Proving PSN after ruining a perfectly good
calculus

Shane O Conchtir
December 6, 2006

Abstract

We prove that a modified version of Kesner and Lengrand’s Alxr cal-
culus has the property of preservation of strong normalisation (PSN) of
B-reduction. The proof uses a general technique due to Lengrand and a
slight adaptation of his proof of PSN for Alxr. In other work, our proof
will be used to prove PSN for another calculus.

Introduction

Alxr [6, 5] is an explicit substitution calculus which is a sound and complete
computational counterpart to the intuitionistic part of the Proof Nets of Linear
Logic [4]. It is also the first published explicit substitution calculus to our knowl-
edge to enjoy the properties of confluence, preservation of strong normalisation
(PSN), and full composition of substitutions.

Alxr builds partly on work by David and Guillaume on the A\, calculus [2].
The A5 calculus allowed a level of composition of substitutions whilst retaining
PSN and was one of the first explicit substitution calculi which satisfied step-
by-step simulation of g-reduction, confluence on terms with metavariables, and
PSN.

Terms in Alxr are linear and weakenings and contractions are used to allow
this. This linearity avoids many problems where composition of substitutions
usually break PSN such as the needless copying of an explicit substitution.
Ferndndez and Mackie [3] explored these notions in earlier work.

In this paper, we modify one of the reduction rules of Alxr to define a new
calculus Ablxr and prove that it also has the PSN property. This latter calculus
is not interesting in its own right but we show in other work [12] that it can
simulate reduction of another calculus Ag,p due to Milner [10]. We then use
Ablxr to prove PSN for this calculus.

In Section 1, we summarise the Alxr calculus and introduce Ablxr. The proof
of PSN is presented in Section 2. The proof is based on Lengrand’s general
strategy for proving PSN through simulation in AI (extended with a ‘memory
construct’) and his proof of PSN for Alxr [9]. Our modification of Axr could be
described as ruining the calculus as we make it unnecessarily more complicated.
Interestingly, we also have to introduce some inelegance into the original proofs
to prove PSN for Ablxr.



1 Summary of Alxr

We only summarise the details of Alxr necessary for the proof. The reader is
referred to the original works [6, 5] for a proper introduction.
The set of terms of Alxr is defined (with a slight change of notation) by

to=ax | Aot | tt | t{lx:=t) | Wo(t) | CL*(t)

The constructor t(z := wu) denotes an explicit substitution & la Axge. The
constructor W (t) is an explicit weakening and the constructor C¥*(t) is an
explicit contraction. The sets of free variables for the first four constructors are
as expected. z is free in W, (t) and C¥*(t) whereas y and z are bound in the
latter. We follow a variable convention where each bound name of a term ¢ is
distinct and different from any free names in ¢. We denote the free variables of
a term ¢t by FV(¢) and the bound variables by BV ().

We now discuss three important features in Alxr — weakenings, contractions,
and linearity of terms.

The term W,(t) is an annotated form of ¢ which states that the free variable
x does not occur free in t. As it is explicitly part of the syntax, it can play a
role in the reduction relation of Alxr and weakenings are in fact used to provide
an explicit garbage collection rule. Consider the term Wy (t)(x := u). As x does
not occur free in ¢, we may want to garbage collect the substitution. The rule
(Weakl) in Figure 2 does precisely this. Weakenings in Alxr may always be
pulled out to the top level, allowing efficient garbage collection.

Substitution in Alxr is defined with a set of distributive rules. Weakenings
also allow efficient propagation of substitutions. For example, propagating the
substitution = := u through W, (t) is pointless as no substitution can take place
and so the reduction rules do not permit this propagation.

Weakenings allow free variables to be kept through reduction. The two de-
structive rules are (Var) and (Weakl). As expected, the substitution rule (Var)
does not lose free variables. Interestingly, the garbage collection rule (Weakl)
remembers the free variables of the discarded substitution via a weakening.
Kesner and Lengrand compare this preservation of free variables to “interface
preserving” [8] in interaction nets.

Contractions in Alxr allow the linearity of terms discussed below. The term
C¥*(t) may be read as ‘¢ where y and z are z.’

Terms in Alxr may always be assumed to be linear. A term t is linear if “in
every subterm, every variable has at most one free occurrence, and every binder
binds a variable that does have a free occurrence (and hence only one)” [6]. It is
possible to translate every A-term to a (linear) Alxr term. This linearity appears
to be a large factor in allowing Alxr to retain PSN whilst having full composition
of substitutions (FCS). Substitutions are also never needlessly copied — the
(Contl) rule which copies substitutions in Alxr does so conditionally and out of
need.

The congruence axioms and reduction rules for Alxr can be found in Fig-
ures 1 and 2 respectively. Rewriting in Alxr is performed using the reduction
rules modulo the smallest congruence generated by the axioms. The congru-
ence axioms were chosen to strengthen the relationship between Alxr and Proof
Nets. In the reduction rules, the notation R% (¢), where ® and A are finite lists
(with no repetition) of distinct variables and equal length, denotes the result of



