Simulation Frameworks for the Teaching and Learning of
Distributed Algorithms.

A thesis submitted to the
University of Dublin, Trinity College
for the degree of
Doctor of Philosophy

Fionnuala O’Donnell
Department of Computer Science
University of Dublin
Trinity College
February, 2006

DECLARATION

The work presented in this thesis is, except where otherwise stated, entirely that of the
author and has not been submitted as an exercise for a degree at this or any other
university.

Signed:

Fionnuala O’Donnell
February, 2006

i

PERMISSION TO LEND OR COPY

I agree that the library of the University of Dublin, Trinity College Dublin, has my
permission to lend or copy this thesis.

Signed:

Fionnuala O’Donnell
February, 2006

il

DEDICATION

For Dad

“A Dhaidi, mor an trua nach bhfuil tu anseo anois. Nach ort a bheadh an brod!
Ach, a Dhaidi, bhi tu liom, ta tu liom, is beidh tu liom i gconai.

Mile Buiochas!”

v

ACKNOWLEDGEMENTS

Firstly, to my supervisor, Brendan Tangney, I thank you for your support, encouragement
and patience throughout this endeavour. We have travelled a long and at times rocky road
together but somehow have managed to come out the other end, and I think that we are
both better for it!

Secondly, to the members of the CRITE research group both past and present, I say thank
you for your endless hours of support, encouragement and cheerful banter which always
seemed to brighten up even the dullest of days! A special word of thanks to my good
friend, James, without whom this project would simply have floundered!

Thirdly, I would like to extend my appreciation to Stephen Barrett, Bjorn Franke and
Damian Gordon who took time out of their busy schedules as lecturers to assist me in
evaluating FADA. I am deeply grateful.

Lastly, a special word of thanks to my family and friends. To my brothers, Pauric and
Kevin, I say thank you for your continuous support and advice. You will be glad to know
my days of doing things the “hard way” are finally at an end. To my sisters, Emer and
Yvonne, thanks for being you and for keeping me grounded. To Yvonne, especially,
thanks for listening to what must have seemed like an eternity of endless moans and for
providing me with many a delightful distraction! To my mum, thanks for never loosing
faith in me and for simply being there when ever I’ve needed you. To Alice, thanks for
your prayers and kind ear but above all, thanks for the homemade bread and cheese, it
was like rocket fuel to the brain!! Finally, to all those people, I now call dear friends, who
I had the good fortune to meet along my academic travels, I say ‘buiochas’ and ‘Lets
party as I have finally made it...well to the finishing line at least!’

ABSTRACT

Teaching and learning about distributed algorithms is difficult. This is because distributed
algorithms are made up of multiple independent elements, each with their own state and
control, who interact through the exchange of messages. Such a configuration results in a
large amount of data which describes not only the local state information of each element
within the distributed algorithm but also, their complex interactions. Thus, the use of
methods, like for example pseudo code descriptions, execution traces, chalk and talk do
not lend themselves well to the easy disclosure of material which is highly concurrent in
nature and which may suffer from partial failure that is, the loss or failure of one or more
of its elements.

Consequently, animation was put forward as one means of capturing the temporal
evolution of a distributed algorithm’s behaviour. However, creating an animation for
each and every distributed algorithm that an instructor wishes to teach is a very time
consuming process and one which instructors cannot readily commit to due to time
constraints. Moreover, educational researchers have questioned the educational value of
such systems as they may not engage learners in the high order thinking skills of analysis,
synthesis and evaluation. As a result of this, researchers within the field of algorithm
animation have looked for ways to expand the ‘communicative expressiveness of
algorithm animation systems’ by building algorithm simulation systems. These are
systems which allow a learner to interact with, manipulate or change the behaviour of an
algorithm while it executes by, for example, changing the state of its variables or by
causing a message to fail.

However, like algorithm animation systems, building algorithm simulation systems is
a very time consuming and difficult process as, not only, must an instructor implement
the logic of the distributed algorithm that he is intending to animate and in turn, define
how it is to be animated. Moreover, he must define which components of an algorithm’s
process that a learner can interact with, modify or change as it executes. Thus,

researchers within the field of algorithm animation have looked for ways to combat the
vi

problem of building algorithm simulations by reanalyzing the educational benefit of
algorithm animation systems. Informed by findings from constructionist educationalists,
which show that learners who generate their own representations of an entity have a
deeper understanding of that entity and better recall abilities than those who do not,
researchers have developed systems to facilitate the easy creation of algorithm
animations.

Drawing upon practices within software engineering of developing a framework
whenever several or (partly) similar applications within a particular domain need to be
developed, researchers have developed animation frameworks, which a learner can use to
define the behaviour of an algorithm. These frameworks provide a set of prefabricated
software building blocks that a learner can use to customise or build his own animation of
an algorithm’s behaviour. However, whilst these systems allow a learner to construct an
animation of a distributed algorithm’s behaviour in a timely manner, they do not allow
him to exercise his higher order thinking skills by enabling him to manipulate the
algorithm as it evolves.

Thus, informed by the strengths of algorithm simulation systems and algorithm
construction systems, this thesis presents a simulation framework named FADA for the
teaching and learning of distributed algorithms. The engagement model of FADA is that
of a highly interactive simulation. Its underlying pedagogy is based on theories of
constructionism and social constructivism. The design is also informed by the theories of
dual coding and epistemic fidelity. Simulations are written in a conventional
programming language, in this case JAVA, with a wrapper class making transparent calls
to the underlying visualization API. The development environment contains an editor, a
wizard and a debugger as typified by modern programming environments. To overcome
the cost, in terms of development time, for creating new simulations, a framework for
common message passing algorithms has been developed. Of particular note is that this
framework also acts as a basis for scaffolding learners in the process of constructing their

own simulations, a la the theory of constructionism.

Vil

As a consequence of its design, FADA can be attributed two modes of use. It can be
used by instructors and learners as an interactive presentation tool. FADA provides an
instructor or learner with a collection of pre- canned simulations that he can use to
present to a class for discussion, exploration and feedback. The latter is informed by
theory of social constructivism. FADA can also be used as a tool to allow instructors and
learners to create their own simulations of an algorithm’s behaviour. These can then be
added to the aforementioned collection of simulations provided by FADA in order to
create a repository of algorithm simulation.

A number of exploratory case studies were carried to investigate both the pedagogical
and operational effectiveness of FADA. The aim of the case studies was two fold; to
investigate to what extent the ability to view an algorithm’s behaviour, interact with its
behaviour in real time, customize or build its implementation facilitates learners in
acquiring a deep understanding of its process and facilitates instructors in their teachings.
From a pedagogical perspective, results suggest that learners engage with and are
motivated by such systems and as a consequence, are challenged to test their
understanding of an algorithm’s behaviour in a deep way. Equally, results suggest that
instructors find such systems an effective, intuitive and concrete means by which to
demonstrate and convey the dynamic and concurrent behaviour of an algorithm. From an
operational perspective, results suggest that instructors find such systems easy to use and
assist them in creating active simulations for use in their own teachings in a timely and
efficient manner. In summary the main contributions of this research are:

e The development of an algorithm animation system that engages learners in

higher order thinking with an algorithm’s behaviour.

e The development of a novel framework to facilitate the easy and quick creation of

an active algorithm simulation.

e Results from exploratory case studies as to the effectiveness of active simulation

systems in engaging and motivating learners to experiment with their

understanding of an algorithm’s behaviour in a deep manner.

viil

TABLE OF CONTENTS

1 INTRODUCTION....cittiiiiiiiiiiieiiiieiieiieieiitineiaciecesaceacnscnns

1.1 Motivation
1.2 Current Approaches and Problems inherent with them
1.2.1 Current Modes of Engagement and their
Educational Effectiveness
1.3 Research Goal
1.4 FADA (Framework Animations of Distributed Algorithms)
1.5 Thesis Structure

2 LITERATURE REVIEW.....cciiiiiiiiiiiiiiiiiiiiiiiiinieienieciannens

2.1 Introduction
2.2 Picture Superiority Effect
2.2.1 Historical Evidence
2.2.1.1 Paivio’s Dual Coding Theory
2.2.1.2 Nelson’s Sensory Semantic Model
2.2.1.3 Anderson’s Tri-Code Theory
2.2.1.4 Larkin and Simon’s Analysis of Sentential Representations
2.2.1.5 Discussion
2.3 Theories of learning informing the Design of Algorithm
Visualisation Systems (AVs)
2.3.1 Linking Learning Theories to the evolving Design of
AVs in general
2.3.2 Design of AVs for the Teaching and Learning of
Distributed Algorithms
2.3.3 Educational Effectiveness of AVS, in general
2.3.4 Educational Effectiveness of Distributed Algorithm VS

2.4 Techniques Deployed by Algorithm Construction Systems for the Creation

of Algorithm Visualizations by Learners or Instructors
2.5 Discussion
2.6 Summary

3 L O] L

3.1 Introduction
3.2 Overview of FADA’s Design

X

25

31
34
39

41
44
48

3.3 Model of Engagement
3.4 FADA’s Development Environment
3.5 FADA'’s Framework Design
3.5.1 The Token Ring Simulation
3.5.2 Design of the Framework Core
3.6 Conclusion

4. IMPLEMENTATION....cciitiiiiiiiiiiiiiiiiiiiiiinineineneenanes

4.1 Introduction
4.2 Network Module
4.2.1 Inter-Node Communication
4.2.1.1 ServerNode Class
4.2.1.2 GroupNode Class
4.2.2 Facilitating Fault Tolerant Behaviour
4.3 GUI Module
4.3.1 Visualising a Node Object, a Variable Object
and a Message Object
4.3.2 Visualising the Underlying Topology of
an Algorithm’s Behaviour
4.3.3 NetworkCanvas Class
4.4 Split Pane Interface
4.4.1 CodeEditor Class
4.5 Summary

5 Evaluation Methodologyccccoeiviiiiiiiiiiiiiiiiiniiinnnne.

5.1 Introduction

5.2 Methodological Approaches Adopted To Investigate the Pedagogical

Effectiveness of FADA
5.2.1 Group 1: Learner Demographics

5.2.1.1 Group 1: Interactive Presentation Methodology

5.2.1.2 Group 1: Modification Methodology
5.2.2 Group 2: Learner Demographics

5.2.2.1 Group 2: Interactive Presentation Methodology

5.2.2.2 Group 2: Modification Methodology
5.2.3 Group 3: Learner Demographics

5.2.3.1 Group 3: Interactive Presentation Methodology

5.2.3.2 Group 3: Modification Methodology
5.2.4 Questionnaires
5.2.5 Group 4: Instructor Demographics

X

83

84
86
89
91
94

96

100
106
107
110
112
113
115
117
117
118
118
119

5.3 Operational Effectiveness
5.3.1 Learner Methodology
5.3.2 Instructor Methodology
5.4 Summary

6 EVALUATION FINDINGS.....ciiitiitiiiiiiiiiiiiieintiiicieriecneniacens

6.1 Introduction
6.2 Findings with respect to FADA’s Use as an Interactive
Presentation Tool
6.2.1 Case Study 1: Authentic Lecture Settings
6.2.1.1 Stages 1, 2 and 3
6.2.1.2 Stages 4 and 5
6.2.1.3 Discussion
6.2.2 Simulated Lecture Settings
6.2.2.1 Case Study 2: Group 3
6.2.2.2 Case Study 3: Group 2
6.2.2.3 Discussion
6.2.2.4 Interactive Presentation Questionnaire
6.3 Findings arising from FADA’s Use as a Modification Tool
6.3.1 Case Study 4
6.3.2 Discussion
6.3.3 Case Study 5
6.3.4 Discussion
6.3.5 Modification Questionnaire
6.4 Findings with respect to Instructors’ Perception of FADA’s
Pedagogical Value
6.5 Operational Effectiveness
6.5.1 The Operational Effectiveness of FADA from the Viewpoint
of the Learners within groups 1, 2 and 3
6.5.2 The Operational Effectiveness of FADA from the Viewpoint
of the Instructors
6.6 Summary

7 CONCLUSIONS. .t ttiitiitiittitiiteiatieeieciacisecsasisscssssscsasssscnns

7.1 Introduction

7.2 Summary of Research Findings
7.2.1 Pedagogical Effectiveness
7.2.2 Operational Effectiveness

7.3 Limitations of the work

7.4 Future Work

xi

120
120
121
122

123
124
125
142
152
154
155
161
164
166
167
169
174
175
192
194

194
199

199

APPENDIX

BIBLIOGRAPHY

7.5 Conclusions

A. Interactive Presentation Questionnaire
B. Usability Questionnaire
C. Instructor’s Questionnaire
D. Overview of findings derived from the administration

of the interactive questionnaire to participants within

each of the three learner groups
E. Overview of findings derived from the administration

of the instructor’s questionnaire to each of the

three instructors deployed within this study

F. Overall transcript of proceedings taken from case study 1
G. Overall transcript of proceedings taken from case study 2
H. Overall transcript of proceedings taken from case study 3
I. Overall transcript of proceedings taken from case study 4
J. Overall transcript of proceedings taken from case study 5

Xii

211

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:

Figure 3-1:
Figure 3-2:

Figure 3-3:
Figure 3-4:

Figure 3-5:

Figure 3-6:

Figure 3-7:
Figure 3-8:
Figure 3-9:

Figure 3-10:
Figure 3-11:

Figure 3-12:
Figure 3-13:

Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:

Figure 4-7:
Figure 4-8:

Figure 4-9:

Figure 4-10:

LIST OF FIGURES

Paivio’s Dual Coding Theory ...l 17
Theory of Epistemic Fidelity ..., 22
Brown’s Dyad User Model ...l 26
Jeliot’s User Interface ...l 33
Meta analysis results from 24

visualisation effectiveness

experiments e 35
Overview of FADA’s Design ~ocoiiiiiiinnnnn. 50
Overview of FADA’s Modular

Architectural Design Ll 53
FADA'’s Simulation Controls ..., 54
A depiction of the manner by which

node failure is initiated within FADA 56

A depiction of the manner by which

message failure is initiated within

FADA 57
A depiction of the manner by which

one executes state changes within

FADA 59
Code Frame 60
Animation Frame 61
Depiction of the detection of syntax

errors within FADA 62
Wizased 63
Skeleton code generated by the

wizard 63
Token Ring Simulation ... 65
Representative classes of message

passing distributed algorithms

informing the design of the

framework core 67
Node Class 72
receiveMessage() method ...l 72
run() method 72
Communication Methods ... 73
Message Class L 74
Methods to create different types of

message objects L. 74
Methods to put content inside a

message object L. 75
Methods to retrieve content from a

message object . 75

Variable Class 76

Methods to create different types of

xiil

Figure 4-11:
Figure 4-12:
Figure 4-13:

Figure 4-14:
Figure 4-15:
Figure 4-16:
Figure 4-17:
Figure 4-18:

Figure 4-19:
Figure 4-20:

Figure 4-21:
Figure 4-22:
Figure 4-23:
Figure 4-24:
Figure 4-25:

Figure 4-26:

Figure 4-27:
Figure 5-1:

Figure 5-2:

Figure 5-3:

Figure 5-4:

Figure 6-1:

variables

Methods to set the value of a
variable

Methods to retrieve the value of a
variable

Classes a user deploys to create an
algorithm description

Sample algorithm description code
Inter-Node Communication Classes
ServerNode Class

GroupNode Class

Sample implementation of a timeout
procedure

Methods to schedule a timeout
procedure for execution

Information visualized by a message
object

Algorithm Topology Classes

Default Node Topology

Group Node Topology

Client Server Topology
NetworkCanvas Class

Sequence diagram of calls to create
FADA'’s split pane interface

Koala’s Interpreter Classes
A depiction of the manner by which
instructor (L1) deployed FADA to
allude learners to the failure to
account for atomic operations within
the dining philosophers’ algorithm

A depiction of the manner by which
instructor (L1) used FADA to
illustrate the problem of starvation
within the dining philosophers’
algorithm

A depiction of the manner by which
the author acting as the instructor
used FADA to re-enact the loss of an
acknowledgment within the
distributed banking application

A depiction of the manner by which
the instructor re-enacted the loss of a
server within the distributed address
book application

Skeleton description of the dining
philosopher’ algorithm created in

X1V

108-109

110-112

113-114

115-116

Figure 6-2:

Figure 6-3:

Figure 6-4:

Figure 6-5:

Figure 6-6:

Figure 6-7:

Figure 6-8:

Figure 6-9:

Figure 6-10:

Figure 6-11:

Figure 6-12:

Figure 6-13:

Figure 6-14:

Figure 6-15:

FADA

Use of FADA to illustrate the concept
of a lack of global knowledge within
the dining philosophers’ algorithm
Implementation of the manner by
which a node handles a request for its
left or right fork within the dining
philosophers’ algorithm

The graphical representation returned
by FADA of the code defined within
Figure 6-4

Graphical re-enactment of the
algorithm’s failure to allow for
atomic operations

A snapshot of the dialogue which
arose between instructor (L1) and the
learners as a consequence of his
actions defined in Figure 6-5

A depiction of the algorithm’s
implementation code corresponding
to Figure 6-4

The voice explanations provided by
instructor (L1) to assist learners in
identifying shortcomings in the code
displayed in Figure 6-7.

A depiction of the algorithm’s
behaviour to function correctly in set
circumstances despite its failure to
allow for atomic operations

Instructor (L1)’s voice over
explanations of the behaviour defined
by Figure 6-9
The manner by which FADA was
used to illustrate the problem of
deadlock associated with the dining
philosophers’ algorithm

The dialogue which arose as a
consequence of Figure 6-11

The manner by which FADA was
used to illustrate the issue of
starvation within the dining
philosophers’ algorithm

126-127

130-132

133-135

138-139

139-141

The dialogue which arose as a
consequence of Figure 6-13
The manner by which the author

XV

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

6-16:

6-17:

6-18:

initiated the loss of the transfer
message within the distributed
banking application

The dialogue which arose as a
consequence of author’s actions
within Figure 6-15

The manner by which the author
initiated the loss of the
acknowledgement within the
distributed banking application

The dialogue which arose as a
consequence of the author’s actions
within Figure 6-17

6-19: The manner by which the graphical

representation of the timeout
procedure afforded by FADA within
the distributed banking application
alluded learners to the problem of
state inconsistency associated with its
behaviour

6-20 & 6-21: The dialogue which arose

6-22:

6-23:

6-24:

6-25:

between learners and the
instructor as a consequence
of events defined within
Figure 6-19
The manner by which author used
FADA to re-enact the loss of the
server within the distributed address
book application
A graphical depiction within FADA
of the manner by which student (S4)
rendered the behaviour of the
distributed address book application
fault tolerant
A graphical representation of the
investigations carried out by student
(S1) within FADA to determine
whether the server would
acknowledge receipt of a request
within the distributed address book
application.
Depiction of flowchart created by
student (S1) and student (S2) prior to
amending the behaviour of the
distributed address book application
to reflect its logic.

XVi

156-157

160-163

169-171

176-177

Figure 6-26 & 6-27: Depiction of the amendments
made to the logic of the
flowchart while student (S1)
and student (S2) were
modifying the behaviour of
the distributed address book
application in order to render
it fault tolerant. 186, 188
Figure 6-28: Depiction of the students’ failure to
pass the correct message object to the
sendToClient method 189
Figure 6-29: A graphical depiction of the
consequences incurred by the
students’ failure to cancel the time
outs on completion of their tasks ... 190

Xvil

Table 2-1:
Table 2-2:

Table 5-1:

Table 5-2:

LIST OF TABLES

Bloom’s Taxonomy

Summary of controlled experiments that
consider algorithm visualisation
effectiveness

FADA'’s Pedagogical and Operational
Effectiveness

Breakdown of participant groups
within current study and mechanisms
deployed to assess FADA’s
pedagogical and operational
effectiveness from each of their
perspectives

Xviil

Chapter 1 Introduction

CHAPTER 1

INTRODUCTION
1.1 Motivation

Learning about computer algorithms, the building blocks of computer software [1], is
difficult. This is because algorithms are, in general, by their nature abstract and
understanding how the myriad of variables in an algorithm are used and how control flows
in an algorithm can be quite a challenge [2]. This is particularly true of distributed
algorithms, which are made up of multiple independent elements, each with their own state
and control, who interact through the exchange of messages [3]. Traditional teaching
methodologies, like for example ‘chalk and talk’, use of transparencies slides, whiteboards,
pseudo code descriptions, execution traces, etc., do not lend themselves well to the easy
disclosure of material which is dynamic and concurrent in nature, and which may suffer
from partial failure (that is, the loss or failure of one or more of its components). Such
difficulties have prompted researchers to investigate tools and approaches to ease the
difficulty of teaching and learning distributed algorithms. The author’s own experiences of
learning distributed algorithms as a post graduate student have prompted her to investigate
ways in which to enhance the teaching and learning of these algorithms.

This chapter documents the manner by which this research was carried out. It describes
current approaches taken by researchers to ameliorate the teaching and learning of
distributed algorithms and documents problems inherent in these approaches. It puts
forward the design and implementation of a new approach for the teaching and learning of
distributed algorithms, one which addresses the challenges faced by current approaches
through the provision of a simulation framework. Lastly, it describes a number of
exploratory case studies conducted with the artefact to investigate its pedagogical

effectiveness and its ease of use.

1.2 Current Approaches and their Inherent Problems

Animation has long since been put forward as one means of capturing the temporal
evolution of a distributed algorithm’s behaviour. By giving concrete depictions to the
abstractions and operations of a distributed algorithm’s behaviour, algorithm animation was

thought to make distributed algorithms more meaningful [2]. As a consequence of this

Chapter 1 Introduction

belief, a spectrum of algorithm animation systems has evolved. These have ranged from
passive animation systems, which provide prepared continuous animations of an
algorithm’s behaviour for a learner to view, to active simulation systems, which enable a
learner to not only view a prepared algorithm animation but also, enable him to manipulate
its behaviour by altering the behaviour of its nodes or messages, to algorithm construction
systems, which enable a learner to create his own visualisation of an algorithm’s behaviour.
However, despite this proliferation of algorithm animation systems, these systems have
failed to catch on in main stream computer science education [1]. The majority of
educators still prefer to use the traditional pedagogical aids of blackboards, whiteboards
and over head projectors. This begs the question as to why? A number of researchers have
postulated that their lack of adoption is due to shortcomings in their designs. Each of the
aforementioned types of systems suffers from one or more of the following failings. These
are
e Lack of real time interactivity with an algorithm’s content,
In order for a learner to acquire an appreciation for and a deep understanding of
the operations of an algorithm’s behaviour, the learner must be able to
manipulate the behaviour of its variables, nodes and messages in real time, that
is, while the algorithm executes. However, most algorithm animation systems
provide offline interaction [3], that is, they require a learner to specify prior to
the execution of an algorithm’s behaviour which property or mode of its
behaviour that they would like to modify and observe. As a consequence,
learners are rendered passive in their interactions with an algorithm’s content
while it executes and as a result, are unable to determine its level of fault
tolerance.

