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Abstract

Using Fluid Models for AQM Evaluation

Boris Taillard
University of Dublin, Trinity College, 2005

Supervisor: Meriel Huggard

In spite of the congestion management mechanisms included in the TCP/IP proto-
col, the Internet still su�ers from a lack of optimization in the way network overload
is managed. One of the reasons for this is that the original congestion avoidance tech-
niques speci�ed by TCP/IP are implemented at the edges of the network. This means
that the critical mission of reacting to link saturation relies on hosts that don't have a
global view of the network. Moreover they do not have any obligation to respect a set
of common rules. One possible solution to this problem is to introduce congestion man-
agement inside the core routers of the network. One way of doing this, Active Queue
Management, consists of designing intelligent algorithms that start dropping packets
before the routers' queues get full, so that they are always ready to accommodate
bursts of tra�c.
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The rapid growth of the Internet has presented many challenges for those wishing
to design and validate new protocols. Almost all such advances are evaluated through
simulation (e.g. using the ns packet-level simulator). Because the internet is growing
very quickly, researchers had to invent new methods to simulate its activity. Indeed,
it has been quite a few years since the processing capacity of regular packet-level
network simulators was su�cient to simulate the behavior of a network like the Internet.
One alternative is to simulate the network tra�c at a 
ow-level. Such a higher-level
simulator would be a useful tool for network protocol design, because this kind of
simulator is able to scale a lot more easily than a packet-level one.

This project looks at a 
uid-based model for 
ow-level network simulation, which
can be easily extended to support a variety of Active Queue Management schemes.
The work consisted of validating, optimizing and extending an implementation of this
model, while also making sure that it is suitable for evaluating Active Queue Manage-
ment techniques. Ultimately, the simulator was successfully used to evaluate a number
of these schemes.
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Chapter 1

Introduction

1.1 Context
In spite of the congestion management mechanisms included in the TCP/IP protocol,
the Internet still su�ers from a lack of optimization in the way network overload is
managed. One of the reasons for this is that the original congestion avoidance tech-
niques speci�ed by TCP/IP are implemented at the edges of the network. This means
that the critical mission of reacting to link saturation relies on hosts that don't have a
global view of the network. Moreover they do not have any obligation to respect a set
of common rules. One possible solution to this problem is to introduce congestion man-
agement inside the core routers of the network. One way of doing this, Active Queue
Management, consists of designing intelligent algorithms that start dropping packets
before the routers' queues get full, so that they are always ready to accommodate
bursts of tra�c.

The rapid growth of the Internet has presented many challenges for those wishing
to design and validate new protocols. Almost all such advances are evaluated through
simulation (e.g. using the ns packet-level simulator). Because the internet is growing
very quickly, researchers had to invent new methods to simulate its activity. Indeed,
it has been quite a few years since the processing capacity of regular packet-level
network simulators was su�cient to simulate the behavior of a network like the Internet.
One alternative is to simulate the network tra�c at a 
ow-level. Such a higher-level
simulator would be a useful tool for network protocol design, because this kind of
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simulator is able to scale a lot more easily than a packet-level one.

1.2 Project goals and outcomes
This thesis presents the outcomes of a �ve-month project whose goal was to enhance
a large-scale network simulator so that it can be used to design and optimize Internet
protocols. The simulator uses a 
uid-based mathematical model presented in [14] that
has the property of scaling very well.

The �rst objective was to become familiar with the above model and an existing
implementation of it. Then, the work consisted of validating, optimizing and extending
the code in such way that it would be perfectly suitable for simulating Internet-like
networks. The validation had to be carried out by di�erent means in order to guarantee
the correctness of the results. The optimization e�orts were concentrated on �nding
ways to make the application more scalable towards the size of the networks to be
simulated. The extensions that were added address di�erent concerns that made the
simulator less suitable for large-scale simulation or protocol evaluation. The ultimate
goal constisted of demonstrating that the result of this work can be used for protocol
evaluation by using it to compare Active Queue Management schemes.

1.3 Dissertation outline
The �rst part of this dissertation presents the di�erent concepts and principles that
are needed to understand this project, including introductions to network simulation,
Active Queue Management, and the model mentioned above. It also gives a �rst sug-
gestion for the implementation of the simulator. Then, the optimization and validation
operations that were carried out on the simulator are presented, before introducing the
di�erent extensions that were added to the application. These extensions are the im-
provement of the control that the user has over the 
ows that go through the network,
a model-reduction that allows faster simulations, and the addition of support for more
AQM schemes. The �nal chapter will present a way to use the simulator to evaluate
the behaviour of previously added Active Queue Management schemes.
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Chapter 2

Background

2.1 Introduction
In this chapter we introduce the necessary background information needed to under-
stand the rest of this document. Special attention should be given to the last section
of this chapter as it explains the model on which the simulator at the core of this work
is based. The theoretical foundations [14] of this model are outlined.

The primary goal of this work is to implement a TCP/IP network simulator. Only
those elements of relevance for simulation are explained; see [9] for a complete overview
of TCP/IP.

A secondary goal of this work is to evaluate a number of active queue management
mechanisms. A section is dedicated to the presentation of the general concept of AQM
as well as the �rst AQM scheme to be implemented in the simulator: RED.

The basic theory and concepts used in network simulation are then introduced. We
also describe ns, a network simulator that is widely used and was used as a validation
tool for this work.

Finally, the last section presents the model used for the simulator and the chosen
implemention methodology.
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2.2 TCP/IP and network simulation
This section provides an introduction to the relevant terminology associated with
TCP/IP networks. It is assumed that the reader is familiar with the concepts of
gateways (also called nodes), addressing, routing, packets, sequencing and windowing
as described in the original IP paper [1], as well as with the notion of congestion
avoidance [2].

As stated in [9], the following entities have to be modeled in order to design a
network simulator: links, nodes, and load. Those entities are illustrated in �gure 2.1
and can be described as follows:

� Physical links may be simulated accurately. Each link has a given capacity and
can transmit data from one node to another at a maximum rate given by this
capacity.

� Nodes usually are either routers or hosts (in this document, the hosts, i.e. sources
of tra�c, are considered to be \part of" the router that connects them to the
network). In the simulations studied in the following sections, as in a real-world
TCP/IP network, a queue is associated with each node, or with each interface
that connects the node to a link. These queues, which each have a maximum
capacity, are used by router to store packets that can not be directly transmitted
because of congestion on the outgoing link.

� Tra�c load is the data that is sent through the network. Depending on the
type of simulation used it can be either viewed as a set of packets present on
the network or as a set of 
ows. To each 
ow is associated a window size that
in
uences its current transmission rate (or more precisely the number of packets
that can be sent before getting an acknowledgement).

2.3 Active Queue Management
2.3.1 Principles
Despite the improvements such as congestion avoidance mechanisms presented by Ja-
cobson in the late 80s [2], Internet tra�c is still subject to congestion. Indeed, this
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Figure 2.1: The di�erent elements to take in account in network simulation
congestion avoidance mechanism only applies to the edges of the network, limiting the
amount of control that can be performed. As a consequence, there was perceived a
need to introduce congestion management within the network routers, in particular to
manage the way in which network tra�c is queued. The obvious - and most simple -
technique is called drop tail. It uses a de�ned maximum queue length and accepts new
packets into the queue as long as this queue is not full, and drops incoming packets
when the queue is completely full. When packets from the queue have been trans-
mitted, new incoming packets can be accepted again. drop tail has many drawbacks,
among which are the fact that a single 
ow can monopolize queue space and prevent
others from using the queue, or the fact that because the queues are always full in case
of congestion no bursty tra�c can be transmitted (contradicting the queue's primary
goal of absorbing tra�c bursts). Alternatives to drop tail exist, e.g drop the �rst packet
of the queue when it is full (drop front when full), which solves the �rst problem, but
not the second one.

The only solution to the full queue problem is to start dropping packets before the
queue is full. This is called active queue management (AQM) and is the subjet of
an RFC in the Internet community [5]. The original AQM scheme [4], RED, will be
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described in the next section. According to the RFC the common characteristics of of
all AQM techniques should be to:

� Reduce the number of packets dropped in routers. Moreover, by keeping queue-
sizes small and limiting the storage of packets that are part of \steady-state"
tra�c, AQM makes the absorption of bursty tra�c easier.

� Provide a low delay, interactive service. Because the queue-length is kept small,
the latency tends to be better, which is an advantage for interactive applications.

� Avoid lock-out behaviour. Lock-out occurs when a single 
ow or connection
monopolizes the queue, which is clearly undesirable because it makes the network
less fair. This problem is naturally solved by active queue management as there
will always be room in the queue for a new incoming packet.

2.3.2 An AQM scheme: RED
Random Early Detection (RED) was �rst described in [4] as a way to \keep the average
queue size low while allowing occasional bursts of packets in the queue". In order
to do so, some packets are dropped probabilistically before the queue becomes full.
The probability of a packet getting dropped depends on the average queue length in
the \recent past". The average queue size is computed using a simple exponentially
weighted average. The decision to drop a packet or not is the following way:

� If the queue size is smaller than the tmin parameter, no packets are dropped.
� If the queue size is between the tmin and tmax parameters, the probability of a
packet being dropped is chosen. This is between 0 and the pmax parameter and
is proportional to the size of the queue.

� If the queue size exceeds tmax then all incoming packets are dropped.
The behavior of RED can be summarised by the following equations, which de�nes

the probability p(x) of a packet getting dropped given an average queue size x (�gure
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2.2 gives a graphical represention of this function):

p(x) =
8>>><
>>>:

0 if 0 � x < tmin
x�tmintmax�tminpmax if tmin � x � tmax

1 if tmax < x
(2.1)

In [13], the average queue size x(t) is described by the following equation, which
uses an Exponential Weighted Moving Average (EWMA):

dx
dt = loge(1� �)

� x(t)� loge(1� �)
� q(t) (2.2)

where � and � are the sampling interval and the weight used for EWMA, and q(t) is
the queue length at time t.

Figure 2.2: RED drop function [13]
The use of randomness in the choice of which packets to drop protects the router

from the lock-out problem. The control of the queue size helps in the accommodation
of tra�c bursts. Indeed, if congestion occurs, the average queue length in the recent
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past will be long and consequently a lot of packets will be dropped to keep some room
in the queue. However, in the case of a bursty tra�c, more packets will be accepted
in the queue for the same incoming rate, as the queue length in the recent past will
have been signi�cantly smaller. In summary the algorithm will tolerate an almost full
queue only if this is done to handle bursts.

