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Abstract. Density forecasting in regression is gaining popularity as real world
applications demand an estimate of the level of uncertainty in predictions. In
this paper we describe the two goals of density forecasting1 sharpnessandcal-
ibration. We review the evaluation methods available to a density forecaster to
assess each of these goals and we introduce a new evaluation method thatal-
lows modelers to compare and evaluate their models across both of these goals
simultaneously and identify the optimal model.

1 Introduction

Daily, we use and accept probability estimates for common prediction tasks; the weath-
erman tells you there is a 70% chance of rain, or medical experts say a patient has a
40% chance of being alive five years after a cancer operation.But, if it doesn’t rain, or
if the patient doesn’t die, were those predictions wrong?

Evaluation of predictions is an important step in any forecasting process. For point
estimates this is a straightforward process that typicallyinvolves determining the Euclid-
ean distance between the predicted and observed points. There is a vast literature on
evaluation metrics for point forecasting models, for a review of the most popular meth-
ods see [1]. However, there are conspicuously less papers available that describe meth-
ods for evaluating density forecasting models. In fact, onemust turn to the meteorolog-
ical and financial literature to find any papers that focus on the evaluation of density
forecasts with any degree of rigour. This is in spite of density forecast evaluation being
a considerably more complex problem than point estimation.Diebold et al. [2] suggest
that there might be three reasons for this neglect.

1. Restrictive assumptions- until recently, due to the computational complexity of
making density forecasts, very restrictive assumptions were required in terms of
the number of parameters that could be estimated and the distributions that had to
be assumed.

2. Lack of demand- in the past there was seemingly less demand for density forecasts,
this is particularly true in the financial domain on which Diebold et al. focus. How-
ever, the recent growth in the area of risk management has focused the attention of
people on this problem.

1 For convenience and simplicity in this document the term “density forecasting” will refer to
“probability density forecasting for regression” unless stated otherwise.
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3. Difficulty of the problem- it is possible to adapt methods that are used in the point
forecasting and interval forecasting literature to evaluate density forecasts, how-
ever, these adaptations lead to incomplete evaluations.

The defining difference between density forecast and point forecast evaluation is the
fact that the performance of a density forecasting model cannot be summarised mean-
ingfully by one metric. This can be attributed to the richer information produced by a
density forecasting model. The popular Mean Squared Error and Root Mean Squared
Error scores are sufficient evaluation metrics for most whenassessing the quality of
point forecasting models. On the other hand, density forecasting models must both
produce estimates that give a high density at the observation and produce probabil-
ity estimates that are correct. The first requirement, a highdensity at the observation,
relates to the predicted density having minimum variance about the observation, this
is commonly termed the sharpness of an estimate. The second requirement, to produce
probability estimates that are correct, refers to the empirical validity of the predicted
probabilities and is commonly calledcalibration.

As mentioned above we aim to address the regression problem of estimating the
parameters for a model given a set of training data{(xi, ti)}

m
i=1, where theith example

is described by the patternxi ∈ ℜp and the associated responseti ∈ ℜ. Point forecast-
ing attempts to estimate,〈ti|xi〉, the conditional mean of the target variable given an
input pattern2. Density forecasting models attempt to estimate,p(ti|xi), the conditional
probability density that the target is drawn from, a considerably more complex task.

The aim of this paper is to provide a review of evaluation techniques for density
forecasting in regression and present a new way of combiningthe two main evalua-
tion approaches used in the literature. The paper is organised as follows. In Section 2
we introduce the various terminology and high level concepts behind the two main ap-
proaches to evaluate density forecasting models (sharpness and calibration). Section 3
outlines methods for assessing sharpness and Section 4 reviews approaches of assess-
ing calibration. In Section 5 we introduce our new method of combining and comparing
these two evaluation approaches in a meaningful manner. Finally, in Section 6 we briefly
conclude the paper.

2 Calibration, Sharpness, Refinement, Empirical Validity

The literature in point forecasting makes the suggestion that the “closer” a forecast is to
the observation the better. Similarly, this intuition transfers to probability forecasting,
for example, a forecast of 90% for an event that occurs will appear better, after the
fact, than a forecast of 80% for the same event [3]. This property of density forecasts
is known as sharpness or refinement [4]. Put simply, sharpness assesses how spread
out or how “sharp” a forecaster’s predictions are. In the binary sense this refers to the
concentration of the probability estimates near the values0 and 1. A sharp forecaster
will have a high concentration of its probability estimatesaround these two extreme
values. In the continuous domain, sharpness relates to the amount of density assigned

2 At points in this document we refer to sequenced or time series data, in these cases the reader
can assume thatxi = ti−1
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to the actual observation. High density at the observation necessitates a low variance
around the observation.

