
An Advanced Appliance Interaction Architecture

by

Darragh O' Sullivan, BSc.

Thesis

Presented to the

University of Dublin, Trinity College

in partial ful�llment

of the requirements

for the Degree of

Master of Science in Computer Science

University of Dublin, Trinity College

September 2005

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other University, and that unless otherwise stated,

is my own work.

Darragh O' Sullivan

September 12, 2005

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Darragh O' Sullivan

September 12, 2005

Acknowledgments

A sincere thanks to my supervisor Alexis Donnelly for all his support and guidance

throughout the dissertation. Also, I would like to thank my family for their support.

Thanks to Amanda for her support throughout the year and her very helpful proof-

reading towards the end of the dissertation. Finally, I would like to thank my classmates

for their shared knowledge and making the year enjoyable.

Darragh O' Sullivan

University of Dublin, Trinity College

September 2005

iv

An Advanced Appliance Interaction Architecture

Darragh O' Sullivan

University of Dublin, Trinity College, 2005

Supervisor: Alexis Donnelly

In the future, the ability to monitor and control home appliances over the Internet

could become one of the conveniences that we wonder how we ever managed without.

Also, the ability to interact with networked appliances within the home, using di�er-

ent user devices and modalities, could prove to be hugely bene�cial to certain users,

especially the disabled and elderly. Using a single device to discover and communicate

multi-modally with many appliances based on di�erent technologies could bring untold

advantages to such people. There are a number of issues however, preventing these

scenarios from being realised.

The dissertation �rstly presents these challenges along with the requirements that

need to be met. There are three main challenges that need to be addressed. The �rst

challenge is communication in a heterogeneous environment where there are a variety of

communication protocols being used by the networked appliances (Jini, HAVi, UPnP

and many more). Secondly, it is also expected that there will be a broad range of user

devices in operation in future home and vehicle networks. Users will come to expect vi-

sual, speech and possibly even gesture interaction all at once. Thus, multi-modal and

multi-device interaction is required. This leads to research in generic user interface

languages. Lastly, for the true value of networked appliances to be realised, wide-area

access to appliances over the Internet should be provided and currently there is very

poor support for this.

v

This dissertation reviews the state-of-the-art in multi-modal interaction, heterogeneous

communication and wide-area access to networked appliances. Based on an analysis

of the requirements and state-of-the-art, an appliance interaction architecture is pro-

posed. The service-oriented OSGi (Open Services Gateway Initiative) framework is

proposed as the basis of the architecture. OSGi is a standardised, protocol agnostic,

lightweight services gateway. It has widespread industry support, and it provides a

dynamic services platform allowing components such as appliance drivers and user in-

terface transcoders to be deployed at run-time. As an evaluation of the feasibility of the

proposed architecture, a proof-of-concept implementation is deployed and evaluated on

the Oscar OSGi framework. It is established that an appliance interaction architecture

implemented on the OSGi framework is a �exible environment for deploying services

in a home or vehicle network.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures x

Chapter 1 Introduction 1

1.1 Communicating with Networked Appliances 1

1.2 Why is this technology important? . 3

1.2.1 Home Networks and Automation 3

1.2.2 Remote Access and Monitoring over the Internet 4

1.2.3 Vehicular Networks . 4

1.3 Dissertation Outline . 5

Chapter 2 Requirements and Speci�cation 6

2.1 Functional Requirements . 7

2.1.1 Heterogeneous Discovery and Communication 7

2.1.2 Interacting with Appliances over the Internet 7

2.1.3 Multi-modal interaction with networked appliances 10

2.2 Non-Functional Requirements . 13

2.2.1 Adaptation to Failure . 13

2.2.2 Consistency . 13

2.2.3 Security . 14

2.2.4 Open Standards . 17

2.2.5 Performance . 17

vii

2.2.6 Resource Constraints . 17

2.3 Speci�cation . 18

Chapter 3 Enabling Technologies and State-of-the-Art 22

3.1 Hardware and Transport Medium Technologies 23

3.1.1 Structured Wiring . 24

3.1.2 Existing wiring . 25

3.1.3 Wireless Infrastructure . 27

3.2 Discovery and Communication Technologies 29

3.2.1 Jini . 30

3.2.2 UPnP (Universal Plug and Play) 31

3.3 Wide-area Communication Technologies 34

3.3.1 HTTP (Hyper Text Transfer Protocol) 34

3.3.2 SIP (Session Initiation Protocol) 35

3.4 User Interface technologies . 39

3.4.1 XUL (XML User Interface Language) 40

3.4.2 XIML (eXtensible Interface Markup Language) 41

3.4.3 UIML (User-Interface Mark-up Language) 41

3.4.4 Context-Aware and Synchronized User-Interfaces 45

3.5 Gateway Server . 47

3.5.1 OSGi Services Platform . 47

3.5.2 OSGi Research E�orts . 53

3.6 State-of-the-Art Conclusion . 54

Chapter 4 Proposed Architecture 55

4.1 Physical placement of components . 55

4.2 Technologies and Protocols . 56

4.2.1 Protocol used for Wide-Area Communication 57

4.2.2 Deployment of the Gateway Server 58

4.2.3 Hardware and Transport Protocols 59

4.2.4 Discovery and Communication Protocols 60

4.2.5 Multi-Modal Interaction . 61

4.3 Software Architecture and Design . 62

viii

4.3.1 SIP Service . 64

4.3.2 HTTP Service . 64

4.3.3 User Device Adapters . 65

4.3.4 User Device Registry . 65

4.3.5 Generic User Interface Manager 65

4.3.6 Appliance Registry . 66

4.3.7 Appliance Drivers . 66

4.4 Sequence Diagrams . 67

4.5 Additional Functionality . 69

Chapter 5 Implementation and Evaluation 72

5.1 Scenario . 73

5.2 Implementation Details . 73

5.3 Evaluation of the architecture . 84

Chapter 6 Conclusion and Future Work 86

6.1 Future Work . 87

Appendix A Use Case Diagrams 88

Appendices 88

Appendix B Implementation 93

Bibliography 98

ix

List of Figures

2.1 Use case diagram for a local user within the domain 19

2.2 Use case diagram for a remote user accessing networked appliances over

the Internet . 20

2.3 Use case diagram for the gateway server 21

3.1 Basic structure of a UIML document 42

3.2 OSGi Framework taken from [1] . 49

3.3 Lifecyle of a bundle . 50

4.1 External networks interacting with internal networks (image taken from

http://www.ida.gov.sg) . 56

4.2 Proposed Architecture . 63

4.3 A SIP user subscribing to an UPnP state variable and being noti�ed of

an UPnP event. 68

4.4 A local user sending a command to a networked appliance. 69

4.5 Extended architecture with context awareness functionality. 70

5.1 Deployed components of the architecture 74

5.2 Activator's start method . 78

5.3 Obtaining a reference to services o�ered by the Appliance Registry . . 78

5.4 Interface provided by the Appliance Registry 79

5.5 Client bundle getting the time from the networked clock 79

5.6 Implementation of notifyUPnPEvent method by a UPnPEventListener 81

5.7 ImageGrabber interface . 81

5.8 Registering the Image Grabber service 82

x

5.9 Grabbing an image . 82

B.1 Manifest entries for the Appliance Registry 93

B.2 Activator for the Appliance Registry Bundle 94

B.3 Manifest entries for Appliance Servlet 94

B.4 Activator for Appliance Servlet . 95

B.5 Manifest entries for Java Sockets Adapter 96

B.6 Activator for Java Sockets Adapter bundle 97

xi

Chapter 1

Introduction

1.1 Communicating with Networked Appliances

The advancement of technologies to enable communication with networked appliances

is providing new opportunities, which enables the user to control and monitor net-

worked appliances such as entertainment systems, air conditioners, lights etc., within

the home or vehicle, or remotely over the Internet. Despite these opportunities, there

are a number of major issues that are preventing the widespread deployment of net-

worked appliances.

The problem with most current solutions is that they are restricted to a speci�c

technology or service. Basic services controlling only a single appliance do not o�er

much value compared to traditional, non-networked appliances and may not justify the

investment in the new infrastructure. For the true value of networked appliances to be

realised, it is necessary to have a solution which allows communication with multiple

appliances. This should be done regardless of their underlying discovery and commu-

nication technologies, be it UPnP (Universal Plug-and-Play), Jini, LonWorks, HAVi

or any of the myriad of communication and discovery technologies in operation in the

home network or vehicle network. In general, a practical home or vehicle network

should consist of a gateway server seamlessly integrating communication with multiple

appliances. Unless this integration is completely seamless to the user, then it is very

unlikely that the use of networked appliances will ever take o�.

1

Another issue that is preventing the widespread use of networked appliances is

that, despite the wide range of solutions and standards that exist for interconnecting

appliances inside the home, there is currently very little support for wide-area commu-

nication with networked appliances over the Internet. In order for wide-area protocols

to communicate with networked appliances they need to meet the requirements de�ned

for communicating with networked appliances. Solutions should provide support for

invoking control actions, such as turning on the lights, querying appliances, and receiv-

ing noti�cations, for example, if the power usage increases above a certain threshold

value [2].

Yet another issue is preventing widespread deployment of networked appliances.

