

48

Chapter 3. State of the Art

applications that can base their behaviour on the current state of the environment. Infer-

ence based on context data is not addressed in the Bats system, but is left to higher-level

applications using the world model. A programming model based on a spatial monitoring

system is described that allows developers to create new applications based on an event-

driven communication style, but it is not clear how accessible and usable this model is to

inexpert developers. The Bats system is based on the inherent mobility of location sensors,

rather than ad hoc application mobility and is not fully distributed, retaining a number of

centralised components.

3.5 The Context Toolkit

The Context Toolkit [SDA99] is an architecture developed at the Georgia Institute of Tech-

nology that aims to provide reusable solutions to the problems of developing context-aware

applications. The main aim of the toolkit is to free developers from having to deal with the

low-level details of context acquisition and allow them to concentrate on the specification

of higher-level application behaviours. The toolkit is inspired by the success of toolkits for

Graphical User Interface (GUI) development and is based on the GUI concept of a widget

as a reusable component for abstracting away from and hiding the specifics of a physical

device. Through the widget abstraction, the Context Toolkit aims to enable context data to

be handled in the same way user input is currently handled [DSFA99].

The architecture was designed using an object-oriented approach and is an implementation

of a conceptual framework, illustrated in Figure 3.1, that is composed of five categories of

components:

1. Context widgets are software components that provide applications with access to

context data from their operating environment [SDA99]. Context widgets hide the

complexities of individual sensors and abstract raw sensor data to suit the needs of

applications, in a reusable manner. Widgets provide callbacks to notify applications of

changes, and provide attributes that may be polled by applications [DSA99].

2. Interpreters are components that, when provided with state information, can interpret

49

Chapter 3. State of the Art

Application Application

AggregatorInterpreter Interpreter

Widget WidgetDiscoverer

Service
Sensor Sensor

Actuator

Context
Architecture

Fig. 3.1: Context Toolkit components and their relationships

the information into another format or meaning [DSA99]. Interpreters transform sensor

data to a higher level of abstraction.

3. Aggregators provide an additional layer of abstraction between the acquisition of

context data and its use, by collecting multiple pieces of logically related context data

from distributed sensors and making it available to applications. Aggregators collect

multiple pieces of logically related context information into a common repository.

4. Services are components within the framework that execute actions on behalf of ap-

plications [DSA01]. Services encapsulate actuators in the same way that widgets en-

capsulate sensors, and provide analogous advantages.

5. Discoverers are registries that maintain the set of widgets, interpreters, aggregators

and services currently available for use by applications. In the Context Toolkit archi-

tecture, this is a single, centralized component.

The toolkit has been implemented in Java and utilises a common communications mech-

anism based on XML messages over HTTP, making TCP/IP the minimum requirement to

support use of the toolkit. A number of applications have been built to demonstrate the

usefulness of the toolkit, including an In/Out board, an augmented electronic whiteboard

and a conference assistant [DFSA99].

50

Chapter 3. State of the Art

3.5.1 Analysis

The Context Toolkit provides useful domain-specific abstractions for the incorporation of

context data garnered from sensors into applications, through the use of the widget abstrac-

tion, and this is its major strength. In addition, the interpreter abstraction of the toolkit

provides a means to convert sensor data to higher-level context. The toolkit does not deal

with issues of uncertainty in sensor data and in fact makes the assumption that the context

being sensed is 100% accurate [DSA01], an assumption that is not valid in the real world.

As such, the toolkit does not provide a systematic approach managing uncertainty through

mono-modal sensor fusion of redundant senor readings. Multi-modal sensor fusion is per-

formed to some extent by the aggregator component, although once again, management of

uncertainty is not incorporated, with the fusion process assuming complete accuracy of all

fragments of data. More recent work on the toolkit acknowledges the uncertainty inherent in

sensor data and proposes mechanisms based on components known as mediators to reduce

ambiguity in sensor data [DMAC02]. However the process is not autonomous and depends

on feedback from a user to resolve ambiguous or conflicting sensor data.

The toolkit does not deal with the representation of context data, merely serving the

data to higher level applications. Inference and reaction based on context is also left to

the application, and the toolkit does not provide generic actuator abstractions to support

actuation. The toolkit supports the experienced application developer in integrating context

data into applications but does not provide a high-level programming model. As such, the

current toolkit is only accessible to experienced programmers, although a proposal has been

made to provide a visual environment to support end-user prototyping [DS03].

The context toolkit is designed for use in mobile, distributed environments, however

the use of HTTP as a protocol for transmitting events does not address efficient context

dissemination [dIn02], and the toolkit does not address ad hoc mobility at all.

51

Chapter 3. State of the Art

Fig. 3.2: Layered architecture of TEA system [SAT+99]

3.6 Technology for Enabling Awareness (TEA)

The Technology for Enabling Awareness (TEA) project [Lae00] carried out by a consortium

of European research institutes aimed to produce a context awareness-enabling add on com-

ponent for mobile computing and communications devices [LA01]. The project is notable for

the fact that it dealt with a range of small sensors measuring a multitude of environmental

parameters other than location. A custom hardware board, known as an awareness device

and incorporating light, sound, motion, temperature, pressure and other sensors was devel-

oped [SB98], reflecting the applied nature of the project. The aim of the project was to use

this awareness device to provide context data that could be used to adapt the user interface

of ultra-mobile devices such as GSM phones and PDAs [SAT+99]. Another application dis-

cussed in the realm of the project is the use of context data in communication, enhancing

the process of mobile telephone call set-up with situational awareness [STM00].

The awareness device fabricated for the TEA project uses 8 multi-modal sensor devices

and a layered architecture is proposed for multi-sensory context awareness and the extraction

of context data from sensory data. The TEA architecture is illustrated in Figure 3.2 and

consists of the following 4 layers:

1. The Sensor layer is the sensor device layer. Two types of sensors are defined - physical

sensors are hardware components measuring environmental parameters, whilst logical

sensors measure host device parameters [SB98].

2. The Cue layer is a sensor abstraction layer. Each cue represents a single sensor and

52

Chapter 3. State of the Art

different cues may use the same sensor. Cues serve to buffer sensor data and make

specific sensor hardware transparent to higher layers.

3. The Context layer contains a set of contexts as abstract descriptions of a set of

situations in which the device could be. A context is based on a number of cues [SF99]

and it is this derivation of a single context from a number of cues that can be considered

the actual sensor fusion function.

4. The Applications and Scripting layer provides scripting primitives to allow devel-

opers to incorporate context information into applications.

The way in which transitions are made between the sensor, cue, and context layers in the

architecture is of particular interest, since this is how raw data is transformed to meaningful

context information.

• Sensor to cue mapping Raw sensor data is mapped to cues through a pre-processing

step that serves to extract features that characterise the data over the last period of

time [SAT+99]. Statistical functions including average, standard deviation, and quartile

distance are used to perform this function.

• Cue to context mapping The architecture proposes two approaches to map a set of

cues to a pre-defined context [SB98] (1) explicit rule specifications, enhanced by prior

statistical analysis, may be used to infer context from cues; and (2) artificial intelligence

methods may be used to relate cues to specific contexts in a learning process.

An example of an explicit rule specification might be ’if cue A has value x and cue B has

value y, then the current context is z’, while neural networks were used as the basis for the

second approach to mapping cues to contexts [CSG99].

3.6.1 Analysis

The major contribution of the TEA project is an architecture for multi-modal sensor fusion

in context-aware computing. The architecture provides for both a rule-based and neural

53

Chapter 3. State of the Art

network-based approach to fusing multi-modal sensor data and experiments based on user-

interface adaptation on a GSM phone proved the validity of these approaches. The overall ar-

chitecture for context awareness envisioned by the project represents context information as a

set of logical facts augmented with location and time information in the form: Fact=(location,

time, value, description) [GBS00]. Another interesting characteristic of the TEA architecture

is that it maintains a set of discrete contexts in which an entity may exist at a point in time,

and recognises that within a specific context, only a subset of all available sensory input is

relevant.

The architecture also provides abstractions for dealing with physical sensor devices, but

does not provide abstractions for actuation, deferring this to the application level. A high-

level programming model based on a set of scripting primitives makes the architecture ac-

cessible to even inexperienced developers. The architecture does not however provide a

programming model for specifying the sensor fusion implementation (e.g., the rule-base or

neural network) for different sets of sensors and as a result the fusion algorithms are restricted

to TEA-fabricated hardware devices. Although the architecture is predicated on what the

authors term ultramobile environments, it does not explicitly provide communication abstrac-

tions for dealing with ad hoc mobility.

3.7 Multi-Use Sensor Environments (MUSE)

The Multi-Use Sensor Environment (MUSE) project at the University of California at Los

Angeles [CM00, CCKM01] aimed to produce a middleware architecture for smart spaces,

i.e., environments pervaded by embedded sensor devices. ’Environment’ within the project

is not limited to indoor built environments in contrast to much smart space research, but

encompasses any environment where the acquisition of information may be important. The

project concentrates of the development of new types of sensing services and in particular how

these services are specified, how QoS is characterised in the services, and how the services

can be implemented in terms of resource constraints and performance goals [CM00]. The

stated goals of the MUSE project are (1) to develop APIs for the specification of sensing

services and the derivation of non-deterministic contextual information from sensor data in

54

Chapter 3. State of the Art

a probabilistic manner; (2) to develop a memory component for context data which permits

non-deterministic queries to be made; (3) to optimize device usage based on the quality of

derived contextual information whilst staying within the resource constraints of the device

[Mun02].

The MUSE infrastructure consists of three major services, namely a lookup service, sensor

services, and fusion services. The lookup service is provided by Sun Microsystems’ Jini1,

since MUSE service communities are implemented as Jini communities. Sensor services are

essentially proxies for sensor hardware that allow the sensor to participate in a Jini federation,

and in this way serve to abstract from the complexities of low level sensing. Fusion services

are services that derive higher-level contextual information from the data supplied by the

sensor services, and it is in this area that the MUSE project has focused, providing generic

models for fusing sensor data into contextual information.

The MUSE infrastructure models sensing services using evidential reasoning techniques.

In other words, sensors are used to supply evidence about the value of a query variable and

this evidence is used to determine the most likely value for the variable [CM00]. Bayesian

networks are adopted as a basis for interpreting the value of a query variable given sensory

evidence, by performing probabilistic sensor fusion. Within MUSE a fusion service is speci-

fied by a Bayesian network, with the root node representing the query variable and leaf nodes

representing sensors that contribute to the determination of the value of the query variable.

Intermediate nodes represent intervening variables. The general structure of a fusion ser-

vice Bayesian network is illustrated in Figure 3.3. Using Bayesian theory, it is possible to

instantiate the sensor nodes based on sensor observations, and to observe the effect these

observations have on the probability distribution of the query variable.

3.7.1 Analysis

The MUSE project provides a valuable contribution to the provision of generic, multi-modal

sensor fusion services for context-aware applications, and the fusion service has successfully

been applied to the inference of the location of a wireless client from signal quality measures
1http://www.sun.com/software/jini/

55

Chapter 3. State of the Art

Fig. 3.3: MUSE fusion service Bayesian network

[CCKM01]. MUSE defines sensor abstractions in the form of sensor services which act as

smart proxies, independently providing sensor data to interested applications. A subproject,

the Multimedia Internet Recorder and Archive (MIRA) project [CMMM00, CM99] deals with

the storage of historical contextual data in a ’context database’, but the project does not

describe a systematic approach to context representation. The project does not incorporate

intelligent inference mechanisms, nor does it deal with actuation based on context data,

rather simply supplying context data fused from sensor services, to applications. There is

no programming model made available to developers to easily specify fusion networks and it

appears that whilst MUSE provides a systematic approach to sensor fusion, the advantages

are only available to experienced developers. The project uses existing infrastructure in the

form of Jini to provide ad hoc service composability in static networks. As such, MUSE does

not support ad hoc mobility.

3.8 Context Based Reasoning (CxBR)

Context-Based Reasoning (CxBR) was developed at the University of Central Florida [GA94,

GA95] as a concise but rich representation paradigm that could be used to model the intelli-

gent behaviour of simulated entities. The paradigm derives its name from the idea that the

actions taken by an entity are highly dependent on the entity’s current context. CxBR is

based on the following hypotheses:

1. Small, but important portions of all available environmental inputs are used to recognise

and treat the key features of a situation. A driver, pilot, or air traffic controller receives

56

Chapter 3. State of the Art

Fig. 3.4: A CxBR context hierarchy

a multitude of audio, tactile and visual inputs whilst performing his job. These inputs

are all easily handled whilst in the normal range, however an input deviating from the

normal will cause the operator to focus only on that input in order to recognise the

situation.

2. There are a limited number of things that can realistically take place in any situation.

This fact may be used to narrow the number of potential actions in a situation and

speed up response to a situation.

3. The presence of a new situation will generally require alteration of the present course

of action to some degree.

CxBR is based on military tactics where a specific situation demands a strict, pre-defined

set of actions be embarked upon and the problem becomes two-fold (1) recognition of the

present situation; and (2) determination of action to be undertaken when the situation is

recognised [GA99]. These problems are managed by defining the set of situations in which

an entity may be during its lifetime, and within each situation defining the set of other

situations to which a transition is possible (since a particular situation inherently limits

what other situations may follow). Situations are represented as contexts, each context being

mapped to a class encapsulating behaviour as a set of functions.

The CxBR approach defines a mission context, major contexts and sub contexts structured

in a three-level hierarchy as illustrated in Figure 3.4. The mission context represents the

overall goal and objectives for a certain scenario. It is composed of major contexts, which

57

Chapter 3. State of the Art

Fig. 3.5: CxBR system diagram [GA99]

are tactical operations assisting in the achievement of the scenario. Each major context is in

turn composed of one or more sub contexts each of which is a lower level tactical procedure

that assists in the achievement of its associated major context. Sub contexts are of a finite,

and typically short, duration.

Autonomous behaviour of an entity in CxBR is based upon the evaluation of a set of

production rules, and the alteration of behaviour based on the outcome of these rules. The

influence on behaviour based on a set of continuously evaluated rules is a common Artificial

Intelligence technique, but CxBR adds to this the notion of an active context. Within each

active context, only a subset of all rules available in the system are evaluated (this derives

from the hypothesis that there are only a limited number of things that can realistically take

place in any situation) and this increases the efficiency of the inference process. Additionally,

within each context, only a subset of all available sensor inputs need to be monitored, further

reducing complexity. Contexts are constantly being activated and deactivated during an

entity’s lifetime and each context regulates the behaviour of the entity and provides an

expectation for the future. A requirement of this approach is that certain cues exist to

indicate when transitions may be made between active contexts.

The structure of the CxBR system is illustrated in Figure 3.5 and illustrates how a

major context is the main control element and determines which rules are currently active.

58

Chapter 3. State of the Art

Monitoring rules identify when a transition to another major context is indicated by the

situation, and in the case of a sub context, check for completion of the sub context action(s)

[GA95]. The mission context simply serves to define application parameters and define the

set of required major contexts.

3.8.1 Analysis

CxBR provides a framework to simply, concisely, and efficiently represent and reason about

context data derived from sensors. In a traditional rule-based system, the task of situational

assessment is of complexity O(n) where n is the total number of rules in the system. CxBR

reduces this complexity to O(k) where k is the average number of rules attached to active

contexts and significantly, k is independent of the total number of rules in the system [GA99].

The system has been tested in a vehicle simulation [GPG00] with promising results in the

efficiency of the approach. CxBR does not provide sensor or actuator abstractions at any

level, nor does it address uncertainty of sensor data and its management using sensor fusion

techniques. No programming model or support is offered for application development, rather

the salient contribution of the system is the provision of an efficient and systematic approach

to context representation and inference.

3.9 GUIDE

The GUIDE project at the University of Lancaster developed a context-sensitive guide for

tourists visiting the city of Lancaster [DMCF99]. The system is based around mobile hand-

held tablet PCs communicating with a GUIDE server via base stations located within cells

of high bandwidth wireless communication covering selected areas of the city. The premise

behind the project is that tourists equipped with the tablets wander the city and are provided

with information tailored to both their location and personal preferences. In contrast to ear-

lier, similar, systems, e.g., [LKAA96], GUIDE adopts a distributed networked approach with

information being dynamically composed at the client from both local and remote fragments

of information [CMD99], which makes the system more dynamic and flexible. Location in-

59

Chapter 3. State of the Art

formation is determined from the current cell, so location and information are disseminated

on the same channel. Information is broadcast by cell base stations to minimise the effect on

response times of having more than one unit present in a cell [CDMF99].

3.9.1 Analysis

Whilst the provision of generic support for the development of context-aware applications is

not one of the explicit goals of GUIDE, the GUIDE project provides valuable insight into

one of the few successful context-aware systems in use by the general public and the lessons

learned [CDM+00] in the development of such an application.

The GUIDE system does not handle multi-modal sensory information (rather relying

solely on location information from strategically placed beacons) and does not deal with sen-

sor abstraction or multi-modal sensor fusion. The experiences of GUIDE have been further

generalised to strategies for building context-aware applications [CDME00], although the fo-

cus is still on interaction with a human user. Two major issues in engineering context-aware

systems which arose from the project are (1) the need for both accurate and timely sensor

data; and (2) the need for flexibility in order to adapt to problems inherent in determining

context. The major issue raised of the accuracy and timeliness of sensor data reinforces the

requirement for an efficient approach to sensor fusion to reduce the uncertainty of context

data. The GUIDE project successfully uses an object-oriented approach to represent context

data, most importantly location, but also identity and certain user preferences [CDM+00].

Simple inferences are made on the context data, with the results being used to alter informa-

tion presented to a user. With actuation being limited to the presentation of information, no

actuator abstraction is defined within GUIDE. The system is reliant on installed infrastruc-

tural network access points and does not cater for ad hoc communication.

3.10 Context Fabric

The Context Fabric project being carried out by the Group for User Interface Research at the

University of California at Berkeley [HL01] proposes a novel approach to providing support

60

Chapter 3. State of the Art

for context-awareness in the form of a service infrastructure model. This model attempts

to shift as much of the task of context-aware computing as possible to a network-accessible

middleware. This approach aims to aid the development of applications based on a diverse

and constantly changing set of sensors and devices by providing uniform abstractions and

reliable services for common operations. The Context Fabric provides five basic context

services as an integral part of the infrastructure. The relation between these constituent

services is illustrated in Figure 3.6 and they are described below:

1. Automatic Path Creation is a service which simplifies the task of refining and

transforming raw sensor data into higher-level context data.

2. Proximity-Based Discovery is a service which provides a device with information

about all sensors near to it.

3. The Context Event Service provides an event system to asynchronously commu-

nicate context data using the Context Specification Language (CSL) that provides a

declarative approach to stating context needs at a high-level.

4. The Context Query Service provides a universal interface by which applications can

synchronously check context state.

5. The Sensor Management Service provides a registry of all local sensors and deals

with discovery and registration of sensors.

The fabric services are held together with a Context Specification Language [Hon02] which

is a simple XML-based language that supports context event management and provides a

declarative approach to state context needs at a high level (e.g., what bank is closest to me?).

The language purports to support event subscriptions filtered on proximity (e.g., subscribe

to events near me) as part of the implementation of the proximity-based discovery service,

but it is not clear how this notion of proximity is implemented in the system. In addition,

the CSL also supports context queries, whereby applications can query the infrastructure for

specific context data.

61

Chapter 3. State of the Art

Fig. 3.6: Architecture of the context fabric [Hon00]

The advantages of the infrastructure approach to context-aware computing are argued

to be (1) an independence from hardware, operating system and programming language; (2)

improved maintenance and evolutionary capabilities; and (3) sharing of sensors, processing

power, data and services.

The context fabric stores context data in network-addressable, logical units known as

infospaces [HL04], which contain both static and dynamic data. Sensors change infospace

data, and context-aware applications can examine infospaces and retrieve the data stored

therein. Within an infospace, context data is stored as a set of typed tuples. Tuples are

represented as XML documents.

3.10.1 Analysis

The Context Fabric provides sensor abstraction through the APC service and is one of the few

projects that provides an explicit treatment of proximity as a useful concept in context-aware

computing. Sensor fusion as an approach to managing the uncertainty of sensor data is not

dealt with in the project, although logically it would take place in the APC service. Context

62

Chapter 3. State of the Art

data is represented as a set of tuples expressed in XML, and against which queries may be

made. As the project is concerned with simply providing context data to higher level appli-

cations it does not provide an approach to intelligent inference, although the proximity-based

discovery service uses a form of inference in determining proximity. Furthermore, actuation

is not dealt with and is left to individual applications. The project provides a programming

model based on infospaces which allows developers to incorporate context information into

applications based on a hybrid blackboard and dataflow architecture [HL04]. Furthermore,

the CSL provides a structured query language through which to access context data. Al-

though the potential applications of the Context Fabric are inherently mobile, the project

does not explicitly provide support for ad hoc mobility.

A potential disadvantage of the infrastructure approach is the potential for a single point

of failure within the system, and the Context Fabric attempts to mitigate this risk by storing

context data in multiple distributed locations.

3.11 Target Recognition using Image Processing (TRIP)

The Target Recognition using Image Processing (TRIP) project is the result of Ph.D. research

[dIn99, dIn02] at Cambridge carried out in conjunction with AT&T Laboratories. TRIP

uses a novel vision-based sensor technology to determine location and identity information

that allows applications to create a model of their environment on which they may base

their behaviour in a sentient2 manner [dInL01]. The project develops an inexpensive indoor

location sensor which uses low cost CCD cameras and 2-D ringcodes (known as TRIPtags)

[dIn01] to imbue applications with location awareness. TRIPtags can be printed and attached

to objects which may then be located relative to cameras dispersed in the environment,

using algorithms to determine the exact location of the TRIPtag with respect to the camera

[dInMH02].

A number of components were developed within the project in order to ease the develop-

ment of location-aware applications.
2The term sentient computing is used as an analogy for context-aware computing in the TRIP project

63

Chapter 3. State of the Art

Fig. 3.7: The SIF architecture [dIn00]

3.11.1 The Sentient Information Framework

The Sentient Information Framework (SIF) is a set of co-operating distributed software com-

ponents that use events to transmit context notifications, and was developed to isolate context

capture from application semantics [dIn00]. The framework consists of 3 components and is

illustrated in Figure 3.7.

1. Context Generators

A Context Generator encapsulates one or several sensors and serves to simply transfer

raw sensor data to the Context Abstractor, as a series of events. This component does

not abstract the raw sensor data in any way.

2. Context Abstractors

A Context Abstractor accepts raw sensor data in event form from a Context Generator,

and enhances the data through interpretation and augmentation from a database. In-

terpretation of data is performed by applying conditional rules, which if they succeed,

generate an action. Such actions cause enhanced contextual events to be passed onto

64

Chapter 3. State of the Art

the application. An event can flow between any number of abstractors before delivery

to an application.

3. Context Channels

A Context Channel provides for communication between other SIF components and is

defined by the type of events it carries. Context Channels serve to de-couple the inter-

action between SIF components and applications by allowing multiple producers and

multiple consumers to communicate with each other transparently and asynchronously.

The channels are implemented as OMG Notification Channels [dIn01].

Parallels are evident between the SIF and the Context Toolkit (see section 3.5) and

indeed the SIF was inspired by the toolkit amongst other work [dIn00]. The SIF differs

most significantly from the toolkit in its use of a CORBA-based event service which serves

to de-couple the components, which is in contrast to the tight coupling of components in the

Context Toolkit.

3.11.2 Event-Condition-Action (ECA) Rule Matching Service

Another component of TRIP addresses the limitations of the CORBA Notification Service

in only being able to filter on atomic events. In sentient applications, reactions are usu-

ally based on a combination of atomic events, and the Event-Condition-Action (ECA) rule

matching service is a middleware service that undertakes the common event composition and

aggregation tasks required in the implementation of reactive systems [dInK01]. The exist-

ing capabilities of a production system language, CLIPS [NAS99] are leveraged to associate

aggregated events to actions.

The ECA server architecture is illustrated in Figure 3.8 and shows the different compo-

nents of the architecture. The Rule Registration module converts rules issued in a custom

rule specification language into CLIPS rules and passes them to the inference engine. The

Event Reception module takes events from distributed event sources and maps them to CLIPS

facts that are understood by the inference engine. The Notification Dispatcher takes CLIPS

facts representing aggregated events and maps these onto a batch of CORBA events that are

65

Chapter 3. State of the Art

Fig. 3.8: The ECA Server system [dInK01]

notified to clients. The Action Dispatcher module processes facts from the inference engine

and triggers actions based on these facts.

Another feature of the ECA-Rule matching Service is the provision of a domain-specific

language in the form of the ECA rule specification language, the function of which is to

specify the set of patterns to be applied to the contents of events together with the actions

that are triggered by successful matches [dInK01]. The function of the language is to enable

the creation of sophisticated rules expressing complex conditions upon atomic events and

remove the burden of composite event handling from the programmer.

3.11.3 Analysis

TRIP makes significant advances in the provision of support for the development of location-

aware systems. Although implementing only one kind of location/identity sensor, the system

specifies a framework for the development of applications using a multitude of sensors. The

framework contains a sensor abstraction component and uses event-based communication to

66

Chapter 3. State of the Art

decouple the constituent components. TRIP does not explicitly define a systematic approach

to multi-modal sensor fusion, but provides support for it within the Context Abstractor

component of the SIF, and through the event composition capabilities of the ECA Rule-

Matching service. Context information is represented through the assertion of logical facts

in a knowledge base, whilst intelligent inference is achieved through CLIPS rules. Actuation

within TRIP is software based, with no abstraction of physical transducer devices. TRIP

significantly eases the development of reactive applications with the provision of the ECA rule

specification language for programming reactive behaviour, but does not provide a federated,

systematic approach to application development encompassing sensor fusion. TRIP provides

mechanisms for object lifecycle and location control supporting mobility at the object level,

based on the migration and remote instantiation of CORBA objects, but does not provide

support for ad hoc mobility.

3.12 Gaia

The Gaia3 project at the University of Illinois at Urbana-Champaign proposes a general-

purpose operating system for ubiquitous computing environments, which exports and coor-

dinates the resources contained in a physical space [CHRC01]. The project aims to make

physical spaces containing a plethora of computation and communication devices into pro-

grammable systems. These systems are known as active spaces and the Gaia OS has been

developed as a component based, distributed metaoperating (an operating system under

which several other operating systems are active) system to manage the resources contained

in an active space [RC00].

The major components of the OS are the Gaia kernel and the application framework

[RZC03]. The kernel consists of a Component Management Core for creation, destruction

and uploading of components, and five services built as Gaia components, namely event

management, the context service, the presence service, the space repository and the context

file system [RHC+02]. The application framework sits logically above the kernel and models

applications as a set of distributed components, re-using concepts from the Model-View-
3After James Lovelock’s Gaia theory of the earth as a single, self-regulating system

67

Chapter 3. State of the Art

Fig. 3.9: Gaia Context Infrastructure [RC03a]

Controller design pattern. According to [RC02], the framework provides functionality to alter

the application composition dynamically, is context-sensitive, supports the creation of active-

space independent applications and provides policies to customize aspects of the application

including mobility. Active space independent applications are provided for through the use

of generic application description files and application description files customized to specific

spaces.

3.12.1 Context Model

The context model used by Gaia is based on the use of predicates to describe context in-

formation derived from sensor data. Ontologies are employed to describe the structure and

properties of context predicates. A context predicate has a name which describes the type

of context that the predicate describes, and a set of arguments that may include relational

operators. Context predicates are specified using an ontology that defines the set of allowable

context types and their legal arguments. As well as allowing the validity of specific context

predicates to be checked, the ontology permits semantic inter-operability between different

68

Chapter 3. State of the Art

applications by providing a shared vocabulary.

3.12.2 Context Infrastructure

Gaia defines a Context Infrastructure [RC03a], illustrated in Figure 3.9 and consisting of the

following components:

• Context Providers represent sensors or other providers of context data. Context providers

may contain logic and may use different mechanisms to reason about the contexts they

sense and to answer queries, e.g, first-order predicate logic [RC03a]. Context providers

may both push sensor data by publishing events, or it may be pulled from them using

a Prolog-like query language.

• Context Synthesizers serve to deduce higher-level contexts based on inputs from Context

Providers and in this way act as context providers themselves. Context synthesizers use

either rules to infer higher-level contexts (rule-based synthesizers), or machine learning

techniques based on algorithms such as the Näıve Bayes algorithm.

• Context Consumers are applications that get context information from providers or syn-

thesizers, reason about it, and adapt their behaviour accordingly. Context consumers

can use either a rule-based approach to specifying application behaviour, or learning

approaches such as neural networks or reinforcement learning techniques.

• Context Provider Lookup Service serves as a registry with which context providers

register the context they provide

• Context History Service stores past contexts in a database. Gaia also allows event

channels to be made persistent and this data to later be mined to determine patterns.

• Ontology Server maintains ontologies that provide semantic descriptions of types of

contextual information

69

Chapter 3. State of the Art

3.12.3 Analysis

Gaia is designed to facilitate the development of applications in physically bounded envi-

ronments rich in heterogeneous devices. The system is component based and defines sensor

abstractions in the form of context providers and implements asynchronous event-based com-

munication between system components in addition to synchronous polling. An important

contribution made by Gaia is its ontological context model. By using an ontology to describe

Gaia context predicates, interoperability between pervasive system components is greatly

enhanced. However, the use of the DAML+OIL language4 for describing the ontology is

not ideal. DAML+OIL was designed for the Semantic Web and not suited to some aspects

of ubiquitous computing and does not easily deal with quantitative concepts such as order,

quantity, time, geometry and probability. Nevertheless, as an approach to semantic inter-

operability the context model is promising. Gaia proposes two possible approaches to sensor

fusion, which may be applied at either a context provider or a context synthesiser. Both

components offer the ability to fuse fragments of sensor data with providers offering mono-

modal sensor fusion and synthesisers multi-modal fusion. Both components are able to fuse

data using either rules-based or machine learning techniques, although detailed application

examples are not offered so it is difficult to evaluate this approach. Furthermore, Gaia makes

use of Bayesian networks to reason about uncertain contexts, specifically attaching prob-

abilities derived from Bayesian networks to context predicates [RAMC04]. Gaia uses the

Prolog production-rule based system to perform inference on context data, an approach that

is closely aligned to the use of logical predicates to represent context data. Gaia provides a

programming model based both on a high-level scripting language and graphical tools, aiming

to ease the development of active space applications. Mobility in Gaia is defined at the level

of an active space, and addresses mobility of application components between devices within

an active space, and across different active spaces. As such, loosely coupled communication

supporting ad hoc networking is not specified in Gaia.
4http://www.daml.org/language/

70

Chapter 3. State of the Art

3.13 Solar

Solar is a software infrastructure developed at Dartmouth College. Solar proposes a graph

abstraction for the collection, aggregation and dissemination of context data. The Solar

infrastructure is based on an asynchronous event-based communication mechanism and the

context-aggregation process is decomposed into a set of modular and re-usable operators

[CK02b], in a tree-structured namespace [CK02a]. Operators are objects that subscribe

to a particular event stream, process incoming events, and publish another event stream.

Operators may be recursively joined to form a directed acyclic graph to collect and aggregate

desired context [CK02b].

The operator graph consists of three types of nodes (1) sources are wrappers for context

sensors and produce events; (2)operators subscribe to events from sources and publish an

event after processing an input event and; (3) applications are event sinks and subscribe to

events, to which they react.

An example operator graph is illustrated in Figure 3.10, with sources shown as empty

circles, and applications as empty squares. There are four categories of operators defined,

depicted as circles with a letter defining the category of operator. A filter outputs a subset of

the events it consumes, whilst a transformer outputs a different type of event to that which

it consumes. A merger outputs all events it receives, whilst an aggregator outputs an event

type based on events in one or more input streams.

Naming in pervasive environments is a challenging proposition with any solution required

to be fast and scalable, as well as flexible and adaptable. Solar incorporates a naming system

based on the Intentional Naming System (INS) [CK03].

3.13.1 Solar architecture

The Solar system consists of a number of components as illustrated in Figure 3.11. Opera-

tors reside on planets, which are the execution platform for sources and operators, tracking

subscriptions, and delivering events in the operator graph. Sensors (sources) register with a

planet to advertise their availability. Applications may connect to planets to select appro-

priate sensors and aggregated output streams [CLK04]. Stars maintain a representation of

71

Chapter 3. State of the Art

Fig. 3.10: An example Solar operator graph

the operator graph and service requests for new subscriptions [CK02b]. When a star receives

a new subscription request, it attempts to find operators that may be re-used, essentially

mapping an operator graph to the planetary network in order to distribute the load. The

naming service allows stars to resolve name queries on new subscription requests.