CuU(CRv(t)  =a Cu(CY (1)) if z #y,v
CE=(t) =c1.  Cr¥(t)
CLZ(CL* (1) =ca,  CPHCLT() ety & #yz
W (Wy (1)) =c,  Wy(Wa(t))
Homo)ly=u) =5  tyi=uwiz=v) ify¢FV()&s ¢ FV(w)
Lx#y
CY=(t)(x :=v)  Zcontz CY*(t{x:=v)) if x #wky,z ¢ FV(v)
Figure 1: Congruences for Alxr
(Ax.t)u —p t(x = u)
System x
(Ay.t){x = u) — Abs Ay.t{z == u)
(tu)(z := P) — Appl t(z := P)u x € FV(t)
(tu)(z := P) — App2 tu{x := P) x € FV(u)
x(x:=1t —Var t
W (t) (@ == u) —Weakt  Wrv(u)(t)
Wy (t)(z = u) — Weak2 Wy(t{z :=u)) x#y
tz:=P)y:=Q) —comp t{z:=Ply:=Q)) y € FV(P)
CyP=(t)(z = u) —Contl C?,’H(t(y =wuy1){z :=ug)) where
®:=FV(u)
up = RR (u)
uy = R¥(u)
System r
Ax. Wy (t) —woabs  Wy(Az.t) xF#y
Wy (t)u —w appt Wy (tu)
tWy(u) —w appz Wy(tu)
t(x == Wy (u)) —w subs  Wy(t{z :=u))
C¥* (W, (1)) —terge RZ (¢
C%’Z(Wm (t)) —Cross Wz(cg,’z(t)) xT 7é Y,z
Clyf()\x.t) —C Abs )\x.Cg;Z(t)
CY*(tu) —cappt CY*(t)u y,z € FV(t)
CH* (tu) —capp2 tOY*(u y,z € FV(u)
CoHF(tlr==u))  —csws tz:=CY*(u)) y,z € FV(u)

Figure 2: Reduction rules for Alxr




simultaneously replacing x € ® in t with y € A where both variables occur as
the i*" variable in their respective lists. The meta-notation Wevy () and C’,ﬁ AL
denotes multiple weakenings and contractions — the order is irrelevant up to
congruences =c¢g, and =¢,, .

Many of the reduction rules of Alxr (especially in System r) deal with pulling
weakenings outwards and pushing contractions inwards. Linearity of terms
means that substitutions are not replicated during propagation through a term
unless a contraction is reached in which case the substitution is duplicated and
the copies renamed to maintain linearity (Contl). Besides these rules, the main
familiar ones are substitution introduction (B), copying (Var), and explicit
garbage collection (Weakl). There is one reduction rule for explicit composi-
tion of substitutions (Comp). This rule only takes care of the case y € FV(P)
but the other case y € FV(t) is taken care of by the =g congruence (assuming
linearity and the variable convention). This allows Alxr FCS.

Lemma 1. —, is strongly normalising [5].

1.1 The modified calculus

Our sole modification to Alxr is by replacing the rule used to create explicit
substitutions from [-redexes, —p. We replace it with a rule which creates
two explicit substitutions instead of one where the outer substitution is always
garbage i.e. there is no free occurrence of the variable that the substitution
binds in the term.

Definition 2 (— pg;). The reduction — g is defined as the contextual closure,
modulo =, of the rule

(\z.t)u —ps Co¥ (Wa (tHx := RR(u)))) (2’ := R9(u)))
where © = FV(u) and 2’ is a fresh name.

The outer substitution (2’ := R9(u)) in the rule is always garbage. This
seems odd — why create a garbage copy of a substitution? We require this
property to prove PSN for a calculus Ag,p due to Milner [10]. The calculus
has the notion of ‘non-local substitution’ where an explicit substitution is not
propagated through a term but remains in place while being linked to the free
occurrences of its bound variable below. This property is due to the bigraphical
design of Agyp. Our proof of PSN for Ag,p is based on simulating Agyp, reduc-
tions in a Alxr-like calculus. In other work [12], we explain that in order for a
simulation to work, we require two copies of a substitution in the translation
from Agyp to Alxr — one is garbage and immobile, which provides a sort of syn-
tactic match between a term and its translation, and the other is allowed to
propagate through the term to simulate substitution. To simulate the creation
of explicit substitutions, we require the — g rule to be replaced as above.

Definition (Ablxr). We let Ablxr denote the calculus obtained from Nxr by
replacing —p with —ps. We let — \pixr denote the reduction relation of
Ablxr. —3, . denotes the reflexive and transitive closure of — \pixr-

Again, rewriting is modulo the congruence =. Ablxr is clearly less elegant
than Alxr — we have ruined it by adding in unnecessary substitutions. However,
we are interested in it as a means to a proof, not in itself. For us, it is only
important that it has the PSN property.



2 Proving PSN

We now begin the proof of PSN for Ablxr. It seems reasonable that the prop-
erty holds as Ablxr differs from Alxr only in the — g, rule which creates two
substitutions; one as normal and one which is ‘garbage’ and can not propagate
through the term. Intuitively, this does not seem to introduce new cases of infi-
nite reductions as the garbage substitution may only interact with substitutions
above it as the normal substitution can.

Our proof uses Lengrand’s strategy of proving PSN by simulating reduction
of a calculus in a version of A with memory [7]*. The proof is unsurprisingly
similar to the proof of PSN for Alxr [9]. It transpires that just as we have ruined
Alxr, we will also have to introduce some inelegance into some of the relations
and encodings that Lengrand defines.

For notational convenience, we denote the Al calculus with memory simply
as AI and refer to the original AI calculus [1] as Church’s AT calculus.

Notation. When discussing a reduction system with reduction relation R, SNg
denotes the set of strongly normalising terms and WNg denotes the set of weakly
normalising terms. —% and —>E denote the reflexive and transitive closure
of R respectively.