2.4 Network simulation
2.4.1 Simulation techniques and application to networking
According to [8], simulating consists of imitating a real-world facility or process, usu-
ally using a computer. The process or facility to be simulated is called a system. In
order to study a system, certain assumptions, usually mathematical or logical relation-
ships, are made about the way it works. The whole set of assumptions constitutes a
model that can be used to specify the behaviour of the system. If the model is simple
enough and is known to capture all the system variables perfectly, it is then possible to
obtain exact results by �nding an analytic solution to this model. However, for most
real-world cases, it is either impossible to take every possible parameter into account,
or a complete model is too complicated to allow the exact computation of the result.
In contrast to a complete analytic solution, simulation provides a numerical estimate
of the desired characteristics of the model through simpli�cations that reduce the com-
putational power needed to solve the model. However these simpli�cations reduce the
accuracy of the results obtained. It is therefore important to pick the model simpli�ca-
tions - or reductions - carefully so that the principal factors that in
uence the system
are simulated (for example, when simulating a 
ow of cars on several roads, the way
a car works doesn't have to be simulated if the only �eld of interest is the 
ow itself,
but it decreases precision as mechanical failure will no longer be taken in account by
the model, and the failure of an individual car could in
uence the whole 
ow).

A simulation model can either be deterministic or stochastic. In a deterministic
model the output is totally \determined" by the input, whereas a stochastic model
introduces some randomness. A system of di�erential equations can be used to describe
a complicated system in a stochastic way. In the case of network simulation, the
behaviour of TCP 
ows can, for example, be described stochastically. This will be
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discussed in more detail later.
A discrete-event simulation is a simulation in which state variables change instantly

every given amount of time. Each point in time represents a step of the simulation; all
the variables are updated according to the model and then the next step is processed,
until the complete simulation is �nished. This method of simulation works well for
network simulation and is used by almost all the simulation techniques presented in
this report.

The general concepts about simulation apply to network simulation, but some, more
speci�c, problems have to be taken into account. An important issue is to decide what
- or more precisely at what scale - to simulate. TCP tra�c on a network can be viewed
as packets that are transmitted on communication links and go through routers. And
obvious way to simulate the tra�c is then to implement a packet level simulator. This
models all the packets travelling on the network and updates their states at each step
of the simulation (see �gure 2.3). This technique perfectly represents what is actually
going on in the network, but doesn't scale very well. Indeed, with a large scale network,
the simulator has to handle a very large number of packets, and carry out operations,
such as routing and queue management, that would, in the real world, be distributed
among all the routers present in the network .

An more scalable alternative to packet-level simulation is to view the tra�c as a
set of TCP 
ows. A 
ow is a group of packets that have the same characteristics:
they have the same source, the same destination, and the same window size. Each

ow can either be valid for the whole simulation time or start and end at given times.
With this approach, it is not necessary to simulate all the packets but only to �nd an
appropriate model that matches the behaviour of a 
ow (see �gure 2.4). This approach
scales well because the processor time needed to simulate a 
ow is usually a lot less
than the processor time needed to simulate all the packets that are part of the 
ow.
One particular advantage is illustrated in the following way: if the transfer rate for a
certain 
ow is multiplied by 10 then, with a packet-level simulator, the processing time
is also multiplied by 10 as there are 10 times more packets to simulate; whereas the
simulation speed is not a�ected for a 
ow-level simulator, as there is still only one 
ow
to simulate (the only change is that the values are going to be 10 times bigger in the
equations that model the 
ow).
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Figure 2.3: Packet-level network simulation

10



Figure 2.4: Flow-level network simulation
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2.4.2 Packet-level simulation and the ns network simulator
ns (network simulator) [11] is very well known in the network simulation community.
It o�ers a lot of possibilities in term of types of networks that can it can simulate, and
it has been around long enough to be thoroughly tested and validated. It began as a
variant of the REAL network simulator [10] in 1989 and has evolved substantially ever
since.

ns provides a framework that allows researchers to extend it easily. The simula-
tor works at a packet level, which requires quite a lot of processing power, but as a
counterpart allows it to simulate network tra�c accurately, makes it easier to simulate
the interactions of multiple protocols, and allows for the possibility of interacting with
real-world networks. However, the need for a fast simulation speed is taken into ac-
count by the presence of di�erent mechanisms which make the simulation faster but at
the cost of accuracy (for example replacing routing messages by centralized routing).
All these mechanisms may be enabled or not depending on the goals of the particular
simulation, the expected level of precision and the desired execution speed.

Even though it is not directly linked to the 
uid-model that is studied in this
dissertation, ns has an important role to play in the work described herein because it
is a very usefull tool for validation purposes. Indeed, it can be used to:

� Evaluate the simulator to be implemented in terms of correctness. Because ns
is probably the most widely used and validated tool in the network simulation
research �eld, it is totally adapted for validation. By simulating the same scenar-
ios with ns and the implementation of the model studied in this dissertation, it
should be easy enough to �nd out if the results are correct and to establish how
accurate the model is.

� Evaluate the simulator to be implemented in terms of performance. Normally,
a 
ow-level simulator should be at least as fast as ns to compute the result for
the same scenario. In theory, it should actually be a lot faster, but the multiple
optimizations that have been made in ns over the last few years [11] are expected
to easily compensate the speed gain compared to a code that was written by one
individual in a few weeks. However, the advantage should normally rest with the

ow-level simulator when the complexity of the network to be simulated increases,
because of the economies of scale to involved. In particular, the execution time
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should be longer in ns when the link capacities increase as the number of packets
increases; whereas it should remain constant in the 
ow-level simulation as the
number of 
ows is constant.

Finally, because ns was intensively used during the conception of Random early
detection (RED), it is certainly the best tool available to validate a RED implementa-
tion, such as the one in the 
ow-level simulator described in this work. Indeed, early
work on RED began on an ancestor of ns, and is is now present in the simulator as a
standard component.

2.5 Flow-based simulation of TCP/IP
2.5.1 A 
uid-based model for network simulation
Because the Internet both growing in size and evolving very rapidly, researchers have
to invent new methods to simulate its activity. It has been quite a few years since
the processing capacity of regular packet-level network simulators was su�cient to
accurately simulate the behavior of a network like the Internet. The implementation
of a higher-level simulator is a good alternative, as such a simulator should be able to
perform much faster simulations than a packet-level one.
A basic model for 
ow-level simulation
One solution, proposed in [13], models TCP data 
ows as a 
uid. The model uses
Poisson Driven Stochastic Di�erential Equations to represent the tra�c, and includes
di�erential equations to model an AQM policy [5] (the AQM policy that is used is
RED [4]).

As stated in [14], the following equation assumes that the network is represented
as a directed graph G = (V;E), with V a set of routers and E a set of links. To each
link l 2 E is associated a capacity Cl and an AQM policy de�ned by its discarding
probability function pl(t). N classes of 
ow are transported on the network, and each
class i contains ni 
ows. All the 
ows that belongs to a given class share the same
characteristics (same route, same propagation delay and same window size).

13



Note that in the context of the 
ow-level simulator the words 
ow and class of

ow often refer to the same notion. Indeed, a class of 
ow is just a collection of 
ows
that share the exact same characteristics, and thus can be processed as one unique 
ow
whose transmission rate is the sum of all the 
ows that are part of the class.

For a given router, Misra et al. [13] describes the characteristics of TCP 
ows this
way (for each variable X, the notation Xi refers to the value related to a given 
ow i):

� The round trip time for a 
ow of class i is denoted Ri(t) and de�ned by:
Ri(t) = ai + q(t)

C (2.3)
where ai is the (�xed) propagation delay, q(t) is the queue length, and C the
transmission capacity (and thus q(t)C is the queueing delay).

� The window size for a 
ow i at the time t is calledWi(t) and satis�es the followingdi�erential equation: dWi(t)
dt = 1

Ri(t) �
Wi(t)2 �i(t) (2.4)

where �i(t) is the loss rate experienced by the 
ows of class i.
� ql(t) represents the queue length for each queue l, Nl being the set of 
ows that
go through the queue, and Cl the capacity of the associated link:

dql(t)
dt = �1(ql(t) > 0)Cl + Xi2Nl

niAi(t) (2.5)
where 1(x) takes the value 1 if x is true, and 0 otherwise. Ai(t) is the expectedsending rate of the 
ow and is linked to the window size by the equation Ai(t) =Wi(t)Ri(t) .

A topology-aware re�nement of the model
In [13], the above model is extended to the whole network simply by introducing a
binary matrix A, where the rows represent the 
ows and the columns represent the
routers. If the 
ow i goes though the router j, Ai;j = 1, otherwise Ai;j = 0. This
representation makes it easy to generalize the equations to the whole network, but has
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the disadvantage of ignoring the topology (the order in which the routers are crossed
is not taken in account).

[14] overcomes this problem by re�ning the model to include information about the
exact path followed by the di�erent 
ows. This is done by introducing the ordered sets
Fi = (ki;1; :::; ki;m0i) and Ii = (ji;n0+1; :::; ji;mi), that are respectively the queues (and
therefore links) traversed by the data (initial path) and the acks (return path) for a
class i. The whole path Ei for the 
ow is also de�ned as Ei = Fi [Oi.To characterize the variation of the 
ows as they traverse the links, [14] also intro-
duces the following two quantities:

� Ali(t) is the arrival rate at the queue l 2 Fi for the 
ows of class i
� Dli(t) is the departure rate from the queue l 2 Fi for the 
ows of class i
Note that in both cases only the queues included in Fi are taken in account. The

reason for this is that the tra�c generated by the acks is ignored as it is considered to
be negligible. As a consequence, Oi is not used for the computation of the departure
and arrival rates, but is present in the model anyway to evaluate the round trip time
for each class of 
ow.

The two quantities that were introduced above can be evaluated as follows:
� The departure rate is the same as the arrival rate when the queue is empty.
When the queue size ql(t) is not zero, the capacity is divided among the 
ows
proportional to their arrival rates at the link. Let dl denote the delay experiencedby tra�c starting from l at time t, then dl = ql(t�dl)Cl and Dli can be expressed as:

Dli(t) =
8><
>:
Ali(t) if ql(t) = 0Ali(t�dl)P

j2Nl Alj(t�dl)Cl if ql(t) > 0 (2.6)

� At the �rst queue it goes through, the arrival rate for the class i simply is the
original sending rate for that class. For the other queues, it is the departure rate
from the previous one after a delay that corresponds to the propagation time
along the link. This behavior is summarised by the following equation:

Ali(t) =
8<
:
Ai(t) if l = ki;1
Dbi(l)i (t� abi(l)) otherwise (2.7)
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The equations governing the system then have to be updated to take the new
information in account:

� The window size is described by:
dWi(t)
dt = 1(Wi(t) < Mi)

Ri(t) � Wi(t)2 �i(t) (2.8)
where Mi is the maximal window size. The term 1(Wi(t) < Mi) prevents the
window size from increasing when it is equal to the maximum window size for
the 
ow.