3.13.2 Analysis

As an approach to support the development of mobile, context-aware applications, Solar

is based on the collection and aggregation of sensor data, and the dissemination of higher

level context data by a set of servers in the network rather than by individual applications.

Solar is based on an event-based communication abstraction, where changes in context data

are communicated asynchronously as events. As such, Solar defines sensor abstractions as

event producers, encapsulating both hardware transducers and software sensors. In the Solar

model, sensors ’push’ events, and cannot be queried by other entities. Solar provides an

approach to sensor fusion based on a graphical network of operators, the fusion function

being performed once again by servers in the network rather than by applications. Since

Solar is predominantly concerned with the supply of context data to applications, it does

72

Chapter 3. State of the Art

Fig. 3.11: Solar architecture [CK02c]

not deal with the representation of context data. However, some Solar operators maintain

state as part of their function, but no systematic approach is provided and the mechanism

employed is operator-specific. Due to Solar’s emphasis purely on the supply of context data

to higher level applications, the architecture does not deal with inference based on context

data at all. A programming model is provided allowing the composition of operator graphs,

and there is a library of existing operators. In addition, other operators may be developed

by extending existing base classes and implementing abstract methods, although there is no

detailed treatment of the programming model available. Solar is designed specifically for

mobile environments, but no support is offered for ad hoc device mobility.

3.14 Observations

Our review of state-of-the-art approaches to supporting the development of mobile, context-

aware applications revealed that there are a range of approaches broadly aimed at easing the

development of such applications, making the process more accessible to a greater number

of developers. Based on the set of requirements identified in section 2.3.8, we are able to

evaluate the extent to which the state-of-the-art supports these requirements.

73

Chapter 3. State of the Art

Requirement St
ic

k-
e

no
te

s

M
C

F
E

SP
IR

IT

C
on

te
xt

T
oo

lk
it

T
E

A

M
U

SE

C
xB

R

G
U

ID
E

C
on

te
xt

Fa
br

ic

T
R

IP

G
ai

a

So
la

r

R1: Loosely coupled commn

R2: Sensor abstraction • • • • • • ◦ • •
R3: Sensor fusion ◦ ◦ • • ◦ • •
R4: Context representation • • • • • • • • •
R5: Inference engine • •
R6: Actuator abstraction ◦
R7: Developer support ◦ ◦ • ◦ ◦ •

• = support ◦ = limited support

Table 3.1: Features provided by state-of-the-art approaches to developing mobile, context-
aware applications

3.14.1 Existing support for requirements

Whilst each of these projects goes some way in providing what we consider the critical re-

quirements of a programming model to support the development of mobile, context-aware

applications, there is currently no system that provides support for all requirements. Table

3.1 illustrates what we consider to be the essential set of requirements for which support is

required and evaluates each of the projects discussed in this chapter with regard to whether

they provide support for the requirements. The requirement for developer support is treated

as a unifying requirement, exposing support for other requirements to the application devel-

oper in an accessible manner likely to promote pervasive application development. In the

table, a bullet (•) indicates support, whilst a circle (◦) indicates limited support.

We have identified middleware that provides a higher level abstraction of raw sensor

data that it serves to applications without fusing it with other data, or performing any

inference on it (e.g., SPIRIT, Stick-e notes, Context Toolkit). Other approaches provide

mechanisms to fuse multi-modal sensor data in order to derive higher level contexts, but do

not provide an easily accessible programming model to application developers, or any form

74

Chapter 3. State of the Art

of actuator abstraction (e.g., MUSE, TEA). The representation of context information is

treated thoroughly in some projects (e.g. CxBR, GUIDE), but these do not deal with sensor

fusion, nor provide a programming model. Other projects provide good support for sensor

abstraction and sensor fusion (e.g.,TRIP, Gaia, Solar, Context Toolkit) but do not provide

suitable communication paradigms for ad hoc mobile networks.

3.15 Summary

In this chapter we introduced a number of state-of-the-art approaches to support the devel-

opment of context-aware applications and evaluated them against the set of requirements we

consider important in an architecture for developing mobile, context-aware applications. We

found that whilst individual projects together treated most of the important requirements

to some extent, an architecture providing a unified approach encompassing all the features

has yet to be proposed. We take all these components into account in the design of a new

approach to the development of mobile, context-aware applications.

The next chapter describes the sentient object model which provides systematic support

for the development of context-aware applications in mobile, ad hoc environments.

75

Chapter 4

The Sentient Object Model

The previous chapter examined state-of-the-art approaches to supporting the development

of mobile, context-aware applications with respect to the set of requirements outlined at the

conclusion of chapter 2, and found no single approach that supported these requirements.

This chapter describes our programming model, based on the sentient object model. The

design of the model is based on the set of requirements we identified as being necessary to

support developers of mobile, context-aware applications. The model fulfills these require-

ments, providing a systematic approach to the design and development of context-aware

applications in mobile environments.

The design of the sentient object model is directed by the nature of the environment in

which applications are intended to execute. The major characteristics of the environment

influencing the design of the model are the dynamism and limited bandwidth of ad hoc

networks, coupled with the need to capture, represent, and process context efficiently in such

environments.

4.1 Introduction

The Merriam-Webster dictionary1 defines sentient as ’responsive to or conscious of sense

impressions’. The key aspect of this definition to note is that sentience is defined as being
1http://www.m-w.com

76

Chapter 4. The Sentient Object Model

responsive to sensory input. We are not the first to employ this term in the area of ubiquitous

computing, but attach slightly different semantics to the term. Addlesee et al. [ACH+01]

use the term sentient computing to describe applications that appear to share the user’s

perception of the environment and are able to react to changes in the environment according

to a user’s preferences. Similarly, de Ipiña defines sentient systems as systems that respond

to stimuli provided by sensors distributed throughout the environment by triggering actions

that are adequate to the changing context of the user [dInK01]. The Economist [Unk03]

sees sentient computing as primarily a reactive technology to enhance user interaction with

applications.

In contrast to current definitions of sentient computing as primarily reactive systems en-

hanced with environmental inputs, we define sentience as the ability to perceive the state

of the environment via sensors, and use this information to proactively actuate on the en-

vironment. Proactiveness is defined as the ability of the system to act in anticipation of

future states or goals of the system. This is in contrast to reactive systems where the out-

put of the system at time t is dependent only on past states. In proactive systems, the

output is dependent on future states too. It is this recognition of proactiveness that dis-

tinguishes our definition of sentience from previous work, and we use the term to mean

proactive context-awareness. Furthermore, our definition of context-awareness is focused on

autonomous systems, rather than more traditional approaches that define context-awareness

as merely enhancing user interaction with a computer system (see chapter 2). This focus is

based on our belief that truly pervasive computing should not be exclusively user-interaction-

centric.

The sentient object model defines a set of software abstractions that together provide

a programming model supporting the developer of context-aware applications in mobile ad

hoc environments and significantly eases the development task. In the following sections, we

describe the sentient object model in terms of the fulfillment of the seven major requirements

identified in section 2.3.8.

77

Chapter 4. The Sentient Object Model

4.2 Loosely coupled communication

As discussed in section 1.2, we view interaction between the environment and application

components as the basis of context-awareness, which in turn is crucial to the realisation of

truly pervasive computing. Support for a suitable communication mechanism that addresses

the challenges of the envisioned pervasive computing environment, underlies the first require-

ment of the programming model.

Mobile ad hoc networking is one of the key enabling technologies for pervasive computing

since in a truly pervasive computing environment, information exchange between entities

cannot rely on a fixed network infrastructure and ad hoc peer-to-peer wireless connections

will be the norm. This is due to the fact that fixed and infrastructure networks are too

expensive to deploy ubiquitously, and indeed, mobile devices may not be networked this way.

A variety of communication middleware solutions based on a synchronous style of commu-

nication exist for fixed networks, e.g., Java Remote Method Invocation (RMI) [WRW96], the

Common Object Request Broker Architecture (CORBA)[Gro02] and the Distributed Com-

ponent Object Model (DCOM) [HK97]. As discussed in chapter 2, these solutions typically

assume constant and reliable connections and are based on synchronous communication be-

tween distributed components, with the identity and address of interacting entities known

a priori. The assumptions made by such synchronous, connection-oriented middleware do

not hold in mobile, resource-constrained environments and in contrast, an anonymous, gen-

erative, style of communication is best suited for applications in these environments, where

asynchronous notifications of changes in context free applications from the need to resort

to expensive polling behaviours. It is based on the characteristics of communication in mo-

bile, ad hoc networks that we derive our first requirement for supporting the development of

context-aware applications in such environments, namely the requirement for an anonymous,

generative style of communication.

Event-based communication [BMB+00] provides an anonymous, generative communica-

tion paradigm suited to the characteristics of mobile environments where communication

relationships between dynamically changing populations of loosely-coupled entities change

regularly over the lifetime of the application [MC03]. This style of communication abstracts

78

Chapter 4. The Sentient Object Model

from details such as the identity and interface of co-operating entities and allows the appli-

cation developer to focus only on information required and produced by entities [HB98].

A number of event-based communication services have been developed for asynchronous

communication in distributed systems. The Scalable Internet Event Notification Architecture

(SIENA) is an event notification service providing a scalable, general-purpose event model

for highly distributed applications residing in a wide-area network that require component

interactions ranging in granularity from fine to coarse [CRW01]. Events in SIENA are defined

as sets of typed attributes, against which filters may be applied to determine event delivery.

The operational semantics of SIENA are based on advertisements and subscriptions between

event producers and consumers. The SIENA architecture is based around a set of intermediate

event servers, which is not suited to the ad hoc environment envisioned by the sentient object

model due to the lack of infrastructure to host event servers, and the likelihood of network

partitions occurring between application components. SIENA does not provide any support

for proximity-based filtering of event notifications.

The Java Event Distributed Infrastructure (JEDI) is an object-oriented infrastructure

supporting the development and operation of distributed event-based systems [CNF01]. The

JEDI architecture is based around event dispatchers supporting subscription to, and delivery

of, events. Events in JEDI are represented as ordered strings composed of the name of the

event, and a set of parameters against which filters may be applied. Mobility is supported

in JEDI through the use of mobile agents able to migrate across network nodes and provides

support for temporary disconnection of event producers and consumers. The use of interme-

diate components to propagate events by JEDI is impractical due to the reliance on fixed

network infrastructure which is not available in an ad hoc network environment.

Scalable Timed Events and Mobility (STEAM) is an event service designed specifically

for mobile, ad hoc networks and is fully distributed over mobile ad hoc nodes within a

network. A number of characteristics of STEAM make it the most suitable candidate to

address Requirement 1 within the sentient object model, identified in Chapter 2.

79

Chapter 4. The Sentient Object Model

4.2.1 Scalable Timed Events and Mobility (STEAM)

Interaction between components in the sentient object model is based on STEAM [MC03],

an event service based on an implicit event model and designed specifically for mobile ad hoc

networks. STEAM has a number of unique characteristics that distinguish it from other dis-

tributed event-based middleware and make it suitable for interaction in pervasive computing

environments [Mei03]:

1. Mobility support - the middleware uses ad hoc wireless communication between appli-

cation components, obviating the need for pre-deployed communication infrastructure.

2. An inherently distributed architecture - the middleware is collocated with application

components and does not rely on any centralised components.

3. Location-aware application components - geographical location information is provided

to individual application components by a location service.

4. Distributed event notification filtering - filtering of event notifications is available both

at the producer and the consumer using different filtering mechanisms.

5. Geographical scoping of event propagation - location awareness permits the validity of

event notifications to be scoped to a specific geographic area.

STEAM is designed for highly mobile, collaborative applications, that is those appli-

cations that work jointly with others, and addresses the requirements of such applications

through proximity-based event notification dissemination. This use of proximity to bound

dissemination is unique in event-based middleware, and allows physically mobile application

components to communicate when physically close together.

The event service has an inherently distributed architecture whereby the middleware is

exclusively collocated with application components and there are no centralised components,

as illustrated in Figure 4.1. This means STEAM can operate over ad hoc networks, with no

need for a fixed infrastructure hosting centralised components.

STEAM employs an implicit event model [MC02b], whereby producers publish events of

specific types, whilst consumers subscribe to events of particular types, rather than producing

80

Chapter 4. The Sentient Object Model

Fig. 4.1: STEAM event model (adapted from [Mei03])

entities or intermediate entities. Prior to publishing event notifications, producers announce

the type of event(s) they will publish. Each event type announcement has an associated geo-

graphical proximity in which the event type will be published, and only subscribed consumers

within this proximity will receive event notifications.

Three different types of filters are supported by STEAM that may be applied to event no-

tifications. A combination of the three types of filter may be applied and an event notification

is only delivered if all filters match.

1. Subject filters match on the type or subject of the event and are specified at the pro-

ducer and consumer (implicitly through announcements and subscriptions) and events

are only propagated if there exists a consumer interested in the event type.

2. Content filters match on the values of the parameters of a specific event instance and

are specified at the consumer and are evaluated on reception of an event at a consumer.

81

Chapter 4. The Sentient Object Model

P

C

C

C

C

C

C

C

Event producer

Consumer within proximity

Consumer outside proximity

P

Proximity

Fig. 4.2: Event dissemination bounded by proximity in STEAM

3. Proximity filters define the geographical location in which a particular event type is

valid and are specified at the producer. The notion of proximity is discussed in further

detail in the following section.

Proximity groups

The STEAM communications architecture is based on proximity groups [KCM+01], a novel

group communication service for wireless networks in which membership is based on both

functional aspects and geographical location of participants. A proximity may be of any

shape, and may be static, in which case it is attached to a fixed point, or it may be mobile.

An example of event dissemination within a circular proximity is illustrated in Figure 4.2.

Proximities are specified by producers for specific event types, and any interested con-

sumer within the specified proximity of the producer will receive notifications of that event

type subject to other filters, and assuming network connectivity. Proximities may be speci-

fied independently of the producer’s physical transmission range, as the underlying proximity

group communication service routes messages using a multi-hop protocol [MC03]. The use of

proximities to bound event notifications inherently improves system scalability and reduces

the use of constrained resources in unnecessary communications.

82

Chapter 4. The Sentient Object Model

Limitations of STEAM

Whilst STEAM fulfills the requirement identified for loosely-coupled communication between

geographically distributed, ad hoc, mobile, application components, the system does have

its own limitations which must be considered. The use of IP multicast communication by

STEAM components means that STEAM can only provide best-effort delivery semantics, and

thus cannot guarantee that a subscriber will receive a specific event notification , nor that an

announcement will be received by nearby devices [Mei03]. Furthermore, multicast flooding

of the underlying network by STEAM application components poses a potential scalability

issue in resource-constrained mobile, ad hoc networks, although this is mitigated through the

incorporation of a routing protocol based on proximity groups to control multicast flooding,

as well as a gossip-based optimisation technique [Mei03]. The collocation of STEAM with

application components on each mobile device places a potential storage and processing

burden on these devices (quantified in section 5.5.1), although in the context of modern

mobile storage, the storage burden is not significant2.

4.2.2 Fulfillment of Requirement 1

The use of the STEAM event service to provide communication between components within

the sentient object model addresses the requirement identified for anonymous generative com-

munication. In addition to the advantage offered by the asynchronous style of communication

in reducing expensive polling behaviour in resource-poor mobile environments, the event ser-

vice provides for both extensibility and scalability in the model. Extensibility is aided by

the anonymity of communication, permitting new application components to be incorporated

without any need for the application to know the identity of all interacting components be-

forehand. The lack of any centralised components in the event service, in addition to the

distributed filtering capabilities, mitigate the disadvantages of multicast flooding and pro-

vide for scalability in the model. Specifically, producer-side subject and proximity filters are

matched irrespective of the number of consumers in the system, whilst matching of consumer-

side content filters is dependent solely on the number of local subscribers [MC03]. The ability
2By way of example, the popular iPAQ mobile computer has at least 128 MB of RAM

83

Chapter 4. The Sentient Object Model

to filter event notifications based on geographical proximity further aids scalability through

localisation of communication.

4.3 Sensor abstraction

Sensors compose the cornerstone of pervasive computing and imbue applications with the

ability to perceive their environment. A sensor is defined by [Gov96] as being a device that

responds to a physical stimulus, such as thermal energy, electromagnetic energy, acoustic

energy, pressure, magnetism, or motion by producing a signal, which is usually electrical. Such

hardware transducers are not the only source of data available to a context-aware application,

which may also make use of software components that provide information derived from the

software environment, such as CPU load, appointments in an electronic calendar, or the

estimated remaining lifetime of a battery. Our discussion on sensors encompasses both

hardware transducers and software sensors.

Traditionally, most developers have taken an application-specific approach to integrat-

ing sensors into applications to make them context-aware, e.g., [WHFG92, WSA+95, Rho97,

CDM+00]. Following this approach, developers are forced to use low-level, device-dependent

protocols in order to interact with the sensor hardware, usually resulting in monolithic sys-

tems that do not promote re-use. This approach has the following commonly accepted dis-

advantages identified in [DSA99]:

1. The task of building a context-aware application is extremely complex, requiring the

developer to deal with a range of individual devices and protocols.

2. There is no separation of concerns between application semantics and the acquisition

of low-level sensor data.

Furthermore, many applications rely on synchronous polling of sensors to retrieve up-to-

date sensor data. Such an approach is inherently non-scalable and not suited to pervasive

computing environments where dynamic interactions between very large numbers of devices

are envisioned. In addition, this type of interaction requires the application to be aware

84

Chapter 4. The Sentient Object Model

Fig. 4.3: A sensor component

of individual sensor characteristics, such as identity and frequency, in order to implement

appropriate polling behaviour. Asynchronous notification of changes in state by sensors

provides a more scalable approach to communicating with sensors.

Due to the disadvantages associated with integrating sensors in a tightly-coupled, application-

specific manner, we advocate a software abstraction for sensor devices that serves to conceal

low-level issues from developers of context-aware applications. We believe such an abstraction

offers a crucial separation between the acquisition of sensor data and its use by applications,

and provides a uniform interface to interact with sensor data, potentially across multiple

applications. A sensor is a software component which encapsulates a hardware sensor device

or software sensor, and asynchronously notifies changes in state via typed events. In our

model, we overload the term sensor, to define it as

an entity that produces software events in reaction to a stimulus detected by some

real-world hardware device or software component

A sensor component is illustrated in Figure 4.3, and shows the role of a sensor as an

interface between the environment and the software system. It is important to note that the

physical environment in this respect may include infrastructural or system parameters, as

measured by software sensors.

85

Chapter 4. The Sentient Object Model

Real-world events

A real-world event may be defined as a change in the state of the real-world, i.e., the physical

environment, which is detected by, and causes a change in the state of, a transducer. This

definition is adequate for hardware transducers, but does not encompass so-called software

sensors. We thus extend this definition to include changes in the state of a system as detected

by a software component. An example of this might be the detection of user level privileges,

current system load, or the latency of a network interface, by operating system software.

Since most transducers contain embedded software to digitize analog input anyway, cre-

ating software events, the distinction between real-world and software events is conceptual,

but important. As such, a real-world event is an event occurring in the environment external

to the application.

Sensor processing

A sensor processes events received from the real world prior to production of software events.

The minimal amount of processing required is conversion from the device-specific output of

hardware or software components to the software event interface defined by the sensor, that

is, the set of event types that the sensor may produce.

Any amount of additional processing may be performed in the sensor to transform the

input, for example, to alter the frequency of readings or convert them from a numerical

representation to a higher-level symbolic representation. In particular, the sensor may fil-

ter incoming real-world events. Filtering incoming data at the sensor reduces unnecessary

communication between sensors and other components, and thus contributes to increased

scalability. The filtering function of a sensor is especially pertinent in resource-constrained

environments, where the reduction in event notifications achieved through filtering provides

an associated reduction in the use of the wireless communication interface, and consequent

energy savings.

86

Chapter 4. The Sentient Object Model

Software events

Software events in the sentient object model are defined as event notifications that conform

to the appropriate structure as defined by the event service exploited for communication. A

sensor produces software events according to a defined interface.

4.3.1 Fulfillment of Requirement 2

The second requirement we identified in chapter 2 as being essential in the provision of

a programming model for the development of context-aware applications is addressed by

the sensor abstraction of the sentient object model. The sensor abstraction enables raw

sensor data to be represented in an alternative (higher-level, symbolic) format prior to its

use by an application, as well as filtering the data, reducing the amount of communication

in the network, where bandwidth is limited., and communication expensive. Pre-supposing

an existing library of sensor components, application developers are no longer required to

write low-level code to interact with sensors. Although the initial development of the sensor

components will require the development of such code, the programming tool described in

chapter 5 provides a systematic approach to their development, and the resulting components

are eminently re-usable. Developers require only a specification of the event types produced

by each sensor in order to incorporate them into new applications.

Abstraction of low-level sensors is not unique to the sentient object model, and the ap-

proach has been adopted in other approaches to developing context-aware systems, most

notably the Context Toolkit [DSA01], where context widgets provide a useful abstraction.

4.4 Actuator abstraction

Whilst sensors allow applications to perceive their surrounding environment, actuators pro-

vide applications with the means to act upon their environment. The traditional definition of

an actuator is the inverse of that of a sensor, i.e., it is a device that responds to an (electrical)

signal to produce a mechanical action such as motion, acoustic energy, pressure or thermal

energy.

87

Chapter 4. The Sentient Object Model

Fig. 4.4: An actuator component

In our model we once again extend the traditional definition of an actuator to encompass

a component that effects a change in software, as well as the physical environment. An

actuator is a software component which encapsulates a hardware actuator device or software

actuator. This leads to the definition of the term actuator in our model as

an entity that consumes software events, and reacts by attempting to change

the state of the environment in some way via some hardware device or software

component

A large proportion of the existing research into context-aware computing has focused al-

most exclusively on actuation in software and has not dealt with hardware devices. This stems

mainly from the historical focus of context-aware computing research as a user-interface tech-

nology, using information captured from the environment to dynamically adapt the interface

presented to the user. We argue that truly pervasive computing implies more autonomous

operation and thus consider actuation as not simply implying the alteration of a user interface.

Software events

An actuator consumes notifications of one or more specific event type, and may perform con-

tent filtering on incoming event notifications. The software events consumed by an actuator

originate exclusively from sentient objects (see section 4.5), as the result of the evaluation of

inference rules.

88

Chapter 4. The Sentient Object Model

Actuator processing

Similarly to sensors, the minimal processing required of an actuator is the translation be-

tween incoming software events and a device or component-specific protocol. Once again, any

amount of additional processing may be performed by the actuator, for example, buffering of

input events before production of an output event. Actuators typically perform a translation

from symbolic values to numerical, device-specific protocols. Actuators may also filter in-

coming event notifications based on a range of functional and non-functional attributes. For

example, the event service employed in the sentient object model, allows actuators to filter

communication based on the geographical proximity of application components.

Real-world events

An actuator produces real-world events in reaction to consumed software events and conse-

quently changes the state of the environment in some way. This may include changing the

state of the physical environment via hardware transducers, as well as changing the state of

the software environment via software components.

4.4.1 Fulfillment of Requirement 6

The actuator abstraction of the sentient object model addresses the requirement identified for

supporting interaction with actuators. This requirement was identified as being important

in a programming model for context-aware applications, in order to abstract away from

low-level, device-specific protocols. Similarly to sensor components, it is expected that a

large collection of actuator components will emerge, eliminating the existing requirement for

developers to write low-level, application-specific code to interact with devices. Developers

will simply require a specification of the types of event(s) consumed by an actuator in order

to control the corresponding device via the production of such events.

89

Chapter 4. The Sentient Object Model

Fig. 4.5: The sentient object model

4.5 Sentient objects

A sentient object is the core component of the sentient object model and is an encapsulated

entity, with its interfaces being sensors and actuators. Following our definition of sensor and

actuator, we broadly define a sentient object as

an entity that both consumes and produces software events, and lies in the control

path between at least one sensor and one actuator

We constrain our definition to include the condition that an object must lie in the control

path between a sensor and actuator to avoid an overly generic definition that could include

other existing software components.

Sentient objects form the major component of a context-aware application, and contain

logic that they use to control actuators in a context-aware manner, based on information

gleaned from sensors. Internally, a sentient object is composed of three major components,

as illustrated in Figure 4.5. The nature of each of these components is discussed in further

90

Chapter 4. The Sentient Object Model

detail below.

4.5.1 Data capture and fusion

This component is responsible for the consumption of events produced by both sensors and

other sentient objects, and also performs multi-modal sensor fusion to manage the uncertainty

of input data and derive higher-level context data from multi-modal data sources. A key

consideration within this component is that no distinction is made between event notifications

originating from sensor components, and those originating from other sentient objects, with

both simply being treated as input data to the sentient object.

Although this component is treated as logically separate from the context hierarchy within

a sentient object, in practice the component is closely linked to the context hierarchy, with

the active context within the hierarchy influencing the capture and fusion of input data.

Conjunctive content filtering is applied within this component to limit delivery of event

notifications to the object, whilst a probabilistic sensor fusion scheme is employed based on

Bayesian networks, which provides a powerful mechanism for measuring the effectiveness of

derivations of context from noisy sensor data.

Event filtering

A major function of this component of the sentient object is to filter incoming event notifica-

tions from sensors and other sentient objects, according to the set of active event filters, which

in turn depends on the active context of the object (see section 4.5.2). The data capture and

fusion component defines a set of conjunctive content filters that contain expressions that

are matched against the parameter values of event notifications, and notifications are only

delivered to the object if the filter matches. The filters are defined for individual event types,

when a subscription is made, and may be specified in terms of equality, magnitude, and range

operators [Mei03]. The distribution of content filters amongst individual sentient objects, and

furthermore, to distinct contexts within each object, significantly aids in the scalability of

the model as there are no centralised filtering components, with matching being distributed

amongst consumers in the system. The number of filters active and in need of evaluation, on

91

Chapter 4. The Sentient Object Model

any particular object is dependent solely on the number of active subscriptions, which in the

sentient object model is further constrained by the active context of the sentient object.

The event filtering function of the data capture and fusion component addresses the chal-

lenges arising from the generation of large numbers of event notifications by the components

of a pervasive computing system, and allows a sentient object to deal only with input data

of interest to it at a particular point in time.

Sensor fusion

A major requirement of a programming model for the development of context-aware applica-

tions, as identified in section 2.3.8, is support for multi-modal sensor fusion as an approach

to managing the uncertainty of readings from a multitude of different sensors, as well as

deriving higher level context from lower-level fragments of sensor data. There are a number

of possible approaches to the problem of fusing sensor data that have been considered in the

sentient object model, and each of these is discussed below.

Multi-variate Gaussian modelling Gaussian modelling may be used to model the proba-

bility distribution (and thus sensor noise) of a set of sensor readings according to the following

formula

p(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (4.1)

where µ is the mean of the sensor readings, and σ is the variance. A set of such Gaussians

may then be used to classify future sensor readings by determining which of the Gaussian

functions provides the highest reading when supplied with the senor data.

Multivariate Gaussian modelling is an extension to Gaussian modelling and may be used

to model readings from multiple sensors according to the following formula

p(x̄) =
1√

(2π)n|C|e
− 1

2
(x−µ)T C−1(x−µ) (4.2)

where n is the number of sensors, C is the covariance matrix.

Multivariate Gaussians may be characterised for a set of sensors by obtaining the averages

and covariances from sample data. These Gaussians are then used classify incoming sensor

readings, mitigating uncertainties within the data.

92

Chapter 4. The Sentient Object Model

Bayesian networks High-level context information within a sentient object may be mod-

elled by a set of context fragments, derived from inputs from sensors and other sentient

objects and represented by events X1, X2, ..., Xn. The probability of X1 is defined as the

relative frequency with which X1 occurs in a sequence of n identical experiments.

P (X1) =
nX1

n
(4.3)

Joint probabilities describe the probability of two (or more) events occurring. If the events

are independent of each other, the joint probability is given as

P (X1, X2) = P (X1)P (X2) (4.4)

Two events X1 and X2 are independent iff P (X1|X2) = P (X1) or P (X1, X2) = P (X1|X2)P (X2) =

P (X1)P (X2). Complete independence is a very strong and seldom met requirement.

In most cases events are dependent on each other. The probability of X2 given X1 is

defined as the conditional probability of X2, given X1, or P (X2|X1). The joint probability is

then given as

P (X1, X2) = P (X1)P (X2|X1) (4.5)

This may be rewritten as a general equation for the conditional probability of two events

as follows

P (X2|X1) =
P (X2, X1)

P (X1)
=

P (X2)P (X1|X2)
P (X1)

(4.6)

This equation is known as Bayes’ Rule and in the case of multiple events, this rule is

generalized to give the chain rule

P (X1, X2, X3, ..., Xn) = P (X1)P (X2|X1)P (X3|X2, X1)...P (Xn|Xn−1, Xn−2, ..., X1) (4.7)

Which may be abbreviated to

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Xi−1, Xi−2, Xi−3, ..., X1) (4.8)

93

Chapter 4. The Sentient Object Model

The chain rule assumes all variables are dependent on each other and is very computa-

tionally intensive to compute. In a system with many random variables derived from a range

of sensor inputs, the complete specification of a probability distribution requires a very large

amount of numbers. For n random binary variables, the complete distribution is specified by

2n− 1 joint probabilities. This leads to exponential growth in the model size with associated

growth in storage and inference requirements. Bayesian networks allow us to overcome the

problem of exponential size by exploiting conditional independence.

Taking 4.7, and the fact that domain knowledge usually allows one to define a sub-

set pa(Xi) ⊆ {Xi−1, ..., X1} such that given pa(Xi), Xi is independent of all variables in

{Xi−1, ..., X1} \ pa(Xi) i.e

P (Xi|Xi−1, ..., X1) = P (Xi|pa(Xi)) (4.9)

Then

P (X1, ..., Xn) =
n∏

i=1

P (Xi|pa(Xi)) (4.10)

So, the joint probability P (X1, X2, ..., Xn) can be implicitly represented as the conditional

probabilities P (Xi|pa(Xi)) for i = 1, ..., n.

A Bayesian network may be described as the representation of a joint probability dis-

tribution defined on a finite set of discrete random variables, as a directed, acyclical graph

(DAG). The nodes in a Bayesian network represent propositional variables of interest and the

(directed) links represent informational or causal dependencies among the variables. Depen-

dencies between nodes in the network are quantified through the specification of conditional

probabilities for each node given its parents, and the network supports the computation of

probabilities of any subset of nodes, given evidence about any other subset [PR03]. Formally,

a Bayesian network is defined by [ZR97] as a triplet (N, E, P), where N is a set of nodes, E

is a set of edges where E ⊆ N ×N , and P is a set of probabilities. Each node is labelled by a

value vi, and each variable takes a particular value from a discrete domain and is assigned a

vector of probabilities, P (vi). Each element of P (vi) represents the belief that vi will take a

particular value. A Bayesian network is a DAG such that a directed edge e = < si, ti > ∈ E

94

Chapter 4. The Sentient Object Model

Fig. 4.6: An example Bayesian network

indicates causal influence from source node si to target node ti. For each node ti, the strength

of causal influence from its parent si are quantified by a conditional probability distribution

p(ti|si), specified in an m× n matrix, where m is the number of discrete values possible for

ti and n is the number of values for si.

A classic example of a Bayesian network given in [Eug91] is illustrated in Figure 4.6, and

allows the determination, with bounded probability, of the value of individual parameters,

given observation of other parameters. The network describes the causal relationships be-

tween whether a family is out (X1), whether their dog has a bowel problem (X2), whether

the light in their home is on (X3), whether the dog is outside (X4), and whether the dog can

be heard to bark (X5). The links between the nodes represent dependencies between values,

and the network represents that a family may3 put their dog outside if they go out, or it is

experiencing a bowel problem. The dog may bark if it is put outside, and finally, the family

may leave the light on if they go out. Through observation of the values of the leaf nodes (is

the dog barking, is the light on), probabilities may be calculated for the values of the other

nodes in the network (what is the likelihood the family is out).