Definition 3. The set A; of terms of the Al -calculus is defined by
T,U :=z | \e.T | (TU) | [T, U]
where x € FV(T) for all abstractions Az.T.

Notation (A-terms). [U,Ty1,T5,...,T,] or [U, J_i] denote the term
—

[...[[UT],Ts],...,Tn). T; denotes the application Ty ... T,.

Notation (AI-contexts). C[] denotes a context with a hole. In this work,

C[M] denotes the result of filling the hole of a context with a term M such that
no free variables of M are bound by the context.

As usual, T{xz \ U} denotes the term 7" where all free occurences of x are
replaced by U. Again, we follow a variable convention so that variable capture
is avoided.

Lemma 4 (Substitutions). Given any terms T,U,V € A;, we have
T{zx\U} € A; and T{z \UHy \V} = T{y \ VH{z \ U{y \ V}} so long as

there is mo variable capture.

The reduction rules of AI are:

B QDU — T{z\U}
(r) [T,VIU — [TU,V]

Proposition 5 (Church’s Theorem). In A1,

T €SNg T € WNg, & VS CT,S € WNg,.

!This is referred to as Church-Klop’s Al-calculus in [9] and denoted as I} j in Klop’s
thesis [7].



Proof. A is a substructure of a definable extension of Church’s AI calculus.
The proof follows from Klop’s thesis [7, Corollary 1.7.5].

(More generally, Al is a regular/orthogonal, non-erasing combinatory reduc-
tion system [7]. Klop provides a further generalisation of Church’s Theorem for
this case [Ibid., Theorem 5.9.3].) O

2.1 Proof strategy

The notion of PSN is defined for any calculus which extends the syntax of the A-
calculus. Alxr (and hence Ablxr) is not an extension as the terms are required to
be linear. PSN is defined for Alxr as meaning that “every strongly normalisable
A-term is encoded into a strongly normalisable Alxr-term” [5]. We adopt this
definition and Lengrand’s proof strategy for our proof. The proof strategy is as
follows. In Section 2.2:

1. We define a relation J between Ablxr-terms and Al-terms.

2. We prove that —, is weakly simulated through J and — g is strongly
simulated through 7. Thus, strong normalisation is reflected back through
the relation w.r.t. —  \pixr and — .

In Section 2.3:
3. We define an encoding A from A-terms to Ablxr-terms.
4. We define an encoding j from A-terms to AI-terms.
5. We prove that A(t) J j(¢).
In Section 2.4:
6. We prove that j preserves strong normalisation w.r.t. —g and —gx.

We then conclude PSN: given any strongly normalising A-term ¢, j(t) is strongly
normalising (step 6) and the Ablxr encoding A(¢) is related to j(t) (step 5). As
strong normalisation is reflected back through J (step 2), it follows that A(t)
is strongly normalising.

The general proof strategy is depicted quite succinctly by Lengrand [9].

2.2 Simulation of A\blxr in A/

The proof of PSN for Alxr used a relation between Alxr terms and Aj.

Definition 6. The relation T between well-formed Nxr-terms and Ay is given
by the following rules:

tT7T tTT uIU tIT
xZx Azt AT tuI TU tZ[T,N]

N e Ag

tIT  wIU tI1T tIT __ , cpv(r)
e =uy I T{z\U} Cy*(t) TT{y \ zH{z\ =} Wa(t) T

An interesting property of this relation is that it is non-deterministic. The
fourth rule above allows arbitrary A; terms to be ‘tacked onto’ a Aj-term T
which is related to some Alxr-term ¢. This non-determinism }@)s to be accounted
for in the various proofs which is where the vector notation N comes in handy.



Example 7 (non-determinism and proof trees). Lett Z T anduZ U. The

Ap-terms which are related to (Ax.t){y := u) take the form [(Az.T){y \ U},]\_J)]
as seen by the proof tree below.

tZT
et \x.T

et T AT, ]\7'] uZU
Oa.t)(y == U) T . T, M')|{y \ U}

This last M -term is equivalent to [(A\x.T){y \ U}, ]\_j]

Generally, we will not care what the contents of M actually are. They
represent some arbitary terms added in by the relation.

This non-determinism is frequently employed to derive the terms related to
Alxr terms containing weakenings. Consider the term W, (¢) where x ¢ ¢ by
linearity. Let t Z T and = ¢ FV(T'). In order to find a term related to W,(¢) by
Z, we first have to introduce a free z into T'. This may be done as follows.

tZTT
tZ [T, x]
W.(t) I [T, ]

This relation Z turns out not to be sufficient for our proof that —pg is
strongly simulated through the relation normalisation.

Proposition 8. — g, is not strongly simulated by —>;ﬁ through I.

Proof. We will give a counterexample. Let
t=(Azpu, pIP, wIU, andtZ] [P, T:ﬂU, ?] =T.
Let o/ ¢ FV(¢) UBV(t) UFV(R). Now consider
t = (\ep)u —ps g™ (War (plz := RR (u)))) (2 := RE(u))) =¥/

where © = FV(u). We will show that there is 7" € A; such that ¢/ Z T and T
cannot —>;ﬂ—reduce to T".

