Optimizing Interpreters for
Processors with Branch Target Buffers

M. Anton Ertl} TU Wien
David Gregg, Trinity College Dublin

2002-03-16

Abstract

Interpreters designed for efficiency execute a huge number of indi-
rect branches and can spend more than half of the execution time in in-
direct branch mispredictions. Branch target buffers are the best widely
available form of indirect branch prediction; they produce 50%—100%
mispredictions for existing interpreters. In this paper we investigate
three methods for improving the prediction accuracy of interpreters:
replicating virtual machine (VM) instructions, combining sequences of
VM instructions into superinstructions, and using separate dispatch
branches for the two outcomes of conditional VM machine branches.
In their extreme form these techniques eliminate all mispredictions
except those caused by VM-level indirect branches. Applying these
techniques in a more conservative way reduces the mispredictions to
about 20%. We have measured speedups by factors of 1.75-3.16 on
current processors from these techniques.

1 Introduction

Different programming language implementation approaches provide differ-
ent tradeoffs with respect to the following criteria:

*Correspondence Address: Institut fiir Computersprachen, Technische Universitét
Wien, Argentinierstrale 8, A-1040 Wien, Austria; anton@mips.complang.tuwien.ac.at

e Fase of implementation
e Portability (Retargetability)
e Compilation Speed

e Execution Speed

Interpreters are a popular language implementation approach that can be
very good at the first three criteria, but has an execution speed disadvantage:
an interpreter designed for efficiency typically suffers a factor of ten slowdown
for general-purpose programs over native code produced by an optimizing
compiler [HATvdW99].! In this paper we investigate how to improve the
execution speed of interpreters.

Existing efficient interpreters perform a large number of indirect branches
(up to 13% of the executed instructions). Mispredicted branches are expen-
sive on modern processors (e.g., they cost about 10 cycles on the Pentium 111
and Athlon and 20 cycles on the Pentium 4). As a result, interpreters can
spend more than half of their execution time recovering from indirect branch
mispredictions [EG01]. Consequently, improving the indirect branch predic-
tion accuracy has a large effect on interpreter performance.

The best indirect branch predictor in widely available processors is the
branch target buffer (BTB). Many current desktop and server processors
have a BTB or similar structure: Pentium—Pentium 4, Athlon, Alpha 21264.
BTBs mispredict 50%—63% of the executed indirect branches in threaded-
code interpreters and 81%-98% in switch-based interpreters [EGO01].

In this paper, we look at software ways to improve the prediction accuracy.
The original contributions in this paper are: 1) We introduce virtual machine
instruction replication for increasing the prediction accuracy (Section 4.2).
2) We empirically evaluate how replication and other techniques affect BTB
and instruction cache performance (Section 6). 3) We also present a method
to compute the expected number of conflict misses in a direct-mapped BTB
or cache (Section 5.2).

'For library-intensive special-purpose programs the speed difference is usually much
smaller. Not all interpreters are designed for efficiency on general-purpose programs and
some may produce slowdowns by a factor > 1000 [RLV*96]. Unfortunately, many peo-
ple draw incorrect general conclusions about the performance of interpreters from such
examples.

2 Background

2.1 Efficient Interpreters

This section discusses how efficient interpreters are implemented. We do
not have a precise definition for efficient interpreter, but the fuzzy concept
“designed for good general-purpose performance” shows a direct path to
specific implementation techniques.

If we want good general-purpose performance, we cannot assume that the
interpreted program will spend large amounts of time in native-code libraries.
Instead, we have to prepare for the worst case: interpreting a program per-
forming large numbers of simple operations; on such programs interpreters
are slowest relative to native code, because these programs require the most
interpreter overhead per amount of useful work.

To avoid the overhead of parsing the source program repeatedly, efficient
interpretive systems are divided into a front-end that compiles the program
into an intermediate representation, and an interpreter for that intermediate
representation; this design also helps modularity. This paper deals with the
efficiency of the interpreter; the efficiency of the front-end can be improved
with the established methods for speeding up compiler front-ends.

To minimize the overhead of interpreting the intermediate representation,
efficient interpretive systems use a flat, sequential layout of the operations (in
contrast to, e.g., tree-based intermediate representations), similar to machine
code; such intermediate representations are therefore called virtual machine
(VM) codes.? Efficient interpreters usually use a VM interpreter, but not all
VM interpreters are efficient.

The interpretation of a VM instruction consists of accessing arguments of
the instruction, performing the function of the instruction, and dispatching
(fetching, decoding and starting) the next instruction. Dispatch is common
to all VM interpreters and (as we will see in Section 6.3) can consume most
of the run-time of an interpreter, so this paper focuses on dispatch.