An algorithm is said to be fault tolerant if it continues to function despite the
loss or failure of one or more of its components like for example nodes or
messages. However, whilst active simulation systems facilitate real time
interaction, they present an expert’s mental model of an algorithm‘s behaviour
and not that of the learner’s. According to current thinking in education,
knowledge is not merely a commodity to be transmitted, encoded, retained and

reapplied but a personal experience to be constructed [4]. Thus, there is need of

Chapter 1

Introduction

an algorithm animation system which enables a learner to not only present his
own representation of an algorithm’s behaviour but also, enables him to
experiment with it in real time.
Time and effort required to build an algorithm simulation [1],
Building an active simulation is a very difficult and time consuming task and
one which instructors cannot readily commit to. In constructing an active
simulation, an instructor must not only implement the logic of the algorithm
process but also, define how it is to be visualised and in turn, designate which
sections of its process a learner can interact with, modify or change. Thus, there
is need of a mechanism to reduce the complexity and time associated with
creating an active simulation of an algorithm’s behaviour.
The pedagogical value of algorithm animation systems has not been
substantiated [5-8].
To date many empirical evaluations have been carried out to determine the
educational effectiveness of algorithm animation systems in general. However,
the results of these evaluations have been mixed [9-12]. Some have indicated
that the use of algorithm animation technology does lead to a beneficial effect
on learning, (e.g. [6, 13]), whilst others have found no beneficial effect (e.g.
[7]) or have found a beneficial effect that can only be partially attributed to the
technology itself (e.g. [5]). Some researchers have postulated that the problem
of under utilized algorithm animation technology has its roots in the
pedagogical theory of learning guiding their design [1]. To date, the design of
algorithm animation systems has been informed by one of four different
theories of learning [9]. These are:

o Epistemic fidelity [9, 14], which assumes that graphics have an excellent
ability to encode an expert’s mental model of an algorithm’s behaviour
leading to the robust, efficient transfer of that mental model to the viewer,

o Dual coding [15], which assumes that cognition consists largely of the
activity of two partly interconnected, but functionally independent and
distinct symbolic systems. One encodes verbal events such as words or

audio; the other encodes non-verbal events such as pictures, kinesthetic

Chapter 1

Introduction

O

actions or sounds in the environment. The two subsystems are said to be
functionally independent in that one system can be active without the other
or both can be active in parallel. One important implication of this is that
verbal and non verbal codes corresponding to the same object can have
additive effects on recall. The interconnections between the two systems
are one to many, in both directions and activation is probabilistically
determined by the strength of different interconnections interacting with the
stimulus context. Thus, the theory hypothesizes that visualizations that
encode knowledge in both verbal and non-verbal modes allow learners to
build dual representations in the mind, and referential connections between
those representations [16]. As a consequence, such visualisations facilitate
the transfer of target knowledge more efficiently and robustly than do
visualizations that do not employ dual encoding [9]. This hypothesis is
supported by findings from over sixty empirical studies [17]. All of which
show that information which is encoded both visually and verbally is better
learned than information which is encoded using text only, audio only,
combined text and audio or pictures only [18].

Individual differences [19], which assumes that learners learn differently
from each other, process and represent knowledge in different ways and
prefer to use different types of resources [20]. It assumes that learners learn
best when the style of instruction is matched to their preferred learning
style. Learning style can be defined as the habitual manner in which a
learner approaches learning tasks that is consistent over long periods of
time and across many activities [20]. A battery of instruments has been
developed to rate and classify an individual’s learning style along a number
of different dimensions. These include; 'Vark’s learning style inventory and
the MIDAS questionnaire [21], to name but a few. The former inventory
rates a learner’s learning style with respect to one of four different
preferences for the intake of information. These include a preference for

obtaining information through the read write modality, the auditory

! Available from: http://www.vark-learn.com/english/index.asp

Chapter 1

Introduction

modality, the kinaesthetic modality and the visual modality. The MIDAS
questionnaire classifies an individual’s learning style with respect to
Gardner’s theory of multiple intelligences [22]. This is a theory which
proposes that there are eight different ways to demonstrate intelligence with
each having its own unique characteristics, tools and processes that
represent a different way of thinking, solving problems and learning. These
eight intelligences are described as the linguistic/verbal, musical/rhythmic,
spatial/visual, logical/mathematical, interpersonal, intrapersonal and
naturalistic intelligences [23]. The functional role of individual difference
variables, like those of stimulus and contextual variables, can be expressed
in probabilistic terms: They influence the probability with which verbal and
non verbal representations will be aroused (and used successfully) in a
given task’ [24] (p. 68). The theory of individual differences asserts that
measurable differences in human abilities and styles will lead to measurable
performance differences in scenarios of algorithm animation use [9].
However, the preponderance of evidence from the realm of adaptive
educational systems has not proved this to be true [25]. Adaptive
educational systems are predicated on the assumption that if one
dynamically adapts learning content to suit an individual’s learning style
that greater learning will occur. However, evidence with respect to this had
been inclusive. One reason for this, is because it is difficult to match
learning characteristics with instructional environments and it is not clear
how the matching should take place, that is, it is unclear as to which model
or test of individual differences one should use to characterise an
individual’s learning style and act as the basis for adapting the presentation
of learning content [23]. However, of note to this thesis are findings from
the work of Kelly [23], which suggest that learning gain increases when
learners are provided with resources not normally preferred. This would
suggest that what motivates a learner to learn is challenge that is, the

challenge to learn and understand resources not normally preferred.

Chapter 1 Introduction

o Cognitive constructivism [26] which assumes that learning is the active
process of constructing knowledge rather than of acquiring knowledge. It
hypotheses that learners do not stand to benefit from algorithm animation
systems by merely passively viewing the animations, no matter how high
the level of epistemic fidelity. Instead, learners must become actively
engaged with the animation in order to benefit from it.

However of these theories, a meta analysis of twenty four experimental studies found
that systems informed by the theory of cognitive constructivism were the most
successful in yielding a learning outcome [9]. This would suggest that it is what
learners do, not what they see, that significantly impacts upon their understanding of an
algorithm’s behaviour [9]. This raises the question as to which mode of interactivity is

the most effective in returning a learning gain.

1.2.1 Current Modes of Engagement and their Educational Effectiveness

To date algorithm animation systems, in general, have permitted learners to engage with the
behaviour of an algorithm in one of three different ways. These are; by creating and
inputting their own data sets and observing its effects on the algorithm’s behaviour, by
making future predictions about the behaviour of the algorithm and lastly, by building their
own visual representations of an algorithm’s behaviour [9]. However, findings in relation to
the effectiveness of each of the aforementioned modes of interaction have been mixed [8, 9,
27].

Byrne [5] found that learners who orally predicted future frames of an algorithm’s
animation performed significantly better than learners who only viewed an animation of an
algorithm’s behaviour without making predictions about its future behaviour. However, the
individual effects of prediction and animation could not be disentangled statistically. In
contrast, Jarc [28] did not find a significant difference between learners who made
predictions about an algorithm’s behaviour and those who did not. He postulated that the
reason for this finding was because poorer learners treated the automated prediction as a
game. When they became lost in the animation, they completed the questions by making
guesses. However, he did note that with increased proper use of prediction learners’

performance on post tests improved [29].

Chapter 1 Introduction

Lawrence [6] found that learners who were allowed to change the input to an
algorithm’s behaviour performed significantly better than those who passively watched an
algorithm driven by data supplied by the experimenter. Stasko [12] found that learners who
created their own implementation of an algorithm’s behaviour using the Samba system had
a better understanding of that algorithm’s behaviour than learners who watched a
visualisation constructed for them. However, Hundhausen and Douglas [8] found no
significant difference between learners who created their own visualisation of an
algorithm’s behaviour (‘the self construct group’) and those who interacted with one
created by an expert (‘the view active group’).

This finding can be attributed to the manner in which the experiment was carried out.
Learners in the ‘self construct group’ had to create their own visualisations using simple art
supplies such as pens, paper, crayons and so on. Such art supplies mirror the capacity of
traditional pedagogical aids, which are known not to lend themselves well to the easy
disclosure of material which is dynamic in nature. = Moreover, learners in the ‘self
construct’ group were prohibited from discussing their creations with their instructor, thus,
they were provided with no information which was dissonant to their current
understandings of the algorithm’s behaviour. This may have accounted for the high
number of incorrect visualisations received by Hundhausen and Douglas.

According to Piaget [30], a learner learns by struggling to absorb dissonant
information into his existing mental models and the resulting cognitive uncertainty results
in a modification of his previous understanding. Consequently, if one removes cognitive
struggle, one stultifies the learning environment [31]. Findings in relation to the ‘view
active group’, echo those of Stasko’s [7], who found that ‘for a student to benefit from an
animation, the student must understand both the mapping (from the algorithm to the
graphic) and the underlying algorithm on which it is based. Students just learning about an
algorithm do not have a foundation of understanding upon which to construct the
visualisation mapping.” (p.61) [7]. Thus, this finding would suggest that in order for
learners to truly understand the behaviour of an algorithm, they must attempt to build their
own representations of the algorithm’s behaviour. This is an assumption upheld by findings
from educational research in general, which show that material is better remembered if it is

actually generated by the learner rather than merely presented to the learner [26]. Such

Chapter 1 Introduction

findings are further reinforced by evidence from empirical studies carried out by Jarc [29],
who found that learners were unable to replicate the behaviour of an algorithm, despite
stating emphatically that they understood the algorithm, after viewing and engaging with a
visualisation of its behaviour. Such findings accord with a branch of cognitive
constructivism known as constructionism.

Constructionists believe that the structuring phase of learning builds the framework
of understanding upon which subsequent knowledge in the domain is based. There is plenty
of evidence to suggest that this constructive process is facilitated during the conduct of
tasks which require an inspectable output [32]. As Papert [33] put it, ‘this happens
felicitously when the learner is engaged in the construction of something external or at least
sharable...a sand castle, a machine, a computer program, a book. This leads us to a model
using a cycle of internalization of what is outside, then externalization of what is inside and
so on” (p.10). Thus, the theory of cognitive constructionism provides a promising
pedagogical framework from which, one can base the design of a new algorithm animation
system, one which is designed to overcome the lack of deep interaction associated with
current systems, by enabling learners to exert their high order thinking skills of analysis,
synthesis and evaluation through experimentation with an algorithm’s behaviour while it
executes, through building their own algorithm simulations and through presenting their
findings to peers or instructors for discussion and feedback. Such predications accord with
findings from Grissom [35] who found that as a learner’s level of engagement increased so
did his understanding. This would suggest that more deeply involved a learner is with an
algorithm’s behaviour and the more opportunities he has to involve himself with the

algorithm, the greater his understanding of that algorithm will be.

1.3 Research Goal
Taking all of the above findings into consideration, the research goal of this thesis was to
design and develop a new algorithm animation system (FADA) which addresses the
following research questions. These were:

o How can one design an algorithm animation system which facilitates the easy

creation of active simulations by both learners and instructors?

Chapter 1

Introduction

This was informed by the author’s own experiences of building an active
simulation of the token ring algorithm from scratch and by the examination of
ways in which current algorithm construction systems facilitate the creation of
algorithm visualisations. This led to the design of a novel framework which
not only provides a collection of prefabricated software building blocks for the
easy implementation of an algorithm’s behaviour but also, automates the
drawing of the latter and the level of interactivity associated with it. The ease
by which the framework facilitates the creation of an active algorithm
simulation was validated through its use by three different instructors from the
realm of distributed system teachings. Each deployed FADA to build active
simulations of set algorithms for use within their own teachings. The ease of
use by learners was validated through the use of a multiple case study
methodology.

To what extent does the algorithm animation approach adopted in this thesis
enhance the teaching and learning of distributed algorithms?

Concomitant with this question were a number of sub questions.

o To what extent does it facilitate learners to engage in higher order
thinking when learning about an algorithm’s behaviour?

o To what extent does the software tool under examination facilitate
higher order dialogues about an algorithm’s behaviour between
learners and between learners and instructors?

o To what extent does the embodiment of the dual coding theory within
the user interface design of the software tool under examination aid
in the algorithmic problem solving process?

o To what extent does the software tool under examination engage
learners in an iterative cycle of learning?

These questions were answered by carrying out a number of exploratory case
studies involving one of three different participant groups. Each group was
given, in the first instance, a lecture which availed of the use of the algorithm
animation system to introduce participants to the behaviour of an algorithm in

an interactive and exploratory manner. Next, each group was asked to complete

Chapter 1 Introduction

a task whereby they had to amend the behaviour of the algorithm to overcome
one or more failure scenarios or concepts encountered within the
aforementioned lecture setting. With respect to the question as to what extent
the algorithm animation approach adopted within this thesis enhanced the
teaching of distributed algorithms; this was answered by having the three

aforementioned instructors deploy FADA within their own teachings.

1.4 FADA (Framework Animations of Distributed Algorithms)

FADA was designed to differ from other categories of algorithm animation systems on two
levels. These were on a pedagogical level and on an operational level. On a pedagogical
level, FADA was designed to emulate that of an active simulation by enabling both an
instructor and a learner to engage with the behaviour of an algorithm in real time. FADA
enables a user, in the simple case, to change the state of an algorithm’s variables or, in the
more sophisticated case, to cause one or more of its components to fail. Moreover, FADA
was designed to reinforce a user’s understanding of an algorithm’s behaviour through the
provision of dual representations of its behaviour. FADA provides a learner with both a
visual representation of an algorithm’s behaviour and a textual representation of its
implementation. Thus, FADA enables users to map the graphical representation of an
algorithm’s behaviour to that of its implementation. FADA was also designed to differ
from passive animation systems and active simulation systems by enabling a user to create
his own algorithm implementation. This was facilitated through the provision of a
framework for common message passing distributed algorithms.

The framework was also designed to differ FADA operationally from passive animation
systems and active simulation systems. This was achieved through the provision of a set of
generic function calls that a user can quickly customise and invoke to reflect the behaviour
of the algorithm that he is implementing. These function calls are written in a conventional
programming language, namely Java and as a result, were designed to mirror the manner by
which an algorithm’s behaviour is implemented in the real world. Equally, FADA was
designed to facilitate the easy construction of algorithm animations through the provision of
a built in visualisation API. Unlike current algorithm construction systems, this API was

designed to not only define the manner by which components of an algorithm’s behaviour

10

Chapter 1 Introduction

are visualised but also, the manner by which a user interacts with them in real time.
Simulations written using the aforementioned function calls were designed to make
transparent calls to the underlying visualisation API. This automates the drawing of the
simulations and further reduces the cost, in terms of development time in creating the
simulations. FADA scaffolds the algorithm implementation process by providing a
development environment that includes both an editor and a debugger as typified by
modern programming environments. Moreover, FADA’s development environment
includes a wizard which is designed to enable a user through the selection and
customisation of simple menu items to quickly generate code relating to the messages that a
node will receive, the content of those messages and the type of variables that the node is to
hold. As a result of its design, FADA can be attributed to two modes of use.
e [t can be used as an interactive presentation tool.
FADA provides a collection of prepared algorithm simulations which an
instructor can use to present to a class for active exploration, discussion and
feedback. FADA is designed to scaffold the algorithm learning process by
presenting learners with dual representations of the algorithm’s behaviour. This
is informed by findings from the theory of dual coding, which assert that the
provision of dual representations of an algorithm’s behaviour reinforces a
learner’s understanding of that algorithm’s behaviour by enabling him to form
referential connections between the two representations. The latter is facilitated
through the design of FADA as a split pane interface. This is subdivided into
two frames, the code frame, which contains a textual description of the
algorithm’s behaviour and the animation frame, which contains its
corresponding visual representation.
e [t can be used both by instructors and learners to create their own active
simulations of an algorithm’s behaviour.
This is facilitated through the provision of a framework which cuts down on the
time and complexity associated with creating an algorithm simulation by not
only providing a set of prefabricated software building blocks for the easy
implementation of an algorithm’s behaviour but also, by automating the

drawing of the algorithm’s implementation and the level of interactivity

11

Chapter 1

Introduction

associated with it. By automating the drawing of an algorithm’s behaviour and
its level of interactivity, FADA enables a user to concentrate solely on the
implementation of the algorithm’s logic and not on the implementation of its

drawing or its level of interactivity.

In achieving its research goals, the main contributions of this thesis can be summarised as:

1.5 Thesis

The development of an algorithm animation system that engages learners in
higher order thinking with an algorithm’s behaviour.

The development of a novel framework to facilitate the easy and quick creation
of an active algorithm simulation.

Results from exploratory case studies that support the effectiveness of active
simulations in engaging and motivating learners to question and experiment

with their understanding of an algorithm’s behaviour in a deep manner.

Structure

In constructing an algorithm animation system like FADA a number of key issues needed

to be addressed. These were:

The development of a model of engagement that enables learners when
interacting with the behaviour of an algorithm to engage their high order
thinking skills of analysis, synthesis and evaluation.

The development of a framework that facilitates the quick and easy
implementation of an algorithm simulation.

The analysis of results from a number of exploratory case studies as to the
effectiveness of FADA in terms of pedagogy and ease of use. One of the
central arguments underpinning this thesis is that entities which are dynamic
and concurrent in nature do not lend themselves well to representation by text
and static imagery. Hence, in order to assist the reader in interpreting the data
derived from the use of FADA in each of the case study settings analysed, a cd
is included containing sample movies from each setting. These movies
provide the reader with a real world snap shot of the manner by which learners

and instructors interacted with FADA in each instance and the effects that

12

Chapter 1 Introduction

such interactions had on the behaviour of the algorithm being investigated and

on their understanding of it.

The following chapters describe in detail each of these different stages:

Chapter 2 provides an overview of the current direction in algorithm animation in
general. It documents the pedagogy informing researchers’ design decisions and the
results from empirical studies as to the effectiveness of such decisions. It also
presents a critique of algorithm animation systems designed specifically for the
teaching and learning of distributed algorithms. This is in order to inform the
architecture design and implementation of FADA.

Chapter 3 describes the manner by which the level of engagement afforded by
FADA over an algorithm’s behaviour is informed by the theory of constructionism.
It also describes the manner by which the author’s own preliminary experience of
building a highly interactive algorithm simulation together with findings from the
literature review inform the design of FADA’s framework architecture.

Chapter 4 describes the manner by which FADA was implemented

Chapter 5 describes the exploratory case studies conducted in order to explore
FADA'’s pedagogical and operational effectiveness.

Chapter 6 presents an analysis and presentation of the case study findings.

Chapter 7 concludes with an overview, summary and directions for future work.

13

Chapter 2 Literature Review
Chapter 2
Literature Review

2.1 Introduction

Scientists have always resorted to illustrations, figures and diagrams to elucidate the
difficult concepts that they are trying to explain and understand, and computer scientists are
no different. ‘With the advent of powerful graphical workstations in the 1980s, illuminating
diagrams in computer science moved from paper to computer screen, as a new era of
computer science — algorithm visualisation (AV) - emerged as a way to perceive computer
programs in execution’ [36] (p.3). Beginning with the development of Brown’s Balsa
system during the 1980s [36], algorithm visualisation systems (AVs) have evolved from
batch oriented software that enable instructors to construct animated films [37], ‘to highly
interactive systems that enable students to explore dynamically configurable animations of
algorithms on their own (e.g. [37, 38]); to interactive programming environments that
enable students to quickly construct their own visualisations (e.g. [39])’ [9] (p. 259). Yet
despite their intuitive appeal, AVs, in general, have failed to catch on in main stream
computer science education [9]. The reasons for this are three fold. Instructors claim that
AVs require too much time to learn how to use, require too much time to create a
visualisation of an algorithm’s behaviour and are not educationally effective [9]. Of these
three claims, the third is the most worrying, as it questions one of the basic theoretical
assumptions upon which the field of algorithm visualisation is based, that is, the premise
that in learning, pictures are superior to words [36]. This raises a number of questions for
review. The first of which is; what historical evidence exists to support the claim that in
learning pictures are superior to words [36]? Second, has such evidence informed the
design of AVs in general and in particular, the design of AVs for the teaching and learning
of distributed algorithms? Third, have such systems been subjected to empirical
evaluations and if so, what has been the outcome of these evaluations in terms of learning
gain? Fourth, how have algorithm visualisation systems been designed to facilitate the
creation of an algorithm visualisation? In answering these questions, the author hopes to
shed light on possible reasons why AVs have failed to gain wide spread popular use in
computer science education and in particular, in the teaching of distributed algorithms, and
based on such findings, to put forward requirements for the design of a new algorithm

visualisation system for the teaching and learning of distributed algorithms.

14

Chapter 2 Literature Review

This chapter is structured as follows:

Section 2.2 reviews the historical evidence to support the claim that in learning pictures are
superior to words [36].

Section 2.3 explores the extent to which Paivio’s dual coding theory, Nelson’s sensory
semantic model, Anderson’s tri code theory and Larkin and Simon’s empirical evidence
(these are theories and evidence arising from the review carried out in section two), have
directly or indirectly informed the design of AVs in general and in particular, AVs designed
primarily for the teaching and learning of distributed algorithms. This section also
documents evidence from empirical studies as to the educational effectiveness of the
aforementioned systems.

Section 2.4 documents and critiques the manner by which AVs have been designed to
facilitate the creation of algorithm visualisations by both learners and instructors.

Section 2.5 outlines the shortcomings in the design of current algorithm visualisation
systems for teaching and learning of distributed algorithms and identifies the need for a
new algorithm visualisation system, one which is informed by the pedagogical theories of
cognitive constructivism, social constructivism, constructionism, dual coding and epistemic
fidelity.

Section 2.6 concludes and summarises the chapter.

2.2 Picture Superiority Effect

Before one can document empirical evidence to support the claim that, in learning, pictures
are superior to words, one needs to define, what one means by ‘superior’? How is a picture
superior to words? [36]. This is in order to lend the aforementioned assumption to scientific
analysis. For a picture to be superior to words, a picture must be more easily remembered
and understood than words. That is, given a picture and a textual description of the same
concept, both of which are semantically equivalent representations, the picture should
facilitate recall of the concept better than the textual description. If one remembers the
picture more readily and easily than the words, then ‘the act of viewing algorithms through
pictures that are semantically equivalent to conventionally used words should afford

students a better memory of the algorithm’s behaviour’ [36] (p. 10). Another means by

15

Chapter 2 Literature Review

which a picture may be superior to words is, if a picture facilitates the encoding of
information more efficiently than words. The latter is alluded to by the ancient Chinese
proverb ‘a picture is worth 10,000 words’. From a picture, one can infer a wealth of
information, in order to infer the same amount of information from text; one requires a
great number of words [36]. The following section will document evidence in support of

such claims.