By [9], R®(u) T RR(U) and RE(u) T RS(U). The general form of T’ is
given by the proof tree in Figure 3 where the subterms M? and N7 are added
by the fourth rule of Definition 6 (a change in superscript denotes a different
subterm occuring from further applications of this rule or by substitution). In

— —
particular, 7" contains an occurrence of U outside of P{z \ U}, M, or N.
We will try to simulate the reduction ¢ —pgs ¢’ in Al by starting with

—3 — — — = —

T = [[M\z.P, R|U, S] —} [(Ax.P)U, R, S] —3 [P{z\ U}, R, S]. It is not
— —

always true that U is not a subterm of R or S. However, in this case, the

— p,s reduction cannot be simulated as U is always present outside of P{x\U}

in T'. O

This counterexample is sufficient to disallow the relation Z for our purposes.
The problem is that our — g, rule creates two copies of an explicit substitution
whenever it fires. The relation Z then always introduces U as a subterm of the
A term corresponding to the garbage substitution bounded by the fresh z’.
Our solution is simply to add some redundancy into the relation Z.



tIT R (u) T RR(U)
plz == RR(u)) T P{z\ RR(U)}

p(w = RR(w) I [P{z\ R?(U)}, M']
ple = R () I [P{x\ RR(U)}, MY, Cla']

plo = RR(u)) T [P{z \ RR(U)}, M, C[a"], N']
W (plz == RE (1)) T [P{z \ RR(U)}, M",Ca’], N']
W (ple == RE (u))) T [P{z \ RR(U)}, M",C[a’], N
W (plz := RR()))(e' == RS (w)) T [P{z \ RO(U)}, M?, C[RO(U)], N
W (plz := RR(w)){a' = RS (u)) T [P{x \ RR(U)}, M?,C[RQ(U)], N*]
Co" (War(pla := RR(w)) (¢’ := R(w))) T [P{x \ U}, M C[U],TV]

C&™ (War (plw = R (w)) (' = RS (w))) T [Pz \ U}, M, C[U], N]
Figure 3: The general term related to ¢’

Definition 9. The relation J between well-formed Ablxr-terms and Ay is given
by the following rules:

tJT tJT  uwJU tIT o
PN Aot J Ax[T, x] tu J TU t J [T, N] !
tJT uJU tJT tJT x € FV(T)

e :=uy J T{x\U} Cy*(t) J T{y \ z}{z \ =} W.(t)J T

The only rule we have changed is the one for abstractions. We require that
an abstraction in a related A term carries around a free occurrence of z ‘tacked
on.” This is a redundant feature since x € FV(T) in the rule (Lengrand shows
that x € FV(¢t) and t Z T implies x € FV(T) [9]) but we require this redundancy,
having introduced it into Ablxr.

We can now prove the following properties of J. All proofs here (and sub-
sequent proofs in the following sections) are adapted from the original work [9].
For brevity, we omit some cases when they are already dealt with in that work.
When we say that a proof ‘remains the same’ we mean that the original proof
(for the original encodings/relations) suffices for any alterations we have made.

Lemma 10. Ift J M, then
1. FV(t) C FV(M)
M e Ay
x ¢ FV(t) and N € Ay impliest J M{xz\ N}
t =t impliest' J M
RE(6) 7 RE(M)

AR N S



Proof. Property (1) is proved by induction on the proof tree. The abstraction
rule does not add any free variables as € FV(t) and so x € FV(T) by the
inductive hypothesis. For this case, we have

FV(\z.t) = FV(t) \ {z} I FV(T)\ {2} = FV(\z.[T, z]).

Property (2) is also proved by induction, using Lemma 4. The new case is
shown by T € A; = [T,z] € A; = Az.[T,x] € A;. Properties (3) and (5) are
proved by induction, noting that we do not add any new free variables with
our rule. The proof of Property (4) remains the same as abstractions are not
involved in any of the congruences. O

Theorem 11 (Simulation in AI).
1. Ift JT andt — . t/, thent' T T.
2. Ift T T andt —ps t', then there is T' € A; such that t' J T’ and
T —>g7r T

Proof. We only consider the cases at the root affected by our change to Z. The
closure under context follows as in the original proof. In the following, p J P
and u J U.

— Let t = (Az.p)u —ps C(l;"y((Wz/(P@ = R?(U»))@/ = Rg(“») =t
where © = FV(p).

—5 [P{z\ULUR, S|

Figure 3 shows that ¢’ is related to this last term, replacing M with the
— — —
empty term, C' with the empty context, and N with R and S.

— Let t = (A\y.p){(z := u) — aps \y.p{x := u) =t'. By convention, y # x.

— — — —
T = [[My.[P,y], M{z \ U}, N] = [\y.[P{z \ U},y], M{z \ U}, N]. This
term is related to t’ as shown below.

pJ P uwJU
plo = w) 7 Pa\ U}
Ay-plz = u) T Ay.[P{z \ U}, y]
Nyple = u) T Mg [P\ U},y). M{z\ U}, N]
— Let t = Ax.Wy(p) —waps Wy(Ax.p) = t'. By linearity, y ¢ FV(p).
T = [\x.[P,Cly], ]\_4), x), ﬁ] This term is related to ¢’ as shown below.

pJ P
p J [P,Cly), M]
Ax.p J )\x.[P,C[y],]\—j,sc]
W,(\z.p) T Aa.[P,Cly], M, ]
W,(A\z.p) J [Az.[P,Cly], M, 2], N




— Let t = C%*(Az.p) —caps \x.C¥%*(p) = t'. By linearity, y, z # .