� The equation representing the queue length is updated so that, for each class, it
takes into account the arrival rate Ali at the queue, and not the global, expected
sending rate for the class as in the previous version of the model:

dql(t)
dt = �1(ql(t) > 0)Cl + Xi2Nl

niAli(t) (2.9)
Introducing AQM into the model
In addition to studying the 
uid-based simulation of TCP/IP networks, one of the main
goals of this thesis is to implement active queue management (AQM) techniques in the
simulator. The �rst AQM scheme to be implemented is random early detection (RED),
which is described by equation 2.1 and illustrated by �gure 2.2. Moreover, the average
queue length x(t) needed to evaluate the RED function is described by equation 2.2.
The two previous equations completely describe RED's behaviour and so it is easily
implemented.

Other active queue management controllers, like PI [3] are to be implemented in
the simulator, but will be considered as extensions and described later.
Solving the model
The simulation can be processed by putting together all the equations given in this
section. According to the classi�cation of simulators described in [8], the one to be
implemented will be based on a stochastic 
uid model and will use discrete-event
(equivalent to time-stepped) simulation.
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The di�erential equations can be solved using the Runge-Kutta algorithm [17], as
described in [14]. The time has to be discretized (time-stepped simulation), and at each
step the whole set of variables has to be updated according to the equations and using
the solver. The order of the steps and the operations to be performed are described in
detail in [14] and summarised by �gure 2.5.
2.5.2 An implementation of the model
An implemention of the model as described above was carried out by D. Bruno, intern
in the computer science department of Trinity College Dublin in 2004. The details of
this implementation are given in [18]. It follows the steps presented in �gure 2.5.

2.6 Conclusion
In this chapter, we presented the relevant TCP/IP and network simulation terminol-
ogy to understand the rest of the document, along with the concept of active queue
management and a 
uid-based model that enables us to perform high-speed simulation.
The next chapter will give more details about the implementation of the model and
the �rst tasks that were accomplished on this implementation during this work.
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Figure 2.5: Flowchart of the operations to be performed during the simulation
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Chapter 3

Optimization and validation of the
simulator

3.1 The simulator
The work described in this dissertation builds on a 
ow-level network simulator imple-
mented at Trinity College Dublin in 2004. This simulator [18] is based on the model
presented in the �rst part of the dissertation, but was coded over a short period of time,
and consequently was not fully optimized and did not take into account all the design
improvement suggested in [14]. Moreover, even though it was totally functional, the
application had not been completely validated. Indeed, apart from the Runge-Kutta
solver included to solve the di�erential equations on which the model is based, none
of the components functioned in the manner speci�ed. The �rst part of this work
was to �nd ways in which the software could be optimized to improve the execution
speed. It was then necessary to validate the correctness of the results given by the
implementation of the model.

The simulator was written in Java, and follows most of the implementation sugges-
tions given in [14], apart for a few modi�cations that made the coding easier. Figure 3.1
shows a simpli�ed version of the class diagram, that only represents the main classes
(without their properties or methods) and the links between them, as well as the main
class and its properties. Note that this diagram includes a few of the changes that were
made on the original code to make it more object-oriented, as disscussed in the next
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section. In particular, the Node class was not present in the original version and the re-
lationships between Link and SingleLinkFlow were represented by references numbers
corresponding to one given node and stored as an integer in the di�erent classes.

3.2 Optimization of the simulator
3.2.1 What to optimize?
Making the code clearer to read and the simulator easier to use
Even though it can not truly be considered as optimization, the �rst step taken before
working on performance issues was to make the code clearer to read, and to improve the
input interface of the simulator. Indeed, the original code followed the suggestions of
[14] very closely which sometimes lead to situations where the code didn't really respect
the object-oriented programming paradigm. Moreover, making some parts of the code
easier to read was useful in that it made it easier to identify possible optimisations.

Half of the code in the main class was dedicated to reading the network topology
and the simulation parameters from an ASCII �le. To make the code easier to read
and the simulator easier to use, it was necessary to:

1. Change the input �le format. Even though the original version had the advantage
of being able to represent a rather complicated network in a very compact way,
it was not intuitively understandable in the sense that it was just rows and
columns of numbers (see �gure 3.2) and therefore rather obscure. This increased
the number of errors when editing or writing a con�guration �le.

2. Move the con�guration reading code from the main class, and simplify it. The
purpose of this code is not obvious to someone reading it for the �rst time and
it was not necessary to have it in the main class.

To address the two above issues, the following changes were made:
1. A new input format was de�ned, based on XML. This format is a lot easier to

read (see �gure 3.3), and as it is XML based, the code to parse it is easier to
understand and takes advantage of existing libraries.
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Figure 3.1: Class diagram for the network simulator
NumberOfNodes: 4

0 1 20 0.01 RED 20 50 0.02 0.005 0.5 100 RED 20 50 0.02 0.005 0.5 100

1 2 20 0.01 RED 20 50 0.02 0.005 0.5 100 RED 20 50 0.02 0.005 0.5 100

2 3 20 0.01 RED 20 50 0.02 0.005 0.5 100 RED 20 50 0.02 0.005 0.5 100

Figure 3.2: De�ning a few links with the old con�guration �le format
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2. A new generic class called Con�gReader was created. This abstract class speci�es
the functions to be implemented to both read a con�guration �le and transmit
the information to the main class, which just has to instantiate a Con�gReader
instead of implementing the parsing of the �le. In order to maintain compati-
bility with the previous �les, two specialization of the Con�gReader have been
implemented, on that can read the old ASCII format, and one that reads the
XML-based format.

<link node1="0" node2="1" capacity="20" delay="0.01">

<aqm

direction="forward"

type="red"

tmin="20"

tmax="50"

alpha="0.02"

delta="0.005"

pmax="0.5"

maxlength="100">

</aqm>

<aqm

direction="backwards"

type="red"

tmin="20"

tmax="50"

alpha="0.02"

delta="0.005"

pmax="0.5"

maxlength="100">

</aqm>

</link>

Figure 3.3: De�ning a link with the new con�guration �le format

Making the code more e�cient
The optimization of the code was done by trying to �nd the most e�cient optimizations,
while respecting the application's design. The two main concerns were to improve:
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� The simulation speed, with a particular focus on scalability. The simulation time
for a relatively small network was acceptable, but not as short as expected. How-
ever the simulation time increased rapidly with the complexity of the network
and this needed to be addressed.

� The memory usage, again focusing on scalability. As the size of the network
got bigger, or the simulation time increased, the amount of memory needed was
such that it was simply not possible to run the simulation. As a consequence,
improvements in term of speed would have been worthless without improvement
in term of memory usage. Moreover, being able to simulate large-scale networks
is one of the original goals of 
ow-level simulation techniques.

A number of \basic" optimizations were carried out. These did not involve impor-
tant changes to the code but brought about signi�cant improvements. Because of their
straight-foreward nature, these changes won't be detailed, however, the main aspects
which led to optimization were:

� Abusive instantiation of objects. In some cases, the objects needed to compute
the simulation data (especially the equation solvers) were instantiated at each
step of the simulation. This was done because some parameters needed to in-
stantiate the object were assumed to be only available at that time, but all the
information needed was available at the start of the simulation and therefore the
objects can be instantiated only once and reused at each step, which saves CPU
power. The result of this optimization is not obvious on a small scale, but is
clearly evident when the network to be simulated gets bigger.

� Access to the data. It appeared that one of the slowest operations was data
access. The model sometimes requires access to past data values of a data (e.g.
queue length) for the evaluation of certain functions. These values are stored
in Metric objects. Because this data access occurs frequently, and because the
values that need to be accessed usually are at time t� timestep; optimizing the
data access method in the Metric class with this information in mind drastically
decreased the amount of time needed to simulate a given network.

� Output of the simulation results. The conversion of the 
oat values stored in
the Metric objects needed to write them into �le was a very slow operation
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in Java, and couldn't be optimized. A proposed solution was to introduce a
dumpPrecision parameter, to specify how much data has to be dumped into the
�le. For example, if the simulation step is 0:001 second, with a dump precision
of 1=100, the value of the metrics are stored in the output �le only every 0:1
second. This reduces the amount of information in the output �le, but doesn't
decrease the simulation precision. This parameter should be set to a relevant
value depending on what the simulation results are to be used for. For example,
in order to generate a graph for a 10 second simulation with 0:001 second time
step, a �le dump precision of 1=100 is more than su�cient and will make the
simulation a lot faster.

� On the 
y output of the results. As suggested in [14] and illustrated in �gure 2.5,
the original simulator stores the evolution of the value of the di�erent metrics
during the whole simulation process, and dumps all the data into �les when
the simulation is completed. This method it totally unsuitable for a large scale
network, or even for a small network when the simulation time is long, as a
huge amount of data has to be stored in memory. The optimized version of
the simulator was modi�ed so that the data that is no longer needed by the
simulator to compute the current values of the metrics is automatically dumped
to the corresponding output �le and erased from memory as the simulation is
running.

3.2.2 Evaluation of the optimizations
Tests run with a small size network (3 nodes, 2 links, and 4 classes of 
ow) show
that the execution time is 10 times faster for that particular network, and the amount
of memory needed is about 10 times smaller. These results are satisfying, and the
di�erence is expected to be bigger with larger-scale networks. Because evaluation
on a bigger scale was non-trivial (the original simulator can not really handle large-
scale networks because of its high requirements in terms of available memory), the
evaluations presented in this section were done with simple scenarios. These scenarios
are designed to evaluate the impact of the di�erent parameters on the simulation speed
for both simulators, and to lead to some conjectures on how they would compare with
bigger networks.
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Experimental setup
The experiments were done for the network represented in �gure 3.4 and with the
parameters speci�ed in table 3.1. Unless di�erently speci�ed, all the experiments in
this dissertation will use this same setup. For each set of experiments, either the number
of nodes, the simulation time, or the number of 
ows was changed to one of the four
di�erent values to evaluate the evolution of the simulation speed and memory usage
with both the original and the optimized simulator. When considering the number of
nodes, the previously described network was used with one unique 
ow going through
a succession of nodes. However in that case the number of nodes varied from 2 to 16.
For the simulation time, the topology remained unchanged but the simulation time was
varied from 2 to 16 seconds. Finally, to evaluate the impact of the number of classes
of 
ow, certain classes were added to the original network (a maximum of eight).