It is quite common for today's users to juggle between laptops, Palm Pilots and mobile

phones. These user devices feature a broad range of user-interface technologies. For ex-

ample, Java Swing might be used for a desktop PC, C for a Palm Pilot, WML (Wireless

Mark-up Language) for a mobile phone, and VoiceXML for a voice application. This

richness creates problems for user interface designers. It is necessary for user-interface

designers to build and maintain numerous di�erent source code bases. This requires

e�ort and also means that the user interface designer needs to be pro�cient in all the

di�erent user-interface technologies. Obviously this is not possible, so, a �exible way

to provide user-interfaces for user devices and their di�erent modalities is needed to

realise the full bene�t of communication with networked appliances. This requirement

leads to research in generic user-interface languages. It is also becoming increasingly

more important to develop user-interfaces accessible and usable by a diverse user pop-

ulation with di�erent requirements, skill levels, preferences and abilities. It should

be possible to use these interfaces in a variety of contexts and through a variety of

di�erent user interface technologies. User-interface solutions should accommodate all

potential users, particularly the disabled and elderly, and not just the technology savvy.

2

1.2 Why is this technology important?

Before going any further, it is necessary to discuss why this technology is important

and who it may potentially bene�t. After all, there is no real point in investing research

e�ort into a technology that will not bene�t society to some extent.

The purpose of any technology is to make people's lives easier. The technology

being researched and developed in this dissertation has the potential to improve the

quality of life for many di�erent people with varying needs and abilities. The appli-

cation space for such technology is huge and could potentially be applied to, but not

limited to, home networks and automation, assistance for the disabled and elderly,

remote access and monitoring of home appliances, and vehicular networks.

The market for such technology is set to expand. The population of the world

is aging and will become more dependent on technology to assist them around the

home. Also, young people are becoming more technology savvy and are becoming

more dependent on technology to save time.

1.2.1 Home Networks and Automation

The ability to control home appliances based on disparate communication and dis-

covery technologies and using di�erent user devices and modalities could prove to be

hugely bene�cial to users, particularly disabled and elderly persons. Using a single user

device to communicate multi-modally with home appliances based on di�erent tech-

nologies could bring untold advantages to such people. Communication with networked

appliances is set to become more intuitive as advances are made in user interaction

technologies, such as, hand gesture and voice interaction. Thus, any potential solution

should accommodate the deployment of new user interface technologies without having

an e�ect on the existing system.

Enabling appliances to cooperate and communicate could also potentially bring

advantages, allowing multiple appliances to coordinate together on a particular task to

create an ad-hoc virtual appliance. Again, this technology is bound to become more

3

sophisticated as advances are made in the �elds of ubiquitous computing and arti�cial

intelligence.

1.2.2 Remote Access and Monitoring over the Internet

In the future, the ability to monitor and control appliances remotely over the Internet

could become one of those conveniences that we wonder how we managed without. As

an example, imagine being away from your home and getting a call on your mobile

phone from a repairman who is standing outside the front door of your home and needs

to get into your house to do some repair work. Using your mobile phone, it is possible

to check the identity of the repair man from a discreet camera above the door and

remotely open the door to let the repair man into the house.

Other possible scenarios include the ability to monitor and control appliances such

as heaters, lights, bath-tubs etc. over the Internet. This has obvious advantages in

that it allows users to con�gure their home remotely from work or the car, to be ready

for them when they arrive home. Remote monitoring could also be used by people to

monitor their elderly relatives. For example, by checking the status of the kettle in an

elderly relative's home from your o�ce, it is possible to tell if your relative has used

the kettle that morning. If they have not, then something may be wrong and they may

need assistance.

1.2.3 Vehicular Networks

Vehicular Networks are rapidly becoming standard in new vehicles. Vehicle systems

being integrated include navigation systems, telephony systems, audio systems, enter-

tainments systems, air conditioning systems and security systems. Auto companies at

the forefront of these technologies, in particular BMW, have developed systems that

allow users to interact multi-modally with the systems in the vehicle. The possibility

of integrating the disparate technologies of the di�erent systems and allowing users

to interact multi-modally with these systems has the potential to bring unimagined

innovations to this domain. Also, vehicles today are increasingly reliant on microcom-

puters to control systems such as braking, suspension, and fuel injection. The ability

to remotely monitor these components in vehicles will further enhance the safety and

4

reliability of vehicles in the future. Remote monitoring of vehicles could also be useful

for the �eet management and other such industries.

1.3 Dissertation Outline

The layout of the remainder of the dissertation is as follows:

Chapter 2 presents both the functional and non-functional requirements for com-

municating multi-modally with networked appliances.

Chapter 3 presents the current state-of-the-art technologies in the domain that at-

tempt to meet the requirements de�ned in the previous chapter. This includes a dis-

cussion on communication and discovery technologies, wide-area access protocols, user

interface technologies and services gateways.

Chapter 4 presents the proposed architecture using the most recent state-of-the-art

technologies to address the problem of communicating multi-modally with networked

appliances in a heterogeneous environment.

Chapter 5 presents a proof-of-concept implementation of the proposed architecture,

followed by an evaluation of the architecture and implementation.

Chapter 6 presents a conclusion and possible future work that has the potential

to further improve the proposed architecture.

5

Chapter 2

Requirements and Speci�cation

As in any software development project, before deciding on the appropriate technologies

or designing the architecture, it is necessary to gather and clearly de�ne the require-

ments of what needs to be built.

The purpose of the technologies and architectures being researched in this disserta-

tion is to facilitate multi-modal communication with networked appliances. It should

be possible to discover and interact with appliances irrespective of the underlying tech-

nology of the appliance. This should be done transparently to the user. It should also

be possible to interact with appliances using a preferred interaction mode, both for the

user, the device and the current situation. This multi-modality should also be trans-

parent to the user. Another requirement of this project is that users should be able to

interact with appliances remotely over the Internet. This should be as simple for the

user as interacting with appliances within the local network that the appliances operate.

The requirements for this project are detailed under two headings: -functional

requirements and non-functional requirements.

6

2.1 Functional Requirements

The functional requirements for this dissertation fall under three major categories:

• Heterogeneous discovery and communication

• Interacting with appliances remotely over the Internet

• Multi-modal interaction with networked appliances

2.1.1 Heterogeneous Discovery and Communication

In a home network or a vehicle network, there are numerous disparate technologies in

operation. There are a number of di�erent hardware and transport mediums in oper-

ation (e.g. 802.3, 802.11, Bluetooth, infrared, wired, X.10 using the powerline etc.).

Also, there are a number di�erent discovery and communication protocols in use (e.g.

Jini, UPnP, Salutation, HAVi etc.). And �nally, the exact characteristics and capabil-

ities of the devices and appliances in the network will all be di�erent. To fully exploit

the capabilities o�ered by networked appliances, the complex diversity of networking

infrastructures and device technologies must be coordinated. The requirements to en-

able heterogeneous communication that is independent of any particular technology

are presented concisely in [3]:

"It must be possible to work with di�erent in-domain networking technologies trans-

parently. This requirement applies both to the physical networking and the application

networking technologies."

Networked appliances should be auto-con�guring as much as possible. There should

be minimal user interaction, but advanced users should still be allowed to con�gure

their appliances if they so wish.

2.1.2 Interacting with Appliances over the Internet

In order for the true value of networked appliances to be realised, it is necessary to

o�er remote access over the Internet. Networked appliances should be accessible to the

7

user when away from their local environment. This should require no more e�ort on

the part of the user than interacting with the same appliances within the local envi-

ronment. The same mechanisms that exist for interacting with networked appliances

within the domain should exist outside the domain. It should be possible to browse

and search for particular available networked appliances within a remote domain. Nat-

urally, some of the appliances and services that may be available to a local user should

not be made available to a remote user. Any potential wide-area solution should cater

for this. The requirements for communicating remotely with networked appliances are

addressed extensively in the IETF Internet Draft [4].

Much of the requirements listed below are taken from this draft. The draft di-

vides the requirements for wide-area access to networked appliances into the following

sections:

• Naming and Addressing requirements

• Communication protocol requirements

• Communication mode requirements

Naming and Addressing Requirements

• A networked appliance must be assigned a globally unique name so that it can

be referred to unambiguously.

• There must be support for classi�cation of addresses and selection between mul-

tiple instances. For example, it must be possible to search for all air conditioning

units, or allow for re�nement of a search for a particular air conditioning unit in

a particular room.

• The addressing scheme must use UTF-8 for character representation.

Wide-area Communication Protocol Requirements

• Any potential communication protocol must provide a �exible payload capability

which will allow the transport of commands to, and responses from, individual

networked appliances or classes of networked appliances.

8

• The communication protocol must provide reliability against all forms of commu-

nication errors. If an error is unrecoverable, the communication protocol should

be capable of signalling this to participating entities.

• Since most communication with networked appliances is in real-time, the protocol

must support e�cient messaging for control. Messages should be as short as

possible and be delivered as quickly as possible.

• Event noti�cation is very important for interaction with networked appliances

(e.g. noti�cation that your washing machine is over a certain temperature), con-

sequently, the protocol must have support for event subscription and noti�cation.

• The communication protocol must be capable of encapsulating various appliance

characteristics. For example, some appliances may respond to a user command

immediately whereas other appliances may not respond or may respond after a

non-determinate amount of time.

Communication Mode Requirements

There are a number of di�erent modes for interacting with networked appliances. Sup-

port for the following interaction modes are required:

• Control - It must be possible to send control commands to appliances, for exam-

ple, set the air conditioner temperature to 20 degrees.

• Queries - The communication protocol should facilitate the querying of the state

of networked appliances, for example, what is the temperature of the air condi-

tioner?

• Asynchronous events - Noti�cation is very important for communicating with

networked appliances. The protocol should allow users to subscribe to receive

noti�cations when events happen, for example, notify a user's mobile phone when

the house burgular alarm is set o�.

