
Design and Initial Implementation
of a Distributed XML Database

Francesco Pagnamenta

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2005

Declaration

I declare that the work described in this dissertation is, except where otherwise

stated, entirely my own work and has not been submitted as an exercise for a degree

at this or any other university.

Francesco Pagnamenta

Dated: September 9, 2005

Permission to Lend and/or Copy

I agree that Trinity College Library may lend or copy this dissertation upon request.

Francesco Pagnamenta

Dated: September 9, 2005

Acknowledgements

I would like to thank my supervisor Declan O’Sullivan for his guidance throughout

this project. Thanks also to Ruaidhri Power of the Knowledge and Data Engineering

Group (KDEG) for his help.

Special thanks to my family and friends, and to the Balzli family for their support

here in Dublin.

Finally, I would like to thank the NDS class for an enjoyable year.

Francesco Pagnamenta

University of Dublin

September 2005

iv

Abstract

Techniques for distributed relational database systems have been well researched

and developed. This is unsurprising given that the relational database model itself

has been in development since the early 1970s. In recent years, XML has emerged

as an excellent simple format for structuring and exchanging data, and the prob-

lem of using relational databases or specially designed ”native” XML databases for

managing XML data has also been gradually addressed. However, although some

research has gone into providing techniques for different parts of the distributed

XML database problem, very little research has gone into trying to put these tech-

niques together in order to create a distributed XML database platform.

This project investigates the design issues that need to be addressed for the imple-

mentation of such a distributed XML database platform. It surveys the state-of-

the-art of XML-based technologies that can be adopted and mechanisms that can

be used.

The dissertation proposes a layered architecture with a data access infrastructure

at the bottom layer able to integrate different types of databases supporting XML.

Acting on the top of the access infrastructure, three main functional components

are proposed: a distributed transaction manager, a distributed query processor, and

a distributed schema manager. Additionally, support for distributed transactions

has been designed and implemented.

The project includes an initial implementation of the system. The evaluation of

the implementation shows that an XML-based multidatabase system is conceivable.

However, it emerged that some techniques required for achieving an efficient XML

distributed database have to be enhanced.

v

Contents

Acknowledgements iv

Abstract v

List of Figures ix

List of Tables x

Chapter 1 Introduction 1

Chapter 2 Background and State-of-the-Art 6

2.1 The eXtensible Markup Language (XML) on Databases 6

2.2 XML Databases . 10

2.2.1 Moving Toward XML Databases 11

2.2.2 Transaction Processing on XML Data 13

2.2.3 XML Distributed Databases 14

2.3 Distributed Transaction Processing 17

2.3.1 Implementing Distributed Transactions 17

2.3.2 X/Open Distributed Transaction Processing (DTP) Model . . 20

2.3.3 Examples of Distributed Transaction Technologies 21

Chapter 3 Design 23

3.1 Vision . 23

3.2 System Overview . 24

3.3 Requirements Analysis . 25

3.3.1 System Requirements . 26

vi

3.3.2 Infrastructure Requirements 29

3.4 System Architecture Revisited . 30

3.5 Design of the Platform Components 30

3.5.1 Connectivity Layer . 31

3.5.2 Distributed Query Processor 35

3.5.3 Distributed Transaction Manager 39

3.5.4 Distributed Schema Manager 42

3.5.5 Client Access Layer . 44

3.6 Interaction between DTM and DQP 44

3.7 Design Issues . 47

Chapter 4 Implementation 48

4.1 Implementation Overview . 48

4.2 Databases . 48

4.3 Libraries . 51

4.4 XDDBMP . 52

4.4.1 Oracle and XML-RPC Client Side Connectivity 52

4.4.2 Distributed Query Processor 53

4.5 XDBME . 56

4.5.1 XML-RPC Server Side Connectivity 56

4.5.2 SleepyCat Binding . 57

4.6 Platform utilities . 57

4.7 Implementation Issues . 59

Chapter 5 Evaluation 60

5.1 Benchmarking XML Databases . 60

5.2 Experiments Overview . 61

5.3 Global Evaluation . 61

5.4 Transaction scheduler comparison . 65

5.5 General Discussion . 68

vii

Chapter 6 Future Work and Conclusions 69

6.1 Future Work . 69

6.2 Conclusions . 70

Bibliography 74

Appendix A SimpleXQueryX Example 79

Appendix B Query Processing 81

B.1 Oracle Query Translator . 81

B.2 SleepyCat Query Translator . 82

Appendix C Transaction scheduler 84

Appendix D XML Documents 87

viii

List of Figures

1.1 Vision of the system. 4

2.1 Global schema view of a multi-database system. 15

2.2 DTP model. 21

3.1 Overview of the platform. 24

3.2 Architecture of the platform. 25

3.3 Architecture of the platform revisited. 31

3.4 XAResource interface on the platform. 33

3.5 Connectivity layer interfaces. 34

3.6 A layered view of the platform. 35

3.7 Query fragmentation and mapping. 38

3.8 Database content scenario. 40

3.9 Case study - a transaction execution. 41

3.10 Distributed schema manager architecture. 43

3.11 Class diagram of the platform’s core. 45

3.12 Sequence diagram of a transaction execution. 46

4.1 Implementation overview. 49

5.1 Documents stored on the databases for the evaluation. 62

5.2 Response time comparison. 64

5.3 Response time for each schedulers. 67

C.1 Scheduler class diagram. 85

ix

List of Tables

3.1 Database Requirements . 30

3.2 Case study: a trasaction definition 40

4.1 Surveyed databases . 49

4.2 Implemented data manipulation operations 54

5.1 Global Evaluation Transactions . 63

5.2 Transaction definition for the schedulers comparison 66

x

Chapter 1

Introduction

The eXtensible Markup Language (XML) [1] is a data model language for docu-

ments which was created to structure, store and send information. It was originally

designed to deal with large-scale electronic publishing, but it has become a popular

text format for data exchange across the Web and other networks.

Considering that it became a WWW Consortium (W3C) [2] recommendation in

1998, a surprising number of software vendors have adopted this standard and its

success appears to continuously grow. In fact, it has been widely adopted for a wide

range of applications such as health-care, manufacturing, financial services, govern-

ment and publishing sectors. XML and XML based standards such as Web Services

seems to emerge as the de-facto mechanism for exchanging structured information

between organizations and more generally applications.

Because of its success, there is the increasing need to store XML data as it is,

in order to skip the data conversion process required to use traditional databases.

Nowadays, many popular XML-enabled databases1 provide the ability of storing and

retrieving XML data through a data format converter. Alternatively, some database

products and open-source initiatives are designed to accommodate data in a native

1Database Management Systems that do not use a hierarchical data model but they are extended
with some sort of data model converter (e.g. Relational DB with an XML connector)

1

format (native XML databases2). Although the research in this area is in the early

stages, XML native database systems are making their appearance into the world

of academia and the IT market.

Motivation

Oracle, one of the major vendors of databases, claims on its website that ”in the fast

moving world of IT technology, the W3Cs XML standards rank second in terms of

popularity behind ANSI/ISOs SQL standard”. Nowadays, relational databases are

considered the most deployed repository systems, but it is not excluded that in the

future XML-native databases will be more popular. It is true that the research in

this area is picking up producing a number of studies investigating various aspect

of this data format and related technologies, from the lowest levels (e.g. concurrent

access to XML documents) to the higher ones (e.g. involving Web Services [3]).

The emergence of technologies designed to operate in a distributed environment

and relying on W3Cs recommendations has pushed the research community to study

the distribution of XML data. However, because basic concepts are not fully avail-

able, not much research has been carried out considering a distributed environment.

The motivation behind this project is linked to the current state of this novel

research field in which many mechanisms have not been studied in detail and/or

commonly recognised. In particular, apart to some extent for technologies oriented

toward Web Services, it has not been found any relevant work describing the issues

that have to be addressed to distribute XML repositories. Those research topics

include distributed transaction processing, query processing and global schema on

XML-oriented multi-database systems.

2Apart from being a marketing term, it has never had a formal technical definition [20]. A
native XML database can be considered a database designed following a hierarchical data model
and typically accessible with XML-based data manipulation languages.

2

Goals

This project aims to investigate several aspects related to the distribution of XML

documents on data sources. Particular emphasis is put on distributed transaction

processing. Related aspects such as query processing and global schema representa-

tions are also considered.

The project is application oriented since it aims to design an XML-based dis-

tributed database system. The first phase of the project produces a state-of-the-art

of the research area surveying technologies that are involved. Then, a platform

is designed developing the concept illustrated in Figure 1.1. The platform features

three main components: a distributed transaction manager, a distributed query pro-

cessor, and global schema manager. Those components reside on top of a software

infrastructure providing location transparency to the remote databases on which

data is physically stored. In the example, the platform integrates three database

management systems of which two of them uses a different data models other than

XML (relational and object), but they both hold a data model converter.

Provided the global schema, a client application can therefore query/modify the

platform’s data as if it was a local database. Global data consistency is guaranteed

by distributed transactions, while location transparency is provided by mechanisms

implemented in the distributed query processor.

Additionally, the project’s objective include a partial implementation of the plat-

form permitting a more concrete investigation of the studied methods as well as an

evaluation of the adopted techniques.

Contributions

The main contributions of this work can be summarised as follows:

• Design of an XML-based multi-database system describing how a transaction

manager, a query processor, and a schema manager can cooperate to provide

the services required by external applications.

3

Figure 1.1: Vision of the system.

• A partial implementation of the platform featuring a transaction processor

and a basic query processor. The platform accesses two database products

using different access methods.

• The implementation of a simple connectivity supporting distributed trans-

actions. Hence, a database management system (not supporting distributed

transactions) is integrated into the platform using the developed client/server

communication system as well as a distributed transaction module operating

on the top of the repository.

• An evaluation of the implemented platform indicating that an XML multi-

database system is conceivable.

4

Dissertation Outline

Chapter 2 introduces the research field and presents the recent advances that have

been achieved in recent years. It also briefly reports an overview of techniques used

for previous databases that can be re-used in an XML environment. A number of

technologies and systems are also presented.

The design of the platform is reported in Chapter 3. It is initially presented the

main architecture of the system with its major components. Every component is

than described in the subsequent sections.

Chapter 4 explains what of the platform designed in Chapter 3 has been actually

implemented. Chapter 5 contains two experiments for evaluating the implemented

system. Chapter 6 lists future work in this area and draw conclusions.

5

Chapter 2

Background and State-of-the-Art

This chapter reports some fundamentals of XML database systems as well as the

state-of-the-art techniques related to this new technology. As already mentioned

earlier in this report, the research on XML databases is in the early stages. Only

recently the scientific community has started to investigate this field, usually taking

advantage of previous well-studied database technologies to use as a base to advance

novel mechanisms applicable to this area.

2.1 The eXtensible Markup Language (XML) on

Databases

XML appeared in the late nineties following several similar formats having same

principles and purposes. Although it became rapidly popular among the scientific

and commercial communities, XML is not a revolutionary idea; it was even not a

new idea at that time. It came along with the boom of the Web and its applications.

XML was introduced as a standard at the right time by an independent body, the

WWW Consortium (W3C). Its predominant employment as a data exchange format

on the Internet and elsewhere pushed the development of XML data repositories.

6

XML data definition languages

Document Type Definition (DTD) [4] defines a document structure with a list of

legal elements. Although its simplicity, it lacks of important features required by the

increasing number of applications that rely on the XML standards. For instance,

DTD does not include a direct way to define types (e.g. integer, string, etc.). In

order to overcome this and other limitations, in 2001 the W3C approved a new

definition language named XML Schema [5]. XML Schemas provide a powerful

mean for defining the structure, content and semantics of documents. The syntax,

unlike DTDs, is expressed in XML allowing, theoretically, XML Schemas to be

processed as their instances.

Structured, Semistructured, and Unstructured Data

The information stored in a database is known as structured data because it has to

obey strict definition rules. Typically, when defining tables on a relational database,

for each column, it has to be rigorously defined the type and, if required, its con-

straints. However, some applications may require a more relaxed approach where

new data items can be added at any time. This type of data is described as semistruc-

tured (sometimes also referred as self-describing data). A key difference between

structured and semistructured data is how schema constraints are defined and ap-

plied: structured data complies with schema directives whereas in semistructured

data the information that is normally associated with a schema is contained within

the data. Finally, a third category, known as unstructured data, has very limited

indications of the type of data (e.g. an HTML page).

From a database perspective, one of the key decisions to be made is either to use

a structured or an unstructured storage. XML-enabled and XML-native databases

often provide the ability to store both categories. For a company, it might be nec-

essary to simply store an entire document, no matter what its structure is. In

contrast, applications might need to validate data against a schema before storing

it. On Tamino XML Server [6] documents can be stored in collections residing on

7

databases. Both documents and collections are defined through XML Schema an-

notations. Whenever inserting or modifying data, the operation can be performed

only if it is in accord with the schema constraints.

The semantics expressed by schemas can also be used for optimisation purposes.

Semantic query optimisation relies on constraints defined on the database schema

to modify a query into another query that is more efficient to execute (query rewrit-

ing). [24] explains how to achieve a higher degree of concurrency when performing

transactions by exploiting the semantics expressed in DTDs.

XML Processing

A software module called an XML processor is used to read XML documents and

provide access capabilities to their content and structure. An XML processor is

typically operating on behalf of another software module which provides services

to external entities. The specification of an XML processor describes its behaviour

in terms of how it reads XML data and which kind of information it provides to

the application. The two dominant specifications for handling XML documents are

the Document Object Model (DOM) [7] and the Simple API for XML (SAX) [8].