Note that the measured execution time includes the time needed to read the con-
�guration �le, the simulation time, and the time to write the output �les. The XML
con�guration �le reader used by the new version of the simulator seem to be a little
slower that the ASCII one, but this will be neglected as the di�erence is rather small,
and the results lead to the conclusion that the new simulator is faster and scales a lot
more easily.

Figure 3.4: The network topology used to evaluate the performance optimizations

Performances
Figures 3.5 to 3.7 present the in
uence of the number of nodes, the simulation time,
and the number of 
ows on the CPU time needed to complete the simulation.

Figure 3.5 shows that for both versions of the simulator the execution time is
proportional to the number of nodes. Moreover the execution time is faster for the
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Computer Intel Pentium M 1.6 Ghz, 512MBOperating system Linux 2.6.10JRE Standard Edition 1.5.0Simulation time 15 secondsSimulation precision 0.001Data dump precision 1/100Links capacities 20 packets/secondLinks delays 0.01AQM types RED
tmin (for each RED queue) 20
tmax (for each RED queue) 50alpha (for each RED queue) 0.02delta (for each RED queue) 0.005
pmax (for each RED queue) 0.5Max length (for each RED queue) 100Number of 
ows per class 1Max window size for each 
ow 1200

Table 3.1: Technical data and parameters used for the performance evaluation
optimized version, and more importantly this version scales better when new nodes are
added (the execution time is multiplied by 4 when the number of nodes is multiplied
by 8, whereas it is multiplied by 7 for the original simulator).

Figure 3.6 doesn't show execution times that are directly proportional to the sim-
ulation time. This result is not expected as the number of operations to be performed
should be proportional to the simulation time, and there is not supposed to be any
\memory e�ect" that would make the computation of the latest values fastest. As the
execution times are quite small for this experiment, this is very likely to be caused
by the in
uence of the con�guration reading code. Indeed, in spite of the fact that
precaution were taken to avoid the e�ect of �le caching during the experiments, the
reading of the input �les doesn't exactly take the same amount of time each time the
simulator executes the same simulation, and this di�erence may have caused the value
not to be exactly proportional. However, the results clearly show that the optimized
version is faster and scales better as the execution time increases. The improvement in
term of scalability is limited if the one second time needed to read the con�guration is
subtracted from the execution times. This is not disappointing, as there is no reason
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Figure 3.5: In
uence of the number of nodes on the execution time
for the new version to scale better as the simulation time increases (if the simulation
time doubles, the amount of operations logically doubles in both cases).

Figure 3.7 give valuable information as it shows a linear increases in the execution
time as the number of 
ows increases for the optimized version of the simulator. In
the case of the old version the evolution is linear at �rst, but then grows rapidly for
the 8 
ow test. Without taking this into account, the new version already scales a lot
better. But the di�erence is even greater when ones understands why the last value is
higher than expected for the original simulator. For the �rst tests, only simple 
ows
were added to the network (going though only one node), whereas the network was
too small to add such 
ows for the �nal test. As a consequence, the later 
ows follow
a more complicated path and therefore go through more nodes. It is very interesting
to note that these 
ow don't require extra computation time with the optimized ver-
sion, whereas the original one requires more time to treat them. In other words, the
optimized version is not signi�cantly in
uenced by the complexity of a 
ow. This can
be explained by the fact that the extra work needed to process these 
ows is mostly
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Figure 3.6: In
uence of the simulation time on the execution time
required to manage access to the previous queue length values and to write data in
the output �les, and both these operations were identi�ed as critical and optimized as
much as possible.

In conclusion, the new version of the simulator is de�nitely faster and more scalable.
The di�erences observed in the previous tests don't seem to be gigantic, but show that
in the case of big networks, especially if there are numerous 
ows that go though a lot
of nodes, the new version will be a lot faster.
Memory usage
Figures 3.8 to 3.10 present the in
uence of the number of nodes, the simulation time,
and the number of 
ows on the amount of memory needed to complete the simulation.

Figures 3.8 and 3.10 show that the optimized simulator always needs less memory
than the original one when the number of nodes or 
ows increases. The more 
ows
or nodes present, the bigger the di�erence. This was expected because metric data is
progressively written to external �les, while the previous version of the simulator was
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Figure 3.7: In
uence of the number of 
ows on the execution time
storing that information in memory.

Figure 3.9 gives even more interesting information about the optimizations. As
expected the amount of memory required by the original simulator gets very large for
the longest simulation time (and it quickly becomes impossible to run any simulations),
whereas the value remains tractable for the optimized one. However, after a certain
point (from the graphs, this is reached at a simulation time between 3 and 4 seconds),
the required amount of memory should not increase as all the values that are no longer
needed are dumped to a �le on the harddrive. The fact that this is not totally the case
suggests that either some metrics are not taken into account by the on-the-
y dumping
system, or that a memory leak is present somewhere in the code. Because the impact
of this is limited within the scope of this study, no further research was carried out
about this problem, but it should be looked at for future work involving this simulator.

In terms of memory usage, the new version is de�nitely better and solves the prob-
lem of ever-increasing memory usage as the simulation time increases. However, even
though this aspect is now well optimized, other, more re�ned solutions could be found
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Figure 3.8: In
uence of the number of nodes on the memory usage
to reduce the memory usage even further in the future.
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Figure 3.9: In
uence of the simulation time on the memory usage
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Figure 3.10: In
uence of the number of 
ows on the memory usage
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3.3 Validation of the simulator
After optimizing the code, a lot of e�ort was put into thoroughly debugging it. Indeed,
some of the results obtained were clearly incorrect and it was an absolute essential
to �x these problems. The validation methods used to prove the correctness of the
implementation are explained in this section.
3.3.1 Validation with a simple predictable network
The purpose of this test was to validate the behaviour of the simulator with the most
basic possible network, so that the results obtained are easily predictable and can be
compared to the simulation results.

Figure 3.11: The network used for analytic result based validation
The network used for this test is illustrated in �gure 3.11. It simply consists of

two nodes and one link, which is only used by a single 
ow. The values used for the
di�erent parameters are given in �gure 3.11 and the RED parameters are the same as
those speci�ed in table 3.1. Finally, the simulation time is 10 seconds and each time
step is 0.001 seconds long.

Ignoring the queueing system, the 
ow is supposed to saturate the link when its
windows size reaches 40. Indeed, the round-trip time is 0.02 seconds and the capacity
is 2000 packets/second, which means that the maximum number of packets that can be
transmitted in one time unit without any packet drop is 2000� 0:02 = 40. The window
size is then supposed to increase by 1 every timestep until it reaches 40 (TCP window
additive increase), and then be divided by 2 (TCP window multiplicative decrease),
start increasing again, and so on.
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If the queueing system is added to the system, the window size will actually increase
as the queue gets �lled, until the RED policy decides that the queue is too long and
starts dropping packets. At that time, the TCP window size will be divided by 2 as
explained before. The last piece of information to fully specify the theoretical behavior
of the system is the lower RED drop probability threshold. RED starts dropping
packets when the average queue length exceeds the tmin parameter, which is set to 20
for our scenario. To determine precisely when the �rst packet will be dropped, it would
be necessary to take into account the technique used to evaluate the average queue size
(EWMA) and the fact that not all packets get dropped before the queue length exceeds
tmin. However, given the nature of the tra�c (one unique 
ow increasing its window
size regularly), it is clear that packets will start being dropped almost straight after
the queue exceeds 20 packets.

To summarise, the expected behavior of the 
ow is to increase its window size until
it reaches 60 (40 to saturate the link plus 20 to �ll the queue without RED dropping
packets), then back-o� and divide the window size by 2 to a value of 30, start increasing
it again, and so on. The queue length is expected to start growing after a short period
as the link gets saturated, attain a value that is a little higher that 20, get smaller as
the 
ow backs-o� and reduces its transmission speed, and then increase again, and so
on.

The results of the simulation are given by �gure 3.12. The evolution of the metrics
is close to the expected behaviour of the system, except for a few points that can be
easily explained:

� The window size takes values up to 70, and not 60 as predicted. This can be
explained by the fact that, as illustrated by the graphs representing the actual
queue length and the average estimated queue length, after the queue exceeds 20
packets it takes some time for the average queue length to exceed 20 and trigger
the dropping of packets. When the average queue length takes on the value 21,
the actual queue is actually almost full with 30 packets. This is the reason why
the window size reaches the value of 70 (40 packets to saturate the link, and 30
to �ll the queue before packets get dropped).

� When the link and the queue saturate, the window size is divided by 4 instead
of being divided by 2 as expected. This can also be explained by the average
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Figure 3.12: Simulation results for the analytic result based validation
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queue length evaluation method. Because the queue is actually longer than the
average queue length when packets start to be dropped, and because the average
su�ers from some latency compared to the actual value, it takes some time for
the average queue length to return to a value that is lower than tmin after the
�rst packet drop. For that reason, RED doesn't only drop one packet, but keeps
on dropping until the average queue length is small enough. In our case, it seems
that packets kept on being dropped after the �rst time TCP backed-o�, and so
it backed-o� a second time, and hence the window size was divided by 2 again
(and in the end the max value was divided by two twice). This was di�cult to
predict, but makes perfect sense upon re
ection and con�rms that the simulator
is working well.

In the end, in spite of those few di�erences which were actually due to the omis-
sion of certain details in the predictions, for this small scenario, the simulator seems
to behave exactly as expected. However, it has to be validated with more complex
scenarios. Even this simple example showed that predicting the results is very tricky
and that is why the following evaluations will be based on a comparison with other
results presented in the literature or by validation against the ns simulator.
3.3.2 Validation against other results
Motivations
The purpose of this section is to validate the correctness of the results obtained by
comparing with others from the literature on the same simulation technique. If the
two outputs are close to each other, it will mean that the implementation of the model
is correct. Further validation which compares results with those obtained using a
completely di�erent simulation technique were also carried out.

Please note that, as opposed to all other validation tests, the following results were
obtained with a version of the simulator which included the re�nements described in
chapter 4. Indeed, the improved 
ow control presented in section 4.2 was necessary to
reproduce the results presented in [14].
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Validation against Liu et al.

The 
uid-based, 
ow-level network simulator which was validated uses the exact same
model as in [14]. The authors did not provide su�cient information to reproduce their
results exactly (some of the parameters are missing). However, because the network
topology is clearly de�ned, it was possible to reproduce the results presented in section
5.1 of the Lui et al. paper. The author recognizes that reproducing results by adjusting
the input parameters is not ideal, but the original paper did not provide the necessary
information. The general shape of the di�erent graphs was the same regardless of the
value of the input parameters, and adjustments were only needed to obtain values that
were at the same scale.