• Discovery - A protocol should allow users to look for appliances to meet particular

requirements, for example, �nd an appliance that allows that will make me a cup

of co�ee.

9

• Media Streaming Sessions - Any potential wide-area protocol should support

media streaming sessions, for example, to view a baby sitter cam.

2.1.3 Multi-modal interaction with networked appliances

Interaction with networked appliances requires users to be able to access information

and issue commands from a wide variety of user devices, with some devices designed

to suit the user's speci�c usage requirements. The increasing rise in the computational

power available to these user devices coupled with advancements in the �elds of ubiq-

uitous computing and arti�cial intelligence will allow client devices to o�er evermore

sophisticated modalities and functions on ever more miniaturised devices. Users will

come to demand multi-modal interaction on a single device, or multiple devices, in or-

der to maximise their interaction with networked appliances in eyes-free and hands-free

environments (e.g. driving a car) [5]. Studies have shown how context independent

interfaces and disability interfaces are closely related. For example, the problem of a

user needing to be eyes-free and hands-free whilst driving a car resembles the problems

with low-vision issues for disabled users [5]. It is necessary for there to be a continu-

ity in the interface metaphors and the "look-and-feel" of the di�erent user-interfaces,

even though a user may be interacting entirely visually at one point, for example, in

the home or o�ce or entirely aurally at another point, for example, while driving a

car [5]. The interfaces should be straight-forward and easy to learn so that it is not

neccesary to have to re-learn when switching between modalities. Also, new functions

and capabilities should be easy to master as they are introduced.

This ability to interact with appliances via a multiplicity of modalities, each de-

signed to suit the user's speci�c needs and abilities at any given time, means that these

interactions will exploit all available input and output modalities to maximise the use-

fulness of networked appliances. Probably the most intuitive and e�ective method of

interaction is based on what users are already familiar with in their day-to-day human

interaction - speech. Once speech technology develops su�ciently, it is likely to lead

to a revolution as signi�cant as graphical user-interfaces in the 1980s and the Internet

in the 1990s.

10

To allow for multi-modal interaction, user-interfaces should be made available in

formats that can be rendered by the user devices. Rather than a user-interface designer

providing code for all the di�erent possible user devices and modalities, using a generic

user-interface format o�ers a much more e�cient and sensible approach. The generic

user-interface format can then be either transcoded to the target speci�c format on

the server, or transported to the client to be transcoded locally. The requirements

for multi-modal communication with networked appliances and for this generic user

interface format are as follows [6, 7]:

• There should be a natural separation of user-interface and non-user-interface

code.

• The generic interface representation should be completely independent of the

technology and protocols used for transport over the network.

• The interface representation should not be limited to one speci�c modality, but

it should allow mapping to other modalities. It should be possible to render the

representation in the device speci�c format, or in a personalised format, e.g. for

disabled users.

• The interface representation should be extensible. New features can be added

without a�ecting existing features.

• The interface representation should promote a high degree of usability for persons

with disabilities. Accessiblity for disabled persons may require user interface

technology such as voice, braille etc.

• The interface representation should independent from the target format as much

as possible.

• It should be possible to use the rendered interface to interact with networked

appliances both locally within the domain and remotely over the Internet.

• The server and the user devices should be capable of run-time content negotiation

to enable dynamic customised user interface delivery to the user devices.

11

• It should be possible for clients to cache the user interface representation. This

being either the generic format or the actual target-speci�c user interface code.

This is done so that user devices do not need to download the user-interface

representation every time they communicate with the same appliance.

Synchronized multi-modal user interfaces

A hot area of research at the moment is coordinated, synchronized multi-modal in-

teraction that works across a multiplicity of modalites and user devices. This allows

a user to switch between modalites while interacting with a networked appliance, for

example, interacting visually with an appliance and then switch, mid-task, to speech

interaction. The requirements for synchronizing multi-modal user-interfaces that work

across a multiplicity of modalities and user devices, all accessing the same informa-

tion base, are outlined in [8]. Applied to the domain of networked appliances, the

requirements are:

• A potential user should be able to interact in parallel with the same networked

appliances via a multiplicity of user devices and networked appliances.

• A uni�ed, synchronized and coordinated view of the networked appliances should

be present across the user devices.

• There should be synchronized interaction history across the user devices.

• Interacting with appliances should be uniform and behaviour independent of the

user device or modality.

• There should be tight synchronization across multiple parallel modalities.

• There should be coordination of the user interfaces, behaviours and services.

• Mechanisms should be in place to achieve synchronized interaction in a distrib-

uted environment.

• Updates to the underlying status of a networked appliance via any given user

device or interface needs to be immediately re�ected in all available views (user

interfaces/modalities).

12

• User interfaces must support dynamic and often unpredictable switches across

modalities.

2.2 Non-Functional Requirements

Due to the dynamic nature of a home or vehicular network, with a wide variety of net-

worked appliances and user devices joining and leaving, it is necessary for a networked

appliance architecture to be robust and capable of dealing with change and failure on

many levels. It is also necessary to deal with security and real-time communication

issues. It is vital to meet these non-functional requirements for there to be any major

rise in the use of networked appliances by the general population.

2.2.1 Adaptation to Failure

It is expected in a pervasive environment such as a networked appliance network that

connectivity will not be continuously guaranteed. Any potential solution must display

a fair reaction to this situation. Communication must be best e�ort and be capable of

recovering from failures.

2.2.2 Consistency

What a user sees in his or her user device should conform to what is happening in the

real world. There is no point in having the ability to monitor a networked appliance

if the system does not give a true picture of the real state of the networked appliance.

The consequences of this are not di�cult to imagine, for example, the house is on �re,

and the user's device is not aware that the networked �re alarm has gone o�. Also,

there should be a consistency between all user devices within the system. This means

that messages passed within the system should be ordered properly. This is relatively

easy to achieve since all messages sent to networked appliances go through the gateway

server, which can act as a sequencer for the messages sent by the user devices.

13

2.2.3 Security

The importance of security to networked appliances is obvious. A broad range of secu-

rity threats exist for networked appliances. Ease of use, location transparency, multiple

user-interfaces and mobile terminals raise many security concerns with regards to net-

worked appliances. If the system is connected to actuators of any kind, a compromised

networked appliance has the potential to spoil food, injure its user, or set �re to a

house [9] and naturally one does not want his or her front door to be opened by an

unauthorised person. Also, information such as the existence of certain networked ap-

pliances, their locations within the home, the times and frequencies an owner accesses

these appliances, may all be sensitive information.

The traditional taxonomy of security threats identi�es three main classes; con�-

dentiality, integrity and availablility [9]. Con�dentiality is violated when unauthorized

users gain access to private information; integrity is violated when unauthorized users

modify information or systems; and availability is violated when an entity in the sys-

tem is prevented from performing its intended function. Protection against all these

security threats relies on a distinction between authorised and unauthorised users. A

failure in authentication can easily lead to violations of con�dentiality, integrity and

availability.[9] The security considerations for communicating with networked appli-

ances will be addressed under these three headings.

Con�dentiality

When people �rst think about security issues for pervasive computing, they think of

eavesdropping as a consequence of wireless communication. This concern is not really

an issue of major concern however. Once the di�cult problem of authenticating the

users and sharing key material has been done, there are mature and robust symmetric

ciphers such as AES (Advanced Encryption Standard) for protecting the communica-

tion channel's con�dentiality [10].

For wide-area access to networked appliances over the Internet, where user's may

not have access to a shared secret key, there are robust asymmetric key algorithms

available. An alternative solution, outlined in [11], argues that communication with

14

networked appliances usually involves communication between a relatively small set of

communicating entities. At one end is the gateway server. On the other end will be

the relatively small number of various user devices. These include the users' mobile

phones, PDAs, laptops and so on. It is conceded that occasionally a user may bor-

row another person's mobile phone, or similar user device, to interact with the home

network. While this is possible, it is more likely that a user will be using his own

user devices most of the time. This characteristic can be exploited to allow the use of

shared secrets on the user devices. Symmetric-key algorithms are generally much faster

to execute than asymmetric key algorithms. This would be an obvious advantage on

resource constrained user devices, such as mobile phones and PDAs.

It is much more di�cult, however, to protect the con�dentiality of the user de-

vices themselves. Today, the information held on user devices is not very valuable but

as innovations are made in communicating with networked appliances, it is likely that

information about user's personal activities and preferences will be stored on the user

devices. This opens up the issue of abuse of personal privacy if the con�dentiality of

the devices is compromised.

Thus, it is important to protect the con�dentiality of the data held in the user

devices that interact with the networked appliances. In a networked appliance envi-

ronment, use of a particular service must be restricted to authorised users only and

authenticity of the user must be veri�ed in a reliable way before the user is granted

access. If a user's authenticity is not veri�ed, it is possible for many threatening sce-

narios to occur. Another issue of ensuring con�dentiality is protecting within the user

device any long-term keys used to encrypt the commands being sent to the networked

appliance or gateway server. It is also important to have a procedure to recover from

a user device theft when the thief has possession of the user's password.

Another issue a�ecting con�dentiality that needs to be addressed is tra�c analysis,

which could be used as a surveillance tool [10]. Even though the commands being

sent to the appliances are encrypted, the form of the transaction may still remain ob-

servable. Also, it may be possible to determine a user's location based on this tra�c

analysis, which again is a violation of privacy.

15

Integrity

The basic integrity problem is to ensure that messages from the user device to the

networked appliance (or gateway server) are not corrupted by a malicious third party.