2.2.1 Historical Evidence

1894 is the earliest known year in which an experimental study was carried out to test
humans’ recall ability of pictures and words [36]. Kirkpatrick [40] presented 329 subjects
with two lists of items, both in picture and word format. He asked subjects to recall the
objects on both lists at two different time intervals. These were immediately and seventy
two hours later. Kirkpatrick’s results showed that subjects had higher retention levels for
objects presented visually than for objects presented textually. These findings were
replicated by large scale empirical studies carried out during the 1960s and early 1970s
(e.g. [41, 42]). An example of which is an experimental study carried out by Standing [43],
who presented subjects with between 10 to 10,000 complex pictures. He found that subjects
were able to recall subsets of these pictures with 95% accuracy [36].

Such findings prompted cognitive psychologists in the late 1970s and 1980s to investigate
ways to explain the observed differences in humans’ recall abilities of pictures and words.
This led to the formation of two distinct strands of research, both of which were predicated
on the assumption that one could explain the differences in humans’ recall abilities by the
manner in which pictures and words were internally represented in the brain or by the
cognitive processes (operators) available to apply to the internal representation. As a result
of this research activity, a number of theories evolved [36]. The next section will document,
from each line of research, two representative samples of theories put forward. It will begin
with theories put forth by Paivio [44] and Nelson [45] in favour of the internal
representation argument and will move to theories put forth by Anderson [46] and Larkin
[47] in favour of the process-oriented argument [36]. This section ends with a discussion as
to the applicability of these theories to the teaching and learning of algorithms and in

particular, distributed algorithms.

16

Chapter 2 Literature Review

2.2.1.1 Paivio’s dual coding theory

The above theory assumes ‘an orthogonal relation between symbolic systems and specific
sensorimotor systems. Verbal and non-verbal systems symbolically represent the structural
and functional properties of language and the non-linguistic world, respectively. However,
both classes of events come in different modalities— visual (printed words versus visual
objects), auditory (spoken words versus environmental sounds), haptic (tactual and motor
feedback from writing versus manipulation of objects) and the internal symbolic systems
presumably retain these distinctions’ [17] (p. 257-258). The representational units of the
verbal and non-verbal systems were initially referred to as verbal representations and
imaginal representations but later, Paivio borrowed from Morton [48] the terms logogen
(word generator) and imagen (image generator) to distinguish the underlying structural

representations from their expression as consciously experienced images and inner speech.

SENSORY SYSTEM

Representational connections
b »

< »

A 4 A 4

Logogens Imagens

Referential
connections

: :

VERBAL NONVERBAL
PROCESSES PROCESSES

Figure 2.1: A representational diagram of Paivio’s dual coding theory (adapted from [24]).
These two systems are assumed to be functionally independent in that one system can be

active without the other or both can be active in parallel. One important implication of this

assumption is that verbal and nonverbal codes corresponding to the same object (e.g.

17

Chapter 2 Literature Review

pictures and their names) can have additive effects on recall [17]. ‘Interconnectedness of
the codes implies that one code can be transformed into the other. The assumption means
simply that, [for example,] pictures can be named, words can evoke non verbal images, and
similar transformations can occur entirely at the cognitive level — an object name, covertly
aroused, can arouse an image of such an object; conversely, the name of the object
presumably can be retrieved from its memory image’ [44] (p.23). Pictures are remembered
better than words because pictures are more likely to be encoded both as images and as
verbal traces. The codes must be at least partially independent, so that encoding could be in
terms of one or the other, or both; if it is both, one code presumably could be forgotten and
the verbal response could still be retrieved from the other [44] (p. 23). The multiple
sensorimotor side of the theory has often been overlooked. This is perhaps because dual
coding research has emphasised visual imagery more than other modalities, just as other
imagery researchers have done [17]. This is predicated on evidence which suggests that in
normal sighted individuals the visual system is dominant that is, the transfer of
discriminative responding from sight to touch or vice versa is guided or mediated by the
visual system. However, the degree to which the visual system dominates in normal sighted
individuals varies [24]. Thus, ‘the overall probability of the activation and use of verbal and
nonverbal representations is a function of the combined effects of stimulus attributes (e.g.
word concreteness, meaningfulness and familiarity), instructions and other contextual
stimuli and individual differences (e.g. imagery or verbal ability). The precise nature of the
combination (whether additive or interactive, for example) is an empirical question’ [24]
(p.68-69). However, to date, there exists evidence from over sixty empirical studies which
show that the ‘presentation of a pictorial representation of an item and [the] presentation of
a verbal representation of the same concept have independent and additive effects on recall,

unlike picture-picture or word- word representations [49] (p.80).

2.2.1.2 Nelson’s sensory-semantic model

Nelson sensory-semantic model is based on three assumptions. The first of which is that
‘both pictures and words access a common semantic code’ [50] (p.785) and that pictures
access this information more directly than words [36]. Second, it assumes that ‘pictures

access phonemic information about their verbal labels after semantic access’ [50] (p.785)

18

Chapter 2 Literature Review

and that words access phonemic information prior to semantic access [36]. Third, it
assumes that pictures and words differ in their sensory and physical features and that
pictures are more discernible and distinctive than words [36]. One study which verifies
Nelson’s theory is that carried out by Nelson, Reed and Walling [45]. They showed
subjects pictures of objects with similar shape but low conceptual similarity. They
predicated that the pictures would no longer act as better recall cues than words [36].
Results showed that ‘pictures were no better as [recall] cues than words at a relatively slow
rate of presentation (2.1 sec) and that they were actually less efficient [recall] cues at a

faster rate of presentation (1.1 sec)’ [50] (p.785).

2.2.1.3 Anderson’s tri-code theory

Whilst Paivio’s theory of dual coding [17] assumes the existence of two types of mental
encoding, Anderson [51] postulates the existence of ‘three codes or representation types’
[51] (p.45). These are ‘a temporal code, which encodes the order of a set of items; a spatial
image, which encodes spatial configuration; and an abstract proposition, which encodes
meaning’ [51] (p.45). Anderson [51] claims that ‘it is impossible to identify whether a
particular notation correctly expresses the structure of a representation or whether different
knowledge structures are encoded according to different notations’ [S1] (p.46). However,
‘it 1s possible’, he claims ‘to decide that different knowledge structures have different
processes defined upon them’ [51] (p.46). Hence, Anderson [51] believes that the mental
representation of pictures and words can only be determined by the processes that act upon
them. He argues that the value of a certain representation will always depend on issues of

processing efficiency, and not on the representation itself [36].

2.2.1.4 Larkin and Simon’s analysis of sentential and diagrammatic representations

Rather than focus their research efforts on identifying the different internal representations
that pictures and words can take in the brain [36], Larkin and Simon [47] compared the role
that diagrammatic representations and sentential representations play in three cognitive
processes. These were search, recognition and inference [52]. They defined sentential
representations as expressions which form ‘a sequence corresponding, on a one-to-one

basis, to the sentences in a natural language description of a problem’ [47] (p. 66). They

19

Chapter 2 Literature Review

defined diagrammatic representations as expressions that ‘correspond, on a one to one
basis, to the components of a diagram describing the problem’ [47] (p. 66). Larkin and
Simon [47] compared diagrammatic representations and sentential representations based
upon their informational and computational equivalence. The two representations were said
to be informationally equivalent ‘if all the information in the one is also inferable from the
other, and vice versa’ [47] (p. 67). Like wise, the two representations were said to be
computationally equivalent, ‘if they were informationally equivalent, and, in addition, any
inference that could be drawn easily and quickly from the information given explicitly in
the one could also be drawn easily and quickly from the information given explicitly in the
other and vice versa’ [47] (p. 67).

Larkin and Simon [47] found that diagrams made it easier to find relevant information as
one could scan from one element to another nearby much more rapidly than one could with
a list of numbers or verbal assertions. In searching a verbal assertion, a linear search down
the data structure is required to find each informational item. In contrast, since related
information is most often grouped together in a diagrammatic representation, all required
information can often be obtained ‘for free’ by finding the first informational item [36].
Diagrams were also found to make it easier to identify instances of a concept. An iconic
representation can be recognised much faster than a verbal description [52]. This is because
diagrams preserve explicitly ‘the information about the topological and geometric relations
among the components of a problem’ [47] (p. 66). This results in fewer (explicit) inferences
needing to be drawn from diagrammatic representations than from sentential
representations, resulting in more efficient computation [36].

However, about inference, Larkin and Simon [47] wrote ‘in view of the dramatic effects
that alternative representations may produce on search and recognition processes, it may
seem surprising that the differential effects on inference appear less strong. Inference is
largely independent of representation if the information content of the two sets of inference
rules [one operating on diagrams and the other operating on verbal statements] is equivalent
— that is the sets are isomorphs’ [47] (p. 70). However, in a later experiment, Bauer and
Laird [52] found that diagrams aid inference by making alternative possibilities more
explicit. They found that the ability to bypass the construction of meanings from verbal

premises and to manipulate visual images appeared to reduce the load on working memory

20

Chapter 2 Literature Review

and to speed up the process of inference. Subjects were found to respond faster and to draw

many more valid conclusions from the diagrams than from the verbal premises [52].

2.2.1.5 Discussion

From the above sample studies, there is much empirical evidence to suggest that people
remember pictures more readily and easily than words, and that, pictures are a more
efficient means of encoding information than words [36]. However, in accepting such
claims, a word of caution must be aired. Much of the empirical evidence in support of these
claims comes from testing them with ‘concrete’ everyday pictures and words. Algorithms
are not concrete entities. They are abstract entities and as such, have no real world
equivalents. However, if one were to concretise an algorithm’s behaviour that is, provide
both a visual and textual representation of its behaviour, one may, as evidenced by the dual
coding theory [15], facilitate its recall from memory more easily and efficiently than if one
had not deployed dual encoding [9]. Equally, if one were to render the visual representation
of an algorithm’s behaviour manipulable, one may, as informed by Baird and Laird’s
analysis [52], lend to the learner’s process of inference. Such an analysis has important
implications for the teaching and learning of distributed algorithms, as it suggests, that
given the dynamic and concurrent nature of the aforementioned algorithms that the use of
static imagery may not lend itself well to the easy disclosure of their behaviours. This is
something which Anderson [51] alluded to in his tri-code theory, when he asserted that the
value of a certain representation is not in and of itself, but dependent upon the processes
that a learner can enact upon it. Thus, this raises the question as to whether any of the
aforementioned theories or empirical evidence has informed the design of algorithm
visualisation systems (AVs) in general or the design of AVs for the teaching and learning
of distributed algorithms, either directly or indirectly. If the answer is yes, have these
systems been subjected to empirical evaluations and if so, what has been their outcome in
terms of learning gain? By carrying out such an analysis, one may begin to identify reasons
as to why instructors have failed to embrace AVs in general and in particular, AVs for the
teaching and learning of distributed algorithms. However, in order to begin such analysis,
one must first identify the theories of learning that have informed the design of algorithm

visualisation systems to date.

21

Chapter 2 Literature Review

2.3 Theories of learning informing the design of algorithm visualisation systems (AVs)

To date the design of AVs has been in general informed by one of four different theories of
learning [9]; epistemic fidelity [9, 53], dual coding [15], individual differences [19] and
cognitive constructivism [119].

Epistemic fidelity (See figure 2-2) assumes that ‘graphical representations, like for
example AVs, are endowed with an excellent ability to support representations that closely
match an expert’s mental model of an algorithm’s process [1] (p. 16). It assumes that the
higher the ‘fidelity’ of the match between the visualisation and the expert’s mental model,
the more robust and efficient is the transfer of that mental model to the viewer of the

visualisation, who decodes and internalises the target knowledge [9].

Algorithms
Expert

& . &
Encode Decode
O O |_s I><I N O O

Figure 2-2: A schematic diagram of knowledge flow according to the theory of epistemic
fidelity (adapted from [1]).

AV Viewer

Dual coding as defined earlier in section 2.2.1.1 assumes that ‘visualisations that
encode knowledge in both verbal and non-verbal modes allow learners to build dual
representations in the brain, and referential connections between those representations. As a
consequence, such visualisations facilitate the transfer of target knowledge more efficiently
and robustly than do visualisations that do not employ dual encoding’ [9] (p. 272).

Individual differences, as defined previously in chapter 1, section 1.2, posits that
learners reflecting their own individual traits process and represent knowledge in different
ways, prefer to use different types of resources and exhibit consistent and observable
patterns of behaviour [20]. It assumes that learners learn more effectively when the style of

instruction is adapted to their individual learning traits [54]. Traits are the psychological

22

Chapter 2 Literature Review

constructs that describe how individuals generally behave over the long term [55] and
include concepts of intellectual ability and learning styles. Abilities refer to the things that
one can do such as execute skills or strategies, whereas styles refer to individual
preferences in the use of abilities [56]. The concept of a learning style reflects a person’s
style of behaviour when learning and lies in the area of psychology at the interface between
abilities and personalities [57]. A battery of instruments has been developed to rate and
classify a learner’s individual learning style along a number of different dimensions [9].
These include *Vark’s learning style inventory and the MIDAS questionnaire [21]. Vark’s
inventory rates an individual’s learning style in accordance with one of four different
preferences for the way in which information is acquired. These include a read write
preference, an auditory preference, a kinesthetic preference and a visual preference. The
MIDAS questionnaire rates an individual’s learning style in accordance with one or more
relatively independent abilities as classified by Gardner’s eight multiple intelligences [22].
These include the verbal/linguistic intelligence, which is the ability to use language in
pragmatic ways such as rhetoric (using language to convince others to take a specific
course of action), mnemonics (using language to remember information), explanation
(using language to inform) and meta language (using language to talk about itself),
logical/mathematical intelligence, which is the ability to detect patterns, reason deductively
and think logically, visual/spatial intelligence, which is the ability to perceive the visual-
spatial world accurately, to perform transformations on those perceptions and to create
visual expressions, the musical/rhythmic intelligence, which is the ability to recognise and
compose musical pitches, tones and rhythms, bodily/kinaesthetic intelligence, which is the
ability to learn by doing and by using one’s mental ability to coordinate bodily movements,
interpersonal intelligence, which is the ability to work and communicate with others,
intrapersonal intelligence, which is the ability to have an accurate picture of oneself, one’s
strengths and limitations and the ability to act adaptively based on that knowledge and
naturalist intelligence, which is the ability to comprehend, discern and appreciate the world
of nature [23]. The theory of individual differences asserts that measurable differences in
human abilities and learning styles will lead to measurable performance differences in

scenarios of AVs use [9]. However, the preponderance of evidence has not proved this to

% Available from: http://www.vark-learn.com/english/index.asp

23

Chapter 2 Literature Review

be true [58]. Such findings replicate those from the realm of adaptive educational systems,
which are predicated on the assumption that if one dynamically adapts the presentation of
content to suit an individual’s learning style then this leads to demonstrable learning gains
in that individual’s understanding of the content. However, evidence in support of such an
assumption is inconclusive [23]. Some studies have found that learning improves when
individual differences are taken into account (e.g. [54]), whilst others have found no
differences (e.g. [59]). One reason for this is because, in practice, it is difficult to match
learning characteristics with instructional environments and it is not clear how the matching
should take place that is, it is unclear as to which pedagogical model (e.g. Gardner’s theory
of multiple intelligences), one should use to characterise an individual’s learning style and
to act as the basis for adapting the presentation of content [23]. Of special interest to this
thesis, however, are findings from the work of Kelly [23] which suggest that learning gain
increases when learners are provided with resources not normally preferred. This would
suggest that what motivates a learner to learn is challenge that is, the challenge to
understand resources not normally preferred.

Cognitive constructivism assumes that learning is an active process of constructing
rather than of acquiring knowledge. ‘Instead of presupposing that knowledge is a
representation of what exists, knowledge is a mapping in the light of human experience of
what is feasible’ [60] (p. 162). By learners becoming actively engaged with their learning
environments, learners actively construct new understandings by interpreting new
experiences within the context of what they already know. Thus, it hypothesises that
learners do not stand to benefit from AVs by merely passively viewing visualisations, no
matter how high their level of epistemic fidelity. Instead learners must become actively
engaged with the technology in order to benefit from it [9].

Of these four theories, three share the same basic theoretical assumption that is, that
‘knowledge exists independently of humans and can be instantiated as symbolic structures
in humans’ brains’ [1] (p.16). Such an assumption adheres to the internal representation
argument documented earlier in section 2.2.1.1. The three theories which comply with the
aforementioned assumption are the theory of epistemic fidelity, the theory of dual coding
and the theory of individual differences. The theory of cognitive constructivism adheres to

the process oriented argument (See section 2.2.1.3). It assumes that the value of an

24

Chapter 2 Literature Review

algorithm visualisation system lies not in the visual representation of the algorithm’s
behaviour that it presents, but in the level of engagement that it affords a learner over the
representation. It believes that knowledge does not flow from expert to AV to learner [1],
but is constructed by the learner through experimentation with the representation. The next
section will document the manner by which the design of AVs in general has evolved in

accordance with the aforementioned learning theories.

2.3.1 Linking learning theories to the evolving design of algorithm visualisation
systems in general

Historically, AVs in general have been informed by the theory of epistemic fidelity and as
such, have been designed to encode and present to a learner an expert’s mental model of an
algorithm’s behaviour. The first known attempt at such a construction was Brown’s Balsa
system [61], which was designed to not only present learners with multiple graphical
representations of an algorithm’s behaviour but also, to ‘expose properties of the
[algorithm] that might otherwise be difficult to understand or remain unnoticed’ [61] (p. 1).
This system heralded the dyadic user model (See figure 2-3) as the way forward for
building algorithm visualisation systems and for encoding and acquiring an expert’s
understanding of the algorithm’s behaviour. According to this model, an algorithm
visualisation system provides an algorithm animation system for the algorithm expert and
an end user environment for the learner. These two interfaces are not only conceptually
distinct, but technologically distinct [1]. ‘The algorithm animation system is the code with
which [the algorithm expert] interfaces, and the algorithm animation environment is the run
time environment that [the learner] sees. It is the result of compiling the code that [the

algorithm expert] implements with the algorithm animation system’ [61] (p. 6-7).

25

Chapter 2 Literature Review

AV Artifact

Programmer End User
Interface +—> Environment

A A

Client-Programmers End Users

Animation Viewers
(Learners)

Animators
(Instructors)

Figure 2-3: Brown’s dyad user model [61] for AV software development (adapted from

[1D).

With the advent of increased computational power and the arrival of more sophisticated
graphical technologies, algorithm visualisation researchers looked to increase the amount of
knowledge that they could encode in an algorithm visualisation. This was based on the
epistemic premise that the more knowledge that one could encode in an algorithm
visualisation, the more knowledge that one could transfer to the viewer of the visualisation
that is the learner [1]. Thus, algorithm visualisation systems evolved from facilitating
multiple concurrent views of an algorithm’s behaviour (e.g. [62]), to providing smooth
animations of the latter (e.g. [63, 64]). This was in order to reduce the cognitive load on the
learner and to enable the learner to view the state changes in an algorithm’s behaviour more
readily and easily. Colour was next added to the animations to focus learners’ attentions on
specific changes in an algorithm’s state behaviour (e.g. [38, 65]). This was similarly
followed by the use of sound (e.g. [65]), two dimensional graphics and even three
dimensional graphics (e.g. [66, 67]). This culminated in the addition of VCR-like controls
which were designed to enable learners to control the rate at which the algorithm
visualisation system presented the algorithm behaviour to the learner and to enable the

learner to step through the visualisation and to reverse it, if need be (e.g. [68]).

26

Chapter 2 Literature Review

However, the use of such systems, the author labelled as passive animation systems,
was found not to lead to significant improvements in a learner’s understanding of an
algorithm’s behaviour [69]. This was due to two reasons. The first of which was that the
beneficial effects of the visualisations were lost unless accompanied by teacher provided
explanations [69]. Such findings accord with the theory of dual coding theory, which holds
that in order for an animation to be educationally effective it must be encoded both visually
and textually to allow learners to build dual representations in their minds, and to form
referential connections between these representations [9]. The second problem associated
with passive animation systems was as a result of their inability to permit learners to
exercise their higher order thinking skills by enabling them to interact with the behaviour of
the algorithm. Higher order thinking can be defined as ‘thinking that requires learners to
manipulate information and ideas in ways that transform their meaning and implications
such as, when learners combine facts and ideas in order to synthesise, generalise, explain,
hypothesise or arrive at some conclusion or interpretation’ [70] (p. 20).

Higher order thinking skills is another means by which one refers to Bloom’s taxonomy
of educational objectives. The latter was designed to provide instructors with explicit
formulations of the ways in which learners are expected to be changed by the educative
process. Its aim was to identify what learners do when they really understand which they do
not do when they do not understand [71]. Bloom’s taxonomy structures a learner’s depth of
understanding along a linear progression of six increasingly sophisticated levels [72]. These
are knowledge, which is the ability to bring to mind the appropriate material,
comprehension, which is the ability to discern meaning, application, which is the ability to
apply an appropriate abstraction to a problem without having to be prompted to do so,
analysis, which is the ability to break down material into its constituent parts, to identify or
classify elements of the communication, synthesis, which is the ability to work with
elements to combine them in such a way as to constitute a pattern or structure not clearly
there before and evaluation, which is the ability to make judgements about the value for

some purpose of ideas, works, solutions, methods, materials and so on [71] .

27

Chapter 2 Literature Review

Level in Bloom’s | What a learner can do at | Sample tasks and Assignments
Taxonomy this level

1. Knowledge Recognise and informally | List three different sorting
define specific concepts in | algorithms

algorithmics like for example,
Quicksort

2. Comprehension Understand the general | Trace your chosen algorithm
principle behind an algorithm | using the following input set

and explain how it works | 25,7, 38, 15, 32,8, 27, 12

using words and figures

3. Application Adapt a previously studied | Implement a program that sorts a
algorithm for some specific | linked list of strings using
application, environment or | insertion sort and demonstrate
representation of data. that it works.

4. Analysis Understand the relation of the | Compare the performances of the
algorithm with other | Quicksort to the HeapSort.
algorithms solving the same or
related problems.

5. Synthesis Design solutions to complex | Design the data structures and
problems where several | algorithms needed by a car
different data structures, | navigation system.

algorithms and techniques are
needed.

6. Evaluation Discuss the pros and cons of | Discuss the design of a solution,
different algorithms that solve | and argue why it is better or
the same or similar problems. | worse than a different solution.

Table 2-1: An over view of Bloom’s taxonomy and the depth of understanding expected at
each level within the taxonomy together with a depiction of sample exercises designed to

engage learners at each level of the taxonomy (adapted from [72]).

Passive animation systems facilitate the attainment of the first two levels of this
taxonomy. These are knowledge and comprehension. They enable learners to recall basic
facts about an algorithm’s behaviour like for example, the manner by which a selection sort
algorithm ‘sorts’ a list of elements based on the value of the smallest element with in that
list. They also enable learners to discern meaning that is, when confronted with a
visualisation of a selection sort algorithm they enable learners to recognise it as a sort
algorithm. However, such levels of comprehension represent the lowest levels of
understanding. ‘It relates to the type of understanding or apprehension such that an

individual knows what is being communicated without necessarily relating it to other

28

Chapter 2 Literature Review

material or seeing its fullest implications’ [71] (p. 89). In order to achieve higher levels of
understanding that is, application, analysis, synthesis and evaluation, there was need of
systems which enabled learners to analyse the behaviour of an algorithm in order to identify
its constituent parts and their relevance to one another. Moreover, there was need of
systems to aid learners in the process of inference, by enabling them to formulate and
execute hypotheses. Such interactivity was needed in order to enable learners to draw
conclusions about an algorithm’s behaviour and to judge its suitability to different problem
domains.