Figure 3.13: The validation network used by Liu et al.
Figure 3.13 shows the network topology used for the test, and �gure 3.14 is a copy

of the results obtained by Liu et al. (window size for class 1, and expected queue size
at the node 3! 4 link). The graphs include results obtained with ns and the 
uid-
ow
model (FFM).

The TCP class 1 is active during the whole simulation. Class 2 starts being active
at time t = 0 and stops at t = 40s. Finally, class 3 starts at t = 70s and remains
active until the end of the simulation. All the links have the same capacity and the
maximum window sizes are big enough to saturate any of them. The bandwith of the
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node 3 ! 4 link will then be shared when two 
ows are active simultaneously, which
should have an impact on the TCP window sizes of each 
ow and the behavior of the
queue for that link.

Figure 3.14: Results obtained by Liu et al. (�g. 7 from [14])
Figure 3.15 shows the values of the same metrics obtained with the 
ow-level simu-

lator from this work. Even though the results are not exactly the same, they are quite
close to each other and the general behavior of the network is the same. As expected,
and con�rmed by the Liu et al. results, the average window sizes for the �rst 
ow
doubles when only that 
ow is in action (from time 40 s to time 70 s). During that
time the queue length is globally shorter with both simulators (as well as with ns), even
though its evolution is slightly di�erent (which is probably simply caused by di�erent
RED parameters or a di�erent implementation of RED).

The previous results give a good idea of the reliability of the simulator. However,
it was decided to compare it in more depth with a well known and recognized packet
based simulator.
3.3.3 Validation against ns
Correctness
ns is widely used in the �eld of network simulation, which is why it was a tool of choice
to validate the behavior of the 
ow-level simulator. Moreover, as it uses a packet-level
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Figure 3.15: Simulation results with the Liu et al. test topology
model, it was a good way to illustrate the di�erences between the two techniques as
regard their outputs.

The topology used to compare the simulators is illustrated in �gure 3.16. It consists
of a \backbone" network (nodes 1 to 3) and \network access points" (nodes 4 to 7). All
the links have the same propagation delay of 10 ms, the connections between backone
nodes have a capacity of 5000 pk/sec while the others have a capacity of 2000 pk/sec.

The network tra�c assumes that clients are downloading �le from a server located
at node 0 from each access points. Each of those classes of 
ows has a maximum
window size that is big enough to saturate any of the links and consists of one unique

ow. All the links could become congested by the 
ows that go through them, but it
is clear that, as all the 
ows go through it , link 0 ! 1 will saturate �rst and shape
the tra�c for the following ones.

Figure 3.17 shows the evolution of the queue length, RED drop probability, and
tra�c arrival rate for that potentially congested link. The �rst thing to notice about
the two simulators is that the results look similar but with ns the arrival rate seem
to be more bursty. It is simply caused by the nature of the packet-level simulation
that models each packet and therefore captures very small changes, whereas the 
ow-
level simulator and the 
uid-model behind it work di�erently and models a \perfect"
system that evolves more smoothly. This di�erence will appear in all the results and
is perfectly normal. Another di�erence is that with ns there is a peak in tra�c at
the very beginning that isn't present with the 
ow-level simulator. It can be simply
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Figure 3.16: Network topology used to validate against ns
explained: ns models the TCP slow-start mechanism, whereas the 
uid-model doesn't.
Apart from those expected di�erences, the metrics' evolution is the same in both cases:

1. The arrival rate progresses at a regular speed as the di�erent 
ows increase their
window sizes.

2. Around time=6 seconds the link's maximum capacity is reached.
3. The sending-rate is maintained for a short period as the queue starts to �ll.
4. Around time=6.5 seconds the average queue length reaches a value that makes

RED start to drop packets (the dropping probability increases).
5. TCP backs-o� and the sending rate drops to a very low value.
It is also interesting to note that the drop probability reaches a higher value with

ns. This is probably due to di�erent implementations of the average queue length
estimation mechanism, however it has a reduced impact on the behaviour of the whole
system.
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Figure 3.17: State variables for the congested link (ns validation)
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Figure 3.18: Arrival rate at each link (validation with ns)
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Figure 3.18 shows the arrival rate at all the other links. It con�rms that none of
those links is congested (for a short period, the tra�c is exactly equal to the link capac-
ity for link 1! 2, as it is shaped by link 0! 1). The tra�c on links 2! 6 and 2! 7
is logically higher than on 3 ! 4 and 3 ! 5, because the 
ows experience a shorter
round trip time and their window sizes increase faster. The only notable di�erence be-
tween the two simulators occurs on link 3! 5. With ns, the 
ows window size reaches
two peaks at the beginning (probably both caused by the slow-start mechanism) which
causes TCP to back-o� twice and the 
ow to have a lower transmission rate than the
others at any given time. As a consequence, it seems that the 
ow doesn't experience
any loss when packets start to get dropped by link 0! 1 (no impact of this is visible
on the 
ow's transmission rate which should otherwise be reduced in line with the
other 
ows). The cause for this is not clear, but in a \perfect world" the behaviour of
the 
ow-level simulator makes more sense: links 3 ! 4 and 3 ! 5 are identical and
support identical 
ows that follow the same path before entering those links, therefore
the tra�c is identical for both of them.

Figure 3.19 shows the evolution of the window-size for the di�erent 
ows. Apart
from the slow-start at the beginning and the fact that 
ow 1 doesn't back-o� when the
others do with ns, which was explained above, the results are almost identical for both
simulators and correspond to what was previously observed.

To conclude, on this example the 
ow-level simulator gives an output that is very
close to the one given by ns. Some di�erences are present, but they are either minor
or caused by the di�erences between the simulation techniques.
Performances and scalability
Knowing that the �nal output is pretty much the same with the 
ow-level simulator
and ns, it was interesting to explore the di�erences between them in term of processing
speed. [15] and [16] have demonstrated that 
ow-level simulation often outperforms
packet-level simulation, especially when the number of packets on the network starts
to become signi�cant. This section will aim to con�rm these results by comparing the
performances of the two simulators when the links on a given network get updated to
support more tra�c.

Figure 3.20 illustrates the network topology used for this scaling test as well as
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Figure 3.19: Window size for each 
ow (validation with ns)
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Figure 3.20: Network topology used to compare the performances with ns

the classes of 
ows that go through the network. The propagation delay is 0:01 ms
for all the links and the maximum windows size is 2000 packets for each 
ow. Each
class contains 10 
ows and the rest of the parameters are the sames as in table 3.1.
The purpose of the test is to evaluate how ns and the 
ow-level simulator scale when
the network capacity increases. The network was simulated with increasing values for
the link-capacity, knowing that the maximum window size was chosen so that it would
always allow links to saturate.

Figure 3.21 shows the execution time with both simulators when the links capacities
varies from 1000 to 100000 packets/second. As expected, for the 
ow-level simulator
this time is constant (around 5.5 seconds), as only the sending rates changes but no new
class is introduced into the network. With ns things are di�erent, indeed as the sending
rates increase the number of packets does as well, and it takes more time to simulate
the network. It is not clear why the execution time doesn't progress proportionally
to the tra�c, nor why in certain cases the execution time is smaller when there is
more tra�c in the system. This might be due to speci�c optimizations implemented
in ns that simplify the computation of the results when the tra�c follows a certain
pattern. However, it is certain that the computational needs globally grow with the
total sending speed on the network (for a given packet size), which is not the case
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Figure 3.21: Results of the performance comparison with ns

with the 
uid-based simulator (providing that the tra�c patterns don't change). This
invariance is an obvious advantage when simulating large-scale networks; as the bigger
a network is, the more packets it will have to handle. Moreover, the high-capacity of
backbone links in Internet-like networks will give an advantage to 
ow-level simulation,
when compared to packet-level simulation.

3.4 Conclusion
This chapter presented the optimization and validation tasks that were performed on
the simulator. It was proven that the current simulator is a lot faster and more scalable
than the original implementation and that it produces correct results. Having proved
these important facts, the following chapter will concentrate on the next step: the
addition of a number of extensions to the simulator.

46



Chapter 4

Extension of the simulator

4.1 Introduction
After having proved that the simulator was working correctly, it was possible to add a
number of extensions to its code. The �rst of these extensions consisted of improving
the control that the user has over the 
ows that go through the network. The second
extension was to implement a model-reduction capable of improving the performance
of the simulator. Finally, new AQM schemes were added to the simulator.

4.2 Better control over the classes of 
ow
4.2.1 Motivations
The purpose of this extention is to improve the control that the user has over the 
ows
that go through the network. Indeed, in the original model and its implementation,
each class is permanently active and there is no way to specify a time when the class is
idle and therefore doesn't use any bandwidth on the links. This both restricts the use of
the simulator, especially regarding the possibility of estimating a network's behaviour
when new 
ows appear and the tra�c load increases, and inconvenient for validating the
implementation, as the results presented in other papers are mostly based on scenarios
where new 
ows appear during the simulation.

As a consequence, it was necessary to add new parameters to let the user decide
when a given class of 
ows is active or not. The chosen solution was to associate a
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starting time and an ending time to each class: data is transmitted only if the current
time is superior to the starting time and inferior to the ending time.
4.2.2 Implementation
Updating the model to take this change into account is quite straight forward. Indeed
the only thing to do is to introduce the quantities tistart and tistop, the times at which a
given 
ow i starts and stops being active. Then, it is necessary to re�ne equation 2.7
to take these new parameters into account:

Ali(t) =
8>>><
>>>:
Ai(t) if l = ki;1 and tistart � t � tistop0 if l = ki;1 and (t < tistart or t > tistop)
Dbi(l)i (t� abi(l)) otherwise

(4.1)

The implementation is done by adding a test that checks whether the current time
is between the start time and the end time for the 
ow before adding the 
ow's tra�c
to its �rst link at each step of the simulation. The parameters were also added in the
XML description �le and the corresponding properties are added to the ClassOfFlows
object.
4.2.3 Evaluation
In order to validate the fact that the control over the 
ows is working properly, the
network topology presented in �gure 4.1 was used. The idea is to have two di�erent

ows that go through a common link, and to sometimes have only one active 
ow and
sometimes two.