T = [Ae[Pa], Ml{y\ w}{z\w},N]
= D [P{y\wHz\wha), M{y\ w}{z\ w}, N]

This term is related to t' as shown below.

pJ P
Ci(p) I Ply\wi{z\w}
Az.CY%%(p) T Ax.[P{y \ wH{z\ w}, ]

Az.CL*(p) T [Py \ wi{z\ w},a], M{y \ w}{z\ w}, N]

Corollary 12. Ift J T and T € SNgr then t € SN)plxr-

Proof. Proof by contradiction [9] based on the termination of —, (Lemma 1)
and Theorem 11. O

2.3 Encoding the A-calculus in A] and Alxr

Kesner and Lengrand give an encoding of the A-calculus in Alxr.

Definition 13 ([5]). The encoding of A-terms is defined by induction as follows:

Al(zx) = x

A(QAz.t) = Az At) if x € FV(t)

A(Az.t) = e W,(A()) if x ¢ FV(t)

Atu) = C5™(RL(A®) RE(A(w))  where ® := FV(t) NFV(u)

The encoding adds only the necessary details to ensure linearity — the weak-
ening ensures that a free occurrence of x lies beneath Az and the contraction
renames the shared variables of ¢t and u so that the resulting term is linear.

Lengrand provides an encoding of the A-calculus into Aj.

Definition 14 ([9]). We encode the A-calculus into A\ as follows:

i(x) = =z

i(Ax.t) = Az.i(t) x € FV(1)
iAxt) = Axfi(t),x] = ¢ FV()
itu) = i(t)i(w)

This encoding is intended for use in Lengrand’s general strategy for proving
normalisation properties via simulation in AI. It is the most sensible encoding,
only adding anything new when required. The encoding of an abstraction Ax.t
where z ¢ FV(t) necessarily adds a free occurrence of z, required by the gram-
mar defining A;. However, we now show that 4 fails in the face of idiocy — and
we have not been very sensible in modifying Alxr!

The general proof strategy relies on the relationship A(u) J i(u). Lengrand
[9] shows that A(u) Z i(u) holds but our use of J breaks the proof in the case
where we may expect it to — in the inductive case involving an abstraction.

10



Proposition 15. There exists a A-term u such that A(u) is not related by J
to i(u).

Proof. Assume that A(t) J i(t). Let w = Az.t. Whether z € FV(t) or not,
we can not relate A(u) to i(u) using J, as the proof trees below suggest.

The simplest example is u = Az.x which can be related to Az.[z,z] but not
Az.x = i(u).

A(t) J i(t)
A(t) T i(t) At) T [i(6), 2]
N A(t) T e i), 2 WL (A1) T [i(t), 2]

e Wi (A1) T Ax.[i(t), z, x]
O
There are two clear ways to address this problem? — either redefine A or
i. The latter seems the simplest and more viable and the proof trees in the

proposition above suggest the solution — add a redundant z into both i-encodings
of abstractions.

Definition 16 ([9]). We encode the A-calculus into I as follows:

@ = a

jxt) = Ax.[j(t), ] x € FV(¢)
jAzt) = Axj(t),z,x] = ¢FV()
Jtu) = j(t)j(u)

This now allows us to prove our relationship.
Theorem 17. For any A-term u, A(u) J j(u).

Proof. By induction on u. We only treat the case u = Axz.t here. By the
induction hypothesis, A(t) J j(t). There are two subcases.

— If € FV(t) then Az.A(t) J Ax.[j(t), z] = j(u).
— If & ¢ FV(t) then Ae. W, (A(t)) T Ax.[j(t), z, z] = j(u).

This relationship can be depicted as

A-terms

A
Ablxr-terms :J> Ar.

So far, we are doing great. We have not only disfigured Alxr but also broken
two relationships; one between Alxr-terms and Aj, and the other between \-
terms and Aj. Is this enough? Unfortunately not as we have to clear up one
detail. The proof of PSN for Alxr utilised the fact that ¢ preserved strong
normalisation i.e. if ¢ € SNg then i(t) € SNg.. As we are not using 7, we need
to prove the same proposition for j.

2A personal communication from Stéphane Lengrand suggested another solution which
seems to lead to a quicker proof of PSN by reusing previous results by Klop. It involves
changing both J and 7 and is briefly discussed in Section 3.

11



2.4 The encoding j preserves strong normalisation

We prove that j preserves strong normalisation by adapting Lengrand’s proofs
with one difference. We omit the typing of A-abstractions and II-types which
his proofs take into account and concentrate on the special case with no types.
The relations G and ~~ defined below are also presented by Lengrand.

In this section, nf® denotes the set of A-terms which are in S-normal form
and nf®™ denotes the set of AI-terms which are in Sr-normal form.

Lemma 18. For any A-terms t and u,
1. FV () =FV(t)
2. jtz \j(w)} = j(t{z \ u})
Proof. By induction on t. We treat the cases of abstractions here.

1. Let t = Az.p. By the induction hypothesis, FV(j(p)) = FV(p). We treat
the case where x € FV(P). We have

FV(j(Az.p))
FV(Az.[j(p), «])
= FV([i(p), =)\ {=}
= FV(p)\{=z}
= FV(\z.p).
The case where = ¢ FV(P) is similar.

2. Proof by induction on ¢. Our alteration to j adds extra occurrences of
some variable x which are bound by an abstraction in the term and are
hence unaffected by substitution.

O

Definition 19. Let ~g, be the smallest reflexive, transitive relation on Ay
containing the relation
TRU ifU —p, T.