Bayesian networks operate through propagation of beliefs through the network following

the assertion of evidence about the existence of certain entities. Taking the example of the

network in Figure 4.6, our belief in whether a family is out of their home is influenced by

observing whether the light is on in their home. Similarly, our belief in whether the light is

on is not directly influenced by whether we hear the dog barking, so there is no direct link

between node X5 and node X3 of the network.
3With a bounded probability

95

Chapter 4. The Sentient Object Model

Dempster-Shafer theory Dempster-Shafer theory provides an approach to representing

plausabilities and is considered a generalised Bayesian theory (see section 4.5.1) whereby

probabilities are assigned to sets of possibilities rather than individual events. Dempster-

Shafer differs from Bayesian theory in three major ways: [HM93]:

1. Evidence is represented as a Shafer belief function rather than a probability density

function. All possible mutually exclusive context fragments are enumerated in a frame

of discernment Θ. For example, a sensor may detect whether a door is open or closed,

giving

Θ = {open, closed} (4.11)

Other, multi-modal, sensors may contribute their own observations, by assigning their

beliefs over Θ. As [WSSY02] states, this assignment function is known as the probability

mass function of the sensor Si, denoted by mi. The probability of a sensor reading, is

then indicated by a confidence interval

[Beliefi(A), P lausabilityi(A)] (4.12)

Wu states that the lower bound of this interval is the belief confidence, accounting for

all evidence Ek that supports the given proposition [WSSY02]

Beliefi(A) =
∑

Ek⊆A

mi(Ek) (4.13)

The upper bound is then the plausibility, accounting for all observations that do not

rule out the proposition

Plausabilityi(A) = 1−
∑

Ek∩A=φ

mi(Ek) (4.14)

2. Any two belief functions may then be combined into a new belief function using Demp-

ster’s rule of combination. Following the explanation provided by Wu, a reading mi

provided by sensor Si may be combined with a reading mj , provided by sensor Sj as

follows

(mi ⊕mj)(A) =

∑
Ek∩Ek′=A mi(Ek)mj(Ek′)

1−∑
Ek∩Ek′=φ mi(Ek)mj(Ek′)

(4.15)

96

Chapter 4. The Sentient Object Model

3. Prior odds are not required for the computation of evidence for a proposition, as

Dempster-Shafer theory assumes ignorance in the absence of prior belief.

Dempster-Schafer theory has previously been proposed as a generalizable sensor fusion

solution for context-aware computing [Wu03].

Bayesian networks for sensor fusion in sentient objects

Whilst multi-variate Gaussian modelling is useful for fusing the output of multiple, mono-

modal sensors, it does not provide an elegant approach to the problem of fusing the output

of multiple, multi-modal sensors and managing the uncertainty of such sensors and is not

considered further.

Both Dempster-Shafer theory and Bayesian networks provide an approach to fusing the

output of multi-modal sensors, and dealing with the uncertainties of sensor data. As [HM93]

note, Bayesian networks provide a clear and well understood method for incorporating how

the likelihood of a possibility is conditioned on another event, whilst conditioning mecha-

nisms in Dempster-Shafer are less clear. Since the determination of the context of a sentient

object depends on the determination of the likelihood of particular state based on multiple

uncertain sensor inputs, the application of Bayesian networks afford the preferable choice

within the sentient object model. Furthermore, within the sentient object model condition-

ing is easy to extract through probabilistic representation of sensor data, and prior odds are

available. Demspter-Shafer theory is more applicable to situations where uncertainty cannot

be assigned probabilistically. Following this reasoning Bayesian networks have been selected

as the mechanism to provide multi-modal sensor fusion in sentient objects.

We can construct a Bayesian network to fuse multi-modal sensor data, by representing

the evidence received from multi-modal sensor readings as leaf nodes, and the higher-level

context information we need to derive from the sensor readings, as a root node, in a two-level

Bayesian network. The uncertainty of each sensor is represented as a conditional probability

table associated with the causal relationship linking the sensor nodes to the node representing

the context information. This is illustrated in Figure 4.7 where a set of sensors which produce

evidence (E) in the form of multi-modal readings, jointly contribute to the hypothesis (H)

97

Chapter 4. The Sentient Object Model

Fig. 4.7: A Bayesian fusion network

that a piece of context information takes on a particular discrete value. The uncertainty

of each individual sensor is captured as a conditional probability table in each sensor node,

calculated a-priori.

Given prior experimental data, it is possible to calculate the probability that we obtain

specific evidence E from sensors, given a known hypothesis H, or P (E|H). For example,

we may perform an experiment which determines the probability that a range-finding sensor

gives a reading indicating an obstacle at 10 cm, when we have placed an obstacle at 10 cm.

What is not straightforward to calculate, and what the sensor fusion component of a

sentient object requires, is the probability that a hypothesis H is true, given specific evidence

E obtained from sensor readings, or P (H|E). Or following our example, the probability

that there is an obstacle 10 cm in front of our sensor given that the sensor gives a reading

indicating that there is. This is known as abduction, or prediction of the antecedent given

the consequent.

In order to construct a Bayesian network to fuse fragments of context data into higher

level context information in a sentient object, the following steps are followed:

1. Add a root node Xr representing the fused context information, and specify the vector

of probabilities Pvr for the possible values of this node.

2. Choose the set of relevant context fragments (provided by sensor events) represented

by nodes Xi, ..., Xn that contribute to the fused context information.

3. While there are fragments left:

(a) Pick a fragment Xi and add a node to the network for it

98

Chapter 4. The Sentient Object Model

(b) Set pa(Xi) to some minimal set of nodes already in the net such that the con-

ditional independence property is satisfied P (Xi|Xi−1, ..., X1) = P (Xi|pa(Xi)).

Following the definition of a fusion network as being a two-level Bayesian network,

in practice, the network is constructed such that pa(Xi) = Xr for all i where

1 ≤ i ≤ n

(c) Define the conditional probability table p(Xi|Xr)

At runtime, the nodes representing fragments of context information are updated with

evidence provided by the delivery of input events, and the root node representing the fused

context information may be queried, providing the current probability that it has a particular

value.

Example

By way of example, consider an application based on a sentient object which determines the

identity of the user of a sentient couch. The identity of the user may be considered high-level

context information which may be used by a sentient object to control application behaviour

in a context-aware manner, for example, by proactively setting user preferences on an audio

player, or by routing telephone calls to the telephone extension nearest the couch.

Within this scenario, there are a number of sensors that may be used to determine identity

with different levels of certainty, and by fusing the outputs of these sensors, the application

is able to determine the identity of an individual with a bounded probability. The sources

of data available to the system consist of (1) an iButton4 chip carried by all people, with

an associated reader at the entrance to the room containing the couch; (2) an RFID chip

embedded in each individual user’s coffee mug, with an associated reader near the couch;

and (3) a sentient object which reports the identity of a user based on the weight detected

on the couch. There are a number of potential sources of uncertainty inherent in each of

these sensors, precluding reliance on any single sensor. Users are not required to press their

iButton prior to entering the room; not all users will carry their coffee mugs at all times; a

user’s weight may fluctuate between uses of the couch. Each sensor reports the identity of
4http://www.ibutton.com

99

Chapter 4. The Sentient Object Model

Fig. 4.8: An example fusion network fusing the output of three sources of identity data

the user it detects, and the fusion network measures the probabilities that a specific user is

on the couch.

Constructing the fusion network consists of the following process, resulting in the network

illustrated in Figure 4.8.

1. The root node, Xr, of the network is added, with a vector of probabilities Pvr repre-

senting the belief that a particular user is on the couch. The vector has n entries, where

n is the number of users of the couch.

2. The relevant context fragments are the outputs of each of the three sensors, each of

which reports a user identifier, or null if no user is identified by the sensor.

3. Three nodes are added to the network, representing the output of each of the three

sensors, X1...X3. For each of the nodes:

(a) A directed link is added from Xr to Xi, so that pa(Xi) = Xr

(b) The conditional probability table p(Xi|Xr) is specified. The conditional probabil-

ities are derived from experimentation, giving the probability that each individual

sensor gives the correct reading, for known input.

The conditional probability table for node X1 is illustrated in Table 4.1 and captures the

probability that the identity reported by the iButton sensor is correct. Possible sources of

uncertainty arise from the fact that users may not press their iButton chips to the reader,

100

Chapter 4. The Sentient Object Model

Xr
X1 Alice Bob

Alice 0.63 0.44
Bob 0.01 0.02

Unidentified 0.36 0.54

Table 4.1: Conditional probability table for Node X1 in Figure 4.8

the reader may not register the chips, or a person may use a chip which is not registered in

their name.

At runtime, nodes X1, X2, and X3 are periodically instantiated with evidence received

from the respective sensors they represent. Each time evidence is received from a sensor, in

the form of an event notification, the set of probabilities that Xr takes on a certain value

are recalculated using Bayesian formulae, and the hypothesis with the highest probability is

asserted as a fact with the relevant probability that it is true.

Fulfillment of Requirement 3

The data capture and sensor fusion component of a sentient object, as implemented based

on Bayesian networks, fulfills the third requirement identified of a programming model for

context-aware applications. The use of a probabilistic sensor fusion scheme provides a power-

ful and efficient approach to fusing multi-modal sensor readings providing fragments of con-

text data, allowing the determination of higher-level context. The incorporation of context-

specific, content-based event filters in the component effectively reduces the overall number of

event notifications delivered to the object, contributing to the efficiency of the fusion process.

A further, qualitative, advantage offered by the data capture and fusion component, is

in the provision of a systematic approach to limiting input and fusing data within a sentient

object. The provision of a standard approach to multi-modal sensor fusion which may be

applied to a wide range of application scenarios, eases the development process. By limiting

the types of input that need to be dealt with at any point in time through the abstraction of

an active context, the specification of sensor fusion networks is further eased (see section 4.5.2

for discussion of the relation between sensor fusion and the context hierarchy). Furthermore,

by limiting Bayesian fusion networks to two-levels, a common approach to specifying fusion

101

Chapter 4. The Sentient Object Model

services across a range of applications is provided.

A potential drawback inherent in the use of Bayesian networks for the fusion of sensor

data, is the requirement to gather extensive a-priori probability data to construct the network.

The development of the data capture and fusion component is further simplified through

the notion of a context as defined in the next section. By decomposing the function of the

data capture and fusion component into a set of distinct contexts, the development of complex

sentient objects is broken down into a set of more manageable steps.

4.5.2 Context hierarchy

The overall context of a sentient object is represented as a set of discrete logical facts, fol-

lowing a logic-based approach to context representation (see section 4.5.3). Following this

approach, fragments of context data derived from input events are stored as facts within

working memory of a rule-based inference engine, as described in section 4.5.3.

Multi-modal context fragments are fused by the sensor capture component to determine

higher level context information (also stored as facts), which is subsequently used to determine

the overall context of the object. In terms of the context hierarchy, a context is defined as a

distinct state in which the object may exist at a point in time, determined based on inputs

from sensors and other sentient objects, and defining a set of appropriate behaviours, or

actions to be carried out. This definition mirrors that provided in section 2.2.3, in that a

context is defined based on environmental inputs, and in turn, defines appropriate actions.

The set of contexts in which a sentient object may exist is represented as a hierarchy, inspired

by the Context-Based Reasoning (CxBR) paradigm [GA99], which aims to provide conciseness

and simplicity of representation and consequent efficiency of computation. This paradigm

derives its name from the hypothesis that the actions taken by an entity are highly dependent

on the entity’s current context, i.e., a recognized situation defines the set of appropriate

actions to be taken, and the identification of future situations is simplified if all possible

actions are limited by the current situation itself.

The hierarchical representation of a set of contexts within a sentient object is based on the

observations that (1) only a subset of all available inputs are typically necessary to recognise

102

Chapter 4. The Sentient Object Model

and treat the key features of a situation; (2) in any given situation, there are a small number

of well-defined actions that take place; and (3) the presence of a new situation will typically

require alteration of the present course of action. Representation of the states in which an

object may exist as a set of distinct, hierarchically linked contexts allows the object to treat

only the relevant subset of all available inputs, whilst links between contexts define transitions

between states.

The context hierarchy component thus encapsulates knowledge about actions to be taken

and possible future situations into a set of distinct contexts. Each context within the hierarchy

is a specific situation in which the sentient object may exist during its lifetime and is defined

by the following:

1. The set of input event types that are of interest and are consumed within the context.

This is typically a subset of all the events consumed by the object. In this way a context

reduces the amount of input an object needs to deal with at any point in time.

2. A set of filters limiting delivery of event notifications to the set of input events defined

for the context.

3. A fusion network to fuse input events and derive high-level context information.

4. The set of production rules relevant in that context. Rules control both the behaviour

of the object within the context, as well as the transition between contexts. Rules may

also be applied to fuse fragments of context data. There are thus three distinct types

of rules in a context:

(a) Behavioural rules encode knowledge as to how to treat the situation and control

behaviour whilst the context is active.

(b) Transition rules monitor whether the context is still active according to input

events, and control the de-activation of the context and transition to other con-

texts.

(c) Fusion rules are optional within a context and control the fusion of fragments of

context data derived from input events.

103

Chapter 4. The Sentient Object Model

Fig. 4.9: The context hierarchy

5. The set of transition contexts to which a transition may be made from the context.

6. The set of output events produced in the context.

In addition, only a subset of all facts representing the context of a sentient object are

relevant in each context. This is implicit, since the rules within a context will only depend

on a subset of facts.

The structure of the context hierarchy is illustrated in Figure 4.9, illustrating the three

levels of the hierarchy, and allowable transitions between contexts. There are three different

types of context, defined as follows,

1. A mission context is always active during the sentient object lifecycle and defines

inputs that are of interest to the object throughout its lifecycle, and rules that always

valid. There is only one mission context per object.

2. A major context defines distinct strategic objectives of the sentient object, that assist

in fulfillment of the goals of the object. Although multiple major contexts may be

defined within the context hierarchy of a single object, only one is active at any point

in time. Each major context is linked to one or more child sub contexts. A major

context is active for as long as input events indicate it is a valid context. During this

time, a major context will typically activate sub contexts to carry out specific actions.

3. A sub context defines operational actions carried out in fulfillment of a major context,

104

Chapter 4. The Sentient Object Model

of which it is a child. Up to one sub context may be active at any point in time, and sub

contexts are typically only active for a short period of time. A sub context is generally

activated, causing a set of rules to fire, and then deactivated straight away.

The hierarchical representation of the set of potential contexts in which a sentient object

may exist is motivated by a number of distinct advantages arising from such a representation.

The primary advantage gained is a reduction in complexity of sentient object development,

through provision of a systematic approach to dealing with context. The context hierarchy

links the other logically separate internal components of a sentient object, since both event

filters and rules governing object behaviour are specified at the level of a context. The task

of developing a sentient object is ameliorated to the development of a set of contexts and

the relationships between them, with input event filters, a fusion network, behavioural and

transition rules, and output events making up a context. Specifically, the use of a three-level

hierarchy of contexts was determined by the fact that any intelligent behaviour consists of a

set of strategic objectives which evolve over time, with each strategic objective being made

up of a set of actions necessary to achieve that objective. Each atomic action is related to

one or more of the strategic objectives, has clearly defined start and end points, and takes

place over a relatively short period of time. The strategic objectives are always relative to

an overall mission, giving rise to the three-level hierarchy. Whilst future development might

obtain value in extending the hierarchy to further levels, or indeed reducing the number of

levels, the current decomposition of a mission being composed of a set of strategic objectives

which in turn are composed of a set of atomic actions proves the most useful.

A further advantage, and that which motivated the original hierarchical approach to

context representation, is a runtime advantage arising from the partitioning of the rule base

according to the active context. Since each context defines the set of rules relevant in that

context, only a subset of the overall rule-base is active at any point in time, according to

the currently active context. By reducing the number of rules that need to be evaluated, the

performance of the inference engine may be increased. Associated with the partitioning of the

rule-base is the reduced likelihood of conflict between rules in a potentially large rule-base.

The context hierarchy also contributes to the proactive behaviour of sentient objects. The

105

Chapter 4. The Sentient Object Model

Fig. 4.10: Sensor fusion in the context hierarchy

hierarchy captures the possible transitions between individual contexts, giving each context

an expectation of future states of the system and allowing it to act in relation to these future

states.

Sensor fusion and the context hierarchy

The fact that only a small portion of sensory input is relevant at any point in time according to

the event filters of the active context, is used to enhance the effectiveness of the probabilistic

sensor fusion scheme described in section 4.5.1, by limiting the number of nodes necessary in

a sensor fusion network in each context.

Sensors in the sentient object model are highly distributed components, with dynamically

changing configurations due to the mobility of sentient objects. In addition, the set of input

events relevant at a particular point in time is highly dependent on the active context at that

time. The data capture and fusion component takes advantage of this fact to perform fusion

at the level of a context within the context hierarchy. A context defines which input events

are relevant to that context as well as those which must be monitored in order to detect when

transition to another context is indicated, and only this set of events is eligible for fusion. A

106

Chapter 4. The Sentient Object Model

Bayesian network is specified within each context in order to fuse the fragments of context

information obtained from input events. Rather than one monolithic fusion network per

object, smaller networks may be constructed in each context, based only on the set of input

events which are relevant within the context. The integration of Bayesian fusion networks

into the context hierarchy is illustrated in Figure 4.10. This figure shows how each context

in the hierarchy is only interested in a subset of the sensor input, and Bayesian network

fragments within each context act to fuse the context fragments obtained from the relevant

input events.

Fulfillment of Requirement 4

The context hierarchy component fulfills the fourth requirement identified of a programming

model supporting the development of mobile, context-aware applications, that is support for

context representation, at two levels. At the lowest level, context information is represented

within a sentient object using a set of facts stored in the working memory of a rules-based

inference engine. Storage of context information as facts provides a simple, flexible, and

extensible approach to representing data derived from multi-modal sensors and other sentient

objects.

At a higher level, the context hierarchy defines the set of situations in which an object

may exist as distinct contexts, encapsulating appropriate fusion mechanisms, behaviours and

expectation of future states. The context hierarchy plays a vital role in easing the development

of sentient objects and the applications based on them, by providing a manageable approach

to defining context-aware behaviour and linking the data capture and fusion and inference

engine components, exposing a structured approach to the development of both.

4.5.3 Inference engine

The third and final internal component of a sentient object provides a mechanism for reason-

ing intelligently about context information represented by the context hierarchy. Intelligent

reasoning capabilities are added to a sentient object by way of the inference engine com-

ponent which encapsulates a knowledge base in the form of a set of production rules. The

107

Chapter 4. The Sentient Object Model

knowledge base specifies a set of pre-defined actions which are triggered when the object

is in a particular context, in other words sentient objects follow an Event-Condition-Action

execution model [dInK01]. The motivation behind using a production rule-based inference

engine within a sentient object is due to the following considerations

• Production rules provide a natural approach and uniform structure to representing

knowledge within a system, enabling sentient behaviour. Appropriate knowledge engi-

neering techniques exist to derive appropriate rules in application domains [Lio90].

• Context information derived from input events is stored as a set of logical facts. These

facts may be used to update the working memory of a production rule-based inference

engine, providing a close coupling between context representation and aiding in the

efficiency of inference.

The sentient object model exploits the built-in pattern-matching capabilities of CLIPS5

(C Language Integrated Production System), a production rule-based system created by

NASA in the mid-1980s and now in popular use in both industry and academia. CLIPS

employs forward chaining rule activity whereby known facts cause rules to fire, which in turn

causes the assertion of further facts, and causes further rules to fire. CLIPS has a number of

distinct advantages [dIn02] that make it suitable for inference in sentient objects. Specifically,

CLIPS is based on the Rete [C.L82] algorithm, containing an efficient mechanism to solve

the many-to-many pattern matching problem, complex sets of relations may be expressed in

patterns, and the language is integrated with a number of popular programming languages,

including C++ and Java.

Context representation

Context information is represented in the sentient object through the assertion of logical

facts within working memory of the inference engine. There are three types of facts together

representing the overall context of a sentient object.
5http://www.ghg.net/clips/CLIPS.html

108

Chapter 4. The Sentient Object Model

1. Atomic facts represent individual event notifications produced by sensors or other sen-

tient objects. For example, an atomic fact may be asserted to represent the reading of

an ultrasonic distance sensor mounted on a vehicle.

2. Fused facts represent higher-level context information derived from atomic facts by a

fusion network, and each fact has a probability associated with it that it is correct.

For example, a fused fact may be asserted to represent that there is a 70% chance that

there is an obstacle located in front of a vehicle, given a set of atomic facts.

3. Custom facts represent fragments of context information which are unique to a par-

ticular application, and may make use of custom functionality implemented for the

application. For example, a fact may be asserted that represents the bearing between

two co-ordinates, as calculated by a set of navigational formulae implemented outside

working memory.

Atomic and fused facts are updated through delivery of event notifications to the sentient

object, whilst custom facts are updated by event delivery, or via functionality implemented

in code outside working memory. The representation of context data as facts within working

memory of the inference engine eases the development of rules which reason about context,

as fragments of context may easily be matched within production rules.

Inference and the context hierarchy

The rules within the knowledge base of the sentient object are modularised according to the

context (in the context hierarchy) in which they are relevant. The main advantage gained

by assigning rules to individual contexts is in the provision of a systematic approach to the

development of the knowledge base of a sentient object. Rather than having to specify a single,

monolithic knowledge base, a sentient object’s knowledge base is developed incrementally, as

a set of contexts, each of which only deals with a subset of all available input. In this way,

development of the knowledge base is vastly reduced in complexity, as is the probability that

unexpected behaviour arises due to conflicting rules.

109

Chapter 4. The Sentient Object Model

A further advantage gained from the context hierarchy at runtime is in efficiency of

inference. The performance of rule-based systems can suffer as the number and complexity

of rules in the knowledge base increases. The context hierarchy within the sentient object

mitigates this performance decrease by making only a subset of the knowledge base active at

any time. This follows from the hypothesis that there are only a limited number of actions

that can realistically take place in any situation, and limits the number of rules active and

in need of evaluation at any one point in time.

Event production

The actions taken by a sentient object as the result of the evaluation of context information

by the inference engine consist of the production of events for consumption by actuators and

other sentient objects. Sentient objects thus act as event producers, and it is through event

production that the sentient object is able to interact with the environment. Both functional

and non-functional event filters may be specified by the sentient object on event notifications

that it produces.

Fulfillment of Requirement 5

The inference engine component of the sentient object, based on and leveraging the infer-

ence capabilities of a production rule-based system, fulfills the fifth requirement identified

of a programming model for context-aware applications. The rules-based approach to intel-

ligent inference was selected for sentient objects due to a number of considerations. Most

importantly, the use of rules provides a natural way to capture and represent knowledge,

that is used to drive the proactive behaviour of an object, increasing the accessibility of the

programming model to developers. Although closely linked, the actual knowledge base is

clearly separated from the code controlling the capture, and fusion of context data, allowing

easy changes and enhancements to be made to the rules without affecting the sentient object

code. Rules provide a uniform and modular representation of knowledge, that can be used

to encode formal rules and heuristics with ease. Finally, the rule-based inference engine still

performs when faced with incomplete, uncertain, and fuzzy inputs.

110

Chapter 4. The Sentient Object Model

4.5.4 Developer support

The final requirement we identified as critical to the development of a programming model

for mobile, context-aware applications, is the provision of an accessible, and usable develop-

ment environment which exposes the support offered by the previous six requirements to the

application developer. A unified approach is required which exposes full lifecycle support for

design, implementation, testing, and maintenance of sentient objects, to the developer in an

intuitive manner. Specifically, our aim is to reduce the low-level syntax required to develop

mobile, context-aware applications based on the sentient object model. We propose a domain

specific language for the development of mobile, context-aware applications, in the form of a

graphical programming tool with associated code generator.

Fulfillment of Requirement 7

The next chapter describes the implementation of a graphical programming tool providing

a set of domain specific abstractions that may be applied by developers to compose mobile,

context-aware applications. This tool fulfills the requirement identified in Chapter 2 for the

provision of developer support.

4.6 Summary

This chapter described the sentient object model, a programming model for the development

of context aware applications in mobile ad hoc environments. The sentient object model

fulfills the first six requirements of such a programming model, as identified in section 2.3.8.

The next chapter describes a graphical programming tool based on the sentient object model

and fulfilling the seventh and final requirement of the programming model that is designed

to significantly ease application development, making it available to a wider audience.

111

Chapter 5

A Programming Tool for Mobile,

Context-Aware Applications

This chapter describes a graphical programming tool for mobile, context-aware applications

that was developed based on the sentient object model. The major goal of the tool is to

provide support to the application developer in using the sentient object model for the design

and development of mobile, context-aware applications. The tool enables rapid prototyping

of applications and generates low-level procedural code, obviating the need for the developer

to write it.

The current version of the tool generates Java code and uses an implementation of the

STEAM event service, but also creates independent descriptions of components that may be

used as templates to generate implementations of sentient objects in different languages and

using different APIs.

5.1 Implementation considerations

The programming tool itself is implemented using the Java 2 SDK, version 1.4, this choice

being motivated by a number of advantages of the Java language. The most compelling mo-

tivation is that pure Java is completely platform independent and portable across multiple

systems both at the source and binary level. Since the goal of the programming tool is to

112

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

make the development of mobile, context-aware applications accessible to as wide an audience

as possible, its implementation in a platform-independent language greatly facilitates this.

The tool will run unchanged on any operating system platform with Java support, includ-

ing Solaris, Linux, and Microsoft Windows. In addition to Java’s platform independence,

the language comes with a rich class library offering good support for collections, XML ma-

nipulation, and more, whilst excellent Java APIs exist for working with Bayesian networks,

rule-based inference engines, and graphical interfaces. In particular, the Swing toolkit offers a

rich set of lightweight components that can be used to rapidly create effective user interfaces.

The programming tool produces as output, automatically generated code implementing

a sentient object specification defined by the application developer, as well as language-

independent descriptors for sensors, objects, and actuators. The object specification, al-

though developed using a Java-based interface, is essentially independent of any individual

programming language. The programming tool is thus potentially able to produce code in

any language in which the object could be implemented, including C++ and Java. The

first version of the programming tool generates code for sentient objects in Java, with the

following motivation:

1. Java provides a truly ubiquitous platform on which to deploy pervasive applications.

2. Comprehensive Java library support exists to support the components of sentient ob-

jects.

3. The performance of modern Java virtual machines is increasingly comparable to C /

C++ code [JN04].

5.1.1 Event middleware

As discussed in section 4.2.1, the sentient object model uses a distributed event service for

wireless ad hoc networks, incorporating a proximity-based programming model. The first

version of the programming tool is designed to use a Java implementation of the STEAM event

service, namely jSTEAM. This version of STEAM was ported from a C++ implementation

to Java by members of the Distributed Systems Group.

113

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

5.2 Sensor development

The first task in context-aware application development is the specification of sources of

context data, known as sensors in the sentient object model. In the model, sensors are simply

defined as producers of software events, and consist of software components that perform a

transformation between device specific protocols and a common event notification dialogue.

In addition, each sensor has an associated descriptor that describes its event interface, that

is the number and type of events and their parameters, that the sensor produces.

Since sensor development is highly dependent on individual hardware transducer devices

and specific protocols, it is not practical to support visual development of these components,

rather supposing their pre-existence. In order to ease development of sensor components, the

programming tool offers a Sensor base class which may be extended by sensor components.

This class, illustrated in Listing 5.1, provides a set of methods to specify the proximity in

which sensor event notifications are valid, to publish event notifications, and to instantiate the

event service middleware with location data provided by either simulated GPS co-ordinates,

or the output of a real GPS receiver.

public class Sensor {
protected S Steam steam ;
protected SP SteamProducerEntity steamProducer ;
protected SP Shape proximity ;

public Sensor (SP Shape sensorProx imity){}
public void announceEventType (SP dsEventType eType){}
public void publ ishEvent (SP dsEvent event Ins tance){
public void s t a r tS en so r (int range , // f i x e d l o c a t i o n

int per iod , double l a t i t ude , double l ong i tude){}
public void s t a r tS en so r (int range , // use a s imu la ted l o c a t i o n array

int per iod , double [] l a t i t ude , double [] l ong i tude){}
public void s t a r tS en so r (int range , int per iod){} // use r e a l GPS data

}

Listing 5.1: Sensor base class

5.2.1 Sensor descriptor

Each sensor has an associated descriptor, which is an XML document describing the set

of events produced by a sensor, and the type and name of each parameter of each event

114

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.1: Support for sensor descriptor definition

produced. The DTD1 describing the form of a sensor descriptor is illustrated in Listing 5.2.

<?xml version=’ 1 .0 ’ encoding=’ us−a s c i i ’ ?>
< !−− DTD fo r a sensor d e f i n i t i o n f i l e ”−−>
<!ELEMENT senso r (sensor−name , sensor−c l a s s , event+)>
<!ELEMENT event (event−type , parameter+)>
<!ELEMENT parameter (param−name , param−type)>
<!ELEMENT sensor−name (#PCDATA)>
<!ELEMENT sensor−c l a s s (#PCDATA)>
<!ELEMENT event−type (#PCDATA)>
<!ELEMENT param−name (#PCDATA)>
<!ELEMENT param−type (#PCDATA)>

Listing 5.2: DTD for an XML sensor descriptor

The important elements of the sensor descriptor file are:

1. A unique name for the sensor.

2. The fully qualified class name of the sensor component.
1Document Type Definition

115

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

3. A list of events produced by the sensor. Each event contains a list of parameters of the

event, specifying

(a) The name of the parameter.

(b) The STEAM type of the parameter.

Visual support is offered by the programming tool for the development of the XML

sensor descriptors, and is illustrated in Figure 5.1. The tool permits the developer to specify

the name and classname of a sensor, and to add event definitions to the descriptor before

generating the XML descriptor file.

5.3 Actuator development

The development of elements which act upon the environment, known as actuators in the

sentient object model is similar to sensor development, albeit consisting of a transformation in

the opposite direction - from software events to low-level, device-specific protocols. Visual tool

support is again not offered for the development of actuator components, giving the developer

the necessary flexibility to work with low-level protocols. Once again, the development of

sentient objects themselves supposes that a library of actuator components exists for a set

of hardware and software devices, and application developers will not be required to develop

these components from scratch. The programming tool provides an Actuator base class which

is extended when developing specific actuator components. This class contains an overloaded

method which starts the event service using different location parameters, as well as a method

to subscribe to a specific event type. In addition, an abstract class ActuatorDeliveryCallback

is provided, defining a single method which is implemented to handle event delivery. It is

within this method that the transformation from a software event to a real-world event (e.g.,

a serial RS-232 port event, or a software command) is made. The class and interface are

illustrated in Listing 5.3.

116

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

import i e . tcd . cs . dsg . jsteam . ∗ ;

public abstract class ActuatorDe l iveryCal lback extends SC Cal lbackDel ivery {
public abstract void d e l i v e r (SC dsEvent e) ; // handle an event n o t i f i c a t i o n

}

public class Actuator {
protected S Steam steam ;
protected SC Conjunct iveContentFi l ter c on t en tF i l t e r ;
protected ActuatorDe l iveryCal lback de l i v e ryCa l l ba ck ;
protected ActuatorAnnouncementCallback announcementCallback ;
protected SC SteamConsumerEntity steamConsumer ;

public void sub s c r i b e (S t r ing eventType){} // su b s c r i b e to an event type
public void s ta r tActuator (int range , int per iod , double l a t i t ude ,

double l ong i tude , ActuatorDe l iveryCal lback dCallback){}
public void s ta r tActuator (int range , int per iod , double [] l a t i t ude ,

double [] l ong i tude , ActuatorDe l iveryCal lback dCallback){}
public void s ta r tActuator (int range , int per iod ,

ActuatorDe l iveryCal lback dCallback){}
}

Listing 5.3: Actuator base class and ActuatorDeliveryCallback base class

5.3.1 Actuator descriptor

In the same way that each sensor has an associated descriptor file that describes the events

and their associated parameters produced by the sensor, each actuator has an associated

descriptor file which describes the type of events consumed by the actuator. Similar support

is offered in the programming tool for the visual development of actuator descriptors, to that

of sensor descriptors, allowing the specification of the name and type of events consumed by

the actuator. The actuator descriptor DTD is illustrated in Listing 5.4.

