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Abstract. Open peer-to-peer architectures offer many possibilities for
replicating database content, but designers have to deal with problems
such as peer churn rates and inherent uncertainty in decision making. The
lack of global knowledge of peer characteristics poses a specific problem
for a master database that needs to decide on which peers to use as slave
replicas. This paper describes a self-organising algorithm for generating
a peer-to-peer topology that helps to solve the problem of slave replica
placement through the clustering of peers with similar uptime and per-
formance characteristics. In particular, our solution can be used to build
a highly scalable knowledge base where the rate of querying is much
larger than the rate of updates. We briefly discuss the design of such a
knowledge base for a peer-to-peer service-oriented architecture.

1 Introduction

The peer-to-peer paradigm for building distributed systems has become ex-
tremely popular and it has received increased attention as more and more novel
applications are invented and successfully deployed. The main advantage of the
paradigm is that it allows the construction of systems with unprecedented size
and robustness, mainly due to their inherent decentralisation and redundant
structures. In particular, for databases the P2P approach offers new possibili-
ties, since it enables the utilisation of a large number of resources, such as the
storage space or processing power of peers in the network.

However, the peer-to-peer paradigm introduces challenges that are often not
dealt with properly in many proposed P2P architectures. Massive scale and very
high dynamism makes it impossible to capture and maintain a complete picture
of the entire P2P network, consequently, a peer or any other entity is only able
to maintain a partial or estimated view of the system. Inherent decentralisation,
an open environment, lack of trust and unreliable communication introduce dis-
tributed decision making problems. In particular, there is the specific problem
in the database field of the data distribution of how to partition the data among
the peers. A peer introducing new data, or creating a new replica, has to decide
which of the other peers in the network is the most suitable to host the data.

Existing P2P systems, such as for example Distributed Hash Table (DHT)
based approaches, usually assume that all peers are similar and have equal capa-
bilities for maintaining data [11], which simplifies the design. For example it is



often assumed that the distribution of resources among the peers is uniform [13].
However, this was shown not to be the case in real-life systems, where the dis-
tribution of peer characteristics, such as the number of connections, the uptime,
available bandwidth or the storage space, usually exhibit the so called scale-free
or heavy-tail property [1,12,6,9]. Systems that do not address the heterogeneity
of the system environment and do not adapt their structures to the environment
often suffer poor performance, especially in the face of high churn rates, i.e., high
frequency of peers entering and leaving the system [10,16,8].

In the Digital Business Ecosystem (DBE) Project we are building a large-
scale distributed storage system, which we call the DBE Knowledge Base, where
the system’s topology and replica placement dynamically adapts to reflect the
heterogeneities in the network and peer properties. The main assumptions of the
storage system are that the data is persistent and highly replicated, and that
the replicas are managed — the system keeps track of all replicas so that their
owners are able to update or delete them. We restrict the replica placement to
the most reliable, high performance peers only. We also make the assumption
that the data is queried much more frequently than updated.

The main contribution of this paper is a self-organising neighbourhood se-
lection algorithm, that clusters peers with similar reliability and performance
characteristics and generates a network topology that helps to solve the problem
of dynamic replica placement. We propose a replication strategy based on the
master-slave paradigm and a heuristic for master election, which both exploit
the properties of the emergent topology in order to improve the stability of the
replicas and minimise the overhead for replica maintenance. We evaluate our
approach through simulation and performance measurements.

The rest of the paper is organised as follows. In section 2 we discuss the
general requirements for data distribution and replica placement. In section 3
and 4 we present our neighbour selection algorithm, and a replication strategy
based on the resultant topologies. Section 5 contains a detailed description of the
algorithm, the simulation and a discussion of the experimental results. Finally,
in sections 6 and 7 we discuss the related work and our plans for future work.

2 Peer Reliability Metrics

When addressing the persistent data requirements for a distributed system, we
must decide on where to store the data. There are two extremes; one is to store all
data in a centralised server, which introduces scalability problems, and the other
one is to partition the data among a set of peers using some indexing scheme,
for example a distributed hash table. Many existing P2P systems assume that
all peers have identical capabilities and responsibilities, and that the data and
load distribution is uniform among all nodes [11,13]. One potential problem
when partitioning the data among peers is that the use of peers with lower
bandwidth/stability /trust to store data would degrade the performance of the
entire network [10].