A term T is ~gr-related to any term which can — -reduce to it.
Definition 20. Given a Al term T, the set T™5~ is defined as
{U| T~ VAUCV}H
Proposition 21. If U —g, T then U~s~ C T~0x,

Proposition 22. IfT is strongly normalising and U € T8~ then U is strongly
normalising.

Proof. By definition, U C V —>gﬂ T. As T is strongly normalising, V' is weakly
normalising. By Proposition 5, U is strongly normalising. O

As a diagram, the proposition above reads as follows.

UQVT»T
SNWSN

Proposition 5

12



Definition 23. The @)lation G between A-terms and N -terms is given by the
following rules where t;, denotes the application ty ...ty

o b G Th i — b
Ci G e T (et E) 6i(0ent E)
tgT z € FV(T) t' G xz ¢ FV(t)
= — g
Art G Ae.T o ((Az.t)t' i) G (F(Ax.t) T" j(t)) o

tGT  NeSNg VN eTer
t G [T, N]

Gweak

Again, we have needed to make some changes to the original relation [9)].
The changes concern to the Gweak rule and we briefly explain why they were
necessary in Appendix A. Informally, we allow Gweak, a non-deterministic rule,
to add ‘more’ terms than Lengrand’s relation. This has implications for the
following proofs, most notably Lemma 24.1 where we weaken the consequent
from Lengrand’s T € nf?™ to our T € SN,

Lemma 24.
1. Iftenf’ and t GT, then T € SNp,.
2. For any A-term t, t G j(t).

Proof.

1. By induction on ¢t where the ¢t = (Az.t') u t, case cannot occur as ¢ € nf”.
We first consider the proof tree associated to ¢t G T up to a certain point:

e lft=12x t_k), then one of the last steps of the proof tree associated to

t G T looks like
Vk tr G T}

— —
((E tk) g (:L' Tk)
- - ] . . . s
ty Ctso ty € nf”. By the induction hypothesis we have T}, € SNg,

.,
and hence (z Ty) € SNgg.

e If t = (Az.u), then one of the last steps of the proof tree associated
to t G T looks like

uGU x € FV(U)
Ax.u G A\x.U

u C t so u € nf®. By the induction hypothesis we have U € SNgx
and hence Az.U € SNg,.

We now consider the remainder of the proof tree associated tot G T. As
t is in B-normal form, only the Gweak rule may be used from now on. We
induct over the number n of applications of Gweak. If n = 0 then T" € SNg,
as shown above. Assume that if n = kK, T" € SNg,. Let n = kK + 1 such
that the last step in the tree is

tGgT N € SNg VN € T"~6r
tg [T’ N]

Gweak

13



where T = [T”,N]. By the induction hypothesis, 77 € SNg, so that
N € SNg, by Proposition 22. Therefore, T' € SNg,.

2. By induction on t:
o lft=2x EJ, then t; G j(tx) for all k by the induction hypothesis and
we can then apply Gvar.
o Ift =Nzt )u tr, then GB; finishes the case.
o If t = (Az.u), then u G j(u) by the induction hypothesis.
— If € FV(u) then j(¢) = \x.[j(u), z].

u G j(u) x € SNgx
u G [j(u), 7] z € FV([j(u), z])
Az G Ax.j(u), x]

— If ¢ FV(u) then j(t) = \x.[j(u), z, x].

u G j(u) x € SNgx
u G [j(u), z, 7] z € FV([j(u), z, z])
Az.u G Ax.[j(u), x, x]

O

Definition 25. The reduction relation ~ for A-terms is defined by the following
rules:

t ~ t t ~ t
perp-var ——————— perpA
xt_;gtp_k)wma}t’ﬁk’ Ax.t ~ Azt
z€FV(E) VH €nf’ t~ t" x g FV(t)
) perpfi perpf2

Azt)t Ty ~ t{z\ '}t Az t)t T ~ (At)t"

Theorem 26. — 3, strongly simulates ~ through G.
Proof. We prove that given the diagram

!

A-terms U~y
“g “g g
v
A Ut
B

the dotted arrows may always be filled in. We prove by inducting over the
structure of uw. Figure 4 depicts the various cases. We begin by considering
terms U where the last step is not a Gweak step.

14



perpf1) u = (Az.t) t/ th ~ t{z\t'} th =

-z €FV(t):
The final steps of the proof tree for v G U must be G3;.Therefore,
U = JOwt) () ()
= (A Li(t), 2]) 5 () 5(E)
—8 {2\ G ()} )] ()
Lemma 182  [j(t{z \t'}), ( N 4(r)
—n [t \ ¢} 5(#), 5()]
= Lt \ '} 10),5(t))

By Lemma 24.2,
w = t{a \t'} i G(t{z \ ¢} ).

As x € FV(t),ji(t") C j(t{= \ t } tk) so we can apply Gweak to infer
—

J
G Lt \t'} ), 5(¢)] =

— x ¢ FV(t),t' enff:

As z ¢ FV(t), t' € nf’ and v = t{z \ t'} t = t . The final
steps of the proof tree for w g_}U must be GB; or GB>. In both
cases, U = Az.[j(t),x,x] T j(tr) with ¢’ G T’ (in the former case,
' G j(t') = T' by Lemma 24.2). Ast € nf? T' € SNy, by Lemma

24.1.
U - MPUxﬂTﬁ@)
— g, Lemma 18.1  [j(¢),T",T"] (E))
— [i(t)J ( k), T, T
= [j(t ), T, T ]

—

By Lemma 24.2, ' =ttty G j( k) As T" € SNg,, we can apply
Gweak twice to infer t £, G [i(t k), T'].

perpB2) u = (Ax.t) ¢/ th ~ (Ax.t) ¢ th =/, with ¢/ ~ ¢’ and x ¢ FV(t).