<?xml version=’ 1 .0 ’ encoding=’ us−a s c i i ’ ?>
< !−− DTD fo r an ac tua tor d e f i n i t i o n f i l e ”−−>
<!ELEMENT actuator (actuator−name , actuator−c l a s s , event+)>
<!ELEMENT event (event−type , parameter+)>
<!ELEMENT parameter (param−name , param−type)>
<!ELEMENT actuator−name (#PCDATA)>
<!ELEMENT actuator−c l a s s (#PCDATA)>
<!ELEMENT event−type (#PCDATA)>
<!ELEMENT param−name (#PCDATA)>
<!ELEMENT param−type (#PCDATA)>

Listing 5.4: DTD for an XML actuator descriptor

117

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.2: The main interface to the programming tool

5.4 Sentient object definition

The main functionality offered by the programming tool is support for the development of

sentient objects. Following the definition of sentient objects as being both consumers and

producers of software events, and lying in the control path between sensors, actuators and

other sentient objects, the tool provides support to define input events, output events, and

internal sentient object logic.

The main interface to the programming tool is illustrated in Figure 5.2, showing the three

main aspects to object specification, moving from left to right in the figure.

5.4.1 Input events

The definition of input events is the first step in the development of a sentient object. Sentient

objects consume events produced both by sensors and by other sentient objects, but all event

notifications are in the common event notification dialogue of STEAM. A sentient object does

not therefore distinguish between sensor events and object events, although this distinction is

made in the input specification of the programming tool, to allow the developer to use both

118

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.3: Context definition screen

sensor descriptors and object descriptors to specify inputs.

Input events are defined by adding sensor and/or object descriptors within the tool,

providing the object with event type information which is used to filter and consume event

notifications. Content filters are then specified on input events at the level of a context in

the context hierarchy, as outlined in the next section.

5.4.2 Context hierarchy

The next step in programming a sentient object is the specification of the hierarchy of contexts

in which the object may exist over the course of its lifetime. The main aspects of a context to

be defined, are (1) the set of events that are of interest within the context; (2) a set of filters

defined on the events of interest; (3) the set of contexts to which the context may transition;

(4) a fusion network to fuse multi-modal input events; and (5) the set of rules valid within the

context. The set of events in which a context is interested, and which will be delivered whilst

the context is active, and the set of transition contexts, are defined by the developer using

the screen illustrated in Figure 5.3. The main component within this screen is a drop down

box listing all input event types available to the object (as specified by descriptors added to

the objects inputs), with no distinction made between those published by sensors, and those

published by other sentient objects.

Individual event types of interest may be selected from the drop down box, and a filter

defined over the parameters of each event type using a screen as illustrated in Figure 5.4.

This screen presents the developer with a list of the parameters of the selected event type,

119

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.4: Event filter definition screen

with a drop down box containing the type-specific filter operators for each parameter.

Finally, the set of allowable transition contexts may be specified by selecting the contexts

from a drop down box containing all contexts within the hierarchy. To allow specification

of transitions to contexts which have not yet been defined (since major contexts are defined

before their constituent sub-contexts), an edit facility is provided so transitions to newly

defined contexts may be added.

5.4.3 Sensor fusion network

Following definition of the context hierarchy, the next major step in development of a sentient

object, is the definition of sensor fusion services on a per context basis. The rationale behind

specifying sensor fusion services per context is provided in section 4.5.2, and is based on

limiting the size of a Bayesian fusion network, as well as decomposing the complex task of

specifying fusion services into more manageable steps.

The current version of the programming tool provides support for the definition of sensor

fusion services based on Bayesian networks. A network may be specified for each context, and

may fuse any event data consumed within the context. Graphical support for specification

of fusion networks is offered, greatly easing the task of the developer, and obviating the need

to write low-level syntax to describe the network.

The fusion network specification screen is illustrated in Figure 5.5. The first step in

defining the network is selection of the context with which the network is associated, from

a drop down box containing a list of all contexts defined for the object. Once a context

is selected, another drop down box is populated with all input event types available in the

context. The developer is then able to select a specific event type, populating a drop down box

120

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.5: Fusion network specification

containing the parameters of the event type. A node representing a parameter of a specific

event type may then be added to the network through a simple drag and drop maneuver.

Alternatively, a node representing a fused value may also be added to the network.

Once all nodes have been added to the network, a conditional probability table must be

specified for each node in the network, using the probability editor screen, also illustrated in

Figure 5.5.

5.4.4 Output events

The specification of the types of events the sentient object can produce may be carried out at

any point in the object development, before definition of the inference rules. Output events,

however, must be defined before inference rules since the rules may cause event production

and thus the type of events that may be produced by the object must be defined.

The process of specifying event types that may be produced by the object is similar to

the specification of input events discussed in section 5.4.1. A sentient object may produce

software events which are consumed either by actuators, or by other sentient objects and

although there is no differentiation between the production of actuator events and object

events, a distinction between the two is exposed in the programming tool. This distinction

is not strictly necessary, but allows the developer to see at a glance where the event will be

121

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

consumed.

Event types which may be produced by the sentient object are thus specified by adding

actuator and/or object descriptors that provide information about the type of events to which

the target actuator or object subscribes.

5.4.5 Inference rules

The final step in the development of a sentient object is the definition of the knowledge base

of the object, in the form of a set of production rules. During object execution, this set of

rules reasons about the object’s working memory, composed of a set of facts continuously

updated by the delivery of event notifications.

The programming tool supports the development of two major types of rules, although

other ad hoc types of rules may be added by the programmer.

Transition rules

Each individual context has a set of transition rules, which govern the transition from the

context to other contexts according to the structure of the context hierarchy. The number

of transition rules depends both on the type of context, and its position in the hierarchy.

Each sub-context has x associated transition rules, where x is the number of major contexts

which have a link to the sub-context. A sub-context transition rule governs transition to the

relevant parent major context, on completion of the appropriate actions associated with the

sub context.

Each major context has x+y transition rules, where x is the number of child sub-contexts

which the major context has links to, and y is the number of other major contexts in the

hierarchy to which the major context has a link. The single mission context in the context

hierarchy has x transition rules where x is the number of major contexts in the hierarchy.

The transition rule specification screen is illustrated in Figure 5.6. A rule is developed

by firstly selecting the context from which, and the context to which the transition is made,

from drop down boxes. Finally, the conditions under which the transition occurs are defined,

by specifying conditions on facts in the working memory. These facts represent context data,

122

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.6: Transition rule definition screen

either as atomic or fused events. If the selected fact is fused context data, a probability value

may be specified. This refers to the certainty that the fused fact has the specified value, and

the rule will only evaluate to true if the probability associated with the fact is equal to, or

greater than, this value.

Behavioural rules

Behavioural rules are so-called because they define the behaviour of a sentient object, with

behaviour defined as the production of software events for consumption by actuators or other

sentient objects. The screen provided by the programming tool for the definition of behav-

ioural rules is illustrated in Figure 5.7.

This screen allows the specification of a behavioural rule as consisting of an action to be

taken when a defined condition is met. Conditions are specified as current context values,

that is the value of context fragments obtained from sensor events, or higher level context

information fused from such fragments. After providing a unique name for the rule and

selecting what context the rule is valid in, a drop down box provides a list of all context

fragments and fused context information available within that context. Individual fragments

may be selected, and combined with the and or or operators. Furthermore, it is possible to

specify the probability of fused context fragments.

123

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.7: Behavioural rule definition screen

Actions are specified as the production of an event(s) when the condition(s) is satisfied.

A drop down box provides a list of all possible event types which may be produced by the

object, allowing a specific event type to be selected. The proximity in which the event will

be produced, as well as event-type specific parameters may also be set.

5.4.6 Object descriptor

Each sentient object developed using the programming tool is described by an XML descriptor

file. This descriptor fully describes the sentient object, including inputs, contexts, fusion

networks, rules, and outputs, and enables load/save capability for editing object specifications

within the tool. As a generic description of a sentient object, it also acts as a template for

code generation, and enables portability between code generators implementing the object

specification in different implementation languages. The DTD for a sentient object descriptor

is listed in Appendix A.

124

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

5.5 Code generation

Once the specification of a sentient object has been completed using the visual components of

the programming tool, low-level code is generated which implements the object specification.

Whilst it is possible to generate the object code in potentially any language, the first version

of the programming tool generates Java code, as motivated in section 5.1.

The majority of the generated Java code extends from a set of abstract classes providing

base functionality, or implements defined interfaces. The major components of the generated

code are illustrated in Figure 5.8 and are discussed in the following sections.

5.5.1 Sentient object

A sentient object is generated that extends from the SentientObject class illustrated in Figure

5.8. Following the sentient object model, the main attributes of a sentient object are a

collection of contexts in which the object may exist, an inference engine, and an instance of

the STEAM event service to provide for event-based communication.

As discussed in section 4, sentient objects employ an inference mechanism based on pro-

duction rules, and specifically the production rule system CLIPS [NAS99]. Since the original

CLIPS implementation is in C, there were number of alternatives available to incorporate

CLIPS rules and inference capabilities into generated sentient objects. One alternative was

to use Java Native Interface (JNI) code from within the sentient object, to access the CLIPS

library. Following this approach, the JNI-CLIPS bridge could be generated from scratch,

or the capabilities of an existing library could be reused. JClips 2, developed by Maarten

Menken at Vrije University in the Netherlands provides an excellent example of a reusable

JNI interface to the native CLIPS libraries, that was a candidate for inclusion in generated

sentient objects.

The other alternative, is to use a pure Java implementation of a production rule-based

system based on CLIPS. Examples of such systems include OPSJ 3, developed by Production

Systems Technologies (PST), a company founded by Dr. Charles Forgy, the inventor of the
2http://www.cs.vu.nl/ mrmenken/jclips/
3http://www.pst.com/opsj.htm

125

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.8: Major components of a generated sentient object

126

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Rete algorithm. A further alternative was provided by the Java Expert System Shell (JESS)

[FH03], which is a pure Java implementation of CLIPS, tightly integrated with the Java

programming language.

The choice was made to use JESS to provide the inference capabilities in generated sentient

objects. This choice was motivated primarily by the fact that it is a pure Java implementation

and provides useful integration with the language not achieved through simply providing a

JNI interface to native libraries. In addition, Jess is freely available for academic use, whilst

OPSJ is not publicly available, and the licensing costs not clear. Furthermore the Jess

libraries provide a compact footprint (471 KB) suited to resource poor devices.

The inference engine component of the object is an instance of jess.Rete which is essen-

tially an instance of Jess. This class maintains a working memory of facts and a set of rules

which act upon facts to derive inferences. One aspect of the tight integration of Jess with

Java is the use of JavaBeans4 to provide a connection between working memory and the

Java application, in a mechanism known as shadow facts [FH03]. The generated code makes

use of shadow facts to enable event notifications to dynamically update working memory, as

explained in section 5.5.2.

The generated code uses the STEAM event-based middleware to facilitate communication

between application components, and more specifically a Java implementation of STEAM.

As discussed in section 4.2.1, STEAM was selected to provide event based communication

between distributed, mobile ad hoc application components due to its inherently distrib-

uted architecture, as well as the ability to geographically scope event dissemination amongst

location-aware application components. The Java version of STEAM used in the generated

sentient objects is suitably compact, requiring libraries of 407 KB in size.

Each generated sentient object has an instance of STEAM, as well as an instance of the

STEAM location service providing location-awareness to application components. Further-

more, each sentient object has a reference to the active context, defined as the context that is

active at a particular point in time. The active context controls the delivery of event notifica-

tions according to a set of filters, fusion of context data, and inference of appropriate behav-
4http://java.sun.com/products/javabeans/

127

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

iour. When a context-switch is indicated by a transition rule, the active context is switched

by the switchContext() method. Since a sentient object is able to produce events, each object

also has methods to announce event types, as well as an instance of SP SteamProducerEntity to

produce event notifications.

5.5.2 Contexts

Each sentient object has a set of contexts in which it may exist, with each individual context

controlling the delivery of event notifications to the object according to a set of filters, as well

as providing for the fusion of fragments of context data, and the inference of behaviour ac-

cording to active rules. Each context is generated as a subclass of the Context class illustrated

in Figure 5.8.

Event consumption

Event notifications are consumed and delivered to the sentient object according to the set of

event content filters specified during the context definition. Each context maintains a set of

content filters as specialisations of the type SC ContentFilter and a set of delivery callbacks,

one per type of event consumed by the object. The delivery callback for each event type has

a reference to a Java bean representing that event type, and providing a link to the working

memory of the inference engine.

Each context has methods to set up event filters and delivery callbacks upon activation,

as well as methods to unsubscribe from event notifications and remove filters on context

de-activation.

Context representation

Sentient objects employ a combination of the logic-based and object-oriented approach to

context representation, meaning that fragments of context information are stored as facts

represented by objects, within the working memory of the object’s inference engine. The

generated object code specifically uses the Jess mechanism of dynamic shadow facts to enable

working memory to be dynamically updated by event delivery. A Java bean is generated

128

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

which represents each type of event that may be consumed by the object. Each bean has a

property (a private variable, with associated accessor and mutator) representing each of the

parameters of the event type. An example of a generated Java bean is illustrated in Listing

5.5, for an event of type Mass, with two parameters, SensorID: int and mass: double. It

can be seen that the bean inherits from the BeanSupport class and each time a bean property

changes, an event is fired, notifying the inference engine of the new parameter value, and

causing the fact representing this event to be dynamically updated in working memory.

public class LoadCellSensor1 MassEvent Bean extends BeanSupport {
private int sensorID ;
private double mass ;

public void setSensorID (int newSensorID) {
int o ld senso r ID = sensorID ;
sensorID = newSensorID ;
propertyChangeSupport . f i rePropertyChange (” sensorID” ,

new I n t eg e r (o ld senso r ID) ,
new I n t eg e r (sensorID)) ;

}

public void setMass (double newMass) {
double old mass = mass ;
mass = newMass ;
propertyChangeSupport . f i rePropertyChange (”mass” ,

new Double (old mass) ,
new Double (mass)) ;

}

public int getsensor ID () {return sensorID ;}
public double getmass () {return mass ;}

}

Listing 5.5: A generated Java bean representing an event of type Mass

The delivery callback class for each event type maintains a reference to the appropriate

Java bean for that event type, and updates the bean properties upon event delivery. A

generated delivery callback class for the event type represented by the Java bean in Listing

5.5 is illustrated in Listing B.2.

From this listing it can be seen that the constructor method of the callback instantiates a

new bean which it then registers with the inference engine object, through calls to defclass()

and definstance(). The subsequent delivery of an event instance is handled by the deliver()

129

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

method that extracts the values of the event parameters and updates the relevant bean

properties, in turn updating facts within working memory. In this way, the delivery of event

notifications dynamically updates context fragments represented as rules in the inference

engine.

import i e . tcd . cs . dsg . jsteam . ∗ ; import j e s s . ∗ ;

public class LoadCel lSensor1 MassEvent Del iveryCal lback
extends SensorEventDel ivery {
private LoadCellSensor1 MassEvent Bean loadCel lSensor1 MassEvent Bean ;
private Context context ; // the a c t i v e Context
private Rete in f e r enceEng ine ; // the in f e r ence engine component
private BayesianFusionNetwork fusionNetwork ; // the f u s i on network

public LoadCel lSensor1 MassEvent Del iveryCal lback (Rete ie , Context c tx t) {
super () ;
context = ctxt ;
fus ionNetwork = context . getFusionNetwork () ;
i n f e r enceEng ine = i e ;
loadCel lSensor1 MassEvent Bean = new LoadCellSensor1 MassEvent Bean () ;
try { // r e g i s t e r the bean wi th JESS

i n f e r enceEng ine . d e f c l a s s (”LoadCellSensor1 MassEvent Bean” ,
” loadCel lSensor1 MassEvent Bean ” , null) ;

i n f e r enceEng ine . d e f i n s t an c e (”LoadCellSensor1 MassEvent Bean” ,
loadCel lSensor1 MassEvent Bean , true) ;

}
catch (Exception e) {e . pr intStackTrace () ; }

}

public void d e l i v e r (SC dsEvent e i) { // handle d e l i v e r y o f an event in s t ance
int s enso r ID intVa l = e i . parValINT (0) ; // e x t r a c t the f i r s t event parameter
// update the shadow f a c t and fu s i on network
loadCel lSensor1 MassEvent Bean . s e t s enso r ID (senso r ID intVa l) ;
fus ionNetwork . r e c e iveEv idence (” senso r ID intVa l ” , ””+senso r ID intVa l) ;
double mass dblVal = e i . parValDBL (1) ; // e x t r a c t the second event parameter
// update the shadow f a c t and fu s i on network
loadCel lSensor4 MassEvent Bean . setmass (mass dblVal) ;
fus ionNetwork . r e c e iveEv idence (”mass dblVal ” , ””+mass dblVal) ;

}
}

Listing 5.6: A generated delivery callback for event of type Mass

5.5.3 Sensor fusion

Associated with each context is a Bayesian sensor fusion network which serves to fuse frag-

ments of context data received from sensors into higher level information, as well as manage

130

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

uncertainty inherent in the context fragments. Each context object has an attribute of type

BayesianFusionNetwork, which in turn has an attribute representing the Bayesian network itself,

as illustrated in Figure 5.8.

The programming tool makes use of the EBayes engine for embedded Bayesian networks

in the sentient objects it generates. The EBayes engine was developed by Fabio Cozman

at CMU explicitly for the needs of embedded devices. As a result it provides an extremely

compact footprint (26 KB), and has limited memory requirements due to dynamic linking

behaviour. EBayes was selected over other Bayesian network implementations for Java due

to these low resource requirements. For example, Netica-J 5, a competing Bayesian network

offering for Java requires 977 KB of storage for its set of library files. Furthermore, EBayes

is distributed under the terms of the Gnu Public License (GPL)6, in comparison to the

significant commercial license costs associated with Netica.

The Bayesian network is represented as a Java class file in the format prescribed by the

EBayes engine7, and reflecting the design made by the developer in the visual network builder.

An example network generated in this format and representing the two nodes Xr and X1 of

Figure 4.8 in section 4.5.1, is illustrated in Listing 5.7.

The generated sentient object uses the EBayes engine to calculate the posterior marginal

distribution of a particular node in the fusion network. Methods are provided within the

generated BayesianFusionNetwork class to update the network based on events consumed by

the sentient object.

5.5.4 Inference rules

The knowledge base of a sentient object consists of a set of production rules generated based

on the specifications made using the visual rule development components. Sentient objects

generated by the programming tool leverage the inference engine provided by Jess, and thus

rules are generated in Jess syntax, which is itself based on CLIPS syntax.

As discussed in section 5.5.2, context is represented in a sentient object by logical facts
5http://www.norsys.com/netica-j.html
6http://www.gnu.org/copyleft/gpl.html
7http://www-2.cs.cmu.edu/ javabayes/EBayes/index.html/

131

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

import BayesianNetworks . ∗ ;

public class FusionNetwork extends BayesNet {
public FusionNetwork () {

Di s c r e t eVar i ab l e u s e r i d e n t i t y =
new Di s c r e t eVar i ab l e (” u s e r i d e n t i t y ” ,

D i s c r e t eVar i ab l e .CHANCE,
new St r ing [] {” Al i c e ” , ”Bob”}

) ;

D i s c r e t eVar i ab l e iBut ton senso r =
new Di s c r e t eVar i ab l e (” iBut ton senso r ” ,

D i s c r e t eVar i ab l e .CHANCE,
new St r ing [] {” Al i c e ” , ”Bob”}

) ;

Di sc re teFunct ion p1 = // de f i n e c ond i t i o na l p r o b a b i l i t y t a b l e f o r node
new Discre teFunct ion (

new Di s c r e t eVar i ab l e [] { u s e r i d e n t i t y } ,
new Di s c r e t eVar i ab l e [] {} ,
new double [] { 0 . 5 , 0 . 5 }

) ;

Di sc re teFunct ion p2 = // de f i n e c ond i t i o na l p r o b a b i l i t y t a b l e f o r node
new Discre teFunct ion (

new Di s c r e t eVar i ab l e [] { iBut ton senso r } ,
new Di s c r e t eVar i ab l e [] { u s e r i d e n t i t y } ,
new double [] {0 .63 , 0 . 44 , 0 . 37 , 0 .56}

) ;

add (new Di s c r e t eVar i ab l e [] { u s e r i d en t i t y , iBut ton senso r }) ;
add (new Discre teFunct ion [] {p1 , p2 }) ;

}
}

Listing 5.7: A generated fusion network in EBayes format

asserted in the working memory of the inference engine. Specifically, the objects generated by

the programming tool make use of the shadow fact mechanism provided by Jess, to link event

delivery to dynamic updates of facts in working memory. Each fragment of context informa-

tion, as well as context information fused by the Bayesian fusion network, is represented by

a Java bean object which in turn provides a shadow fact in working memory. Inference rules

are thus able to reason about context information dynamically updated in working memory

through event delivery.

All rules generated by the programming tool are written to a single text file per sentient

132

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

object, named controller.clp. The separation of object inference logic into a separate text

file, distinct from sentient object class files is based on the following advantages:

1. Rules are not compiled, but loaded at runtime, so may be changed without the need

for re-compilation of sentient object code.

2. Sentient object logic is concentrated in a single location and de-coupled from application

code, so may be easily modified without affecting other application components.

3. Rules are specified declaratively, at a high level of abstraction, and are semantically

clear to visual inspection.

An example of a behavioural rule generated by the programming tool is illustrated in

Listing 5.8. This example shows how shadow facts representing context fragments, as well

as facts representing fused context fragments may be used in the LHS of the rule. The RHS

of the rule then asserts further facts, or can cause event production by calling back to the

sentient object. The rule in Listing 5.8 checks the readings from four individual sensor against

a fused reading to determine whether or not to perform a context transition.
(d e f r u l e InUse−BottomLeft
? ac <− (act ive−major−context InUse)
?cu <− (context−updated true)
?aw <− (average−weight (averageweight ?X))
(SmartCouch LoadCellSensor1 MassEvent Bean (sensorID 1)(mass ? LoadCellSensor1 MassEvent))
(t e s t (> ? LoadCellSensor1 MassEvent ?X))
(SmartCouch LoadCellSensor2 MassEvent Bean (sensorID 2)(mass ? LoadCellSensor2 MassEvent))
(t e s t (< ? LoadCellSensor2 MassEvent ?X))
(SmartCouch LoadCellSensor3 MassEvent Bean (sensorID 3)(mass ? LoadCellSensor3 MassEvent))
(t e s t (< ? LoadCellSensor3 MassEvent ?X))
(SmartCouch LoadCellSensor4 MassEvent Bean (sensorID 4)(mass ? LoadCellSensor4 MassEvent))
(t e s t (< ? LoadCellSensor4 MassEvent ?X))
=>
(r e t r a c t ? ac)
(r e t r a c t ?cu)
(bind ?∗weight∗ ?∗ t o ta lwe i gh t ∗)
(a s s e r t (act ive−sub−context BottomLeft))
)

Listing 5.8: Example of a generated behavioural rule

Temporal validity of context data

As noted by [dIn02], events are discrete temporal occurrences, and the frequency of event

sources differs between event sources. Context data derived from sensor events and fusion

networks, are represented by shadow facts within working memory, obviating the need for

133

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

continuous garbage collection of facts, as described in [dIn02]. A shadow fact is dynamically

stored in working memory for each fragment of context data received by the sentient object,

whether derived from atomic events, or as a result of fusion. Shadow facts rely on JavaBeans,

generated by the programming tool.

The use of shadow facts ensures that a fact representing a context fragment is only asserted

in working memory when the context fragment it represents changes. There is therefore no

need to garbage collect facts through explicit retraction. A shadow fact is valid for one

execution cycle of the inference engine, and then is removed from working memory until

the shadow fact is subsequently updated. If a rule matches a fact representing a fragment

of context data, the rule will only fire if the fact has been updated since the last time the

inference engine executed. This means that inferences are not made on stale context data,

and rules will only fire if the facts they match on have been recently updated.

5.5.5 Object descriptor

In addition to generating low-level Java code implementing the sentient object specification

made in the programming tool, the tool also automatically generates an XML descriptor of

the object, as described in section 5.4.6.

5.5.6 Runtime flow of control in a generated object

The flow of control in a generated sentient object at runtime is illustrated in Figure 5.9, and

explained below:

1. Event notifications are consumed according to the set of filters defined by the active

context of the sentient object.

2. A delivery callback is made for each type of event notification received. The delivery

callback

(a) Updates the relevant node in the fusion network of the active context with the

evidence contained in the event notification.

134

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Fig. 5.9: Flow of control at runtime in a generated sentient object

(b) Updates the Java bean representing the event type as a shadow fact in working

memory of the inference engine.

3. The inference engine executes the set of rules for the current active context.

4. Any context transition or event notification indicated by the execution of the inference

engine is carried out.

Sentient objects are single-threaded, with actions controlled by the currently active con-

text.

5.6 Code generation within the sentient object model

The automated generation of sentient object code by the programming tool offers a number

of advantages with regard to the development of mobile, context-aware applications, whilst

at the same time suffering from potential drawbacks.

5.6.1 Advantages

The primary advantage of having low-level code generated by the programming tool is that

application developers only have to work with high-level, domain-specific abstractions, and do

135

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

not need a deep understanding of the implementation language. This leads to a reduction in

programming errors, as well as making prototyping easier through a reduction in development

time. The code generated by the programming tool offers the following specific advantages

over hand-crafted implementations:

Quality

The quality of automatically generated code is directly related to the quality of the generating

code. By increasing the quality of the generating code at a single point, the quality of an

entire application code-base is increased. Bugs may also be fixed and new features introduced

at a single point in the generating code, thereby making generated code more robust, as well

as more flexible and agile.

Consistency

Generated sentient object code has consistent variable naming and API design [Her03], in

marked contrast to code engineered by hand.

Productivity

Since code generation significantly reduces the time spent on implementation, there is conse-

quently more time available in the development lifecycle for application design. In addition,

since the actual process of writing the application code is negligible, development effort may

be concentrated on ensuring that the generating code is of sufficient quality.

Abstraction

The application design is captured in an abstract form external to the application code

(for example in an XML file). This enables the application to be easily ported to another

implementation platform, by way of an alternative code generator, which is significantly

more efficient than porting equivalent hand-crafted code. In addition, products supporting

the application may be generated from the abstract design, including documentation or test

cases.

136

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Customisable

The code generator maintains a single point of knowledge [Her03], capturing how an appli-

cation is implemented. By parameterising the generation process appropriately, applications

could be easily customised. The code generated by the programming tool places the entire

rule-base in a single file which may be easily edited by hand to further customise the appli-

cation. Furthermore, the rules are written in a high-level procedural language that is more

easily understood.

5.6.2 Drawbacks

Although automated code-generation by the programming tool offers significant advantages

in terms of the sentient object model, a number of drawbacks remain, primarily related to a

loss of control over the code by developers:

Limited flexibility

Generated sentient object code does not offer great flexibility in implementation to the de-

veloper who is constrained by the set of domain-specific abstractions provided by the pro-

gramming tool and code generator. However, skilled developers who would typically demand

greater implementation flexibility would likely have the ability to customise the generated

code.

Maintenance

The maintenance of the code generator lies with a small team who may not be able to

timeously and accurately react to user needs for enhancements or changes to be made. The

maintenance of the code generator is challenging in itself since the code to generate the

sentient object code is complex and dispersed through multiple methods and classes. Since

users depend on these external resources for essential maintenance work, the danger is that

a lack of responsiveness on their part may lead to abandonment of the programming tool.

137

Chapter 5. A Programming Tool for Mobile, Context-Aware Applications

Narrow applicability

The code generator is only useful in the domain defined by the sentient object model, and

may not easily be extended to other

On balance though, the advantages offered through code generation by the programming

tool far outweigh the drawbacks.

5.7 Summary

This chapter described the implementation of a graphical programming tool based on the

sentient object model, that significantly reduces the need for developers of mobile, context-

aware applications to write syntax. This programming tool fulfills the seventh requirement

identified of a programming model for mobile, context-aware applications, namely the pro-

vision of an easily accessible and usable development environment. The tool exposes the

sentient object model and its fulfillment of the first six requirements of the programming

model, in an intuitive and accessible manner to the developer. It is envisioned that by easing

the development process, a host of applications will emerge, aiding in the realisation of truly

pervasive computing.

The next chapter describes an evaluation of the sentient object model and associated

programming tool, based on its application to representative scenarios.

138

Chapter 6

Applications and Evaluation

The evaluation of Ubiquitous Computing systems is not yet fully understood – Albrecht Schmidt

[Alb02]

Applications are the mechanism through which we can test the principles underlying sentient

computing – Andy Hopper [Hop00]

Applications are of course the whole point of ubiquitous computing – Mark Weiser [Wei93]

As the quotes above taken from authorities in the area demonstrate, that due to the

relative novelty of the research field, there does not exist a common set of criteria by which

ubiquitous computing systems are evaluated, but it is generally accepted that systems may be

validated through their application. As a direct result, the evaluation of ubiquitous computing

systems in general, and context-aware applications in particular, is generally of a qualitative,

rather than quantitative, nature. Quantitative measurements of the constituent components

of the overall system, using commonly accepted criteria are valuable to an extent, however

in this thesis we take a holistic approach to evaluation of the programming model, based on

application.

Our evaluation therefore takes the form of qualitatively testing the effectiveness of the

sentient object model to adequately model and implement a system, when applied to a

representative set of application scenarios. The model is applied to the prototypical imple-

139

Chapter 6. Applications and Evaluation

mentation of such applications and a qualitative evaluation made as to the value of the model

in the development of context-aware applications.

6.1 Sentient psychiatric couch

The sentient psychiatric couch application aims to evaluate the value of the sentient object

model in supporting the development of a context-aware couch that uses sensed weight to

recognise who is sitting on it, and in what position. The evaluation is performed with respect

to a previous, ad hoc implementation of the application providing similar functionality.

The application is based on an old psychoanalyst’s couch that has been installed in the

Distributed Systems Laboratory at Trinity College. As a vital tool in psychoanalysis, the

couch once served to advance the treatment process by providing patients with an opportunity

to relax, undistracted by the visible presence of a therapist, and comfortably report feelings

and emotions. In addition, the couch served to define the interaction between therapist and

patient as being distinct from ordinary social conversation, and as such facilitated useful

communication between therapist and patient.

Now located in an active workplace, the couch serves a different purpose and provides an

extremely interesting test case for the sentient object model. Part of the laboratory for ap-

proximately two years, the couch no longer serves a psychoanalytic role, but provides an area

where members of the laboratory meet and interact with others. In an environment where

most people work within semi-private laboratory cubicles, often wearing personal headsets,

the couch provides a central focal point where people often come to sit or lie and converse

with others. Indeed the couch now forms the main meeting point of the laboratory where

issues are discussed and debated, as well as providing a comfortable place to lie down and

relax for short periods of time.

The couch has recently been augmented with a set of industrial load sensors placed be-

neath each leg, enabling the mass, or load, currently on the couch to be measured. Load

sensing has a number of properties that are well suited to context acquisition in sentient

computing environments [SSL+02], namely:

140

Chapter 6. Applications and Evaluation

1. Gravity applies to all physical objects, giving them weight detectable by load sensors.

2. Changes in weight distribution in everyday settings are closely related to interaction in

a physical environment.

3. Load sensing technology is mature, inexpensive and unobtrusive.

4. Load sensing is suited to an event-based communication model in which significant

changes in detected weight are reported as events.

Since the couch is predominantly used as a seating or lying surface, measured load and its

position on the couch are the two major pieces of context information that may be obtained

from the sensors, and using this context, the application may perform useful actuation.

The augmented couch infrastructure provides an ideal test-case for our model for a number

of reasons. Firstly, the couch and associated infrastructure are already accepted and used as

part of the laboratory and therefore the application will not require the introduction of any

unfamiliar technology into the environment. This is aligned with Weiser’s vision of technology

receding into the background in ubiquitous computing environments [Wei91]. Secondly, the

couch provides an example of a physical object whose context of use changes frequently

throughout the day. Depending on sensed weight and position, the couch may be considered

to be in a particular context, with a set of associated actions applicable. The location of

the couch within a busy laboratory provides live data to test the system, without the need

for extensive simulation. This increases the accuracy of the resulting application. Finally,

the couch is able to provide experience of developing and deploying a ubiquitous computing

application in a live environment.