Consequently, researchers developed systems, which were designed to overcome the
problems inherent in passive animation systems by enabling learners to augment the
process of viewing an algorithm’s behaviour [9] by inputting their own data sets (e.g. [73]),
by predicting future frames of an algorithm’s behaviour (e.g. [5, 28, 74]) and by answering
strategic questions about the state of the algorithm’s behaviour (e.g. [69, 75]). Such
developments constituted a move away from the traditional pedagogy of epistemic fidelity
to the theory of cognitive constructivism. This was based on the assumption that if one
increased the level of learner involvement with an algorithm visualisation, one would
increase the learner’s understanding of that algorithm’s behaviour. However, whilst these
systems did facilitate increased learner involvement with an algorithm’s behaviour in line
with the theory of cognitive constructivism, results from empirical studies (which shall be
more closely examined in section 2.3.3), as to their educational effectiveness were mixed
[9]. This is because learners, who are just beginning to learn about an algorithm’s
behaviour, may not have a foundation of understanding upon which to map the logic of an
algorithm’s implementation to that of its graphical counterpart [2].

Thus, researchers developed ways by which learners could create their own
understanding of an algorithm’s behaviour as a visualisation. Such a move alined more
with the branch of cognitive constructivism known as constructionism. Constructionists
claim that the structuring phase of learning builds the framework of understanding upon
which subsequent knowledge in a domain is based. There is plenty of evidence to suggest
that this constructive process is facilitated during the conduct of tasks that require an
inspectable output [32]. Hence, the building of what the author terms as algorithm

construction systems represented an end to the strong hold which the dyadic user model

29

Chapter 2 Literature Review

had on algorithm visualisation development, as now learners were no longer seen just as
end users but as algorithm experts. Now, the question that seemed to enthral researchers
and to eclipse the question of how to facilitate and sustain higher order thinking was how to
facilitate the easy creation of an algorithm visualisation?

To this end, a number of systems were developed; each deployed one of four different
methodologies for the easy creation of an algorithm visualisation. These were annotation
(e.g. [61, 76, 77]), which is a process of manually annotating the source code of an
algorithm’s behaviour to include calls to functions of an animation library that as far as
possible hide the productions of graphics connected with the visual from the learner, non-
invasive annotation (e.g. [78]), which is a process of automating the aforementioned
manual annotation process [79], scripting (e.g. [12, 80, 81]), which is an alternative
approach to manual annotation which tries to combine the flexibility of function calls with
a modest amount of programming knowledge [82], and animation frameworks [38, 83],
which is the provision of a set of generic reference data types for a given algorithm domain
including a control flow that performs interaction among the object instantiated from it.
Frameworks hail from the domain of software engineering and are widely used as it is
easier to modify and customise a framework then to write an application from scratch [79].
However, despite enabling learners to concretise their own understanding of an algorithm’s
behaviour as a visualisation, findings in relation to their educational effectiveness have
been mixed [84]. One reason for this is because learners become distracted by the process
of implementing an algorithm’s behaviour and fail to acquire an understanding for all
necessary concepts relating to that algorithm’s behaviour [1]. This may be due, as some
have claimed, to the inadequacies or complexities of the tools provided by such systems for
the creation of an algorithm visualisation (See section 2.4) [9] or, as the author postulates,
to the failure of these systems to enable learners to build upon their current levels of
understanding of an algorithm’s behaviour. By enabling learners to manipulate the
behaviours of their algorithm representations in real time, that is, while they execute, one
enables them to encounter information which is dissonant to their current understanding.
Only by enabling learners to absorb such dissonant information will deeper understanding

of an algorithm’s behaviour prevail. As Piaget [120] defined, one learns by struggling to

30

Chapter 2 Literature Review

absorb dissonant information into one’s existing mental models, and the resulting cognitive
uncertainty, results in a modification of one’s previous understanding.

The ability for a learner to interact with his own representation of an algorithm’s
behaviour in real time is crucial for a learner to obtain a deep understanding of a distributed
algorithm’s behaviour, in particular. This is because there are episodes of behaviour which
occur in the real world, like for example, the loss of a communication channel, that can, if
not accounted lead, to that algorithm malfunctioning or terminating. Thus, in order to
ensure that a learner gains an appreciation for and an understanding of such scenarios of
behaviour, the learner must be able re-enact such scenarios and observe their effects on his
cognitive representation of the algorithm’s behaviour. Thus, the question arises, have
algorithm visualisation systems for the teaching and learning of distributed algorithms been

designed to facilitate such deep levels of engagement?

2.3.2 Design of algorithm visualisation systems (AVs) for the teaching and learning of
distributed algorithms

AVs for the teaching and learning of distributed algorithms have evolved in a similar
manner to AVs in general, in that, their design has initially been informed by the theory of
epistemic fidelity and, as a result of attempts to engage learners in the high order thinking
skills of analysis, synthesis and evaluation, moved to the theory of cognitive
constructivism. As a consequence, these systems have evolved from systems, which present
learners with prepared multiple views of an algorithm’s behaviour (e.g. [85]), to systems,
which augment the viewing process, by enabling learners to directly manipulate the
behaviour of an algorithm’s components in real time that is while it executes (e.g. [86]), to
systems, which facilitate the easy creation of an algorithm’s visualisation (e.g. [3, 87-91]).
Of interest to this thesis, is the manner by which these systems have facilitated real time
interactivity with an algorithm’s behaviour and enabled learners to create their own
visualisation of an algorithm’s behaviour. These two areas are of relevance as the author
believes that it is the inability of currently available algorithm visualisation systems to
enable learners to, not only, build but to experiment with their own visual representations
of an algorithm’s behaviour while they execute that has led to their mixed performance in

evaluation studies and as a result, to their lack of take up in computer science education.

31

Chapter 2 Literature Review

Real time interactivity can be defined as the ability to influence the execution of an
algorithm’s behaviour as it evolves [3]. This can be achieved by enabling learners to, in the
simple case, change the state of an algorithm’s variables or, in the more sophisticated case,
to cause one or more its components to fail. To date the only known system to facilitate real
time interaction is HiSAP (Highly Interactive Simulations of Algorithms and Protocols)
[86]. In HiSAP, a learner can change the order in which operations are carried out by an
algorithm by, for example, clicking on a node and causing it to fail. As a result of such
interaction, the learner is able to explore the degree to which the algorithm is fault tolerant.
An algorithm is said to be fault tolerant if it continues to function despite the presence of
one or more failed components.

However, HiSAP presents an expert’s mental model of an algorithm’s behaviour and
not that of the learner’s. As such, it does not provide facilities to enable learners to make
explicit their own cognitive representations of an algorithm’s behaviour as defined by the
branch of cognitive constructivism known as constructionism. Constructionists believe that
one learns by first making explicit their own cognitive understandings of an entity and that
this provides the platform from which all subsequent knowledge is built. Moreover, HiSAP
does not enable learners to modify the underlying implementation logic of an algorithm’s
behaviour. Indeed, it hides the implementation code from the learner. As a consequence
HiSAP only provides learners with one mode of representation that is a visual
representation. This is counter to the theory of dual coding which posits that in order for
instruction to be successful, a learner must be able to encode knowledge in both verbal and
non verbal modes in order to allow him to build dual representations in his mind, and
referential connections between those representations. This is in order to facilitate the
efficient transfer of knowledge [9]. One application which has successfully emulated the
theoretical underpinnings of the dual coding theory, but which falls outside the domain of
distributed system algorithms, is an application known as Jeliot [92, 93]. This is an
application which has been designed to aid learners in understanding basic programming
concepts by visualising the behaviour of a program while it executes. Jeliot provides a spilt
pane interface, which is subdivided into two interchangeable halves. In one half of the

interface is the code relating to the program’s implementation and, in the other, is the

32

Chapter 2 Literature Review

visualisation of its implementation while it executes. The former is known as the code

frame, whilst the latter is known as the animation frame.

A beliat 301

lapete jalict.io.?: '

public cleaa If |
public sTatic wold waini) [

#F Wour algeriche gues beps
ink w=2, b=l;
-
| ufput.peintln|'z'izs }
tlse
| Dustput.pointln|'y'is; }

ICIARK

May | Pummd | R

JELIOT om0

Figure 2-4: A screenshot of Jeliot’s user interface dynamically illustrating the behaviour of
an ‘If” statement. To the right hand side is the code frame and to the left hand side is the
animation frame. The code frame contains code relating to the manner by which the ‘If’
statement is implemented in Java, whilst the animation frame displays a visual

representation of the aforementioned code in action.

One reason for the lack of AVs offering real time interactivity may be due to the
difficulty in developing such systems. In creating such systems, the author calls active
simulation systems, one must not only define the logic of the algorithm’s behaviour that
one is intending to animate, but also, the manner by which it is to be animated. Moreover,
one must define what components of the algorithm’s behaviour that a learner can engage
with and modify. As a result of such development difficulty, researchers have looked for
alternative ways to engage learners with algorithm visualisations. This has been achieved
by designing systems to enable learners to create their own algorithm visualisations. Like
AVs in general, these systems have deployed one of three different methodologies to
facilitate the creation of an algorithm visualisation. These are annotation (e.g. [88, 94]), the
use of a formal scripting language (e.g. [87, 91]) and the provision of animation

frameworks (e.g. [89, 90]). However, whilst providing learners with tools to make explicit

33

Chapter 2 Literature Review

their own current cognitive understandings of an algorithm’s behaviour, these systems have
failed to enable learners to build upon that understanding by enabling them to experiment
with the behaviour of their representations in real time. An upshot of this has been that
learners have had no means of determining the degree to which their cognitive
representations of an algorithm’s behaviour have been fault tolerant. This raises the
question as to what degree has algorithm visualisation systems in general and those
designed primarily for the teaching of distributed algorithms been found to be educationally
effective, that is, led to a significant improvement in a learner’s understanding of an

algorithm’s behaviour?

2.3.3 Educational effectiveness of algorithm visualisation (AV) technology, in general

To date a number of empirical studies have been carried out to substantiate the educational
effectiveness of algorithm visualisation (AV) technology in general. However, results from
these studies have been markedly mixed [10]. Some have indicated that the use of AV
technology does lead to a beneficial effect on learning (e.g. [6, 13]), whilst other have
found no beneficial effect (e.g. [7]), or have found a beneficial effect that can only be
partially attributed to the technology itself (e.g. [5] [9]). However, of interest to this thesis,
are findings from a meta-analysis of twenty four experimental studies which suggest that
how learners use AV technology has a greater impact on educational effectiveness than
what an algorithm visualisation shows them. Out of fourteen studies that varied the level of
learner involvement with the algorithm visualisation, ten (71%) of these returned a
significant learning outcome. Whilst, out of ten studies which varied the representational
characteristics of the learning materials, by showing text or animation or by showing
animation first or text first or by varying the various graphical attributes of the animation,
only three (33%) of these returned a significant learning outcome. This would suggest that
the most successful uses of AV technologies are those in which the technology is used as a
vehicle for actively engaging learners in the process of learning algorithms [9]. This alines

well with cognitive constructivism.

34

Chapter 2 Literature Review

Significant
. Result
Non-
Representation - Significant

Result

monvenent [
Involvement

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Experimental Results

Figure 2-5: Summary of results from a meta-analysis of 24 visualisation effectiveness
experiments broadly classified by their independent variables (adapted from [72]). Total
number of experiments in each classification is delineated by the height of each hollow bar.
Number of experiments yielding significant results is indicated by the proportion of each

hollow bar that is filled in.

To date AV technology has actively engaged learners by enabling them to predict
future frames of an algorithm’s visualisation, to input their own data sets, to answer
questions about the algorithm’s behaviour and to construct their own algorithm
visualisations [9]. Such varying modes of engagement have prompted researchers to
question their effects upon learning. This has resulted in a number of empirical studies, the
results of which have been at best mixed ([8, 9]).

Lawrence [6] found that enabling learners to create and input their own data sets to an
algorithm visualisation led to higher accuracy on post test examination of understanding of
the algorithm when compared to students who viewed prepared examples. She found that
the ability to enable learners to input their own data sets significantly impacted upon their
conceptual understanding of the algorithm’s behaviour. Learners in the ‘active lab’ group

scored higher on questions requiring conceptual knowledge than on questions requiring

35

Chapter 2 Literature Review

recognition of individual steps of the algorithm (procedural knowledge) [6]. Conceptual
knowledge can be defined as an understanding of the abstract properties of an algorithm,
like for example, its range of output or its limits on input data that it can process.
Procedural knowledge can be defined as an understanding of the procedural, step-by-step
behaviour of an algorithm [9].

Byrne [5] found that one way in which animations may aid learning of procedural
knowledge of an algorithm’s behaviour is by encouraging learners to orally predict the
algorithm’s behaviour. However, such a learning improvement was also found when
learners made predictions about an algorithm’s behaviour from static diagrams. This
suggests that prediction, rather than animation per se, may have been the key factor in
aiding learning [5].

Jarc [28] automated the aforementioned prediction process in his web based algorithm
visualisations and found no significant differences between learners who made predictions
about an algorithm’s behaviour and learners, who did not. He postulated that the reason for
this was because poorer learners treated the automated prediction as a game. When they
became lost in the animation, they completed the questions by simply making guesses.
However, he did note that with increased proper use of prediction learners’ performances
on post tests improved [29].

Findings from Grissom [35] echo those of Byrne [5]; however, he did caution that in
order to expect relatively naive learners to benefit from AVs, one must carefully guide
them in their explorations with the tool. This would suggest that AV technology is best
suited to a scaffolded learning environment that is, one which allows learners to correct
their misunderstandings through discussion and interaction with instructors or fellow
learners. This accords with findings from a qualitative study carried out by Hubscher-
Younger [95], who found that learners learn algorithms by employing informal and
collaborative meaning building activities. These include studying in small groups, solving
home work problems together and explaining and helping each other with different
concepts. Such a mode of learning concurs with the branch of cognitive constructivism
known as social constructivism. According to social constructivism, learning is inherently
social. What one learns is a function of social norms and interpretations and knowledge is

simply not constructed by the individual, but by social groups [1].

36

Chapter 2 Literature Review

With respect to the ability to create one’s own algorithm visualisation, one would
expect learners who construct their own visualisations to have a greater understanding of
the algorithm’s behaviour. However, evidence in support of such an assumption is as yet
unclear. Stasko [12] found that learners who constructed their own understanding of an
algorithm’s behaviour using his Samba system had a better understanding of the algorithm
than students who viewed a visualisation created by an expert. Findings from Hundhausen
and Douglas [8] contradicted those of Stasko’s. He found no significant differences
between learners who constructed a visualisation (‘the self construct group’) and those who
watched and interacted with an expert constructed visualisation (‘the view active group’).

However, these findings can be attributed to the manner in which Hundhausen’s
experiment was carried out. Learners in the ‘self construct’ group had to create their own
visualisations using simple art supplies such as pens, crayons and so on. Such art supplies
are known not to lend themselves well to the easy disclosure of material which is dynamic
in nature. Moreover, learners in the ‘self construct’ group were prohibited from discussing
their creations with their instructors, thus, they were provided with no information which is
dissonant to their current understanding of the algorithm’s behaviour and as a result, were
unable to modify or build upon their understanding. This may have accounted for the large
number of incorrect visualisations received by Hundhausen and Douglas. Findings in
relation to the ‘view active’ group echo those of Stasko’s [7], who found that for students to
benefit from AV, they must understand not only the concepts underlying the algorithm, but
also, the manner in which those concepts are mapped to the animated computer graphics
domain [96]. Thus, this finding would suggest that in order for learners to truly understand
an algorithm’s behaviour, they must attempt to build their own representations of the
algorithm. This is an assumption upheld by Jarc [29], who found that learners were unable
to replicate the behaviour of an algorithm, despite stating emphatically that they understood
the algorithm, after viewing an interactive visualisation of its behaviour.

Perhaps the most interesting findings come from the work of Grissom [35], who found
that as a learner’s level of engagement with an algorithm visualisation increased so did his
understanding. This suggests that it is the accumulative effect of different modes of

engagement that significantly impact upon learning than any one individual mode.

37

Chapter 2

Literature Review

Essentially the more effort that is required to engage with the algorithm, the more robust

one’s understanding of that algorithm will be [9].

Study Independent Variable Dependent Variable Key Results

Lawrence Level of learner involvement Post test accuracy. Participants who
(Chapter 6) | 1. Study text + passively view | Time to take post test. actively viewed
[6] animation animation scored

2.

Study text + actively view
animation by constructing own
input data sets.

significantly higher than
students who passively
viewed animation.

Learning medium

1. Study text only

Participants who viewed
animation and/or made

Byrne, 2. Study text + make predictions scored
Catrambone predictions Post-test accuracy significantly higher on
& Stasko 3. Study text + view animation | Prediction accuracy ‘hard questions than
[5] 4. Study text + view animation participants who did
+ make predictions neither
No significant
differences were
Interactive prediction detected on post test.
Jarc, (Use of animation software that | Post-test at end of three | The prediction group
Feldman & | enables prediction of next algorithm | weekly lab sessions. spent significantly more
Heller [28] | step vs. use of animation software | Learning time time using the animation
with no prediction) software than the no-
prediction group
Grissom, Level of learner involvement Post test accuracy Participants who viewed
McNally & | 1. Lecture only the animation and
Naps [35] 2. Lecture + passively view responded to interactive
animation questions posed about
3. Lecture + view animation + the algorithm’s
actively engage with animation behaviour significantly
by responding to interactive outperformed
questions posed participants who
passively viewed the
animation or who
learned through the

lecture only. Participants
who received the lecture
accompanied by the use
of the non interactive
use of the animation
significantly
outperformed those who
received the lecture
without the use of the
animation.

38

Chapter 2 Literature Review

Participants who
actively constructed
their own algorithm
visualizations using
Level of learner involvement Stasko’s Samba system

1. Self construct visualizations significantly

. Post test accuracy
2. View predefined outperformed
visualization participants who viewed

an algorithm
visualisation created for
them by an expert

Stasko [12]

Level of learner involvement

Hundhause 1. Self construct visualizations | Accuracy and time on | No significant
n and 2. Actively view predefined | tracing and | differences detected.
Douglas [8] visualizations. programming tasks.

Table 2-2: Summary of controlled experiments that consider algorithm visualisation

effectiveness (adapted from [1, 9]).

As a consequence of this analysis, two questions remain.
1 To what extent have AVs for the teaching and learning of distributed algorithms
been subjected to empirical evaluations?
2 To what extent have techniques used by algorithm construction systems hindered or

assisted learners in creating their own algorithm visualisations?

2.3.4 Educational effectiveness of algorithm visualisation systems (AVs) for the
teaching and learning of distributed algorithms

Although a number of AVs have been developed for the teaching and learning of
distributed algorithms, little is known about their educational impact or how instructors and
learners use them in class [97]. After an extensive trawl of the literature and at the time of
writing, the author could only uncover empirical evidence as to the deployment and
educational effectiveness of two systems, namely HiSAP [98] and Lydian [3].

HiSAP consists of a framework to build simulations and generate applets from formally
specified algorithms or protocols [98]. As defined earlier in section 2.3.2, all applets
rendered by HiSAP enable learners to directly manipulate the behaviour of components of
the visualisation as they evolve, that is, in real time. HISAP was deployed for use by three
different instructors across three different modules in three different computer science

graduate courses. Each instructor used HiSAP to teach one of three different algorithms.

39

Chapter 2 Literature Review

These were the token ring algorithm, the asymmetric two-way authentication algorithm and
the adaptive synchronisation protocol. These algorithms were prepared and created by a
third party (i.e. a programmer) and not by the instructor himself or the learners. Each
instructor used HiSAP to introduce a particular algorithm to the class. Learners were then
asked to individually complete questions based on the algorithm’s behaviour. For this, each
learner was given access and freedom to play with the relevant HiSAP derived applet [98].

Researchers compared learners’ understanding of the protocols and algorithms with and
without the use of the applets. They found that learners who had worked with the applets
really understood the behaviour of the algorithms or protocols and stated that the applets
had been crucial to their understanding [98]. However, on questions of self estimation of
learning, in each of the three cases, the majority of learners answered that they were
‘unsure’ as to their level of understanding. Such findings echo those of Stasko’s who found
that for a learner to understand an algorithm’s behaviour, the learner must be able to
understand the algorithm implementation and the mapping from the implementation to the
graphics [7]. This suggests that in order to instil confidence in a learner, one must provide
facilities to enable him to make explicit his own cognitive representations of the
algorithm’s behaviour and to enable him to present the latter to an audience for feedback
and discussion.

Unlike HiSAP, Lydian was used by learners to build their own implementation of an
algorithm’s behaviour. Each learner was set a task to use Lydian to implement the
behaviour of one of three different algorithms. These were leader election based on the
echo broadcast algorithm, leader election based on a voting approach and resource
allocation based on logical clocks. Learners were given the option to create a visualisation
of their algorithm implementations if they so wished. This was facilitated through the
design of Lydian. In Lydian, the implementation of an algorithm‘s behaviour is held
separate from that of its visualisation. In order to create a visualisation of an algorithm’s
behaviour, one must first implement the behaviour of the algorithm using a language based
on a C syntax and then manually annotate the latter with calls to functions of a built in
visualisation library known as Polka [97].

Findings from the study showed that the majority of learners thought the

implementation experience helped them to understand the algorithm better. Although some

40

Chapter 2 Literature Review

learners experienced difficulties in using specific parts of the Lydian environment, the
overall impression was that it was helpful or relatively helpful to their understanding.
However, of note, was that learners who had tested the animation part of the algorithm had
a better insight into the algorithm’s behaviour than those who had not [97]. This accords
with the theory of dual coding and suggests that the building of dual representations of an
algorithm’s behaviour facilitates one’s understanding of it. However, over 60% of learners
did not experience any behaviours of the algorithm that they had not thought of prior to
implementation. This suggests that perhaps these learners did not experiment with the
behaviour of their visualisations once created. This may be due to the mode of interactivity
afforded by Lydian over an algorithm’s behaviour while it executes. Lydian affords offline
interaction [3], that is, a learner must specify prior to execution the properties of the
algorithm that he wishes to observe, change or modify. However, in many cases, it is
desirable to receive feedback and change the behaviour of the algorithm by failing links or
processes as the execution evolves [3]. This is particularly important if a learner wishes to
demonstrate to a class or instructor the degree to which his cognitive representations of an
algorithm’s behaviour are fault tolerant. Further research is needed for the promise of
algorithm visualisation in the teaching and learning of distributed algorithms to be realised.
It stills remains a challenge to identify which of the following modes of engagement with
an algorithm’s behaviour significantly impact upon one’s understanding of it. These are:
(1) the ability to view an algorithm’s behaviour, (2) the ability to interact with an
algorithm’s behaviour in real time, or (3) the ability to customise or create one’s own

algorithm visualisation.