As described in table 4.1, two di�erent 
ows are active on the network. Both will
have a maximum transmission rate of 60

2�(0:01+0:01) = 1500 pk/sec, the �rst one will
follow the path 0 ! 2 ! 3, and the second one the path 1 ! 2 ! 3. The �rst class
is active from the time t = 0 to t = 10, and the second one from t = 5 to t = 15. It
means that only the �rst class is active during the �rst 5 seconds, then both classes
are active for the next 5 seconds, and �nally only the second one is active for the last
5 seconds of the simulation. Because of the maximum sending rates, no link should
become congested when only one class is active and the sending rate should increase
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Figure 4.1: The network topology used to validate the class-control
to 1500 pk/sec. When the second 
ow becomes active, the bandwith of the link from
node 2 to node 3 will be shared and the queue size should start increasing for that
link. Packet should then start to get dropped and the sending rate for each 
ow should
oscillate so that the tra�c generated on the congested link doesn't get higher than its
capacity of 2000 pk/sec. Finally when the �rst 
ow becomes inactive the sending speed
for the second one should progressively reach 1500 pk/sec.

Source Destination Nb of 
ows Max. win. size Start time Stop time0 3 1 60 0 101 3 1 60 5 15
Table 4.1: Active classes of 
ows for the class-control validation

Figure 4.2 shows the evolution of the network tra�c for each class and for the three
links along with the evolution of the queue on node 2 ! 3 link (the other queues are
always empty). The system behaves as expected: at time t = 6 seconds the departure
rate for the second class reach 500 pk/sec, and because the node 2 ! 3 link already
transmits the 1500 pk/sec, tra�c from the �rst class, its queue-size starts growing. As
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a consequence, packets start being dropped, TCP backs-o�, and the transmition speed
of the two 
ows oscillates so that the total value is lower than 2000. The queue starts
�lling a second time as the window sizes get bigger, and �nally only the second 
ow
remains active and it reaches its maximum sending rate.

This experiment demonstrates that the extentions that provide better 
ow control
are working well. Other tests con�rming the validity of the model, and the implemen-
tation, were completed successfully during the development phase.

4.3 Model reduction
4.3.1 Motivations
Even though the optimizations presented in the previous chapter greatly improved the
execution speed, the overall results remained disappointing. The improvements made
the simulator as fast or faster than ns in a lot of cases, but the di�erence was clearly not
as signi�cant as expected and in some situations the performance evaluations results
were even quite disappointing. It is clear that this disappointment is due to the fact
that the code remains quite complicated and could be made a lot simpler. A more
challenging way of improving the execution speed was to implement a model reduction
mechanism to reduce complexity of the simulation. The general idea is to detect which
links on the network can not possibly get congested and to simplify the way those links
are simulated. For example, one method is not to simulate them at all and to report
the delay they introduce to the following links).

This technique can be especially e�cient when simulating a typical telecommu-
nication network or a big corporate network. Such networks are composed of access
networks that are close to the hosts and a backbone network that is dedicated to trans-
porting data between di�erent sites. The latter is usually overdimensionned in order
to be very e�cient all the time. As a consequence most of the backbone network links
can not be congested and it is not necessary to simulate queue management for those
links.
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Arrival rates for the uncongested links

Arrival rates for each class at the congested link

Queue length at the congested link

Figure 4.2: Simulation results for the class-control validation
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4.3.2 Implementation
Previous work
[14] gives a method describing how to remove all the uncongested links (and therefore
queues) from a network topology. The resulting simpli�ed network is then simulated
instead of the original one. This has the big advantage of signi�cantly reducing the
processing power required if the network in not very congested. However, a consequence
of the fact that the simulated network is not the original one is that it is not possible
to know exactly what is happening on the removed links.

The model reduction, as described by the authors of the paper [14] consists of four
steps:

1. De�ne the matrix ADJ such that ADJ(i; j) = 1 if at least one class of 
ows
traverses the queue (and link) j immediately after the queue i, and ADJ(i; j) =
0 otherwise. For each queue i, O(i) is de�ned as the set of classes that are
originating from i (i is their �rst hop).

2. Each queue i that satis�es the following condition is marked uncongested :
X
l2EADJ(l; i) � Cl + X

k2O(i)
Mknk
�k < Ci (4.2)

Mk is the maximal window size for the class k, nk the number of 
ows in the
class, and �k the two-way propagation delay, given by:

�k = X
l2Ek

al (4.3)
where Ek is the set of links traversed by class k (including the return path for
the acks) and al the propagation delay for link l. The �rst sum in equation 4.2
is the maximal arrival rate from the preceeding links and the second one is the
maximum sending rate of the classes originating from the link.

3. Remove all the uncongested links from the topology and adjust it accordingly
along with the TCP routes. If all the queues that a class traverses are removed,
the sending rate for that class will be given by Mk�nk�k , its maximal sending rate.
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4. If no queue was removed in the previous step, end the model reduction, otherwise
go back to the �rst step.

To summarise, all the uncongested links are removed then the search for uncongested
links is run again because removing some links could have introduced new uncongested
ones into the system, and the operation is repeated until the system becomes stable
(i.e. it is not possible to �nd any more uncongested links). The article doesn't specify
how the topology and the TCP routes should be changed when a link is removed. It is
quite clear that the propagation delay for the removed links has to be reported to the
following links. However it is not obvious how to do this, nor is it obvious to know how
the topology should be modi�ed, especially in the case of complex topologies where
several paths can lead from one node to another.
Modi�cation and re�nement of the technique
The model reduction method that was described above has two drawbacks that led to
its modi�cation prior to use in the simulator:

� It is not obvious how to modify the network when links are removed.
� It doesn't simulate the originally de�ned network exactly. This may be acceptable
in certain situations (for example if the only purpose of the simulation is to detect
bottlenecks) but for a general purpose simulator it does not seem appropriate.

In order to address these problems, the alternative method used in the simulator does
not remove any link but simply simpli�es the treatment of the uncongested ones by
modelling their behaviour as follows:

8<
:
8t; l 2 U; i 2 C; Dli(t) = Ali(t)
8t; l 2 U; ql(t) = 0 (4.4)

where U is the set containing all the uncongested links, and C is a set containing all
the classes. Moreover, no AQM scheme will be associated with these links as the queue
length will always be 0. The behaviour of the links that might be congested remains
unchanged and is still de�ned by equation 2.6.

The remaining task to be performed in order to complete the model reduction
method is to de�ne how to detect uncongested links. We introduce the quantity maxl,
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which represents the maximum tra�c that can possibly go through a link l, and will
be updated as described below. The detection of the uncongested links is done by
executing the following steps:

Step 1. For each link i, initialize the value of maxi to the value of its capacity Ci
Step 2. For each link i, perform the following operations:

� Compute the quantity Ti (tra�c on i) as follows:
Ti =Xl2EADJ(l; i) �maxl +

X
k2O(i)

Mknk
�k (4.5)

were the notations is the same as in equation 4.2 and �k is de�ned in the
same way.

� If Ti < Ci, then mark the link as uncongested, and rede�ne maxi as maxi =
Ti

� If the link was marked uncongested, update the max value for all the links
that may be impacted by running the updateFollowingMaxRates function
on the link (see the description of this function below).

Step 3. If no link was marked as uncongested during step 2, �nish the model reduction,
otherwise run step 2 again.

The updateFollowingMaxRates(l) function is intended to update the value of maxi foreach link i that follows (directly or not) the link l. We de�ne Nl as the set of (directed)links that originate from a node at which the (directed) link l ends. Note that a link
betwen nodes n1 and n2 is considered here as two links, one starting from n1 and going
to n2, and one starting from n2 and going to n1. updateFollowingMaxRates(l) consists
of performing the following operations:

� For each link i 2 Nl, if the link is marked as uncongested, compute Ti =Pl2E ADJ(l; i) �maxl+Pk2O(i) Mknk�k and perform the next operation, otherwise
process the next link or stop if there is no more links to process.

� If Ti < Mi, set Mi = Ti and run updateFollowingMaxRates(i), otherwise do
nothing (stopping condition for the recursive function).
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Instead of removing nodes, this version of the model reduction keeps track of the
maximum tra�c that can go through uncongested links. By using this value instead
of the link capacity in equation 4.2, the real maximum arrival rate on the link (not
ignoring the fact the previous links might be uncongested) is taken in account, which is
equivalent to removing the link but does not introduce the disavantages listed above.
4.3.3 Evaluation
Experimental setup
To evaluate the model reduction mechanism, a network that resembles a telecommuni-
cations network (on a small scale) was simulated. This network is represented in �gure
4.3, which shows the di�erent nodes and links along with their capacities (each link has
a propagation delay of 0:01 seconds). Apart from the link capacities and the window
sizes which are speci�c to this experiment, all the parameters are the same as speci�ed
in table 3.1.

Nodes 0 to 3 and the links between them could represent a backbone network, and
nodes 4 to 7 could be the points of presence of the operator in di�erent places, linked
to the backbone network at a high link rate and receiving 
ows from di�erent hosts.
All the tra�c will be between these nodes and will go through the backbone network.
All the classes of 
ow on the network are active for the full length of the simulation
time and are described in table 4.2

Source node Destination node Number of 
ows Maximum window size4 5 1 1004 7 1 1005 7 1 3006 7 1 100
Table 4.2: Active classes of 
ows for the model reduction validation

Three di�erent classes have node 7 as their destination and the goal here clearly
is to saturate the link between nodes 3 and 7. Moreover, depending on the routing
decisions, the tra�c generated by the third 
ow (between nodes 5 and 7) together
with the one from the second (4 to 7) or fourth (6 to 7) one could saturate one of the
backbone links.
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Figure 4.3: The network topology used to validate the model reduction
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Evaluation of the correctness of the results
In order to evaluate the correctness of the model reduction, it is necessary to know
which paths the classes of 
ows are going to take and what their maximum sending
rates are. The shortest-path algorithm implemented in the simulator decides on the
routes as follows:

� The class going from node 4 to 5 should follow the path 4 ! 0 ! 1 ! 5 which
is obviously the shortest. As a consequence, the maximum sending rate for that

ow should be 100

2�(0:01+0:01+0:01) = 1666 packets/second.
� The class going from node 4 to 7 should follow the path 4 ! 0 ! 3 ! 7 which
is obviously the shortest. As a consequence, the maximum sending rate for that

ow should be 100

2�(0:01+0:01+0:01) = 1666 packets/second.
� The path for the class going from node 5 to 7 is not obvious. Indeed the paths
5! 1! 2! 3! 7 and 5! 1! 0! 3! 7 are equivalent and either of them
could be chosen. In any case, the maximum sending rate for that 
ow should be

300
2�(0:01+0:01+0:01+0:01) = 3750 packets/second.

