
Modelling Event Systems for AmI Applications Using
an Aspect Middleware Platform1

Lidia Fuentes1, Daniel Jimenez1, and René Meier2

1 Dpto de Lenguajes y Ciencias de la computación. Blvard Louis Pasteur 35,

29071 Malaga, Spain
2 Distributed Systems Group, Department of Computer Science,

Trinity College Dublin, Ireland
{lff, priego}@lcc.uma.es, rmeier@cs.tcd.ie

Abstract. The development of a communication service is one of the most
difficult and important challenges when developing Ambient Intelligence (AmI)
applications. Since AmI applications must be able to react to external events,
event-based communication is a natural way to disseminate such events
amongst all interested AmI components. A wide range of diverse event systems
have been developed for addressing the problems on specific domains.
Although AmI applications may benefit from the features of many of these
event systems, middleware platforms for AmI applications typically support
just one event system. Interconnecting different event systems in a multilateral
inter-working federation will provide a homogeneous interface to access the
specific services and features offered by each event system. This work presents
an integration example of heterogeneous event systems in a homogeneous way
through the use of an Aspect Oriented Middleware platform.

Keywords: AO Middleware, Aspects, Federated Event Systems.

1 Introduction

Ambient Intelligence applications (or AmI) are distributed and loosely coupled in
nature which makes it difficult to develop effective communication mechanisms for
them. The ISTAG [1] has identified the ubiquitous communication feature as one of
the main properties of AmI applications. This means that every device should be able
to communicate with others in the environment using one or more communication
mechanisms. In particular, portable devices inside an AmI environment often react
based on events (e.g. lighting devices wait to receive an event that notifies of the
presence of a person in a room), therefore the event-based communication mechanism
seems to be the most natural way to distribute these events amongst all AmI
components that must be notified about them.

1 This work is partially financed by IST-2-004349-NOE AOSD-Europe and the Spanish

Ministry of Technology and Science, CICYT, under grant TIN2005-09405-C02-01.

Several event systems exist and some of them have been successfully used to
implement ubiquitous computing applications. Each one of these event systems
provides solutions to specific domains and problems. For example, Siena [2] is used
for wide area event communication. STEAM [3] was developed for facilitate the
communication of vehicles in proximity and includes soft real time guaranties. CNS
[4] is able to add multiple features to the event system such as QoS, event filtering,
security or alternative event transmission modes (push and pull). Although AmI
applications could benefits from many of them, most middleware platforms for AmI
normally only consider the use of just one event system. By defining a federated event
system (or FES) providing a single access point to services offered by different event
systems, AmI applications can choose a specific event service to adapt to very
different situations.

However, to develop a FES system providing a homogeneous interface is not a
trivial task. The first challenge is that it is not always possible to perform a perfect
event adaptation from one system to another due to the differences in event models.
The second challenge is to provide a mechanism capable of handling the evolution of
event systems over time. This evolution can be caused due both to technological and
to application requirement changes. This means that the FES must support the
addition of new event systems or the modification of existing ones. Finally, the last
challenge comes from the dynamic nature of the event system. An event system must
be able to react to new events at runtime, thus it is also necessary to provide a
mechanism capable of reacting to event types not considered by the event system.

Based on our previous experiences refactoring applications using the Aspect
Oriented Software Development (or AOSD) technology [5], we have developed an
AO middleware Platform, called AOPAmI (Aspect Oriented Platform for AmI) [6]).
This paper shows how the AOPAmI platform can be effectively applied to solve the
problems previously presented and to develop flexible FES applications.

The rest of this paper is structured as follows. In section 2 we discuss the benefits
and problems of using the FES and the benefits derived from introducing aspects.
Section 3 presents an overview of the AOPAmI platform. Section 4 presents and
example modelling the FES using AOPAmI. Finally, the last section contains our
conclusions and future work.

2 Towards a Federated Event System

Event based middleware is applied nowadays in a growing number of different
application domains including finance, telecommunications, smart environments,
health care and entertainment. The use of event systems allows the integration of
heterogeneous applications in an anonymous and scalable way, due to the properties
inherent in event systems [7]. These event systems provide a wide range of services,
such as QoS, filtering, or real-time guaranties. However, the problem of integrating
different event systems in order to use their services in a multilateral inter-working
and federated way has not been widely considered by researchers that are more
interested in provide solutions for some particular application domains.