2.4 Techniques deployed by algorithm construction systems to facilitate the creation
of algorithm visualisations by learners or instructors

As documented in section 2.3.1 and section 2.3.2, algorithm construction systems deploy
one of four different techniques to facilitate the creation of an algorithm visualisation.
These are manual annotation (e.g. [61, 76, 77]), which is the process of manually
transforming or annotating the source code of an algorithm’s behaviour to include calls to
functions of a visualisation library [79], (non-invasive) automated annotation (e.g. [78]),

which is the process of automatically adding the aforementioned animation calls to the

41

Chapter 2 Literature Review

algorithm’s source code [79], scripting languages (e.g. [12, 80, 81]), which is an alternative
approach to manual annotation which tries to combine the flexibility of function calls with
a modest amount of programming knowledge [82] and animated frameworks (e.g. [89, 90]
), which is the provision of a set of generic reference types for a given algorithm domain
including a control flow system that performs interaction among the objects instantiated
from it [79] Hence, the question of concern to this thesis, is which of the aforementioned
techniques lends itself more favourably to the easy creation of an algorithm visualisation?
Such a question can be answered by analysing the strengths and weaknesses of current
approaches.

The main strength of the manual annotation approach lies in the ease with which it
generates an animation ‘on the fly’. This is achieved once the given algorithm source code
has been annotated with the corresponding visualisation function. Such functions are
usually assembled together in function libraries more commonly referred to as APIs
(Application Programmers Interfaces) [82]. However, the main drawback of this approach
lies in the need for instructors and learners to be not only familiar with the function calls of
the API but also, with programming. The API calls are usually embedded directly in the
algorithm source code. This may prevent instructors or learners with little or no knowledge
of the underlying programming language from using this approach. Furthermore, the
approach is only helpful if the learner or instructor uses the same programming language
for the algorithm as used by the API, as calling functions in a library written in a different
programming language remains difficult [82]. Moreover, such an approach requires
learners and instructors to have an in depth knowledge of the interesting events associated
with an algorithm’s behaviour in order for them to be able to visualise it. This is something
which naive learners may not be able to comply with.

Automated annotation frees the instructor or learner from having to define animation
commands or doing extra work to generate the animations as it directly generates the
animation from the source code. As a result, the animation is consistent with the underlying
source code. By being based directly on the source code, new animations can usually be
generated by simply exchanging algorithm parameters and restarting the algorithm [82].
However, there are drawbacks with this approach. First, instructors or learners must

implement the behaviour of the algorithm in the programming language supported by the

42

Chapter 2 Literature Review

system. If they do not, then the system is rendered unusable. Moreover, the animation
effects are hard coded into the underlying source code interpreter. Consequently, instructors
or learners are unable to change the view of the animation if they so wish [82].

Unlike APIs, scripting languages provide a set of easy to use programming commands
that are normally devoid of programming structures, such as conditional statements or
loops, to specify the algorithm visualisation in. These commands can be generated and
edited using any text editor and usually consist of a single command per line. However,
whilst each single line of the generated animation may be easily read, it is often rather
difficult to get a feeling for what the animation might look like. While experimenting with
the code lines is easy, generalising the desired effects and putting them into an algorithm’s
source code can be difficult [82].

An animation framework, on the other hand, provides a set of prefabricated software
building blocks that learners or instructors can quickly customise to build their own
implementation of an algorithm’s behaviour. This is then automatically outputted as a
visualisation. Thus, frameworks free learners or instructors to concentrate solely on the
implementation of the algorithm’s logic and not on its visualisation [82]. However, like
automated annotation, animation frameworks are closely tied to the programs that they are
visualising.

From this analysis, it is clear that both automated annotation and animation frameworks
offer the easiest means to generate an animation as this is done by the animation system
itself. Moreover, both facilitate the generation of multiple animations without much effort
[82]. However, animation frameworks outweigh automated annotation through the
provision of a generic library for the easy implementation of an algorithm’s behaviour.
Such a library together with the automation of the animation process reduces the time
required and the level of difficulty associated with creating an algorithm animation by an
order of magnitude. However, such an approach does not render its animated visualisations
open to interactive influences, that is, it does not create visualisations which a learner can
engage with or modify in real time that is, while they execute. In order to achieve this level
of engagement, an instructor or programmer has to manually annotate the code to specify

which components or sections of an algorithm’s behaviour that a learner could interact with

43

Chapter 2 Literature Review

and change. As a consequence, animation frameworks as they currently stand do not permit

the automatic creation of active algorithm simulations.

2.5 Discussion
As evidenced by the literature review, algorithm visualisation systems (AVs) for the
teaching and learning of distributed algorithms can be defined as falling into one of three
different categories. These are passive animation systems, which provide multiple prepared
views of an algorithm’s behaviour for a learner to view, stop, pause, reset, step through or
rewind, active simulation systems, which enable a learner to investigate issues of partial
failure by permitting him to change the state of an algorithm’s variables or to cause one or
more of its components (e.g. nodes or messages) to fail during execution and algorithm
construction systems, which provide tools to facilitate the easy creation of an algorithm
visualisation. However, despite this spectrum of systems, each of them suffers from one or
more of the following short comings.
These are:
e A lack of a deep model of engagement with an algorithm’s behaviour in real time.
In the real world, distributed algorithms suffer from partial failure, that is, the loss
or failure of one or more its components, like for example, nodes or messages. If
such behaviours are not accounted for, that is, if services are not provided to enable
the algorithm to continue functioning despite their presence, the algorithm will
terminate or malfunction. Thus, in order to enable a learner to develop an
appreciation for and an understanding of such episodes of behaviour, there is need
for him to be able to re-enact these behaviours while the algorithm executes. This is
achieved by enabling the learner to cause one or more of an algorithm’s components
to fail during execution. By so doing, the learner is able to decipher the degree to
which the algorithm is fault tolerant. An algorithm is said to be fault tolerant, if it
can continue to function despite the presence of failed components. Currently, the
only algorithm visualisation system which enables learners to investigate issues of
partial failure is active simulations. However, these systems hide the

implementation details of the algorithm’s behaviour from the learner and as a result,

44

Chapter 2 Literature Review

do not enable him to amend the algorithm’s implementation code to put
interventions in place to enable it to handle certain partial failure issues, if need be.
An underdeveloped model of pedagogy.

Current AVs for the teaching and learning of distributed algorithms have been
informed by one of four different theories of learning. These are epistemic fidelity,
dual coding, individual differences and cognitive constructivism. Of these four, a
meta analysis found that systems informed by the theory of cognitive constructivism
were the most successful in returning a learning gain. This would suggest that it is
what learners do with the technology and not what they see that has the greatest
impact upon their learning. This also implies that active simulation systems and
algorithm construction systems offer the greatest potential in returning a learning
gain as both actively engage the learner with the learning content. Active
simulations actively engage the learner by enabling him to change the state of an
algorithm’s variables and to cause one or more of its components to fail. Algorithm
construction systems actively engage the learner by enabling him to build his own
representation of an algorithm’s behaviour. However, whilst active simulation
systems enable learners to engage with the behaviour of an algorithm in a deep way,
they do not enable him to modify or amend its underling implementation code.
Consequently, learners are not provided with any opportunity to build dual
representations of an algorithm’s behaviour or to map the graphical representation
to its underlying implementation. This may explain why learners have been found
not to be able to replicate the behaviour of an algorithm despite stating emphatically
that they understood it after engaging with an active simulation of its behaviour.
Unlike active simulations, algorithm construction systems enable learners to make
explicit their own cognitive representations of an algorithm’s behaviour. However,
once built, they do not afford the learner the ability to experiment with the
representation created in a deep way. A learner is unable to change the state of an
algorithm’s variables or to cause components to fail during execution. Hence,
learners are not provided with any information which is dissonant to their current
understandings of the algorithm’s behaviour and are provided with no means to

build upon that understanding or to modify it. Constructionists believe that it is the

45

Chapter 2 Literature Review

structuring phase of learning that builds the framework of understanding upon
which subsequent knowledge is built. It is this ‘subsequent knowledge’ that is of
interest to this thesis, and is believed to be greatly facilitated through the provision
of a deep model of engagement with the algorithm’s behaviour and through
interaction with others.

Level of difficulty and time associated with creating an algorithm visualisation.
Many algorithm construction systems require instructors and learners to learn how
to use two systems in order to create an algorithm animation. These are; the
development environment, to create the algorithm implementation and the
visualisation library, to create its corresponding animation. Moreover, some require
a user to manually annotate the algorithm implementation code with calls to
functions of a built in visualisation library in order to render the animation. Hence,
such systems require users to have in-depth knowledge of the interesting events
associated with the algorithm’s behaviour in order to return an animation of it.
Other systems automate the annotation process, but require the user to implement
the algorithm in a given specification language. Such languages are recognised as
non intuitive and difficult for novices to learn [90]. Further more, there is a lack of
an easy to use and universally accessible platform for implementing the algorithms’
behaviour and for investigating their dynamic behaviours [90]. To create an active
simulation, a user must, not only, implement the algorithm logic, but also, its
corresponding visualisation and its interactive components. Such overheads in terms
of development time only serve to deflate the user’s motivation and to cause him to
shy away from the use of the technology.

Lack of empirical evidence to substantiate their educational effectiveness.

At the time of writing this thesis, the author could only gather empirical evidence
relating to the educational effectiveness of two AVs for the teaching and learning of
distributed algorithms. These were HiSAP, which is an active simulation system
and Lydian, which is an algorithm construction system. (See section 2.3.4).
However, neither study gave any true insight into the learning benefits to be derived
from enabling learners to create their own algorithm visualisations as both studies

did not set such a task as a core requirement. In HiSAP, learners were presented

46

Chapter 2 Literature Review

with prepared simulations of an algorithm’s behaviour, whilst in Lydian, learners
were only required to implement the algorithm’s behaviour, the requirement to
create its visualisation was left optional. Moreover, both studies evaluated the
educational effectiveness of the technology solely from the perspective of the
learner and not from that of the instructor. Thus, neither study gave insight into how
the technology assists instructors in their teachings or how easy it is for them to use.
This is surprising given that the basis for the technology rests on the need to assist
instructors in capturing and conveying to learners the dynamic and concurrent
behaviour of a distributed algorithm. Hence, there is need of further study to
determine what impact the ability to (1) view an algorithm’s behaviour, (2) interact
with an algorithm’s behaviour in real time, or (3) customise or build an algorithm
visualisation has on a learner’s understanding of an algorithm’s process. Equally,
there is need of evidence to ascertain to what extent instructors find such
functionality to be educationally beneficial.
Thus, the research challenge posed in this thesis is to design and implement an algorithm
visualisation system which will enable one to overcome the aforementioned shortcomings.
In order to address such shortcomings, there is need of a system which is, not only, easy to
use but which also:

e Provides visualisations that support the theory of dual coding that is, provide
both a graphical and textual representation of an algorithm’s behaviour,

e Provides visualisation that enable one to engage with the behaviour of an
algorithm in a deep way, in accordance with the theory of cognitive
constructivism, by changing the state of algorithm’s variables or by causing one
or more of its components to fail during execution,

e Scaffolds the algorithm implementation process,

e Automatically executes each algorithm implementation as a highly interactive
visualisation,

e Permits one to easily amend, modify the behaviour of an algorithm.

Thus, in order to create an algorithm visualisation system for the teaching and learning
of distributed algorithms, which satisfies each of the above design requirements, there is

need of a framework. A framework can be defined as a partial design and implementation

47

Chapter 2 Literature Review

for an application in a given problem domain [99]. It can be tailored to create complete
applications or in this case, to return active simulations. Frameworks are generally
developed when several or (partly) similar applications need to be developed. A framework
implements the commonalities between applications and as a consequence, reduces the
effort needed to build them [100]. However, unlike current animation frameworks (See
section 2.4), the framework proposed here, must be designed to, not only, provide a set of
prefabricated software building blocks for the easy implementation of an algorithm’s
behaviour, but also, must be designed to make transparent calls to an underlying
visualisation library and to functions specifying which components of the algorithm’s
behaviour are to be rendered manipulable during execution. This is necessary in order to
reduce the cost, in terms of development time, in creating the simulation and to enable
learners to concentrate solely on the implementation of the algorithm’s behaviour and not
on its visualisation or its level of real time interactivity. In designing and implementing
such a framework, this thesis proposes that the FADA algorithm visualisation system
addresses the shortcomings in currently available algorithm visualisation systems in one of
two novel ways. These are through:

e The development of a model of engagement that enables the learner when
interacting with the behaviour of an algorithm to engage his higher order
thinking skills of analysis, synthesis and evaluation,

e The development of a framework which facilitates the quick and easy creation
of highly interactive algorithm simulations.

In deploying FADA, it is possible to explore different educational issues such as the impact
which different modes of engagement with an algorithm’s behaviour have on a learner’s
understanding of it and the pedagogical benefits to be derived from using an application
like FADA within a lecture setting. More specifically, this research, through the use of
exploratory case studies, examines two research questions. These are:

e To what extent does the algorithm animation approach adopted by FADA
enhance the teaching and learning of distributed algorithms?

e To what extent is FADA easy to use?

2.6 Summary

48

Chapter 2 Literature Review

This chapter has briefly outlined the current state of play in algorithm visualisation
development. It has argued that despite the current failure to substantiate its educational
effectiveness, algorithm visualisation still holds much potential for both instructors and
learners. It offers instructors the potential to assist them in capturing and conveying the
dynamic and concurrent behaviour of a distributed algorithm’s process. Moreover, it offers
learners the potential to gain a deeper understanding of distributed algorithms. In order to
realise this potential, this chapter has identified the need for a new algorithm visualisation
system for the teaching and learning of distributed algorithms, one which is easy to use,
deploys a model of engagement with an algorithm’s behaviour which is informed by the
theory of cognitive constructivism and social constructivism, enables learners, in
accordance with the theory of constructionism, to create their own algorithm
implementations in a timely and intuitive manner through the use of a framework and
renders each implementation automatically as a highly interactive simulation through the
use of automated annotation. The next chapter defines the manner by which this algorithm
visualisation system was designed in accordance with design principles set out in section

2.5

49

Chapter 3 Design
Chapter 3
Design

3.1 Introduction
This chapter documents the manner by which FADA was designed in accordance with a set

of design principles derived from the literature review (See section 2.5). It can be
subdivided into four main sections. The first section provides an overview of FADA’s
design. The second section delineates the deep model of engagement that FADA affords a
user over an algorithm’s behaviour while it executes. The third section documents the
manner by which FADA was designed to support the theory of dual coding and to scaffold
the algorithm implementation process. The fourth section describes the manner by which
FADA was designed to facilitate the easy implementation of an algorithm’s behaviour and
the automatic rendering of the latter as a highly interactive simulation. This was achieved
through the provision of a framework which makes transparent calls to an underlying
visualisation API. The design of the framework and the API were informed by findings
arising, not only, from the literature review, but also, from the author’s own experiences of
building an active simulation of the token ring algorithm. This chapter concludes with an

overview and summary.

3.2 Overview of FADA’s design

Epistemic |
Passive w
Animations Dual Coding |
Active Cognitive
Simulations Canstructivism

Canstructionism

Social Constructivism |

Manual]
Annatation

Conventional
Programming

Automated -_
Annotation

Scripting
Language

Figure 3-1: A graphical overview and breakdown of the engagement model, the
pedagogical model, the developer support and the visualisation support which FADA was
designed to provide. (These are highlighted in red).

50

Chapter 3 Design

FADA was designed to overcome shortcomings posed by existing algorithm visualisation

systems for the teaching and learning of distributed algorithms and as such, was designed to

facilitate each of the following requirements. These were:
e FEase of use,
This was achieved through the provision of a framework for common message
passing distributed algorithms and through the design of FADA’s development
environment. The framework was designed to scaffold the user in implementing the
behaviour of an algorithm through the provision of a library of generic function
calls, which a user could quickly and easily customise to reflect the behaviour of an
algorithm that he is implementing. These calls were implemented in JAVA. This is
the most commonly taught language to date in third level institutes [101, 102] and
as such, was not thought to impose a steep learning curve on users. Moreover,
JAVA is platform independent and thus, renders FADA amenable to a number of
different learning settings. All implementations created using the framework were
designed to be automatically rendered as highly interactive simulations. This was
achieved through the design and encapsulation of a predefined visualisation API
and through a process of automated annotation. Consequently, as a result of its
design, FADA enables users to concentrate solely on the implementation of an
algorithm’s logic and not on that of its visualisation or level of interactivity.

The development environment was designed to assist in the algorithm
implementation process through the granting of an editor, a debugger and a wizard
as typified by any standard programming environment. The wizard was designed to
assist novices in implementing the behaviour of an algorithm by enabling them
through the selection and customisation of simple menu items to automatically
generate code relating to the messages that a node is to receive, the content of those
messages and the type of variables that a node is to hold.

e To provide a deep model of engagement with an algorithm’s behaviour while it
executes,
This was procured by enabling users to change the state of an algorithm’s variables

or to cause one or more of its components (e.g. message, nodes) to fail while it

51

Chapter 3 Design

executes. By affording users such deep levels of real time interaction with an
algorithm’s behaviour, FADA enables them to encounter information which may be
dissonant to their current understandings of an algorithm’s behaviour and enables
them to absorb such information so as to modify their understanding.

e To provide a rich pedagogical model,

This was in order to render FADA amenable to a number of different uses by
instructors. This was realised by designing FADA to accord with the theoretical
underpinnings of four different theories of learning. These were; epistemic fidelity,
cognitive constructivism, constructionism, social constructivism and dual coding. In
the first instance, FADA was designed, to accord with the theory of cognitive
constructivism and as such, was designed to actively engage users by enabling them
to change the state of an algorithm’s variables or to cause one or more of its
components (e.g. nodes or messages) to fail. Secondly, FADA was designed, to
accord with the theory of constructionism, by enabling users to create their own
algorithm simulations. This was achieved through the provision of a framework for
common message passing distributed algorithms and through the use of automated
annotation. Thirdly, FADA was designed, to accord with the theory of dual coding,
and as such, was designed to provide users with dual representations of an
algorithm’s behaviour. This was in order to enable them to reinforce their
understanding of an algorithm’s behaviour through mapping its graphical
representation to that of its implementation. The dual representations of an
algorithm’s behaviour were afforded by sub dividing FADA’s interface into two
separate but inter-changeable halves similar to that created by Jeliot (See section
2.3.2). These were the code frame and the animation frame. The code frame was
designed to display a textual representation of the algorithm’s implementation
whilst the animation frame was designed to display its corresponding visualisation.
Fourthly, all visualisations rendered by FADA were designed to accord with the
theory of epistemic fidelity and as such, were designed to present users with
visualisations of an algorithm’s behaviour akin to those presented by standard text

books. Lastly, FADA was designed, to accord with the theory of social

52

Chapter 3 Design

constructivism, and as such was designed to enable users to present their own
simulations to an audience for feedback and discussion. This was facilitated, not
only, through the model of engagement afforded by FADA over an algorithm’s
behaviour, but also, through the provision of a set of controls, which enables a user
to control the pace at which he presents his simulation content.

o To reduce the time and complexity associated with creating an active

simulation.

FADA was informed by the author’s own experiences of building an active
simulation (See section 3.5.1) and, as a result, was designed as a modular

architecture (See figure 3-2).

FRAMEWORK

CODE FRAME Node ()
User’s Message ()
algorithm send ()

receiveMessage ()

define ()
ANIMATION User initiates node
FRAME failure

drawNode ()
FADA’s drawMessage ()
interface »| drawSend () <

kill ()

Figure 3-2: Overview of FADA’s modular architecture design.

This architecture was designed to reduce the complexity associated with creating an
active simulation by subdividing the problem of creating it into three separate
independent sub problems. These were; the creation of the algorithm
implementation, the creation of its corresponding visualisation and the creation of

its interactive components. FADA was designed to automate the solution to the

53

Chapter 3 Design

visualisation of an algorithm’s behaviour and to that of its real time interaction. This
was achieved through the design and encapsulation of a built in visualisation API
and through the use of automated annotation. FADA was designed to provide a
framework and a heavily scaffolded development environment so as to enable users

to quickly implement the behaviour of an algorithm.

33 Model of Engagement
FADA was designed to provide a deep model of engagement with an algorithm’s behaviour

and as such, was designed to enable a user to engage with an algorithm in one of two ways.
These were by controlling the pace of its execution or by manipulating its behaviour during
run time. The first was achieved through the provision of a set of controls that enable a user

to stop, pause, reset or change the pace of an algorithm’s execution.

.ﬁ' 3 g E E Animation Speed

Clear | Play | Pause | Stop o

Figure 3-3: Controls provided by FADA to control the simulation execution.

The latter was achieved by designing FADA to enable a user to change the state of an
algorithm’s behaviour during run time and by enabling him to cause one or more of its
components to fail.

Partial failure can occur in one of two different modes. These are omission failures or
arbitrary failures. Omission failures occur when nodes or communication channels fail to
perform actions that they are suppose to. This can result in a node crashing that is halting
and failing to execute further steps of its program. Moreover, it can result in a message
getting lost that is, being dropped by the communication channel. Arbitrary failures result
in a node or communication channel exhibiting any type of failure. An arbitrary failure of a
node is one, which arbitrarily omits intended processing steps or takes unintended steps.
Thus, in order for a user to be able to investigate the effects of each of the aforementioned
failure modes, he must be able to replicate their behaviours during run time either through

changing the state of an algorithm’s behaviour or by causing one or more of its components

54

Chapter 3 Design

to fail. This is in order to enable the user to determine whether the algorithm can continue
to function despite their loss. A service masks a failure by hiding it altogether or by
converting it into a more acceptable type of failure. Failure is hidden using a protocol
which retransmits messages that do not arrive at their destinations. It is normally used in
association with a timeout scheme [103].

Consequently, FADA was designed to enable a user to cause a node to fail during the
execution of an algorithm’s behaviour by enabling him to click on the node’s visual
representation and, from the menu of behaviours displayed, to select the command ‘kill’.
This action was designed to automatically result in the node failing to respond to any

further messages sent to it.

2

L\ comeit
[Frome1|
&,

3

Figure 3-4a: User initiates node failure
within the two phase commit algorithm
by right clicking on node 2 and selecting

‘Kill” from the menu options displayed.

Figure3-4b: As a result of the user’s action
in Figure 3-4a, node 2 does not send a reply

to node 1’s ‘commit’ message.

55

Chapter 3 Design

3 3

Figure 3-4c: Node 3 replies to node 1’s | Figure 3-4d: Node 1 times out waiting on

initial request. response from node 2.

Figure3-4e: On timing out node 1
resends its ‘commit’ message to node 2

and continues to wait for a response.

Figure 3-4: A depiction of the manner by which FADA enables a user to initiate node

failure during an algorithm’s execution.