6.1.1 System overview

The aim of the sentient psychiatric couch application is to use context information, extracted

from sensors, to autonomously control a set of actions. Broadly speaking, the highest level of

context information that may be deduced by the couch application, is whether the couch is in

use or not. Since we restrict our interest to people, this translates to whether or not somebody

141

Chapter 6. Applications and Evaluation

is present on the couch. More refined context information that may be determined is the

identity of the ’user’ of the couch, and their current location on the couch. In the prototypical

implementation of the system the aim is to recognise who is on the couch, what their current

position is, and issue a personalised greeting, parameterized with the identity of the user,

and their position on the couch. If the user is not recognised, the system should prompt for

them to register. This functionality is roughly equivalent to a previous implementation of the

system, with the exception that the position of the user was determined, but not reported in

the previous implementation.

Since the stated aim of the sentient object model is to ease the development of context-

aware applications, the application will be evaluated with regard to this aim.

Previous implementation

One of the attractions of the psychiatric couch as an evaluation scenario for the sentient

object model is that a software system has previously been developed and deployed on the

couch [Wol03]. This system provided functionality to identify when someone sat on the couch,

and to issue a personalised greeting if the person had previously registered with the system.

If the person sitting on the couch was not yet registered, the system offered the opportunity

to do so.

Whilst this system is perfectly adequate and provides the desired functionality, it was

developed in a completely ad hoc and unstructured manner, in common with the majority of

existing context-aware applications. The previous implementation saw the hardware tightly

integrated into the application, with the result that evolving the hardware without changing

the application logic was impossible. Evolving the application logic was also extremely diffi-

cult, as there was no separation between context acquisition, fusion and inference, with the

logic being incorporated directly into the application code.

Adding or removing hardware from the application would have resulted in significant

changes having to be made to the application code and this was not easily achievable by

developers who had not been involved in the original implementation.

142

Chapter 6. Applications and Evaluation

Mass
(sensorID, mass)

Unstable
(sensorID)

Load Cell
Sensor 1

Load Cell
Sensor 4

.

.

.

.

.

Sentient couch object

MassChanged
(mass, location)

Recogniser object

Keyboard
 Sensor

MassChanged
(mass, location)

Registration
(name)

RegistrationRequired
(mass, location)

PersonArrived
(name, location)

PersonLeft
(name, location)

Speech
Actuator

Database

Fig. 6.1: Sentient couch system design

6.1.2 System design

The sentient couch application is designed following the sentient object model and the design

process consists of identifying the constituent sensors, objects and actuators of the system,

as well as their event interfaces. Two types of sensor, with five sensors in total, two sentient

objects, and one type of actuator have been identified and these components and their rela-

tionships are illustrated in Figure 6.1. The implementation of each of these components is

discussed in detail in the following sections.

6.1.3 Sensors

Recall from Section 4.3, that a sensor in the sentient object model is defined as

an entity that produces software events in reaction to a stimulus detected by some real-world

hardware device

143

Chapter 6. Applications and Evaluation

Byte no. Name Value
1,2 Status 1 OL Overload

ST Stable
US Unstable

3 - 2C (”,”)
4,5 Status 2 NT Net weight

GS Gross weight
6 - 2C (”,”)
7 Polarity + Positive

- Negative
8-14 Mass data Actual mass measured at sensor
15,16 Unit KG Kilograms

T Tons
17,18 Control CRLF

Table 6.1: Format of PT650D reading

In the case of the couch we identify two main categories of sensor. Firstly, the four load

cell sensors fitted to the legs of the couch and connected to the weighing indicators detect a

real world stimulus that is a change in the weight on the couch. The second category of sensor

identified in the application is a keyboard sensor that produces software events in response

to keyboard input, following a registration request to a user by the system.

The hardware incorporated in the couch is described in Appendix B and software ab-

stractions of these categories of real world sensors were developed as the sensor components

of the application.

Load cell sensor

The weighing indicator outputs a continuous stream of readings, the format of which is

illustrated in Table 6.1. The load cell sensor is a software component that uses the standard

Java Communications API1 to communicate with serial ports to which the weighing indicators

are attached. An example 18-byte reading from a weighing indicator is illustrated in Table

6.2.
1http://java.sun.com/products/javacomm/

144

Chapter 6. Applications and Evaluation

O L , N T , - 1 2 3 4 . 5 6 K G CR LF

Table 6.2: Example 18 byte PT650D reading indicating a mass of 1234.56 kg (overload)

Event type Parameter 0 Parameter 1
Mass S INT sensorID S DBL mass
Unstable S INT sensorID

Table 6.3: Event types produced by LoadCellSensor

There are 4 load cell sensors, one representing each transducer and these read the signal

from a weighing indicator, and publish an event containing the mass measured in a stable

reading, or an event representing an unstable reading. The two types of events that can

be published by the sensor are illustrated in Table 6.3. Events of type Mass are published

in response to a reading from the weighing indicator with the first 2 bytes set to ’ST’, and

contain a parameter representing the identity of the transducer, and a parameter containing

the mass measurement of the reading. An Unstable event is published on reception of a

reading from the weighing indicator with the first 2 bytes set to ’US’, and contain a single

parameter representing the identity of the transducer.

In addition to parsing the readings from the weighing indicator and producing software

events, the load cell sensor performs a simple smoothing operation on the mass readings

by only publishing a Mass event when a specified number of readings, falling within an

acceptable range, have been processed. The smoothing function is illustrated in Listing

6.1, where a Mass event is only published after 5 readings within 10 kilograms of the last

published reading, have been received.

i f ((mass >= (previousMass − 10)) && (mass <= (previousMass + 10))) {
r ead ings++;

} else {
r ead ings = 0 ;

}
i f (r ead ings == 5) {

raiseMassEvent (mass) ;
previousMass = mass ;

}

Listing 6.1: Smoothing function in load cell sensor

145

Chapter 6. Applications and Evaluation

Since the couch is a large, heavy artifact, it is not at all mobile and occupies a fixed location

in the laboratory. As such, the load cell sensors instantiate the STEAM location service with

a fixed location parameter, and proximity-based filtering is not currently employed in the

application, although the proximity of mobile application components to the couch may be

incorporated in the design in the future.

<?xml version=” 1 .0 ” encoding=”us−a s c i i ” ?>
< !DOCTYPE s enso r SYSTEM ” s e n s o r d e f i n i t i o n . dtd”>
<s enso r>
<sensor−name>LoadCel lSensor1</ sensor−name>
<sensor−c l a s s> i e . tcd . s e n t i e n t . s enso r . LoadCel lSensor</ sensor−c l a s s>
<event>
<event−type>Mass</event−type>
<parameter>
<param−name>sensorID</param−name>
<param−type>S INT</param−type>

</parameter>
<parameter>
<param−name>mass</param−name>
<param−type>S DBL</param−type>

</parameter>
</ event>
<event>
<event−type>Unstable</event−type>
<parameter>
<param−name>sensorID</param−name>
<param−type>S INT</param−type>

</parameter>
</ event>

</ senso r>

Listing 6.2: XML descriptor for a load cell sensor

All sensors in the sentient object model have an associated XML descriptor file which

describes the interfaces of the sensor, i.e., it describes the types of events published by the

sensor, and their associated parameters. The descriptor is developed using the visual pro-

gramming tool and the descriptor for the load cell sensor is illustrated in Listing 6.2.

Keyboard sensor

The function of the keyboard sensor is to convert information entered at a GUI into a software

event that it subsequently publishes. The keyboard sensor publishes an event in response to

a prompt to enter a new user’s name issued after an unregistered person is detected on the

146

Chapter 6. Applications and Evaluation

Event type Parameter 0
Registration S STR name

Table 6.4: Event type produced by KeyboardSensor

couch. The sensor produces one type of event, namely a Registration event, which has one

parameter, the name of the user, as illustrated in Table 6.4.

The keyboard sensor does not perform any processing, but simply a no-op transformation

between a name entered in a text field, and a software event. The weight and location of the

user are part of the context of the Recogniser sentient object, discussed in Section 6.1.6.

6.1.4 Actuators

The sentient object model defines an actuator as

an entity that consumes software events, and reacts by attempting to change the state of the real

world in some way via some hardware device

One type of actuator has been identified in the sentient couch application, this being an

actuator that produces an audio stream via a set of speakers, in response to the consumption

of an event.

Speech actuator

The function of the speech actuator is to consume the set of event types illustrated in Table

6.5, and perform a transformation to synthesised speech, using a text-to-speech application

available on Debian. A PersonArrived event is generated by the Recogniser sentient object

when a known person begins to use the couch, whilst a PersonLeft event is produced by

the Recogniser when a person who had been using the couch, leaves. Finally, a Registra-

tionRequired event is produced when an unknown person begins to use the couch.

6.1.5 Couch sentient object

The sentient couch object consumes events from load cell sensors, and performs the main

object functions of sensor capture and context acquisition, as well as rule-based inference,

147

Chapter 6. Applications and Evaluation

Event type Parameter 0 Parameter 1
RegistrationRequired S DBL mass S STR location
PersonArrived S STR name S STR location
PersonLeft S STR name S STR location

Table 6.5: Event types consumed by SpeechActuator

<?xml version=” 1 .0 ” encoding=”us−a s c i i ” ?>
< !DOCTYPE actuator SYSTEM ” a c t u a t o r d e f i n i t i o n . dtd”>
<actuator>
<actuator−name>SpeechActuator</ actuator−name>
<actuator−c l a s s> i e . tcd . s e n t i e n t . ac tuator . SpeechActuator</ actuator−c l a s s>
<event>
<event−type>Reg i s t ra t i onRequ i r ed</event−type>
<parameter>
<param−name>mass</param−name>
<param−type>S DBL</param−type>

</parameter>
<parameter>
<param−name> l o c a t i o n</param−name>
<param−type>S STR</param−type>

</parameter>
</ event>

. . .

Listing 6.3: XML descriptor fragment for a speech actuator

before publishing an event representing the mass currently on the couch, and its location.

Development of the sentient object was carried out using the graphical programming tool to

specify inputs, logic, and outputs.

Data capture and fusion

The data capture component of the couch sentient object is responsible for receiving the

individual events consumed by the object, and storing the fragments of context data contained

within them, as well as fusing individual fragments of data to determine higher level context.

The first step in object development involved selecting the sensors in which the object is

interested from a library containing a set of XML sensor descriptors as illustrated in Listing

6.2. In the sentient couch object, descriptors representing each of the four load cell sensors

are selected as producing events of interest to the object. Two forms of sensor fusion are

employed in the sentient couch object

148

Chapter 6. Applications and Evaluation

public void d e l i v e r (SC dsEvent e i) {
int s enso r ID intVa l = e i . parValINT (0) ;
loadCel lSensor1 MassEvent Bean . s e t s enso r ID (senso r ID intVa l) ;
fus ionNetwork . r e ce iveEv idence (” senso r ID intVa l ” , ””+senso r ID intVa l) ;
double mass dblVal = e i . parValDBL (1) ;
loadCel lSensor1 MassEvent Bean . setmass (mass dblVal) ;
fus ionNetwork . r e ce iveEv idence (”mass dblVal ” , ””+mass dblVal) ;

}

Listing 6.4: Event delivery updates a Java Bean representing a shadow fact

1. Sum and average - the context of the couch is determined by the weight measured at

each of the four load cell sensors, the total weight measured on the couch as a whole,

and the average weight measured on the couch. The sensor capture component updates

individual sensor masses, as well as total and average mass according to the following

formulae

Masstotal =
4∑

n=1

MassLoadCellSensorn (6.1)

Massaverage =
Masstotal

4
(6.2)

2. Bayesian networks - are used within the sensor fusion component to manage uncer-

tain sensor data. These networks are specified on a per-context basis during object

development and are discussed in the next section.

The sensory capture and fusion component stores fragments of context data as a set of

facts in the inference engine component. The component dynamically updates these facts as

new sensor data is received, using the shadow fact mechanism provided by JESS and described

in Section 5.5.2. The delivery of events from the load cell sensors causes the update of shadow

facts within the inference engine, via corresponding Java Bean objects. The update of the

Java Bean representing a Mass event from load cell sensor 1 is shown in Listing 6.4, that is

an extract from the sentient object code generated by the programming tool.

149

Chapter 6. Applications and Evaluation

Top left

Top

Top Right

Half left
Half Right

Middle

Bottom left Bottom Right
Bottom

Bottom Left and
Top Right

Bottom Right and
Top Left

Bottom and
Half Left

Bottom and
Half Right

Top and
Half Right

Top and
Half Left

Fig. 6.2: Possible weight distributions on the couch

Context hierarchy

As defined in Chapter 4, the context of a sentient object is represented as a 3-level hierarchy of

all possible situations in which the object may be. This representation eases the complexity of

developing a sentient object by decomposing the life-cycle of the object into a set of contexts,

within which only a subset of all available sensor inputs are used. In the sentient couch

application, the two major contexts were identified as Empty, when there is no-one on the

couch, and In Use when there is someone on the couch. Fifteen distinct sub contexts were

identified as being possible beneath the In Use major context. These fifteen sub contexts

150

Chapter 6. Applications and Evaluation

Sentient
Couch

In Use Empty

Bottom Middle Bottom and
Half Left

Mission context

Major context

Sub context

Fig. 6.3: Context hierarchy for the sentient couch

arise from the fact that in order to determine the current context, a comparison is made

between the mass of each individual load cell sensor, MassLoadCellSensorn and the average

weight on the couch, Massaverage. Each individual sensor may be in one of two states,

MassLoadCellSensorn ≥ Massaverage, or MassLoadCellSensorn < Massaverage. Since there are

four individual sensors, this gives rise to 42 = 16 possible contexts. One of these contexts

is captured by the major context Empty, leaving 15 sub-contexts, as illustrated in Figure

6.2. The context hierarchy of the sentient couch is illustrated in Figure 6.3, showing only

a representative sample of sub contexts for simplicity, whilst Figure 6.4 illustrates how load

sensors are used to discriminate between individual contexts.

A context in the sentient object model is defined by (1) the set of event types relevant in

the context; (2) a set of filters defined over the event types; (3) a probabilistic sensor fusion

network; (4) the set of rules active in the context; (5) the set of transition contexts; and (6)

the set of output events that may be produced when in the context.

Part of the sensor fusion network for the major context In Use is illustrated in Figure

6.5. This network captures prior probabilities, gathered from experimental observation, that

a particular sub context is active (e.g., Bottom, Bottom left or Bottom right), given current

evidence from the sensors. Evidence from all four load cell sensors is used to determine the

probability that the weight is located in a particular position, given historical observations.

The experiments conducted to gather evidence for the network consisted of the following

steps

• For a known mass Mass at a known position on the couch, Positionn, for each load

cell sensor LCSn, measure the probability that the mass measured by each load cell

151

Chapter 6. Applications and Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

W
ei

gh
t (

kg
)

Time

Bottom
right

Bottom
left

Top
left

Top
right

Half
right

Bottom Half
left

Middle

Sensor 1
Sensor 2
Sensor 3
Sensor 4

Total Weight

Fig. 6.4: Context determination based on load sensing, showing a subset of potential contexts

sensor LCSnMass is greater than the average mass on the couch MassAvg

• Iterate, varying mass and position

• Calculate the overall probability for each possible position on the couch Positionn, that

the mass measured by each of the load cell sensors is greater than the average mass

LCSnMass > MassAvg

These measurements allowed the calculation of the probability that a sensor measures a

mass greater than or equal to the average mass, given that a person is located in a particular

position on the couch. The prior probabilities are calculated off-line and are used to define

the fusion network using the graphical network builder component of the programming tool.

The tool then automatically generates a Java class representing the network.

Inference engine

The inference engine component of the couch sentient object maintains a knowledge base

containing the set rules and working memory containing the set of facts that together rep-

152

Chapter 6. Applications and Evaluation

Fig. 6.5: Sensor fusion network for major context In Use

Position
Load cell sensor 1 Bottom Bottom left Bottom right

Above average 0.7 0.9 0.1
Below average 0.3 0.1 0.9

Table 6.6: Conditional probability table for Node B in Figure 6.5

resent the context hierarchy, and govern the behaviour of the sentient object. Two types of

facts exist in the working memory of the inference engine

1. Shadow facts - each shadow fact represents an event in which the couch is interested.

There are eight shadow facts, one for each of the four load cell sensor’s two event

types, and these are dynamically updated upon delivery of an event. Shadow fact

representations are automatically generated by the programming tool for all events

consumed by the object.

2. Unordered facts - are elements in the working memory of the inference engine that

store calculated values such as total and average mass. These facts are updated by

rules in the inference engine and are typically hand-coded by the developer to support

application logic such as fusion rule outputs.

In addition to facts, the knowledge base of the inference engine contains a set of rules.

Three types of rules exist in the inference engine of the couch sentient object

1. Behavioural rules

Behavioural rules are rules that govern the behaviour of the object and of which a subset

153

Chapter 6. Applications and Evaluation

(d e f r u l e InUse−Bottom
(act ive−major−context InUse)
?cu <− (context−updated true)
?aw <− (average−weight (averageweight ?X))
(SmartCouch LoadCellSensor1 MassEvent Bean (sensorID 1)(mass ? LoadCellSensor1 MassEvent))
(t e s t (> ? LoadCellSensor1 MassEvent ?X))
(SmartCouch LoadCellSensor2 MassEvent Bean (sensorID 2)(mass ? LoadCellSensor2 MassEvent))
(t e s t (> ? LoadCellSensor2 MassEvent ?X))
(SmartCouch LoadCellSensor3 MassEvent Bean (sensorID 3)(mass ? LoadCellSensor3 MassEvent))
(t e s t (< ? LoadCellSensor3 MassEvent ?X))
(SmartCouch LoadCellSensor4 MassEvent Bean (sensorID 4)(mass ? LoadCellSensor4 MassEvent))
(t e s t (< ? LoadCellSensor4 MassEvent ?X))
=>
(r e t r a c t ?cu)
(a s s e r t (act ive−sub−context Bottom))

)

Listing 6.6: Generated transition rule for the transition In Use-Bottom

are valid in each particular context. At the lowest level, the behaviour of a sentient

object consists of the publication of events, as caused by the evaluation of rules, for

consumption by relevant actuators.

The couch sentient object publishes events of type MassChanged (see Table 6.7) when

its context, that is the mass and its location on the couch, changes. The behavioural

rules of the couch are thus a set of rules that check whether a particular sub context is

active in their LHS, and if it is, publish an appropriate event on the RHS of the rule.

An example of a behavioural rule composed in the graphical rule-builder and generated

for the couch is illustrated in Listing 6.5 for the sub context Bottom.
(d e f r u l e Bottom
(act ive−sub−context Bottom)
=>
(bind ?MassChangedEvent (new java . u t i l . Vector))
(bind ?param0 (new ParameterInstance ”mass” ”S DBL” (c a l l S t r ing valueOf ?∗weight ∗)))
(c a l l ?MassChangedEvent add ?param0)
(bind ?param1 (new ParameterInstance ” l o c a t i o n ” ”S STR” ”Bottom”))
(c a l l ?MassChangedEvent add ?param1)
(c a l l ?∗ producer∗ produceEvent MassChanged ?MassChangedEvent)

)

Listing 6.5: Generated behavioural rule for sub context Bottom

2. Transition rules

Transition rules serve to identify when transition to another context is indicated, and

perform this transition. Transition rules are associated with particular contexts and

are only eligible to fire when the context to which they relate is active. In addition to

the context being active, the conditions under which the transition occurs must be met.

An example transition rule generated for the couch object is illustrated in Listing 6.6.

154

Chapter 6. Applications and Evaluation

(d e f r u l e f u s i on
?aw <− (average−mass (averagemass ?X))
(SmartCouch LoadCellSensor1 MassEvent Bean (mass ?mass1))
(SmartCouch LoadCellSensor2 MassEvent Bean (mass ?mass2))
(SmartCouch LoadCellSensor3 MassEvent Bean (mass ?mass3))
(SmartCouch LoadCellSensor4 MassEvent Bean (mass ?mass4))
=>
(c a l l ?∗ contextbean∗ contextDataReceived)
(bind ?∗ tota lmass∗ (+ ?mass1 ?mass2 ?mass3 ?mass4))
(bind ?∗ averagemass∗ (/ ?∗ tota lmass∗ 4))
(i f (<> ?∗ averagemass∗ ?X) then
(modify ?aw (averagemass ?∗ averagemass ∗)))

)

Listing 6.7: Fusion rule calculating total and average mass on couch

Event type Parameter 0 Parameter 1
MassChanged S DBL mass S STR location

Table 6.7: Event type produced by SentientCouch object

This rule states that if the current active major context is In Use, if the context

information has recently been updated, and if load cell sensor 1 and 2 are measuring a

mass greater than the average mass on the couch, whilst load cell sensors 3 and 4 are

measuring a mass less than the average, then the sub context Bottom is activated.

3. Custom rules

Whilst behavioural rules and transition rules for the sentient couch object were easily

encoded using the graphical rule builder incorporated into the programming tool, there

was an additional requirement in the object for application-specific rules, specifically

rules performing sensor fusion, and these were developed by hand. Whilst it is de-

sirable to abstract away from the implementation of rules as much as possible, some

application-specific rules require hand coding, but the programming tool significantly

eases the development of these rules by providing a centralised rule repository in the

controller.clp file. An example of an application-specific fusion rule that calculates the

average mass on the couch, is illustrated in Listing 6.7.

Output events

The sentient couch object publishes events of type MassChanged, containing parameters

representing the total mass on the couch, and its position, as illustrated in Table 6.7.

155

Chapter 6. Applications and Evaluation

Field Type
user name varchar

attribute name varchar
value varchar

Table 6.8: Schema of the Couch table

6.1.6 Recogniser sentient object

During analysis of the sentient couch system, two sentient objects were designed. Whilst the

sentient couch produces events that represent the current mass on the couch, and its position,

a recogniser sentient object uses this information to identify the user of the couch, as well as

register new users with the system.

Data capture and fusion

The recogniser object consumes two types of events, namely MassChanged events produced

by the couch object, and Registration events produced by a keyboard sensor. There is no

need to perform any sensor fusion in the recogniser object and the sensory capture and fusion

component thus serves to extract and store context data from events consumed by the object.

Context data is stored as facts in the inference engine and in the case of the recogniser

object, the context data consists of the mass currently on the couch, and the location of the

mass on the couch, as well as the name of the user. The mass and location are extracted

from MassChanged events produced by the sentient couch object, and are stored in the

inference engine as a shadow fact, updated each time a new event is consumed.

The name of the user is inferred from the mass by performing a lookup on a database table

that stores the relation between mass and user name. The table has 3 fields as illustrated in

Table 6.8. The attribute name field has the value ’Mass’ for all records in the table.

Context hierarchy

The recogniser object can exist in one of three major contexts, either there is a known user

on the couch, an unknown user on the couch, or no user on the couch. In the context of

there being a known user on the couch, there is one associated sub context that is the issuing

156

Chapter 6. Applications and Evaluation

Recogniser

Unknown
User

Request
Registration

Register
User

Issue
Greeting

Mission context

Major context

Sub context

Known
User

Issue
Goodbye

Fig. 6.6: Context hierarchy for the recogniser sentient object

of a personalised greeting to the user, welcoming them to the location in which they are

positioned on the couch.

In the context of the user being unknown, there are two associated sub contexts, namely

the issuing of a request to the user to register with the system, and performing the registration

of the new user. The context hierarchy is illustrated in Figure 6.6.

Inference engine

In addition to a set of shadow and unordered facts in working memory, the knowledge base of

the recogniser object’s inference engine component contains a set of behavioural and transition

rules.

1. Behavioural rules

Behavioural rules encode behaviours of the object, which in the case of the recogniser

object is the production of events to be consumed by a speech actuator.

An example of a behavioural rule defined in the recogniser object is illustrated in Listing

6.8. The rule states that when the object is in the sub context Request Registration,

a RegistrationRequired event is produced, containing the mass and location of the

user.
(d e f r u l e Reques tReg i s t rat ion
? ac <− (act ive−sub−context Reques tReg i s t rat ion)
=>
(r e t r a c t ? ac)
(bind ? SpeechActuatorEvent (new java . u t i l . Vector))
(bind ?param0 (new ParameterInstance ”mass” ”S DBL” (st r−cat ?∗mass ∗)))
(c a l l ? SpeechActuatorEvent add ?param0)
(bind ?param1 (new ParameterInstance ” l o c a t i o n ” ”S STR” ?∗ l o c a t i o n ∗))
(c a l l ? SpeechActuatorEvent add ?param1)
(c a l l ?∗ producer∗ produceEvent Reg i s t ra t i onRequ i r ed ? SpeechActuatorEvent)

)

Listing 6.8: Generated behavioural rule in sub context Request Registration

157

Chapter 6. Applications and Evaluation

2. Transition rules

Transition rules govern the transition between active contexts and an example transition

rule in the recogniser object is illustrated in Listing 6.9. This rule states that if the

object is in the major context Unknown Person, and the user has not yet registered,

then the sub context Request Registration should be activated.
(d e f r u l e UnknownPerson−Reques tReg i s t ra t ion
(act ive−major−context UnknownPerson)
(hasReg i s te red fa l se)
=>
(a s s e r t (act ive−sub−context Reques tReg i s t ra t ion))

)

Listing 6.9: Transition rule for the transition Unknown Person-Request Registration

3. Custom rules

A custom rule is developed within the rule-base to perform the database lookup required

by the recogniser object. A Java class which performs database access via JDBC was

easily incorporated and accessed using JESS syntax within the rule-base.

Output events

The recogniser object produces three types of events, as consumed by the speech actuator,

and illustrated in Table 6.5.

6.1.7 Extending the application

The sentient couch system implemented according to the sentient object model and using the

programming tool, exhibits the same functionality as the previous unstructured implemen-

tation. Once this minimal functionality had been demonstrated, we planned to extend the

sentient couch by adding an additional sensor and actuator to the system.

Extending the previous, unstructured implementation to encompass new, or different,

sensors or actuators, or altering the application logic to exhibit different behaviours is a

complex and very difficult task due to the close coupling between context acquisition and use

within the application. Extending the functionality of the application was only accessible to

experienced C++ developers.

158

Chapter 6. Applications and Evaluation

To extend the functionality of the sentient couch application implemented using the graph-

ical programming tool, we added an additional identity sensor in the form of a barcode sensor,

and an additional actuator, in the form of an electronic mail notification actuator. The bar-

code sensor and electronic mail actuator components are described in detail in Appendix

B.

To incorporate these additional components, the following steps were performed with the

programming tool;

1. Load the sentient couch object descriptor, generated when developing the original ap-

plication.

2. Add the barcode sensor and e-mail actuator descriptors to the object specification.

3. Specify additional rules based on the new input and output events available to the

object. Additional contexts may also be developed.

4. Generate and compile the sentient object code.

5. Add to, or edit the rule-base in the controller.clp file, run, and test. Further changes

to the rule-base do not require re-compilation.

6.1.8 Comparison with existing implementation

Implementation of the couch application following the sentient object model yielded some

immediate advantages over the previous implementation.

Code size

Importantly, in the application created using the programming tool, all procedural syntax

was automatically generated and the developer was only required to write a small number of

custom declarative rules by hand. Whilst the size of the code generated by the programming

tool (400 KB) was approximately 45% smaller than the previously implemented application

(581 KB), the generated code makes use of external libraries of approximately 900 KB in size.

Although these libraries represent a significant overhead, this overhead remains negligible in

159

Chapter 6. Applications and Evaluation

terms of modern mobile storage, which is now often measured in hundreds of megabytes, and

increasingly, gigabytes2. For example, the iPAQ mobile computer used in other experiments

provided 128 MB of RAM.

Decoupling of components

Following the approach of the sentient object model, it was possible to decouple application

development into the development of sensors, actuators, and sentient objects, and have differ-

ent developers working on the project simultaneously. All that needed to be communicated

between the developers was the event interface of each component, in the form of an XML

descriptor. This parallelisation significantly speeded up the development process.

Extensibility

Extending the ’vanilla’ implementation of the sentient couch by adding additional components

in the form of a barcode sensor and an electronic-mail-based notification actuator, was greatly

eased by the programming tool through the ability to load and edit object specifications, and

rapidly regenerate the code implementing the object.

Maintenance

The centralisation of application logic in a single rule-base file per sentient object considerably

simplified the maintenance and evolution of the application. In the previous implementation

of the system, application logic was dispersed throughout multiple files in the application,

complicating maintenance and evolution.

6.1.9 Development challenges

The process of implementing the sentient couch application highlighted a number of develop-

ment challenges which can be abstracted to ubiquitous application development in general.
2In 2004, one gigabyte of compact flash memory is available for under USD100

160

Chapter 6. Applications and Evaluation

A ’living’ environment

Since the hardware on which the system is based was already installed in a relatively compact

work environment used by up to 15 people on a daily basis, the interaction of people with the

system could not be ignored during development and testing. Since the couch has traditionally

provided a place to meet and relax, people continued to use it as such with the result that

stable configurations required for testing the system could not always be attained during

normal working hours. Indeed, evidence of work on the couch often attracted extra attention

to the hardware which served to further complicate testing.

Privacy

In order to recognise users on the couch at different points in time, the system needs to

store the relation between a name and a weight to persistent storage. Weight is particularly

sensitive information in some western European cultures, and is typically not information

people wish to reveal about themselves. Realisation that the system stores an association

between an accurate weight measurement and an individual’s name, put a number of people

off using the system.

A potential solution to this privacy issue is to encrypt the weight value with a one-way hash

function (such as MD5), before storing it in the database. The problem with this approach

is that in order to recognise a user, the measured weight would have to be exactly the same

each time, since it is only possible to calculate equality of hash values, and the sensors will

seldom provide the same measurement at different times. A symmetric encryption algorithm

solves this problem and provides sufficient privacy.

6.1.10 Perspective

The sentient couch application provided a valuable opportunity to make a direct comparison

between an ad hoc implementation of a context-aware application, and implementation of

the same application using the programming model described within this thesis. Whilst

it was not possible to accurately measure the historical development effort expended on

the ad hoc implementation, the use of the programming model obviated the need for the

161

Chapter 6. Applications and Evaluation

sentient object developer to write any low-level, procedural code. The only syntax that was

required to be developed by hand was the implementation of a small amount of application

specific functionality (in this case, a database lookup via JDBC), and the incorporation of this

functionality into the generated application. Incorporation of additional functionality into

the application required the editing of only one file, with context capture, representation,

and fusion handled by the automatically generated, low-level code.

6.2 Sentient vehicle

The sentient vehicle application applies the sentient object paradigm to a model car aug-

mented with sensors, in order to enable it to sense its environment, and drive autonomously,

whilst potentially co-operating with other vehicles. The sentient vehicle application exposes

important characteristics to be considered in relation to the development of mobile, context-

aware applications that were not raised in the development of the sentient couch. These in-

clude ad hoc wireless communication in an infrastructureless environment, as well as location-

awareness and associated proximity-based filtering of communication.

6.2.1 System overview

The aim of the sentient vehicle application is to apply the sentient object model and associated

programming tool to enable a model vehicle to operate autonomously, based on context data

acquired from sensors, and using actuators. In terms of a sentient vehicle, the most important

context data permitting autonomous operation is the current location and orientation of the

vehicle, whether an obstacle is present in the path of the vehicle, as well the status of traffic

signals in the vehicle’s path. Given this context data obtained from a set of sensors on the

vehicle, there are a number of distinct scenarios that a sentient vehicle may operate in.

Forward obstacle detection

This scenario simply involves the vehicle travelling in a straight line and detecting obstacles

within its path using forward-facing ultrasonic range finders. If an obstacle is detected within

162

Chapter 6. Applications and Evaluation

a predetermined critical range by any of the sensors, the vehicle adopts the safe behaviour of

coming to a halt.

Forward obstacle avoidance

As an extension to the scenario in which the vehicle simply comes to a halt following detection

of an obstacle, in this scenario, the vehicle uses data fused from three forward-facing ultrasonic

range finders to determine the location of the obstacle, with a bounded probability, and then

attempts to avoid the obstacle by turning away from it and continuing to travel forward.

This scenario illustrates the fusion of readings from multiple ultrasonic sensors, in order to

determine the relative position of an obstacle encountered in the path of the vehicle, and to

infer appropriate actions to avoid the obstacle whilst still moving.