This is similar to the con�dentiality problem already addressed in that, once the hard

work of authentication and key distribution is done, the problem of integrity is easy to

address using well known cryptographic mechanisms, such as message authentication

codes [10]. The most di�cult issue for integrity, therefore, is again not with the trans-

mission of the messages but with the user devices themselves. The most e�ective way

to address integrity is to ensure that the user devices and the services o�ered by the

networked appliances are tamper-proof.

Availability

The classic attack on availability is the denial-of-service attack. Some networked ap-

pliances may be particularly vulnerable to denial-of-service attacks because of their

limited power supply, for example, battery operated appliances. Because of this lim-

ited power supply it may be necessary for some networked appliances to go on stand-by

to conserve energy. An e�ective attack on such appliances would be to continuously

send messages to the networked appliance, thereby keeping it awake, until it runs out

of battery and dies. Authentication combats this to some extent, but the problem

arises when networked appliances serve queries from unknowns. It is very unlikely that

a networked appliance will receive commands or queries from unknowns since most

communication with networked appliances will be done through a gateway server, but

it is still necessary to be aware that this may be a possiblity.

Another problem can occur when an attacker forces multiple valid user devices

into cooperating in an attack. This is called the DDOS (Distributed Denial-of-Service)

attack. With the DDOS attack, malicious attack software is installed on the user de-

vice and left dormant until a su�cient number of user devices have been infected. At

that point all the infected user devices are ordered to attack a particular target (i.e. a

networked appliance) simultaneously. Even if the attack consists of nothing more than

sending empty messages to the networked appliance, its replicated nature will �ood

the network [9]. Once attacked, there is very little a networked appliance can do other

16

than disconnecting. Networked appliances are particularly attractive for DDOS attacks

because the appliances are permanently connected to the network and will usually not

have a knowledgable system administrator looking after them and noticing security

breaches [9].

2.2.4 Open Standards

It is necessary to base all the protocols and formats used in the system on open stan-

dards. This includes the communication protocol, the deployment of the gateway

server, and the format of the generic user-interfaces. This is an obvious requirement in

order to make the proposed solution as interoperable, �exible, and as future-proof as

possible. Usage of open standards leads to seamless integration of technologies, proto-

cols and devices throughout the environment.

2.2.5 Performance

Since communication with networked appliances is going to be done in real time, it

is neccessary that all messages sent to networked appliances are sent as quickly and

as e�ciently as possible. This requirement encourages the use of a lightweight and

�exible protocol for wide-area communication. The protocol should work equally well

in connection-oriented mode (over TCP) and in connectionless mode(over UDP).

2.2.6 Resource Constraints

Many of the networked appliances, and also many of the user devices, may have limited

memory and processing power. Thus, it is necessary to keep the processing done on

both the networked appliances and the user devices to a minimum. Most of the inten-

sive processing should be done on the gateway server. This includes the transcoding

of the generic user-interface format to the target-speci�c format. It should still be

possible for thick clients, with more resources, to do their own transcoding and o�er

richer functionality if they have the capabilities to do so.

17

2.3 Speci�cation

The speci�cation provides more detail on the issues described in the requirements. It

describes the behaviour of the architecture as seen by an external observer. This is

neccessary to ensure that there is no ambiguity about the features and behaviour of

the system before the design phase.

In communicating with networked appliances, there are three di�erent entities that

are capable of performing actions. They are; a local user within the domain, a remote

user accessing the domain over the Internet, and �nally the gateway server. The gate-

way could be a lightweight server in a vehicle or a residential gateway in a home. It is

used as a gateway to the Internet and is also used to federate the disparate technolo-

gies that are operating within the domain. The gateway also stores, or generates, the

generic user-interface descriptions used to facilitate multi-modal communication with

networked appliances. Depending on the client device capabilities, it may also be the

responsibility of the gateway server to transcode the generic user-interface format to

the target-speci�c format.

The use case diagram for the local user is shown in Figure 2.1, the remote user

in Figure 2.2 and the gateway server in Figure 2.3. Some of the use case descriptions

are presented in Appendix A.

18

Figure 2.1: Use case diagram for a local user within the domain

19

Figure 2.2: Use case diagram for a remote user accessing networked appliances over
the Internet

20

Figure 2.3: Use case diagram for the gateway server

21

Chapter 3

Enabling Technologies and

State-of-the-Art

The number of networked environments, as well as the number of networked appliances

and devices within the environment, are increasing at an accelerated pace. Common-

place home appliances, such as air conditioners, refrigerators, co�ee pots etc., as well

as vehicle systems, are being networked together. This trend, coupled with the pro�l-

eration of a variety of user devices is making the home and vehicle network ever more

complex. This results in a myriad of communication standards and protocols, many of

them proprietary, which do not interoperate easily with each other. This expanding list

of technologies includes hardware and transport technologies such as IEEE 802.3, IEEE

802.11, Bluetooth, Infrared and X.10 using the powerline. Coupled with this there is

also a wide array of discovery and communication protocols such as, Jini, UPnP, HAVi

and many more. The state-of-the-art in these technologies is discussed, as are methods

of federating the disparate technologies to enable communication using a multitude of

protocols and technologies.

As discussed in the requirements, to fully exploit the opportunities presented by

networked appliances, it is neccessary to have wide-area access. Up until quite re-

cently, despite the fact that there was a plethora of technologies available for accessing

networked appliances within the network, there was not adequate support for access-

ing networked appliances remotely over the Internet. In recent times however, some

22

research in the area of remote access to networked appliances has been done. Based

on an analysis of this research, it seems that most prominent solutions for remote ac-

cess to networked appliances over the Internet are based on either HTTP (Hyper-Text

Transfer Protocol) or SIP (Session Initiation Protocol), both of which run over the

Internet Protocol(IP). The use of SIP for remotely interacting with networked appli-

ances provides certain advantages, and an extended version of SIP has been proposed,

speci�cally designed for communicating with networked appliances. The speci�cs of

this extended version of SIP are presented.

The di�culties of having a wide variety of user devices, each with a speci�c modality,

was outlined in the previous chapter. A possible solution to this is to use a generic user-

interface representation to encode the user interface and then transcode this generic

representation to the target-speci�c format. The state-of-the-art in generic user inter-

face languages and technologies including, XIML, UIML and DISL is presented in this

chapter.

Finally, the deployment of the gateway server needs to be decided. Recently, the

gateway has evolved from a simple hub, providing internet services to a few networked

PCs, into a services gateway [12]. A services gateway is a platform on to which appli-

cations and services can be dynamically deployed and managed. It has also become the

responsibility of the services gateway to federate the disparate technologies in operation

within the environment. The Open Services Gateway Inititive (OSGi) is a spec�cation

for such a services gateway and is explained in detail.

3.1 Hardware and Transport Medium Technologies

The physical connection between the networked appliances and the gateway server can

be implemented in various ways, either by using a wire or some type of wireless signal.

It is likely that a variety of wired and wireless mediums will operate together within

an environment to ful�ll the needs of a broad range of applications. For example,

some applications such as audio and video will require high bandwidth, whereas other

23

applications such as controlling a co�ee pot will require low bandwith. In general, wired

technologies support higher bit rates over longer distances when compared to wireless

technologies and would be suited to applications like video-streaming[13]. Wireless

technologies are generally more suited to low bit-rate services requiring a high degree

of mobility. In [13], the physical media that home networks operate over is organised

into three broad groups: structured wiring, existing wiring, and wireless.

• Structured wiring requires the installation of new cabling in the walls. Both

the cabling and its installation are de�ned by standards (e.g. 802.3 for Ethernet).

The cabling is typically unshielded twisted pair (UTP) or �bre optics).

• Existing wiring uses the existing infrastructure of electrical, telephone, or other

wiring already installed within the home.

• Wireless avoids the use of any wired infrastructure by sending signals through

the air.

3.1.1 Structured Wiring

It is recognised in [14], that installing new structure wiring is a safe way to deploy new

services in the home environment, as these technologies have been tested in the entre-

prise and business sectors. The structured wiring technogies that deserve particular

consideration are Ethernet, Universal Serial Bus (USB), and IEEE 1394.

Ethernet

Ethernet is formally standarised as IEEE 802.3. It is a relatively mature technology

and its installation and con�guration are simple and familiar. The Ethernet standard

is also supported by a large number of vendors, so Ethernet devices, network interface

cards (NIC) and wiring are widely available. For this very reason, it is an attractive

solution for networking appliances and other such devices. However, the main problem

with using Ethernet in a home environment is that it requires the setting up of a new

infrastructure which can be both time consuming and expensive.

24

USB (Universal Serial Bus)

The main advantage of USB for home networks is its ability for "hot-swapping" (i.e.

plugging and unplugging devices without interrupting the operation of other devices)

of multiple peripherals in a daisy-chain architecture [14]. Connecting USB devices

is more or less an automatic process, since most modern PCs and operating systems

provide support for USB connections. Moreover, in many cases, it is unnecessary for a

USB device to have a power source, as the power can be automatically delivered from

the PC. USB provides both asynchronous data transfer and isochronous audio/video

streaming channels which promise transfer rates of up to 460-480 Mbit/s, and covers

the requirements of bandwith devices such as cameras [14]. However, it is unlikely that

USB will achieve dominance in home networks, since it requires the networked device

to be located a short distance from the gateway server.