Probability forecasts are unique insofar as they not only provide a prediction of the
location/class of the observation but they also give a measure of the uncertainty in that
prediction. Sharpness rewards models in terms of the location/class accuracy but gives
no real indication of the correctness of probability estimates. Calibration, also known
as reliability in meteorology or empirical validity in statistics [5], refers to the ability of
a model to make good probabilistic predictions. A model is said to be well calibrated
if for those events the model assigns a probability of P%, thelong-run proportion that
actually occur turns out to be P%. Intuitively, this is a desirable characteristic of any
probabilistic forecast; in fact, it could be argued that probability forecasts that are not
well calibrated are of no more use than point forecasts because the probabilistic aspect
of the prediction is incorrect.

The two objectives outlined above are the requirements for any good probabilistic
forecaster. Both sharpness and calibration evaluations are necessary to ascertain the
quality of a probabilistic forecaster. Calibration evaluation must be accompanied by
an estimate of sharpness in order to ascertain the usefulness and predictiveness of the
forecaster.

3 Assessing Sharpness

In this section we identify three methods of evaluation of the sharpness criterion.

3.1 Negative Log-likelihood

The Negative Log-likelihood (NLL), also known as the Ignorance Score (Good, 1952)
or Negative Log Predictive Density, is a method of assessingthe sharpness of a pre-
dicted density function. It is specified as follows:

NLLi = − log(p(ti|xi)) (1)

The NLL can be easily and cheaply calculated and is by far the most popular error func-
tion in the density forecasting literature for this reason.The NLL or a variation on the
NLL is almost exclusively used as the optimisation error function of density forecasting
models3. This is because of the relationship between NLL and MaximumLikelihood
Estimation (MLE). MLE theory can be easily adapted to optimise density functions
rather than point values. Figure 1 plots the relationship between the NLL value for
a sample prediction density against all possible outcomes in the interval [0, 10]. The
NLL is a negatively oriented score, meaning the more densitythe actual observation
has been awarded by the prediction the smaller the NLL value.

The major weakness of the NLL is that it evaluates density estimates based solely on
the probability density at the observation and does not takethe calibration of the fore-
cast into consideration. These problems manifest themselves in erroneous probability
estimates. For examples of these see [6] or [7].

3 The exceptions to this are, for example, the indirect density forecasting techniques such as
ensemble methods.
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Fig. 1.The left plot depicts a sample predicted density. The right plot shows the NLL for a target
at each point on the x axis for the given sample density. The relationship between density and
contribution to error can be clearly seen.

A further weakness of NLL is its sensitivity to outliers. This is due to the fact that
a change ofx in the NLL relates to a change ofexp(x) in the observation values. This
effect can be seen in Figure 1. Weigend & Shi suggest using a trimmed mean to get
around this issue [8] . This ameliorates the situation but does not solve the problem.

3.2 Continuous Rank Probability Score

The Continuous Ranked Probability Score (CRPS) [9] is a verification method for prob-
abilistic forecasts of continuous variables. It is equivalent to the Brier Score [10] inte-
grated over all possible values and is a generalisation of the Ranked Probability Score
[11] that is used to evaluate probabilistic predictions over ordinal variables. The CRPS
is sensitive to distance i.e. it is capable of penalising predictions that are far away from
the actual observation. In essence, the CRPS measures the difference between the pre-
dicted and the occurred cumulative distributions, see Figure 2. In order for the score to
be sensitive to distance, the squared errors are computed with respect to the cumulative
probabilities of the forecast and observation. The CRPS is calculated as follows:

CRPSi =

∫
∞

−∞

(p(u|xi) − H(u, ti))du (2)

Where, H, is the Heaviside function,

H(l,m) = 1{l ≥ m} (3)

Again, like the NLL, the mean CRPS is calculated over all predictions to determine the
average error.

Hersbach [9] shows that the CRPS reduces to the Mean AbsoluteError for deter-
ministic forecasts. Therefore, this evaluation techniqueis a means of comparing deter-
ministic and probabilistic forecasting models and is also easy to interpret as an error
measure. This interpretability is further aided by the factthat it is in the same units as
the target variable.
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Fig. 2.The left plot in this figure is the predicted probability density function for some regression
task. The target value is at 2. The right plot shows the cumulative distributions for the target and
prediction. The area between the target and predicted cumulative (as shown by the arrows) is the
value returned by the CRPS score. The sensitivity of the CRPS to distance islinear relative to
the predicted densities error. Sharpness (small spread) is rewardedif the forecast is accurate. A
perfect CRPS score is 0.