Dispatching the next VM instruction requires executing one indirect branch
to get to the native code that implements the next VM instruction. In ef-
ficient interpreters the machine code for simple VM instructions can take
as few as 3 native instructions (including the indirect jump), resulting in

2The term wirtual machine is used in a number of slightly differ-
ent ways by various people; we wuse the meaning in the first item of
http://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?virtual+machine.

typedef enum {
add /* ... x/
} Inst;

void engine()

{
static Inst program[] = { add /* ... */ };

Inst *ip = program;
int *sp;

for (5;)

switch (xip++) {

case add:
spl1]=sp[0]+sp[1];
spt+;
break;

/* ... %/

}

Figure 1: VM instruction dispatch using switch

a high proportion of indirect branches in the executed instruction mix (we
have measured up to 13% for the Gforth interpreter and 11% for the Ocaml

interpreter).
There are two popular VM instruction dispatch techniques:

VM Code VM instruction routines

imul Machine code for imul
iadd k‘ Dispatch next instruction
ladd Machine code for iadd

Dispatch next instruction

GNU C Alpha assembly

next_inst = *ip; 1ldq s2,0(sl) ;load next VM instruction

ip++; addq s1,0x8,s1 ;increment VM instruction pointer
goto *next_inst; jmp (s2) ;jump to next VM instruction

Figure 2: Threaded code: VM code representation and instruction dispatch

Switch dispatch uses a large switch statement, with one case for each
instruction in the virtual machine insturction set. Switch dispatch can
be implemented in ANSI C (see Fig. 1), but is not very efficient.

Threaded code represents a VM instruction as address of the routine that
implements the instruction [Bel73]. In threaded code the code for
dispatching the next instruction consists of fetching the VM instruc-
tion, jumping to the fetched address, and incrementing the instruction
pointer. This technique cannot be implemented in ANSI C, but it
can be implemented in GNU C using the labels-as-values extension.
Figure 2 shows threaded code and the instruction dispatch sequence.
Threaded code dispatch executes fewer instructions, and provides bet-
ter branch prediction (see Section 3).

2.2 Branch Target Buffers

CPU pipelines have become longer over time, in order to support faster clock
rates and out-of-order superscalar execution. Such CPUs execute straight-
line code very fast; however, they have a problem with branches, because they
are typically resolved very late in the pipeline (stage n), but they affect the
start of the pipeline. Therefore, the following instructions have to proceed
through the pipeline for n cycles before they are at the same stage they
would be if there was no branch. We can say that the branch takes n cycles
to execute (in a simplified execution model).

address of _~| predicted target
branch instruction

Figure 3: Branch Target Buffer (BTB)

To reduce the frequency of this problem, modern CPUs use branch pre-
diction and speculative execution; if they predict the branch correctly, the
branch takes little or no time to execute. The n cycles delay for incorrectly
predicted branches is called the misprediction penalty. The misprediction
penalty is about 10 cycles on the Pentium III, Athlon, and 21264, and about
20 cycles on the Pentium 4.

The best predictor for indirect branches in widely available CPUs is the
branch target buffer (BTB). An idealised BTB contains one entry for each
branch and predicts that the branch jumps to the same target as the last time
it was executed (see Fig. 3). The size of real BTBs is limited, resulting in
capacity and conflict misses. Many current CPUs have a BTB-style predictor,
e.g. Pentium—Pentium 4, Athlon, Alpha 21264.

Better indirect branch predictors have been proposed [DH98a, DH98b,
DH99, KK98, KK99], but have not been implemented yet in widely available
hardware, and it is not clear, if and when they will be available. We expect
that optimizations targeting BTBs will be useful for at least the next decade
(even BTBs are not universally available yet).

3 Interpreters and BTBs

Ertl and Gregg investigated the performance of several virtual machine in-
terpreters on several branch predictors [EG01] and found that BTBs mispre-
dict 81%-98% of the indirect branches in switch-dispatch interpreters, and
57%-63% of the indirect branches in threaded-code interpreters (a variation,
the so-called BTB with two-bit counters, produces slightly better results for
threaded code: 50%-61% mispredictions).