2.1 The Motivating Example

Throughout this paper, we will show the design of a traffic monitoring (TM)
application. This application detects when vehicles in a certain locality are circulating
at an inappropriate speed. When this fact is detected, the application sends a warning
to the driver, represented in the system by a Vehicle application, to correct his
behaviour. If the undesiderable behaviour persists, after a prudential time the vehicle
identification is registered and the driver will be fined by the monitoring application.

The problem here is that we can not force every car vendor to use the same event
system to send the required data. So, a FES would provide an elegant solution to the
heterogeneity problem associated with the use of different event systems for the
application developer and it does not force vendors to adopt a pre-arranged event
system.

Another problem that can be solved using a FES is system scalability. Let us
consider that the TM application has a limited capability of processing events. A
possible approach to solving this problem is to provide support for content filtering on
each event system. This is not always possible however because not all event systems
support event filtering. Additionally, if we allow an event filtering service in the
Vehicle application, the user could manipulate it to avoid paying a fine. The solution
is to implement this filter service in the FES application and in this way to determine
which events will be finally processed by the application.

2.2 Related Work

Several authors such as [7] and [8] have proven that it is possible to build federations
of event systems. But the solutions proposed by them present a series of flaws that
make them not entirely appropriate for implementing the proposed example.

Table 1. FES comparative table.

Feature\Event System CNStoJMS bridge FES AOPAmI
Supported Event systems 2 N N

Event type support All CNS and JMS events Subset of events Any event

Adding of new Event systems No Yes (Limited) Yes

Runtime reconfiguration N/A No Yes

We have identified a set of features in order to compare different approaches,

including our own. These features are shown in Table 1. Firstly, the number of
supported event systems indicates the FES applicability. Secondly, the event type
support indicates how many events are mapped between event models and the FES
event model. Thirdly, we indicate whether is possible or not the addition of new
events to the federation. Finally, we describe if the FES has the ability to reconfigure
itself at runtime. I.e., whether it is able to enable, disable, add or remove event
systems or features, such as filtering, at runtime for the purpose of saving resources.
Considering the lessons learned from previous works, we have found that a FES must
include at least three main features.

− It must provide an event translation mechanism between systems. This
mechanism must translate events from and to the event model of any target event
system in the federation. But it is not always possible to provide a perfect
adaptation from an event system to another as was shown in [9].

− A FES should have the capacity to integrate new event systems transparently and
that these event systems do not notice that they are part of a federation.

− FES services should be applied to any event system in the federation using the
FES event model. Imagine the benefits of providing a set of services for an event
system that originally did not support them. For example we could use STEAM
for communicating vehicles but add the filter and security services (from CNS)
without modifying the original event system or even define a FES service that
can be used by all the federated event systems.

<DeviceProfile id="PDAProfile">
 <property type="STRING" value="Java" name="target_lang"/>
 <property type="STRING" value="J2ME" name="version_lang"/>
 <property type="NUMERIC" value="2048" name="mainmemory"/>
 <property type="NUMERIC" value="128000" name="storagememory"/>
 <property type="STRING" value="ion-litium" name="batteryType"/>
 <property type="NUMERIC" value="8" name="batteryAutonomy"/>
 <property type="BOOLEAN" value="false" name=" batteryControl "/>

...
</DeviceProfile>

Base Elements
Repository

<platformArchitecture>
 <baseElements>
 <baseElement role="Communication">
 <providedInterface>
 <interface name="providedInt">
 <message name="recv">...</arg></message>
 <message name="send">...<arg name="to" type="Object"></arg></message>
 </interface>
 </providedInterface>
 ...
 <impls selected="default"><impl id="default" mainclass="Communication1"/></impls>
 </baseElement>
 <baseElement role ="Location">...</baseElement>
 <baseElement role ="batteryManager">
 <guard><comparation property="batteryControl" operation="=" value="true"/></guard>
 ...</baseElement>
 ... </baseElements>
 <properties>
 <property name="deviceID" type="String" value="Vehicle"/>
 <property name="locationData" type="Object[]"/>
 ... </properties>
 <compositionRules>
 <bind-pointcut>
 <from><baseElementRef role="Communication"/></from>
 <method-pointcut name=”send(.., null)”/>
 <advice-aspect type=”BEFORE_SEND”>
 <concurrent><baseElement role=”Location” method=”updateLocation”></concurrent>
 </advice-aspect>
 </bind-pointcut>
 ... </compositionRules>
 <applicationArchitecture>...</applicationArchitecture>
 <instanciateBaseElements>
 <instanciateBaseElement role="batteryManager">
 <guard><comparation property="batteryControl" operation="=" value="true"/></guard>
 </instanciateBaseElement>
 <instanciateBaseElement role="Location"/>
 <instanciateBaseElement role="Communication"/>
 ...</instanciateBaseElements>
</platformArchitecture>

AOPAmI Microkernel

Platform Loader

Base Element Factory

Device Profile Manager

AOPAmI-DSL Manager

Base Element Container

 Location

Coordination

Adaptation

Persistence

Communication

...

b

a

c

Fig. 1. AOPAmI Platform Architecture.