DOM, which is a W3C standard, provides an object tree-based representation of the

document; whereas SAX, a de facto standard, provides an application interface that

exploits events occurring on a XML data stream model (e.g. open tag, closed tag,

end of the document, etc.). The two processors are chosen according to the applica-

tion requirements. SAX is more indicated to pass through a document in read-only

mode. In contrast, DOM features read and update functionalities but it is known

to be quite slow because of the system resources it needs. Since both specifications

are designed to be platform- and language-independent, they are included in most

programming languages.

The Extensible Stylesheet Language Family (XSL) [9] is a set of recommendations

for defining XML document transformations and presentations. It embodies a lan-

guage for transforming XML (XSL Transformations, XSLT), an expression language

used by XSLT to access or refer to parts of an XML document (the XML Path

8

Language, XPath [10]), and a language for formatting information for paginated

presentations (XSL Formatting Objects, XSL-FO). As for XML Schemas, XSL is

expressed through an XML syntax.

A weakness of XML processing involves its performance impact on systems, princi-

pally because its operations are processing intensive. Parsing is therefore considered

one of the major barriers for the development of high-performance XML-based tech-

nologies including XML databases [26] in which, as for any database, high-speed data

access is a crucial concern.

XML data manipulation

In [30] a group of researchers in the field reports the experience in designing and

implementing XML query languages. It emerged that two communities are con-

tributing to the development of such language: the database community which is

more concerned about the requirements of large repositories, and the document

community which put more emphasis on integration and full-text search on single

documents. This scenario may suggest the difficulties the W3C have to face to even-

tually come up with a solution that optimally satisfy both communities.

XL [11] is a language produced by the document community. It is quite similar to

the W3C’s XPath. The XML-QL [12] language introduced by the W3C was another

solution providing data manipulation capabilities.

More recently, the W3C XQuery [13] standard integrates the features of previous lan-

guages and currently, looking at the features of XML-native or -enabled databases,

it seems to be a good solution (at least for querying data). XQuery relies on the

XPath language to access part of an XML document.

An XQuery feature to mention is the ability of construct query results by material-

ising XML data with a high level of flexibility. This is achieved with the FLWOR

expression principle (pronounced ’flower’ standing for For, Let, Where, Order by,

Return) that supports iteration and binding of variables to intermediate results.

The W3C has defined the XQuery Update Facility Requirements in order to make

XQuery a full data manipulation language, just like SQL for relational databases.

But the fact remains that, at this stage, there is not a commonly agreed language

9

or language extension to update XML documents. Quite a lot of works have been

carried out either to extend existing access languages or to propose new ones.

The XML:DB Initiative [14] aims to develop technology specifications for man-

aging data on XML Databases. In the XML:DB framework, the XUpdate Project is

intended to specify an Update Language for XML Documents via an XML syntax,

the goal of the XML Database API Project is to develop an unique programming

interface for XML Databases, and, finally, a working group has designed a common

syntax and semantic for performing tasks on XML repositories (the Simple XML

Manipulation Language).

Few open-source databases have adopted the technologies proposed by the XML:DB

(e.g. eXist [15] and Apache Xindice [16]) initiative but it appears the commercial

database vendors tend to use a proprietary language while waiting for W3C stan-

dards. Oracle XML DB [17] includes an SQL-like extension for access and update

XML documents. The recent release 10 also fully supports XQuery. A DBMS may

also provide other kind data manipulation such as DOM and XSL. Oracle XML DB

provides a DOM access interface to manipulate XML data stored on the database.

2.2 XML Databases

A database is a collection of shared data. A Database Management System (DBMS)

is a software that allows databases to be defined (e.g. data types, structures, con-

straints, etc.), constructed (i.e. populating the database), and manipulated (i.e.

querying and updating data) [47]. In few words, a DBMS provides all tools neces-

sary for managing a database.

A data model is the level of abstraction that hides low-level mechanisms controlling

the native data representation over the physical storage. Data definition and ma-

nipulation is then performed via high-level operation applied on the data model. A

very common conceptual data model is the relational one which organises data in

tables and relations among items contained in tables. A data definition language

(DDL) is expressed via a syntax suitable to represent the data model. A data ma-

10

nipulation language (DML) consists of two operation sets; data querying and data

updating. In relational databases the structured query language (SQL) is used to

both query and update a database. As already mentioned previously, up to now, the

hierarchical data model does not dispose of a standard data manipulation language

that integrates querying and updating facilities.

2.2.1 Moving Toward XML Databases

Recent advancements in the development of XML native databases management sys-

tems [20] such as Tamino [31] or Timber [32] confirms the trend: XML documents

will not only be exchanged, but they will also be stored. In addition to the en-

trance of such databases in the world market, most of the commercial XML-enabled

databases include converters. Because of this, users may be unlikely to abandon

technologies that have been studied for a long time in the past and, as it is the case

of the relational database technology, they are based on strong theoretical basis.

The difference between XML-native and XML-enabled may be quite vague, es-

pecially because it is believed that the term native XML databases was introduced

for marketing reasons [20]. In any case, XML-enabled databases can be considered

repositories that were not initially designed to store data in a hierarchical manner,

but they provide an additional data format converter in order to support the XML

standard and related technologies. [20] reports a possible definition of a native XML

database based on the following three concepts:

• it defines a (logical) model for an XML document, and stores and retrieves

documents according to that model.

• it has an XML document as its fundamental unit of (logical) storage, just as

a relational database has a row in a table as its fundamental unit of (logical)

storage,

• and it is not required to have any particular underlying physical storage model.

11

Several vendors of native XML databases claim their product support transac-

tions (and presumably support rollbacks). However, locking is often at the level of

entire documents, rather than at the level of individual nodes, so multi-user concur-

rency can be relatively low.

The research community is carrying out a noticeable effort to investigate effi-

cient and reliable ways to publishing relational data as XML and vice-versa [33]

[34]. Despite the achievements, in some cases, mapping the model is not enough.

For example, running a transaction virtually following a hierarchical data model but

actually on a relational database having locking mechanisms designed for relational

databases might cause locks to be applied with an unnecessary granularity, leading

to performance degradation. This example is known in the literature as pseudo-

conflict that results in low inter-transaction parallelism [23].

Surveys have shown that data represented in XML and stored in a text file is

three times the size of data in Java objects or in relational tables [40]. Adding to

this the fact that the use of XML generates higher overhead comparing to other rep-

resentations, XML itself is not the best data representation for databases. Hence,

database developers have to devise techniques that make the XML data represen-

tation more adapted for this purpose. Other than reducing the disk space required,

various optimisations should be applied including memory management, XML pars-

ing optimisations, node searching optimisations, and type conversion [40].

To improve data access, xml databases support the creation of indices on stored

data. Indices, just as other DBMS, can be used to improve the speed of query

execution. The details of what can be indexed and how indices are applied will

vary widely between products, but most support the feature in some form. Another

feature required for some applications is the ability of DBMSs reacting when some

events occur (active databases). A number of DBMS includes some form of trigger

in their products; so does Tamino XML server.

12

2.2.2 Transaction Processing on XML Data

Transactions are a key concept to guarantee reliability of information systems and

data consistency in the presence of system failures and interleaved access to shared

data. They must be carried out so that their effect on data is serially equivalent.

In order to support transactions, a DBMS has to implement a series of mechanisms

that may depend on the storage model adopted on the database.

Storage and locking mechanisms

At present, there are essentially three possibilities of storing XML documents [24].

The simplest option and, from the performance point of view, also the worst, is to

use an ordinary file system. In this scenario, locks are applied to entire documents

causing poor concurrent access. The second alternative is to rely on an existing

object or relational database. In the case of relational database systems, there are

different translation mechanisms. Even if the translation technique is well engi-

neered, it is not always the same for concurrent access since different document may

share tables resulting in a too restrictive locking mechanism. The only translation

scheme, in which tables are not shared, stores XML documents in Character Large

OBjects (CLOBS). But again, locking is applied at the document level.

The third option is to adopt or implement an XML base management system

(XBMS). In brief, it is possible to re-use well-studied techniques but, while they

still guarantee serializability, they generally do not allow a sufficient degree of con-

currency.

A native XML native DBMS attempts to implement node-level locking. Node-level

locking is hard to achieve since it usually requires locking a parents node, which in

turn requires locking its parent, and so on back to the root, ending up locking the

entire document.

So, studied in depth in the past, lock mechanisms returned in the centre of atten-

tion in the context of XML. Grabs and al. [23] describe DGLOCK, a lock protocol

acting at the application level, and the respective transaction manager XMLTM.

13

XMLTM, which was build on the top of a relational database, allows running trans-

actions at low ANSI isolation degrees and to release database locks early, preserving

the same semantics of the original transaction. In [24], it is presented an evaluation

of four different core protocols for synchronising access and modifications of XML

document collections. Generally speaking, there are quite a lot of lock mechanisms

that have been proposed in the literature, having often in common the adoption

of XPath as a means to define where the lock has to be applied (path locks). In

the work reported in [25], Dekeyser and Hidders improve upon earlier work by in-

troducing a new conflict scheduler for XML databases that uses path lock conflict

rules.

2.2.3 XML Distributed Databases

XML data exchange among applications means decentralisation of information and

as a consequence the distribution aspect of XML data is destined to play an im-

portant role. Application such as Web services, e-commerce applications, or the

management of large-scale directories are nowadays deployed on the Internet. In

addition, the need of interoperability among distributed applications makes XML a

good candidate acting as a universal language that every system can comprehend.

Nevertheless, distributing data over several sites implies many challenges [43] in-

cluding heterogeneity, openness, security, scalability, failure handling, concurrency,

and transparency. Those concerns have to be addressed like it has been done for

other system in the past. The research community is investigating those concerns

piece by piece completing the puzzle that will make XML databases reliable as its

predecessors.

From an application point of view, the principle of a distributed database or

multidatabase remains unchanged. In an ideal scenario, the conceptual architecture

looks like Figure 2.1: the application client disposes of a global schema view pro-

vided by an integration component (middleware) which is connected to one or more

DBMSs.

14

Figure 2.1: Global schema view

The DBMSs can be of different vendors and different data model, each of them

disposing of a local schema. The global schema may include XML Schemas that are

not the same as local ones. But a global XML Schema can be computed from local

ones. In other words, the global schema is a view of local schemas. The middleware

is charged for managing the connections to remote databases providing a so called

location transparency [46]. Thus, the middleware provides all the conversion routines

to integrate the connected systems.

Concerning transactions, although the design theory of distributed databases may

seem complex, it is actually surprisingly simple [46]. The concurrency control at each

site is either a strict two-phase commit locking pessimistic or an optimistic control

(provided by DBMSs). The synchronization at commit time among different sites

is then managed by a two-phase commit protocol. Global deadlocks, which might

arise when adopting a pessimistic control, can be detected using timestamps, waits-

for-graphs, or timeouts.

15

Previous work

Although the distribution of XML repositories is undoubtedly important, so far,

only few papers have been published in this field. A possible explanation is that

researchers are concentrating on more fundamental mechanisms for local systems,

to be eventually extended in a distributed framework. Only recently, the research

community has started to focus on this field mainly because of the popularity of dis-

tributed XML applications such as Web Services. There are also efforts for putting

forward new technologies to facilitate the distribution of XML documents such as

XML Fragment, a W3C recommendation enabling to exchange portions of docu-

ments.

The work presented in [22] proposes a complete framework designed for distributed

and replicated dynamic XML data. In [21] the researchers focus on storage efficient

index structures suitable for query evaluation in a distributed context; additionally,

they describe the principles of a distributed query processor based on the concept

of index shipping. Again, several works has been proposed to integrate XML and

relational databases in a distributed fashion (usually following relational design pat-

terns) but not in a pure XML context.

Distributed schema

The simplest way to distribute XML data is to organize them in documents and col-

lections residing at different sites. The organization of data may depend on various

factors such as transaction processing requirements or cost models. Consequently,

the data modelization process may help to make some decisions regarding how to

fragmentate data and how it will be distributed (e.g. horizontal/vertical/mixed

fragmentation for the relational model). During the background research, it was not

found a data modelization guideline for a hierarchical data model.

Distributed Query Processing

The metrics for evaluating distributed query processing are usually the execution

cost and the response time [44]. An inefficient query optimizer could have serious

16

repercussions affecting the overall system performance. The aim of a query optimizer

is to minimize redundant and unnecessary operations and find an optimal execution

plan in order to perform the query as fast as possible. The relational model can rely

on well-studied methodologies aiming to transform a query in a set of more efficient

sub-operations executed in a computed order (e.g. relational normalization theory).

[36] proposes an algebra for XML query optimization. [35] describes the query

processor and its query optimizer having query execution strategies based on logical

and physical query plans, database statistics, and a cost model. They also describe

how to use heuristics for optimization purposes.

2.3 Distributed Transaction Processing

A distributed transaction involves a set of software entities which rely on an atomic

commit protocol in order to reach a common agreement regarding the final outcome.

A distributed transaction can be flat (i.e. one to many) or nested (i.e. one to many,

many to many). Typically, a distributed transaction has a coordinator (or manager)

and one or more participants.

2.3.1 Implementing Distributed Transactions

Implementing distributed transaction means ensuring the following [46]:

• Atomic Termination. Either all participants of a distributed transaction

must commit or all must abort.