To solve this problem, many systems only allow data to be stored on the
fastest, highest bandwidth, and most reliable trusted peers, called superpeers
[16,8]. It is non-trivial though, how to identify and select the superpeers from
the set of peers in the system, mainly due to the lack of global knowledge of the
system. Solutions based on flooding potentially require communication with all
N nodes in the system. Other solutions include hard-wiring them in the system or
configuring them manually. However, this conflicts with the assumptions of self-
management, decentralisation, and the lack of a central authority that controls
the structure of the system. An adaptive self-organising system is preferable,
where the peers automatically and dynamically elect superpeers, accordingly to
the demand, available resources and other runtime constraints. Alternatively,
the system may resign from the two-state distinction between superpeers and
ordinary peers and it may assign roles for peers relatively to their capabilities.

The selection of peers for replica placement could potentially be based on
criteria such as peer stability, available bandwidth and latency, storage space,
processing performance, an open IP address and willingness to share resources.
Peer availability, or uptime, is especially relevant, since every peer entering or
leaving the system introduces extra overhead, due to for example required data
transfers or routing structure reconfiguration. The system could also employ a
peer reputation model and use it as a criteria for replica placement, for example
only the most trusted peers might be allowed to host a replica. We believe that
many of the above parameters are strongly correlated, that is stable peers are
more likely to offer high bandwidth and low latency, have better reputation and
probably provide more connections, storage space and CPU power then other
peers.

We define a peer’s reliability as a weighted sum of the above parameters. The
reliability is a critical factor in the algorithm that generates the P2P topology
and in the replica placement strategy presented in this paper.

In a closed system, where all peers trust each other, it’s sufficient that every
peer evaluates its own as reliability level. Neighbouring peers can exchange the
reliability information without any verification procedure, since trust is assumed.
In an open, untrusted environment, a separate mechanism is needed to assure
that the reliability claimed by the peers corresponds to their actual status. In
particular, the system should be protected against malicious peers providing
fake reliability information, either about themselves or about other peers, peers
changing the identity or creating multiple wvirtual peers. The system should be
also robust against cliques of greedy nodes. These challenges, however, are be-
yond the scope of this paper and will not be discussed here.

A key principle of the system is that persistent data is stored by the most reli-
able peers. This strategy addresses a problem faced by many existing peer-to-peer
systems, where some data items, especially less popular, are hardly accessible or
even lost due to peers’ instability or lack of resources such as storage space or
bandwidth. In our design, the system tries to maximise data availability, security
and the quality of service by placing data replicas on the most reliable hosts.
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Fig. 1. Self-organising system topology based on peer reliability.

We propose an unstructured P2P architecture where the most reliable peers,
maintaining persistent data, are highly connected with each other and form a
logical core of the network, while the network around the core is composed of
the other peers, considered less reliable. Assuming the scale-free, heavy-tailed
distribution of resources [12,6,9], a great majority of peers belongs to the latter
category. The number of core peers is relatively small, but the amount of available
resources and stability of core peers is significantly higher then of the outer peers.
The main advantages of grouping reliable peers in a logical core are the following:

— Searching for reliable peers maintaining replicas, or suitable for maintaining
replicas, is less expensive in terms of number of messages generated, since it
only requires communication with a small subset of peers in the network.

— The overhead for replica synchronisation is reduced since the replicas are
located close to each other, at least in terms of the numbers of hops.

— Routes between peers storing data are more stable and up-to-date.

— Trust evaluation between peers storing data is less expensive.

The structure of the system can be seen as a set of concentric zones, where each
zone consists of peers with similar levels of reliability. The inner zone, called the
core by us, contains the most reliable peers. The subsequent zones are delimited
by gradually lower and lower status peers, down to the last outer zone that
contains the least reliable peers. Figure 1 illustrates this concept.

In practice, the core peers act more as servers, while the outer peers act
more as clients. The core nodes should be well-connected, have high bandwidth
and processing power, and should be able to maintain a relatively high number
of connections. Consequently, this enables fast data dissemination and more



frequent replica updates to peers that host replicated data. On the other hand,
peers far from the core are not suitable for maintaining replicated data, due to
poor reliability, resource constraints or the owner’s unwillingness to contribute
resources to the system. It is not desirable to place such peers in the core of the
network since they would decrease system’s performance.

In order to create the desired network topology and enable the emergence of a
stable core in the network, we propose the following neighbour selection rule: two
peers may become neighbours if they have similar reliability status. Additionally,
reliable peers have more neighbours, since they have more resources to maintain
available network connections.

The topology is intended to be used in a cooperative environment, such as the
DBE Knowledge Base. The algorithm does not enforce fairness between peers,
i.e., some peers may mainly consume resources while other peers may mainly
provide them. However, peers are incentivised to contribute resources through
improved performance with increased proximity to the core and to data replicas.