3 The AOPAmI Middleware Platform

Since AOPAmI is an AO middleware platform (AOM), some of the common
services (e.g. location) will be plugged into the platform as aspects. The AOPAmI
platform is a symmetric AOM, so the platform architecture is defined in terms of a set
of baseElements and a set of aspectual composition rules (ACR). This means that if
the baseElement is used to intercept and modify the normal platform execution, it will
be composed following an ACR. The main benefit of this is that a base element could
act both, as a component or as an aspect in the same or different applications. In order

to decouple platform baseElements the platform architecture is specified separately in
a domain specific language (AOPAmI-DSL) based on XML (see Fig. 1 (a)). In this
section we will show an overview of this language and the microkernel, which
manages the base elements of the platform.

3.1. The AOPAmI-DSL Language

The AOPAmI-DSL schema, shown on Fig. 1 (a), has five main parts. The first one
(baseElements tag) contains a description of the provided and required interface of the
base elements used by the platform. Notice that each base element is identified by a
role name. This is an architectural name that will be used to identify components
instead of using an implementation interface or class name. Doing this the platform
can replace any base element by other versions which provide equivalent functionality
when needed, even at runtime. Secondly, the properties tag is used to define data that
has to be shared by any base element in the platform. Properties are used to solve data
dependencies between baseElements in an elegant and simple way (e.g. the
locationData containing the accessible devices is produced by the Location
baseElement and consumed by the Communication baseElement).

Thirdly, in order to increase base elements reuse we define the composition rules
separately from base elements definition and implementation code. The
compositionRules tag, describes the set of ACR that models the aspectual
relationships among base elements. The composition rule shown in Fig. 1 (a) specifies
that before the Communication baseElement sends an event, the Location
baseElement will intercept this method invocation and update the list of location
devices that will receive such event. Taking a look at the rule (the from tag) indicates
which base element will be affected by this rule (the Communication baseElement).
Next, the name attribute in the method-pointcut tag indicates which point in the
platform execution flow is being intercepted by the rule. In the example, any call to
the method send in the Communication base element, but only if the last argument of
the method is a null value. This argument represents a component destination and a
null value means that an event is being sent. This fact is expressed in an AspectJ-like
syntax, since this aspect language is the best-known and most used [11]. The advice
in AspectJ terminology designates the behaviour that will be executed when the
execution point is reached, and the type designates when (e.g before sending a
message, before receiving a message, after sending a message, …). The type attribute
on the advice-aspect tag in the example is BEFORE_SEND meaning that this rule
will be evaluated before the Communication base element executes the send method.
The advice-aspect tag indicates that the behaviour executed is the updateLocation
method of the Location baseElement. This method updates a platform property,
named locationData, which contains the list of valid destinations for the event. After
this, the send method is finally executed in the Communication element. Inside this
method, the locationData property is retrieved and used to send the event to the
interested remote devices.

The advantage of describing composition rules in this way is that we can model
different platform behaviours depending on the method used to communicate with
remote devices. Imagine that the platform uses a communication element that only

sends events to a fixed number of devices. In this case we can reuse the same PA
simply by appropriately initialising the locationData property and removing the ACR.
Another example is if we need to remove some of the remote device references
obtained by the Location base element. In this case, we only need to add the
description of a filter base element and to modify the rule indicating that it will be
evaluated after the Location element. This second aspect will access the locationData
property and remove the undesired entries before the send method is executed. The
use of this property is declared as part of the baseElement interface.

The fourth section, the applicationArchitecture tag, describes the application
configuration that is executed using the AOPAmI platform. This configuration can
model a component and aspect based application or simply an object-oriented one.