IEEE 1394

IEEE 1394 (also known as Firewire or i.Link) was initially proposed by Apple Computer

in the 1990s, as a PC and digital video serial bus interface. It provides isochronous real-

time data services and high transfer rates. Though originally designed for entertain-

ment applications, it has turned into an emerging standard that targets all multimedia

applications. IEEE 1394 does not specify a physical medium and mostly uses copper or

plastic optical �bre (POF). The main advantage of IEEE 1394 for networked appliances

is that it implements an easy to set-up, hot-plugging scalable architecture that does

not require terminators or device IDs. It allows for a mix of transfer speeds, enabling

the interconnection of devices with di�erent speed capabilities and costs. Currently,

a number of standardisation bodies and committees, including DVB (Digital Video

Broadcasting), DVC (Digital VCR Conference), the Consumer Electronic Association

(CEA) and the Versatile Home Network (VHN) have adopted IEEE 1394 as their

default interface for broadband, low-cost, digital communications. [14]

3.1.2 Existing wiring

Since structured wiring can be quite expensive to install, many companies are devloping

technologies based on the existing infrastructure already within the home [13]. The

25

most prominent solutions for using existing wiring within a home are X10, LonWorks,

HomePlug and CEBus over the powerline and HomePNA over the phoneline.

X.10

X.10 provides a solution for controlling simple home appliances. It utilizes existing

electrical wiring in buildings and, hence, does not require any additional cabling. The

basic command set of X.10 includes commands for switching power on and o�, adjusting

brightness level and querying statuses with optional numerical parameters. X.10 has

256 possible addresses within a domain. X.10 speci�es di�erent modules for controlling

di�erent appliances. For example, a lamp module is speci�ed for controlling lamps.

This module is capable of switching a lamp on or o� and dimming the brightness

of the lamp. More complex modules are required for controlling more sophisticated

appliances. A infrared and radio frequency based transport are also de�ned for X.10.

One major problem with X.10 is slow data rates of around 20 bit/s. This shortcoming

means that X.10 is, in practice, restricted to very simple operations on very simple

networked appliances (e.g. turning a co�ee pot on etc.). [15]

HomePlug

The HomePlug Powerline Alliance was formed to build a cost e�ective technology that

uses the existing powerline and o�ers Ethernet standard connectivity rates. The al-

liance consists of 12 founding members and over 80 participating companies. The

current HomePlug standard allows for speeds up to 14 Mbit/s. In August 2005, a new

standard which allows for speeds greater than 100 Mbit/s was approved by the Home-

Plug Powerline Alliance. This standard is still backward compatible with HomePlug

1.0. [15]

LonWorks

LonWorks is a networking platform created by the Echelon corporation speci�cally

to address the unique performance, reliability, installation and maintenance needs of

control applications. LonWorks can use the powerline, twisted pair, radio frequency,

infrared, �bre optics and coaxial cable. It is a low bandwidth protocol and is particu-

larly popular for the automation of various functions within buildings such as lighting

26

and heating and ventilation systems. [15]

CEBus

Consumer Electronic Bus is a communications standard for in home networks devel-

oped by the Electronics Industry Association (EIA) and the Consumer Electronics

Manufacturers Association. Like LonWorks, the standard does not just apply to com-

munication over the powerline but also coaxial cable, radio frequency and Infrared. A

disadvantage of CEBus is that there are relatively few products available and the high

cost of those products. [15]

HomePNA

HomePNA is being de�ned by the Home Phoneline Networking Association whose aim

is to promote and standardise technologies for home phone-line networking, and to

ensure compatibility between home networking products[14]. Since HomePNA takes

advantage of the existing home phone wiring, this enables an immediate market for

HomePNA devices. HomePNA 2.0 provides 10 Mbit/s rates.

3.1.3 Wireless Infrastructure

Wireless connectivity is extremely desirable for communicating with networked appli-

ances, because it allows unhindered mobility and access. If the networked appliance

architectures are to bene�t all intended audiences, particularly disabled and elderly

users, then wireless access is a necessity. Today, there are a broad range of tech-

nologies available to construct a wireless infrastructure. It is unlikely that any one

technology will win out, since each of the technolgies is designed for di�erent situa-

tions. It is much more likely that a home network or a vehicle network will consist of

a number of complementary technologies, all part of the overall solution. Some of the

prominent candidates for communication with networked appliances are presented.

IEEE 802.11

IEEE 802.11, also known as Wi-Fi, is an obvious candidate for communicating wire-

lessly with networked appliances. The 802.11 family of Ethernet standards are used to

27

standardise wireless LANs. It is a mature, robust technology that has been deployed

for some time in corporate settings. It operates in the unlicenced band of 2.4 and 5

GHz. IEEE 802.11 systems operating within the 2.4GHz range provide data rates up

to 2 Mbps. Enhancements to the 802.11 standards have created faster versions of the

speci�cation. The most signi�cant is the IEEE 802.11b speci�cation, which achieves

data rates of 5.5 and 11 Mbps by using CCK (code keying modulation). [16]

Bluetooth

Also known as IEEE 802.15.1, Bluetooth has been suggested as a potential candidate

for wirelessly connecting networked appliances [14, 16, 17]. Bluetooth is under the

direction of the Bluetooth Special Interest Group. This group de�nes pro�les for use

with Bluetooth, for example, the Hands-Free Pro�le that allows hands free kits in cars

to communicate with mobile phones. Bluetooth has a range of up to 10 metres, operates

in the 2.4GHz unlicenced band, and provides rates of up to 10 Mbit/s. Bluetooth

operates by having up to 7 slave devices communicating with a master device. This

arrangement of up to 8 devices is known as a piconet. It is possible to link piconets

together to form a scatternet, allowing for a more �exible con�guration. Because of the

limited bandwith, Bluetooth is unlikely to be used for audio and video transmission.

Also, because of the limited range, it is likely to be restricted to only certain applications

within the home.

Infrared

In [17], Infrared communication, as standardised by the Infrared Data Association

(IrDA), is examined as a potential candidate for networking embedded computers and

networked appliances. At data rates of up to 4 Mbps, it seems like an appropriate

solution for communication with networked appliances. It is pointed out however, that

there are a number of interoperability issues due to the many operating modes that

the standard tries to make available. Another major drawback to using Infrared to

communicate with networked appliances is that Infrared requires, in most cases, line-

of-sight operation. This could be be viewed as an advantage, though, for appliances

that require explicit selection, for example, by pointing directly at the appliance to

interact with it.

28

IEEE 802.15.3

IEEE 802.15.3, also known as UWB (Ultra Wide Band), is designed to o�er an wide

bandwidth over a limited area. It is targeted speci�cally at high-de�nition video and

high-�delity audio and o�ers a wide bandwidth to such applications (3.1 - 10.6 GHz).

The speci�ction dictates a data rate of 55 Mbps or more. The standard is optimised

for short-range transmissions limited to 10 metres. This enables appliances to have

very low-power requirements (approx 200uW. This is an obvious advantage for battery

operated appliances.

IEEE 802.15.4

IEEE 802.15.4 is an emerging standard for low-power wireless monitoring and control.

It has the potential to scale to many devices and has a typical range of 10-75 metres.

ZigBee is the network and application layer on top of IEEE 802.15.4 and is standard-

ised by the ZigBee Alliance. It is speci�cally aimed at devices with low data rates

and low-power consumption. Again, like IEEE 802.15.3, it is aimed at very low-power

devices, but it has much lower data rates. Possible applications within the home could

include low data rate, battery operated devices, like smoke detectors.

3.2 Discovery and Communication Technologies

End-users are not too interested in the underlying protocols used to communicate with

networked appliances. What end-users are really interested in are the services provided

by appliances and devices. Ideally, networked appliances should be capable of adver-

tising services and user devices should be able to search for particular services. The

lack of network administrators in the home or car requires that the networks, and their

services, are capable of doing this automatically. This task of service advertisement

and discovery is addressed by service discovery protocols such as Jini, UPnP, SLP (Ser-

vice Location Protocol), and Salutation. In general, service discovery protocols work

by advertising the available service and supplying information about the capabilities

and details about the services o�ered. Clients may then discover a particular service

29

and register to use that service. Common service and discovery protocols include Jini,

UPnP, SLP (Service Location Protocol), SDP (Service Description Protocol) and Salu-

tation. Two of the more prominent discovery protocols used for communicating with

networked appliances, Jini and UPnP, are discussed below.

3.2.1 Jini

Jini-based technology, developed by Sun Microsystems, addresses the problems of dis-

tributed systems by de�ning mechanisms to support the federation of machines or pro-

grams into a single, dynamic distributed system. Jini provides mechanisms for service

construction, advertisement, lookup, communication, and use in a distributed system

[18]. Each Jini enabled device provides a service by publishing its own interfaces, which

other devices can then discover and access the service provided by the device. Each

device in the Jini network is represented as a Java object and the object's interface

advertises the services that the device has to o�er. Discovery and lookup services allow

Jini clients to obtain references to the remote objects advertised by the devices. The

clients can then invoke the methods of the remote objects using Java RMI (Remote

Method Invocation). Examples of services operating within the home domain might be

air conditioners, co�ee pots etc. Examples of clients would be user-devices that wish

to use this service.

Lookup Service

The lookup service acts as a broker between the service and the client. Services register

their proxy objects with a lookup service using discovery and join protocols. Discovery

occurs when a service is looking for a lookup service to register its service. Join occurs

when a service has located a lookup service and joins it. Clients can then use the

lookup protocol to �nd the service o�ered. Clients see a service as a Java interface

with methods that the client can invoke to execute a particular service. The lookup

service maps the Java interfaces seen by the clients to a set of RMI stubs. The client

can then download this RMI stub and communicate back with the server using RMI.