• No Global Deadlocks. There must be no global (distributed) deadlocks

involving multiple sites.

• Global Serialization. There must be a (global) serialization of all transac-

tion (distributed and local)

The followings sections cover these three points.

17

Atomic termination

To achieve global atomicity, a distributed transaction can commit only if all of its

sub-transactions agree to commit. Because participants are located on different

sites, an atomic commit protocol has to be adopted in order to reach a global con-

sensus concerning the final outcome of the global transaction. The measures which

are part of an atomic commit protocol are set according to a model defining unex-

pected events of different entity that can occur at any time. Failures models have

been extensively researched in the past.

The Two-Phase Commit Protocol [29] was proposed in 1978 to face the strict

requirements of distributed transactions; if one part of the transaction has failed,

the overall transaction must be aborted.

The protocol is composed of two phases. In the first phase, a voting session takes

place in order to assess whether the whole transaction can be committed or has to

be aborted. In the second phase, every participant in the transaction carries out the

decision agreed in phase one. Once a participant has voted, it can not change its

mind and it must eventually, even in case of failure, carry out its part of the trans-

action according to the global decision. A participant is said to be in a prepared

stated if it is ready to commit its part of the transaction.

The 2PC is a blocking protocol since, in case of site failures on the software entities

involved in a distributed transaction, resources may be blocked until the overall

system is repaired. A non-blocking alternative called three-phase commit protocol

(3PC) has been put forward. It can handle site failures by introducing a third phase

permitting participants to find out the final decision of the transaction from other

participants that may have received this or other useful information from the coor-

dinator, before being unavailable.

The two-phase commit protocol ties together software modules that may be pro-

vided by different vendors. For databases, a transaction manager (coordinator),

which can operate in a middleware, access a resource manager provided by, for in-

stance, a DBMS. The X/Open standard [19] has been conceived, among other things,

18

to encourage interoperability defining a set of function and messages formats needed

in a transactional scenario.

A Peer-to-Peer Atomic Commit Protocol might also be adopted to achieve the

atomic commitment of transactions. A set of messages are used by nodes to co-

ordinate a distributed transaction throughout two phases. A node associated with

an application program starts a transaction by defining a so called sync-point man-

ager. By exchanging messages, the initiator creates sync-nodes on other nodes

causing sync-points to spread over the network and eventually carry out the global

transaction.

Distributed deadlocks

Distributed deadlock can arise in a distributed environment involving transactions.

They have to be either prevented or detected and resolved. The simplest way to

detect deadlocks is by using timeouts. However, it is difficult to choose an appro-

priate timeout interval. Most deadlock detection schemes operate by finding cycles

in graphs representing the transaction (wait-for graph).

Global serialization

The simplest way to carry out a distributed transaction is to run transactions one

after the other in a serial order. Unfortunately, this serial execution results in an

unacceptably small transaction throughput. One way to improve performance over

serial execution and yet achieve isolation is to make sure that schedulers are serial-

izables. In a distributed environment, not only sub-transactions have to be serializ-

able, but there must be also some sort of global serialization over all participants.

But, surprisingly, global serializability can be achieved with no extra-mechanisms.

In fact, if each participant uses a strict two-phase locking protocol (implemented

in almost every DBMS supporting local transactions) to serialize transaction lo-

cally, and global transactions are committed using a two-phase commit protocol,

then global transactions are (globally) serializable in the order in which they are

committed [46].

19

2.3.2 X/Open Distributed Transaction Processing (DTP)

Model

The X/Open Distributed Transaction Processing model [19] is a software archi-

tecture that allows multiple application programs to share resources provided by

multiple resource managers, and allows their work to be coordinated into global

transactions. The X/Open DTP model comprises five basic functional components:

• an Application Program (AP), which defines transaction boundaries and spec-

ifies actions that constitute a transaction

• Resource Managers (RMs) such as databases or file access systems, which

provide access to resources

• a Transaction Manager (TM), which assigns identifiers to transactions, moni-

tors their progress, and takes responsibility for transaction completion and for

coordinating failure recovery

• Communication Resource Managers (CRMs), which control communication

between distributed applications within or across TM domains

• a communication protocol, which provides the underlying communication ser-

vices used by distributed applications and supported by CRMs.

X/Open DTP publications based on this model specify portable APIs and system-

level interfaces which facilitate interoperability. Figure 2.2 capture the interactions

among AP, RMs, and TM.

The Application Program (AP) is the software component that specifies a se-

quence of operations involving database resources. It generally represents the client

application. The Transaction Manager is charged to control transactions by address-

ing the concerns presented previously, either globally or locally. A resource Manager

(RM) may represent a DBMS and all its additional features.

20

Figure 2.2: DTP model - source: opengroup.org

2.3.3 Examples of Distributed Transaction Technologies

This section briefly describes two examples of distributed transaction technologies

that can be used to implement a distributed transaction system. The first is a

more traditional approach while the latter operate on the top of the more recent

technology of Web Services.

Java Transaction API (JTA)

JTA is part of the J2EE (Java 2 Enterprise Edition) framework. It describes transac-

tional interfaces that provide application developers with a service model conceived

to concentrate on the business logic of the application and have the transactional

logic delegated to the underlying software infrastructure. The model includes a Java

mapping of the industry standard XA interface based on the X/Open CAE Specifi-

cation.

An advantage of the JTA is that the four ACID properties are always maintained,

whereas, it can be argued that this is not an open model. In fact, the developer

might encounter interoperability issues when propagating a set of transactions to

other transaction services that do not share the same model.

21

WS-Coordination and WS-Transaction

Since Web Services rely on a stateless communication model, traditional transac-

tional frameworks relying on remote method invocation are not applicable. This has

been a major barrier to the deployment of application that uses Web Services.

Web Services Transaction (WS-Transaction) [41] is a new technology introduced to

provide transactional capabilities to the Web Services framework. WS-Transaction

is a specification which extends the Web Services Coordination (WS-Coordination)

specification to define cooperation among systems in order to support atomic trans-

actions. WS-Coordination is a coordination framework to enable distributed par-

ticipants to agree on a global outcome depending on their individual activities.

WS-Transaction defines coordination types, such as Atomic Transaction, which use

the WS-Coordination framework to define rules which both the coordinator and

participants must adhere to during their communications.

The main advantage of using this framework [42] is linked to the open nature of

Web Services. WS-Coordination capitalises on the portability of the Simple Object

Access Protocol (SOAP), used to call WS-Coordination operations. Therefore the

atomic transaction service of this framework (WS-AtomicTransaction) is language

and platform independent.

22

Chapter 3

Design

Based on the concepts and technologies presented in chapter 2, this chapter anal-

yses the requirement of a distributed XML database putting forward a conceivable

architecture. The proposed architecture is than examined in terms of its functional

components which are subsequently described.

3.1 Vision

The idea is to design and implement and integrated XML-based distributed database

supporting a global schema. The platform is designed to offer a high degree of

transparency allowing application clients to access data in an uniform way. DBMSs

fulfilling minimal requirements can therefore be integrated within the system by im-

plementing interfaces. The client access mechanisms are conceived to be language-

and system-independent by exploiting existing or upcoming XML-family standards.

Figure 3.1 illustrate the overall concept of the system.

Client applications query the platform knowing the global schema. The platform

process the user transactions containing queries defined in a standard access lan-

guage and it performs a series of queries and sub-transactions to distant databases to

retrieve/update data according to the client query. The application client may per-

form a series of queries executed in a distributed transaction so that global atomicity

is guaranteed.

23

Figure 3.1: Overview of the system.

3.2 System Overview

Technically, the platform is composed of three major components: a distributed

query processor (DQP), a distributed transaction manager (DTM), and a distributed

schema manager (DSM). Although they are conceptually distinct components, they

cooperate together attempting to perform operations in an efficient way. The query

processor may use semantics of the global schema to find a good execution plan or

to re-write queries in order to reduce the cost of their evaluation and execution. The

DTM might rely on the DSM and the DQP with the aim of optimally scheduling

distributed transactions. Figure 3.2 shows how the three components fit on the

platform.

DQP, DTM, and DSM operate on the top of an infrastructure which is charged of

maintaining connections and converting the platform representations into database-

specific formats. From a platform’s core prospective, each data source has the same

data model, the same data definition language, and the same data manipulation lan-

24

Figure 3.2: Architecture of the platform.

guage. In few words, the core views databases as they would be the same products

(a homogeneous system) while, in reality, the system may be composed of several

different databases (a heterogeneous system). Particular attention should be paid to

the performance aspect due to the massive use of XML parsing. Using an internal

XML-based representation is expected to represent a bottleneck on the system, but,

after all, this is the cost of building systems providing transparency.

The client access layer provides an interface to external applications. It allows ex-

tracting information regarding the global schema, query/modify the multi-database,

and define transactions boundaries. Additional features would include the ability to

define new virtual schemas and create new instances of the created schemas.

3.3 Requirements Analysis

This section analyses the requirements of the system. This analysis is the basis for

the design phase which inspects the main components.

25

3.3.1 System Requirements

The system requirements are analysed in terms of challenges that have to be met in a

distributed system including concurrency, failure handling, transparency, scalability,

openness, heterogeneity, security, and finally the eight forms transparency.

Concurrency

A multi-database provides access to shared data. While low level concurrent access

is ensured by DBMSs, global atomicity has to be guaranteed by the platform. A

priori, the two-phase commit protocol is chosen to coordinate transactions among

databases according to the X/Open Distributed Transaction Processing model.

Failure handling

Hardware and software failures can occur at any time at any part of the distributed

system. The platform must deal with failures by providing the following function-

alities:

• detecting a failure,

• handling the failure (either masking or tolerating),

• and recovering from failures.

Services can be made to tolerate failures by the use of redundant components.

However, this project will not analyse the replication of the platform. It is planned

to use log files to recover transactions from failures; the report will not provide

details regarding recovery procedures since it is estimated that those techniques has

been deeply investigated in the past and are still adapted for nowadays systems.

Scalability

A system is described as scalable if will remain effective when there is a significant

increase in the number of resources and the number of users [43]. In this context,

the number of users performing transactions and the number of databases involved

26

give an idea of the scale range. For large data repositories and a significant number

of users involved, a single platform is not expected to scale but a series of replicated

multi-databases would be more appropriate. In this last case, the system could rely

on nested or multilevel transactions, or eventually, it might fall into a peer-to-peer

category. From a first analysis, the following weaknesses have been identified:

• XML parsing in the core of the platform and elsewhere (XML connectors or

core of XML native databases),

• resources being locked by transactions,

• distributed deadlocks,

• and costly queries or queries involving large amount of data.

To scale, the platform have to include efficient algorithms to reduce performance

loss. An example could be, as presented in [23] but in a non-distributed environ-

ment, applying application level locks mechanisms for increasing concurrent access

to DBMSs. Another examples would consist in refining access predicates (i.e. XPath

statements) disposing of schema information by attempting to transform ancestor-

descendant relationships (denoted by ”//”) into parent-child relationships (denoted

by ”/”) which, in general, are more efficient when executed.

Openness

Openness is guaranteed by the use of interfaces and standard languages. New

database products can be plugged into the platform by implementing a series of

interfaces. The adoption of standards such as XQuery permits the infrastructure de-

veloper to implement the interfaces with little effort (no query translation required,

provided the database supports XQuery). Moreover, the platform is organized ac-

cording to a layered-based architecture with internal interfaces making it extensible;

an inter-layer can be added to support more functionalities or an upper-layer can be

built on the top of the existing ones in order to increase the degree of transparency

of the system. Those principles are conceived to achieve a so called open distributed

system [43].

27

Heterogeneity

The platform accesses remote databases through database drivers relying on Internet

protocols. In addition to this connectivity and because not all database drivers

supports distributed transactions protocols, the platform provides a connection with

a server operating in-between (i.e. on the top of the database, see section 3.4).

Security

No doubt that strong security is a fundamental requirement for almost any kind of

computer system. However, this report will not cover any security aspect since it is

out of scope of this research project.

Transparency

Transparency is an important concept in complex computer systems. The ANSA

Reference Manual and the International Standards Organization’s Reference Model

for Open Distributed Processing identify eight forms of transparency (partially cov-

ering the same concepts presented in the previous sections):

• Access transparency: local and distant resources are accessible using identical

operations through unified query languages and interfaces.

• Location transparency: high-level software components access call operation

provided by the underlying infrastructure which will propagate calls to distant

resource. As a consequence, application modules do not have knowledge of the

location of databases.

• Concurrency transparency: distributed transactions coordinated by the plat-

form’s transaction manager are executed in parallel, according to ACID con-

straints.

• Replication transparency: replication mechanisms could be put in place for

making the system fault-tolerant. Replication is not covered in this report.

28

• Failure transparency: traditional recovery techniques are part of the system

to deal with failures.

• Mobility transparency: provided the appropriate driver and the conformity

with the global schema, a database can be easily integrated in the multi-

database. Configuration files permit to dynamically load deployment-specific

parameters. Those expedients allow to quickly moving the database or the

platform elsewhere on another machine.

• Performance transparency: clear interfaces among components allow develop-

ers to improve or literally replace existing modules for performance purposes.

Configurations settings also grant system administrators to tune the system

according to the deployment context.

3.3.2 Infrastructure Requirements

The databases have to have some basic requirements for being integrated in the dis-

tributed database system. The first, most obvious, requirement is that the DBMS

have to support local transactions. A support for the two-phase commit protocol

within the driver would avoid writing infrastructure code. Then, it is suitable to

define specific requirements such as the locking granularity provided on the DBMS.