The final steps to prove u G U must be GB1 or GBs. In both cases, U =
Az [j(t),z,z] T (tk) with ¢ G T (in the former case, t' G j(t') = T' by
Lemma 24.2). By the induction hypothesis, we have

tl 5 t//
l + U
T —— o T

so U = Ax.[j(¢), z, z] T’j(t_;;) jﬁr Az [j(t), x, x] T”j(g). We can use
rule Gf35 to show v’ = (Ax.t) ¢ ty G [Mx.[j(t),x t

15



perpA) u = Azt ~ Az’ =u' witht ~ ¢,

The final steps to prove v G U must be G\ so U = \z.T with t G T. By
the induction hypothesis, we have

t ~~r

Hg Hg
+
T— T

so U = \z.T —»;Tr Axe.T'. © € FV(T') so we can use rule G\ to show
uw =zt G T

perp-var) u =z pptqp ~ xpit qi =u', with t ~ t'.

The final steps to prove u G U must be Gvar so U = « Fk T Cﬁ with
P G Py, t G T, and qx G Q. By the induction hypothesis, there is a
term 7" such that ¢ G T and T —>;§7r T’ as depicted in the last case.
Therefore,

- — + -, =
UZJZPkTQk —>ﬁﬂ_$PkT Qk

/ = = oA

We can use rule Gvar to show v’ =xppt' qn G x P T' Q.

We have only reasoned about the terms U related to u by G where the last
step in the proof tree did not use the Gweak rule. The remaining terms can be
denoted as [U, ﬁ] where the last step of the proof of © G U is not a Gweak step
and the remaining steps which add the term N = Ny,...,N,, are all Gweak
steps. We induct over m to complete the proof.

If m = 0 then the proof follows from the cases above. Assume that the proof
holds for m = k with N = Ny, ..., Ni. From the cases above, this amounts to
a proof of the diagram on the left below.

U~y gy U ~b uf
. ﬂg ﬂg !
\4
— + — — + —
[U’ N} B [U/aN} [[Uv N]aNkJrl] B HU/’N}»NkJrl]

Let m = k + 1. We have to complete the diagram on the right above, knowing
—

that «' G [U’, N]. If Nyi1 € SNg., we apply Gweak. Otherwise, we have
—

Niy1 € [U, N]™s~. By Proposition 21 and the diagram on the left above,
—

Niy1 € [U', N]™#= and we apply Gweak. O

Corollary 27. Ift € WN., andt G T then T € WNg.

Proof. We prove by induction in WN_,. Letting A denote the set of A-terms,
the induction hypothesis is:

(tenf?)V Fue{peAlt ~ p},VU,u GU = U € WNg,)

16



Azt)t g~ t{z \ V'
perpf1
x € FV(t) Hg Hg
D 5(8), 2] 3(t) 3 (), N | =5 [t \ ) B), 3(#), N ]

(Azt) t' T ~~rmmmmmms tz \ )

perpf1
z ¢ FV(t) Hg Hg
v GT
e Lj(t),ea] T j(50), N —5— [i(t &), 7', 7', N |

Azt)t & »(\zt)t’ b

perpf;

z ¢ FV(t
o, !
t/ g T’ — + —
e [j(8), ) T (5, N~ Paulji(t),2,2] 77 5(5), V]
Azt~ Azt
perpA
t o~ tf g G
t g T — + —
[Az.T, N| T [Az.T, N]
perp-var PRt g ~rrrm e g
FV(t
a:féw t(’ ) Hg Hg
tGgT

— -_— — + e -
[ijkTQk,N] B >[SCPkT/Qk,N]

Figure 4: Strong simulation of ~» through G

i.e. either t is in ~»-normal form or there exists a one-step ~»-reduct u of
t such that the proposition holds (all G-related terms of u are — g-weakly
normalising.)
If t € nf™, then T' € SNg, € WNg, by Lemma 24.1.
If3ue{peA|t ~ p},VUu GU=U € WNg,, then Theorem 26 gives us
a specific T” such that
t YU

[k

TT+>T’.

According to the induction hypothesis, 7 € WNg,, and so T € WNg,. O

17



Corollary 28. j(SNg) € WNg,.

Proof. SNg C SN., C WN.,. By Lemma 24.2, Vt € SNg,t G j(t). By the
previous corollary, j(t) € WNg;. O

Theorem 29 (Nederpelt[11]). WNg, C SNg,.
Corollary 30. For any A-term t, if t € SNg, then j(t) € SNg,.
Proof. By Corollary 28 and Theorem 29. O

2.5 Proof of PSN
Corollary 31 (PSN). For any A-term t, if t € SNg, then A(t) € SNxplxr-

Proof. Ift € SNg then j(t) € SNg, by Corollary 30. As A(t) J j(t) by Theorem
17, A(t) € SN pixr by Corollary 12. O

3 Simplification of the proof

On showing him this work, Stéphane Lengrand had another idea to fix the prob-
lem of Section 2.3 that A(u) J i(u) does not hold. It consisted of changing the
J relation in the abstraction case and using Klop’s encoding [7, Definition 8.11]:

1(x) = =z
1(Az.t) = Ax.i(t), ]
1(tu) = 1(t)1(u).

This approach may allow us to use previous results by Klop to complete the
proof and should yield a simpler solution.