A major disadvantage of the CRPS score is that it is not of closed form. It is possi-
ble to derive a closed form version of the CRPS for normal distributions [12]; however,
if your probabilistic model produces non-Gaussian solutions, such as mixture models,
then determining numerical estimations of the integrals for every input pattern is a com-
putationally intensive task.

3.3 Wilson Score

The Wilson Score [13] is a means of assessing the quality of forecasts of continuous
variables in terms of an acceptable range. For example, predictions of temperature may
only need to be accurate between±1◦C of the actual observation. This score evaluates
predictions in terms of this range. Like the CRPS, the concept of the Wilson Score is
derived from the Brier Score and Rank Probability Score. TheWilson Score determines
the percentage of the forecasted probability that lies within the tolerable range of the
observation/target. The equation for the Wilson Score is;

WSi =

∫ t+∆t

t−∆t

p(u|xi)du (4)

where,∆t represents the threshold, or tolerated distance fromt.
Figure 3 depicts the area contributing to the Wilson score for a sample prediction.

This is a positively oriented score in the interval [0,1]. A perfect score receives a 1. The
numerical score that it produces can be understood as a probability. It is sensitive to
distance and to the spread of the forecasts.

A weakness of this score is that the modality of the predicteddistribution affects
the Wilson Score. The error score must be adapted to account for the different predicted
modes. Wilson et al. describes how the score can be adapted bydetermining the modal-
ity of the target a priori [13]. However, this is not a trivialtask and may not even be
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Fig. 3. Shows the area of the distribution that is considered by the Wilson Score±∆t. In this
example a tolerance, or window size of±1 units is used.

achievable in certain scenarios. Another difficulty with this score, like the CRPS, is that
it requires the calculation of an integral.

4 Evaluating Calibration

The Probability Integral Transform (PIT) as recommended byDawid [14] is the most
common method of evaluation of calibration. Within the PIT method of evaluation there
exists a large number of approaches that can be used to interpret its results. Below we
describe the PIT score and review the different methods of interpretation. Although
other methods of assessing calibration exist they are generally presented in terms of the
particular decision problem and are not general methods that can be applied in every
case. This is an alternative and valid approach to forecast evaluation but we do not have
space to address it in this short text, for more information see [15].

4.1 Probability Integral Transform

The PIT score is a popular method of evaluation across all forms of density fore-
casting, for example, Schervish uses it for evaluation of classification problems [3],
Christoffessen adapts it for prediction intervals [16], and there is an equivalent method
of evaluation for ensembles of point forecasters [17]. PIT overcomes the problem of
loss function inconsistencies across problem domains by not depending on a specific
user loss function. Instead, the PIT assumes that the prediction user is attempting to
estimate the true data generating process. As the true data generating process is at least
as good as, if not better than, any other possible model i.e. it weakly dominates all other
models. Intuition also suggests that it is reasonable to assume as the correct density is
always preferred to an incorrect density. In the case of the true data generating process,
we know that the set of cumulative densities at the realisations will be uniform4. By
making the assumption that we are striving to find the true data generating process we

4 In the case of time series or sequential data the cumulative densities shouldalso be indepen-
dently and identically distributed. An excellent introduction to the PIT for sequential and time
series data is provided in [2].
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can assess the set of predicted cumulative densities at the observations for uniformity.
The PIT is defined by:

zi =

∫ ti

−∞

p(u|xi)du (5)

For a series of lengthM the probability of those events occurring in their predicted
densities should result in a random sample as would appear using the true generating
densities. Rosenblatt shows that this random sample will beU(0,1) and i.i.d. for the true
generating density and any correctly specified density forecasting model [18].

Diebold et al. [2] suggest plotting a histogram of the PIT values and comparing this
to a perfect U(0,1) distribution as a method of discerning the degree of calibration of a
model. Crnkovic et al. [19] suggest using the Kuiper statistic for measuring uniformity.
However, this is not a robust test for uniformity and requires a very large number of
data points before it is consistent in its estimates. Berkowitz [20] suggests a Likelihood
Ratio test for evaluating PIT values and developed a rigorous framework for evaluation
of different aspects of the density forecast, even when evaluation data is sparse. Specifi-
cally, he proposes that the PIT values be transformed into a normally distributed series,
N(0,1), via the inverse normal cumulative density functiontransform because tests for
normality are more powerful than tests for uniformity. Using this transformed series
he suggests that a one-degree-of-freedom test of independence against a first-order au-
toregressive structure and a three-degree-of-freedom test of zero mean, unit variance
and independence. This approach is probably the most well developed and principled
method of evaluation of PIT values to date; however, it is also the most time consuming
and computationally intensive. Wallis [21] suggests usingan adaptation of Pearson’s
chi-squared goodness-of-fit test for density forecasting evaluation. His suggested adap-
tation provides a means of extracting information from the PIT values that can diagnose
more precisely where the predictions fall down e.g. location, scale or skewness. Some-
where between the suggestions of Crnkovic et al. [19], and Berkowitz and Wallis [20,
21], lies the research carried out by Noceti et al. [22]. In their paper, the Kolmogorov-
Smirnov, Kuiper, Craḿer-von Mises, Watson and the Anderson-Darling goodness-of-fit
tests were compared. After analysis they concluded that theAnderson-Darling test was
the most robust metric for this task.