Ideally, locks should be applied at a node-level and not at the whole document.

It would be unacceptable to lock the whole document while a single transaction is

performing a modification on it. However, this is not always possible since most of

the XML-enabled apply locks to at the document level. Only few systems provide

node-level locking, mainly XML native repositories.

Finally, the multi-database could support additional ambitious functionalities in-

cluding the ability to define save points in case of long transactions or to support

schema modifications when a third party modify local schemas. The latter, apart

from being a very tough task, requires DBMS to support triggers. Those theoretic

features are not covered in this report.

Table 3.1 summarise the basic requirements of database to be integrated on the

distributed database system.

29

Feature Required Optional
Java driver X
Local transaction support X
Distributed transaction support X
Concurrency control at the element level X
Savepoints X
Triggers X

Table 3.1: Database Requirements

3.4 System Architecture Revisited

Following the requirement’s analysis, the system can be seen as two main software

aggregates: the main multi-database server, named XML Distributed Database

Management Platform (XDDBMP), and, in the case where a database does not

dispose of a remote connectivity driver, a second decentralized server. The latter,

called XML Data Base Management Extension (XDBME), operates on the top of

the database. Figure 3.3 depicts this concept.

XDDBMP contains the three managers mentioned previously (DTM, DQP, and

DSM) whereas XDBME encapsulates the decentralized software infrastructure charged

to translate the representations used on the core of XDDBMP as well as to provide

distributed transactional functionalities. The DTP model briefly introduced in 2.3.2

is used as a reference for the design and implementation of the entire system.

Note that this architecture mainly describes how the software is deployed and that

a database can be integrated on the multi-database either using the provided driver

(when available e.g. JDBC for Java) or the implemented connectivity using the

XML-RPC protocol (see section 3.5.1).

3.5 Design of the Platform Components

This section aims to describe the components introduced in Figure 3.2. For the

connectivity infrastructure and the platform components, it is presented the ar-

chitecture and the services provided to the upper layers. The user access layer is

30

Figure 3.3: Architecture of the platform revisited.

covered in terms of typical application scenarios.

3.5.1 Connectivity Layer

The communication stack incorporating the CRM, the OSI TP, and all its inter-

faces (see section 2.3.2) is implemented, when possible, following the directives of

the X/Open specification. The connectivity layer includes interfaces conceived to

provide an homogeneous access to the databases that have to be integrated.

Communication protocol

The XDDBMP communicates with XDBME via an underlying protocol that was

selected from the following candidates:

• SOAP (Simple Object Access Protocol)

• XML-RPC (XML Remote Procedure Call)

• A dedicated protocol specifically designed for the application using TCP sock-

ets

31

All protocols have advantages and disadvantages for this application. SOAP has

gained popularity as a protocol for Web Services. A downside of SOAP within this

project is that it requires a specific server (e.g. servlet container) to run.

Differently, XML-RPC is a simple interoperable protocol that can be used to imple-

ment a server and client from scratch using a library. A drawback of this protocol is

that it not suitable to carry complex data structures since it has a limited data type

support (not suitable for binary data). Designing a specific protocol using sockets

could lead to interoperability problems (serializing objects) in the case where the

system has to communicate with other peers.

From the performance prospective, the results presented in [28], which aims to

compare various aspect of a client-server implementation using XML-RPC and a

typical java client-server socket implementation, shows that the two alternatives

achieve the same performance in terms of small request/responses while XML-RPC

is slower when transporting large amount of data. Other language-dependent com-

munication technologies implementations such as Java RMI were not considered.

After analysing several aspects of the mentioned protocols, XML-RPC was selected

as the communication protocol between XDDBMP and XDBME essentially because

of its simplicity, portability, and performance [28].

Data access interfaces

The communication has to provide capabilities to execute read and write statements

associated with a transaction branch. The interface below is the Java mapping of

the industry standard XA interface based on the X/Open CAE Specification.

// javax.transaction.xa.XAResource

void commit(Xid xid, boolean onePhase);

void end(Xid xid, int flags);

void forget(Xid xid);

int getTransactionTimeout();

boolean isSameRM(XAResource xares);

32

Figure 3.4: XAResource interface on the platform.

int prepare(Xid xid);

Xid[] recover(int flag);

void rollback(Xid xid);

boolean setTransactionTimeout(int seconds);

void start(Xid xid, int flags);

In addition to the function required to run the protocol (start/end, prepare,

rollback/commit), the interface also includes functions for managing the resource

manager (timeouts and recovery). Note the parameter Xid, which identifies a

global transaction by wrapping both global and branch identifiers in a language-

independent object (identifiers are defined through a binary buffer). The XA inter-

face may be present at two different locations on the connectivity layer: in XDDBMP

just below the distributed transaction manager, and between XDBME and the re-

source manager of the DBMS being connected not having an XA support built in

the driver. Figure 3.4 shows where the XAResource interface is located on the plat-

form.

The use of XA interfaces in different parts of the platform is conceived to mod-

ularize the application, allowing, for instance, to develop an alternative communi-

cation stack using Web Services. Furthermore, it is also possible to build an XA

support for a DBMS behind XDBME without making changes elsewhere on the

software.

33

Figure 3.5: Connectivity layer interfaces.

The data access interfaces shown in Figure 3.5 laid the foundations of the con-

nectivity layer. There are three major interfaces: XMLDBDataSource, XMLDBX-

AConnection, and XMLDBConnection. XMLDBDataSource is a sort of factory

that, when initiated, provides an XMLDBXAConnection that contains XA capa-

bilities. An XMLDBXAConnection is able to generate an XAResource and an

XMLDBConnection. An XMLDBConnection conform object provides the means

to query/modify a database.

Note that in Figure 3.5 the XA interface does not contain the method defini-

tions presented previously. According to the class diagram, an XMLDBConnection

and an XAResource instances are always associated with a XMLDBXAConnection.

As a consequence, a statement will be executed in a transaction context (XARe-

source). This concept was inspired by the JTA infrastructure (see 2.3.3) including

the Connection interface and relative data source factories. By the way, this was

designed for performance purposes implementing connection pooling embedded in

the database driver.

The layered view in Figure 3.6 presents the overall communication stack. It shows

the two communication variants: either a XML-RPC or a socket based connectivity

(JDBC). On the top of the stack there are the high level components including the

client access layer and the DTM/DQP/DSM modules. The managers are bound

to the infrastructure with the data access interfaces. Again, there might be more

connectivity alternatives in addition to the XML-RPC and the socked connectivity.

The XA support for the XML-RPC connectivity is implemented behind the access

interfaces along with the local query processor charged to translate, if necessary,

34

Figure 3.6: A layered view of the platform.

the data manipulation language defined on the platform into that of the database

product.

3.5.2 Distributed Query Processor

Query processing involves a series of operations that range from the validation of

the syntax to the execution of a query. In a distributed environment the query

processing procedure requires few additional steps because a statement must be de-

constructed into sub-queries according to directives indicating on which database a

sub-query has to be executed. It may also require an arbitrary execution order (i.e.

query scheduling) and an optimization of the statement (i.e. query optimization).

Distributed query processing will go hand in hand with the schema manager and

the transaction manager to validate deconstructed queries and to eventually dele-

gate them to the appropriate databases. The DQP performs the following major

operations when treating a query:

1. query validation,

35

2. query fragmentation/mapping,

3. query optimization,

4. transformation of the query into an internal representation suitable for the

DTM,

5. and execution of the query.

Query validation

If at present XQuery would include update operations, it would be the best can-

didate to use for the platform. Unfortunately this is not the case, but the W3C

XML Query Working Group intends to add support for updates in a future version

of XQuery (XQuery Update Facility). Since XQuery can also be expressed with

an XML representation, known as XQueryX, it is expected that there will be an

XML version for XQuery Update too. XQueryX, being an XML-base language, is

associated with an XML Schema that can be used for validation. Despite the fact

that an XML-based query language may lead to processing overhead comparing to

an SQL-like language (’normal’ XQuery syntax), XSL could be used to process the

transaction definition. No studies have been found comparing the performance of

both approaches.

A query/update statement is generally validated by the platform by consulting the

global schema it holds, and before being executed, by the DBMS. If a query is not

conforming to the global schema, the query is not executed and the global transac-

tion aborted.

Query fragmentation and mapping

Location transparency involves some sort of mappings on the system. Transparency

is achieved in a two-layer scheme as depicted in Figure 3.7. The lower layer, logically

map a query with the respective database while the upper layer works with the DSM

in order to provide more abstraction by omitting any location indication.

The mapping at the lower level is done by using a modified version of the XML

36

Namespaces Recommendation. XML Namespaces are a W3C standard allowing

element type names and attribute names to be qualified with a URI, preventing from

confusing two elements that have the same name but different meanings. Although

it can be argued that XML Namespaces are confusing (the URI does not point

to any resource), it is a sufficient schema to deal with a distributed environment

(Web Services also rely on Namespaces). The idea is to identify databases with a

namespace-like definition as reported on the above example:

docnamespace=

”xmldb://kdeg.cs.tcd.ie/oracleserver/oracledatabase/collection1/document.xml”

Essentially, the main difference between a standard namespace and the pro-

posed definition is the ’virtual protocol’ (’xmldb’ instead of ’http’) and the fact

that part of the namespace gives indication of the database and, to a certain ex-

tent, its organization. But not on its location! In the small example above, it is

possible to infer that the query will be executed on the database ’oracledatabase’,

on the collection ’collection1’, and on the document ’document1.xml’. In contrast

’kdeg.cs.tcd.ie/oracleserver’ is not the real location of the database; it is just a way

to encourage the definition of unique namespaces on the multi-database system with

a familiar means such as Internet domains. The actual location is specified on a de-

ployment descriptor consulted by the platform when starting up. The definition

on the deployment descriptor has to match with that of the queries handled at the

lower level of the query processor.

The upper layer simply provides the mapping between the global schema and the

internal namespace representation using standard namespaces. Figure 3.7 illustrates

the journey of a set of queries through the query analyser module.

The introduced namespace model permits to achieve a unique high-level storage

model that is not currently common for XML repositories. One may take for

granted the fact that a RDBMS can have essentially several databases including

tables. Currently, XML native databases stores data in collections (or containers)

while some XML-enabled relational databases stores XML documents in tables or

in other entities. For instance, Oracle stores XML documents in a special table

37

Figure 3.7: Query fragmentation and mapping.

of type ’XMLType’. A unique storage scheme defining the basic storage entities

as database, collection, and document allows integrating any XML database that

could have a different data organization but, in some way, it can be converted in

the common view.

Query optimization

The platform may include a query optimization component acting at a various level.

It could operate at a single database level attempting to optimize ready-to-execute

statements. Alternatively, it could act at global levels, optimising querying by ex-

tracting some semantics from the sequence of operations.

Of course, query optimization and query languages more in general are other chal-

lenging research areas that are not be investigated in this project. Section 2.2.3 lists

a couple of relevant papers that cover this topic.

Internal representation and execution

The query processor takes the chance to transform the sequence of statements in

an internal representation, which is described later on in section 3.6, suitable for

further internal processing by the DTP. In fact, as already mentioned, XML pars-

38

ing is expensive in terms of processing and consequently an important goal is to

parse the transaction definition and the queries a single time. The object-oriented

internal representation and related functionalities are composed of appropriate data

structures to quickly obtain information regarding properties of a query.

The DTM exploits the representation to build an execution plan and eventually

execute the queries. An example of a functionality provided by the object represen-

tation is the ability to know within a short delay, given two update object statements

U1 and U2, whether or not U1 and U2 attempts to update the same node or an

ancestor-descendent node. The goal of the described and other functionalities is to

speed up the transaction processing step.

3.5.3 Distributed Transaction Manager

The DTP is responsible for designing each global transaction so that it is performed

correctly guaranteeing isolation (ACID properties). The DTM handles transactions

at the global level and at a sub-transaction level. At a global level, the software

module deals with distributed transactions attempting to access data on the remote

databases. As the concurrency control is performed on each remote database, the

DTM has to control the two-phase commit protocol and the distributed deadlock

monitor.

At a sub-transaction level, the DTM can execute statements, when possible, in

parallel. For instance, if an update statement of X on DB1 does not depend on a

read statement of Y on DB2, then the two statements may be executed concurrently

and independently on the respective databases. During this and other analysis, it

could be a good opportunity to seek potential deadlock situations in a transaction

definition. More generally, distributed deadlock, which might arise as the result of

waits imposed by pessimistic approach at a global level. It can be resolved using

timeouts, timestamps, or wait-for-graph representations.

39

Figure 3.8: Database content scenario.

The transaction component should be developed in a way that it can be easy

to change transaction scheduler. Thus, a sequential scheduler will be implemented

as a reference for performance experiments. It is also expected to develop a more

advance scheduler attempting to run tasks in parallel. The transaction scheduler

uses the technique of grouping statements that can be executed in parallel in steps.

Let us consider two database, DB1 and DB2, having respectively elements A;B;C

and X;Y;Z depicted in Figure 3.8. Now, consider the transaction definition on Table

3.2.

Transaction
write(DB1, read(DB2, X))
read(DB1, B)
read(DB1, C)
read(DB2, Y)
write(DB2, read(DB1, D))

Table 3.2: Case study: a trasaction definition

With a step-based execution approach, the first write operation can be executed

in parallel with the dependant read operation but they both have to synchronize at

the end in order, for the write operation, to obtain the result of the read statement.