This enables a client to use the service without knowing anything about it. [18]

30

Leasing

To improve fault tolerance within a Jini network, Jini grants access to services on a

lease basis. It is likely that devices or appliances may leave the domain or suddenly fail

without having a chance to deregister themselves. To protect against this, a service is

granted for a negotiated time period between the client and the service provider. The

lease must be renewed before its expiration if a service user wishes to continue using

the service. Otherwise, the resources associated with the services are released. [18]

Jini Surrogate Architecture

Jini also allows non-Jini devices to join a Jini network. This is useful for devices that

may lack the resources to run their own JVM (Java Virtual Machine) which is likely to

be the case for many networked appliances. A surrogate host is used is used to act on

behalf of the non-Jini device. The surrogate host performs the discovery and lookup

tasks, thereby allowing the non-Jini device to participate within the Jini federation. All

future communications between the non-Jini device and the other Jini-enabled devices

takes place through the surrogate proxy [19].

3.2.2 UPnP (Universal Plug and Play)

UPnP is a service and discovery protocol that exploits existing open standards, such

as IP, TCP, UDP, HTTP, SOAP and XML. In UPnP, a device can dynamically join a

network, obtain an IP address, provide its capabilities upon request and learn about

the presence and capabilities of other devices. All of this is done automatically. The fol-

lowing are the characteristics of UPnP that make it attractive for networked appliances

[20]:

• Zero-con�guration - Once an UPnP device is plugged into the network it will

automatically con�gure itself, plug itself into the network, acquire an IP address,

31

and announce its presence.

• Standards based - UPnP is built on standards such as IP, TCP, UDP, HTTP,

SOAP and XML. This enables UPnP to be a very interoperable protocol.

• Platform independent - Because UPnP is standards based it can be imple-

mented using any programming language, on any operating system or hardware

platform.

• Transport layer independence - UPnP can be used over a wide variety of

underlying physical mediums providing it has an IP stack.

UPnP Services

A UPnP service provides actions that can be invoked by clients. The state of a service

is modelled by state variables. It is possible for clients to subscribe to be noti�ed of

changes to these state variables. A UPnP enabled device may contain a number of

services. The UPnP forum is establishing standards for UPnP devices and services, for

example lighting controls.

Control Point

A UPnP control point is capable of discovering and controlling other devices. Control

points are analagous to clients in Jini. It is possible for UPnP control points to also

provide services.

UPnP Communication

The operation of UPnP can be explained in �ve steps [18]:

1. Addressing - IP addresses are used to uniquely identify every UPnP device and

control point. DHCP (Dynamic Host Con�guration Protocol) is used to provide

IP addresses. It is necessary for all UPnP devices to have DHCP clients. When

a device �rst connects to the UPnP network, it contacts the DHCP server for

32

an IP address. If the DHCP server fails, then Auto-IP will be used to assign an

address.

2. Discovery - UPnP uses Simple Service Discovery Protocol (SSDP) for service

discovery. SSDP is built on top of HTTPU (HTTP over unicast) and HTTPMU

(HTTP over multicast). When a device is added to the network, the device

advertises its services to the control points on the network, by sending out a

multicast message. Similarly, when a control point is added to the network, a

SSDP discovery message is multicasted, in order to look for devices of interest.

Any devices that match the search criteria speci�ed by the control point must

respond to it with a unicast message.

3. Description - For the control point to learn more about the capabilities of the

device it needs to know the capabilities of the device. The advertisement message

sent by the device contains a URL that points to an XML �le describing the

features and capabilities of the device and the services it o�ers. The control point

can retrieve this XML �le to inspect the features of the device and the services it

o�ers to see if it �ts its purposes. This XML description allows complex, powerful

desciption of services, as opposed to Jini's interface API o�ering. The XML �le

contains URLs for control and eventing. For each service, the description includes

a list of commands or actions to which the service responds. The description also

includes a list of state variables which model the state of the services at run time.

4. Control - Once a control point has the XML device description document, it can

control the device. A control URL for each of the services o�ered by the device

is provided in the XML description document. Control messages are expressed

in XML using the Simple Object Access Protocol (SOAP). HTTP is used as the

underlying protocol to send the messages.

5. Event Noti�cation - Services can publish updates when the state variables

which model the state of the services change. It is possible for control points to

subscribe to receive these updates. For example, a user device within a home

network could subscribe to receive a noti�cation when the state variable de�n-

ing the temperature of an air conditioner changes. When a change occurs in a

state variable that a control point is subscribed to, the control point will receive

33

an event message containing the new value of the state variable. These event

messages are expressed in XML and are formatted using the General Event No-

ti�cation Architecture (GENA). GENA is de�ned to send and receive messages

using HTTP over TCP/IP and using HTTPMU over UDP/IP.

3.3 Wide-area Communication Technologies

As discussed in the previous chapter, the problems that need to be addressed by a

potential wide-area solution to communicating with networked appliances are [21]:

• limited address capabilities.

• handling of mobility.

• security, in particular preventing unauthorised access to home appliances.

• resource limitations in mobile terminals and networked appliances.

• simple protocol, so as not make networked appliances complex and expensive.

HTTP (Hyper-text transfer protocol) and SIP (Session Initiation Protocol) are the

two most common solutions for communicating with networked appliances over the

Internet. There are a number of reasons why SIP, with some extensions, might be

particulary attractive for communicating with networked appliances.

3.3.1 HTTP (Hyper Text Transfer Protocol)

HTTP is a well known protocol used for communication with web browsers. Many solu-

tions to accessing networked appliances use HTTP for this very reason. It is a relatively

mature and widespread technology, easy to implement, and has some security features,

for example SSL (Secure Sockets Layer). However, there are a number of reasons why

HTTP is not suitable for communication with networked appliances [22]. Networked

appliances could potentially be mobile and are also likely to generate asynchronous

noti�cations. HTTP does not provide good support for mobility or noti�cations. Also,

another disadvantage of using HTTP to communicate with networked appliances is

that HTTP must run over TCP, which could be a liability in some situations.

34

3.3.2 SIP (Session Initiation Protocol)

SIP is a call setup and management protocol for multi-media communications. It is the

most popular protocol used for Voice over IP solutions. SIP is an application protocol

and is independent of the underlying transport protocol and only requires unreliable

datagram service, as it provides its own reliability mechanism. It usually runs over

UDP or TCP, but it could just as easily run over many other transport protocols.

SIP also provides a suite of security services which include denial-of-service prevention,

authentication, integrity and encryption.

SIP [23] facilitates the creation of sessions allowing the exchange of data between

participants in the session. These sessions include Voice over IP telephone calls and

other multimedia content. It is also possible for SIP to invite participants to already

existing sessions. SIP entities are identi�ed by their SIP URI (Uniform Resource Iden-

ti�er). SIP URIs have a similar format to email addresses. SIP is based on a HTTP

like request/response transaction model. Each transaction consists of a request that

invokes a response from the server. SIP clients (for example SIP-enabled softphones)

send messages to SIP URIs. All messages sent by the SIP client go through a SIP

server. A SIP server is an intermediate device that recieves SIP requests and then for-

wards the requests on the clients behalf. A basic transaction begins by a client sending

an INVITE request to the SIP server. The INVITE request includes the address of

the caller (in the From header �eld) and the address of the intended callee (in the To

header �eld). The SIP server then sends the INVITE message on to the proxy server

acting on behalf of the intended callee. This server then passes the message on to the

callee. Once the callee has received an INVITE message, the two clients negotiate a

session through their respective proxy servers. The session is negotiated by the sending

of a series of very simple messages and acknowledgements. Once the session has been

established, a media session begins using the format agreed upon in the session setup

phase. At the end of the session, a BYE message is sent to terminate the session. To

demonstrate the simplicity of SIP messages, an INVITE message taken from the SIP

RFC [23] is shown below.

35

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

Extended SIP

An extended version of SIP, speci�cally designed for communicating with networked

appliances, has been suggested [22]. Rather than design a new protocol from scratch,

the designers decided that reusing the infrastructure of an existing protocol and adding

a few extensions would be more appropriate. The new methods added to SIP are DO,

SUBSCRIBE and NOTIFY. Messages or requests for networked appliances are car-

ried in the body of the DO request, and are delivered to the home environment [24].

Since event noti�cation forms a very important part of networked appliance commu-

nication, SUBSCRIBE and NOTIFY methods were added [25]. SUBSCRIBE

enables user devices, or other networked appliances, to subscribe to certain events

within the network, and NOTIFY allows appliances to notify subscribers of events

occurring. The advantages of using SIP for communication with networked appliances

over other protocols, or over designing a completely new protocol, are presented in [26].

Succinctly, these advantages are:

• Scalability - SIP is a very scalable protocol. It works equally well in LAN

and WAN conditions. SIP can also work over a variety of transport protocols,

including UDP and TCP.

• Simplicity - SIP allows service providers to rapidly deploy new services easily.

It is a very lightweight protocol and it is text based. This simplicity means that

36

it can be implemented on a small footprint, an attractive feature for networked

appliances. It is also well integrated with the IP (Internet Protocol) family of

protocols.

• Flexibility - It is very simple to add extensions to support new features. The

protocol is de�ned in such a way that any provider can easily de�ne extensions

to the existing grammar to add features which may not exist in the core SIP

speci�cation yet. This is useful for accommodating novel applications. Most

importantly, SIP speci�es mechanisms ensuring that any new extension does not

break an existing SIP aware node that may be in route but does not understand

the new extension.