What is the reason for the differences in prediction accuracy between the
two dispatch methods? The decisive difference between the dispatch methods
is this: A copy of the threaded code dispatch sequence is usually appended
to the native code for each VM instruction; as a result, each VM instruction

switch dispatch threaded code
VM BTB next instruction BTB next instruction
program entry prediction actual | entry prediction actual
label:
A switch A B br-A LOOP B
B switch B A br-B A A
A switch A GOTO | br-A B GOTO
GOTO label | switch GOTO A br-GOTO A A

Figure 4: BTB predictions on a small VM program

has its own indirect branch. In contrast, with switch dispatch all compilers
we have tested produce a single indirect branch (among other code) for the
switch, and they compile the breaks into unconditional branches to this
common dispatch code. In effect, the single indirect branch is shared by all
VM instructions.

Why do these mispredictions occur? Consider the VM code fragment in
Fig. 4, and imagine that the loop has been executed at least once.

With switch dispatch, there is only one indirect branch, the switch branch,
and consequently there is only one BTB entry involved. When jumping to
the native code for VM instruction A, the BTB entry is updated to point to
that native code routine. When the next VM instruction is dispatched, the
BTB will therefore predict target A; in our example the next instruction is
B, so the BTB mispredicts. The BTB now updates the entry for the switch
instructions to point to B, etc. So, with switch dispatch the BTB always
predicts that the current instruction will be executed next, which is rarely
correct.

For threaded code, each VM instruction has its own indirect branch and
BTB entry (assuming there are no conflict or capacity misses in the BTB);
e.g., instruction A has Branch br-A and BTB entry br-A, etc. So, when VM
instruction B dispatches the next instruction, the same target will be selected
as on the last execution of B; since B occurs only once in the loop, the BTB
will always predict the same target: A. Similarly, the branch of the GOTO
instruction will also be predicted correctly (branch to A). However, A occurs
twice in our code fragment, and the BTB always uses the last target for the
prediction (alternatingly B and GOTO), so the BTB will never predict A’s
dispatch branch correctly.

IF_NULL:

branch_offset = *ip++;

if (top_of_stack == NULL) {
ip = ip + branch_offset;
goto *ip++;

X

else {
goto *ip++;

¥

Figure 5: Replicating the dispatch code in VM branch instructions

We will concentrate on interpreters using separate dispatch branches in
the rest of the paper.

4 Improving the Prediction Accuracy

Generally, as long as a VM instruction occurs only once in the working set of
the interpreted program, the BTB will predict its dispatch branch correctly,
because the instruction following the VM instruction is the same on all ex-
ecutions. But if a VM instruction occurs several times, mispredictions are
likely.

The exception to this rule are conditional and indirect VM branch in-
structions; for these VM instructions the next executed VM instruction can
vary, leading to possible mispredictions even when the VM instruction occurs
only once in the working set.

4.1 Conditional VM Branches

Conditional VM branches have two possible following VM instructions, one
on the fall-through path, and one on the branch-taken path. By using dif-
ferent indirect branches for these two cases we can make the dispatch of
conditional VM branches as predictable as the dispatch of regular, non-
branching VM instructions. This optimization can be easily performed by
moving the dispatch code up into the if-statement that updates the VM
instruction pointer (see Fig. 5).

[F_NULL label

A

label: B
Figure 6: Branching example
threaded code

VM BTB next instruction
program entry prediction actual
label:
Ay br-A; B B
B br-B A2 A2
A, br-A, GOTO GOTO
GOTO label | br-GOTO Ay Ay

Figure 7: Improving BTB prediction accuracy by replicating VM instructions

Figure 6 shows a small section of VM code containing a branch. Let
us assume that this VM code section is executed many times, and that the
branch condition is true every second time the code is executed. Thus, on
half the executions, the next VM instruction to be executed after IF_NULL
is A, and on the other half B. If the implementation of IF_NULL contains
only a single dispatch routine, then the BTB entry for the indirect branch
in that routine will always contain the wrong value. Where it should predict
B, it will predict A, and vice versa. On the other hand, if there are separate
dispatch routines, as shown in Fig. 5, there will be separate indirect branches,
and thus separate BTB entries. In this case, the BTB will always predict the
dispatch branches correctly (except for BTB misses).

4.2 Replicating VM Instructions

In order to avoid having the same VM instruction several times in the working
set, we can create several versions of the same instruction. We copy the code
for the VM instruction, and use different copies in different places. If a
copy occurs only once in the working set, its branch will predict the next
instruction correctly.

Figure 7 shows how replication works in our example. There are two

copies of the VM instruction A now, A;, and A,. Each of these copies
has its own dispatch branch and its own entry in the BTB. Because A; is
always followed by B, and A is followed by GOTO, the dispatch branches
of A1 and A, always predict correctly, and there are no mispredictions after
the first iteration while the interpreter executes the loop (except possibly
mispredictions from capacity or conflict misses).