56

Chapter 3 Design

Equally, FADA was designed to enable a user to cause a message to fail by enabling him to
right click on its visual representation during transit. This action was designed to cause the

message to disappear from screen, signifying its loss in transmission.

(38}

1
ypa: commit :
From: 1 :
1
To: All '
'F_F'l E
-

GE get
T

To: All
commnit

|' From: 1
|' To: Al
—

|

-

Figure 3-5a: User initiates message failure
within the two phase commit algorithm by
right clicking on a message, in this case,

the ‘commit’ message being sent by node 1

Figure 3-5b: As result of the user’s action
in stage 1, the ‘commit’ message from
node 1 fails in transit and consequently,

disappears from screen. This is signified by

to node 2. the empty box in the above depiction.

Figure 3-5: A depiction of the manner by which FADA enables a user to initiate message

failure during an algorithm’s execution.

Further more, FADA was designed to enable a user to change the state of an algorithm’s
variables by enabling him to right click on the visual representation of a node. This action
was designed to depict on screen a panel displaying all local variables belonging to that
node instant and their current state values. These values were designed to be modified by
the user at run time, so as to enable him to determine what effects, if any, such state

changes would have on the algorithm’s behaviour.

57

Chapter 3

Design

2

Type: F"rnpnreb:l commit?

From: 1
To: All
e)
1 Ty PTEIHMW commisy
From: 1

To All

3

Figure 3.6a: User initiates state changes within the two phase commit
algorithm by clicking on a node icon, in this case, node 2, and by

changing the value of its local response variable from ‘YES’ to ‘NO’.

Typ#: no
| Fram; 2 NODE 1
asponse | YES -
| To:1
RODE _I)
respanse | MO 'l
T
NODE" 3
1 mespanse | YES -
fr— ——

k]

Figure 3.6b: As a result of the user’s action in stage 1, node 2 replies

‘NO’ to the ‘Prepare to commit’ message sent by node 1.

58

Chapter 3 Design

Fnodesaus [H|

Figure 3.6¢c: As a result of node 2’s reply of ‘NO’ to node 1’s

‘prepare to commit’ request, node 1 aborts the transaction.

Figure 3.6: A depiction of the manner by which FADA enables a user to initiate state

changes within an algorithm’s behaviour in real time that is, during its execution.

3.4 FADA'’s Development Environment
Informed by the theory of dual coding, FADA’s development environment was designed to

enable a user to reinforce his understanding of an algorithm’s behaviour through building
referential connections between the visual representation of an algorithm’s behaviour and
its underlying implementation code. This was achieved through the design of a split pane
interface. The interface was subdivided into two interchangeable halves. These were the
code frame and the animation frame. The code frame was designed to house the
implementation code of an algorithm’s behaviour, whilst the animation frame was designed

to house its corresponding visualisation.

59

Chapter 3 Design

Program Edit Samples Control Aoination Recording Help

4
N2 M| % EIJ‘ B)
~|New| Open| Save | Cut Paste i
1 import network. *;
2
3 public clase MyMode extends Hode implements GroupHods |
4
5 public MyHode(){
& define (" response” , new String(“YES") true):
T }
-]
3 public void receiveMessage (Hode sender, Message message) |
10 if (message.isType("Prepare to commit”)){
11 handlePrepare to commit (sender) ;
12 }
13
14 if (message.isType (" Commdt")} {
15 handleCommit {sender ,message . getString (" reply®));
16 }
17
18 if (message. iSsType("RBbort®)) {
handlefbort (sender) :
'
} |
-

Pause

Stop

= Yl

¢
Rﬂﬂlﬁhﬂ'Ei?ﬂr (R Y TR I

Slow

=

Figure 3-7: A graphical depiction of FADA’s code frame. It contains code relating

to the implementation of the two phase commit algorithm.

60

Chapter 3 Design

Program Edd Samples E-ﬁ'd !ﬁl‘m ?wh Help

i

(] Hodo Status [
Type: Prepars to commit? MODEL
From: 1 response | YES -
To Al HODE .?
response | YES bl
Typa: Prépars b commit? HODE 3
From: 1 response | YES bl

Blo) BlERlals 5

Figure 3-8: A graphical depiction of FADA’s animation frame. It contains a

graphical representation of the algorithm code contained within Figure 3-7.

Moreover, the code frame was designed to scaffold a user in the construction of an
algorithm’s implementation through the provision of an editor, a debugger and a wizard.
The editor was designed to enable a user to edit, cut, copy, paste, save the algorithm
implementation code whilst, the debugger was designed to alert users to logical or
syntactical errors in their implementations. These were visualised to the user through

FADA’s built in console window.

61

Chapter 3 Design

mﬁnmmnmummm

L
k -
Encountered *}* at fine 15, cobawm 5. Was expecting one [
I:I[ill . l_l - l+'t. . l__'l." i*_l . t__l . I‘_A. . .f-l
1 impport metwoek s : . "—'__ W e wmt "aae® "o
2 T L]
3 public class Mylode extends Hods| Sl L A
4 public Hybode ()
5 ffinaert code here
5 }
7 Z
] public void receivebossage (Hode sender, Mossa
] Ifinsert cods heve :
10 1
11
1z public void rusi) {
13 Nranage mewbiag = mew Hessage (*Hello®):
14 FendTokll (Bewfag)
15 }
16
17)
18
1%
20
2l -
22 =
23 oK

| [0
E Flii, Al | Chaaw | 1 F'l.-.-_r Pause | Slop

Figure 3-9: A graphical depiction of the manner by which FADA automatically

alerts users to syntax errors in their algorithm implementation code. In the above

example, the user has forgotten to close the statement in line 14 with a semi colon.

The wizard was designed to further scaffold the algorithm implementation process by
enabling users through the selection of simple menu items to automatically generate code
relating to the messages that a node is to receive, the type of content that the messages are

to contain and the variables that the node is to hold.

MNode Wizard <. Create Message

ist of messages created

!Prepare Message Name: Create Message Cont. ..
|An5wer
Message Contents: Hame: Type:
\ndd To List|Delete From List| _
Content:|reply String ™
| < Back | | Next > | | Cancel
| ok || canceL

Delete Contents | Add Contents|

| ok || camceL |

62

Chapter 3 Design

Figure 3-10: A graphical depiction of the manner by which a user deploys the
wizard to create a message called ‘Answer’ and to associate with that message a
parameter called ‘reply’. ‘Reply’ holds the value of a node’s response to the
‘Prepare to commit’ message in the two phase commit algorithm. The code

generated from such an action is depicted in Figure 3-11.

import network.#;

public class MyHlode extends Hode

public MyWode () {}

public wvoid receivelMessage (Hode sender, Message message) {
if {(message.isType("Answer")){
handlefnswer (sendey ,message . getString("reply®))
¥
}

public woid handlefnswer (Hode sender , String reply) {
Filnzert code to handle message
}

public void run{}{
fiInsert code here
}

)
Figure 3-11: A depiction of the code automatically generated by the wizard in Figure 3-10.
This code is outputted to the code frame within FADA.

3.5 FADA’s Framework Design
FADA was designed to cut down on the time required to create an implementation of a

distributed algorithm’s behaviour through the provision of a framework for common
message passing distributed algorithms. These algorithms were chosen as all
communication with in a distributed system is message based and dictated by the
aforementioned types of algorithms [103]. Thus, in order, for one to begin to understand
how a distributed system functions, one must first develop an appreciation for the manner
by which communication between the software components of that system is performed.
To this end, the framework was designed to provide a set of prefabricated software building

blocks which a user could quickly customise to reflect the behaviour of a message passing

63

Chapter 3 Design

distributed algorithm. This was achieved by designing the framework to accord with
guidelines set out by Booch [104]. However, given that the author was not an expert within
the proposed framework domain, it was necessary for her to acquire such expertise by
building an active simulation of an algorithm from that domain. This was in order to enable
her to gain insight into the complexities associated with such an implementation and to
enable her on comparison against other algorithm behaviours to identify key abstractions
and areas of variable functionality which would form part of the framework core. Section
3.5.1 describes the manner by which the author designed and implemented an active
simulation of the token ring algorithm [121]. It also documents difficulties encountered in
the implementation process and offers solutions to overcome each. These solutions together
with data realised from the literature review inform the overall architectural design of
FADA as depicted in section 3.2. Section 3.5.2 documents the representative classes of
message passing distributed algorithms which were analysed in order to derive the

abstractions which formed the design of the framework core.

3.5.1 The Token Ring Simulation

This simulation was designed to espouse both an epistemic fidelity and a cognitive
constructivist approach to the teaching and learning of the token ring algorithm. As such, it
was designed to provide a learner with an expert’s mental model of the algorithm’s
behaviour which he could directly manipulate in real time and in multiple ways. This was
in order to enable the learner to build his own conceptual understanding of the algorithm’s
behaviour through a process of experimentation with the expert’s representation. To this
end, the token ring simulation was designed to enable the learner to vary the size of the
network and to create different network configurations such as include or exclude a
monitor. The simulation was also designed to enable the learner, through the provision of a
set of predefined controls, to analyse and observe the effects of different network
configurations on the ability of a node to send a message, to cope with token failure, packet
failure, monitor failure and or node failure. With respect to node failure, a learner was able
to cause a node to fail at any time during the execution of the algorithm. This was achieved

through the provision of a set of radio controls which were designed to turn the behaviour

64

Chapter 3 Design

of a node ‘on’ or ‘off’ during the algorithm’s execution. The same applied to packets,
monitors and tokens in that, a learner could turn their behaviours off at any time during the

algorithm’s execution by selecting the appropriate radio control function (See Figure 3-12).

Controls Token Ring Contrals:
@ Reset| [Pau_. Add Im |
4] Step | Step Bk Options
Algorithm Stalus Send | Monitor
Theee ace 4 ‘ﬂ
rodes on The Token | Packet

network

Free Token. Agcess Control
Token Bit i3 Toker Bit: 1 Sender is:

=&t Eo 0 Eo
sor B - IS
indicate token Monstor Bit D on b

Presence
Jending packet
from node 1 to
nade 3

Token bic 12
=&t ko 1 Eo
ihdicare
packet.

Jander sers
monitor bit to
0.

Sender 1 haz
failed

Sender Receier

Token Speed

A 40 9 3N An &0

Figure 3-12: A screen shot of the token ring simulation in which the user has
selected via the controls to the left hand side of the screen node 1 (the sender of the
packet) to fail. Such an action has resulted in all remaining nodes being prevented

from gaining access to the token as node 1 has not release it.

Additional features included the ability to enable the learner to control the pace at which
the simulation executed and to enable him to stop, pause, reset or step through its contents
whenever he so wished. However, the underlying implementation code of the algorithm’s
behaviour was kept hidden from the learner. Thus, he was provided with no opportunity to
build dual representations of the token ring’s behaviour.

A significant amount of development time was required to create the above simulation

(fifty plus hours). This was because, not only, had the author to implement the behaviour of

65

Chapter 3 Design

the algorithm, but also, she had to specify how it was to be visualised. Moreover, she had to
identify areas in the token ring’s behaviour which, if rendered manipulable, would lend to a
learner’s understanding of it. This development process was further complicated from the
outset by the author’s failure to adopt a modular architecture. Such an architecture
subdivides a problem into a number of sub-problems and solves each independently of each
other. A solution to the original problem is realised through the amalgamation of the
solutions to the sub-problems.

By adopting a modular architecture, the author could have subdivided the problem of
creating the token ring simulation into three isolated sub-problems. These were; the
creation of the algorithm’s implementation, the creation of its corresponding visualisation
and lastly, the creation of its interactive components. Each of these sub-problems could
then have been solved independently of each other. Moreover, through a process of manual
annotation, the author could have quickly outputted the active simulation. However, such a
process is only suited to someone who has expert knowledge of the algorithm’s behaviour
as it requires one to have detailed knowledge of the interesting events associated with it in
order to enable one to render them manipulable at run time. The use of a modular
architecture would have also permitted the author to simulate further consensus algorithms,
like, for example the election algorithm, more quickly, as all that would have needed to be
re-implemented would have been the algorithm implementation code. The implementation
of its visualisation would have remained relatively unchanged. Further more, it was also
noted that there was need of mechanisms to scaffold the algorithm implementation process

in order to facilitate a user in creating the latter and in debugging it.

3.5.2 Design of the framework core.
In order to design the framework, one first had to examine the behaviours of a number of
representative classes of message passing algorithms in order to abstract out their

commonality. Such abstractions formed the basis of the building blocks’ design.

66

Chapter 3 Design

Distributed Algorithms

v v v

Resource Allocation Consensus Other
v Mutlual
Dynamic Algorithms xelusion

v v Threshold v v

; Centralised Distributed
Blind Conditional Algorithm
Location Location
Least
Algorithm \ 4 \ 4
A A Permission Token
Partial Global Based Based
Knowledge Knowledge : :
Y ¢ Two Phase Token Ring
L . it
Distributed Centralised Commi
Information Information
v __ v
Central Centralised Distributed Global
Algorithm Decision Decision I Algorithm

Figure 3-13: A breakdown of the representative classes of message passing distributed
algorithms that were analysed in order to identify the abstractions which would form the

basis of the framework core.

In its initial design, FADA was designed to focus upon the following representative classes.
These were load balancing algorithms and consensus algorithms. Load balancing
algorithms deal with performance issues in distributed systems. They distribute work
around the system in accordance with some criteria, such as; no node should remain idle
while other nodes are waiting for access to another node in the system [105]. Consensus
algorithms dictate that a collection of nodes must agree on some value like for example,
access to a shared resource [106].

In each of the aforementioned classes, the following algorithms were analysed. In load
balancing, these were the threshold algorithm, the centralised algorithm and the global
algorithm. These algorithms were chosen as they are representative of dynamic algorithms
whose decisions are based on no a-priori knowledge of system state [105]. All knowledge

of system state is gathered during execution through a process of message passing.

67

Chapter 3 Design

Centralised and global algorithms are examples of algorithms which base their decision to
off load work to another node on the basis of global knowledge of system state. This is
either held centrally by a single node or stored across a number of different nodes. With
respect to consensus algorithms, the following algorithms were analysed. These were the
token ring algorithm and the two phase commit algorithm. These were chosen as they are
examples of mutual exclusion algorithms, which are algorithms which dictate the manner
by which access to a shared resource is controlled within a distributed system. The token
ring algorithm was chosen as it dictates access to a shared resource based on the possession
of a token whilst, the two phase commit algorithm dictates access to a shared resource
based on permission gained from all other members within the distributed system. Unless
all members agree, no access to the shared resource is granted. However, despite their
different methodologies, all algorithms were found to share the same basic set of primitive
operations.
These were to enable a node to:

e Create a message and to associate with that message a unique identifier.

e Place content of any data type inside a message.

e Retrieve content of any data type from a message.

e Send a message either to another node, to a subset of nodes or to all remaining

nodes.

e Receive a message.

e Decipher between different messages that it receives.

e Set or change the value of one or more variables.

e Retrieve the value of a state variable.

e Associate a time out with a message.

e Schedule a timer for ‘once off” execution or for repeated execution.
Each of these operations was encapsulated in a number of Java classes in order to realise
their behaviours (See chapter 4 for more details).

In order to automatically visualise the behaviour of an algorithm, each of the

aforementioned operations were designed to make transparent calls to methods which were

designed to visualise their behaviours. Separate depictions were provided for each of the

68

Chapter 3 Design

following components of an algorithm’s behaviour. These were nodes, messages, variables
and timers. Equally, visualisations were provided for the each of the following aspects of an
algorithm’s behaviour. These were the queue of messages waiting to be sent by a node, the
transfer of messages between nodes, the loss of a message, the failure of a node and the
count down of the timer. The use of separate visualisations was necessitated in order to
enable the author to designate the behaviour of a node, a message or variable editable
during run time and to enable their behaviours once changed to be updated and repainted to

the animation frame.

3.6 Conclusion

This chapter has documented the manner by which FADA was designed to address the
initial research challenge put forward in section 1.3 of how to facilitate the easy creation of
active simulations by both learners and instructors. This was achieved by designing FADA
in accordance with a set of design requirements derived from the literature review and in
accordance with insights gained from the author’s own experiences of building an active
simulation. First, this chapter described the manner by which FADA was designed to
facilitate ease of use through the provision of a framework for common message passing
algorithms and through the provision of a heavily scaffolded development environment.
Next, it outlined the manner by which FADA was designed to enable a user to engage with
and experiment with the behaviour of an algorithm in real time. Lastly, it documented the
manner by which FADA was designed to reduce the time and complexity associated with
creating an active simulation through the provision of a modular architecture, a framework
and automatic annotation. The next chapter describes the manner by which FADA’s overall

design was implemented.

69

Chapter 4 Implementation
Chapter 4
Implementation

4.1 Introduction

This chapter documents the manner by which FADA’s design was implemented. In the
main, it delineates the manner by which FADA was implemented as a modular architecture
in order to reduce the time and complexity associated with creating an active simulation. A
modular architecture, as previously stated, is one, which subdivides a problem into a
number of sub problems and solves each independently of each other. A solution to the
original problem is realised through the amalgamation of solutions to the sub problems.

FADA was designed to subdivide the problem of creating an active simulation into
three separate sub problems. These were; the creation of an algorithm’s implementation, its
corresponding visualisation and its real time interactivity. FADA was implemented to
provide a framework for common message passing distributed algorithms which a user
could easily customise to reflect the behaviour of a particular algorithm. The methods of
the framework were implemented to make transparent calls to a set of predefined
visualisation methods in order to automatically render the algorithm’s behaviour upon
execution as an interactive visualisation. This was in order to enable a user to modify the
behaviour of an algorithm in real time by manipulating the behaviour of one or more of its
components like for example, its nodes, variables or messages.

In order to realise this implementation, it was necessary to create two modules. These
were the Network module and the GUI module. A module can be likened to a physical
container in which one stores all classes or objects relating to a particular aspect of the
overall design of the application. The GUI module was created to house classes relating to
the depiction of an algorithm’s behaviour as an interactive visualisation. It was also
implemented to house classes relating to FADA’s implementation as a split pane interface.
FADA was designed to be subdivided into two frames. These were the code frame and the
animation frame. The subdivision was necessary in order to enable FADA to provide dual
representations of an algorithm’s behaviour in accordance with the theory of dual coding.
The code frame was implemented to house the user’s description of an algorithm’s

behaviour together with tools to assist and scaffold in implementing the algorithm. The

70

Chapter 4 Implementation

animation frame was implemented to house the interactive visualisation of an algorithm’s
behaviour together with controls to control its presentation. The Network module was
created to house classes relating to the implementation of an algorithm’s behaviour.

Section 4.2 describes how classes within the Network module were implemented to
provide FADA’s framework methods. These methods were implemented to realise the
behaviour of the abstractions noted in section 3.5.2. Section 4.3 describes how classes
within the GUI module were implemented to graphically depict the behaviour of a user
defined algorithm as an interactive visualisation. This was achieved through the creation of
a set of predefined visualisation methods. These methods were automatically invoked by
the FADA’s framework methods. This was in order to automate the drawing of an
algorithm’s behaviour upon execution. Section 4.4 defines the manner by which FADA
was implemented as a split pane interface in order to encapsulate the algorithm’s
description and its interactive visualisation in one window. Equally, it delineates the
manner by which FADA’s code editor was implemented together with its wizard to assist
users in implementing the algorithm’s behaviour. Section 4.5 concludes with a summary of

the chapter.

4.2 Network Module
Classes within the Network module were primarily implemented to realise the behaviour of
the abstractions noted in chapter 3, section 3.5.2 and to enable a user to quickly customise
their behaviours to reflect the behaviour of a set algorithm. In order to achieve this, it was
necessary to implement all classes to support composition. This enables a user to easily
adapt the behaviour of a class through parameterisation. A user customises the behaviour of
a class by filling in parameters, which provide some required functionality. As a
consequence, users do not have to have in depth knowledge of how these components
operate in order for him to achieve customisation. In all three classes were implemented to
realise the generic behaviour of a distributed algorithm. These were the Node class, the
Message class and the Variable class.

The Node class (See Figure 4-1) was implemented to replicate the behaviour of a node

within a distributed system.

71

Chapter 4 Implementation

Node

+receivehessagedvoid
+run{ivoid

+send(void

+send ToAlIDvoid

Figure 4-1: Node class

It was initially created to provide methods, which a user could invoke to enable a node:

1

To receive a message from another node within a distributed system.

This method (See Figure 3-2) was implemented to accept two parameters. These
were; the name of the node sending the message and the reference to the message
object being sent. The behaviour of this method was left undefined within the
framework so as to enable a user to customise its behaviour to reflect that of the

algorithm that he is implementing.

public woid receiveMeszage (Hode sender, Message m){

Figure 4-2: A depiction of the receiveMessage() method provided by the Node
class which a node instance invokes on receipt of a message.

To start the execution of the algorithm’s behaviour.

Like the receiveMessage() method, this method was also left undefined. This was in
order to enable a user to customise its behaviour in accordance with how the

algorithm dictates a node should initiate it.

public woid runi(){

Figure 4-3: The run() method provided by the Node class which a user overwrites
to enable a node instance to initiate the algorithm’s behaviour
To send a message to another node or to all other nodes within the distributed

system.

72

Chapter 4 Implementation

In order to invoke the functionality of a send operation, each send method (See
Figure 4-4) was implemented to accept one parameter that is, a reference to the
message object that the node instance wishes to send. Both methods were designed
to replicate the communication behaviour of an algorithm whose underlying
topology reflects that of a bus topology, that is, where all nodes within the system
are independent of one another. In a bus topology, a node can communicate by
sending a message to another individual node or by broadcasting a message to all
other nodes currently within the system. In order to facilitate a pattern of
communication which reflects that of a ring topology (that is, where all nodes know
of each others’ identity) or that of a star topology (that is, where all nodes
communicate with each other via a centralised node), it was necessary to augment
the behaviour of the Node class (See section 4.2.1 for more details). In a ring
topology, a node communicates by sending a message to another node or by
multicasting a message to all nodes within the group. In a star topology, all nodes
communicate with each other via a centralised node known as a server node. This
node accepts requests from a sending node known as a client node, executes that
request and returns a reply. A server node can send a message to an individual client

node or can multicast a message to all client nodes.

public void send(Message m){}
public void sendTodll (Message m) {}

Figure 4-4: The default communication methods provided by the Node class.
The Message class (See Figure 4-5) was designed to replicate the behaviour of a message

within a distributed system.

73

Chapter 4

Implementation

Message

+Messagedvaid
+putdiovaid
+putintdvaid
+putDoubledvoid
+putBonleandivaid
+putString Hovoid
+getd:Ohject
+getintdint
+getDoubled:double
+getBooleand:bonlean
+etString d:String

Figure 4-5: Message Class

It was designed to provide methods to enable an instance of the Node class:

To create a message and to associate with that message an unique identity.