At this point it is important to contextualise the problem again by referring back
to our initial postulation that density forecasts should beboth sharp and calibrated. Al-
though, the PIT score identifies a well calibrated model, it is not sufficient to identify
whether a density forecasting model is useful or not. In no way does the PIT score
evaluate sharpness and so it should be used in conjunction with a sharpness score to
identify models that are both well calibrated and sharp. In point of fact, determining the
distribution of the observations in the training set and using this distribution as a predic-
tion for every input will result in a uniform set of PIT valuesover the training set. This
density is known as the unconditional distribution in finance or the climatology in me-
teorology. This trivial model will be well calibrated but will have very poor sharpness.
In the context of time series data it is possible to argue thatby determining whether the
PIT values are independent, or not, one can identify if a model is simply predicting the
unconditional distribution. However, Hamill [23] shows that in certain circumstances a
biased model will return a uniform set of PIT values. He suggests that a uniform series
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is a necessary but not sufficient criterion for determining that a model is calibrated. He
shows that it is possible that an incorrect density model could have a uniform set of PIT
values. Again, in this case, the sharpness score will highlight the fact that the model is
incorrectly specified.

4.2 Interpreting PIT Histograms Visually
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Fig. 4. The top row of plots shows the true or target generating distribution (N(0,1)) and the
predicted distributions. From left to right the predicted distributions are, N(0,1), N(0, 0.5), N(0,2)
and N(1,1). The bottom row of plots represents the resulting PIT histogram for each prediction
distribution determined by evaluation on 10,000 points generated from the target distribution.

To further understand the PIT approach to determining calibration this section de-
scribes the effect of bias and variance5 on the PIT histogram. To do this we simplify
the problem; all data points in our test series are random samples from an N(0,1) dis-
tribution. The true conditional density at every point is, therefore, an N(0,1) density.
Knowing the true density means we can artificially simulate bias and variance in the
predicted densities by making all predicted densities N(µ, σ). Bias is simulated by vary-
ing theµ of the density and variance is simulated by varying theσ of the density. Figure
4 shows the distributions and resulting PIT histograms for eachµ andσ pair. The first
PIT histogram is the only correctly specified histogram because the predicted density is
N(0,1), the same as the distribution used to generate the data. Bias and variance affect
the PIT histogram in different ways. Too narrow a variance forms a “U” shaped PIT
histogram signifying over-confident predictions. Too widea variance creates a hump in
the middle of the PIT, this can be thought of as under-confidence. Bias causes a sloping
effect and in the extreme case it creates a “J” or “L” shaped PIT histogram depending
on the direction of the bias.

5 In this experiment, bias refers to the incorrect specification of the mean of the predicted density.
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5 A Complete Evaluation Framework

In the preceding sections the argument for two metrics, sharpness and calibration, when
evaluating density forecasting models was developed and a number of methods for as-
sessing these were described. This is the generally accepted methodology for density
forecasting evaluation by the literature and is seen as sufficient to fully evaluate the qual-
ity of a density forecasting model [12]. Given this fact, we propose a further diagnostic
tool for evaluation and comparison of predictive performance of density forecasting
models. We describe a simple method of comparison that can clearly and definitively
identify the best models in terms of their sharpness and calibration objectives.

Sharpness

C
al
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n

p(t)

b

a
c

Fig. 5. Sample density forecasting evaluation plot. In this example the sharpness and calibration
scores are negatively oriented i.e. the smaller the better.p(t), represents the unconditional distri-
bution of target values,a,b andc are sample models. Modelb is dominated by botha andc. a and
c do not dominate each other and so are optimal solutions. The region above and to the right of a
model’s point in objective space represents the region that that model dominates (dotted lines).