There are two ways to implement this replication optimization:

Static: The static approach produces copies of popular VM instructions at
interpreter build time. The interpreter’s front end chooses one of the
available copies of a VM instruction each time it generates that VM
instruction.

Two plausible ways to choose the copy come to mind: round-robin
(i.e., always choose the statically least-recently-used copy) and random.
Round-robin should work better if the static code generation order
correlates with the dynamic execution order (it does so at least within
basic blocks); we tried both approaches in our simulator, and achieved
better results for round-robin, so we use that in the rest of the paper.

Dynamic: The front end of the interpretive system generates the copies
during VM code generation. l.e., it copies the machine code that im-
plements a VM instruction and lets the threaded code pointer point to
the new copy. In this way each static occurence of the VM instruction
gets its own copy.

To avoid getting too much code growth and the resulting instruction
cache misses, the front end might reuse some copies for several static oc-
curences of VM instructions. However, if several reuses of the same copy
occur in the working set, this may help the I-cache, but it will probably
result in additional mispredictions; conversely, if no such reuses occur
in the working set, the reuses may reduce the overall code size, but will
not reduce I-cache misses.

One problem with the dynamic approach is that it can only copy code
that is relocatable; i.e., it cannot copy code, if the code fragment con-
tains a PC-relative reference to something outside the code fragment
(e.g., a 386 call instruction), or if it contains an absolute reference to
something inside the code fragment (e.g., a MIPS j(ump) instruction).

10

threaded code
VM BTB next instruction
program entry prediction actual
label:
A br-A B_A B_A
B_A br-B_A GOTO GOTO
GOTO label | br-GOTO A A

Figure 8: Improving BTB prediction accuracy with superinstructions

The disadvantages of the static approach are: It requires substantial
memory and time during the compilation of the interpreter to provide many
copies, limiting the practical number of additional copies to a few thousand.
These copies are selected once for all programs, whereas a different selection
may be better for a specific interpreted program.

The disadvantages of the dynamic approach are: It requires (a small
amount of) platform-specific code, in particular cache-flushing code, but pos-
sibly other special features (e.g., on MIPS it might have to ensure that the
copies are in the same 256MB region as the original code to ensure that the J
and JAL instructions continue to work). And it cannot copy non-relocatable
VM instructions.

4.3 Superinstructions

Combining several VM instructions into superinstructions is a technique that
has been used for reducing VM code size and for reducing the dispatch and
argument access overhead in the past [Pro95, PR98, HATvdW99].

In this paper we investigate the effect of superinstructions on dispatch
mispredictions; in particular, we find that using superinstructions reduces
mispredictions far more than it reduces dispatches or executed native in-
structions (see Section 6.3).

In Figure 8 we have combined the sequence B A into the superinstruction
B_A. This superinstruction occurs only once in the loop, and A now also
occurs only once, so there are no mispredictions after the first iteration while
the interpreter executes the loop.

There are two approaches to using superinstructions:

Static: The static approach (used in, e.g., vimgen [EGKPO02]) determines

11

the available superinstructions at interpreter build time; the interpreter
writer selects a number of superinstructions that are useful for many
programs and implements them in the VM interpreter (possibly with
automatic support). The interpreter’s front end combines the appro-
priate sequences of VM instructions into these superinstructions.

Dynamic: The dynamic approach [PR98| generates the superinstructions
needed for the particular interpreted program in the front end of the
interpretive system. The front end copies the machine code for each
component instruction of the superinstruction, concatenating them to
form the machine code for the superinstruction; the dispatch code of
the component instructions is left away, except for the last instruction
in the superinstruction. Piumarta and Riccardi proposed combining
whole VM-level basic blocks into superinstructions.

The disadvantages of static and dynamic replication also apply to static
and dynamic superinstructions. In addition, these approaches have the fol-
lowing advantages:

The static approach enables machine code optimizations crossing compo-
nent instruction boundaries; in particular, much of the overhead of accessing
VM instruction arguments can be eliminated, and the native code for the
superinstruction can be scheduled for best performance.

An advantage of the dynamic approach is that the superinstructions fit
the interpreted program exactly, so fewer superinstructions are executed.