This operation could be executed in a sequential way too, since the write statement

has to wait for the result of the read statement anyway. The three independent read

operations can be executed concurrently (two groups in parallel since two opera-

tions are performed on the same database). Finally, the last write statement has to

40

Figure 3.9: Case study - a transaction execution.

synchronize with the read statement exactly like the first one. The execution can

be resumed in the activity diagram reported in Figure 3.9.

Apart from the two simple transaction schedulers presented, other techniques can be

put in place to develop an alternative transaction scheduler achieving better results.

In decades, the literature has produced a remarkable number of mechanisms linked

to transaction scheduling.

41

As the platform may fail, the DTM logs the operations belonging to a distributed

transaction that need to be re-done after recovering. The two-phase commit protocol

includes guidelines regarding which information has to be persistent after a given

operation.

Transaction definition language

XQueryX is XQuery in an XML format. Although is not human-readable, it is

particularly suitable for processing (XSL in particular). A suitable data manipula-

tion language for the platform would have an XML syntax where update and query

predicate are combined as presented on the case study on Table 3.2. As mentioned

on a number of occasions, such a language is not available yet. A possible solution

would be to combine XQueryX and XUpdate since they both have XML syntax. A

new XML schema definition might extend both schemas so that rules can be defined

regarding the allowed operation (e.g. obviously it is only possible to write data that

has been read - not vice-versa). Implementing this scheme might require quite a

big effort that can be unnecessary since the W3C is expected to produce a new ver-

sion of XQuery including update capabilities. The implementation phase will assess

whether this implementation would be worthless or an available alternative could

be adopted instead.

3.5.4 Distributed Schema Manager

The distributed schema manager provides the platform components the services re-

garding the global schema view over the integrated databases. There could be a

passive or an active DSM. In passive DSM, the global schema is defined once for the

whole platform life-cycle. In contrast, an active DSM would permit external appli-

cation to define new schemas derived from local ones and/or, with some limitations,

modify an existing global schema view. Web Services on local sites might provide

information regarding local schemas so that the platform could offer the means to

manage the existing global schema view. Since during the background research in

this area any work has been found and this topic might be out of scope of this

42

Figure 3.10: DSM Architecture.

project, it is hard to put forward such a complex software component. Because of

this, this subsection covers the passive DSM only. It is proposed an overview with

its functional components.

The DSM module includes one or more XML Schema(s) representing the global

schema view. XML Schemas are stored locally on the file system. When the plat-

form starts up, the schemas are loaded into memory in an internal representation

suitable to the software modules that needs to access the information of the schema

view. The software modules are, as shown in Figure 3.10, a query validator, an

XPath predicate analyser, and a generic global schema access.

The query validator receives statements that have to be validated against the

global schema. Whenever a query or modification predicate is not valid, the platform

can return an error to the application client without performing further processing

(the execution will fail anyway).

The XPath predicate analyser provides functionalities to the query processor for

optimization purposes. Thus, an XPath predicate is analysed and, when applicable,

processed taking into account the semantics of the schema definition. In the best

case scenario, the component is able to return the query processor an equivalent

XPath expression that is more efficient when executed. In particular, transforming

43

ancestor-descendant relationships (”//”) into parent-child relationships (”/”) may

significantly reduce the response time when executing the query.

The schema access point is designed for out-platform accesses using XQuery.

Intelligent client applications may want to find out the information that a multi-

database can potentially store from its schema, and if necessary, query it. This last

component may be suitable to use in conjunction with Web Services acting on the

client access layer.

3.5.5 Client Access Layer

The client access layer may provide different kinds of access according to the re-

quirements of applications. A typical access would be a server permitting client

applications to query/update the multi-database performing transactions. A server

could provide a Web view of the information contained in the platform. In this case,

the platform might be directly embedded into the Web application. Alternatively, a

server supporting SOAP can provide Web Services to remote applications that can

perform transactions using WS-specific transaction processing definitions.

In both cases, some kinds of access control have to be put in place, commonly

required by every information system.

3.6 Interaction between DTM and DQP

In order to understand the interaction between the distributed transaction manager

and the distributed query processor presented respectively in section 3.5.3 and 3.5.2,

let us consider a user application willing to execute a transaction on the platform.

The main classes involved are included in the class diagram shown in Figure 3.11.

Those classes are in fact the core of the platform. They partially include what has

been referred previously as the internal representation.

The class XDDBMPlatform is the main class representing the platform. The in-

stance of this class, instantiated when the platform starts up, reads the deployment

44

Figure 3.11: Class diagram of the platform’s core.

directives in a configuration file and creates a connection to the remote DBMS.

An instance of class XDDBMPTransactionManager, created for each distributed

transaction that has to be executed, exploits the connections (identified by a names-

pace) created to the data sources to handle a transaction definition. The class XD-

DBMPTransactionManager can be considered the coordinator of the whole process

which is resumed in the sequence diagram reported in Figure 3.12.

Once that an object XDDBMPTransactionManager has been created by a client

manager that has received the transaction by a client application, it invokes a

method of a DQP component class, GlobalSimpleXQueryXProcessor, for process-

ing the transaction definition. Basically, the function processXQueryX of Glob-

alSimpleXQueryXProcessor fragmentate the global transaction in a set of single

statements represented by an object conform to the interface XStatement (Sim-

pleXQueryXStatement in this implementation). The statements are sequentially

stored in a object array and returned to the transaction manager (XDDBMPTrans-

actionManager).

At this stage, the coordinator is ready to call the scheduler passing as a parameter

the list of statements to be executed. The implementation of the scheduler may

vary but it has to implement the interface XMLDBScheduler.

45

Figure 3.12: Sequence diagram of a transaction execution.

Depending on the type of scheduler, the list of query/update predicates are anal-

ysed and put in an object representing a transaction branch (XMLDBTransaction-

Branch). There are as many transaction branch objects as the number of databases

involved in the distributed transaction. Meanwhile, the transaction scheduler can

start the two-phase commit protocol. The query/update predicates are passed to

the under-lying infrastructure as they will be translated later on.

Finally, the transaction manager receives the final outcome from the scheduler and

returns it to the client. Note that for space reasons, the class diagram does not

include all methods and attributes and the sequence diagram does not reflect a

detailed sequence of calls.

46

3.7 Design Issues

Again, the main design issue was related to the lack of a standard language to

query/update XML documents. If a standard data manipulation language had

been available, it would have been strongly possible that some existing open-source

stand-alone query processors could have been integrated onto the platform. Since

this was not the case, this was built from scratch resulting in a limited operation

set.

A more technical design issue involved the duality of the resource manager including

the local transaction manager and the query interface. The DTP model specifies

the interfaces that have to be used to coordinate a distributed transaction. But the

model does not say anything regarding how a query predicate can be executed in a

sub-transaction context. Hence, in order to build the XML-RPC connectivity, it was

required to come up with a mechanism devised to assign a statement within a trans-

action. This mechanism basically relies on logical connections that the coordinator

creates for each resource manager involved in a transaction. This allows having a

logical connection for each transaction branch with the relative set of queries to be

executed.

47

Chapter 4

Implementation

This chapter describes a partial implementation of the system presented in Chapter

3. It introduces the deployment scheme, the databases, and software libraries that

have been used. Based on the deployment scheme, it is provided a description of

the components with related technologies, algorithms, and the objects involved.

4.1 Implementation Overview

Figure 4.1 introduces the implementation of the platform. Basic versions of the

distributed transaction manager and the distributed query processor have been im-

plemented. They rely on the data access infrastructure that has been built for two

databases (the databases are presented in section 4.2). For the ’Oracle XML DB’

database, the platform uses a standard Java access using sockets (JDBC). For the

database ’SleepyCat XML DB’, an XML-RPC connectivity has been implemented.

In addition, because few databases support global transactions, a basic XA sup-

port has been created. The distributed schema manager component has not been

implemented.

4.2 Databases

The prototype of the platform has been built with two XML databases: Oracle

XML DB and SleepyCat Berkeley DB XML. Both databases can be obtained free

48

Figure 4.1: Implementation overview.

of charge for non-commercial use. Oracle XML DB is a XML-enabled database

whereas SleepyCat Berkeley DB XML is considered an XML native database. The

last, however, applies locks at the document level. At least a native XML repository

with a locking node-level mechanism would have been more appropriate, but either

open-source databases do not support transactions or those which do provide support

are commercial products. Table 4.1 reports the databases that have been considered.

Database Licence Transaction support XA support
Apache Xindice open-source no no
Berkeley DB XML open-source yes no
dbXML [18] open-source partial no
eXist open-source no no
Oracle XML DB commercial yes yes
Tamino XML Server commercial yes no

Table 4.1: Surveyed databases

49

Oracle XML DB

Oracle XML DB adds native storage and retrieval of XML content to the capabili-

ties of Oracle Database 10g release 2. The XML engine relies on the vendor-specific

object XMLType representing an XML document on the database internal storage

format. This storage format provides what is known as DOM Fidelity, which guar-

antees that none of the information contained in the XML document is lost when

the document is stored in the Oracle database. The XMLType data type can be

used like other SQL data types, including in table definitions, view definitions and

as a PL/SQL variable, parameter or return type via an SQL-like language. The

DBMS provides access via various data manipulation languages including XPath,

XQuery, DOM; it fully support the XML Schema recommendation.

Oracle XMLDB provides two options for storing XML in the database. In the

first, data is stored in the unstructured mode which uses the Character Large Ob-

ject (CLOB) data type to persist the XML document as a string of bytes in the

database. The second is the structured storage involving shredding the XML docu-

ment in a set of SQL objects and tables. Structured storage is only available when

the XML conforms to an XML schema.

Since the distributed schema manager has not been implemented, data is stored in

an unstructured way, but following a data non-implicit schema definition (i.e. XML

Schema in not present on the database but the documents and the query performed

will not violate the constraints).

SleepyCat Berkeley DB XML

Berkeley DB XML is a native XML database engine providing XQuery access into

document containers. XML documents are stored and indexed in their native format

using Berkeley DB as the transactional database engine. This product is not a

client/server database management system; it is a C++ library linked directly into

an application. The aim is avoiding client server network overhead.

The product has been chosen because it one among few open-source XML databases

supporting transactions and XQuery. Finally, in addition to the in-built deadlock

50

detector, the database provides a deadlock detector the developer can invoke though

the access API.

4.3 Libraries

A number of libraries and third-party software have been used to develop the plat-

form. This section briefly introduces each of them.

XML-RPC

XML-RPC, which is a protocol that uses XML over HTTP implementing remote pro-

cedure calls, is the communication protocol used between XDDBMP and XDBME.

The Apache Web Service Project, which is part of the Apache Software Founda-

tion, provides a Java implementation of the protocol allowing implementing both

client and server. The library provides the means to develop a simple client/server

communication or more advanced ones such as the ability to support a simple au-

thentication service.

XML Processing

The Apache XML Project, another project of the Apache Software Foundation,

plays an important role in the development of XML technologies providing, among

other things, XML processors.

Xerces provides XML parsing for both Java and C++. It implements the W3C

XML and DOM, as well as the de facto SAX standard. Initial support for XML

Schema is also provided.

Xalan provides an XSLT stylesheet processor. Xalan fully implements the W3C

XSLT and XPath recommendations. The library also includes an XPath Processor

that can be used as a stand-alone unit. Both Xerces and Xalan are used in this

project.

51

Logging

Although the Java standard library disposes of a basic log library, a third-party

library has been adopted. The Apache Project provides a Java library, named log4j

designed for logging. It features several interesting functionalities for the develop-

ment of flexible applications. In particular, it allows defining configuration settings

on files managing the logger behaviour. Additionally, it supports several kinds of

output formats such as text, XML, or HTML.

Concurrent programming

The development of software entities such as a transaction scheduler requires con-

current programming utilities. The Java standard library has basic utilities like

semaphores and more high level ones (the lasts only from release of J2SE 5.0). In

fact, from J2SE5 the java.util.concurrent package includes exclusion, resource man-

agement, and related synchronization aids, previously provided by Oswego State

University of New York. To avoid requiring the platform running exclusively with

version J2SE 5.0, the source code has been obtained and integrated in the platform

code. The transaction scheduler uses Barriers (Rendezvous) to synchronize groups

of threads performing a transaction.

4.4 XDDBMP

When starting up, XDDBMP reads a deployment configuration file indicating the

available databases and their namespaces. After connecting to the DBMS using

these settings, it is ready for handling transaction requests. Each new transaction

requires the creation of a transaction manager and a query processor instance that

is charged to perform the transaction and return the result/outcome.

4.4.1 Oracle and XML-RPC Client Side Connectivity

The connectivity for the Oracle database consists of an implementation of the data

access interfaces presented in section 3.5.1 using JDBC and an XSL script to trans-

52

form statements of the global definition into the Oracle syntax. An example of this

transformation including a fragment of the XSL program is reported in Appendix

B.1. For performance reasons, the XSL script is loaded into memory once the object

representing the data source is created. The implementation of the Oracle connec-

tivity is relatively straightforward since the resource creation using JDBC almost

match that adopted for the data access interfaces. So, the implementation looks

more like a wrapper of the Oracle JDBC objects than a ’from-scratch’ implementa-

tion.