• Registration - In SIP, it is not necessary that a calling device needs to know

exactly where to locate the called device or appliance. An appliance can register

its current location with its registrar. The exact location will be resolved by the

proxy in conjunction with the registrar.

• Personal Mobility - Related to the above point, SIP provides the concept of

personal mobility at no extra cost.

• Security - SIP provides both authentication and encryption using schemes such

as PGP (Pretty Good Privacy) to provide end-to-end security. This has obvious

advantages since security is very important for networked appliances.

• Transport Independence - SIP is agnostic about the underlying lower layer

transport protocol. This essentially means that SIP messages can traverse through

various heterogeneous networks.

• Event noti�cation - SIP has been extended to introduce SUBSCRIBE and

NOTIFY methods for communicating with networked appliances. This enables

entities to subscribe to certain events and to be noti�ed when they occur. This is

one of the more attractive features of using SIP to communicate with networked

appliances.

• Addressing - The URI (Uniform Resource Identifer) addressing scheme used

by SIP is extremely generic and �exible. It can encompass a wide range of

37

addressing requirements, which may well be the case for communicating with

networked appliances.

• Integration with existing SIP service mechanisms - Using SIP enables

networked appliances to exploit the rich infrastructure that SIP provides.

• Session based and non-session based communication - SIP allows com-

munication using both session based and non-session based transactions, which

is ideal for communicating with networked appliances providing di�erent types

of services.

• Business models - Finally, since the extended version of SIP is the only proto-

col speci�cally designed for communicating with networked appliances, it would

introduce the possiblities of di�erent service models for networked appliances.

This is similar to what HTTP has done for the world-wide-web. For example,

Electrolux are already investigating a "pay-per-use" washing machine based on

remote monitoring of use over the Internet.

Solutions for interacting with appliances using the extended version of SIP and util-

ising the new DO, SUBSCRIBE and NOTIFY methods are presented [27, 28, 21].

Two other extensions, LOCK andUNLOCK are suggested in [27] to allow appliances

to interact with each other without interference. With the LOCK and UNLOCK

extensions, it is possible for services to gain exclusive control of an appliance. For

example, a burglar alarm service may want a door to remain locked and not allow any

other service to open it.

The format that is to be carried as the body of the new SIP messages (i.e. the

SIP payload) is presented in [2]. This format is intended to be carried as the body of

the SIP,DO, SUBSCRIBE andNOTIFY messages. An XML based format, Device

Message Protocol (DMP) is suggested. An XML-based format is an ideal solution to

such a problem. XML is based on industry standards and is independent of the trans-

port protocol that is used to carry the message. This is important for communicating

with networked appliances, since a goal of any solution is to be as future-proof and

interoperable as possible. Using an XML-based format as the payload means that any

protocol that supports MIME types, and not just SIP, may also be valid for carrying

38

DMP messages. For example, it may be possible for HTTP to carry DMP messages by

setting the MIME type to "text/dmp" [2]. Another advantage of using XML is that

it is relatively easy to process. DMP captures all the requirements for communicating

with networked appliances - conveying information pertaining to control, query and

event subscription and noti�cation. Protocol bridges are required to convert between

DMP and the various technologies that exist within the domain (e.g. X10, UPnP etc.).

This translation is done by the gateway server.

A solution for applying SIP Security to Networked appliances is presented in [11].

The paper recognises that SIP supports basic and digest authentications, which follows

a challenge-response paradigm. The solution outlined also suggests using shared secrets

in communication with networked appliances. As discussed in the previous chapter, it

is likely that communication with networked appliances will involve a relatively small

number of communicating entities. Most of the time, a user will be using his or her

own user devices to communicate with the same networked appliances. This charac-

teristic can be exploited to allow the use of shared secret keys. This is an advantage

because symmetric key security is typically more e�cient than public key encryption

for the same level of security. At the same time however, it is pointed out, that because

of the relatively frequent communications with networked appliances, it is necessary

to update the symmetric key in a timely fashion. Otherwise, attackers may be able

to determine the key for an analysis of the large amount of information that is being

passed. The use of Secure Remote Password (SRP) [29] is suggested as the session key

agreement algorithm in communicating with networked appliance. An expiry time of 24

hours is suggested as the expiry time for the session key, since it would be demanding,

and unpractical, to have to set up a session key for every single session. It is beyond

the scope of this disseration to go into details on the security features, but basically

the security solution presented in [11] provides protection for di�erent users accessing

networked appliances and for the same user roaming across multiple user devices.

3.4 User Interface technologies

As discussed previously, it is expected that there will a myriad of devices, modalites

and user interfaces operating within a home or vehicle network. Some of the potential

39

user-interface technologies that may be in operation within a networked appliance

environment include:

• Java Swing and Visual C++ for desktop PC applications.

• Mark-up languages such as WML (Wireless mark-up language) for mobile devices,

and HTML (Hypertext mark-up language) for web browsers.

• VoiceXML, SpeechML and other such languages for voice-enabled user devices.

It is unreasonable to expect users to exclusively use a single modality or device, so

solutions need to be o�ered that cater for multiple modalities. It is also unreasonable to

expect user-interface developers to develop numerous di�erent user-interfaces for every

potential user device. This would require developers to be experts in all of the user-

interface technologies and languages used to communicate with networked appliances

which is almost impossible. The solution to these problems is to build interfaces with

a single, generic language, free of assumptions about the user devices and the interface

technologies that they use, as much as possible citeAPPLIANCEINDEPENDENT.

Some of the more prominent generic user-interface languages are presented next.

3.4.1 XUL (XML User Interface Language)

XUL (XML User Interface Language) [30] pronounced "zool" is an XML-based lan-

guage for expressing graphical user interfaces. XUL supports Mozilla applications like

Mozilla Firefox and Mozilla Thunderbird. It has also been used to express GUIs for

applications such as spreadsheet editors, calculators, calendars and other desktop ap-

plications. The main bene�t of XUL is that it o�ers a simple and portable de�nition of

common widgets. In XUL, each widget in the GUI is declared with one or more XUL

tags. XUL provides a very simple and easy-to-use way for declaring GUIs. For exam-

ple, to create a scrollbar, the <scrollbar> tag is used. A drawback of XUL is that it

can only describe graphical user interfaces and is not scalable to other modalities. This

drawback probably excludes XUL from being used for communicating with networked

appliances, since it is expected that there will be voice and other such modalities in

operation.

40

3.4.2 XIML (eXtensible Interface Markup Language)

XIML (eXtensible Interface Markup Language) is an XML-based solution for common

representation for interaction data [31]. Its initial development took place at the re-

search laboratories of RedWhale Software. XIML is an organised collection of interface

elements that are categorized into �ve basic components: user tasks, domain objects,

user types, presentation elements and dialog elements. A relation in XIML is a de�n-

ition or a statement that links any two or more XIML elements either within the one

component or across components. An attribute in XIML is a feature or property of an

element that can be assigned a value. XIML is su�ciently expressive to de�ne entire

interface de�nitions for a number of applications. XIML achieves this by making a

very strict separation between the de�nition of the user-interface and the rendering of

that interface on the target device. It is possible to render an interface for a PDA, and

an interface for a PC from the same XIML representation. XIML also supports the

recon�guration of the layout of a user-interface. This is based on knowledge about the

user interface, also captured in the XIML representation. It is also possible to specify

personalised information in the XIML representation, for example, disabled users pref-

erences. [32, 33]

At the moment, XIML is probably the most advanced user-interface speci�cation

language. However, currently, there is not yet a public tool freely available to transcode

XIML representations to target speci�c representations. Also, several parts of XIML

are still under development.

3.4.3 UIML (User-Interface Mark-up Language)

UIML [34] is the most widely used generic user-interface language. It was designed

at the Virginia Polytechnical institute. A UIML document is divided into �ve main

sections: structure, style, content, behaviour, style and peers. The �rst four sections

specify the content and behaviour of the user-interface. The last section, the peers

section, describes how the components are mapped to widgets and constructs in the

target-speci�c platform. A skeleton of a UIML document is shown in 3.1:

41

<uiml>

<interface >

<structure > ...</structure >

<style> ...</style >

<content > ...</content >

<behavior > ...</behavior >

</interface >

<peers>

</peers>

</uiml>

Figure 3.1: Basic structure of a UIML document

• structure - The <structure> tag contains a list of <part> elements describing

some abstract part of the user interface.

• style - The <style> tag contains a list of <property> elements, which give

presentation properties of the parts, for example, blue background.

• content - The <content> tag contains the text, images, and other content

that belongs to the user-interface. This is especially useful when creating user-

interfaces that might be used in multiple languages. For example, separate con-

tent would be needed for a user interface that is in both German and English.

• behaviour - The <behaviour> tag contains a set of rules to de�ne how the User

Interface reacts to stimulus. Each rule consists of a <condition> tag and an

<action> tag. The rule �res by executing the <action> when the <condition>

is satisi�ed.

• peers - The <peers> section maps the generic user-interface description to a con-

crete toolkit and to concrete method calls. For example, it would be necessary to

have a peers section for Java Swing, HTML and VoiceXML. Each of the peers sec-

tions would describe how the generic description would be mapped to each target

speci�c platform. The <peers> section names a vocabulary �le. The vocabulary

�le contains mappings from the part names given in the UIML document to the

target-speci�c platforms, for example, a JLabel in Java Swing. A vocabulary for

describing UIML descriptions for VoiceXML, HTML, WML and Java Swing is

42

provided by Harmonia Inc [35]. The UI developer uses the platform speci�c tags

or class names as <part> names in the <structure> element. Harmonia also

provides a tool for rendering UIML to these target speci�c platforms.