Vilfredo Pareto [24] was the first to discover that under multiple conflicting ob-
jectives there is no single optimum, instead there is a set ofoptimum trade-off solu-
tions. These optimum solutions can be identified by their dominance or non-dominance
amongst the other competing solutions. Therefore, Pareto dominance can be defined as
the unique nontrivial partial order on the set of finite-dimensional real vectors satisfying
a number of objectives [25]. This is precisely the ordering that is required in evaluation
of the multiple objectives of density forecasting to find theoptimal solutions. Formally,
Pareto dominance can be described as follows: Assume, without loss of generality,k
negatively oriented objectives and consider two sets of model parametersa, b. Then,a
is said to dominateb iff:

∀i ∈ {1, ..., k} : fi(a) ≤ fi(b)

∃j ∈ {1, ..., k} : fj(a) < fj(b)

Where,fi(x) returns for decision vectorx the ith objective function [26].
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The concept of Pareto optimal solutions is illustrated in Figure 5. The unconditional
distribution is included to show the sharpness of models relative to this base model.
Models that are dominated can be discarded. The forecaster can then select the model
that best optimises their goals from the Pareto optimal set.

5.1 Sample Evaluation: Model Selection

A common application for evaluation techniques is model selection. Here, the goal is
to determine the best model set up to use for your final prediction model. In this sim-
ple example we show how it is useful to plot a Pareto evaluation plot to determine the
optimal models. For this experiment we used a Mixture Density Network (MDN) to
make our density forecasts[27]. MDNs are an adaptation of the multi-layer perceptron
that can accurately estimate conditional probability density functions by outputting a
Gaussian Mixture Model (GMM). Like most neural networks there are a number of
variables that must be decided upon by the modeler before themodel can be trained.
The two most important variables to be selected with this type of model are the number
of hidden units in the network architecture and the number ofGaussians to be included
in the GMM. In our experiment we use the Pareto optimality plot described above to
determine the best model set up in terms of hidden units and Gaussian components for a
simple inverse problem. Target variables,t, are uniformly drawn from the interval [0,1]
and the input variables,x, are generated byx = t + 0.3 sin(2πt) + ǫ andǫ is uniform
noise drawn from the interval [-0.1, 0.1]6. We created a training and test set of 1,000
points, from the training set we created 20 bootstrap training sets, this is so that we
get a more robust estimate of the average model error score for each architecture. 18
different model architectures were tested, outputs of 1, 3 and 6 Gaussian components
for the GMM were tested and for each output type we tested network architectures
with 2,3,4,5,6 and 7 hidden units. All models were trained till termination or for 1,000
iterations of the Scaled Conjugate Gradient algorithm, whichever came first. The aver-
age error for each model over the 20 runs on the test set were calculated. We evaluate
all models using the negative log-likelihood score (see Section 3.1) as our measure
of sharpness and the Anderson-Darling goodness-of-fit teststatistic on the model PIT
values as our measure of calibration [28]. This calibrationscore is calculated by deter-
miningA2 = −m− 1

m

∑m

j=1
(2j−1)[log(zi)+log(1−zm−j)], where,m, is the number

of z values, calculated by equation 5, and thesez values are sorted in ascending order.
This resulting quality score for calibration is negativelyoriented. Figure 6 describes the
results from this experiment. After analysis of the Pareto plot the modeler should have
a good understanding of which model set up best suits their goals. However, if there is
still uncertainty regarding the best model they can carry out further tests such as those
described in [20].

Figure 6 can be augmented in a number of different ways, for example; the position
of the unconditional distribution can be included to identify the position of the baseline
model or in the model selection scenario at least, the objective function score may be
noisy due to the specific data set being evaluated, by applying a technique such as

6 As described in [27] pp 14.
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Fig. 6. (a) plots the results of all the models tested. The models with just 1 Gaussian component
(1-GMM) clearly perform the worst and can be discarded. This is to be expected as the data
is trimodal. (b) is a close up of the other models, the numbers next to the markers signify the
number of hidden units used in that model. There are clearly two clusters,the 3-GMM models
having good calibration, and the 6-GMM models having good sharpness.Finally (c) is the Pareto
plot. The non-dominated (ND) Pareto optimal set is identified and the Paretofront is shown.
Dominated (D) models can be discarded. The critical value (dashed line)for the A2 score is
included, below this line models are uniform at the 1% level.

that described in [29] it is possible to plot a Pareto optimalset that are mutually non-
dominating with some known probability.

6 Conclusions

In this paper we described the goals of density forecasting as sharpness and calibration
and identified approaches for evaluating models on both of these criteria. We introduced
a new method of evaluation that allows the modeler to identify the best models from a
set based on these two criteria.
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