4.4 Combining the optimizations

Combining these three optimizations reveals a few synergies:

e [t is actually easier to use dynamic superinstructions with dynamic
replication than to use dynamic superinstructions without replication.
Eliminating additional copies of the superinstrution takes an additional
step; this step was proposed to conserve program memory and reduce
I-cache misses [PR98], but our results indicate that it is not a good
idea on processors with BTBs.

e Using two dispatches for conditional VM branches makes it easy to ex-
tend superinstructions beyond conditional branches: The fall-through
dispatch must be arranged as the last part of the VM instruction; then

12

the dispatch can be replaced by the code for another instruction just
as usual; the branch-taken dispatch is not eliminated and is executed
when necessary.

5 Experimental Setup

5.1 The Simulator

In addition to building, running and timing interpreters with some of these
optimizations, we used a simulation approach; the advantages are:

e We can simulate a variety of BTB sizes, including the ideal (infinite)

BTB.

e We avoid interference from such mostly-random effects as scheduling
variations, optimization variations (e.g., register spills), cache and BTB
conflicts.

e We can simulate interpreters that we cannot build on our machines due
to memory constraints (e.g., more than 2000 static superinstructions).

e The simulator is easier to implement and use, allowing us to evaluate
more variations.

The disadvantage of our simulation approach is that the results are only
indirect metrics such as mispredictions and instruction cache misses instead
of the metric of interest: execution time. Therefore, we also implemented
these techniques in an interpreter and used it to produce timing results (see
Section 6.3).

We built the simulator by adding instrumentation code to the Gforth
interpreter. Every time the interpreter executes a VM instruction, it calls
a routine that simulates the effect of this VM instruction on the BTB and
the instruction cache. The interpreter passes the VM instruction pointer and
a branch taken/not-taken flag (for conditional branches) to the simulation
routine.

To simulate VM instruction replication, the simulation actually keeps a
shadow copy of the executed program where the opcodes of the VM instruc-
tions are replaced by IDs of the various copies of the VM instruction. Simi-
larly, superinstructions are simulated by having an ID for the superinstruc-

13

tion as shadow copy of the last VM instruction, and IDs for “no instruction”
as shadow copies of the other instructions in the superinstruction.

We validate the simulator by comparing the number of simulated mis-
predictions of the Brainless benchmark to the number of taken mispredicted
events on the Athlon when running the benchmark with the original Gforth
interpreter. The results are very close to each other: the Athlon counted
1.1% more mispredicted taken branches than our simulator counted dispatch
branch mispredictions; the explanation for this difference is that there are
taken branches that are not dispatch branches (mainly conditional branches).

5.2 Expected Misses

All of our optimizations increase the number of indirect branches and the
code size. Therefore, the number of capacity and conflict misses in finite
BTBs and instruction caches is also likely to increase, and this increase might
compensate some of the increased prediction accuracy.

In order to quantify these effects, we also want to produce the number
of expected misses. These structures typically have a low associativity, and
simulating such a structure directly would introduce mostly-random effects
from conflict misses and such effects could mask some of the more subtle
effects in the results.

Therefore, we compute a statistical number of expected misses in a direct-
mapped BTB or cache. The probability of a hit in a direct-mapped BTB
or cache with n entries/lines is ((n — 1)/n)* if k& different entries have been
accessed since the last time the item of interest was accessed.

So, the simulator maintains a move-to-front array of the most recent
accesses, and another array R that counts how often the k™ most recent item
was accessed. In the end the simulator can compute the expected number of
hits for a structure of size n like this:

%:Rk (n—l)k

n

5.3 Benchmarks

We use the following programs as benchmarks: Gray, a parser generator
processing an Oberon grammar; Vmgen, an interpreter generator processing
the Gforth VM; and Bench-gc, a program exercising a conservative garbage

14

mispredictions

1 -
plain
0.51
repl.
0.2
0.1 superinst
superinst repl.

0) i T T .
256 | 1K | 4K | 16K | 64K | BTB entries
512 2K 8K 32K Inf

Figure 9: Mispredictions per original dispatch for Bench-gc

mispredictions

1 -
plain
0.51
repl.
0.2 superinst
0.11 superinst repl.

0 T T T T .
256 | 1k | 4k | 16k | eak | BTBentres
512 2K 8K 32K Inf

Figure 10: Mispredictions per original dispatch for Gray

collector. We used Brainless, a chess program, as training program for static
replication and static superinstructions.

6 Results

6.1 Limits

Figures 9, 10, and 11 show how the eight possible combinations of our three
optimizations (optimizing conditional VM branches, replication, and using

15

mispredictions

1 -
plain
0.51
repl.
0.2 inst
014 superins
superinst repl.