Finally, the instantiateBaseElements tag, describes which base elements will be
initially instantiated by the platform and the instantiation order. Note that is possible
to use guards that allow us to specify conditions for instantiating a baseElement. In
our example the batteryManager baseElement will be created only if the device
profile property batteryControl (described later) is true. The benefit of specifying the
PA in this DSL is that the developer simply has to instantiate an XML schema instead
of coding these rules as part of base elements as was usually the case. Therefore the
platform (platform Loader entity Fig. 1 (b)) will interpret this file without the need of
code generation, which is less error-prone.

3.2. The AOPAmI Microkernel

The AOPAmI platform has been developed following the idea of a microkernel. The
microkernel term describes a form of operating system design in which the amount of
code that must be executed in privileged mode is maintained to an absolute minimum.
As a consequence, the rest of services are built as independent modules that are
plugged and executed by the kernel. In this way, we obtain a more modular and
reusable system. The AOPAmI microkernel contains the set of components that are
considered the minimum implementation of the AOPAmI platform. It is designed to
act as a core on top of which baseElements can be added according to the ACRs.

When the AOPAmI platform starts, the Platform Loader is instantiated as is shown
in Fig. 1. This component parses both the Device Profile (c) and PA (b) using the base
element repository to choose the appropriate base element implementations specified
in the AOPAmI-DSL. The AOPAmI can be tailored according to the restrictions
imposed by the device. The device capabilities are described in a device profile by
means of a collection of attributes such as, the amount of memory, the screen
availability, or the communication protocols that the device supports (consider the
batteryControl example we described in the previous section).

The architectural information loaded by the Platform Loader is then managed by
the AOPAmI-DSL Manager. This component offers services to update the platform
architecture which allow the platform deployer to add, delete or replace platform base
elements even at runtime, without having to change the software installed. Finally,
this component is unloaded from the platform to regain some memory.

The rest of the components manage the baseElements of the platform. The Base
Element Factory instantiates new baseElements using the description provided by the

PA. The Base Element Container manages the life cycle of base elements (destruction
and access), and finally, the Device Profile Manager maintains a list of platform
properties including those defined by the device profile.

4 A FES For AOPAmI

As shown in the previous section, the AOPAmI platform provides a simple
communication system able to send and receive messages or events. In order to
endow the platform with a more sophisticated communication system we studied
several event systems (STEAM, Siena and CNS among others). Since each of them
provides very useful distinguishing features for AmI environments like soft real time
or communication of vehicles in proximity, we decided to define a FES. A description
of the challenges encountered while developing such system can be found in [9].

Adding a service (in this case a new communication system) to AOPAmI is
normally as simple as developing a set of base elements, specifying the necessary
composition rules and defining the new platform architecture in AOPAmI-DSL as
was shown in the previous section. Therefore, in order to implement a FES we first
have to consider which set of event systems are to be integrated, then decompose
them into a set of base elements, and finally, specify ACRs when necessary.

After our experience modelling a FES prototype [9], we have realized that most
event systems have to be decomposed into three different concerns in order to be
effectively integrated into the AOPAmI platform.

Vehicle 1

(CNS)

Vehicle 2
(STEAM)

Vehicle 3
(Siena)

Traffic

Monitoring
Application
(AOPAmI)

 <baseElements>
 <baseElement role="STEAMCommunication">...</baseElement>
 <baseElement role="STEAMLocation">...</baseElement>
 <baseElement role="Coordination">...</baseElement>
 ...</baseElements>
 ...
 <compositionRules>
 <bind-pointcut>
 <from><baseElementRef role="STEAMCommunication"/></from>
 <method-pointcut name=”send(..,null)”/><advice-aspect type=”BEFORE_SEND”>
 <concurrent><baseElement role=”STEAMLocation” method=”getLocation”></concurrent>
 <concurrent><baseElement role=”Coordination” method=”eval”></concurrent>
 </advice-aspect>
 </bind-pointcut>
 <bind-pointcut>
 <from><baseElementRef role="Coordination"/></from>
 <method-pointcut name=”send(..,”SienaCommunication”)”/>
 <advice-aspect type=”BEFORE_SEND”>
 <concurrent><baseElement role=”SienaLocation” method=”getLocation”></concurrent>
 </advice-aspect>
 </bind-pointcut>
 </compositionRules>

Wireless Connection

Fig. 2. The partial architecture of the FES.

1. Communication Concern. This concern implements the primitives to send and
receive events using the event system communication protocols, and also to
translate these events to the FES event format. They can be considered wrappers.