The XML-RPC client side connectivity requires more code. As for Oracle, it

implements the data access interfaces providing an end-to-end connectivity to the

resource manager of the remote database. The client side module mainly serializes

and deserializes objects, queries, and results of queries. This module is also charged

to handle exceptions propagate them to the platform.

4.4.2 Distributed Query Processor

The DQP implements the lower layer presented in section 3.5.2. This component

receives a transaction definition containing the queries that have to be executed. It

has been decided to create a native XML syntax, called SimpleXQueryX, which is

a subset of the set of operations that can be executed on XML documents. Not all

operations defined have been realized for both databases. Oracle supports update,

read, and delete operations. SleepyCat supports almost all operation expect for

readnode. However, the DTP considers in its logic the operations readelement and

update only.

Table 4.2 reports defined operations and the fragment of code below shows a small

example of an insertion of a node read from a different database. An example of

SimpleXQueryX is reported in Appendix A.

<append docnamespace="xmldb://db1.ie/db1/col1/doc1.xml"

select="/element">

<readnode docnamespace="xmldb://db2.ie/db1/col1/doc2.xml"

53

select="/element/sube[1]"/>

</append>

Update operations on nodes (See XUpdate working draft)
insert-before
insert-after
append
update
remove
rename
Inserts
element
attribute
text
Read operations
readelement
readnode

Table 4.2: Implemented data manipulation operations

Using SAX, the query processor parses the definition and creates an internal

representation (see section 3.6) composed of several data structures containing sin-

gle statements converted into an object conform to the interface XStatement. This

interface fully represents a generic single statement providing information to the

components regarding the statement’s characteristics. Objects implementing XS-

tatements may be encapsulated and chained in order to fully capture nested queries

(e.g. write a value on DB1 that has been read from DB2).

Because of the necessity to use the XML processor a little as possible, the DQP

parses the transaction definition only once. The result of an execution has been

built in the form of a boolean in the case of an update and a string in the case of a

read. This is a simplistic approach that can be further extended in a more complete

result set that may include additional information. For instance, requests sent to

the Tamino Database product return a response described using an XML syntax.

Knowing the response schema, it is possible to interpret the answer and convert it

to the format required by the application clients.

54

Distributed Transaction Manager

The DTM takes advantage of the internal representation of a transaction that has

been created by the DQP. The DTP performs the two-phase commit protocol using

the infrastructure resources created at the XDDBMP start up. Thus, for each

transaction, the DTM performs the followings tasks:

1. for each statement

(a) opens the corresponding database resource manager (if not already opened)

(b) starts the transaction branch (if not already started)

(c) inserts the statement to the execution plan data structure (depends on

the scheduler being used)

2. executes the statements (also depends on the scheduler being used)

3. for each resource manager opened (i.e. for each database involved in the

transaction)

(a) ends the transaction branch

(b) prepares the transaction branch and gets the answer from the resource

manager

4. for each resource manager opened

(a) either commits or aborts the transaction branch according to the global

outcome

(b) closes all connections and resources

This procedure is common for each available scheduler which has to implement

the interface XMLDBTransactionSchduler. This entitles the DTM to easily change

the transaction manager, even at runtime depending on the characteristics of the

transaction. As presented in the design of this component (section 3.5.3), two trans-

action schedulers has been implemented: a native one that executes statements as

55

they are declared in the transaction and a more sophisticated one which tries to

execute statements in parallel on different databases.

The simple scheduler is quite straightforward. In contrast, the advanced one is a

bit more complex. It essentially uses barriers to synchronize concurrent executions

in order to exchange intermediate results, if any, and partial outcomes. Partial

outcomes are useful since if there is a failure during the transaction, the whole

transaction can be aborted before executing all remaining statements. In general,

a set of statements can be executed in parallel if they do not depend of other op-

erations. If there is a write operation depending on a read query, the transaction

manager execute both concurrently and eventually, the thread executing the read

statement passes the result to the thread holding the write operation. This happens

when they both reach their common synchronization point. More efficient are those

sequences of independent statements that can be executed in parallel. Technical

details regarding the implementation of the scheduler are presented in Appendix C.

4.5 XDBME

XDBME represents the resource manager accessible through XML-RPC. The server

has a configuration file on which it is defined the classes and drivers it has to use to

operate.

4.5.1 XML-RPC Server Side Connectivity

The XML-RPC server needs to register a handler so that it can process queries sent

by the platform. The handler is independent from the database implementation

since it accesses the XA connectivity via the data access interfaces. The handler

deserializes objects arriving form the platform, calls operations of the resource man-

ager, and returns the outcomes of the execution.

During the implementation it emerged that it was not possible to create new con-

nections to the resource manager to perform each transaction as firstly though in

the design phase. Instead, there was the need to implement logical connections

pipelined through a physical connection.

56

The handler operations are those provided by the XAResource interface plus the

functionalities to execute the queries. The server on which the handler is registered

is developed with the Apache XML-RPC Java library.

4.5.2 SleepyCat Binding

Considering the database supports only local transactions, a minimal XA support

had to be implemented.

The resource manager implemented for SleepyCat holds an internal data structure

running local transactions according to the two-phase commit protocol remotely co-

ordinated by XDDBMP through XML-RPC and XA interfaces. Hence, starting a

transaction is related to create a local transaction. Ending and preparing require

leave a persistent trace of events (e.g. writing logs) and return to the coordinator

the outcome of the transaction branch. Finally, the local resource manager waits

for directives whether it has to commit or rollback.

Those services are provided using an object SleepyCatTransactionBranch (this class

implements the interface XMLDBXATransactionBranch) that encapsulates all re-

sources being used. The server handler holds as many XMLDBXATransaction-

Branch objects as the number of active transactions on the local resource manager.

The interface allows the server to invoke the reource manager of a database in-

dependently from its implementation. This abstraction requires the infrastructure

connector written for SleepyCat following the directives of the data access interfaces

depicted in Figure 3.5.

The local query processor is charged to execute query/update predicates coming

from the platform. To do so, this software module has to analyse the XML query

definition (SimpleXQueryX) and execute the corresponding statement. An example

of a step of this process is explained in Appendix B.2.

4.6 Platform utilities

The software includes a series of tools in support to the procedures that has to be

performed at run time.

57

Configuration Readers

A dynamic class loader is used for both XDDBMP and XDBME. The tool relies

on the Java ’reflect’ package (java.lang.reflect) for dynamically creating object de-

pending on the configuration directives of a XML configuration file. It uses SAX to

analyse the XML document and it creates the objects needed by the platform. In

particular, this is used to create a XMLDBDataSource-like object as shown in the

above fragment of the XDDBMP configuration file for Oracle:.

...

<dbaccess>

<accessclass>

ie.tcd.xmldb.xddbmp.driver.oracle.OracleXMLDBDataSource

</accessclass>

<classparameters>

<dbhost>kdeg-uml-9.cs.tcd.ie</dbhost>

<dbport>1521</dbport>

<dbalias>oraclexmldb</dbalias>

<dbcontainer>orcl</dbcontainer>

<username>scott</username>

<password>tiger</password>

</classparameters>

</dbaccess>

...

The number of arguments has to match that of constructor of the object to

be loaded. The configurations setting on the example allows to create an Ora-

cleXMLDBDataSource that will be used by the platforms to access the remote

Oracle resource manager.

Logging

Since system recovery has not been implemented, logging has primarily been used

for debugging the system. A generic object charged to generate log files (XMLD-

58

BLogger) can be used by every object in the platform. To do so, the object must

inherit from the super-class indicating the name of the log file being generated and

on which class the logger have to be associated. Typically, XMLDBDataSources-

conform objects are an extension of the logger object class in order to log the oper-

ations performed on the databases.

XPath parser

An XPath parser was created to compare two XPath predicate. This tool was de-

signed to be used by the distributed transaction manager to assess whether two

predicates attempt to access the same node or descendant-node. Since the sys-

tem does not feature the distributed schema manager, the XPath parser does not

support ancestor-descendant expressions. In fact, it is impossible without schema

indication if, for instance, the predicate //animal[name=tiger] is an ancestor of the

node matching the predicate //*[country = India].

4.7 Implementation Issues

Most of the implementation issues were related to the development of the data ac-

cess infrastructure. The design issue presented in section 3.7 was fully understood

once the basic infrastructure was in place. At this stage, a major refactoring had to

be carried out in order to introduce the logical connection model.

Other implementation problems were encountered when processing XML data.

Although parsing is normally related to a defined schema, there is usually the need

to write code that process data which is reusable in different parts of the software.

This task is not always simple as it might seem, mostly because it is difficult to

write generic functions that process fragments of XML document having different

schemas.

59

Chapter 5

Evaluation

This chapter presents some considerations regarding benchmarking XML databases

and an evaluation of the platform consisting two experiments.

5.1 Benchmarking XML Databases

Since XML databases do not have standardized interfaces and query languages yet,

it becomes quite difficult designing appropriate performance experiments. Along

with the development of XML databases, several benchmarks, such as XMark [39],

were also proposed. XMark is intended to help both developers and users to com-

pare XML databases via a set of queries each of which is intended to challenge a

particular aspect of the query processor or storage engine.

[38] reports that no studies were found on using benchmarks that can provide users

with insights on the impacts of a variety of storage models on XML query perfor-

mance. The authors propose a set of results on benchmarking on a set of XML

database implementations using two XML benchmarks models. [37] argues bench-

marks are distinguished in two main variants depending on how the data is stored on

the database: schema-less or conform to schema. It is pointed out that making this

first distinction would allow to assess the performance impact when having schema

support.

60

In presence of transactions, [23] carried out an evaluation on the system built

on the top of a database comparing response times and throughput of client request

transactions performed directly on the database or through a middleware.

5.2 Experiments Overview

Database benchmarks are used to assess the overall system performance with a series

of test designed to evaluate different aspect of a database management systems. This

is the case on the condition that the database fully supports the standard interfaces.

The implemented software does not support all the operation sets defined for XML

documents. For this reason, a standard benchmark can not be used. Thus, this

evaluation considers two experiments specifically designed to test the operations

and features supported by the platform.

The evaluation is composed of two experiments. The first is designed to provide a

general evaluation of the system whereas the latter aims to compare the scheduler

that has been realised. As shown in Figure 5.1, the databases have been populated

with three documents (see Appendix D), two on Oracle and one on SleepyCat.

Experiment setup

For the experiments, the platform runs on a Dell Latitude D400 (Intel Pentium M

1600MHz and 256MB of RAM); the operating system is Linux Fedora Core 3. The

DBMSs, Oracle and SleepyCat, are installed on a remote machine running Linux

Debian. It is a Linux virtual machine (User-mode Linux Kernel) on a machine

having a Pentium 4, 3.2GHz of CPU, and 1GB of RAM).

5.3 Global Evaluation

This experiment aims to compare the response time of the platform when execut-

ing a set of transactions and the response time of the same transactions executed

directly on the databases. To do so, Oracle XML DB is used because it supports XA.

61

Figure 5.1: Documents stored on the databases for the evaluation.

Four sets of transactions containing around four statements each have been de-

fined. The same transactions have been written in a Java script running them using

the XA support of the Oracle JDBC driver.

Initially, the idea was to create two distinct XA connections and executing a dis-

tributed transaction emulating two databases while in reality they are applied on

the same database (but two distinct XMLType tables).

After testing this experiment scenario, it has emerged an ’abnormal’ behaviour: even

if in both transaction branches there was an update statement, on one branch the

resource manager committed the transaction in advance since it claimed there were

read-only statements.

This happened when calling the resource manager asking to enter in a prepared

state. The resource manager returned a value meaning that the transaction work

has been prepared normally on one branch (all right) and a return value indicating

that the transaction branch has been performed in read-only mode and, as a con-

sequence, it had already committed! No documentation was found reporting this

restriction; probably because it is unlikely that in a real application one would like

to run a distributed transaction on the same database.

The four transactions used are reported in Table 5.1. They are run sequentially for

ten times each.

62

T1
read(/order[1]/quantity)
read(product[1]/price)
update(/product[2]/name, ’DVD’)
update(/order[2]/quantity, ’550’)
read(/order[3]/quantity)
T2
update(/product[1]/name, ’PC1’)
update(/order[1]/item, ’PC1’)
read(/order[3]/item)
read(/product[2]/name)
T3
read(/order[1]/quantity)
update(/order[2]/price, ’995’)
read(/product[1]/price)
update(/product[2]/name, ’Printer’)
T4
read(/order[1]/quantity)
update(/product[1]/name, ’Laptop’)
read(/product[1]/price)
update(/order[1]/quantity, ’360’)
read(/order[2]/quantity)

Table 5.1: Global Evaluation Transactions

Expected Results

The response times of the transactions performed through the platform is expected

to be grater since:

• the query processor has to analyse the queries defined in XML,

• XSL transformations are required for converting statement into the Oracle

syntax,

• the transaction manager has to make several decisions when processing the

transaction definition,

• and, last but not least, generating log files takes time.

On the other hand, the Java script running the XA transaction is hard coded

(no XML processing, no test statements, no loops, etc.). So, theoretically, the script

63

Figure 5.2: Response time comparison.

that runs the transactions can be considered the fastest way using any infrastructure

relying on the Oracle JDBC driver. This global system’s evaluation aims to quantify

the difference between the two response times measured for both scenarios.

Results

As mentioned, the transactions have been run ten times in a sequential way (T1, T2,

T3, and T4) for both scenarios. Response time intervals, expressed in milliseconds,

have been averaged for each transaction and reported in Figure 5.2.