Each message was designed to accept an unique identity consisting of an unique
name as opposed to a unique sequence of numbers. This was in order to enable a
user to quickly differentiate the meaning of a message once visualised. This
method was designed to be overloaded. This was in order to enable a user to
associate with a message object further information like for example, the name
of the node sending the message or the name of the node to which the message
is destined. This was achieved by implementing multiple definitions of the
constructor method of the Message class. Thus, in order to enable an instance of
the node class to create one or more message objects, a user invokes one of the
following constructor methods (See Figure 4-6) and passes to it, one or more of
the following values in order to initialise its arguments. These are; the unique
identity of that message, the name of node to whom the message is destined

and/or the name of the node sending the message.

public Message (String messagelID) [}
public Messzage (MNode destination, 3tring messagelD))
public Messzage (Node destination, Node sender, 3tring messagelD)!}

Figure 4-6: A depiction of the different types of constructor methods provided

by the Message class that a node invokes to create one of three different types of

74

Chapter 4 Implementation

message objects. These are; a message object which is addressed to all nodes
within the system, a message object which is addressed to a particular node and,
finally, a message object which is not only addressed to a particular node, but
also, carries the address of the node sending the message.

e To place content of any data type inside a message and to associate with that
content an identifier or name.
In all five methods were implemented. These were created to enable an instance
of the Node class to place content of type Object, int, double, boolean or String

in side a message and to associate with that content a name.

public wolid put(itring paralame, Object walue){}

public woid putInt(itring paralame, int walue){!}

public woid putDouble (String paralName, double walue) [}
public woid putitring (String paraName, String walue) !l
public woid putBoolean (3tring paralame, bhoolean walue) {}

Figure 4-7: An outline of the methods provided by the Message class to enable
a user to associate with a message object content of a particular data type.

e To retrieve content of any data type from a message.
Five methods were implemented to enable an instance of the node class to

retrieve content of a particular named type from a message.

public Object get(itring paralame) !}

public int getInt(3tring paralame){}

public double getDouble(String paralName) [}
public 3tring putitring(3tring paralame) !}
public Boolean putBoolean(3tring parallame) {1

Figure 4-8: Methods provided by the Message class to enable an instance of the
Node class to retrieve content of type Object, int, double, boolean or String from
a message object.

The Variable class (See Figure 4-9) was implemented to replicate the behaviour of a state

variable within a distributed system.

75

Chapter 4

Implementation

Variable

+definedvaid
+zetfaaid
+zetintdvaid
+zetDoubledwoid
+zetBoanleandvaid
+zetString Havoid
+getd:Ohject
+getintdint
+getDoubled:double
+getBoaleand:bonlean
+getString H:String

Figure 4-9: Variable Class

It was implemented to provide methods, which an instance of the Node class could invoke:

To declare a state variable of any data type.

In all two methods (See Figure 4-10) were implemented. The first method was
implemented to enable an instance of the Node class to declare a variable to be
of any data type, to associate with that variable a unique identifier and to enable
a user to change its value during run time, that is, during the execution of the
algorithm’s behaviour. The second method was designed to augment the
behaviour of the first by enabling one to associate with a variable a default list
of values. These are a finite list of values that a variable can store like for

example, in response to a question, the values ‘yes’ or ‘no’.

public void define(3tring wvariable, Object default¥Walue,
boolean editable) {}

public void define(String wariable, Object defaultValue,

boolean editable, String walueList[]){}
Figure 4-10: A description of the two methods provided by the Variable class
which an instance of the Node class can invoke to declare a state variable to
hold a value of a set data type or to hold a value taken from a predefined range
of values of a set data type.

To change or set the value of a state variable.

76

Chapter 4

Implementation

Five methods were implemented in order to enable an instance of the Node class

to set the value of a named variable to be of type Object, int, double, boolean or

String.

public
public
public
public
public

vold set(3tring warName, Object walue) !}

volid setInt(String warName, int walue)!}

vold zetDouble (3tring varName, double walue) !}
vold setitring(String varName, String walue) !}
vold setBoolean(itring warName, boolean walue){}

Figure 4-11: An outline of the methods provided by the Variable class to enable

an instance of the Node class to set the value of a variable of a given data type.

e To retrieve the value of a state variable

Equally,

five methods were implemented to enable an instance of the Node class

to retrieve the value of a variable of type Object, int, double, boolean or String.

public
public
public
public
public

Object get(itring warName, Object walue) !}

int getInt(ftring wvarMName, int walue){}

double getDouble(String warMName, double walue) {)
String getitring(String warMame, 3tring walue) !}
boolean getBoolean(3tring wvarlame, bhoolean walue){}

Figure 4-12: A depiction of the methods provided by the Variable class to

enable an instance of the Node class to retrieve the value of a named variable.

Thus, in order to define the behaviour of an algorithm using the methods provided by the

above classes, a user creates a subclass of the Node class and overrides the behaviour of its

run() method and

its receiveMessage() method. This is in order to enable a user to

customise their behaviours to reflect that of the algorithm that he is implementing. This is

achieved through invoking methods of the Message class and the Variable class (See Figure

4-13).

77

Chapter 4 Implementation

Message Node

+receivedessagedvoid
+rungivoid
variable —— ...

MyNode

+receivehessagedvaid
+runQwvoid

Figure 4-13: A depiction of the classes a user deploys to create his own algorithm

implementation in FADA.

For example, in order to enable a node to initiate an algorithm’s behaviour by sending a
‘hello’ message to all other nodes within the system, a user invokes the constructor method
of the Message class to create the message and then, invokes the sendToAll() method of the
Node class to send that message to each node within the system (See Figure 4-14 for a

break down of sample code).

public class wyNode extends Node

{
public woid receiveMezzage (Node sender, Message m) ()
public woid runi){

HMessage newMsg= new Message("Hello™):
gendTodll (newMag) ;

'

Figure 4-14: Sample customisation of the MyNode class to enable a node instance to

broadcast a message to all nodes with in the system.

78

Chapter 4 Implementation

4.2.1 Inter-node communication

However, as noted earlier in section 4.2, the manner by which a node can send a message to
another node is dictated by the underlying topology of the algorithm’s behaviour. In its
initial design, the Node class was implemented to replicate the communication behaviour of
a bus topology. In order to facilitate the communication behaviour dictated by a star
topology or a ring topology, it was necessary to implement methods which when called,
would override the communication methods of the Node class. This was achieved by
implementing two additional classes, each of which the Node class could inherit. These
were the ServerNode class and the GroupNode class. Each was implemented as an interface
so as to enable a user when defining the behaviour of an algorithm to create a subclass of
the Node class and to inherit the methods of the GroupNode class and the ServerNode
class, if need be (See Figure 3-15).

«interface» «interface»
GroupMNode ServerNode
bl i

Node

Figure 4-15: Inter-node communication classes

4.2.1.1 ServerNode class

The ServerNode class was implemented to replicate the behaviour of a server node within a
star topology. A server node executes a request sent to it by a client node and then, returns a
reply to that client or multicasts the reply to all clients. Thus, in order to capture the
behaviour of a server node, two new methods were implemented and encapsulated inside
the ServerNode class. These were sendToClient() method and sendToAllClients() method.
The former was designed to enable an instance of the ServerNode class to send a message

to a specific client node. The latter was designed to enable an instance of the ServerNode

79

Chapter 4 Implementation

class to multicast a message to all clients. However, in order for a server node to be able to
send or multicast a message to its clients, it needed to know how many clients it had
registered to it at any one time. Thus, a method was implemented to dynamically inform an
instance of the ServerNode class each time a new client node registers for its services. This

method was called the registerClient() method (See Figure 4-16).

«interface»
ServerNode

+registerClientdvaid
+sendToClientdvaid
+zendToAlClientsOowvaid

Figure 4-16: ServerNode class
Equally, in order to enable a client node to send a message to a server node, it was
necessary to augment the behaviour of the default Node class to allow an instance of that
class to send a message to the server. The behaviour of the default Node class was deemed

to equate to that of a client node.

4.2.1.2 GroupNode class

The GroupNode class was implemented to replicate the ability of a node within a ring
topology to multicast a message, that is, to send a message to all nodes within the topology.
However, before the author could implement the latter behaviour, it was necessary to
implement methods to define the group node structure. This was in order to allow an
instance of the Node class to know when it had joined a group, when another node had
decided to leave the group or when a new node instance had decided to join the group. In
all three methods were implemented to realise the aforementioned behaviours. These were
the memberAdded() method, the memberLeft() method and joinGroup() method. To realise
the behaviour of the multicast operation, the sendToGroup() method was implemented. To
invoke its functionality a user passes to it the reference to the message object that the node

instance wishes to send (See Figure 4-17).

80

Chapter 4 Implementation

«interface»
GroupNode

+memberddded(void
+memberLeftlvoid
+joinGroupdvoid
+sendToGroupdvoid

Figure 4-17: GroupNode class

4.2.2 Facilitating fault tolerant behaviour

As defined in section 3.5.2, FADA was designed to enable a node to detect the failure of a
node and or loss of a message through the use of a time out scheme. This can be defined as
the length of time a node will wait for in order to receive a reply to its requests. In order to
implement the latter functionality, it was necessary to import into the Network module two
predefined classes provided by Java’s API. These were the Timer class and the TimerTask
class. Together these classes provided methods, which an instance of the Node class could
deploy to schedule a task for execution in a background thread. The TimerTask class
provided a means for a node to define a task for execution when a timer elapses. This is
realised in FADA by associating with the myNode class an inner class of the TimerTask

class (See Figure 4-18 for an example implementation).

import network.*;

public class wyNode extends Node
{

public wvoid receiveMessage (Node sender, Message m))
public wvoid runi){}

public class ExanpleTimer extends TimerTask

{
public woid runi(){}

b:

81

Chapter 4 Implementation

Figure 4-18: Sample implementation of the manner by which a user associates a timer with

a node’s behaviour.

Such an implementation gives the node access to the TimerTask’s run() method. The timer
invokes this method when it elapses. Equally, the Timer class provides a node with
methods to invoke a timer task to execute once or at repeated intervals. This is achieved by
calling one of two different schedule methods and passing to each the TimerTask instance

and the time in milliseconds a user wants a node to wait for.

public wvoid schedule (TimerTask task, long delay, long period){}

public woid schedule (TimerTask task, long delay) !}

Figure 4-19: A break down of the schedule methods provided by the Timer class which a
node instance can invoke to schedule an instance of the TimerTask class for repeated

activation at regular intervals or for ‘once off” activation.

4.3 GUI Module

As previously stated, classes within the GUI module were implemented to enable a user to
automatically execute his algorithm definition code as an interactive visualisation. This was
achieved through a process of automated annotation where by the methods provided by
FADA'’s framework were implemented to make transparent calls to predefined visualisation
methods. These visualisation methods were implemented to, not only, visualise the
behaviour of the algorithm, but also, to render set components of its behaviour interactive.
This was in order to enable the user to be able to manipulate the behaviour of an algorithm
as it executes. However, before one could achieve the latter functionality, it was necessary
to augment the behaviour of the Node class, the Message class and the Variable class to
enable them to create separate depictions on instantiation. Equally, it was necessary to
implement additional classes in order to arrange each depiction on screen in a manner
which reflects the underlying topology of the algorithm’s behaviour. Three separate classes
were created to visualise three different topologies. These were the Network class, the

GroupNetwork class and the ClientServerNetwork class.

82

Chapter 4 Implementation

Section 4.3.1 describes the manner by which the implementation of the Node class, the
Variable class and the Message class were augmented to provide separate visual depictions
for each of their instances. This was in order to enable the author to render them
manipulable at run time. Section 4.3.2 describes the implementation of classes to depict the
underlying topology of an algorithm’s behaviour. Section 4.3.3 describes the manner by
which the NetworkCanvas class was implemented to, not only, invoke the drawNetwork()
method of each topology class in order to display its graphical representation with in the
animation frame, but also, to enable a user to interact with components of the latter

representation in real time.

4.3.1 Visualising a node object, a variable object and a messages object

The behaviour of the Node class was augmented to provide a visual representation for each
node object created by the user. This was achieved by associating with the Node class a
drawNode() method. This method is invoked each time the aforementioned class is
instantiated. The Node class was also implemented to visualise each state variable that a
node creates. This was achieved by associating with the Node class two functions. These
were the showState() function and rebuildState() function. The showState() function was
implemented to invoke the display() function of the Variable class. This function associates
with each variable object created a JComponent object, like for example, a text field. This
was required in order to enable the user to change the value of a variable at run time. The
rebuildState() function was created to repaint the panel containing the variables each time a
new variable instance is created. The behaviour of the Message class was augmented to
graphically depict a message object. This was achieved by associating with the Message
class a draw() method. This method is invoked each time a user creates a new message
object. A message was visualised as consisting of four pieces of information. These were;
the name of the message, the unique identifier of the node sending the message, the unique
identifier of the node receiving the message and the message contents. Each piece of
information was depicted in one of four different boxes stored inside an overall container

(See Figure 4-20).

83

Chapter 4 Implementation

Name of
message

A

Type:
ID of node P

sending
message

v

From: Message
Content
ID of node area

to whom
message is
addressed

A

Figure 4-20: A depiction of the information visualised within a message object.

4.3.2. Visualising the underlying topology of an algorithm’s behaviour

In all three classes were created. These were the Network class, the GroupNetwork class
and the ClientServerNetwork class. These classes were designed to enable a user to
visually differentiate between nodes whose communication behaviour is governed by an

algorithm informed by a bus topology, a ring topology or a star topology (See Figure 4-21).

Metwork

+ofrawhletworkvoid

T

GroupNetwork ClientServerNetwork

+drawhetworkaid +drawtetwarkdivaid

Figure 4-21: Algorithm topology classes
The Network class was implemented to depict how nodes of the default node type (i.e. the
Node class) are interconnected. This was achieved by creating a drawNetwork() method

which invokes the drawNode() method of the Node class. This method was implemented to

84

Chapter 4 Implementation

depict how nodes of the default node type (i.e. Node class) are arranged on screen in a
circular fashion around an empty space. The empty space was deployed to give the illusion

of autonomous nodes dispersed across a distributed system.

Figure 4-22: Default node topology
The GroupNetwork class was implemented to inherit the visualisation methods of the
Network class and to overwrite them to depict how nodes of the GroupNode type are
interconnected. In order to reinforce the group node membership, these nodes were
depicted on screen dispersed in a circular fashion around an empty space, which, itself, is
enclosed inside a larger circle. The outer circle was deployed to visually reinforce the group

node membership.

85

Chapter 4 Implementation

Figure 4-23: Group node topology

In order to depict the behaviour of an algorithm informed by the client server topology,
the ClientServerNetwork class was implemented. Again, it was designed to inherit and
overwrite the visualisation methods of the Network class. The latter topology was designed
to be depicted on screen as an inverted tree structure with the server node residing at the

root and the client nodes residing a level below.

Figure 4-24: Client server topology

4.3.3 NetworkCanvas class

The above class was implemented to not only depict the aforementioned topologies within
the code frame but also, to detect when the user had interacted with one or more of their
components, like for example, a node or a message object. This was in order to enable the
NetworkCanvas class to update the behaviour of the algorithm to accord with changes

made by the user to its state and behaviour (See Figure 4-25).

86

Chapter 4 Implementation

Metwork |
«interface» «interface»
GroupNode ServerNode
.fl_\. .f:_\. GUl
o.* 1 1 1
Node Network NetworkCanvas
? 1.2 T
ox [
Variable Messages
GroupNetwork ClientServerNetwork

Figure 4-25: Overview of the classes that are invoked in order to enable the
NetworkCanvas class to visualise and monitor changes in an algorithm’s behaviour at run

time.

In order to achieve this, it was necessary, in the first instance, for the NetworkCanvas class
to invoke the behaviour of the drawNetwork() method of the Network class. This was in
order to enable it to display the algorithm topology within the animation frame. At any one
time, the animation frame can hold at most one topology. Next, it was necessary to
implement the NetworkCanvas class as a mouse listener class so that it could listen for user
interactions and in response to those interactions invoke the appropriate mouse event
handling method.

In response to a user clicking on a node image, the NetworkCanvas class was
implemented to invoke the functionality of two functions provided by the Node class.
These were the click() function and the showState() function. These functions were
designed to work in unison such that, if the click() function returned true, the
NetworkCanvas class would invoke the showState() function. This function was
implemented to return a panel depicting a list of state variables and their values belonging
to that particular node instance. This was outputted to the code frame by the

NetworkCanvas in an internal frame. Depending on the data type of the state variable

87

Chapter 4 Implementation

created, a number of different instances of Java’s JComponent classes were instantiated to
enable the current value of that variable to be displayed and to enable the user to edit its
value during run time that is, during the execution of the algorithm’s behaviour. For
example, if the data type of the variable created was of type Integer, an instance of Java’s
JTextField class was created to enable a user to enter a new value for the variable.
However, the ability to edit the value of a state variable at run time was implemented to be
dependent upon the value of a boolean variable called ‘editable’. This variable together
with the data type of the state variable are defined when the user invokes the define()
method of the Variable class (See section 4.2 for more details). This method creates a new
variable object. If the value of editable is set to true then the JComponent object is rendered
active at run time other wise, it is rendered inactive and as a result, does not allow changes
to be made to the state of the variable.

The NetworkCanvas class was also implemented to detect when a user had right clicked
on a node’s image and in response to such an action to display a pop up menu containing a
list of predefined behaviours that a user could invoke on that node instance. These were; to
start the algorithm’s execution, to kill a node, that is, to cause the node to fail to respond to
any messages sent to it, to reset the latter behaviour and to delete the node from the
underlying node configuration. In order to enable each node instance to have the ability to
start the execution of an algorithm’s behaviour, it was necessary to amend the Node class
such that it inherited Java’s Thread class. This was in order to enable each node instance to
initiate it own separate thread of execution. This was achieved by the NetworkCanvas class
invoking the startSim() method. This method was implemented to create a new instance of
the Thread class and to pass to it a reference to the node instance. This in turn had the
knock on effect of invoking the run() method of the Node class. This is the method that a
user defines to initiate the algorithm’s behaviour (See section 4.2). The customisation is
achieved by invoking the methods of the Message class and the Variable class.

However, in order to enable the NetworkCanvas to animate the sending of a message, it
was necessary to modify the behaviour of that class to extend that of a Thread class. This
was in order to enable it to animate the sending of a message one at a time. A data structure

was implemented to record each message instance as it is created. These instances are then

88

Chapter 4 Implementation

queued and eventually sent in the order in which they were queued. This is depicted on
screen using a series of graphical building blocks, each of which is numbered to reflect the
order in which each message is to be sent. To kill a message, the NetworkCanvas class was
implemented to detect when the user had right clicked on the object. In response to that
action, it invoked the clicked() function of the Message class. If this returned true, the
message instance was set to null. This resulted in the message disappearing from screen.

In order to kill a node, that is, to stop it from responding to any messages sent to it, a
boolean variable was created called ‘imAlive’. If this boolean variable was set to false, the
node instance would not respond to any messages sent to it. The action of selecting ‘kill’
from the pop up menu set this value to false. However, the action of selecting ‘reset’ from
the same pop up menu was implemented to reset this value to true. Within the overall kill()
method invoked by the NetworkCanvas class, there was placed a call to a method which
was left undefined. This method was called die(). The purpose of this method was to enable
the user to override the method to add extra functionality to the kill response. Before
animating the transfer of a message, the NetworkCanvas class would check the value of
‘imAlive’, if it returned false, then it would not animate or deliver the message object to its

destination as it signalled that the node object trying to send the message had failed.

4.4 Split Pane Interface

In order to create FADA as a split pane interface, it was necessary, in the first instance, to
create two separate classes to define the structure of the code frame and the animation
frame. These were the CodeEditor class and the SimulationWindow class. It was then
necessary to create a third class, called MainWindow, to act as a container class, which
when invoked, would create instances of the latter two classes and instantiate the split pane
with their objects. On instantiation the SimulationWindow class was implemented to
invoke an instance of the NetworkCanvas class. This was in order to display the graphical
representation of the algorithm’s topology within the animation frame. On executing
FADA, this frame is initially empty as no node instances exist. These are created when the

user compiles and executes his algorithm description.

89

Chapter 4 Implementation

Il d O CodeEditar Simulationind o HetworkCanvas Metwork Iode

T
1
1
CodeEditor(|

SimulatiqnWindnwO

MetworkCanvas)

drawhetwark()

drawhoded

Animatian frame is

|
T : initially ermpty as
| | no node instances exist.
\ \ These are created at
| |
| |
| |

run time.
i i

Figure 4-26: A sequence diagram depicting the invocation of calls to set up FADA’s split

pane interface.

The MainWindow class served two purposes. These were; to create the split pane interface
and to provide controls to enable a user to compile his algorithm description code and to
execute it as a simulation. It also provided controls to enable the user to control the
presentation of content within the animation frame. In order to facilitate the compilation
process, it was necessary to import into FADA the interpreter classes of Koala’s dynamic
Java library. These included its Launcher class and its Interpreter class. Dynamic java is a
Java source interpreter which is freely available and whose source files can be downloaded
from the following url (http://koala.ilog.fr/djava) These interpreter classes enabled one to
convert a user’s definition of an algorithm’s behaviour into byte code and to return an
instance of the Node class. This was achieved by first retrieving the string representation of
an algorithm’s behaviour from the code editor’s text pane and then, by passing it as a
parameter to the compile() method of Koala’s Launcher class. This in turn invokes the
interpret() method of the associated Interpreter class which converts the algorithm
description to byte code before creating a new node instance. Any compilation errors
detected by koala’s interpret() method were implemented to be flagged and outputted as

strings to an internal console window.

90

Chapter 4 Implementation

TRl [l CodeEditor Launcher Interpreter Hode

etProgrami I

I
I
1
:
I
getClassMamed ! :
I
I
1
1
I

Cl:ump'ile{:l

interpret)

| installProgrami

i

makeNil:ude{:l !

are detected and
outputted in an
internal console
wrindow.

u Compilation errars
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
i i
Figure 4-27: A sequence diagram depicting the methods of koala’s interpreter classes
which are invoked to compile a user’s description of an algorithm’s behaviour. These
methods are invoked by selecting compile from the controls provided by FADA’s

MainWindow class.

The add button was implemented to visualise a node instance by adding it to the animation
frame. Multiple selections of the add button was implemented to visualise and add a
corresponding number of node instances to the animation frame. Right clicking on each
visualised node instance and selecting ‘start’ was implemented to execute the algorithm’s

behaviour by invoking the run() method of that node instance (See Section 4.2).

4.4.1 CodeEditor class
The above class was implemented to contain a text pane into which a user could load a text

file containing a description of an algorithm’s behaviour. This was achieved by

91

Chapter 4 Implementation

implementing a method called loadProgram() which accepted as a parameter a reference to
the file object. This file was then buffered so that its contents could be read and then
displayed in the text area of the pane. Before displaying it, the text pane was first cleared of
all contents. The text pane was initially implemented to display skeleton code relating to
the behaviour of the default node type, that is, a node whose governing algorithm’s
communication topology mirrors that of a bus topology. This was achieved by
implementing a method called initDocument() which, when invoked, inserted into the text
pane a string definition of that node type’s Java class definition. Associated with the
contents of the pane was a document listener. This was implemented in order to notify the
editor every time a user modified or inserted text with in the text pane. The editor was
notified when ever a user inserted a new string, removed a string or changed certain
characters within the text pane. This listener was necessary in order to enable the editor to
update the contents of the text pane in response to changes made by the user.