Traffic signal obeyance

In this scenario, the vehicle obeys a simulated traffic signal autonomously, by stopping if

it is approaching a red signal in close proximity, and proceeding otherwise. This scenario

illustrates event-based communication using proximity filtering, as provided by the event

service incorporated in the sentient object model. Proximity filters are specified by the event

producer, and the traffic light produces events which are valid within a specific area. In this

scenario, the traffic light sensor produces status events valid within a circular area of radius

10m. The vehicle is able to filter events so as only to receive events from a traffic light that

it is travelling towards, and further more, may specify a filter that ensures only status events

requiring some action on the part of the vehicle, are delivered (e.g., a red light).

Autonomous navigation

In this scenario, the vehicle navigates autonomously between a set of predefined waypoints,

using data fused from location and compass sensors to determine position and heading. This

scenario demonstrates autonomous and meaningful behaviour by the sentient vehicle, in fol-

lowing a specific route, with the vehicle basing its behaviour on context data acquired from

sensors.

163

Chapter 6. Applications and Evaluation

Distance
(sensorID, range)Ultrasonic

Sensor 1

Ultrasonic
Sensor 6

.

.
Sentient vehicle object

CarMovement
(direction)

Car Movement
Actuator

GPSLocation
(location)

GPS
Sensor

Digital
Compass

Direction
(heading)

Traffic Light
Sensor

LightStatus
(status)

Fig. 6.7: Sentient vehicle system design

The set of scenarios are not mutually exclusive, for instance, a vehicle will obey traffic light

signals whilst navigating between waypoints, as well as detecting and avoiding obstacles

whilst navigating between waypoints, or obeying traffic signals. Certain scenarios have a

higher priority than others, for instance, obstacle detection and avoidance will always take

precedence over all other potential scenarios.

6.2.2 System design

The sentient vehicle design follows the principles embodied in the sentient object model and

involves identification of the relevant sensors, actuators, and sentient objects in the system,

and their event interfaces. Four types of sensors, one sentient object, and one type of actuator

have been identified in the design of the system and these components and their relationships

are illustrated in Figure 6.7, whilst Appendix D provides a detailed description of the system

hardware.

164

Chapter 6. Applications and Evaluation

Event type Parameter 0 Parameter 1
Distance S INT sensorID S INT range

Table 6.9: Event type produced by DistanceSensor

6.2.3 Sensors

There are four types of sensor in the sentient vehicle application: distance sensors, a location

sensor, an electronic compass, and a simulated traffic light. Each of these sensors and their

event interfaces are detailed in the following sections.

Distance sensor

The distance sensor is a software component which converts real-world events (range readings)

from the SRF08 ultrasonic rangefinder transducer (see Appendix D), into software events. As

such, the sensor consists of software components resident on both an OOPIC microcontroller

(described in Appendix D), and an iPAQ handheld computer. On the microcontroller, the

registers (see Table D.2) of each of the SRF08 sensors are read via the I2C bus, after a

ranging command. Each range value is then communicated to the iPAQ via RS232, where

the range reading is converted into an event of type Distance as illustrated in Table 6.9, and

published over the wireless network interface of the iPAQ. The code on the microcontroller to

communicate with the transducers, is written in Java-like syntax, whilst the event publisher

code of the sensor component is developed on the iPAQ, using C++ for Windows CE.

Location sensor

The location sensor publishes events containing the current geographical location of the ve-

hicle as a longitude and latitude pair encapsulated in the S POS STEAM event type, as

determined by the GPS receiver. The location sensor software component interrogates the

STEAM location service running on the iPAQ, for the current location, parsed by the location

service from NMEA sentences produced by the GPS receiver in response to real-world events

in the form of satellite signals. The sensor produces one type of event, illustrated in Table

6.10. The code for the location sensor was written using C++ for Windows CE [O’C04].

165

Chapter 6. Applications and Evaluation

Event type Parameter 0
GPSLocation S POS location

Table 6.10: Event type produced by LocationSensor

Event type Parameter 0
LightStatus S STR status

Table 6.11: Event type produced by TrafficLightSensor

Traffic light sensor

The traffic light sensor is a software component which emulates a traffic light by producing

events containing the status of a real traffic light. This type of sensor produces one type of

event, as illustrated in Table 6.11. The traffic light sensor code was developed in C++ on

Windows XP, and simply switches the state of a traffic light in timed phases, periodically

(once per second) publishing an event containing the current status.

Heading sensor

The heading sensor receives events from the electronic compass and produces an event con-

taining the current orientation of the vehicle, as illustrated in Table 6.12. The heading sensor

consists of a software component resident on the OOPIC microcontroller, written in Java-like

syntax to communicate with the transducer via I2C, and a component resident on the iPAQ,

written in C++ for Windows CE, and serving to publish event notifications containing the

current value of the electronic compass.

6.2.4 Actuators

The sentient vehicle application defines one type of actuator, which sends commands to the

servos controlling the car, via the existing RC wireless interface.

Event type Parameter 0
Heading S INT heading

Table 6.12: Event type produced by HeadingSensor

166

Chapter 6. Applications and Evaluation

Event type Parameter 0
CarMovement S STR command

Table 6.13: Event type consumed by CarMovementActuator

Vehicle movement actuator

In its original form, the car was controlled via an RC transmitter by which a human operator

issues a set of commands to the car (forward, back, left, right) through the closing of electronic

circuits by hand. In order to control the car via the microcontroller, these circuits were closed,

with relays placed in the circuit that can be controlled by the microcontroller [O’C04]. The

original RC control board was removed from the hand-held control unit and integrated into

the vehicle itself, connected to the OOPIC microcontroller.

The vehicle movement actuator is a software component, written in C++ for Windows

CE, and running on the iPAQ resident on the vehicle. This component consumes software

events published by the sentient vehicle object, and transforms them to real world events

controlling the vehicle. The actuator converts these software events into commands that are

sent to the OOPIC microcontroller via RS232, and in turn are transmitted to the RC control

board connected to the microcontroller, by closing the appropriate relays.

6.2.5 Vehicle sentient object

The vehicle sentient object consumes events from distance sensors, a location sensor, traffic

light sensors, and an electronic compass sensor, performing the object functions of sensor

capture and fusion, context representation, and intelligent inference, before publishing events

to control the movements of the vehicle.

The sentient object resides on a laptop-based controller, separate from the vehicle itself.

The execution of the sentient object on the laptop was necessitated by the generation of Java

code by the programming tool. The Java implementation would not run on the CE operating

system, necessitating the use of a Linux-based device. The resulting system configuration is

illustrated in Figure 6.8, and results in the sentient object executing on a different host from

the sensors and actuators, clearly demonstrating the distribution within the system.

167

Chapter 6. Applications and Evaluation

Fig. 6.8: Configuration of the sentient vehicle application

Data capture and fusion

The data capture and fusion component of the vehicle sentient object is responsible for the

fusion of individual events received from sensors, as well as the storage of fragments of context

data.

Although this component is shown to be conceptually separate in the sentient object

model, during practical development of a sentient object using the visual programming tool,

the specification of data capture and fusion is performed on a per-context basis, and is part

of the context specification as described in Section 5.4.2.

Context hierarchy

The context hierarchy identified for the sentient vehicle application scenarios discussed in

Section 6.2.1 is illustrated in Figure 6.9.

The overall mission context of the vehicle is to drive from point A to point B whilst avoid-

ing obstacles in the path of the vehicle, obeying approached traffic signals, and potentially

168

Chapter 6. Applications and Evaluation

Sentient
Vehicle

Cruise
Avoid
obstacle

Accelerate Decelerate Left
turn

Mission context

Major context

Sub contextRight
turn Brake

Obey
Traffic light

Acquire
Waypoint

Fig. 6.9: Context hierarchy for vehicle sentient object

following a set of pre-defined waypoints. The constituent major contexts identified are as

follows

1. Cruise - in this context the vehicle travels in a straight line, accelerating to cruising

speed. This context can thus activate the Accelerate sub context

2. Acquire waypoint - in this context the vehicle turns to acquire the correct bearing

to take it towards the next waypoint. This context can activate either the Left turn

or Right turn sub context.

3. Avoid obstacle - in this context the vehicle avoids an obstacle by either stopping, or

turning away from the obstacle. This context can activate the Left turn, Right turn,

or Brake sub context.

4. Obey traffic light - in this context the vehicle obeys signals from a traffic light that it

is approaching. This context is able to activate the Decelerate or Brake sub context.

Five sub-contexts were identified with respect to the actions which may be taken by the

vehicle, and the relationships between contexts in the hierarchy is illustrated in Figure 6.9.

By way of example, the sensor fusion network defined for the major context Avoid

obstacle is illustrated in Figure 6.10, and performs probabilistic fusion of readings from

the three forward-facing ultrasonic range finders in order to detect obstacles in the path

of the vehicle. This context is transitioned to from any other major context, when any of

the forward-facing ultrasonic range-finders detect an obstacle closer than a threshold range.

169

Chapter 6. Applications and Evaluation

Fig. 6.10: Sensor fusion network for major context Avoid obstacle

Obstacle Sensor 1 (Node B) Sensor 2 (Node C) Sensor 3 (Node D)
Location Detected Undetected Detected Undetected Detected Undetected
Straight ahead 0.2 0.8 0.99 0.01 0.1 0.9
Left 0.05 0.95 0.2 0.8 0.85 0.15
Right 0.95 0.05 0.1 0.9 0.01 0.99

Table 6.14: Conditional probability table for Nodes B, C and D in Figure 6.10

Using prior probabilities calculated for each of the individual sensors (see Appendix D), the

Bayesian network fuses the output from each of the three forward facing sensors, and returns

the probability that the obstacle is located straight ahead, or to the left or the right of the

vehicle’s path. The conditional probability table for the hypothesis node A of the fusion

network, as calculated from the experiments detailed in Appendix D, is illustrated in Table

6.14. Intuitively, the action of the vehicle will be determined by the relative position of the

obstacle, and this was encoded into rules, by the developer. An obstacle detected to the left

will cause the vehicle to turn right, and vice versa, whilst an obstacle located straight ahead

will cause a random left or right turn, and subsequent re-evaluation of the obstacle position.

Inference engine

The inference engine component of the vehicle sentient object consists of a knowledge base

composed of behavioural and transition rules specified by the developer, as well as dynami-

cally updated shadow facts, based on Java beans generated by the programming tool. Exam-

ples of rules generated by the programming tool, from visual specification by the developer

170

Chapter 6. Applications and Evaluation

(d e f r u l e Avoid obstac le−Le f t tu rn
?ac <− (act ive−sub−context−Le f t tu rn)
=>
(bind ?CarCommand (new java . u t i l . Vector))
(bind ?param0 (new ParameterInstance ”command” ”S STR” ” l ”))
(c a l l ?CarCommand add ?param0)
(c a l l ?∗ producer∗ produceEvent CarMovement ?CarCommand)
(r e t r a c t ? ac)

)

Listing 6.10: Generated behavioural rule for sub context Left turn

(d e f r u l e Avoid obstac le−Le f t tu rn
(Sen t i en tVeh i c l e Obs ta c l e l o ca t i on Bean (r i gh t ? p r o b a b i l i t y r i g h t))
(t e s t (> ? p r o b a b i l i t y r i g h t 0 . 7))
=>
(a s s e r t (act ive−sub−context Le f t tu rn))

)

Listing 6.11: Generated transition rule for the transition Avoid obstacle-Left turn

are illustrated below

1. Behavioural rules

Behavioural rules govern the behaviour of a sentient object through publication of

events for consumption by actuators and other objects, and are only valid in specific

contexts. The sentient vehicle object publishes events, based on behavioural rules,

for consumption by the car movement actuator, which controls the movement of the

vehicle. An example of a behavioural rule generated for the sentient vehicle is illustrated

in Listing 6.10, for the sub context Left turn. This rule publishes a CarMovement

event with the command parameter set to ”l” to perform a left turn. The fact that a

sub context is only active for a short period of time can be seen in the retraction of the

fact that it is active, as soon as the event has been published.

2. Transition rules

An example of a transition rule generated by the programming tool for the transition

from major context Avoid obstacle to the sub context Left turn is illustrated in

Listing 6.11. This rule states that when in the active context of Avoid obstacle, and

the probability that there is an obstacle to the right of the vehicle is greater than 0.7,

then transition to the sub context of Left turn. The major context remains active.

Intuitively, certain transitions between contexts have a higher priority than others, for

171

Chapter 6. Applications and Evaluation

example, a transition to the major context Avoid obstacle should assume priority over

any other transition indicated at the same time (for example acquiring a waypoint). The

priority of transition rules may be specified by the developer, by defining the salience

of the rule. Each rule has an associated salience, representing the relative priority of

the rule, and activated rules of the highest salience always fire first. The salience of

particular transition rules may be specified by editing the generated rule-base, and

adding the command (declare (salience x)) where x represents the salience value. The

rule governing the transition to the major context Avoid obstacle is assigned the

highest salience, to ensure it always fires ahead of any other rules.

Custom behaviour

Whilst transition between contexts, and most behaviours are easily specified using the graph-

ical programming tool, application-specific behaviour controlling navigation of the vehicle is

developed outside the tool and integrated into the code generated by the programming tool.

The custom behaviour in the sentient vehicle application is concentrated in the Acquire

waypoint context, and consists of functionality to direct a vehicle towards its next waypoint.

This functionality consists of methods to calculate the distance from the current location of

the vehicle, to a specified waypoint, as well as calculating the bearing to be followed to get to

the waypoint. Since the current bearing of the vehicle is part of the context of the sentient

object (updated by the heading sensor), in order to ’acquire’ a waypoint, the vehicle turns

until its heading is within a defined range (5◦ in this instance) of the required bearing, as

illustrated in Figure 6.11. We make use of great circle navigation equations [Ste00] (see

Appendix D) to calculate distance and bearing between waypoints, and this functionality is

incorporated into the application code generated by the programming tool.

Incorporating custom behaviour

The rule-base of the application resides in the controller.clp file, separate from other ap-

plication code, and is the only file that needs to be edited by the developer to incorporate

the custom navigational behaviour. The file contains the set of generated rules (examples

172

Chapter 6. Applications and Evaluation

Fig. 6.11: Waypoint acquisition

of which are illustrated in Listings 6.10 and 6.11), and custom behaviour may be added by

simply adding rules. The rules are written in JESS, which is tightly linked to Java, so addi-

tional functionality may make use of any Java APIs. JESS is programmed declaratively, and

custom rules may be added to the rule-base with ease.

The custom waypoint acquisition behaviour was incorporated into the application by

firstly implementing great circle distance and bearing equations in a Java class, which was

then made available to the application rule-base. Methods in the class are then available

to rules that update the bearing and distance to a waypoint, storing this information as

facts available to behavioural rules. The update of the distance and bearing to the next

waypoint, following a location event received by the sentient object, is illustrated in Listing

6.12. This rule calls methods on the navigation helper class, available via the global variable

?*navigationhelper*, to calculate bearing and distance.
(d e f r u l e UpdateDistanceAndBearing

(SentientCar Locat ionSensor GPSLocat ion Bean (po s i t i o n ? po s i t i o n))
=>
(bind ? cu r r en t l a t (c a l l ? p o s i t i o n l a t))
(bind ? cur r en t lng (c a l l ? p o s i t i o n lng))
(bind ?waylat (c a l l ?∗waypoint∗ l a t))
(bind ?waylng (c a l l ?∗waypoint∗ lng))
(bind ?∗ d i s t ance ∗ (c a l l ?∗ nav iga t i onhe lpe r ∗ conver tCa l cu la teDi s tance

? cu r r e n t l a t ? cu r r en t lng ?waylat ?waylng))
(bind ?∗ bear ing∗ (c a l l ?∗ nav i ga t i onhe lpe r ∗ conver tCa lcu la teBear ing

? cu r r e n t l a t ? cu r r en t lng ?waylat ?waylng))
(bind ?∗ var iance ∗ (− ?∗ heading∗ ?∗ bear ing ∗))

)

Listing 6.12: Custom rule written to access a navigation helper class

Behavioural rules could then be written that reason based on the distance and bear-

ing context data, producing appropriate behaviour (i.e., turning the vehicle in the correct

173

Chapter 6. Applications and Evaluation

/∗∗ cu r r en t i s t h e cu r r en t bear ing , r e q u i r e d i s t h e r e q u i r e d b ea r i n g ∗/
var iance = abs (r equ i r ed − cur rent)
i f (var iance < 180)

i f (r equ i r ed > cur rent)
turn r i gh t

else
turn l e f t

else
i f (r equ i r ed > cur rent)

turn l e f t
else

turn r i gh t

Listing 6.14: Algorithm to determine which direction to turn to acquire waypoint

direction until its current bearing is equal to the required bearing). A transition rule was

developed that tests the variance between the current bearing of the vehicle, and the required

bearing, and if it is greater than (5◦), activates the Acquire waypoint context. This rule

is illustrated in Listing 6.13.
(d e f r u l e Cruise−Acquire Waypoint
? ac <− (act ive−major−context Cruise)
(Sent ientVehic le Locat ionSensor GPSLocat ion Bean (po s i t i o n ? po s i t i o n))
(t e s t (> ?∗ var iance ∗ 5))
=>
(r e t r a c t ? ac)
(a s s e r t (act ive−major−context Acquire Waypoint))

)

Listing 6.13: Transition rule to acquire a waypoint

Within the Acquire waypoint context, a further rule tests to see which way the vehicle

should turn in order to acquire the waypoint quickest, based on the difference between the

current bearing, and the required bearing, and using the algorithm illustrated in Listing

6.14, where required and current refer to the bearing required to travel to the waypoint from

the current location, and the current bearing of the vehicle, respectively. Based, on this

algorithm, either the Left turn or Right turn sub context is activated.

Output events

The sentient vehicle object produces one type of event as output, as consumed by the car

movement actuator, and illustrated in Table 6.13.

6.2.6 Evaluation

Our evaluation of the sentient vehicle application assesses the value of applying the sentient

object model to the sentient vehicle application based on a number of criteria, as discussed

174

Chapter 6. Applications and Evaluation

below.

Ease of development

The ease of application development unifies other criteria by assessing the relative effort

and expertise required to develop the application based on the sentient object model and

employing the visual programming tool and associated abstractions.

Ease of development is difficult to measure as well as being highly subjective, however

a number of points related to this metric arose from the sentient vehicle application that

reinforce the value of the sentient object model in supporting the development of mobile,

context-aware applications.

1. Decoupling of development effort - the anonymous event-based communication

mechanism of the sentient object model allows sensor, actuator, and object components

to be developed by separate developers in parallel. This proved extremely useful in the

sentient vehicle application, allowing one developer to concentrate on building sensors

and actuators to interface with hardware, whilst another developer focused on building

the sentient object.

2. Systematic approach - the sentient object model provided a systematic, structured

approach to scoping inputs and outputs, fusing multi-modal data, and specifying rules.

3. No need to write low-level sentient object code - the visual programming tool

obviated the need for the sentient object developer to write any low-level Java code.

Application logic was maintained in a single file containing the rule-base expressed in

high-level, declarative CLIPS syntax.

4. Debug - the event-based communication paradigm enabled the developer to debug

the application effectively by subscribing to application events. In the sentient vehicle

application, an interface (illustrated in Appendix B) was rapidly constructed which pre-

sented event streams between sensors, sentient object, and actuators, to the developer,

easing the process of debugging the application.

175

Chapter 6. Applications and Evaluation

Accessibility

The structured approach of the sentient object model provided a framework with which to

approach the design of the application, and consequently significantly simplified the design

process. By decomposing the application into sensors, actuators, and a sentient object with

associated contexts, rules, and a systematic approach to fusing sensor data, a coherent design

was quickly formed.

The graphical programming tool provided an intuitive, cross-platform development en-

vironment based on the sentient object model, and made the development of applications

based on sentient objects eminently accessible, through significantly reducing the need to

write low-level syntax.

Extensibility

The sentient object model contributed significantly to the extensibility of the vehicle ap-

plication through both the event-based communication mechanism and the code generation

capabilities of the visual development tool.

The event-based communication model is well suited to the dynamic establishment of

communication relationships amongst application components during the lifetime of the ap-

plication. This aided in the extensibility of the application, as sensors, actuators, and sentient

objects could easily be added to, or removed from the application, easing application evolu-

tion.

The generation of code by the visual programming tool, combined with the load/save

capability, meant that the application could be easily extended and the entire codebase

rapidly regenerated, without the need to edit low-level code.

During the development of the sentient vehicle application these capabilities were used

extensively in an incremental approach to development whereby additional functionality was

added to the application, and periodic testing was carried out using a subset of sensor input.

176

Chapter 6. Applications and Evaluation

Heterogeneity

The ability of heterogeneous devices to interact is crucial in pervasive computing applications,

where large numbers of disparate hardware devices have to cooperate. The sentient vehicle

application employed a set of heterogeneous hardware devices and system software which

was largely transparent to the individual developers. For example, the vehicle sensors and

actuator were developed in C++ and ran on Windows CE, whilst the traffic light sensor was

developed in C++ running on Windows XP, and the vehicle sentient object was developed in

Java running on Fedora. Developers of individual components were not required to be aware

of what platform other components would execute on, and simply developed each component

with regard to the relevant event types produced/consumed.

Reusability

Although the initial effort expended in the development of the sensor and actuator compo-

nents involved interaction with device-level protocols, the resulting components are eminently

re-usable. The components are decoupled and not tightly integrated into an individual ap-

plication, and may easily be integrated into other applications. It is envisaged that in time,

libraries of sensor and actuator components will emerge, reducing the need to create compo-

nents from scratch for new applications.

Ad hoc interaction

The use of an event service specifically designed for ad hoc wireless networks provided a

number of advantages. Chief amongst these was the ability to run the application anywhere

without the need for a pre-installed designated service infrastructure. Consequent savings

with regard to the cost and effort required to install and maintain network infrastructure

were realised. The ability to run the application anywhere is essential in a truly pervasive

computing environment.

177

Chapter 6. Applications and Evaluation

Proximity based communication

The sentient vehicle application clearly demonstrates the benefits of proximity based event

communication as offered by the STEAM event service. Communication and interaction

between application components is often only of value when the components are located

close together, and this fact may be used to minimise unnecessary communication. In the

sentient vehicle application, the vehicle is only interested in receiving event notifications from

the traffic light when it is within a certain proximity of the light, and furthermore, only when

it is travelling towards the light. The event service employed in the sentient object model

enabled such proximity-based filtering.

Sensor fusion

The probabilistic approach to sensor fusion adopted by the sentient object model provided

a generic and systematic approach to managing the uncertainty of sensor data, which was

easily adopted by the application developer. The visual programming tool was particularly

effective in easing the specification of Bayesian networks.

A potential drawback of this approach was the need for extensive, time-consuming ex-

perimentation to determine prior probabilities for individual sensors on the vehicle, but this

only had to be performed once, off-line.

6.2.7 Perspective

The sentient vehicle provided a valuable example of a mobile, context-aware application,

the development of which was significantly eased by the sentient object model and associated

programming tool. The application exhibited the important characteristics of loosely coupled

application components, uncertain sensor data, and context-sensitive behaviour.

The application would have been more difficult to develop without the support offered

by our programming model, and would have required the developer to write a substantial

amount of low-level, procedural syntax. As it was, the programming tool removed the need

for the sentient object developer to write any low-level procedural code for the capture,

representation, and fusion of context data. The majority of the object behaviour was also

178

Chapter 6. Applications and Evaluation

specified without the need to write any syntax, whilst complex-application specific behaviours

were easily incorporated into the code generated by the programming tool, by editing a single

file.

The resulting application was eminently and rapidly extensible due to the ability of the

developer to load, edit, and re-generate a sentient object implementation using the program-

ming tool. Individual components of the application may also be re-used in other applications

due to the use of a loosely coupled generative communication mechanism, whilst new com-

ponents may easily be added.

Extending the application

Although it was initially planned to have multiple sentient vehicles cooperating with each

other in the application, construction of the hardware turned out to be a limiting factor.

6.3 Applicability of the approach

The application of the programming model to the representative scenarios described in this

chapter allows for an evaluation of the overall approach provided by the sentient object model

and associated programming tool, to the development of mobile, context-aware applications.

Since the overall goal of the approach is to aid in the realisation of pervasive computing

by easing application development, we evaluate the applicability of the approach through a

discussion of the pre-requisite skills of developers, as well as the usefulness of the approach

when considered in areas of pervasive computing other than mobile, context-aware applica-

tions. Finally the potential limitations of our approach are discussed with perspective on

how these might be managed.

6.3.1 Requisite abilities

The sentient object model and associated programming tool provide a domain-specific ap-

proach to the development of mobile, context-aware applications. Whilst the high-level ab-

stractions of the sentient object model, coupled with the capabilities of the programming tool

179

Chapter 6. Applications and Evaluation

vastly reduce the complexity of application development, a certain level of technical ability

is still required of users of the system. The target audience is thus experienced computer

users who have had experience working with a range of applications, preferably high-level,

domain-specific software engineering and CASE tools, and have an interest in the domain.

Significantly, it is not necessary that users have programming experience with any specific

low-level, procedural language, such as C++ or Java since there is no requirement to write

any low-level code. The only part of the generated sentient object that may be edited by the

developer - the rule-base, does not require procedural programming ability, nor is recompila-

tion of the sentient object necessary following editing of the rules.

Although the approach provided still demands a moderate level of technical systems com-

petence, abstraction away from the need to hand-code individual applications from scratch

significantly improves the accessibility of mobile, context-aware application development to

potential application developers. Experienced computer users typically have the ability to

rapidly master new applications without the requirement for extensive training. More impor-

tantly such users have the confidence and often the desire to learn new systems, tools, and

techniques. It is hoped that the approach will find particular value amongst the ubiquitous

computing research community where much effort is currently spent on complex, low-level

development which is often an orthogonal issue. Furthermore, users within this community

have the significant advantage of understanding the domain for which the approach has been

developed. Whilst the sentient object model and programming tool do not present any sig-

nificant technical challenges, a thorough understanding of the domain-specific abstractions

employed is necessary. A clear understanding of the concepts of context, sensors, actuators,

and sensor fusion is essential and it is unlikely that the target audience will have difficulty

with such concepts as they are core domain concepts. The approach of constructing Bayesian

networks for fusing multi-modal sensor data, the use of production rules to govern behaviour,

and the representation of context as a hierarchy, are more novel concepts that may not have

been encountered even by experts within the domain. The provision of useable visual compo-

nents for constructing Bayesian networks and production rules within the programming tool,

as well the use of the context hierarchy to decompose application development, are designed

180

Chapter 6. Applications and Evaluation

to facilitate the understanding of the overall approach to application development.

The learning curve is a term commonly used to express the relationship between compe-

tence in a task, against the time taken learning the task. A steep learning curve indicates

a rapid increase in competence may be achieved for each unit of time spent learning the

task, whilst a shallow learning curve indicates a more moderate increase in competence over

time. The sentient object model and programming tool exhibit a steep learning curve when

compared to other approaches to developing mobile, context-aware applications, since the

high-level abstractions provided by the approach allow the rapid development of applica-

tions within a short period of time. For example, whilst it is necessary that users spend

time learning and understanding the probabilistic approach to sensor fusion adopted by the

model, they are not required to learn how to write low-level Bayesian network code, and are

able to become productive more quickly.

6.3.2 Applicability to other types of application

By design, the sentient object model and programming tool are of most value applied to a

specific class of application, namely mobile, context-aware applications. Nevertheless many

of the abstractions adopted by the approach are common across the pervasive computing

domain and may be applied to other types of pervasive computing applications. All facets

of pervasive computing are predicated on interaction with the environment through sensing

of data from the environment, and acting based on this data. Whilst our approach has

focused specifically on mobile environments, the majority of domain abstractions we define

are eminently applicable to stationary environments. A prime example is that of ’smart’

environment applications, such as intelligent rooms and buildings where mobility is not a

critical factor, but the core challenges of sensing, fusing sensor data, representing the data,

making intelligent inferences, and taking action are of central importance. The sentient couch

application described within this chapter clearly illustrates how our approach may be applied

to such applications and it is our belief that the approach will find utility in other pervasive

computing applications.

181

Chapter 6. Applications and Evaluation

6.3.3 Limitations of the approach

Whilst our approach does significantly ease the development of mobile, context-aware appli-

cations, it does nonetheless have its own limitations. One potential limitation is the library

of sensor and actuator components and associated descriptors, as described in sections 5.2

and 5.3 are not exhaustive, and may not contain all the components that a developer re-

quires for a particular application. Although the library of sensor and actuator components

may be growing rapidly, the risk remains that the development of a particular application is

hampered by the lack of sensor or actuator components.

As discussed in section 4.2.1 the current version of STEAM only provides best-effort

delivery semantics to application components that employ it as a communication mechanism.

As a result, components should not expect reliable delivery of data and must be designed

accordingly. Later releases of STEAM are expected to address this limitation.

Fostering widespread adoption of the sentient object model and programming tool by

others outside the research community remains a significant challenge, and one that is char-

acteristic of many tools developed in research laboratories. Whilst research into ubiquitous

computing, and in particular context-aware computing has been ongoing for over a decade,

much of the work remains in the research community with limited industrial activity. We

believe the best way to address this potential limitation is through provision of free access

to the programming tool, and championing of its use and evaluation through relevant plat-

forms. To this end, the sentient object model and programming tool have been presented

to the international research community through a variety of forums, resulting in significant

interest from users already being generated.

Associated with the free distribution of the programming tool, the tool’s future devel-

opment is challenging, as it provides common functionality to a wide range of users with

potentially disparate needs and expectations of the tool and generated code. The resolution

of conflicting requests from the user community and the effective management of the evolu-

tion of the tool to ensure that it remains useful and relevant provide a significant challenge

inherent in such an approach. Release of the programming tool as an open-source community

project is one approach to managing this evolution.

182

Chapter 6. Applications and Evaluation

6.4 Summary

This chapter evaluated our proposed programming model by applying it to the design and

development of two exemplar context-aware applications. The sentient couch application,

having been previously implemented following no structured methodology, offered the oppor-

tunity to compare this approach with that offered by the sentient object model. The sentient

object model was found to offer the advantages of decoupled development allowing applica-

tion components to be worked on by multiple developers simultaneously, as well as providing

application extensibility whereby new components and functionality could easily be added

to the application. The clear separation of inference rules which act on context information,

from the rest of the application code, eased maintenance and evolution of application logic,

without affecting the code controlling context capture. Furthermore, the application was not

tightly linked to any particular hardware and devices could easily be substituted for others

providing the same event interface.

The sentient vehicle application provided an example of an application which exploits the

proximity based filtering capabilities of the event service incorporated in the sentient object

model, as well as ad hoc communication between mobile application components. The model

proved flexible enough for the design and implementation of the application, with particular

advantages realised with regard to sensor fusion and specification of inference rules.

The next chapter presents our conclusions, based on the design and application of our

programming model to a set of example applications.

183

Chapter 7

Conclusion

This thesis began by deriving a set of requirements for a programming model supporting

the development of context-aware applications in mobile environments. A review of state

of the art approaches to supporting the development of such applications revealed that no

single approach currently provides comprehensive support for all the requirements derived.

We described the sentient object model as a model that supports the development of mo-

bile, context-aware applications, and the implementation of a graphical programming tool

providing a high-level interface for programming sentient objects was described.

This chapter concludes the thesis by examining its major contributions, and discussing

issues remaining open for further work.

7.1 Contribution

As concluded from our state-of-the-art review, there is currently no commonly-accepted pro-

gramming model supporting the development of context-aware applications in mobile, ad hoc

environments that provides generic support for the complete set of requirements identified

and motivated during our overview of the research area.

The realisation of truly pervasive computing implies very widespread deployment of appli-

cations which require little or no human interaction. Key to this realisation are context-aware

applications that are able to behave autonomously, in a proactive manner, based on context

184

Chapter 7. Conclusion

information derived from a multitude of sensor inputs. The development of such applications

remains complex and beyond the reach of average developers, hampering their widespread

deployment, and consequently the realisation of the vision of pervasive computing as a whole.

As discussed in chapter 2, there are a number of challenges to developing context-aware

applications in mobile, ad hoc environments, related to the capture, representation, and

processing of context data. Existing approaches to application development discussed in

chapter 3 recognise and typically address only a subset of these requirements and challenges.

While comprehensive solutions exist to individual requirements such as the abstraction of

sensor data, management of uncertain sensor data, and the processing of sensor data, until

now there has been no unified approach to application development. Furthermore, most of

the current approaches remain inaccessible to the majority of application developers, with

minimal support offered to develop applications.