Discussion

The first noticeable data, on both cases, is the difference of the time required to

perform T1. This is probably due to the fact that T1 needs to initiate a physical

network connection while T2, T3 and T4 exploit the created connection by commu-

nicating with the DB resource manager through logical connections. This is part

of the internal implementation of the Oracle JDBC driver attempting to optimise

remote resources binding.

64

Taking into account T2/T2/T3 and using the response time measured directly

on Oracle, it emerges a response time for the platform greater than respectively

48%, 43%, and 52%.

It can therefore be analysed that, in presence of simple statements acting on leaf

nodes, the platform would require roughly 50% more time to carry out a transaction

than an application using the same low-level access technology (JDBC). This might

seem a big difference but considering the processing involved supporting a unique

manipulation language and the fact that some optimizations could be applied, this

is an acceptable result.

Again, a more complete set of operations (e.g. add more nodes) would provide a

broader global evaluation investigating, for instance, the impact on performance

depending on the kinds of supported operations (e.g. replace many nodes) or the

number of requests performed in a transaction.

5.4 Transaction scheduler comparison

The goal of the second experiment is to compare the two transaction schedulers

that have been implemented. The simplest scheduler, nicknamed scheduler A, ex-

ecutes statements in the same order as they are defined in the transaction. This

option should provide, a priori, a low transaction throughput. The other scheduler,

scheduler B, has the ability to execute, when possible, statements in parallel. The

experiments consider two transactions, T1 and T2. As reported in Table 5.2. T1

has got statements that do depend on each other while T2 has statements which

can be executed independently.

Both transactions have been executed consecutively fifty times. The first execution

has been omitted from the measurement for the reasons reported on the previous

experiment.

Expected Results

Executing tasks in parallel is generally more efficient unless the tasks are so simple

that the effort for creating the resources required for the concurrent execution is not

65

T1
update(DB1, /products/product[1]/name,
read(DB2, /customers/customer[1]/orders/item[1))
update(DB1, /orders/order[4]/item,
read(DB2, /customers/customer[1]/orders/item[1))
update(DB2, /customers/customer[1]/phone, ’0791235678’)
read(DB1, /orders/order[1]/quantity)
read(DB1, /orders/order[1]/quantity)
update(DB2, /customers/customer[4]/item[1], ’DVD’)
T2
update(DB2, /customers/customer[1]/phone, ’011214439’)
read(DB2, /orders/order[1]/quantity)
read(DB2, /orders/order[1]/quantity)
read(DB2, /orders/order[1]/quantity)
update(DB2, /customers/customer[4]/orders/item[1], ’DVD’)
update(DB1, /products/product[1]/name, ’Laptop’)
update(DB1, /orders/order[3]/item, ’DVD’)

Table 5.2: Transaction definition for the schedulers comparison

convenient. This could be the case since the creation of a thread to execute a simple

read predicate might be pointless. However, for complex operation on a database,

concurrent execution can get many benefits to the overall system performance. So,

in this case, scheduler B might be more efficient but of the same order of magnitude

of the simple one.

Results

The plot in Figure 5.3 reports the results of the experiment. The response time

intervals measured for the fifty executions have been averaged for each transaction

and for each scheduler.

Discussion

This experiments reveals that scheduler B badly performs (the response time is

around 10% greater) comparing to scheduler A for both transactions, when execut-

ing simple read and write statements.

It can however be observed the slight difference between the response time needed

66

Figure 5.3: Response time for each schedulers.

to execute T1 and T2 of 0.3% (T1 and T2 are respectively 11% and 8% faster with

scheduler 1). This could be explained by the fact that the statements of T1 can be

fully executed in parallel on both databases.

On one hand, a possible solution to achieve better results would be trying to

optimize the management of system resources such as adopting a pool of ready to

use thread. On the other hand, scheduler B could be more suitable, as already

mentioned, for more complex statements requiring a longer execution time. Alter-

natively, a third transaction scheduler could be developed using a hybrid approach.

Assuming the DTM can rank the cost of the various queries, it could decide the

appropriate scheduler to use. Only a set of experiments with a complete range of

data manipulation operations would support those hypotheses.

67

5.5 General Discussion

The first experiment provides an antecedent evaluation of the impact on perfor-

mance that the layers operating over the database driver have. The latter compares

the characteristics of the two implemented transactions schedulers.

As already mentioned, in order to provide a broader evaluation, more data ma-

nipulation operations should be supported and experiments have to be carried out

measuring the behaviour of the query processor and the transaction schedulers. Ad-

ditionally, provided a distributed deadlock manager, it would be possible to run the

transactions concurrently in order to observe the platform behaviour in a real appli-

cation scenario. As a matter of fact, locking mechanisms of the adopted databases

still provide a poor concurrent access deteriorating the transaction throughput of the

platform. After few tests, it has been noticed a high number of collisions resulting

in deadlocks and/or in a large number of transactions being aborted. A fully native

XML storage with a locking mechanism at the node-level would be more appropriate

for this kind of test.

From the platform perspective, a non-native XML database can be integrated

but the developer must be aware that if the concurrent access does not provide a

sufficient granularity, the whole system performance is compromised. This leads

to the supposition that, if the popularity of XML continues to grow, either XML-

enabled databases improve their concurrent access on their XML-based facilities or

XML-native databases become the first choice when XML data has to be stored and

manipulated with transactions.

68

Chapter 6

Future Work and Conclusions

6.1 Future Work

It is expected that in future the W3C will produce a new XQuery recommendation

including update facilities. Then, gradually, database products will support the

new standard just as it happened for the current XQuery release. One of the issues

encountered in this project, was just the variety of data manipulation languages

supported by databases. It is not easy, in these conditions, designing a system using

a unique data access language. Having a language including both query and update

facilities it would be possible to design and implement or adopt a complete query

processor within the platform. In this case, some experiment can be done taking

into account different test scenarios. One could be a transaction throughput com-

parison between XML-enabled databases and native ones. Another could measure

the transaction throughput when executing a wide range of operations types.

A further work would consist in investigating how schema semantics expressed

thought XML Schemas could be used to optimize operations within an XML mul-

tidatabase system. A transaction manager might use this information to detect

deadlocks or to improve a transaction schedule. A query processor could consult

XML Schema information to optimize queries.

69

A version of the proposed Distributed Schema Manager could be implemented

to assess its feasibility and its limitations. Web Services and the flexibility provided

by self-describing entities may be a mean to coordinate an active distributed global

schema.

Alternatively, instead of relying on a centralized platform, a more decentralized

approach could be adopted. [22] describes a tool for distributed data management

and integration. The researchers propose a data model, close to the standard XML

model, and a suitable XQuery extension adapted for query processing in a peer-

to-peer context. This concept could be extended to include distributed transaction

processing. As a guideline, it could be adopted the atomic commit protocol intro-

duced in [46], designed to perform transactions in peer-to-peer environments.

Finally, the primary goal of multi-databases is to provide services to external

applications. A different approach would consider defining the requirements of a

typical application such as a document collaboration system. Then, design a multi-

database system according to those requirements. Consider that, on our knowledge,

there is not currently a system allowing authors to modify the same document,

the same paragraph, or perhaps the same sentence at the same time. Well suited

locking techniques on XML documents would allow a certain degree of granularity

such that people could work on the same document. This would be a considerable

advance in document collaboration; the flexibility of XML could make this possible,

multi-database system would permit authors to collaborate on several distributed

databases.

6.2 Conclusions

Evaluation

Although the evaluation could not consider the features provided by an ordinary

database, it gives an idea of the performance loss caused by the additional process-

70

ing in a multi-database system. The global evaluation shows that XML processing

and the software logic of platform to carry out a global transaction results in the

response time of a transaction to be reasonably greater comparing to the same dis-

tributed transaction executed directly on the database.

The scheduler evaluation compares two schedulers in the same case scenario con-

cluding that each is may be more efficient in determinate conditions and in presence

of different sets of query/update predicates. Both experiments give indications that

an XML-based multi-database system is conceivable.

Self-evaluation

The design section presented a comprehensive software architecture that integrates

XML-based technologies to provide a multi-database system. An initial implemen-

tation features a transaction processor, a query processor and a connectivity to

facilitate the integration of databases that do not support distributed transactions.

Subjectively, the platform implementation is well engineered. In fact, from the

software engineering point of view, the software did not turn out to be rigid when

major re-factorings were carried out. Utilities developed in support of the whole

software were reused in several parts. The logic structure, organized in packages,

make the software modular and extensible.

Issues

Most of the issues later translated into time consuming tasks were related to system

problems. Apart from installing Oracle, getting familiar with database systems and

relative drivers can involve some difficulties and more importantly, it requires time;

it is roughly estimated that at least 60% of the time required to implement the

platform was spent on infrastructure code.

The fact that a XML native database system supporting node-level locking was

not adopted for this project involved many limitations on transaction processing

71

component. Transactions not causing inter-node conflicts could not be executed

concurrently.

When using the XML processing API, one can feel the consistent number of

object that have to be created or the number of functions that have to be executed

to carry out an apparently simple operations. Using these resources requires the

programmer to carefully read the guidelines for optimizing the whole performance

of the XML parsing processes. However, often the impression was that the code

written using the APIs was not the most effective.

Another purely technical issue was that, as usual, debugging applications in a

distributed environment is a tough task. Sometimes, it was difficult to understand

what was going on, especially when the DBMSs drivers return exceptions that are

difficult to decrypt or when deadlocks occurred.

Design decisions in hindsight

With the benefits of hindsight, considering the effort required to develop the XML-

RPC connectivity and the XA support for a database, it would have better to use

existing technologies (connectivity and XA support) in order to concentrate on more

high-level mechanisms. However, according to a product research, no XML native

database supporting XA was found.

This was not really a wrong design decision but more an under-estimation of the

time required to implement this platform module.

Goals VS achievements

The goals were partially achieved. A basic implementation of the platform has been

implemented raising some challenges related to this research area.

72

General conclusions

[20] presents a good overview of the database technologies and products currently

available on the market. During the choice of the databases for the platform and

during the implementation itself, it has emerged the limitation of XML-enabled

databases regarding transaction processing. Inappropriate locking mechanisms lead

to a poor concurrent access to XML data. In a distributed environment this is

not acceptable since a distributed transaction is slowed down if not aborted in

case of deadlock by too restrictive locking mechanisms on DBMS. Some XML na-

tive databases implementing node-level locking could provide a better transaction

throughput and therefore make a XML multi-database more efficient.

A general consideration of the personal experience through this project is the

limitation of this immature technology (at least from a XML-enabled DB point of

view) that a developer has to face when building a system. While many XML tools

are fully available, the current techniques used for XML databases have to improve

to compete with traditional database systems.

73

Bibliography

[1] Extensible Markup Language (XML).

http://www.w3.org/XML/.

[2] W3C - The World Wide Web Consortium.

http://www.w3.org/.

[3] Web Services (WS).

http://www.w3.org/2002/ws/.

[4] Document Type Definition (DTD).

http://www.w3.org/TR/REC-xml/.

[5] XML Schema.

http://www.w3.org/XML/Schema.

[6] Tamino XML Server.

http://www.softwareag.com/

[7] Document Object Model (DOM).

http://www.w3.org/DOM/

[8] Simple API for XML (SAX).

http://www.saxproject.org/

[9] The Extensible Stylesheet Language Family (XSL).

http://www.w3.org/Style/XSL/

[10] XML Path Language (XPath).

http://www.w3.org/TR/xpath

74

[11] XML Programming Language.

http://xl.inf.ethz.ch/

[12] XML-QL: A Query Language for XML.

http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

[13] XQuery 1.0: An XML Query Language.

http://www.w3.org/TR/xquery/

[14] XML:DB Initiative for XML Databases.

http://xmldb-org.sourceforge.net/

[15] eXist XML DB.

http://exist.sourceforge.net/

[16] Apache Xindice.

http://xml.apache.org/xindice/

[17] Oracle XML DB.

http://www.oracle.com/

[18] dbXML - Native XML Database.

www.dbxml.com/

[19] X/Open Distributed Transaction Processing (DTP).

http://www.opengroup.org/

[20] R. Bourret. XML and Databases.

http://www.rpbourret.com/xml/XMLAndDatabases.htm, 2004.

[21] Michael Gertz, Jan-Marco Bremer. Distributed XML Repositories: Top-down

Design and Transparent Query Processing. Technical Report CSE-2003-20, De-

partment of Computer Science, University of California, Davis, USA.

[22] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and T. Milo. Dynamic XML

documents with distribution and replication. ACM SIGMOD Intl. Conference on

Management of Data, 527538, ACM Press, 2003.

75

[23] Torsten Grabs, Klemens Bhm, Hans-Jrg Schek XMLTM: Efficient Transaction

Management for XML Documents. Proceedings of the 11th International Con-

ference on Information and Knowledge Management, 142-152, 2002.

[24] Sven Helmer, Carl-Christian Kanne, Guido Moerkotte Evaluating lock-based

protocols for cooperation on XML documents. ACM SIGMOD Record, 58-63,

2004.

[25] Stijn Dekeyser, Jan Hidders Conflict scheduling of transactions on XML docu-

ments. Proceedings of the 15th Conference on Australasian Database - Volume

27, 93-101, 2004.

[26] M. Nicola and J. John. XML parsing: a threat to database performance.

IEEE/ACM 12th International Conference on Information and Knowledge Man-

agement, 175-178, 2003.

[27] D. K. Fisher, F. Lam, W. M. Shui, R. K. Wong Efficient ordering for XML data.