0 ’ T T T .
256 | 1k | 4k | 16k | eak | BTBentres
512 2K 8K 32K Inf

Figure 11: Mispredictions per original dispatch for Vmgen

superinstructions) affect the branch prediction accuracy. We chose the ex-
treme forms of replication and superinstructions for this experiment:

Each occurence of a VM instruction in the interpreted program uses a
separate copy of that VM instruction. Combined with the conditional VM
branch optimization this should eliminate all mispredictions except those
caused by indirect VM branches. And indeed it does; the remaining mis-
predictions (3.4%-7.9% in our benchmarks) are nearly all caused by VM
procedure returns (i.e., an indirect VM branch)?.

For superinstructions we combined each basic block into a superinstruc-
tion, just like the dynamic method would.

In Figs. 9-11 you see four pairs of lines; the difference between the two
lines of each pair is the use or non-use of the conditional VM branch opti-
mization. The conditional VM branch optimization results in a small im-
provement in mispredictions independent of the other optimizations. We
look only at configurations with this optimization in the rest of this paper.

Code replication produces the least number of mispredictions for large
BTBs, but produces a large number of conflict misses for small BTBs, unless
superinstructions are used, too. Current BTB sizes are 512 entries (Pentium—
Pentium III), 1024 entries (Alpha 21264), 2048 entries (Athlon), and 4096
entries (Pentium 4).

3This large proportion of mispredictions in returns is caused by the large number of
executed returns in our benchmarks; in Forth code, 12%—17%of the dynamically executed
instructions are returns [Ert95].

16

misses
1 -

——repl.
-—--superinst repl.
----superinst
0.51 — plain

021"
0.14- ™

0 s — T T
256 | 1K | 4K | 16K | 64K |
512 2K 8K 32K Inf

I-Cache lines

Figure 12: I-cache misses per original dispatch for Bench-gc

Superinstructions improve the prediction accuracy over the original in-
terpreter significantly, but replication is better for large BTBs.

The minimum number of mispredictions is achieved by combining all three
optimizations.

However, we also have to consider the change in [-cache misses. Figure 12
gives a rough idea of the I-cache misses for Bench-gc; this figure assumes that
each VM instruction or superinstruction occupies exactly one cache line.

Typical I-caches today have 512 (Pentium III) or 1024 lines (Athlon,
21264). An I-cache miss that hits the L2 cache costs about the same as
a branch misprediction (around 10 cycles). An I-cache line (32 bytes on
Pentium III, 64 bytes on Athlon and 21264) can typically contain 2-3 simple
VM instructions and correspondingly fewer superinstructions, so in reality
we will probably see fewer misses for Plain and Repl than shown in Fig. 12.

We see that I-cache misses can be a significant problem with small I-
caches, in particular for the two replication variants. However, if we also con-
sider the improvement in prediction accuracy, replication-based approaches
still work better than their non-replicating counterparts for the benchmarks
and configurations we used.

6.2 Static methods

To reach the limits explored above the interpreter must be able to copy all
virtual machine instructions at run-time and/or combine them into superin-

17

structions. This may not be possible for some VM instructions, and it may
not be desirable for portability reasons. What can we achieve with methods
that work at interpreter generation time?

We measured three basic configurations (all with the conditional VM
branch optimization):

Repl. Have n copies of VM instructions that are executed k times in the
training run, n = 1 + |k/c|. Various constants ¢ result in interpreters
with varying numbers of additional VM instructions. In the front-
end we use a round-robin scheme for selecting the copy to use when
compiling a VM instruction.

Superinst The m most frequent sequences of VM instructions in the train-
ing run become superinstructions.

Superinst repl. A combination of Superinst and Repl.: Do a training run
with a Superinst interpreter and then replicate normal VM instructions
and superinstructions like in Repl. We use a balance of about 5:3
between (original) superinstructions and replicas in our experiments.

Figure 13 shows how these methods perform on Gray with an unlim-
ited BTB (the other benchmarks perform similarly). Superinst performs
relatively well with few additional VM instructions, but Repl. dominates if
many additional VM instructions are available. Superinst repl. takes a mid-
way position.

Our explanation for the domination of Repl. over the Superinst-based
methods in the right part of Fig. 13 is that the benefit of Repl. transfers
better between the training program and the reference program, whereas
the superinstructions we selected were apparently too specific to the training
program. Using several training programs should avoid that.

Overall, with several thousand additional VM instructions the mispredic-
tions can be reduced to 6%-13% of the original dispatches. With a more
realistic setup of using several hundred additional VM instructions, there are
13%-26% mispredictions.

The dominance of Repl. reverses itself on small BTBs (see Fig. 14), where
it causes too many conflict misses. Here Superinst repl. dominates.