2. Location concern. Any application participating in an event system must be
localized. This concern is not a geographical location system, although it could
handle this kind of information, but a concern that is able to gather, store and
retrieve information about how to communicate with remote applications.

3. Finally, the Coordination concern is in charge of communication between
platform and the application level, which decides what to do with the delivered
events. This concern takes platform context information and the own event
contents into account in order to disseminate new events or discard received ones
orchestrating the FES.

Following the example presented in section 2, and the general description of the
AOPAmI platform provided in section 3, we are going to describe how these base
elements are combined to implement the TM application and the advantages derived
from that FES implementation. We have developed a set of communication base
elements that wrap up each event system being integrated (e.g.
STEAMCommunication base element). Let us suppose that a vehicle sends a STEAM
event to the TM application containing data about the vehicle speed. In the platform
the STEAMCommunication element will receive this event. After receiving the event,
the element translates it to the FES event model and throws an AOPAmI event
containing the original event as an argument. In order to throw this event the element
executes the send method. The ACR that composes this base element with the rest of
the platform and application components is shown in Fig. 2.

The ACR states that when the STEAMCommunication element (from tag) throws
an event (method-pointcut tag), before executing the send method (advice-type tag), a
set of aspects will be evaluated in sequence (concurrent tags put in sequence). The
first element, STEAMLocation, is evaluated as an aspect and executes the
getLocation method. This method recovers the location information belonging to the
remote device that sent the event and adds it to the event properties which will be
used later. The Coordination element is the second aspect evaluated and it executes an
eval method, which takes decisions about what to do with the received event. In our
example, the TM application sends warnings or fines the drivers if they exceed a
maximum speed limit. All these decisions are taken by the entities at the application
level that use the Coordination element as a bridge between themshelves and the FES.

Now, let us suppose that the Coordination element receives an event, from any of
the Communication base elements, indicating a speed which is greater than the
application speed limit. In this case, the application, using the Coordination element
sends back a warning message to the original vehicle and takes note of the vehicle
location and identification. This message is sent directly to the appropriate
Communication base element by the Coordination element (because this information
was contained within the original event). Additionally, the message contains the
location information needed to send it to the offending vehicle. This information was
recovered by the Coordination element from the original event properties. Thus, we
do not need to define a new ACR to model this behavior. Notice that the decision tree
used by the Coordination element to model this behavior can be encoded using state
transition diagrams encoded as an XML file. The conditions that determine which
transitions to execute are associated to the incoming events and the Coordination
element state. This makes it possible encode complex Coordination behaviors and to
modify the Coordination element behavior even at runtime, thus solving the dynamic
adaptation challenge mentioned in the first section. This approach is superior to the
one proposed by [10] because we do not hardcode these rules into classes but in an
independent file.

Now let us suppose that the Coordination element evaluates a second event from a
previously warned vehicle. In this case, the vehicle must be registered and fined.
Where the offending vehicle is using the Siena event system, the Coordination
element sends a message to the SienaCommunication element. In this case we will
need an ACR, the second one shown in Fig. 2, to compose the SienaCommunication
with the SienaLocation element, in order to obtain a valid location to which to send
the event, as that information is not available to the Coordination element.

 <baseElements>
 <baseElement role="SpeedFilter">
 <impls selected="default">
 <impl id="default" mainclass="BE.SpeedFilter">
 <params>
 <param id="speed_limit” value="60"/>

...
 </params>
 </impl>
 </impls>
 </baseElement>
 ... </baseElements>
 ...
 <compositionRules>
 <bind-pointcut>
 <from><baseElementRef role="STEAMCommunication"/></from>
 <method-pointcut name=”send(.., null)”/>
 <advice-aspect type=”BEFORE_SEND”>
 <concurrent>
 <baseElement role=”STEAMLocation” method=”getLocation”>
 </concurrent>
 <concurrent><baseElement role=”SpeedFilter” method=”filter”></concurrent>
 <concurrent><baseElement role=” Coordination” method=”eval”></concurrent>
 </advice-aspect>
 </bind-pointcut>
 ...</compositionRules>

public class SpeedFilter extends DefaultBaseElement{
 long SPEED_LIMIT=0;

 public SpeedFilter() {}

 public void configure(String[][] args){
 try{
 for(int i=0;i<args.length;i++){
 if(args[i][0].equals("speed_limit")) SPEED_LIMIT=Long.parseLong(args[i][1]);
 else{ } //Rest of configuration parameters.
 }
 } catch (Exception ex) {ex.printStackTrace();}
 }

 public SystemEvent filter(SystemEvent evt){
 try{
 Argument arg=evt.getArg("speed");
 long value=(Long)arg.getValue();
 if(value>SPEED_LIMIT) return evt;
 else return null; //Return a null value indicates an evaluation error.
 } catch (Exception ex) {
 ex.printStackTrace();
 return null;
 }
 }
}/*End of class*/

b a

Fig. 3. Modified example.