� The class going from node 6 to 7 should follow the path 6 ! 2 ! 3 ! 7 which
is obviously the shortest. As a consequence, the maximum sending rate for that

ow should be 100

2�(0:01+0:01+0:01) = 1666 packets/second.
Table 4.3 presents the result of themodel reduction applied to the network. For each

link i, the implementation of the model reduction algorithm gives the value maxi of themaximum tra�c that can possibly go though it, and the link is 
agged as uncongested
or not depending on this value.

From the results, it is clear that the path 5 ! 1 ! 0 ! 3 ! 7 was chosen for the
third 
ow. maxi is correctly set to the sum of the 
ows originating from the edges of
the network for the links starting from nodes 4, 5, 6 and 7. For example the link from
node 4 to node 0 has maxi set to 3332, which is the sum of the maximum sending rates
for the �rst two 
ows of table 4.2. All the links in the backbone have maxi correctly setto the sum of the maximum tra�c that go through their adjacent links. All the links
but two are marked as uncongested. For the links that are not marked uncongested,
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Figure 4.4: Simulation results for the model-reduction validation

58



Link source Link destination maxi (pk/sec) Uncongested?0 1 3332 yes0 3 6000 no0 4 0 yes1 0 3750 yes1 2 0 yes1 5 3332 yes2 1 0 yes2 3 1666 yes2 6 0 yes3 0 0 yes3 2 0 yes3 7 4000 no4 0 3332 yes5 1 3750 yes6 2 1666 yes7 3 0 yes
Table 4.3: Result of the model reduction for the sample network

maxi is equal to their capacities, which is is perfectly normal (maxi cannot be biggerthan the capacity and if it was smaller the link would be uncongested).
Figure 4.4 shows the total arrival rate for the queues that are on the path of the

third 
ow in table 4.2. All the results obtained with ns or the 
ow-level simulator
are similar to each other. Only those queues on the path contains both congested
and uncongested links are present here. There are some minor di�erences that can be
neglected. One of these is that the 
ow-level simulator neglects the tra�c generated
by acks, which usually is very low. However in this case it is not true because the
packet size for the simulation in ns is set to its minimal value, which means that the
amount of acks is equal to the data tra�c. In order to partially correct the di�erence,
the tra�c on link 0! 1 was added to the tra�c on link 1! 0 and the tra�c on link
1! 5 was added to the tra�c on link 5! 1 to generate the graphs for the 
ow-level
simulator. This has the e�ect of adding the equivalent of the acks in the 
ow-level
simulation results, and is only correct in this case because these links are completely
uncongested, even including the acks (otherwise the acks would saturate the queues and
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the behavior of the whole system would change). It is clear that the results obtained
with ns and the 
ow-level simulator are very close to each other. Mainly, there are two
di�erences, that can be easily explained:

� Even though the global average is the same, the results obtained with ns 
uctuate
a lot more. This is completely expected as the 
uid model that is used in the

ow-level simulator gives smoother results by its very nature.

� The tra�c on link 0 ! 3 drops just after 6 seconds for the 
ow-level simulator,
whereas it doesn't with ns. This is caused by the fact that the queue length for
link 3! 7 start increasing to values that are higher than the RED drop threshold
at this time. This causes packet drops and the TCP 
ows that go through that
link back-o�. It is unclear why the only 
ow to back-o� is the one from node 6 to
node 7 with ns ; whereas all the 
ows going through the saturated queue back-o�
with the 
ow-level simulator. Both behaviours can be considered to be correct,
and the di�erence probably comes from the fact that RED (and especially the
evaluation of the average queue length) is not implemented the same way in both
simulators, and as a consequence less packets are dropped with ns.

Those results clearly show that the simulator is still performing correctly after the
application of the model reduction, but it would also be interesting know the impact of
this reduction on the performance of the simulator.
Evaluation of the speed improvement
In order to evaluate the speed improvement brought about by the model reduction,
the simulation was run with each of the versions of the simulator. The execution time
with ns is also presented for comparison, but it should be clear that this scenario
clearly doesn't intend to illustrate the advantages o�ered by the 
uid-model compared
to packet-level simulation (the network is small and there is only a small number of

ows that don't generate much tra�c).

Table 4.4 illustrates the result of the performance tests. Those results look quite
disappointing, not only because ns is faster (which is actually not so disappointing on
such as small network, as discussed in sub-section 3.3.3) but also because the model
reduction doesn't seem to bring about a huge improvement (about 35%). However,
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Simulator execution time (seconds)
ns 3.7
ow-level simulator (model reduction) 3.9
ow-level simulator (no model reduction) 6
Table 4.4: Execution time for the model reduction validation scenario

when the network gets more complex the di�erence should greatly improve. Moreover,
other tests showed that if the metrics relating to uncongested links are not written out
to a �le, the execution time is greatly reduced, which suggest that there is room for
optimization in the way uncongested links are managed compared to links that might
be congested.

4.4 Adding more AQM techniques
4.4.1 Preliminary work
An interesting re�nement to the simulator was the addition of support for more AQM
schemes. The most obvious application of this improvement is to enable the comparison
of how those di�erent schemes perform on the same scenario. Before adding anything
new, it was necessary to improve the simulator design to increase its modularity. In-
deed, in the original version, which was coded with the RED and PI [3] techniques in
mind, some RED or PI-speci�c functions were present in the Link class, which was
clearly not acceptable. After moving this code to suitable corresponding classes and
de�ning a root class with a clear interface for the AQM queues, it was then possible to
extend the simulator properly.
4.4.2 PI
The PI (proportional integrator) AQM controller was �rst introduced in [3]. It aims to
kept the queue length q(t) as close as possible to a desired queue-length qref . In [14],
the evolution of the dropping probability pl is described by the following di�erential
equation: dpl

dt = K1
dq(t)
dt +K2(q(t)� qref ) (4.6)
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where K1 and K2 are design parameters of the algorithm.
A test version of the PI implementation was already present in the simulator. The

work on this AQM scheme consisted of making sure that the code was still working with
the generic queue class de�ned earlier and to validate and correct the implementation.
4.4.3 DRED
DRED [6] (Dynamic-RED) is an AQM scheme that shares a common goal with RED:
stabilizing the queue-length in routers, but aims to perform better at doing it. With
DRED, the decision whether to drop a packet or not is made according to a target
queue-size T . A simple version of the drop-function can be described by the following
equation:

p(t) = p(t� �t) + �x(t)� T
B (4.7)

where t is the current time, �t the sampling interval, � the control gain, T the target
queue-size, B the maximum queue-size, and x(t) the estimated average queue-size, as
described in equation 2.2.

As with other AQM schemes, adding DRED to the simulator consisted simply of
creating a new class inheriting from the root AQM queue class and implementing the
correct drop-function. No extra work was needed as the average queue-length function
x(t) had already been implemented for use with RED.
4.4.4 AVQ
Unlike the other AQM schemes presented in this dissertation, AVQ (Adaptive Virtual
Queue) doesn't aim to stabilize the queue-length of a link, but to maintain the uti-
lization of the link at a given value 
. The other parameter of this algorithm is a
smoothing parameter � and a constant C represents the queue's capacity. [7] describes
behavior of the AVQ algorithm as follows:

� The router manages a virtual queue whose capacity is ~C < C (the virtual bu�er-
size is the same as the one of the real queue).

� Each time a packet arrives at the queue, a virtual packet is processed by the
virtual queue. If the virtual queue drops the packet, the real packet is dropped
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as well.
� At each packet arrival the virtual capacity is updated using the following equa-
tion: _~C = �(
C � �) (4.8)
where � is the arrival rate at the link.

To summarise, the decision to drop a packet or not is made based on a virtual
queue's capacity, whose median value is close to the desired link utilization. The size
of this virtual queue increases when the link usage is low and decreases when the link
usage is high.

The implementation of AVQ in the simulator required some adjustments to the
algorithm. Because the simulation is done at a 
ow -level, it was not possible to imple-
ment the events that should happend at each packet arrival. The proposed solution is
to perform those actions at each time-step. It makes the algorithm less reactive: all the
packets going though the queue at a given time-step will be processed in the same way,
whereas they could be processed di�erently by the original algorithm. However, if the
time-step is short enough, the impact on the simulation results should be negligible.

4.5 Conclusion
This chapter presented and evaluated three di�erent kinds of extensions that were
added to the simulator. Those extensions will be very useful in the next chapter,
which deals with the evaluation of AQM schemes. Indeed, they allow the simulation of
short-lived TCP 
ows that cause bursts of tra�c; they improve the simulation speed
so that more complex topologies can be simulated in the same amount of time; and
they implement the di�erent AQM schemes to be evaluated.
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Chapter 5

Evaluation of di�erent AQM
schemes

5.1 A methodology to evaluate AQM schemes
It order to use the 
uid-based simulator to evaluate di�erent Active Queue Management
Schemes, it was necessary to de�ne a precise framework that allows us to measure
certain characteristics for each of the schemes to be compared. This framework should
contain the following elements:

� Several metrics that are easy to measure and representative of what is expected
from an AQM algorithm.

� One, or several, scenarios (network topology and description of the evolution of
the tra�c 
ows) that are easy to simulate and give a good idea of the behavior
of the algorithms in real world application.

This section presents a framework that is outlined in [20]. This same method was
also used in [21] to compare a number of di�erent AQM schemes.
5.1.1 Metrics for AQM schemes evaluation
[20] clearly identi�es �ve metrics that are relevant for the evaluation of AQM schemes:
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� Utilization: This metric represents the total percentage of the links capacity that
is used during the simulation. This give an idea of the ability of the AQM scheme
to maximise the usage of the available bandwidth.

� Delay : This is the average delay that is experienced by a packet to reach its desti-
nation. It gives an idea of the ability of the AQM scheme to support applications
like voice over IP that require short round-trip times.

� Jitter : This is the average variation in the time between each packet arrival for
each 
ow. Isochronous application like voice transmission are also a�ected by
jitter.

� Drop rate: This is the total percentage of packets that are dropped. Compared
to utilization, this is just another way of evaluating the optimization of the usage
of the network ressources.

� Fairness : This metric evaluates whether each 
ow gets its \fair share" of the
available resources. If the system is completely fair, the value is 1, and if only
one 
ow gets all the resources, the value is 0. See [20] for more details.

5.1.2 A classic simulation scenario for AQM schemes evalua-
tion

Because it is well understood and easy to implement, [20] recommends the use of a
dumbbell topology for AQM evaluation (see �gure 5.1).