18

mispredictions
1 -

----superinst
—— superinst repl.
—repl.

054

0.2+
0.1+

0= T T — added VM instructions
50 200 800 3200

Figure 13: Static methods: mispredictions of an unlimited BTB per original
dispatch for Gray

mispredictions
1 -

----superinst
——-superinst repl.
—repl.

0.5 -

0.2 1 T~

0.1+

0= T T — added VM instructions
50 200 800 3200

Figure 14: Static methods: mispredictions of a 512-entry BTB per original
dispatch for Gray

6.3 Real world results

We have implemented some of these techniques in Gforth, and compare the
following variants:

Original: Classical threaded code, with separate dispatch routines for the
two outcomes of conditional branches.

Static superinsts: Original, with 400 static superinstructions from a brain-
less training run added.

19

time

1.01
gray
051 vmgen
bench-gc
0.0 T ,
static superinsts | superinst repl.
original repl.

Figure 15: Relative execution time of various techniques on a Celeron

Repl.: Original with dynamic replication.

Superinst repl.: Original with dynamic superinstructions and replication.

Figure 15 shows the run-time of various benchmarks on a Celeron; the
results on an Athlon are similar. Both dynamic techniques provide more
speedup than static superinstructions. For Gray and Vmgen the small
speedup of static superinstructions is mostly caused by a current limitation
in the implementation: currently the static superinstruction optimization is
not applied to library code, and these benchmarks spend a lot of time in
library code.

Figure 16 shows the reason for these speedups: they are caused mainly by
better branch prediction, and to a smaller part by a reduction in executed in-
structions. In particular, Repl executes the same number of instructions and
branches (just different copies), so the factor 2.41 of speedup is exclusively
from better branch prediction. Once the mispredictions are under control,
reducing the number of executed instructions can provide further speedups.

We also took a look at the number of I-cache misses, but they were
negligible (at worst (repl.) 68000 I-cache misses compared to more than
2000000 remaining mispredictions). This is better than expected from the
simulation. The reasons for this difference are: several VM instructions fit
in each cache line, putting less pressure on the cache than assumed by the

20

1.0

instructions*221M

054 °

" taken branches*43M
cycles*451M

" S taken branches mispredicted*43Mm

static superinsts | superinst repl.
original repl.

Figure 16: Performance-relevant events during Bench-gc execution

simulation; the I-cache is four-way set associative, whereas the simulation
assumed a direct-mapped cache; and there is spatial locality between the
instructions that the simulation does not take into account.

7 Related work

The accuracy of static conditional branch predictors has been improved with
software methods: branch alignment [CG94] and code replication [Kra94,
YS94, YGS95]. The present paper looks at using software methods to im-
prove the accuracy of the BTB, a simple dynamic indirect branch predictor.

Better indirect branch predictors than BTBs have been proposed in a
number of papers [DH98a, DH98b, DH99, KK98, KK99] and they work well
on interpreters [EGO1], but they are not available in hardware yet, and it
will probably take a long time before they are universally available.

There are a number of recent papers on improving interpreter perfor-
mance [Pro95, Ert95, PR9I8, SC99]. Software pipelining the interpreter [HA0O,
HATvdW99] is a way to reduce the branch dispatch costs on architectures
with delayed indirect branches (or split indirect branches).

Ertl and Gregg [EGO1] investigated the performance of various branch
predictors on interpreters, but did not investigate means to improve the
prediction accuracy beyond threaded code.

21

Papers dealing with superoperators and superinstructions [Pro95, PR98,
HATvdW99, EGKP02] concentrated on reducing the number of executed dis-
patches and sometimes the VM code size, but have not evaluated the effect
of superinstructions on BTB prediction accuracy (apart from two paragraphs
in [EGKPO02]). In particular, Piumarta and Riccardi invested extra work to
avoid replication (in order to reduce code size), but this increases mispredic-
tions on processors with BTBs.

8 Conclusion

If a VM instruction occurs several times in the working set of an interpreted
program, a BTB will frequently mispredict the dispatch branch of the VM
instruction. We present three techniques for reducing mispredictions in in-
terpreters: using two indirect branches for the two outcomes of a conditional
VM branch (easy to implement, but gives only minor benefits); replicating
VM instructions, such that hopefully each replica occurs only once in the
working set; and combining sequences of VM instructions into superinstruc-
tions.

In their extreme form the combination of these techniques work very
well and eliminate all mispredictions except those from indirect branches.
Replication on its own may cause many conflict misses in small BTBs and
small I-caches, but combined with superinstructions it performs well even
in such environments. The speedup resulting from the better prediction
accuracy alone is 1.44-2.41 on a Celeron, and the total speedup is 1.75-3.16.