Proceedings of the 12th International Conference on Information and Knowledge

Management, 2002.

[28] Mark Allman An evaluation of XML-RPC. ACM SIGMETRICS Performance

Evaluation Review, 2-11, 2003

[29] Jim Gray Notes on data base operating systems. In Operating Systems: An

Advanced Course, volume 60 of Lecture Notes in Computer Science, 393-481.

Springer-Verlag, 1978.

[30] M. Fernandez and J. Simeon and P. Wadler and S. Cluet and A. Deutsch and D.

Florescu and A. Levy and D. Maier and J. McHugh and J. Robie and D. Suciu

and J. Widom XML query languages: Experiences and exemplars. http://www-

db.research.belllabs.com/user/simeon/xquery.ps, 1999.

[31] H. Schning. Tamino - A DBMS designed for XML. Proceedings of the 17th

International Conference on Data Engineering, 149-154, 2001.

76

[32] H.V. Jagadish et al. Timber: A Native XML Database. The International Jour-

nal on Very Large Data Bases, vol. 11, no. 4, 274-291, 2002.

[33] M. F. Fernandez, W.-C. Tan, and D. Suciu. SilkRoute: Trading between Rela-

tions and XML. International World Wide Web Conference, May 2000.

[34] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita,

S. Subramanian. XPERANTO: Publishing Object-Relational Data as XML.

WebDB (Informal Proceedings), 2000.

[35] J. McHugh and J. Widom. Query Optimization for XML. Proceedings of the

25th International Conference on Very Large Data Bases, 315-326, 1999.

[36] F. Frasincar, G-J Houben, C. Pau. XAL: an algebra for XML query optimiza-

tion. Australian Computer Science Communications, Volume 24 ,Issue 2, 49-56,

2002.

[37] T. Bhme and E. Rahm. Benchmarking XML Database Systems First Experi-

ences. Proc. 9th Int. Workshop High Performance Transaction Systems (HPTS),

http://lips.informatik.uni-leipzig.de:80/pub/2001-31/en, 2001.

[38] H. Lu and al. What makes the differences: benchmarking XML database imple-

mentations. ACM Transactions on Internet Technology (TOIT), 154-194, 2005.

[39] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu,

M. J. Carey, R. Busse. The XML Benchmark Project. Technical Report,

http://www.cwi.nl/htbin/ins1/publications, 2001.

[40] Oracle Database 10g Release 2 XML DB: An Oracle Technical White Paper.

May 2005, http://www.oracle.com/technology/tech/xml/xmldb/index.html.

[41] Web Services Transactions specifications.

http://www-128.ibm.com/developerworks/library/specification/ws-tx/, 2004.

[42] A comparison of Web services transaction protocols.

http://www-128.ibm.com/developerworks/webservices/library/ws-comproto/,

2003.

77

[43] G. Coulouris, J. Dollimore, T. Kindberg Distributed Systems: Concepts and

Design., Third Edition, Addison-Wesley.

[44] D. Bell, J. Grimson. Distributed Database Systems. 1992, Addison-Wesley.

[45] M. Kifer, A. Bernstein, P. M. Lewis Database Systems: An Application-Oriented

Approach., Second Edition, Addison-Wesley.

[46] P. M. Lewis, A. Bernstein, M. Kifer Databases and Transaction Processig: An

Application-Oriented Approach. 2002, Addison-Wesley.

[47] R. Elmasri, S. Navathe Fundamentals of Database Systems., Fourth Edition,

Addison-Wesley.

78

Appendix A

SimpleXQueryX Example

The XML code below is a transaction definition example using SimpleXQueryX.

<?xml version="1.0" encoding="UTF-8"?>

<modifications>

<update docnamespace="http://oraclexmldb/orcl/product.xml"

select="/products/product[1]/name">

<readelement docnamespace="http://sleepycatxmldb/customer/customer.xml"

select="/customers/customer[1]/orders/item[1]"/>

</update>

<update docnamespace="http://oraclexmldb/orcl/productorder.xml"

select="/orders/order[4]/item">

<readelement docnamespace="http://leepycatxmldb/customer/customer.xml"

select"/customers/customer[1]/orders/item[1]"/>

</update>

<update docnamespace="http://sleepycatxmldb/customer/customer.xml"

select="/customers/customer[1]/phone">0791235678</update>

<readelement docnamespace="http://oraclexmldb/orcl/productorder.xml"

select="/orders/order[1]/quantity"/>

<readelement docnamespace="http://oraclexmldb/orcl/productorder.xml"

select="/orders/order[2]/quantity"/>

<update docnamespace="http://sleepycatxmldb/customer/customer.xml"

select="/customers/customer[4]/item[1]">DVD</update>

</modifications>

79

Since the above transaction may not be human-readable, let us consider the

equivalent definition.

BEGIN TRANSACTION;

write(oracle@/products/product[1]/name,

read(sleepycat@/customers/customer[1]/orders/item[1]));

write(oracle@/orders/order[4]/item,

read(sleepycat@/customers/customer[1]/orders/item[1]));

write(sleepycat@/customers/customer[1]/phone, 0791235678);

read(sleepycat@/orders/order[1]/quantity);

read(sleepycat@/orders/order[2]/quantity);

write(sleepycat@/customers/customer[4]/item[1], DVD);

END TRANSACTION;

80

Appendix B

Query Processing

B.1 Oracle Query Translator

The code below reports a fragment of the XSL script charged to convert the query

definition used by the platform into statements that can be executed on Oracle XML

DB. In this case, the query script process a ’update’ predicate. After the XSL code,

it is reported the update predicate used by the platform (SimpleXQueryX) and the

result after the transformation into an Oracle update predicate.

XSL fragment

<xsl:template match="update">

<xsl:variable name="table">

<xsl:call-template name="namespaceparser">

<xsl:with-param name="docnamespace">

<xsl:value-of select="@docnamespace"/>

</xsl:with-param>

</xsl:call-template>

</xsl:variable>

<xsl:value-of select="concat(’update ’,

$table,

’ set object_value = updateXML(object_value,’,

$apos,@select,’/text()’,$apos,’,’,$apos,.,$apos,’)’)"/>

81

</xsl:template>

Update predicate defined through the SimpleXQueryX format (before

XSL transform)

<modification>

<update

docnamespace="http://kdeg.cs.tcd.ie/oraclexmldb/orcl/product.xml"

select="/products/product[1]/name">product4</update>

</modification>

Update predicate ready to be executed on Oracle (after XSL transform)

update product set object_value =

updateXML(object_value,

’/products/product[1]/name/text()’,

’product4’)

B.2 SleepyCat Query Translator

The Jave code below shows how the SleepyCat translator operates al the lower level.

A generic class (SimpleXQueryXParser) parses a statement defined in XML with

SAX and it calls the abstract method xUpdateUpdate whenever there is a match.

The class SleepyCatSimpleXQueryXProcessor specifically implemented for Sleep-

yCat databases inherits from the superclass and overwrite the methods including

the method xUpdateUpdate as shown in the example. Note that the abstract class

SimpleXQueryXParser is conceived to be re-usable for other database drivers.

82

public boolean xUpdateUpdate(String xmlDoc, String xPath, String textNode) {

boolean executionOutcome = false;

try {

XmlModify mod = ds.xmlManager.createModify();

XmlQueryExpression select =

ds.xmlManager.prepare(xmlTransaction, xPath, qc);

mod.addUpdateStep(select, textNode);

XmlDocument retDoc =

ds.xmlContainer.getDocument(xmlTransaction, xmlDoc);

XmlValue docValue = new XmlValue(retDoc);

mod.execute(xmlTransaction, docValue, qc, uc);

executionOutcome = true;

} catch(XmlException e) {

ds.getLogger().error("xUpdateUpdate: execution failed", e);

}

return executionOutcome;

}

83

Appendix C

Transaction scheduler

Unlike the simple scheduler, the scheduler executing query/update predicates con-

currently uses a slightly complex group of objects. It is therefore provided an

overview of how it operates and the objects it uses. Figure C.1 shows its class

diagram.

The main class, ParallelScheduler (implements the interface XMLDBScheduler),

receives the transaction that has to be executed. This class contains four ’private’

functions called in the same order as they are listed in the class diagram.

openAndExecute opens the resource managers and starts the transaction branches

according to the statements it receives. Additionally, this function is charged to cre-

ate the schedule and to eventually execute the queries according to that schedule.

Note that abortGlobalTransaction can be called at any stage in case of failure. The

functions endAndPrepare and commitAll do not deal with the schedule but they

just follow the two-phase commit directives (see the algorithm in section 4.4.2).

As mentioned, the function openAndExecute, among other things, prepares the

schedule. Figure C.1 includes the classes needed to organize statements in steps that

will be executed sequentially. A step may contain as many threads as the number of

databases that are involved in the distributed transaction (ParallelStatementExecu-

tor). Thus, each thread will query/update the corresponding database. An example

84

Figure C.1: Scheduler class diagram.

85

of a concurrent schedule is shown in Figure 3.9.

openAndExecute assigns every statement to an execution step. The basic principle

for the creation of steps is that if a given statement depends on another statement

that has to be executed on a different database, then a new step is needed. This

because two operations may have to synchronize (e.g. exchange a partial value or

variable). In contrast, if statements are independent, they can belong to the same

execution step and be eventually executed on each database in a concurrent manner.

There are two kinds of synchronisations. The simplest one consists in assessing

whether or not a partial failure has occurred (OutcomeMerger and RendezVous-

PartialOutcome). The more complex synchronisation point is designed to exchange

partial results between threads (ResultExchnger and RendezVousResultExchanger).

Both synchronizations are implemented with a so called rendezvous or synchroniza-

tion barrier (see section 4.3 for the library that has been used). Basically, a ren-

dezvous is arranged between a defined numbers of threads. When they ALL reach

the synchronization point, the rendezvous takes place. At this stage, the threads can

finally communicate together (the function of the object implementing the interface

RendezVous.RendezVousFunction is executed in order to exchange objects). If one

or more thread(s), for some reasons (e.g. distributed deadlock), can not attend the

rendezvous, the other participants wait at the synchronization barrier for a certain

amount of time before giving up and generating an exception. In this case, there is

a failure and the global transaction is aborted. If all steps are executed successfully,

the whole transaction can be prepared and committed (if any failure occurs during

the rest of the two-phase commit protocol).

86

Appendix D

XML Documents

This appendix lists the XML documents that have been used for the evaluation of

the system.

On Oracle: product.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<products>

<product id="1">

<name>product1</name>

<price>1435</price>

</product>

<product id="2">

<name>product2</name>

<price>5412</price>

</product>

<product id="3">

<name>product3</name>

<price>8923</price>

</product>

<product id="4">

<name>product4</name>

<price>2657</price>

</product>

87

</products>

On Oracle: productorder.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<orders>

<order id="1">

<item>product4</item>

<quantity>2000</quantity>

<date>12.12.2005</date>

</order>

<order id="2">

<item>product3</item>

<quantity>134</quantity>

<date>12.10.2005</date>

</order>

<order id="3">

<item>product2</item>

<quantity>435</quantity>

<date>01.01.2006</date>

</order>

<order id="4">

<item>product1</item>

<quantity>780</quantity>

<date>23.11.2005</date>

</order>

</orders>

On SleepyCat: customer.xml

<?xml version="1.0" encoding="ISO-8859-1"?>

<customers>

<customer id="6">

<name>John</name>

88

<phone>014567890</phone>

<orders>

<item id="1">product4</item>

<item id="2">product3</item>

</orders>

</customer>

<customer id="8">

<name>Jenny</name>

<phone>017561290</phone>

<orders>

<item id="3">product2</item>

</orders>

</customer>

<customer id="90">

<name>Joe</name>

<phone>014236576</phone>

</customer>

<customer id="56">

<name>Paul</name>

<phone>011287452</phone>

<orders>

<item id="1">product4</item>

<item id="4">product1</item>

</orders>

</customer>

</customers>

89

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Chapter Introduction
	Chapter Background and State-of-the-Art
	The eXtensible Markup Language (XML) on Databases
	XML Databases
	Moving Toward XML Databases
	Transaction Processing on XML Data
	XML Distributed Databases

	Distributed Transaction Processing
	Implementing Distributed Transactions
	X/Open Distributed Transaction Processing (DTP) Model
	Examples of Distributed Transaction Technologies

	Chapter Design
	Vision
	System Overview
	Requirements Analysis
	System Requirements
	Infrastructure Requirements

	System Architecture Revisited
	Design of the Platform Components
	Connectivity Layer
	Distributed Query Processor
	Distributed Transaction Manager
	Distributed Schema Manager
	Client Access Layer

	Interaction between DTM and DQP
	Design Issues

	Chapter Implementation
	Implementation Overview
	Databases
	Libraries
	XDDBMP
	Oracle and XML-RPC Client Side Connectivity
	Distributed Query Processor

	XDBME
	XML-RPC Server Side Connectivity
	SleepyCat Binding

	Platform utilities
	Implementation Issues

	Chapter Evaluation
	Benchmarking XML Databases
	Experiments Overview
	Global Evaluation
	Transaction scheduler comparison
	General Discussion

	Chapter Future Work and Conclusions
	Future Work
	Conclusions

	Bibliography
	Appendix SimpleXQueryX Example
	Appendix Query Processing
	Oracle Query Translator
	SleepyCat Query Translator

	Appendix Transaction scheduler
	Appendix XML Documents