The main contribution of this thesis is a programming model for the development of

context-aware applications in mobile, ad hoc environments that fulfills the major require-

ments identified of such a model. The programming model is based on the sentient object

model that provides abstractions of sensor and actuator devices, and incorporates an event

service specifically designed for mobile, ad hoc networks, to provide communication between

loosely-coupled application components. Such anonymous, generative communication is in-

herently scalable, and provides for application extensibility. The sentient object abstraction

provides a probabilistic approach to managing the uncertainty of sensor data, as well as a

systematic and efficient approach to context representation and rule-based inference based

on a hierarchy of contexts. Crucially, this support is offered to the application developer in

an intuitive, accessible, and easy to use graphical programming tool that provides for high-

level specification of a sentient object before generating low-level Java code implementing

the object. In addition, the model defines language-independent descriptions of all the com-

ponents, providing a template for alternative implementations. The automated generation

of low-level code by the programming tool affords the advantages of high-quality, consistent,

and easily customisable code, and allows more time to be spent on application design and

testing. Furthermore, the generation of pure Java code by the programming tool ensures that

185

Chapter 7. Conclusion

applications may run, unchanged, on a wide range of platforms.

The applications developed in chapter 6 serve to verify the applicability and usability of

the sentient object model in the design and implementation of context-aware applications.

The value of the model with respect to both application design and implementation was

demonstrated through these applications. In the absence of the support offered by the sentient

object model, the development of these applications would have been more difficult and would

almost certainly have resulted in less extensible and maintainable applications. In the case

of the sentient couch application, where a previous application had been implemented, the

use of the sentient object model to design the application, and the programming tool to

implement it resulted in a more concise implementation of the same functionality.

7.2 Future work

Based on the contribution of this thesis, there remain options for possible future work in

the area. At present, the programming model exposes a single sensor fusion mechanism to

application developers for managing the uncertainty of context data. Although this multi-

modal fusion mechanism, based on probabilistic Bayesian networks, is suitably generic to

be applied to a wide range of application scenarios, the provision of other approaches to

managing the uncertainty of sensor data will only serve to reinforce the generality and utility

of our programming model. Specifically, approaches to multi-modal sensor fusion based on

Dempster-Schafer Theory as an extension to Bayesian probability, and multivariate Gaussian

modelling, appear promising.

The language-independent template description of a sentient object in the form of an

XML descriptor provides the opportunity to port sentient object implementations to other

languages and platforms, by adding a module to the programming tool that generates the

object specification in another language. Due to the use of an event service implemented

on a range of diverse platforms, components running on heterogeneous platforms may easily

inter-operate. A natural primary extension to the programming model could implement a

sentient object specification in C++ for Windows CE, which is a widely adopted platform

amongst mobile devices.

186

Chapter 7. Conclusion

At present, the programming tool supports somewhat basic rule specification, based on

fragments of context data in the sentient object. Complex custom behavioural rules still

need to be hand written, and providing further support for the development of these complex

behaviours, would be a useful extension to the tool. Furthermore, a number of exciting

alternative approaches to inference exist, that deserve exploration within the programming

model to assess their suitability for integration into the sentient object model. In particular,

machine learning approaches, including reinforcement learning, and artificial neural networks

provide promising alternative approaches to inference. Once again, the provision of a range

of approaches to intelligent inference will only increase the value of the programming model.

Finally, the autonomy of sentient objects may be further reinforced through the adoption

of algorithms to enable learning of behaviour, as well as algorithms providing autonomic,

self-healing capabilities, further reducing the necessity for costly human control.

187

Appendix A

DTD for a sentient object XML

descriptor

<?xml version=’ 1 .0 ’ encoding=’ us−a s c i i ’ ?>
< !ELEMENT actuator (actuator−name , actuator−event+) >
< !ELEMENT actuator−event (actuator−event−name , actuator−event−parameter+) >
< !ELEMENT actuator−event−name (#PCDATA) >
< !ELEMENT actuator−event−param−name (#PCDATA) >
< !ELEMENT actuator−event−param−type (#PCDATA) >
< !ELEMENT actuator−event−parameter (actuator−event−param−name ,

actuator−event−param−type) >
< !ELEMENT actuator−name (#PCDATA) >
< !ELEMENT ac tua to r s (ac tuator+) >
< !ELEMENT behaviour−r u l e s (behaviour−r u l e+) >
< !ELEMENT behaviour−r u l e (behaviour−ru le−name) >
< !ELEMENT behaviour−ru le−name (#PCDATA) >
< !ELEMENT context (context−event ∗ , context−name , context−type , r u l e s ? ,

network ? , t r an s i t i o n−context ∗)∗ >
< !ELEMENT context−event (context−event−name , context−event−param− f i l t e r+) >
< !ELEMENT context−event−name (#PCDATA) >
< !ELEMENT context−event−param− f i l t e r (param−name , f i l t e r −operator ,

f i l t e r −operand) >
< !ELEMENT context−name (#PCDATA) >
< !ELEMENT context−type (#PCDATA) >
< !ELEMENT context s (context+) >
< !ELEMENT d e f i n i t i o n (f o r | given | t ab l e)∗ >
< !ELEMENT f i l t e r −operand (#PCDATA) >
< !ELEMENT f i l t e r −operator (#PCDATA) >
< !ELEMENT f o r (#PCDATA) >
< !ELEMENT given (#PCDATA) >
. . .

188

Appendix A. DTD for a sentient object XML descriptor

. . .
< !ELEMENT input−ob j e c t (input−object−event+) >
< !ELEMENT input−object−event (input−object−event−name ,

input−object−event−parameter+) >
< !ELEMENT input−object−event−name (#PCDATA) >
< !ELEMENT input−object−event−param−name (#PCDATA) >
< !ELEMENT input−object−event−param−type (#PCDATA) >
< !ELEMENT input−object−event−parameter (input−object−event−param−name ,

input−object−event−param−type) >
< !ELEMENT input−ob j e c t s (input−ob j e c t+) >
< !ELEMENT inputs (s en so r s ? , input−ob j e c t s ?) >
< !ELEMENT name (#PCDATA) >
< !ELEMENT network (name , (v a r i a b l e | d e f i n i t i o n)∗) >
< !ELEMENT ob j e c t (object−name , inputs , contexts , outputs) >
< !ELEMENT object−name (#PCDATA) >
< !ELEMENT outcome (#PCDATA) >
< !ELEMENT output−ob j e c t (output−object−event+) >
< !ELEMENT output−object−event (output−object−event−name ,

output−object−event−parameter+) >
< !ELEMENT output−object−event−name (#PCDATA) >
< !ELEMENT output−object−event−param−name (#PCDATA) >
< !ELEMENT output−object−event−param−type (#PCDATA) >
< !ELEMENT output−object−event−parameter (output−object−event−param−name ,

output−object−event−param−type) >
< !ELEMENT output−ob j e c t s (output−ob j e c t+) >
< !ELEMENT outputs (ac tua to r s ? , output−ob j e c t s ?) >
< !ELEMENT param−name (#PCDATA) >
< !ELEMENT r u l e s (t r an s i t i o n−r u l e s ? , behaviour−r u l e s ?) >
< !ELEMENT s enso r (sensor−name , sensor−event+) >
< !ELEMENT sensor−event (sensor−event−name , sensor−event−parameter+) >
< !ELEMENT sensor−event−name (#PCDATA) >
< !ELEMENT sensor−event−param−name (#PCDATA) >
< !ELEMENT sensor−event−param−type (#PCDATA) >
< !ELEMENT sensor−event−parameter (sensor−event−param−name ,

sensor−event−param−type) >
< !ELEMENT sensor−name (#PCDATA) >
< !ELEMENT s en so r s (s enso r+) >
< !ELEMENT t ab l e (#PCDATA) >
< !ELEMENT t r an s i t i o n−context (#PCDATA) >
< !ELEMENT t r an s i t i o n−r u l e s (t r an s i t i o n−r u l e+) >
< !ELEMENT t r an s i t i o n−r u l e (t r an s i t i o n−ru le−name) >
< !ELEMENT t r an s i t i o n−ru le−name (#PCDATA) >
< !ELEMENT va r i ab l e (name , outcome+) >
< !ATTLIST va r i ab l e type NMTOKEN #REQUIRED>

Listing A.1: DTD for an XML sentient object descriptor

189

Appendix B

Example components

B.1 Actuator

An actuator which sends an e-mail message in response to the consumption of an event is

illustrated in Listings B.1 and B.2, and described below.

B.1.1 SMTP actuator

The SMTP actuator class listed in Listing B.1 consumes one type of event, shown in Table

B.1. The event contains two parameters, namely the address to which to send the mail

notification, and a short message to include in the notification e-mail. The actuator class

creates an instance of SMTPActuatorDeliveryCallback class, where most of the processing is

performed.

B.1.2 SMTP actuator delivery callback

The delivery callback class illustrated in Listing B.2 extends the ActuatorDeliveryCallback

class provided by the programming tool, and has one method, deliver() to be extended by

Event type Parameter 0 Parameter 1
SMTP S STR address S STR message

Table B.1: Event type consumed by SMTPActuator

190

Appendix B. Example components

import i e . tcd . cs . dsg . jsteam . ∗ ;

public class SMTPActuator extends Actuator{
public stat ic void main (St r ing [] a rgs){

SMTPActuator actuator = new SMTPActuator () ;
/∗∗ Actuator i s in a f i x e d po s i t i on (5320.00 , −615.008) ,
∗ with range s e t to 70 , p e r i o d i c i t y to 1 ∗/

actuator . s ta r tActuato r (70 , 1 , 5320 .00 , −615.008 ,
new SMTPActuatorDeliveryCallback ()) ;

ac tuator . sub s c r i b e (”SMTP”) ;
}

}

Listing B.1: SMTPActuator.java

Event type Parameter 0
Barcode S STR code

Table B.2: Event type produced by BarcodeSensor

the developer, and which specifies the behaviour that occurs when an event is delivered. In

the case of this actuator, the class extracts the event parameters, opens an SMTP connection,

and sends an email to the specified recipient.

B.2 Sensor

A sensor that reads the output of a barcode reader, and publishes one type of event containing

the number represented by the barcode. The sensor may be easily extended to provide

output at a higher level of abstraction, e.g, to perform a database lookup and return a name

associated with the barcode identifier.

B.2.1 Barcode sensor

The barcode sensor consists of one class, illustrated in Listing B.3, and produces a single type

of event, as shown in Table B.2.

191

Appendix B. Example components

import i e . tcd . cs . dsg . jsteam . ∗ ;
import sun . net . smtp . SmtpClient ;
import java . i o . ∗ ;

public class SMTPActuatorDeliveryCallback extends ActuatorDe l iveryCal lback {
/∗∗
∗ Main event handler method , c a l l e d when the ac tua tor r e c e i v e s
∗ an event n o t i f i c a t i o n
∗
∗@param event Ins tance the event n o t i f i c a t i o n
∗/

public void d e l i v e r (SC dsEvent event Ins tance){
St r ing mail from = ”couch@cs . tcd . i e ” ;
S t r ing mai l to = event Ins tance . parValSTR (0) ;
S t r ing content = event Ins tance . parValSTR (1) ;
try {

SmtpClient smtp = new SmtpClient (”mail . c s . tcd . i e ”) ;
// Sets the o r i g i n a t i n g e−mail address
smtp . from (”couch@cs . tcd . i e ”) ;
// Sets the r e c i p i e n t s ’ e−mail address
smtp . to (mai l to) ;
// Create an output stream to the connect ion
PrintStream msg = smtp . startMessage () ;
msg . p r i n t l n (”To : ” + mai l to) ;
msg . p r i n t l n (”From : ” + mailfrom) ;
msg . p r i n t l n (” Subject : Sent i en t couch n o t i f i c a t i o n ”) ;
msg . p r i n t l n (content) ;
// Close the connect ion to the SMTP serve r and send the message
smtp . c l o s e S e r v e r () ;

} catch (IOException i o e) {
i o e . pr intStackTrace () ;

}
}

}

Listing B.2: SMTPActuatorDeliveryCallback.java

192

Appendix B. Example components

import java . i o . BufferedReader ;
import java . i o . InputStreamReader ;
import java . i o . InputStreamReader ;
import java . i o . BufferedReader ;
import i e . tcd . cs . dsg . jsteam . ∗ ;

public class BarcodeSensor extends Sensor implements Runnable{
private SP dsEventType barcodeEventType ; //The sensor event type

/∗∗ Constructor ∗/
public BarcodeSensor (){

//Create a c i r c u l a r prox imi ty o f s i z e 20m
super (new SP Circ l e (2 0)) ;

}

public void run (){
//Wait f o r input from the barcode reader
while (true){

try{
InputStreamReader reader = new InputStreamReader (System . in) ;
BufferedReader s td in = new BufferedReader (reader) ;
// Pub l i sh the event when input i s r e ce i v ed
publ ishEvent (s td in . readLine ()) ;

}catch (Exception e){
e . pr intStackTrace () ;

}
try{

Thread . s l e e p (1000) ;
}catch (Inter ruptedExcept ion e){}

}
}

/∗∗
∗ Creates the event ins tance conta in ing one parameter − the barcode
∗ and c a l l s the super c l a s s to pu b l i s h the event
∗
∗@param code the barcode read by the hardware dev i ce
∗/

public void publ ishEvent (S t r ing code){
S ParameterValue [] pv = new S ParameterValue [1] ;
pv [0] = new SP ParameterValueSTR (code) ;
SP dsEvent event Ins tance = new SP dsEvent (barcodeEventType . sub j e c t () , 1 , pv ,

barcodeEventType) ;
super . publ i shEvent (event Ins tance) ;

}

/∗∗ Main method ∗/
public stat ic void main (St r ing args []) {

BarcodeSensor s enso r = new BarcodeSensor () ;
S EventParameterDeclarat ion [] epd = new S EventParameterDeclarat ion [1] ;
epd [0] = new S EventParameterDeclarat ion (”Code” , JSteamConstants . S STR) ;
s enso r . barcodeEventType = new SP dsEventType (”Barcode” , 1 , epd) ;
s en so r . s t a r tS en so r (70 , 1 , 5320 .00 , −615.008);
s en so r . announceEventType (s enso r . barcodeEventType) ;
new Thread (s enso r) . s t a r t () ;

}
}

Listing B.3: BarcodeSensor.java

193

Appendix C

Sentient couch application

C.1 Hardware

The sensors fitted to the couch are LPX 100 industrial transducers supplied by Precision

Transducers Ltd.1 and illustrated in Figure C.1. Important characteristics of this type of

sensor are listed in Table C.1, and it is evident from these characteristics that the LPX 100

provides an accurate and inexpensive solution for the sensing of mass in the range of that of

an average human.

The legs of the couch are fitted with custom-made steel shoes manufactured by a local

engineering firm and encasing the load sensors. This prevents movement of the couch leg

over the sensor, as well as preventing slippage of the sensor on the laboratory floor.
1http://www.precisiontransducers.com

Fig. C.1: LPX 100 industrial load sensor

194

Appendix C. Sentient couch application

Capacity 100 kg
Nominal output at capacity 2.0mV/V +/− 1%
Safe load 150 kg
Linearity error† 0.1%
Price USD 103.50

Table C.1: Characteristics of the LPX 100 load sensor
†Deviation of sensor output from expected output at a known load

Fig. C.2: The sentient couch in use

Each of the LPX 100 transducers is connected to a PT650D weighing indicator, sourced

from Chi Mei Electronics in Hong Kong. The weighing indicator converts the analogue signal

from the LPX 100 to a digital signal, amplifies it and outputs the signal to a PC on an RS232

interface. The PC has a Pentium processor, running Debian GNU/Linux.

At present, there is no specialised actuator hardware fitted to the couch, with actuation

performed through a combination of software commands, and standard speakers and display

monitors. The sensor and actuator components were developed by Mélanie Bouroche of the

Distributed Systems Group.

195

Appendix D

Sentient vehicle application

D.1 Hardware

The sentient vehicle is a consumer-grade model radio control (RC) 1:6 scale Ford F150 Thun-

der purchased from a local electronics store1, which has been augmented with a number of

sensors, as well as a handheld computer and microcontroller. Our aim was to use low-cost,

readily available components as far as possible. The use of cheap and readily available com-

ponents in context-aware systems contributes to widespread adoption, aiding the realisation

of truly pervasive computing. The hardware and sensor and actuator component software

were developed according to the sentient object model, by Neil O’Connor of the Distributed

Systems Group [O’C04].

SRF08 Ultrasonic range finder

Ultrasonic sensors are commonly used for a variety of distance or proximity measurements.

An ultrasonic sensor works by transmitting short bursts of high frequency sound towards a

target, and measuring the time taken for the reflected echo to return to the sensor. The

distance to the target is then measured using the time of the echo and the speed of sound.

Since ultrasonic sensors depend on the speed of sound for accurate range determination, their

accuracy is influenced to varying degrees by environmental factors, such as temperature, air
1http://www.maplin.co.uk

196

Appendix D. Sentient vehicle application

Fig. D.1: Devantech SRF08 ultrasonic range-finder

Voltage 5v

Current 15mA typ. 3mA standby
Frequency 40KHz
Range 3cm - 600cm
Connection I2C Bus
Timing Fully timed echo
Echo Multiple echo
Unit of measure µS, mm or inches
Dimensions 43mm w x 20mm d x 17mm h
Accuracy 3-4 cm
Cost USD 45

Table D.1: Devantech SRF08 characteristics

pressure and turbulence, humidity and acoustic interference [Shi89], introducing elements of

uncertainty into the readings taken by this type of sensor.

We incorporate Devantech 2 SRF08 type ultrasonic range finders in our sentient vehicle to

provide range determination and obstacle avoidance capabilities to the vehicle. The SRF08 is

shown in Figure D.1, whilst the characteristics of this type of sensor are illustrated in Table

D.1. It can be seen that this type of sensor claims to measure ranges of up to six meters with

a high degree of accuracy and at a low cost.

The SRF08 range finder stores a set of up to seventeen ranges (that is the distance to a

detected obstacle) from each single ranging operation in a set of 36 registers. When a ranging
2http://www.robot-electronics.co.uk

197

Appendix D. Sentient vehicle application

Register no. Read Write
0 Software revision Command register
1 Light sensor Max gain register

(default 31)
2 1st echo high byte Range register

(default 255)
3 1st echo low byte N/A
34 17th echo high byte N/A
35 17th echo low byte N/A

Table D.2: Devantech SRF08 registers

Fig. D.2: OOPic-R microcontroller board

command is received over the I2C bus by the sensor, an ultrasonic transmission is made. The

sensor then listens for echoes up to the maximum range of its transmission (65ms). The

sensor does not respond to any I2C communication during this time, freeing a controller

from the need to use a timer. Once ranging is complete, measured ranges may be read by

referring to the appropriate registry entry as illustrated in Table D.2. Locations 2 - 35 contain

the readings for the last ranging command, with each range represented by a high and a low

byte. Location 1 stores the value of a light sensor integrated into the SRF08.

198

Appendix D. Sentient vehicle application

Fig. D.3: 2 SRF08 sensors connected to an OOPic-R microcontroller via an I2C bus [O’C04]

OOPIC-R microcontroller

In order to interface the SRF08 sensors with an iPAQ, a programmable microcontroller

was required, which could communicate via I2C with the SRF08 sensors and preferably

via RS-232 to the handheld computer (since the handheld has two RS-232 ports available).

A commercially available microcontroller meeting these requirements is the Object-Oriented

Programmable Interrupt Controller (OOPic) ’R’ board manufactured by Savage Innovations3.

In addition to providing the I2C to RS-232 capability, the OOPIC-R board, illustrated in

Figure D.2 also provides sixteen digital I/O lines with power and ground connections which

can be used to interface hardware actuators to an RS-232 connection.

The OOPic-R is programmed on a PC in an object-oriented manner using a freely down-

loadable development environment that supports Basic, Java or C-like syntax. Compiled

OOPic binary is uploaded to the board via an RS-232 connection.

HP iPAQ 5550

An HP iPAQ 5550 is used to control the sensors and the actuators. The iPAQ is a handheld

PC with a 400MHz processor and 128MB of RAM, as well as a built-in 802.11b wireless
3http://www.oopic.com

199

Appendix D. Sentient vehicle application

Fig. D.4: Magellan GPS receiver

interface and a PCMCIA card exporting two RS-232 interfaces.

Magellan GPS receiver

The vehicle is equipped with a Magellan GPS receiver, illustrated in Figure D.4 which enables

the vehicle to be aware of its location and additionally provides location information to the

STEAM location service. The GPS receiver provides location updates in the form of National

Marine Electronics Association (NMEA) 0183 Interface Standard. to the handheld computer

via an RS-232 interface.

Electronic compass

The vehicle is equipped with a low-cost, I2C bus CMPS03 electronic magnetic compass

sourced from Devantech4, which provides information about what direction the vehicle is

heading in, and is interfaced with the OOPIC-R microcontroller via an I2C bus.

D.2 Navigational formulae

The navigational formulae used within the sentient car are based on great circle navigation

[Ste00]. The GPS location data consumed by the car in the form of events from the location

service, consists of longitude/latitude pairs in NMEA-0183 format (as output by the GPS
4http://www.robot-electronics.co.uk

200

Appendix D. Sentient vehicle application

receiver), in units ddmm.mmmm, where dd represents degrees, mm minutes, and .mmmm

decimal minutes. Before these coordinates may be used in the navigational formulae, they

must be converted to degrees and decimal degrees, and then to radians. The process of

converting the coordinates to radians is as follows

1. Divide ddmm.mmmm by 100 to yield dd

2. Divide mm.mmmm by 60 to yield .dddd

3. Add dd to .dddd to yield dd.dddd

4. Divide dd.dddd by 57.2957795 to yield radians

D.2.1 Distance between two points

The distance between two points represented by the pairs < lat1, lon1 > and < lat2, lon2 >

is calculated according to the following equation

distance = arccos(sin(lat1)× sin(lat2) + cos(lat1)× cos(lat2)× cos(lon1− lon2)) (D.1)

D.2.2 Bearing between two points

To calculate the bearing5 between two points represented by the pairs < lat1, lon1 > and

< lat2, lon2 >, the great circle distance between the points must first be calculated according

to equation (D.1) The equation to calculate the bearing between two points is

bearing = arccos
(

sin(lat2)− sin(lat1)× cos(distance)
cos(lat1)× sin(distance)

)
(D.2)

This equation fails with a point located at the poles, but is sufficient for non-polar navi-

gation, and thus adequate for the needs of the sentient car.
5Defined as the angle measured horizontally from north to current direction of travel

201

Appendix D. Sentient vehicle application

Fig. D.5: Sentient vehicle hardware

D.3 Experimental setup

The combined hardware setup of the sentient vehicle is illustrated in Figure D.5. The location

of the three forward facing, and two side facing ultrasonic sensors may clearly be seen. In

addition, there is a single rear-facing ultrasonic sensor mounted at the back of the vehicle,

partially obscured by the iPAQ. The iPAQ and GPS receiver are mounted towards the rear

of the vehicle, whilst the OOPIC and radio control boards are mounted out of sight inside

the vehicle, together with battery packs powering the boards.

D.3.1 Forward obstacle avoidance

The prototypical sentient vehicle application calls for the avoidance of obstacles located in

the path of the vehicle whilst it is travelling forward. Figure D.6 illustrates the coverage

of the forward facing sensors, and the area that must be free of obstacles for the vehicle to

proceed forward.

202

Appendix D. Sentient vehicle application

Fig. D.6: Configuration of forward facing ultrasonic sensors

Sensor fusion

Whilst any of the 3 forward facing sensors is able to detect the presence of an obstacle within

its ’cone’ of vision, by fusing the outputs of the 3 individual sensors, the position of the

obstacle may be more accurately postulated, and more intelligent actions taken.

The sentient object model adopts an approach to sensor fusion based on probabilistic

Bayesian networks which require the specification of prior probabilities to construct them. In

the case of the ultrasonic sensors mounted on the sentient vehicle, the probability that the

sensors detected an obstacle at a particular distance, given that the obstacle is located that

distance away from the sensor.

Experiments were conducted using the experimental setup illustrated in Figure D.7. The

various locations of obstacle for which probabilities were calculated in this experiment are

illustrated in Figure D.8, and are as follows:

1. Scenario A - an obstacle is located directly in front of the vehicle. In this scenario, the

vehicle could stop, turn left, or turn right

2. Scenario B - an obstacle is located to the left of the vehicle, but still in the path of the

vehicle. In this case, the vehicle should turn to the right to avoid the obstacle

203

Appendix D. Sentient vehicle application

Fig. D.7: Experimental setup to determine prior probabilities for forward facing sonar sen-
sors

3. Scenario C - an obstacle is located to the right of the vehicle, but still in its path. In

this case, the vehicle should turn to the left to avoid the obstacle

4. Scenario D - An obstacle is located to the left of the vehicle, but outside it’s path, and

thus no action is necessary

5. Scenario E - An obstacle is located to the right of the vehicle, but outside it’s path,

and thus no action is necessary

In the first prototype of the application, the assumption was made that obstacles have a

flat face, and are positioned perpendicular to the face of the middle sensor. This assumption

was made due to the fact that when an obstacle is angled away from the face of the sensor,

ultrasonic signals are not reflected back to the sensor, and the obstacle becomes ’invisible’.

Through iteration over the various obstacle placements, and recording of sensor readings,

the set of prior probabilities for the three forward-facing ultrasonic sensors was calculated, as

illustrated in Table 6.14. These values capture the conditional probabilities that each sensor

detects an obstacle, given individual obstacle placements.

204

Appendix D. Sentient vehicle application

Fig. D.8: Obstacle positions tested in experiments

205

Appendix D. Sentient vehicle application

Fig. D.9: Waypoint navigation course

D.3.2 Traffic signal obeyance

The sentient vehicle subscribes to events produced by a traffic light sensor, which periodically

changes status between red and green. The sensor publishes the events within a proximity of

20 metres, and the vehicle filters event notifications, so that notifications are only delivered

when the vehicle is approaching the traffic signal. The code snippet below illustrates how an

event filter is specified to provide this functionality within the application.

TrafficSignalFilter tsFilter = new SC_ConjunctiveContentFilter();
tsFilter.addTermPOS(0, JsteamConstants.SC_DISTANCE_DECREASES);

D.3.3 Waypoint navigation

In order to test autonomous navigation, a course was designed with five waypoints defined,

as illustrated in Figure D.9. The goal was to follow the course defined by the edges linking

these waypoints.

206

Appendix D. Sentient vehicle application

Fig. D.10: Car debug interface

D.3.4 Testing and debugging the application

In order to assist in debugging the application, a visualisation interface was constructed, as

illustrated in Figure D.10 that subscribed to all events produced by the sensors on the car,

as well as events produced by the sentient object. This gave the application developer the

ability to see all event communication in the system at a glance. In addition to live outdoor

testing of the system, a simulator was developed that produced simulated event streams from

the vehicle sensors, in order to test and debug the vehicle sentient object. This simulator

parsed an input file to provide periodic event notifications, describing a vehicle journey.

207

Bibliography

[AAJ+97] G.D. Abowd, C.G. Atkeson, Hong J., S. Long, R. Kooper, and M. Pinkerton.

Cyberguide: A Mobile Context-Aware Tour Guide. ACM Wireless Networks,

3:421–433, 1997.

[ACH+01] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete Steggles,

Andy Ward, and Andy Hopper. Implementing a Sentient Computing System.

IEEE Computer, 34(8):50–56, August 2001.

[ACVS02] G. Ahn, A. Campbell, A. Veres, and L. Sun. SWAN: Service differentiation in

stateless wireless ad hoc networks. In Proceedings of IEEE INFOCOM, New

York, NY, USA, June 2002.

[Alb02] Albrecht Schmidt. Ubiquitous Computing - Computing in Context. PhD thesis,

Lancaster University, November 2002.

[BAI93] B. R. Badrinath, Arup Acharya, and Tomasz Imielinski. Impact of mobility on

distributed computations. Operating Systems Review, 27(2):15–20, 1993.

[Bay58] Thomas Bayes. An essay towards solving a problem in the doctrine of chances

(reprint of 1763). Biometrika, 45:293–315, 1958.

[BBC97] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware Applications: from the

Laboratory to the Marketplace. IEEE Personal Communications, 4(5):58–64,

October 1997.

208

Bibliography

[BHK04] Mark H. Butler, Johan Hjelm, and Kazuhiro Kitagawa. CC/PP Information

Page. http://www.w3.org/Mobile/CCPP/, 2004.

[BLC95] T. Berners-Lee and D. Connolly. RFC 1866 - Hypertext Markup Language

version 2.0, November 1995.

[BLFF96] T. Berners-Lee, R. Fielding, and H. Frystyk. RFC 1945 - Hypertext Transfer

Protocol – HTTP/1.0, May 1996.

[BMB+00] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, O. Seidel, and

M. Spiteri. Generic Support for Distributed Applications. IEEE Computer,

33(3):68–76, 2000.

[Bor00] G. Borriello. The challenges to invisible computing. IEEE Computer, 33(11):123–

125, November 2000.

[Bro96] P. Brown. The stick-e document: a framework for creating context-aware appli-

cations. Electronic Publishing, 9(1):1–14, September 1996.

[BSAK95] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Randy H. Katz. Improv-

ing TCP/IP Performance over Wireless Networks. In Proceedings of 1st ACM

Intl Conference on Mobile Computing and Networking (Mobicom), November

1995.

[BW95] B. R. Badrinath and Girish Welling. Event delivery abstraction for mobile com-

puting. Technical Report LCSR-TR-242, 1995.

[Cal03] Rob Callan. Artificial Intelligence. Palgrave Macmillan, 2003.

[Can02] John Canny. Some Techniques for Privacy in Ubicomp and Context-aware Ap-

plications. In Proceedings of Workshop on Socially-informed Design of Privacy-

enhancing Solutions in Ubiquitous Computing, UbiComp 2002, G’́oteborg, Swe-

den, September 2002.

209

Bibliography

[CCKM01] Paul Castro, Patrick Chiu, Ted Kremenek, and Richard Muntz. A Probabilistic

Location Service for Wireless Network Environments. In Proceedings of Ubicomp

2001: Ubiquitous Computing: 3rd International Conference, Atlanta, GA, USA,

pages 18–34, September 2001.

[CDM+00] Keith Cheverst, Nigel Davies, Keith Mitchell, Adrian Friday, and Christos Ef-

stratiou. Developing a Context-aware Electronic Tourist Guide: Some Issues

and Experiences. In Proceedings of CHI 2000 Conference on Human Factors in

Computing Systems, pages 17–24, The Hague, The Netherlands, April 1-6 2000.

[CDME00] Keith Cheverst, Nigel Davies, Keith Mitchell, and Christos Efstratiou. Using

Context as a Crystal Ball: Rewards and Pitfalls. In Proceedings of Workshop

on Situated Interaction in Ubiquitous Computing, CHI 2000, pages 17–24, The

Hague, The Netherlands, April 1-6 2000.

[CDMF99] Keith Cheverst, Nigel Davies, Keith Mitchell, and Adrian Friday. The Role of

Connectivity in Supporting Context-Sensitive Applications. In H.W. Gellersen,

editor, Handheld and Ubiquitous Computing, Lecture Notes in Computer Science,

1707, pages 193–207, Heidelberg, 1999. Springer-Verlag.

[CGS+03] V. Cahill, E. Gray, J.-M. Seigneur, C. Jensen, Y. Chen, B. Shand, N. Dimmock,

A. Twigg, J. Bacon, C. English, W. Wagealla, S. Terzis, P. Nixon, G. Seru-

gendo, C. Bryce, M. Carbone, K. Krukow, and M. Nielsen. Using Trust for

Secure Collaboration in Uncertain Environments. Pervasive Computing Maga-

zine, 2(3):52–61, 2003.

[CHRC01] Renato Cerqueira, Christopher K. Hess, Manuel Román, and Roy H. Camp-

bell. Gaia: A Development Infrastructure for Active Spaces. In Proceedings of

Workshop on Application Models and Programming Tools for Ubiquitous Com-

puting (held in conjunction with the UBICOMP 2001), Atlanta, Georgia, USA,

September 2001.

[CK00] Guanling Chen and David Kotz. A Survey of Context-Aware Mobile Computing

210

Bibliography

Research. Technical Report TR2000-381, Dept. of Computer Science, Dartmouth

College, November 2000.