This extreme form may not be available for technical or portability rea-
sons, so we also look at alternatives that do not require run-time code gener-
ation: With a few hundred replications and superinstructions determined at
interpreter build time, the number of mispredictions can be reduced to about
20% of the original dispatches. The speedup from static superinstructions is
less impressive than for the dynamic techniques (1.38 for bench-gc and 400
static superinstructions).

The simulator we used will be available at
http://www.complang.tuwien.ac.at/anton/interpreter-btb/.

22

References

[Bel73]

[CG94]

[DHO8a]

[DHOSb)]

[DH99)]

[EGO1]

[EGKP02]

[Ert95]

[HAOO]

James R. Bell. Threaded code. Communications of the ACM,
16(6):370-372, 1973.

Brad Calder and Dirk Grunwald. Reducing branch costs via
branch alignment. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VI), pages 242—
251, 1994.

K. Driesen and U. Holzle. Accurate indirect branch prediction.
In Proceedings of the 25th Annual International Symposium on
Computer Architecture (ISCA-98), pages 167-178, 1998.

K. Driesen and U. Holzle. The cascaded predictor: Econom-
ical and adaptive branch target prediction. In Proceedings of
the 31st Annual ACM/IEEFE International Symposium on Mi-
croarchitecture (MICRO-31), pages 249-258, 1998.

Karel Driesen and Urs Holzle. Multi-stage cascaded prediction.
In EuroPar’99 Conference Proceedings, volume 1685 of LNCS,
pages 1312-1321. Springer, 1999.

M. Anton Ertl and David Gregg. The behaviour of efficient
virtual machine interpreters on modern architectures. In Furo-
Par 2001, pages 403-412. Springer LNCS 2150, 2001.

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd
Paysan. vmgen — a generator of efficient virtual machine in-
terpreters. Software—Practice and Ezperience, 32(3):265-294,
2002.

M. Anton Ertl. Stack caching for interpreters. In SIGPLAN
95 Conference on Programming Language Design and Imple-
mentation, pages 315-327, 1995.

Jan Hoogerbrugge and Lex Augusteijn. Pipelined Java vir-
tual machine interpreters. In Proceedings of the 9th In-
ternational Conference on Compiler Construction (CC” 00).
Springer LNCS, 2000.

23

[HATvdW99] Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum, and Rik

[KKOg]

[KK99]

[Kra94|

[PROS]

[Pro95]

[RLV*96]

[SC99]

[YGS95]

van de Wiel. A code compression system based on pipelined
interpreters. Software—Practice and Experience, 29(11):1005—
1023, September 1999.

J. Kalamatianos and D. R. Kaeli. Predicting indirect branches
via data compression. In Proceedings of the 31st Annual
ACM/IEEE International Symposium on Microarchitecture
(MICRO-31), pages 272-284, 1998.

John Kalamatianos and David Kaeli. Indirect branch predic-
tion using data compression techniques. Journal of Instruction
Level Parallelism, December 1999.

Andreas Krall. Improving semi-static branch prediction by
code replication. In Conference on Programming Language
Design and Implementation, volume 29(7) of SIGPLAN, pages
97-106, Orlando, 1994. ACM.

[an Piumarta and Fabio Riccardi. Optimizing direct threaded
code by selective inlining. In SIGPLAN ’98 Conference on
Programming Language Design and Implementation, pages

291-300, 1998.

Todd A. Proebsting. Optimizing an ANSI C interpreter
with superoperators. In Principles of Programming Languages
(POPL °95), pages 322-332, 1995.

Theodore H. Romer, Dennis Lee, Geoffrey M. Voelker, Alec
Wolman, Wayne A. Wong, Jean-Loup Baer, Brian N. Ber-
shad, and Henry M. Levy. The structure and performance of
interpreters. In Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-VII), pages 150-1509,
1996.

Vitor Santos Costa. Optimising bytecode emulation for Pro-
log. In LNCS 1702, Proceedings of PPDP’99, pages 261-267.
Springer-Verlag, September 1999.

Cliff Young, Nicolas Gloy, and Michael D. Smith. A compar-
ative analysis of schemes for correlated branch prediction. In

24

[YS94]

22" Annual International Symposium on Computer Architec-
ture, pages 276-286, 1995.

Cliff Young and Michael D. Smith. Improving the accuracy
of static branch prediction using branch correlation. In Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS-VI), pages 232-241, 1994.

25