4 Summary

In summary, we have proved PSN for Ablxr using the proof for Alxr with a few
modifications due to the replacement of — g with — g,. The modifications
we made were:

1. Altering the relation Z so that —  pixr Was simulated by — g, through
the new relation 7.

2. Altering the encoding i so that .A(u) was related by J to the new encoding
7j.

3. Proving that j preserved strong normalisation just as Lengrand proved
that ¢ preserved strong normalisation. This required altering the relation
G in the Gweak case and weakening the remaining propositions.

The alterations to Z and ¢ consisted in adding in some redundancy and the
alteration to Gweak was made to accomodate for this. This redundancy took
the form of tacking on (via the “memory operator”) a free variable x to a
A -term which already contains a free occurrence of x. This is analogous to
the redundancy in the — p, rule which creates a second, identical explicit
substitution in its firing.

18



5

Acknowledgements

Stéphane Lengrand looked over a near-complete version of this proof during the
HOR 2006 workshop which was extremely helpful. Jan Willem Klop was very
helpful in his responses to my questions about his work which is instrumental to
both the original proofs, our Definition 20, and our version of the Gweak rule.

References

[1]

Alonzo Church. The Calculi of Lambda Conversion. Princeton University
Press, Princeton, NJ, 1941. Reprinted 1963 by University Microfilms, Ann
Arbor, MI.

René David and Bruno Guillaume. A lambda-calculus with explicit weak-
ening and explicit substitution. Mathematical Structures in Computer Sci-
ence, 11(1):169-206, 2001.

Maribel Ferndandez and Ian Mackie. Closed reductions in the lambda-
calculus. In Jorg Flum and Mario Rodriguez-Artalejo, editors, Computer
Science Logic, volume 1683 of Lecture Notes in Computer Science, pages
220-234. Springer, 1999.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102,
1987.

Delia Kesner and Stéphane Lengrand. Explicit operators for lambda-
calculus. Available at “http://www.pps.jussiev.fr/~kesner/papers/” .

Delia Kesner and Stéphane Lengrand. Extending the explicit substitution
paradigm. In Jirgen Giesl, editor, RTA, volume 3467 of Lecture Notes in
Computer Science, pages 407-422. Springer, 2005.

Jan Willem Klop. Combinatory Reduction Systems. PhD Thesis, volume
127 of Mathematical Centre Tracts. CWI, Amsterdam, 1980.

Yves Lafont. Interaction nets. In POPL ’90: Proceedings of the 17th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 95-108, New York, NY, USA, 1990. ACM Press.

Stéphane Lengrand. Induction principles as the foundation of the
theory of normalisation: Concepts and techniques. Technical re-
port, PPS laboratory, Université Paris 7, March 2005. available at
http://hal.ccsd.cnrs.fr/ccsd-00004358.

Robin Milner. Local bigraphs, confluence and A-calculus (draft), 2004.

R. P. Nederpelt. Strong normalization in a typed lambda calculus with
lambda structured types. PhD thesis, Eindhoven University of Technology,
1973.

Shane O Conchiir. Agup as an explicit substitution calculus. Technical
report, IT-Universitetet, Kgbenhavn, submitted September 2006.

19



A Change to the G relation

The original relation G [9] was defined as in Definition 23 except that Gweak
was defined as below.

tGgT N € nff™
t G [T, N]

Gweak

This relation was not sufficient for our choice of j. One problem lay in
Theorem 26 for the perpf; case where x € FV(t). In this case we have

u=A\zt)t'ty ~ t{z\ '}, = u.

We have u G [(\e.j(t), a)i()j (@), N] —an Li(t{ \ #}7),(¢), N and we
can show that v’ G j(t{m\t’}t_k)). The problem is the next step. We need
to add j(t') and N onto this last term to complete the proof. This requires
applications of the Gweak rule but j(¢') ¢ nf®™ in general and we cannot proceed.
As a concrete example, take the diagram below. Although Q G j(Q), we cannot
apply Gweak to complete the diagram as j(2) ¢ nff™.

(Az.x)Q > Q
Hg xg
. + , \;.
(Az.[z, 2])7 () — — [1(62). 5 ()]

Essentially, the simulation of Theorem 26 does not work due to the redundant
2 introduced in the encoding of j(Az.t) where x € t — the redundant = creates
duplicates of arguments through (-reductions. These arguments may not be in
normal form. To accomodate for this, our first attempt was to change Gweak to
the following where we weaken the right-hand side condition.

tGgT Nenff"vNCT
tG[T,N]

Gweak

L T2

Now, given u G [(Az.[j(t), 2])j(#)j (1), N] = U — g [i(t{z \ #'}),5(), N],
we can show that u' G [j(t{x\t'}t_k)),j(t')] = U’. Unfortunately, this sim-
ple solution has a problem — the term N may be composed of subterms of
U but these terms may not be subterms of U’ and we cannot complete the
case. In particular, a counterexample may be found by considering the A ab-
straction in U. For example, let u = (Az.2Q)x ~ zQ = u'. We can prove
u G [(Az.[zi(Q), z])z, (Az.[2j(Q), z])] — s [ (Q),z, Az.[zj(2), z]] but cannot
prove that u’ is G-related to this last term.

These problems led us to the current definition of Gweak which can be seen as
a generalisation of the last definition above as it allows subterms of ancestors to
be added on to a term. The fact that AI is uniformly normalising (by Proposition
5) was important for our current choice of Gweak in order to prove Lemma 24.1.

20