[CK02a] Guanling Chen and David Kotz. Context aggregation and dissemination in

ubiquitous computing systems. In Proceedings of the Fourth IEEE Workshop on

Mobile Computing Systems and Applications, pages 105–114. IEEE Computer

Society Press, June 2002.

[CK02b] Guanling Chen and David Kotz. Solar: A pervasive computing infrastructure for

context-aware mobile applications. Technical Report TR2002-421, Department

of Computer Science, Dartmouth College, February 28 2002.

[CK02c] Guanling Chen and David Kotz. Solar: An open platform for context-aware mo-

bile applications. In Proceedings of the First International Conference on Per-

vasive Computing (Short paper), pages 41–47, Zurich, Switzerland, June 2002.

[CK03] Guanling Chen and David Kotz. Context-sensitive resource discovery. In Pro-

ceedings of the First IEEE International Conference onPervasive Computing

and Communications (Percom 2003), pages 243–252, Forth Worth, Texas, USA,

March 2003.

[C.L82] Forgy C.L. Rete: A fast Algorithm for the Many Pattern / Many Object Pattern

Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

[CLK04] Guanling Chen, Ming Li, and David Kotz. Design and Implementation of a

Large-Scale Context Fusion Network. In Proceedings of the First Annual Interna-

tional Conference on Mobile and Ubiquitous Systems: Networking and Services

(MobiQuitous 2004), Boston, MA, USA, August 2004.

[CM99] P. Castro and R. Muntz. Using Context to Assist in Multimedia Object Retrieval

Applications. In Proceedings of ACM Workshop on Multimedia Intelligent Stor-

age and Retrieval Management, Orlando, FL., USA, October 1999.

211

Bibliography

[CM00] Paul Castro and Richard Muntz. Managing Context Data for Smart Spaces.

IEEE Personal Communications, 7:44–46, October 2000.

[CMD99] Keith Cheverst, Keith Mitchell, and Nigel Davies. Design of an Object Model for

a Context Sensitive Tourist GUIDE. Computers and Graphics, 23(6):883–891,

1999.

[CMMM00] Paul Castro, Murali Mani, Siddhartha Mathur, and Richard Muntz. Managing

Context for Internet Videoconferences: The Multimedia Interent Recorder and

Archive. In Proceedings of IS&T SPIE Conf. on Multimedia Computing and

Networking 2000 (MMCN 2000), San Jose, CA, USA, January 2000.

[CNF01] G. Cugola, E. D. Nitto, and A. Fuggetta. The JEDI Event-Based Infrastructure

and its Application to the Development of the OPSS WFMS. IEEE Transactions

on Software Engineering (TSE), 27:827 – 850, 2001.

[Cor03] Intel Corporation. Intel CentrinoTM Mobile Technology Performance Brief.

http://www.intel.com/performance/, September 2003.

[Coy92] Peter Coy. Big Brother, Pinned to your chest. Business Week, (3279), August

1992.

[CP94] Perkins C. and Bhagwat P. Highly Dynamic Destination-Sequence DistanceVec-

tor Routing (DSDV) for Mobile Computers. ACM SIGCOMM Computer Com-

munication Review, 24(4):234–244, October 1994.

[CRW01] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and Evaluation of a

Wide-Area Event Notification Service. ACM Transactions on Computer Sys-

tems, 19:283 – 331, 2001.

[CSG99] D. Chen, A. Schmidt, and H.-W. Gellesen. An Architecture for Multi-Sensor

Fusion in Mobile Environments. In Proceedings of International Conference on

Information Fusion, volume II, pages 861–868, Sunnyvale, CA, USA, July 1999.

212

Bibliography

[CWKS97] B.P. Crow, I. Widjaja, J.G. Kim, and P.T. Sakai. IEEE 802.11 Wireless Local

Area Networks. IEEE Communications Magazine, pages 116–126, September

1997.

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding of

Context and Context-Awareness. Technical Report GIT-GVU-99-22, Georgia

Institute of Technology, June 1999.

[DFSA99] Anind K. Dey, Masayasu Futakawa, Daniel Salber, and Gregory D. Abowd. The

Conference Assistant: Combining Context-Awareness with Wearable Comput-

ing. In Proceedings of the 3rd International Symposium on Wearable Computers

(ISWC ’99), pages 21–28, San Francisco, CA, USA, October 1999.

[dIn99] Diego López de Ipiña. TRIP: A Distributed vision-based Sensor System Ph.D.

1st Year Report, LCE, Cambridge University Engineering Department, UK, 31

August 1999.

[dIn00] Diego López de Ipiña. Building Components for a Distributed Sentient Frame-

work with Python and CORBA. In Proceedings of the 8th International Python

Conference, Arlington, VA, USA, January 24-27 2000.

[dIn01] Diego López de Ipiña. Video-Based Sensing for Wide Deployment of Sentient

Spaces. In Proceedings of 2nd PACT Workshop on Ubiquitous Computing and

Communications, Barcelona, Spain, September 9 2001.

[dIn02] Diego López de Ipiña. Visual Sensing and Middleware Support for Sentient

Computing. PhD thesis, Downing College, University of Cambridge, Cambridge,

United Kingdom, January 2002.

[dInK01] Diego López de Ipiña and Eleftheria Katsiri. An ECA Rule-Matching Service

for Simpler Development of Reactive Applications. IEEE Distributed Systems

Online, 2(7), November 2001.

213

Bibliography

[dInL01] Diego López de Ipiña and Sai-Lai Lo. Sentient Computing for Everyone. In

Proceedings of the 3rd International Conference on Distributed Applications and

Interoperable Systems (DAIS’2001), Krakow,Poland, September 17-19 2001.

[dInMH02] Diego López de Ipiña, Paulo Medonca, and Andy Hopper. TRIP: a Low-Cost

Vision Based Location System for Ubiquitous Computing. Personal and Ubiq-

uitous Computing, 6(3):206–219, May 2002.

[DMAC02] Anind K. Dey, Jennifer Mankoff, Gregory D. Abowd, and Scott Carter. Distrib-

uted Mediation of Ambiguous Context in Aware Environments. In Proceedings of

the 15th Annual Symposium on User Interface Software and Technology (UIST

2002), pages 121–130, Paris, France, October 28-30 2002.

[DMCF99] N. Davies, K. Mitchell, K. Cheverst, and A. Friday. Caches in the Air: Dis-

seminating Tourist Information in the Guide System. In Proceedings of IEEE

Workshop on Mobile Computing Systems and Applications, New Orleans, USA,

September 1999.

[DRD+00] Alan Dix, Tom Rodden, Nigel Davies, Jonathan Trevor, Adrian Friday, and

Kevin Palfreyman. Exploiting space and location as a design framework for in-

teractive mobile systems. ACM Transactions on Computer-Human Interaction,

7(3):285–321, 2000.

[DS03] Anind K. Dey and Tim Sohn. Supporting End User Programming of Context-

Aware Applications. In Proceedings of Conference on Human Factors in Com-

puting Systems (CHI), Workshop on Perspectives in End User Development,

Fort Lauderdale, FL, USA, April 5-10 2003.

[DSA99] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Context-Based In-

frastructure for Smart Environments. In Proceedings of the 1st International

Workshop on Managing Interactions in Smart Environments (MANSE), pages

114–128, Dublin, Ireland, December 1999.

214

Bibliography

[DSA01] Anind K. Dey, Daniel Salber, and Gregory D. Abowd. A Conceptual Frame-

work and a Toolkit for Supporting the Rapid Prototyping of Context-Aware

Applications. Human-Computer Interaction (HCI) Journal, 16:97–166, 2001.

[DSFA99] Anind K. Dey, Daniel Salber, Masayasu Futakawa, and Gregory D. Abowd. An

Architecture to Support Context-Aware Applications. Technical Report GIT-

GVU-99-23, Georgia Institute of Technology, June 1999.

[Duc92] D. Duchamp. Issues in wireless mobile computing. In Third Workshop on Work-

station Operating Systems, pages 2–10, Key Biscayne, Florida, U.S., 1992. IEEE

Computer Society Press.

[(Ed81a] Jon Postel (Ed.). RFC 791 - Internet Protocol, DARPA Internet Program,

Protocol Specification, September 1981.

[(Ed81b] Jon Postel (Ed.). RFC 793 -Transmission Control Protocol (TCP), DARPA

Internet Program, Protocol Specification, September 1981.

[Eng97] John English. Ada 95: The Craft of Object-Oriented Programming. Prentice

Hall, 1997.

[Eug91] Eugene Charniak. Bayesian Networks without Tears. Artificial Intelligence (AI)

Magazine, 12(4):50–63, 1991.

[FH03] Ernest Friedman-Hill. JESS In Action, Rule-Based Systems in Java. Manning,

2003.

[fS86] International Organization for Standardization. ISO 8879:1986. Information

Processing - Text and Office Systems - Standard Generalized Markup Language

(SGML), October 1986.

[FVB02] Alois Ferscha, Simon Vogl, and Wolfgang Beer. Ubiquitous Context Sensing

in Wireless Environments. In Proceedings of 4th Austrian-Hungarian Workshop

on Distributed and Parallel Systems (DAPSYS), Linz, Austria, October 2002.

Kluwer Academic Publishers.

215

Bibliography

[FZ94] George H. Forman and John Zahorjan. The Challenges of Mobile Computing.

IEEE Computer, 27(6):38–47, April 1994.

[GA94] Avelino J. Gonzalez and Robert Ahlers. A Novel Paradigm for Representing

Tactical Knowledge in Intelligent Simulated Opponents. In Proceedings of 7th

International Conference on Industrial Engineering Applications and A.I. and

Expert Systems, June 1994.

[GA95] Avelino J. Gonzalez and Robert Ahlers. Context-based Representation of In-

telligent Behaviour in Simulated Opponents. In Proceedings of 5th Conference

on Computer Generated Forces and Behavior Representation, Orlando, Florida,

May 1995.

[GA99] A. J. Gonzalez and R. Ahlers. Context-based Representation of Intelligent Be-

havior in Training Simulations. Transactions of the Society for Computer Sim-

ulation International, 15(4):153–166, March 1999.

[GBS00] Hans-W. Gellerson, Michael Beigl, and Albrecht Schmidt. Sensor-based Context-

Awareness for Situated Computing. In Proceedings of Workshop on Software

Engineering and Pervasive Computing SEWPC00, June 2000.

[Gov96] United States Government. Federal Standard 1037C - Glossary of Telecommu-

nications Terms, August 7th 1996.

[GPG00] Fernando G. Gonzalez, Grejs Patric, and Avelino J. Gonzalez. Autonomous Au-

tomobile Behaviour through Context-based Reasoning. In Proceedings of 13th

Annual Florida Artificial Intelligence Research Society Conference, Orlando,

Florida, May 22-24 2000.

[Gro02] Object Management Group. The Common Object Request Broker: Architecture

and Specification, V3.0, July 2002.

[GSB02] H-W. Gellersen, A. Schmidt, and M. Beigl. Multi-Sensor Context-Awareness

216

Bibliography

in Mobile Devices and Smart Artefacts. ACM journal Mobile Networks and

Applications (MONET), 7(5), October 2002.

[Haa03] Mads Haahr. Supporting Mobile Computing in Object-Oriented Middleware Ar-

chitectures. Phd thesis, University of Dublin, Trinity College, October 2003.

[HB98] Tom Holvoet and Yolande Berbers. Composing Distributed Applications through

Generative Communication. In Proceedings of the 8th ACM SIGOPS European

workshop on Support for Composing Distributed Applications, pages 214–221,

Sintra, Portugal, September 1998.

[Her03] Jack Herrington. Code Generation in Action. Manning, 2003.

[HH94] A. Harter and A. Hopper. A Distributed Location System for the Active Office.

IEEE Network, 8(1):62–70, 1994.

[HHS+99] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Webster. The

Anatomy of a Context-Aware Application. In Proceedings of the Fifth annual

ACM/IEEE International Conference on Mobile Computing and Networking,

MOBICOM ’99, Seattle, Washington, pages 59–68, August 1999.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling

Context Information in Pervasive Computing Systems. In F. Mattern and

M. Naghshineh, editors, Proceedings of the First International Conference on

Pervasive Computing, number LNCS 2414, pages 167–180. Springer Verlag

Berlin Heidelberg, 2002.

[HK97] Markus Horstmann and Mary Kirtland. DCOM Architecture. Microsoft White

Paper, July 23 1997.

[HL01] J. I. Hong and J. A. Landay. An Infrastructure Approach to Context-Aware

Computing. Human-Computer Interaction, 16(2-4):287–303, 2001.

[HL04] Jason I. Hong and James A. Landay. An Architecture for Privacy-Sensitive

Uniquitous Computing. In Proceedings of the 2nd International Conference on

217

Bibliography

Mobile Systems, Applications, and Services (Mobisys 2004), Boston, Ma., USA,

June 6-9 2004.

[HM93] Jim C Hoffman and Robin R. Murphy. Comparison of bayesian and dempster-

shafer theory for sensing: a practitioner’s approach. Proc. SPIE Neural and

Stochastic Methods in Image and Signal Processing II, 2032, July 1993.

[HNBR97] R. Hull, P. Neaves, and J. Bedford-Roberts. Towards Situated Computing. In In

Proceedings ISWC ’97 (1st International Symposium on Wearable Computers),

pages 146–153, Cambridge, MA, USA, October 13-14 1997.

[Hon00] Jason I. Hong. Context Fabric: Infrastructure Support for Context-Aware Sys-

tems. Qualifying Exam Proposal, Department of Computer Science, University

of California at Berkeley, 2000.

[Hon02] J.I Hong. The Context Fabric: An Infrastructure for Context-Aware Computing.

In Proceedings of Doctoral Consortium, Human Factors in Computing Systems:

CHI, Minneapolis, USA, 2002.

[Hop00] Andy Hopper. The Royal Society Clifford Paterson Lecture, 1999 - Sentient

Computing. Phil. Trans. R. Soc. Lond., 358:2349–2358, August 2000.

[HV02] G. Holland and N. Vaidya. Analysis of TCP Performance over Mobile Ad Hoc

Networks. Wireless Networks, 8(2-3):275–288, 2002.

[HWLC94] Hoffmann-Wellenhof, B. H. Lichtenegger, and J. Collins. GPS: Theory and Prac-

tice. Springer-Verlag, New-York, 3rd edition, 1994.

[IB92] T. Imielinski and B. R. Badrinath. Mobile wireless computing: Solutions and

challenges in data management. Technical report, Department of Computer

Science, Rutgers University, U.S., 1992.

[IRRH03] J. Indulska, R. Robinson, A. Rakotonirainy, and K. Henricksen. Experiences In

Using CC/PP In Context-Aware Systems. In Proceedings 4th International Con-

218

Bibliography

ference on Mobile Data Management (MDM ’03), pages 247–261, Melbourne,

Australia, January 2003.

[Jac88] V. Jacobson. Congestion Avoidance and Control. In Proceedings of ACM SIG-

COMM, pages 314–329. ACM, 1988.

[Jen02] C. D. Jensen. Secure Collaboration in Global Computing Systems. European Re-

search Consortium for Informatics and Mathematics (ERCIM) News, 49, 2002.

[JM96] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless

networks. In Imielinski and Korth, editors, Mobile Computing, volume 353, pages

153–181. Kluwer Academic Publishers, 1996.

[JN04] J.P.Lewis and Ulrich Neumann. Performance of Java versus C++. [On-Line]

Available: http://www.idiom.com/˜zilla/Computer/javaCbenchmark.html,

2004.

[Kal60] Rudolph Emil Kalman. A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME–Journal of Basic Engineering, 82(Series D):35–

45, 1960.

[KCM+01] M. O. Killijian, R. Cunningham, R. Meier, L. Mazare, and V. Cahill. Towards

Group Communication for Mobile Participants. In Proceedings of ACM Work-

shop on Principles of Mobile Computing (POMC’2001), pages 75–82, Newport,

Rhode Island, USA, 2001.

[KFJ01] L. Kagal, T. Finin, and A. Joshi. Trust-Based Security in Pervasive Computing

Environments. IEEE Computer, 24(12):154–157, December 2001.

[KLM96] Leslie P. Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement

Learning: A Survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

[LA01] Kristof Van Laerhoven and Kofi A. Aidoo. Teaching Context to Applications.

Personal and Ubiquitous Computing, 5(1):46–49, February 2001.

219

Bibliography

[Lae00] Kristof Van Laerhoven. TEA Project Homepage. http://www.teco.edu/tea/,

November 2000.

[Lan66] P. J. Landin. The next 700 programming languages. Communications of the

ACM, 9(3):157–166, May 1966.

[Lan02] Marc Langheinrich. Privacy Invasions in Ubiquitous Computing. In Proceed-

ings of Workshop on Socially-informed Design of Privacy-enhancing Solutions

in Ubiquitous Computing, UbiComp 2002, G’́oteborg, Sweden, September 2002.

[LAZC00] S. Lee, G. Ahn, X. Zhang, and A. Campbell. INSIGNIA: An IP-based qual-

ity of service framework for mobile ad hoc networks. Journal of Parallel and

Distributed Computing, 60(4), April 2000.

[LBC+01] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris. Capacity of ad hoc

wireless networks. In Proceedings 7th ACM International Conference Conference

on Mobile Computing and Networking, 2001.

[Lio90] Yihwa Irene Liou. Knowledge acquisition: issues, techniques, and methodology.

In Proceedings of the ACM SIGBDP conference on Trends and directions in

expert systems, pages 212 – 236, Orlando, FL, USA, 1990.

[LKAA96] Sue Long, Rob Kooper, Gregory D. Abowd, and Christopher G. Atkeson. Rapid

Prototyping of Mobile Context-Aware Applications. In Proceedings of the 2nd

ACM International Conference on Mobile Computing and Networking, Mobicom,

pages 97–107, Rye, New York, USA, 1996.

[MC02a] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wireless Ad Hoc

Networks. In Proceedings of the International Workshop on Distributed Event-

Based Systems (ICDCS/DEBS’02), pages 639–644, Vienna, Austria, 2002. IEEE

Computer Society.

[MC02b] R. Meier and V. Cahill. STEAM: Event-Based Middleware for Wireless Ad Hoc

Networks. In Proceedings of the International Workshop on Distributed Event-

220

Bibliography

Based Systems (ICDCS/DEBS’02), pages 639–644, Vienna, Austria, 2002. IEEE

Computer Society.

[MC03] R. Meier and V. Cahill. Exploiting Proximity in Event-Based Middleware for

Collaborative Mobile Applications. In Proceedings of the 4th IFIP International

Conference on Distributed Applications and Interoperable Systems (DAIS ’03),

LNCS 2893, pages 285–296, Paris, France, 2003. Springer-Verlag.

[Mei03] René Meier. Event-Based Middleware for Collaborative Ad Hoc Applications.

PhD thesis, University of Dublin, Trinity College, September 2003.

[Moc87] P. Mockapetris. RFC 1034 - Domain Names - Concepts and Facilities, November

1987.

[Moz98] M. C. Mozer. The neural network house: An environment that adapts to its

inhabitants. In Proccedings of the AAAI Spring Symposium on Intelligent En-

vironments, pages 110–114, 1998.

[MSB04] Eric Miller, Ralph Swick, and Dan Brickley. Resource Description Framework

Homepage. http://www.w3.org/RDF/, 2004.

[Mun02] R. Muntz. MUSE Project Overview. http://mmsl.cs.ucla.edu/muse, 2002.

[NAS99] NASA. CLIPS: A Tool for building Expert Systems.

http://www.ghg.net/clips/CLIPS.html, August 1999.

[NAU93] B. Clifford Neuman, Steven Seger Augart, and Shantaprasad Upasani. Using

Prospero to support integrated location-independent computing. In Proceedings

USENIX Symposium on Mobile & Location-Independent Computing, pages 29–

34, August 1993.

[O’C04] Neil O’Connor. Sentient Car Hardware Write-up. Internal Report, Department

of Computer Science, Trinity College Dublin, May 2004.

221

Bibliography

[OR02] Patrik Osbakk and Nick Ryan. Context, CC/PP, and P3P. In Peter Ljungstrand

and Lars Erik Holmquist, editors, Adjunct Proceedings, UbiComp 2002, pages

9–10, Goteborg, Sweden, September 2002.

[OR03] Patrik Osbakk and Nick Ryan. A Privacy Enhancing Infrastructure for Context-

Awareness. In Proceedings of 1stUK−UbiNetWorkshop, Imperial College, Lon-

don, UK, September 2003.

[Pas98] J. Pascoe. Adding Generic Contextual Capabilities to Wearable Computers.

In Proceedings of 2nd International Symposium on Wearable Computers, pages

92–99. IEEE CS Press, Los Alamitos, California, 1998.

[Per97] Charles E. Perkins. Mobile IP. IEEE Communications Magazine, 35(5):84–99,

May 1997.

[PMR98] J. Pascoe, D. R. Morse, and N. S. Ryan. Developing Personal Technology for

the Field. Personal Technologies, 2(1):28–36, 1998.

[PR99] Charles E. Perkins and Elizabeth M. Royer. Ad hoc On-Demand Distance Vec-

tor Routing. In Proceedings of the 2nd IEEE Workshop on Mobile Computing

Systems and Applications, pages 90–100, New Orleans, LA, USA, February 1999.

[PR03] Judea Pearl and Stuart Russell. Michael A. Arbib (Ed.) Bayesian Networks,

The Handbook of Brain Theory and Neural Networks. MIT Press, 2nd edition,

2003.

[PRB98] J. Pascoe, N. S. Ryan, and P. J. Brown. Context aware: the dawn of sentient

computing? GPS World, 9(9):22–30, September 1998.

[PRJ04] J. Payton, G.-C. Roman, and C. Julien. Context Sensitive Data Structures

Supporting Software Development in Ad Hoc Mobile Settings. In Proceedings of

the 3rd International Workshop on Software Engineering for Large-Scale Multi-

Agent Systems (SELMAS’2004), pages 34–41, Edinburgh, Scotland, UK, May

2004.

222

Bibliography

[PRM98] J. Pascoe, N. S. Ryan, and D. R. Morse. Human Computer Giraffe Interaction:

HCI in the Field. In Proceedings of Workshop on Human Computer Interaction

with Mobile Devices, University of Glasgow, United Kingdom, May 21-23 1998.

[PRM99] Jason Pascoe, Nick Ryan, and David Morse. Issues in Developing Context-

Aware Computing. In H.-W. Gellerson, editor, Proceedings of Handheld and

Ubiquitous Computing: First International Symposium, HUC’99, Lecture Notes

in Computer Science 1707, pages 208–221, Karlsruhe, Germany, September 1999.

Springer Verlag Berlin Heidelburg.

[RAMC04] Anand Ranganathan, Jalal Al-Muhtadi, and Roy H. Campbell. Reasoning about

Uncertain Contexts in Pervasive Computing Environments. IEEE Pervasive

Computing, 3(2), April-June 2004.

[RB01] P. Reinbold and O. Bonaventure. A Comparison of IP Mobility Protocols. Tech-

nical Report Infonet-TR-2001-07, University of Namur, June 2001.

[RC00] Manuel Román and Roy H. Campbell. GAIA: Enabling Active Spaces. In

Proceedings of 9th ACM SIGOPS European Workshop, pages 229–234, Kolding,

Denmark, September 17-20 2000.

[RC02] Manuel Román and Roy H. Campbell. A User-Centric, Resource-Aware,

Context-Sensitive, Multi-Device Application Framework for Ubiquitous Com-

puting Environments. Technical Report UIUCDCS-R-2002-2284 UILU-ENG-

2002-1728, University of Illinois at Urbana-Champaign, 2002.

[RC03a] Anand Ranganathan and Roy H. Campbell. A Middleware for Context-Aware

Agents in Ubiquitous Computing Environments. In Proceedings of ACM/I-

FIP/USENIX International Middleware Conference, Rio de Janeiro, Brazil,

June 16-20 2003.

[RC03b] Anand Ranganathan and Roy H. Campbell. An infrastructure for context-

awareness based on first order logic. Personal and Ubiquitous Computing,

7(6):353–364, December 2003.

223

Bibliography

[RHC+02] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan,

Roy H. Campbell, and Klara Nahrstedt. Gaia: A Middleware Infrastructure to

Enable Active Spaces. IEEE Pervasive Computing, 1(4):74–83, Oct-Dec 2002.

[Rho97] B.J. Rhodes. The wearable remembrance agent: a system for augmented mem-

ory. In Proceedings of 1st International Symposium on Wearable Computers,

pages 123–128, Cambridge, Massachusetts, USA, October 1997.

[RJD99] N.S. Ryan, J.Pascoe, and D.R.Morse. FieldNote: a Handheld Information Sys-

tem for the Field. In R.Laurini, editor, Proc. TeleGeo’99, 1st International

Workshop on TeleGeoProcessing, pages 156–163. Claude Bernard University of

Lyon, May 1999.

[RMCM03] Anand Ranganathan, Robert E. McGrath, Roy H. Campbell, and M. Dennis

Mickunas. Ontologies in a Pervasive Computing Environment. In Proceedings of

Workshop on Ontologies and Distributed Systems (part of the 18th International

Joint Conference on Artificial Intelligence IJCAI 2003), Acapulco, Mexico, Au-

gust 9 2003.

[RPM97] N. Ryan, J. Pascoe, and D. Morse. Enhanced Reality Fieldwork: the Context-

Aware Archaeological Assistant. In: Computer Applications in Archaeology,

Gaffney, V., van Leusen, M., Exxon, S. (eds.), 1997.

[Rya99] Nick Ryan. ConteXtML: Exchanging Contextual Information between a Mobile

Client and the FieldNote Server, August 1999.

[RZC03] Manuel Román, Brian Ziebart, and Roy Campbell. Dynamic Application Com-

position: Customizing the Behavior of an Active Space. In Proceedings of IEEE

International Conference on Pervasive Computing and Communications (Per-

Com 2003), Dallas-Fort Worth, Texas, USA, March 23-26 2003.

[Saf97] Paul Saffo. Sensors: The next wave of infotech innovation. On-Line: Available

http://www.saffo.com/sensors.html, 1997.

224

Bibliography

[Sat96] M. Satyanarayanan. Fundamental challenges in mobile computing. In Sympo-

sium on Principles of Distributed Computing, pages 1–7, 1996.

[SAT+99] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela,

Kristof Van Laerhoven, and Walter Van de Velde. Advanced interaction in con-

text. In H.W. Gellersen, editor, Proceedings of First International Symposium

on Handheld and Ubiquitous Computing (HUC99), volume 1707 of LNCS, pages

89–101. Springer-Verlag, September 1999.

[Sat01] M. Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Per-

sonal Communications, 8(4):10–17, August 2001.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-Aware Computing Appli-

cations. In Proceedings of 1st IEEE Workshop on Mobile Computing Systems

and Applications, Santa Cruz, CA, US, December 8-9 1994.

[SB98] A. Schmidt and M. Beigl. There is More to Context than Location. In Proceedings

of the International Workshop on Interactive Applications of Mobile Computing,

Rostock, Germany, November 1998.

[SDA99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. The Context Toolkit:

Aiding the Development of Context-Enabled Applications. In Proceedings of the

1999 Conference on Human Factors in Computing Systems (CHI), Pittsburgh,

PA, pages 434–441, May 1999.

[SF99] Albrecht Schmidt and Jessica Forbess. What GPS Doesn’t Tell You: Deter-

mining One’s Context with Low-Level Sensors. In Proceedings of the 6th IEEE

International Conference on Electronics, Circuits and Systems, Paphos, Cyprus,

September 5-8 1999.

[Shi89] Paul A. Shirley. An Introduction to Ultrasonic Sensing. Sensors - The Journal

of Machine Perception, 6(11), November 1989.

225

Bibliography

[SSF+03] D. Siewiorek, A. Smailagic, J. Furukawa, N. Moraveji, K. Reiger, and J. Shaffer.

SenSay: A Context-Aware Mobile Phone. In Proceedings of IEEE International

Symposium on Wearable Computers, New York, NY, USA., 2003.

[SSL+02] Albrecht Schmidt, Martin Strohbach, Kristof Van Laerhoven, Adrian Friday, and

Hans-W. Gellersen. Context Acquisition based on Load Sensing. In G. Boriello

and Lecture Notes in Computer Science L.E. Holmquist (Eds)., editors, Pro-

ceedings of Ubicomp 2002, volume 2498, pages 333 – 351, Goteborg, Sweden,

September 2002. Springer Verlag.

[ST94] Bill N. Schilit and Marvin M. Theimer. Disseminating Active Map Information

to Mobile Hosts. IEEE Network, 8(5):22–32, September/October 1994.

[Ste00] Jeff Stefan. Navigating with GPS. Circuit Cellar, Issue 123, October 2000.

[STM00] Albrecht Schmidt, Antti Takaluoma, and Jani Mantyjarvi. Context-Aware Tele-

phony Over WAP. Personal Technologies, 4(4):225–229, September 2000.

[STW93] B. Schilit, M. Theimer, and B. Welch. Customising mobile applications. In

Proceedings of USENIX Symposium on Mobile and Location-Independent Com-

puting, Cambridge, MA, USA, August 1993.

[Tan96] Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, Inc., third edition,

1996.

[TK01] Hans-Rolf Trankler and Olfa Kanoun. Recent Advances in Sensor Technology.

In Proceedings of 18th IEEE Instrumentation and Measurement Technology Con-

ference, Budapest, Hungary, May 21-23 2001.

[Unk03] Unknown. The sentient office is coming. Economist Technology Quarterly,

367(8329):27, June 19th 2003.

[vDKV00] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An anno-

tated bibliography. SIGPLAN Notices, 35(6):26–36, 2000.

226

Bibliography

[Vis99] Arnoud Visser. Design and Organisation of Autonomous Systems. On-Line:

Available http://www.science.uva.nl/ arnoud/education/OOAS/, August 1999.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American,

265(3):94–104, September 1991.

[Wei93] M. Weiser. Some computer science issues in ubiquitous computing. Communi-

cations of the ACM, 36(7):74–84, October 1993.

[WHFG92] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge Location

System. ACM Transactions on Information Systems, 10(1):91–102, January

1992.

[Wil98] Svein Yngvar Willassen. A method for implementing mobile station location in

gsm. Ms thesis, Department of Telematics, Norwegian University of Technology

and Science, 1998.

[Win01] Terry Winograd. Architectures for Context. Human-Computer Interaction

(HCI) Journal, 16(2-3), 2001.

[WJH97] Andy Ward, Alan Jones, and Andy Hopper. A New Location Technique for the

Active Office. IEEE Personal Communications, 4(5):42–47, October 1997.

[Wol03] Muiris Wolfe. Smart Couch Report. Department of Computer Science, Trinity

College Dublin, 2003.

[WRW96] A. Wollrath, R. Riggs, and J. Waldo. A Distributed Object Model for the

Java System. In 2nd Conference on Object-Oriented Technologies & Systems

(COOTS), pages 219–232. USENIX Association, 1996.

[WSA+95] R. Want, W. Schilit, N. Adams, R. Gold, K. Petersen, D. Goldberg, J. Ellis, and

M Weiser. An Overview of the PARCTAB Ubiquitous Computing Environment.

IEEE Personal Communications, 2(6):28–43, December 1995.

227

Bibliography

[WSA02] Huadong Wu, Mel Siegel, and Sevim Ablay. Sensor Fusion for Context Under-

standing. In Proceedings of IEEE Instrumentation and Measurement Technology

Conference (IMTC), Anchorage, AK, USA, May 2002.

[WSSY02] Huadong Wu, Mel Siegel, Rainer Stiefelhagen, and Jie Yang. Sensor Fusion

Using Dempster-Shaefer Theory. In Proceedings of IEEE Instrumentation and

Measurement Technology Conference (IMTC), Anchorage, AK, USA, May 2002.

[Wu03] Huadong Wu. Sensor Data Fusion for Context-Aware Computing Using

Dempster-Shafer Theory. PhD thesis, The Robotics Institute, Carnegie Mel-

lon University, December 2003.

[XTB+03] K. Xu, K. Tang, R. Bagrodia, M. Gerla, and M. Bereschinsky. Adaptive Band-

width Management and QoS Provisioning in Large Scale Ad Hoc Networks. In

Proceedings of IEEE Military Communications Conference (MILCOM), Boston,

MA, USA, October 2003.

[ZR97] H. Ziv and D. Richardson. Bayesian-network confirmation of software testing

uncertainties. Technical report, University of California, Irvine, 1997.

228