4 Replication Strategy

In this section, we demonstrate how the proposed network topology can be ex-
ploited by a master-slave database replication strategy. We present an approach,
where the replica placement is based on peer reliability, available resources and
demand. Due to the information contained in the network structure, the selection
of reliable peers suitable for replica placement does not require communicating
with all peers in the system.

In our approach, we assume each peer can potentially create an independent
database, and replicate it over the P2P network in order to improve its availabil-
ity and persistence guarantees. A peer that creates the first copy of a database,
which we call the master replica, becomes the database owner. Subsequent repli-
cas of the database hosted by other peers are called slave replicas. The users
issue queries to the database that can be resolved by any replica. The owner,
and potentially other authorised users, can also update or delete a database.
There is only one master replica of a database and it’s responsible for handling
and synchronising updates. Slave replicas are created automatically, on demand.

We restrict the set of peers that are allowed to create slave replicas to those
with reliability above replica-suitable threshold. Firstly, a peer accepting a slave
replica may require from the peer initiating the placement a certain level of
reliability, above some threshold, which we call the replica creation threshold.
Secondly, the master replica may require that the slave replicas are created only
by peers located in the replica-suitable core of the network, i.e., peers above the
replica acceptance threshold. It is important to note, that the system does not
require any form of consensus between peers on the threshold values, since the
thresholds can be determined by each peer individually.

There are two general approaches for the replica placement. In the server-
initiated strategy, a peer that already hosts a replica, in particular the master,
requests a new replica placement on one of its neighbours, for example when the
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Fig. 2. Slave replica searching and master election algorithms exploiting the implicit
information about peer reliability contained in the network topology.

number of user queries exceeds some critical level and a new replica is needed
to handle the load. It’s crucial in this approach that the peer initiating the
replication must be able to find other peers suitable for hosting new replicas.
This should be satisfied in the topology proposed in this paper, since peers
storing replicas are located in the highly connected core, and share a similar,
high reliability status (see Figure 2(b)).

In the client-initiated approach, the replication is initiated by a peer that
doesn’t maintain a replica yet. Such a peer, in most circumstances, forwards
user queries to its neighbours. However, if a certain criteria is met, and the peer
possesses enough resources, it may decide to store a replica. The simplest cri-
teria for client-initiated replica placement is described by a threshold for the
frequency of queries for a database, which is easy to implement since it requires
that peers only maintain the statistics of queries. New replicas may be created
with a probability proportional to the query frequencies, which has the advan-
tage that popular data is stored by many peers and can be accessed easily.
Another technique, called square-root replication, calculates replica placement
probabilities from query search areas, the greater the search area the higher the
probability, so that no replicas of the same data are created next to each other.
This approach was shown to perform better then proportional or uniform repli-
cation, and has the advantage over proportional replication that rare data is less
likely to be removed from the system [7].

Replicas are also removed on demand, adaptively. When a peer decides that
the cost of a replica maintenance is higher then the profit from handling queries,
for example the frequency of queries drops below some threshold value, the
replica can be deleted. Alternatively, replicas might be selected for removal with
the LRU strategy (Least Recently Used) as in FreeNet [2].



4.1 Replica Synchronisation

Database replicas must be synchronised between the master and the slaves after
update operations. We add the constraint that updates are only performed on
the master, while queries can be handled by any slave. The system provides
eventual consistency of the replicas [14].

An update operation, either a modification, an addition or a removal, must be
performed on the master replica of a database. We can make this requirement,
without reducing significantly the scalability of the system, since we assume
that the database is designed for systems that are more frequently queried than
updated, as in the the DBE Knowledge Base. If an update is delivered to an
ordinary replica, the replica forwards it to the master, and the master propagates
the update to all replicas. This guarantees that concurrent updates from different
peers are serialised and sent in the same order to all copies of the database, hence,
there are no write-write conflicts.

The updates can be propagated either instantaneously, or in a lazy fashion,
for example by periodic gossiping, with the latter technique being used to reduce
bandwidth consumption and improve scalability at the cost of reduced data
consistency. Lazy replica synchronisation can be initiated either by the master
or by the slave, for instance after a peer crash or a restart. The design can be also
improved by allowing the replicas to construct a hierarchy, a spanning tree for
spreading the updates. In this case, a slave replica creates new replicas without
notifying the master and takes the responsibility of updating them.