Running along the top of the editor was a number of controls. These were
implemented to enable a user to not only load a text file into the text pane as defined earlier
but also, to save the contents of the text pane to a file and to cut, copy and paste content to
the text pane. All of these controls were implemented as action listeners so as to enable the
user to invoke their functionality when ever he so pleased. In order to save the contents of
the text pane to a file, a method was created which enabled a user to write the contents to a
new file object and to save that file object under a new user defined name to a directory of
his own choosing. This was implemented by manipulating and customising the predefined
methods of Java’s FileWriter class. In order to enable a user to cut, copy and paste text to
the editor’s text pane, it was necessary to invoke the predefined methods of Java’s
JTextComponent class of which JTextPane is a child. These methods were cut(), paste()
and copy(). The method cut was invoked to enable a user to transfer the currently selected
range in the associated text model (i.e. the text pane) to the system clipboard. This action
results in the content being removed from the model. Similarly, paste was invoked to
enable a user to transfer the contents of the system clipboard into the associated text model.

If there is a selection made in the associated view, it replaces the contents of the clipboard.

92

Chapter 4 Implementation

If there is no selection, the clipboard contents are inserted in front of the current insert
position in the text pane. If the clipboard is empty, nothing happens.

Also, methods were implemented to enable a user to highlight all content within the
text pane or to highlight a segment of content. Both were achieved by invoking the
predefined select() methods of the JTextComponent class. However, in order to achieve the
latter select functionality, it was necessary to decipher the beginning and end of the user’s
selection. This was in order to enable the editor to highlight only that selection and not the
whole content of the text pane. This was achieved by manipulating set methods of Java’s
inbuilt JTextArea class and JavaCharStream class. The use of these methods enabled the
editor to decipher in what line of the text area the selection was made, what the position of
the first character selected in that line was and the last character’s position. This was
achieved, by invoking and passing to the predefined function getLineStartOffset() the
function getBeginLine(). This returned the position of the first character. A similar strategy
was deployed to find the end character selected by the user albeit different functions were
invoked. Each line of text within the text pane was numbered and highlighted in accordance
with the standard format used by current Java development environments.

Associated with the control panel running along the top of the editor was an additional
control known as ‘New’. On selecting this control, the code editor was implemented to
create a new instance of the NodeBuilder class. This class was implemented to encapsulate
the behaviour of the wizard. The wizard as defined in chapter 3 was designed to enable a
user to quickly generate skeleton code relating to the underlying topology of an algorithm’s
behaviour, the messages that a node is to receive and the state variables that a node is to
hold. This was implemented by building a class which inherits Java’s JDialog class and
implements Java’s actionListener interface.

The NodeBuilder class was implemented as a JDialog window so as to create a window
which was modal, that is, one which prohibits users from activating any other windows
while it is active. This was in order to ensure that a user creates or defines completely an
algorithm’s skeleton functionality prior to compiling it. Such a process was facilitated
through the creation of a separate panel for each of the three main parts of an algorithm’s

definition. These were; the identification of the algorithm’s underlying topology, the

93

Chapter 4 Implementation

messages that it permits nodes to receive and the local variables that a node is to store. Each
panel was implemented to provide a series of JComponents, like for example text fields, list
boxes etc, which a user can customise by inserting data. On completion of the
customisation of all panels, a string definition relating to the behaviour of the algorithm is
outputted to the code editor’s text pane. This was implemented to be written in accordance

with the format of a standard Java class definition file (See Figure 4-28 for sample output).

1 import network.®;

2

3 public class MyNode extends Node!

4

o public MyNode(){

& define("accEalance™, new Integer(l000) ,true);

7 }

g

9 public void receiveMessage (Node zender, Mezsage message) !
10 if [(message.isType (" Transtfer™)){

11 handleTransfer (sender ,message. getInt(Tanount™)) ;
12 1

13 B

14

15 public woid handleTransfer (Node sender,int amount) {
16 SiInzsert code to handle message

17 1

135

149 public woid runi(){

20 JiInsert code here

21 H

2a 1}

Figure 4-28: Sample Java class code generated by the wizard to assist users in defining the

manner by which transactions are completed by a distributed banking system.

4.5 Summary

This chapter has delineated the manner by which FADA was implemented as a modular
architecture in order to reduce the time and complexity associated with creating an active
simulation. First, it outlined the manner by which FADA subdivided the process of creating
an active simulation into three separate concerns, two of which it automated. These were;
the implementation of an algorithm’s behaviour, the creation of its graphical representation

and the provision of its real time interactivity. Next, it documented the implementation of a

94

Chapter 4 Implementation

framework to assist users in defining the behaviour of an algorithm. The framework was
implemented to provide a set of methods which a user could quickly customise, through the
use of parameterisation, to reflect the behaviour of a set algorithm. This chapter also
documented the manner by which a graphical representation for an algorithm’s behaviour
was derived and how components of the latter representation were rendered manipulable in
real time. This was in order to enable a user to modify the behaviour of an algorithm while
it executes. Furthermore, it delineated the manner by which FADA was implemented to
automate the creation of an algorithm’s graphical representation upon execution through a
process of automated annotation. Lastly, it described the implementation of developer tools
to further assist users and to scaffold them in the algorithm implementation process. The
next chapter will document the methodology undertaken to investigate the educational

effectiveness of FADA.

95

Chapter 5 Evaluation Methodology
Chapter 5
Evaluation Methodology

5.1 Introduction

As previously stated FADA differs from other algorithm visualisation (AV) approaches
both on a pedagogical level and on an operational level (See Figure 5-1). In terms of
pedagogy, FADA, like active simulation systems but unlike algorithm construction systems
is informed by theory of constructivism and as such, provides real time interaction with an
algorithm’s behaviour, that is, it enables a user to change the behaviour of an algorithm’s
components while it executes. To date, algorithm construction systems provide off line
interactions, that is, they require a user to specify prior to the execution of an algorithm’s
behaviour, which property of its behaviour that they would like to modify and observe.
Thus, they enable users to only interact with the behaviour of an algorithm visualisation in
real time by changing the speed of its presentation or its view. However, FADA, like
algorithm construction systems, enables a user to build his own conceptual understanding
of an algorithm’s behaviour but, unlike them, enables user to interact with their
representations in real time in order to ascertain their correctness. Thus, FADA can be said
to be equally informed by the theory of constructionism. Further more, FADA, unlike
active simulation systems and passive animation systems provides dual representations of
an algorithm’s behaviour that is, it provides both a visual representation of an algorithm’s
behaviour and a textual representation of its implementation. Thus, FADA, unlike passive
animation systems and active simulation systems, enables users to map the graphical

representation of an algorithm’s behaviour to that of its underlying implementation.

FADA’s Pedagogical and Operational Approach

Pedagogy Constructivism, Constructionism, Dual Coding

Operation | Framework, Visualisation API

Table 5-1: FADA’s pedagogical and operational characteristics.

96

Chapter 5 Evaluation Methodology

In terms of operation, FADA, unlike passive animation systems and active simulation
systems, enables users to create their own algorithm implementations. This is achieved
through the provision of a framework for common message passing distributed algorithms.
This framework is written in a conventional programming language, namely Java and, as
such, reflects the manner by which distributed algorithms are implemented in the real
world. Unlike algorithm construction systems, FADA facilitates the easy construction of an
algorithm visualisation through the provision of a built in visualisation API. This API not
only defines the manner by which components of an algorithm’s behaviour are rendered,
but also, the manner by which a user can interact with them. Through a process of
automated annotation, FADA automatically annotates a user’s algorithm implementation
code with calls to functions of the aforementioned API. Such an action enables users to
concentrate solely on the implementation of an algorithm’s behaviour and not on that of its
visualisation or level of interactivity.

Thus, in order to assess the pedagogical and operational effectiveness of FADA, a number
of research questions were posed. With respect to pedagogy, these were:

e To what extent does the algorithm visualisation approach adopted in this thesis
enhance the teaching and learning of distributed algorithms?

Concomitant with this question were a number of sub questions.

e To what extent does it facilitate learners to engage in higher order thinking
when learning about an algorithm’s behaviour?

e To what extent does the software tool under examination facilitate higher order
dialogues about an algorithm’s behaviour between learners and between learners
and instructors?

e To what extent does the embodiment of the dual coding theory within the user
interface design of the software tool under examination aid in the algorithmic
problem solving process?

e To what extent does the software tool under examination engage learners in an
iterative cycle of learning?

With respect to operational effectiveness the following research questions were posed:

97

Chapter 5

Evaluation Methodology

To what extent is FADA easy to use?

Associated with this question were a number of sub questions.

To what extent is FADA easy to learn how to use?

To what extent is it effective in enabling learners to complete their problem

solving tasks?

To what extent is it both effective and efficient in enabling instructors to create

active simulations for use in their own teachings?

To what extent are both learners and instructors satisfied with the functions and

features provided by FADA?

In order to answer such questions, it was necessary to adopt a multi-method approach. This

was in order to garner as much data as possible from a variety of view points which could

then be analysed and in which one could be more confident compared to using a single

method approach. By triangulating the data collected from each of the different methods

and user groups deployed, one helps to eliminate the biases that might result from relying

exclusively on any one data collection method or source. The following user groups and

methods were deployed to assess FADA'’s effectiveness both on a pedagogical level and on

an operational level.

User Background Modes of use Instruments/Methods | Number of
Groups participants
Group 1 | Undergraduate Interactive Video capture, Direct | 16

students with a | presentation and | observation,

background algorithm Questionnaires.

knowledge in | modification task

concurrency,

operating systems

and networks but

not in distributed

systems
Group 2 | Postgraduate Interactive Video capture, Direct | 4

students with a | presentation and | observation, Discussion,

98

Chapter 5 Evaluation Methodology

background algorithm Questionnaire.
knowledge in | modification task
concurrency,

operating systems
and networks but

not in distributed

systems

Group 3 | Postgraduate Interactive Video capture, Direct | 12
students in | presentation and | observation, Discussion,
distributed algorithm Questionnaire.
systems modification task

Group 4 | Instructors in | Algorithm Interview, Questionnaire | 3
distributed construction task
systems and presentation

delivery in class.

Table 5-2: Breakdown of participant groups within current study and mechanisms
deployed to assess FADA’s pedagogical and operational effectiveness from each of their

perspectives.

It should be noted that prior to the commencement of this study, FADA underwent a
number of pilot tests. Each pilot study was designed to replicate the use of FADA within a
learning setting. In each study, the author, acting as the instructor, either presented to a
sample test audience an algorithm for exploration and discussion or an algorithm for them
to modify in some way. The pilot studies were designed to inform and refine the design of
the artefact, to gauge initial reaction and feedback and to test and improve the design of
questionnaires. All questionnaires were reviewed by a senior lecturer in education for
accuracy and appropriateness.

Section 5.2 outlines the manner by which FADA’s pedagogical effectiveness was
investigated from the perspective of each of four different user groups. First, it outlines the
overall methodological approach adopted. Next, it delineates for each user group, the

participants’ demographics and the manner by which the data was garnered from each

group.

99

Chapter 5 Evaluation Methodology

Section 5.3 describes the manner by which FADA’s operational effectiveness was assessed
both from the perspective of the learner and the instructor. It also outlines the
methodological approach undertaken in each instance, the participants’ demographics and
the way in which the data was collected.

Section 5.4 concludes with an overview of the chapter.

5.2 Methodological approaches adopted to investigate the pedagogical effectiveness of
FADA.

One way of assessing the pedagogical effectiveness of the approach adopted by FADA is to
determine to what extent learning has increased as a result of its use. Such an experimental
approach operationalises pedagogical effectiveness in terms of the acquisition of target
knowledge structures which learners are assumed to glean from learning sessions in which
they are exposed to both FADA and alternative media such as text books. In such designs,
individual performances on a written post test are taken as evidence for the successful
transfer of knowledge structures, which are often classified as either [conceptual] (what the
program does) or procedural (how the algorithm works) [1]. However, the use of such
experimental designs begs the question as to what extent the results can be said to internally
and externally valid.

Internal validity is concerned with the question, “do the experimental treatments, in
fact, make a difference in the specific experiment under scrutiny?”. In other words, are the
changes observed in the dependent variable (level of target knowledge) due to the effect of
the independent variable (the algorithm visualisation system) and not due to some other
unintended variable such as history, which are events that happen during the course of the
study [107]. Internal validity can be threatened by a number of variables in addition to
history. These are maturation, which is biological or psychological changes in the
participants during the course of the study, testing, which is the ability for participants to
become ‘test-wise’ due to exposure to a pre-test that is similar to the post test,
instrumentation, which refers to changes observed on the dependent variable that are due to
the nature of the instrument and not the independent variable (e.g. post-test was easier than

the pre-test), and, lastly, experimental mortality, which relates to participants who drop out

100

Chapter 5 Evaluation Methodology

during the course of the study. (This becomes a threat to internal validity if participants
differentially drop out of the experimental and control groups) [107]. External validity
concerns itself with the question as to what extent can findings in one study be applied to
another. If findings in one study are observed in another situation then the results are said to
be generalisable or externally valid [107]. In order to achieve ‘perfect’ internal validity, it
necessitates use of an artificial setting, an environment in which no variables operate except
those that the researcher introduces. This necessity to create artificial settings in order to
explore single variable effects may yield results that have only meaning within that
particular setting. ‘Humans react to artificially restricted manipulated conditions differently
from the way they react to naturally occurring conditions, and if the research is conducted
under artificial conditions, then the generalisability of the results (external validity) is
severely limited *[108] (p. 361).

Thus, in terms of establishing the true potential pedagogical effectiveness of FADA,
there is need to observe its effects in a real world context like, for example, a lecture
setting. Hence, there is need of an ethnographic approach. Such an approach assumes that
behaviour and, thereby, data are socially situated, context-related, context-dependent and
context-rich. To understand a situation, a researcher needs to understand the context in
which that behaviour took place because situations affect behaviour and perspectives and
vice versa. Ethnographic research is a process of involving methods of inquiry such as
interviews, journal notes, participant observation, artefacts, video recordings and so on. The
intention of the research is to create as vivid a reconstruction as possible of the group or
individual being studied. Such an approach ‘is concerned more with description rather than
prediction, induction rather than deduction, generation rather than verification of theory,
construction rather than enumeration, and subjectivities rather than objective knowledge’
[109] (p.39 —44).

The approach starts with the researcher taking a wide angle lens to gather data, and
then, by sifting, sorting, reviewing and reflecting on them the salient features of the
situation emerge. These are then used as the agenda for subsequent focusing [110]. This is
achieved by comparing different groups simultaneously and over time, matching the

responses given in interviews to observed behaviour, an analysis of deviant and negative

101

Chapter 5 Evaluation Methodology

cases, calculating frequencies of occurrences and responses, assembling and providing
sufficient data that keeps separate raw data from analysis. The validity of the data collected
is maintained through the use of multiple devices for recording, using a flexible observation
schedule in order to minimise biases, remaining in the situation for a long time in order to
over come the Hawthorne effect and using respondent validation and descriptions.

Thus, by definition in order to get an externally valid picture of how the use of FADA
within a lecture setting and or laboratory setting motivates learners, engages their higher
order thinking skills, assists instructors, there is need to observe its use by a number of
different instructors in a number of different lecture settings over an extended period of
time. However, given the nature of the subject domain, the manner by which it is widely
taught and the time frame in which this research was to be completed, such an analysis was
not possible. Distributed algorithms is not a subject taught in and of itself, but represents a
part component of an over all topic known as distributed systems. Across many computer
science departments, it is reserved as a module for advanced computer science students and
even at that, it is normally only offered to students as a speciality that is, an optional topic
and not as a core requirement. Thus, it is not unusual to find one distributed system class
per department due to small student numbers. More over, many instructors in their
teachings prefer not to delve deeply into the topic preferring instead to concentrate on the
development of learners’ low level implementation skills, like for example, corba and rmi.
Others prefer to elucidate students to the presence and behaviour of different distributed
algorithms as the need arises during their teachings, making it difficult to pinpoint an exact
time for FADA’s intervention.

Given this backdrop, it was necessary to rethink the manner by which one proposed to
investigate FADA’s pedagogical effectiveness. It was decided that such a task would be
best served through the use of a case study approach. A case study can be thought of as one
type of ethnographic (interpretive) research that involves intensive and detailed study of
one individual or of a group as an entity through observation, self reports and other means
[111]. It is the study of a ‘bounded system’ with the focus being either the case or an issue
that is illustrated by that case (or cases). ‘One of the powerful strengths of a case study is

that it can establish cause and effect situated in a real context’ [112] (p. 220). ‘It provides a

102

Chapter 5 Evaluation Methodology

unique example of real people in real situations, enabling readers to understand ideas more
clearly then simply presenting them with abstract ideas or principles... Case studies can
penetrate situations in ways that are not always susceptible to numerical analysis’ [110] (p.
200). ‘A case study is most valuable when the researcher has little control over events.
Associated with a case study are a number of attributes. It is concerned with a rich, vivid
description of relevant events and provides a chronological narrative of these events. The
study blends a description of these events with analysis thereof focusing on individual
actors or groups and seeks to understand their perceptions of events. Analysis of the case
seeks to highlight events of specific relevance. The researcher may be integrally involved in
the case’ [112] (p. 77).

Case study designs may be single case or multiple case designs. ‘A single case study
is analogous to a single experiment and many of the conditions that justify a single
experiment also justify a single case study’ [113] (p. 39). ‘A single case study design is
eminently justifiable under certain conditions, — when the case represents (a) a critical test
of an existing theory that is, a case which meets all criteria or conditions for testing a
specific theory, (b) a rare or unique circumstance that is, a case that is so rare that warrants
further investigation, or (c) representative or typical case that is, a case whose object of
study is assumed to behave in ways typical of a class or group, or when the case serves (d)
relevatory or (e) longitudinal purposes’ [113] (p. 45). A relevatory case can be defined as a
case that represents an opportunity to observe, analyse a phenomenon previously
inaccessible to scientific study. A longitudinal case can be defined as a case whose object
of study is observed at multiple points in time over an extended period. The theory of
interest being how certain conditions change over time and the selected time intervals
reflect the stages at which those changes should reveal themselves [113]. However, in
choosing a single case study design, caution must be exercised to ensure that the unit of
analysis or the case itself is in fact relevant to the issues and questions of interest. In this
current study, participants come from broadly similar computer science backgrounds but no
one participant could be deemed typical or representative of a group as to entirely represent
it. Moreover, the remit of this study was to analyse the pedagogical effectiveness of FADA

from both the perspective of the instructor and the learner. Thus, its aim was to analyse the

103

Chapter 5 Evaluation Methodology

ways in which both parties engage with the software to either assist or grow to a deeper
understanding of an algorithm’s behaviour. As a consequence of the latter, no one
participant could be assumed to be representative of the entire range of interactions
possible. Thus, there was need of a multiple case study approach, one which enables the
detection of patterns of behaviour which are common to all cases (literal replication) and
which are mediated by the software as well as enabling the detection of behaviours which
deviate from the common (theoretical replication).

The need for ‘replication is analogous to that used in multiple experiments. Upon
uncovering a significant finding from a single experiment, the immediate research goal
would be to replicate this finding by conducting a second, third and even fourth experiment.
Some of the experiments might attempt to duplicate the exact conditions of the original
experiment. Other replications might alter one or two conditions, to see whether the finding
would still be duplicated. Only with such replications would the original finding be
considered robust and worthy of continued investigation or interest. The logic underlying
the use of multiple case studies is the same. Each case must be carefully selected so that it
either (a) predicts similar results (literal replication) or (b) predicts contrasting results but
for predictable reasons (theoretical replication)’ [113] (p. 47). If such replications are
indeed found for several cases, one can have more confidence in the overall result. The
development of consistent findings, over multiple cases and even multiple studies can then
be considered a very robust finding [113].

In this study a number of cases were selected for analysis and examination on the
basis, in the main, of literal rather than theoretical replication. This was with a view to
generating a theoretical position with regard to both learner and instructor behaviours. The
unit of analysis in each case was holistic and sought to analyse the relationship between the
instructor, learner and software and how that relationship impinged upon a learner’s
understanding of the algorithm’s behaviour. To this end, the following cases were included.
These were the detailed analysis of FADA’s use in a single authentic lecture setting
coupled with its use in simulated lecture settings. Moreover, in order to ascertain to what
extent learners had acquired an understanding for the concepts presented in each lecture

setting, it was necessary to have them complete a task which required them to make explicit

104

Chapter 5 Evaluation Methodology

that understanding. Such tasks were designed to equate to that given by instructors for
learners to complete in laboratory settings. These settings were also included as cases. All
selected cases enabled one to focus on FADA’s immediate impact on individual learners
and to determine to what extent the ability to (1) view an algorithm‘s behaviour, (2) engage
with an algorithm‘s behaviour in real time, (3) modify or customise an algorithm’s
implementation assist learners in acquiring an understanding of that algorithm’s behaviour.

In all four participant groups were observed in their interactions with FADA. These
consisted of three groups of learners and one group of instructors. The learner groups were
designed to differ in terms of their prior knowledge of distributed systems. This was in
order to assess to what extent FADA can accommodate and challenge learners of different
knowledge levels and experience and also, to give insight into the different ways that each
engage with the software to obtain an understanding of an algorithm’s behaviour. Each
learner group was exposed to FADA in one of two different ways. These were; as an
interactive presentation tool within a lecture setting and as a modification tool within a
laboratory setting. Both were chosen to shed light on the effect, if any that, viewing an
algorithm’s behaviour, interacting with it in real time and modifying its implementation has
on the learner’s understanding of it. The instructor group was chosen to investigate to what
extent FADA assisted them in conveying the dynamic and concurrent behaviour of a
distributed algorithm.

With respect to issues of reliability and validity of the case study approach, internal
validity was maintained through the adoption of ‘the analytic tactic of pattern matching’
[113] (p. 36) and explanation building. ‘Pattern matching can be defined as the making of
predictions about the behavioural patterns and comparing these to empirically observed
results’ [112] (p.81). If the patterns coincide the results can help a case study to strengthen
its internal validity [113]. However, in determining the ‘closeness of fit’ of the data to the
predicted pattern the onus is on the researcher to make the value judgement. Explanation
building goes beyond pattern matching by specifying the causal nature of the links that
make up the pattern and then by testing the evidence for those links. ‘Explanation building
is an iterative process involving first making a theoretical statement and comparing the

findings of an initial case study against this statement. This statement may then be revised

105

Chapter 5 Evaluation Methodology

and compared either to other details of the same case or to facts of a second or subsequent
case. In this way, the theoretical position may be refined so as to explain the range of cases.
T