Basically, the dumbbell topology consists of a series of 
ows going through two
routers at each extremity of a bottleneck link to which is associated a bandwith and a
propagation delay. To make the simulation more realistic, the 
ows should experience
di�erent round-trip times. With the 
ow-level simulator, this can be done by adding
high-bandwith links with di�erent propagation delays after the bottleneck. Because
their bandwidth is higher that that of the bottleneck this will only have the e�ect of
changing the round-trip times experienced by the 
ows.

Finally, [20] suggest to mix di�erent types of network tra�c during the simulation:
� A high proportion of short-lived TCP 
ows that could, for example, model Web
tra�c.
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Figure 5.1: The dumbbell topology [20]
� A smaller proportion of long-lived TCP 
ow to model FTP tra�c.
� One or several UDP 
ows to take into account the protocols that do not support
congestion-control.

Unfortunately, the model used for the simulator does not support UDP tra�c, and
as a consequence it was not possible to include 
ows that don't implement end-to-end
congestion control. An attempt was done to modify the model to include such tra�c
patterns (basically by having 
ows that don't have a window size and have a �xed
departure rate) but this was not possible within the timeframe of this project.

5.2 Comparison of di�erent AQM schemes
5.2.1 Experimental setup
In order to evaluate the di�erent schemes, a dumbbell scenario was used. The bottle-
neck link capacity was 10000 pk/sec and it had a delay of 10ms. This link supported
the tra�c generated by di�erent short lived and long lived 
ows that experienced dif-
ferent round-trip times. The list of those 
ows is given in table 5.1. All the 
ows have
a maximum window size that is large enough to saturate the link.

All the queues have a capacity of 200 packets. The AQM parameters follow recom-
mendations from other papers:
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Class RTT Nb. of 
ows Max. win. size Start time Stop time0 20 ms 20 10000 pk 0 s 15 s1 20 ms 5 10000 pk 5 s 6 s2 20 ms 5 10000 pk 10 s 11 s3 100 ms 20 10000 pk 0 s 15 s4 100 ms 5 10000 pk 7 s 8 s5 100 ms 5 10000 pk 10 s 11 s
Table 5.1: Active classes of 
ow for the evaluation of AQM schemes

� For RED, the value of the parameters tmin, tmax, and pmax are respectively 20,
50, and 0:5.

� For DRED, the values of � and T are respectively 0:005 and 50.
� For AVQ, the values of � and 
 are respectively 0:15 and 0:8.

5.2.2 Experimental results
Figures 5.2, 5.3, and 5.4 respectively show the network tra�c, end-to-end delay, and
loss-rate for each class and with each AQM scheme. Figure 5.5 represents the total
network utilization with the di�erent schemes.

The �rst thing to note about those results is that the network tra�c is 
uctuating
a lot, even in the absence of the temporary peaks of tra�c generated by the short-lived

ows. The explanation for this is that it is probably due to a weakness in the way
similar 
ows are managed by the mathematical model used by the simulator. Because
the model simulates a \perfect world", as soon as packets start to get dropped at a
given link, all the 
ows at that link back-o� very quickly at the same time, which
suddenly greatly reduces the tra�c load. In the real world, random factors would
cause the 
ows to react di�erently and back-o� at di�erent times, and therefore the
average tra�c load would 
uctuate a lot less.

In spite of the previous conclusion, the following conclusions can be drawn about
the di�erent metrics:

� Utilization: According to the results presented in �gure 5.5, AVQ seems to max-
imise network utilization compared to the other AQM schemes. Except from pe-
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Figure 5.2: Comparison of the network tra�c for the di�erent AQM schemes
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Figure 5.3: Comparison of the end-to-end delay for the di�erent AQM schemes
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Figure 5.4: Comparison of the loss-rate for the di�erent AQM schemes
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Figure 5.5: Total network utilization for the di�erent schemes
riodical drops that are more signi�cant than for the other schemes, the network
usage is a lot more stable at high values. Moreover, these drops would probably
be less important if the model didn't have the weakness described above. RED
and DRED seem to exhibit similar performance, but the tra�c is more stable
with DRED. It also is interesting to notice that AVQ is close to maintaining the
link utilization at 80 percent, as it was supposed to (the value of the 
 parameter
was set to 0.8).

� Delay : AVQ performed a lot better in terms of network usage, but the drawback
is that this seems to be at the expense of the introduction of more delay (see
�gure 5.3). RED, which was the worst in terms of utilization, is the best scheme
in term of delay.

� Jitter : In this simulation scenario, jitter is strongly linked to delay. Indeed, the
delay tend to stay close to its minimum value and experience periodical peaks
which introduce jitter. As a consequence, the ranking in term of jitter is the same
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as in term of delay.
� Drop rate: In terms of drop rate, AVQ seems to drop a lot of packets from time
to time and then not drop anymore for a given period, whereas RED, and even
more so, DRED have a smother behaviour, which explains the lower jitter with
these algorithms. It is interesting to notice that AVQ seem to be a lot more gentle
with the short-lived 
ows as they almost experience no drops. This matches the
idea of AQM enabling routers to accommodate peaks of tra�c while regulating
long-term sources of congestion. DRED seems to manage to maintain a lower
drop rate than RED for tra�c experiencing a short RTT, whereas the behaviour
of the two algorithms is similar with 
ows which su�er from a longer transmission
delay. Overall, it is di�cult to say which AQM scheme is the best, but it seems
that DRED and AVQ have a better control on the loss-rate; each one in a di�erent
way.

� Fairness : The fairness metric is di�cult to evaluate in this scenario. Indeed,
because the whole tra�c is composed of TCP 
ows, the congestion-avoidance
mechanism present in this protocol tends to satisfy the fairness expectations by
itself. The transmission rates for the 
ows experiencing longer RTTs is a lot
smaller, which might look unfair at �rst as they are capable of transmitting at
higher speeds. However, there is nothing AQM schemes can do about this as it is
simply due to the fact that their window-sizes increase a lot more slowly. In the
end, it would be necessary to implement UDP in the simulator to obtain more
accurate information on fairness.

5.3 Conclusion
The experiments conducted in this chapter give an overview of the di�erent AQM
schemes in a situation that is representative of speci�c real-life conditions. It did not
allow us to draw a conclusion about the fairness of the algorithms but it gave some
valuable information about their behavior and described a good methodology for the
evaluation of these algorithms. Overall, from the experimental results it seems that in
this particular situation AVQ is the best scheme for maintaining high capacity usage,
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and DRED is the most e�cient at accommodating applications with high isochronous
requirements.
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Chapter 6

Conclusion

6.1 Achievements
First, the �eld of network simulation has been presented (with a particular focus on

ow-level simulation) in chapter 2. The concept of active queue management was also
introduced, along with a detailed description of a particular AQM scheme: RED. The
two notions of 
ow-level simulation and Active Queue Management were then used
to introduce a 
uid-based model for network simulation that can support di�erent
AQM algorithms. This was designed with scaling in mind. The presentation of the
background information section of this dissertation ended with suggestions on how to
implement this model.

The presentation of an existing implementation of the model, given in chapter 3,
required thorough appreciation of its code. In the same chapter, a series of improve-
ments to make the implementation easier to understand and to use were presented.
Some optimizations that were made to the simulator, both in terms of CPU and mem-
ory usage, were also presented. This part of the dissertation ended with a thorough
validation of the simulator. This was done though di�erent means, in particular by
comparing simulations with those done using the well-recognized ns network simulator.
These experiments showed that the 
ow-level simulator works correctly and is faster
than a well-optimized packet-level simulator in many situations.

Chapter 4 then introduced several extentions that were implemented within the
simulator, while demonstrating their correctness. The �rst of these extentions was to
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improve the control given to the user over the behaviour of the di�erent 
ows during a
simulation. This modi�cation of the model was actually needed in the previous part of
the work to validate the implementation against other results. The second extension
presented was a model reduction that allows for the detection of links that will never
be congested. The simulation of these links is simpli�ed to increase the simulation
speed. Finally, the chapter ended with the presentation of the di�erent AQM schemes
that where added to the simulator.

The implemented AQM schemes were evaluated in chapter 5. The chapter started
by presenting a methodology for the performance evaluation of the algorithms. Ex-
perimental results were then analyzed to attribute eventual speci�c properties to each
scheme.

As emphasised in the introduction, this work had two ultimate goals. The �rst one
was to show that implementing a 
ow-level network simulator that scales well and per-
forms better than a well-recognized packet-level simulator in many situation is a very
reasonable objective. This goal was de�nitely achieved, as demonstrated in the per-
formance evaluation tests that were described in this document. The second goal was
to illustrate a way to use this kind of simulator for protocol evaluation. The compari-
son of di�erent AQM schemes that was presented met these expectations. Indeed, the
simulator clearly showed the di�erences between the congestion management schemes
implemented. However, the presented results did not cover a very wide range of tests.
Moreover, they uncovered a weakness in the model when several identical 
ows are
present in the network. Even though it is not a positive result about the model itself,
this unexpected outcome is a very good thing as it proves the relevance of the work
that was carried out on this model.

6.2 Future work
Even though they gave good results, the experiments run to validate the simulator
would lead to even more positive conclusions if they could be reproduced on a very large
scale network topology. However, this involves further optimization of the simulator.
Indeed, the improvement of the simulation speed following this work was important and
encouraging, but the simulator still is too slow to process a very large scale network.
Moreover, ns could also be an obstacle to this validation if it was used as a reference,
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as it clearly wouldn't be able to simulate such a network in a reasonable amount of
time.

Another obvious source of future work is to add even more AQM schemes to the
simulator. Adding new schemes to the simulator is straightforward, provided that those
algorithm can be described by simple equations that can be processed by the solver
included in the code.

Finally, the last part of the dissertation illustrated a few weaknesses of the model
when it comes to evaluating protocols, in particular, AQM schemes. It would be
interesting to work on �nding a way to simulate UDP tra�c with the simulator, as
this protocol is often a cause of network saturation because of its lack of a congestion
management mechanism. This would be useful as it would provide more information
on the fairness of the di�erent AQM algorithms evaluated in chapter 5. It would
also be interesting to look at the fact that the model doesn't always seem to give
realistic results when several similar 
ows are present in the network. The fact that
all the 
ows show a \perfect" behavior and back-o� very quickly at exactly the same
time does not correspond to reality. Incorporating a model of the random factor that
cause the 
ows to react slightly di�erently from each other in the real world would be
highly bene�cial. Moreover, even though it gave some interesting results, the modest
evaluation of di�erent AQM schemes that was conducted should be extended to a wider
variety of scenarios.
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