4.2 Master Election

In our P2P system, peers have relative positions in the topology, defined by their
reliability metric. This allows us to develop an efficient election algorithm that
doesn’t require flooding, as peers can use a heuristic that excludes peers with
lower reliability, i.e., topologically further from the core, when sending election
messages (see Figure 2(a)). This heuristic, however, does not guarantee that
the most reliable peer will become master unless all peers in the core are fully
connected. Therefore, we modify our heuristic to provide a directed, gossiping
election model. The election initiating peer also sends the election message to
a certain number of neighbouring peers with lower reliability, but still inside
the core, and they can restrict further propagation of the message to only peers
with higher stability. Given high enough connectivity between nodes in the core,
within a certain probability the node with the highest reliability should win the
election.

4.3 Replica Discovery

A searching mechanism is needed for peers to discover nearby replicas of a
database they request access to. Traditional unstructured systems, such as Gnutella,
have used flooding algorithms for finding resources. This approach works well
for highly replicated data, however, it doesn’t scale in principle. A number of



Fig. 3. Visualisation of a 200-node network in our RePast simulation using the
Fruchmen-Reingold algorithm. Reliable peers are marked with dark colors, stable core
of the network is visible in the center.

techniques have been proposed to improve search in unstructured peer-to-peer
networks, such as random walk, iterative deepening or routing indices [15]. For
the core-based architecture presented in this paper we are designing a proba-
bilistic adaptive algorithm where routing is based on two main factors: heuristic
values learned by the system (e.g., as in CRL/Sample [3] or FreeNet [2]), and
using the neighbour reliability heuristic to effectively route queries towards the
core of the network.

5 Evaluation

We evaluated our approach by modelling a P2P network in RePast, a multi-
agent simulation toolkit for large-scale systems. Although the simulation is im-
plemented in Java, we managed to create a network consisting of over 100,000
peers, which we believe is sufficiently large to model realistic large-scale appli-
cations. The experiments ran on a Pentium 4 machine with a 3GHz processor
and 3GB main memory.

The simulation is based on a discrete time model and all events are executed
in discrete time steps. The actions performed by peers are synchronous, however,
the algorithm does not rely on the peer synchrony and hence the results obtained
in the experiments can be generalised for asynchronous environments as well.
Following the assumptions of the decentralisation and the lack of a global view
of the system, each peer maintains a limited number of neighbours and performs
actions using local knowledge only. We assume also a scale-free distribution of
resources with the maximum number of peer connections following the power-
law (Pareto) distribution, starting from 10 connections and reaching about 50



Algorithm 1: Main loop of the simulation

for N steps of the simulation do
increase the number of peers by 1%;
probabilistically remove peers according to their reliability;
forall peers p in the network do
| pstep();
end
end

Fig. 4. Main loop of the simulation.

neighbours for the most powerful peers. Similarly, the reliability distribution
follows the power-law. We model the network growth by adding new peers at
each step of the simulation, where we start with a network containing only one
peer, and at each time step the size is increased by 1 percent. Additionally, at
each step a number of peers are removed, which models random failures or peer
departures, with the probability of a peer departure being inversely proportional
to its reliability. Bootstrap is implemented with a centralised name repository
containing the 50 most recent peer names, where peers are added and removed
in FIFO order. Figure 4 shows the pseudo-code of the simulation.

Our initial experiments showed that a greedy selection policy, where nodes
always select neighbours with the most similar characteristics to their own, leads
to high network clustering and in consequence long distances between nodes. In
some cases the clusters got disconnected and the network became partitioned.
Another problem was that the most reliable peers did not always connect to a
single core, sometimes there were multiple clusters of reliable peers separated
from each other by a number of less reliable peers.

We improved the algorithm by allowing the peers to connect also to other
non-similar peers, for example with the probability exponentially decreasing with
the difference between nodes. It turned out, however, that a randomised strategy

Peer A Peer B

\ Exchange
Random
Random neighbours —> Random neighbours

Similar neighbours Similar neighbours

Exchange
Similar

Fig. 5. Neighbourhood set exchange from Peer A to Peer B.