After examining the previous example we have noticed a possible design flaw
related to the application scalability. The Coordination element processes all delivered
events independently whether they have to be processed or not by the application.
Adding a SpeedFilter element able to discard speed events which include invalid
speed information seems to be a good solution to this problem. To integrate this base
element into the existing application, we add its description to the PA and modify the
first CR as is shown in Fig. 3 (a). If we examine carefully the implementation of the
SpeedFilter base element, shown in Fig. 3 (b), we notice that we have moved all the
event checking code from the Coordination element to the SpeedFilter element, thus
simplifying its implementation. We also notice that the speed limit is encoded as a
base element initialization parameter which is used when the element is instantiated.
As a consequence, we obtain more reusable SpeedFilter and Coordination base
elements. Finally, we have introduced a new service in the FES that can be used by
any integrated event system.

5 Conclusions

Our work has shown the benefits associated with the modelling of a FES
communication service in AmI applications using aspects. The main claims of our
approach are that adding new event systems to the FES modelled in AOPAmI is as
easy as adding the appropriate base elements and ACR to the PA without modifying
the application source code. This FES is flexible enough to handle both the

technological and the requirement application evolution and finally AOPAmI
provides a mechanism to dynamically adapt the application to unforeseen events
through the PA and the coordination base element. This has been possible thanks to
the use of the aspect orientation paradigm in the platform.

Notice that this approach does not try to obtain the definitive FES, but provide a
solution to easily accommodate new event systems in an existing FES application. In
order to validate our proposal we have implemented a FES prototype using AOPAmI
and perform simulations using different computers and event systems configurations.
The prototype implementation was limited to the event systems used by the original
application but nothing prevent us for integrating other event system models such as
the web service notification models described by OASIS WS-Notification [12].

As future work, we are refining the AOPAmI platform implementation and
working on a set of tools to automate, test and validate the Platform Architecture and
facilitate the application development and deployment.

References

[1] ISTAG web site: http://www.cordis.lu/ist/istag.htm
[2] Siena web site: http://serl.cs.colorado.edu/siena/
[3] Meier, R., Cahill, V.: STEAM: Event-Based Middleware for Wireless Ad Hoc Networks,

Procd of the Int. Workshop on Distributed Event-Based Systems (ICDCS/DEBS'02),
Vienna, Austria, (2002)

[4] Object Management Group, CORBAservices: Common Object Services Specification -
Notification Service Specification, Object Management Group.

[5] AOSD web site: http://www.aosd.net/
[6] Fuentes, L., Jimenez, D. Pinto, M.: Development of Ambient Intelligence Applications

using Components and Aspects, Journal of Universal Computer Science, Volume. 12, Issue
3, Thomson (2006) 236-251

[7] Ryan, C., Meier, R., Cahill, V.: Federating Heterogeneous Event Services, In Procd. of the
3rd Int. Workshop on Distributed Event-Based Systems (ACM/IEEE ICSE/DEBS'04),
Edinburgh, Uk, (2004)

[8] Aleksy, M., Schader, M., Schnell, A.: Design and Implementation of a Bridge between
CORBA’s Notification Service and the Java Message Service, University of Mannheim,
Germany, Procd. of the 36th Int. Conference on System Sciences, (2003)

[9] Fuentes, L., Jimenez, D. Meier, R.: Implementation of an AmI Communication Service
Using a Federated Event System Based on Aspects, Proc. of the 1 Int. Workshop on
Software Engineering of Pervasive Services (SEPS 2006), Lyon, France, (2006)

[10] Frei, A.,Popovici, A., Gustavo, A.: Eventizing Applications in an Adaptive Middleware
Platform. IEEE Distributed System Online, vol. 5, nº4, (2005)

[11] [AspectJ] Kickzales, G., et Al,: Aspect-Oriented Programming. European Conference on
Object Oriented Software Development (ECOOP’97), Jyväskylä, Finland, (1997)

[12] OASIS WS-Notification: http://www.research.ibm.com/journal/sj/444/niblett.html