Algorithm 2: Agent step
if number of neighbours = MAX NEIGHBOURS then
| disconnect random neighbour;
end

if number of similar neighbours < MAX SIMILAR then
choose randomly neighbour p from all known neighbours;
get all neighbours ni..ny from p;

choose peer n with the most similar reliability from ni..ny;
connect to n;

end

if number of random neighbours < MAX_ RANDOM then
choose randomly neighbour p from all known neighbours;
get all random neighbours n;..ny of p;

choose randomly peer n from n;..ng;

connect to n;

end

Fig. 6. Algorithm performed by an agent at one step of the simulation.

where a percentage of neighbours was always selected at random gave the best
results (see Figure 5). Random connections serve several purposes. First of all,
they allow the peers to discover potential neighbours with similar reliability, even
in remote regions of the network, which in turn enabled the formation of a single
cluster containing the most reliable peers. Figure 3 presents a visualisation of
a sample network consisting of 200 peers, where we can see that the topology
evolved to the desired form where the most reliable peers are clustered in the
center of the network and constitute a stable core. Random connections thus
play a similar role to the exploration in traditional multi-agent systems. Second,
random links prevented the graph from being disconnected. As shown in [4], even
a small number of random connections, for example 20 per peer, is sufficient to
make the probability of network partitioning negligibly small in practice. Finally,
our randomised algorithm has the advantage that it is quite simple and it does
not require tuning parameters specific to the deployment environment, such as
the network size or average peer connectivity.

Figure 6 shows the improved, randomised algorithm performed by the peers
at each step of the simulation. A peer maintains two independent sets of neigh-
bours, randomly-selected connections, and greedily-selected connections to peers
with similar reliability status (see Figure 5). New connections are discovered by
gossiping, i.e., by randomly contacting already existing neighbours and exchang-
ing with them the lists of connections. It is important to note, that the connec-
tions inserted to the random sets are always selected from other peers’ random
sets, which guarantees that the sets remain random.

Figure 7 shows the experimental results obtained from the simulation of our
neighbour selection algorithm. We can see that the average path length between
peers varies with peer reliability, the average distance between the most reliable
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Fig. 7. Results of the neighbourhood selection algorithm.

peers is lower than between less reliable peers. This confirms our observation
that the most reliable peers are highly connected with each other and form a
reliable core of the network.

Searching for reliable peers maintaining replicas, or suitable for maintaining
replicas, is less expensive in terms of number of messages generated, since it
doesn’t require communicating with all peers in the network. Due to the infor-
mation contained in the network structure, the selection of reliable peers suitable
for replica placement can be optimised using a heuristic search and it does not
require contacting all peers in the system.

6 Related Work

Most existing P2P systems that exploit the heterogeneity of the environment
are based on structured P2P overlays. In OceanStore [5], it’s proposed to elect a
primary tier “consisting of a small number of replicas located in high-bandwidth,
high connectivity regions of the network” for the purpose of handling updates,
however, no specific algorithm for the election of such a tier is presented. Mizrak
et. al. [8] proposes a super-peer based approach for the exploitation of the re-
source heterogeneity, however, unlike our architecture, it relies on a DHT struc-
ture.

In the field of unstructured P2P networks, there has been a lot of work de-
voted to searching (e.g. [15]) and to replication strategies [7], but there has been



limited research on network topology generation and peer neighbourhood selec-
tion algorithms. Yang and Molina [16] investigate general principles of superpeer-
based networks and give practical guidelines for the design of such networks,
however, they don’t give any specific algorithms for super-peer election or net-
work structure maintenance. The closest to our approach is the work of Jelasity,
in particular his research on decentralised topology management (T-Man [4]),
however, he doesn’t address the specific problem of replica placement in an open
P2P system.

7 Conclusions and Future Work

This paper described the general requirements for data replication in peer-to-
peer environments. We proposed a network topology where the most reliable
peers are highly connected with each other and form a logical core suitable for
maintaining data replicas. A self-organising neighbourhood selection algorithm
was presented that generates the proposed topology by clustering peers with
similar uptime and performance characteristics. The algorithm was evaluated
through simulation, and measurement results confirmed that the approach is
scalable and robust.

The main advantage of the topology described in this paper is that the net-
work structure contains information about the peer reliability, which allows the
peers to discover other reliable peers without flooding the entire network with
search messages. The topology allows the search space to be limited to a small
subset of all peers in the system. This property helps us to solve the problem of
dynamic slave replica placement, master replica election, and replica discovery
in an open, decentralised environment. The topology should also reduce the cost
for replica maintenance, since peers storing data replicas are located close to
each other and are connected by stable, high-capacity routes.

Our project is still at an initial stage and requires a lot of further research.
We are planning to develop a heuristic routing mechanism, based on the Col-
laborative Reinforcement Learning (CRL) [3], which will allow peers to discover
database replicas in their proximity. We are also going to evaluate the proposed
replica placement strategies and the master election algorithm. We are building
a prototype implementation based on the Berkeley DB platform.
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