UIML o�ers a fairly sophisticated method of user-interface representation with a

high degree of modularisation [36]. The problem with UIML however, is that it is not

completely independent from the target- speci�c platform. Also, the behavioural part

of UIML is not well developed and does not give su�cient means to specify real inter-

active, state-oriented user interfaces [36]. There is currently much research being done

in the UIML community to address the problem of UIML being too tightly coupled to

the target speci�c representation.

A generic UIML vocabulary, capable of mapping to and from UIML representa-

tions to multiple platforms that share common layout capabilities, is suggested [37].

Platforms that share common layout capabilites are known as a family of devices. For

example, HTML and Java Swing would belong to the same family since they share the

same layout capabilities. The vocabulary proposed is not su�cient to build user inter-

faces for widely varying platforms, such as VoiceXML, handhelds and desktops, but it

is capable of describing user interfaces that belong to the same family. The objectives

of the vocabulary are to be powerful enough to accommodate a family of devices and

to be generic enough to be used without having expertise in all the various platforms

and toolkits within the family. Currently, one generic vocabulary has been de�ned,

GenericJH, which maps both to Java Swing and HTML 4.0. Generic properties are

speci�ed as generic class names, for example, G:TopContainer would refer to a JFrame

in Java Swing and would map to a page heading in HTML. Similarly, a G:Button

would refer to a JButton in Java Swing and a HTML button. Many of the properties

available in Java Swing are not be available in HTML and vice versa. To cater for this,

it is possible for the developer to �ne tune the UI to a speci�c platform. In the generic

vocabulary, these property names are pre�xed by a J: or H: for mapping to Java Swing

or HTML only. The generic UIML �le would contain three <style> elements. One

would be cross-platform, one for HTML and one for Java Swing. When the UI is ren-

dered, the renderer will choose exactly one <style> element. For example, the Java

Swing renderer will only choose the <style> for Java Swing. The selected platform

43

speci�c <style> element speci�es in its source attribute the name of the common,

shared <style> element shared by both the HTML and Java Swing style elements.

Thus, it is possible for a Java or a HTML renderer to utilize both the generic <style>

element and the platform speci�c <style> element. [37] Generic vocabularies are use-

ful for specifying interfaces for families of devices but not interfaces across families of

devices. This drawback is likely to limit the adoption of UIML generic vocabularies.

More sophisticated solutions suggest a UIML oriented language which mainly de-

scribes the dialog model, with only hints to its appearance, in order to provide a

maximum degree of generality. The Multi-modal Interaction (MMI) framework de-

�nes an architecture that uses such a language to cater for combined audio, speech,

handwriting, and keyboard interaction [36]. This language is the Dialog and Interface

Speci�cation Language (DISL) and is based on an UIML subset. The salient features

of DISL are presented next.

DISL (Dialog and Interface Speci�cation Language)

Since UIML de�nitions are too much platform-related, DISL attempts to identify the

smallest set of UIML user-interface elements for general applications as the smallest

denominator over several platforms. The smallest denominator is needed to ensure

that a user-interface can be rendered on all limited devices and be used with di�er-

ent modalities. [36] It should be noted though, that DISL is a essentially a di�erent

language to UIML and cannot be processed by a UIML processor. DISL incorporates

the Object-Oriented Dialog Speci�cation Notation (ODSN) [38] which has been devel-

oped to model complex state space for advanced human-computer interaction. ODSN

models the user interaction as di�erent objects, which communicate by exchanging

events. Each object is described by the de�nition of hierarchical states, user events,

and transition rules. Each rule has a condition and body where the condition may

range over sets of states and sets of user events. The body is executed when the spec-

i�ed events occur and the object is in the speci�ed state. This execution of the body

may change a state. [39] A serialized form of DISL that allows faster processing and a

smaller memory footprint has been designed especially for communication with limited

resource mobile devices [39]. DISL processors have to process a relatively complex

tree structure, whereas a S-DISL interpreter just has to process a list of elements. A

44

XSLT transformation is required to �atten the tree structure used in DISL into a S-

DISL representation. Tools for processing and manipulating DISL are not yet freely

available.

3.4.4 Context-Aware and Synchronized User-Interfaces

For the true bene�t of multi-modal communication with networked appliances to be

realised, it should be possible to automatically customise the modalities for users based

on the user's preferences, abilities, and current situation. A pro�le based concept for

multi-modal interaction in intelligent environments is presented in [40]. Information

on the user's preferences/abilities, the device's properties and the current situation is

stored in dynamically modi�able pro�les. These adaptive pro�les can be queried by

the system, which enable it to decide on the appropriate devices with the appropriate

interaction modalities for an individual user. The best suited device could mean to

identify the device within closest range of the user, or the device that the user prefers.

Sensors could be used to provide information to the pro�les, for example, the user is

currently driving. The location pro�le of that particular user would then be dynam-

ically updated with this information. The user-interface representation is stored as

UIML on the server side. When a user requests interaction with an appliance, the

server sends the UIML description to a transcoding process. This process checks the

location pro�le of the user, to determine the current situation of that user and sees

that the user is currently driving. When an email arrives, and even if the system knows

through the personal pro�le that the user likes to read emails on the dashboard display,

the email is not displayed on the display, as the driver's attention needs to be kept on

the road. Instead of transcoding the UIML representation to a visual user-interface dis-

play, the transcoder employs a rule-set that describes the transcoding from UIML to a

speech interface. The user then interacts with the system by issuing spoken commands.

Pro�les can be used to describe the location and situation of users, the capabilities of

devices and user preferences. The selection process for the proper user-interface and

modality may require the evaluation of many di�erent pro�les and properties at the

same time. To deal with the non-crisp values provided by this situation, fuzzy rules

are suggested to determine the best modality [40].

45

Allowing users to seamlessly switch between modalites in the midst of a task would

be an attractive feature of communicating with networked appliances. Today, users

juggle between mobile phones, laptops and PDAs. A solution is presented in [8], to

the problem of synchronizing user interfaces across a range of modalities. The paper

proposes a solution to present a uni�ed, synchronized view of information across the

various user devices and modalities that access the information. This solution for in-

formation access is just as applicable for interaction with networked appliances. The

paper reasons that interaction will be based on what users are already familiar with in

their everyday interaction with people, where interaction is modeled as a conversation

amongst the various participants in the conversation. It should be noted here that the

term conversation is used to de�ne more than just speech interaction and is used to

encompass all forms of interaction, including graphical interfaces, voice or any of the

other possible interaction modes. A conversation is a similar concept to a dialog. The

most important concept in the proposed solution is the ability to synchronise interac-

tion history across a variety of user devices. This means that when a switch between

modalities occurs in the middle of a task, it is possible for the new modality to seam-

lessly pick up where the last one left o�. For this to happen, user interaction with

a speci�c device needs to be re�ected across all available devices. The Model View

Controller (MVC) design pattern is adapted to conversational interactions, where a

single information source (the model) resides on the server and is viewed via di�erent

devices (the view) and also manipulated via di�erent devices (the controller). The

resulting Conversational MVC (CMVC) is the key underlying principle of multi-modal

conversational interaction. The device that the user is interacting with at any given

time is called the active device. The other devices that are not presently active are

called listeners. Each of the available listeners needs to be primed to carry on where

an active device leaves o�. For this to occur, all the devices need to have a uni�ed view

of the state of a conversation, which is achieved using the CMVC. A single universal

information representation, encoded in XML, is used to encapsulate the current state

of a conversation. XML is chosen because, as outlined previously, it is an industry

standard and it is possible to apply modality-speci�c transformations to the represen-

tation using XSLT or other such methods. User interaction with the currently active

device is mapped back to this single universal information representation, continually

being updated as changes are made to the state of the conversation. This manipu-

46

lation of the same underlying model by various controllers (i.e. devices) provides a

synchonized view for all the devices. Each view can be considered as a transformation

of the underlying modality-independent XML representation. These transformations

provide a natural mapping amongst the various views, since any portion of the view

can be mapped back to underlying modality-independent XML representation. This

portion consequently maps back to the corresponding view in a di�erent modality by

applying the appropriate transformation rules for that modality. This solution works,

as there is always a model of the current conversation/dialog independent of the ren-

dering modality. This acts as a repository of the current dialog state, the dialog �ow

and the whole conversation history and context. [8]

3.5 Gateway Server

As outlined previously, it is envisioned that the networked home and vehicle of the

future will have a wide range of technologies and protocols in operation (e.g. UPnP,

Jini, X10 etc) that need to be integrated. It is also envisioned that home and vehicle

networks will have a diversi�ed range of services on o�er such as, audio/video, moni-

toring, networked appliance control and many more. The services gateway has evolved

to meet these requirements for a platform on to which services can be dynamically

delivered and managed. The services gateway also facilites the integration of the dis-

parate technologies in operation within the network. Basically, the services gateway

acts as a mediator between the end user and the networked appliances. Obviously,

it is desirable for this platform to be standardised in some way so that applications

and services are not tied to any particular product. The most prominent standards

solution, with seemingly overwhelming industry support, is the Open Services Gateway

Initiative (OSGi) Service Platform de�ned by the OSGi Alliance [1].

3.5.1 OSGi Services Platform

The OSGi Service Platform consists of two pieces: the OSGi framework and a set of

standard service de�nitions. The OSGi framework is a lightweight execution environ-

ment for dynamically downloadable services. It provides a component model, a service

registry, and support for service deployment. The standard service de�nitions speci�es

47

a number of useful, optional services, such as a logging service, a HTTP service and a

Device Access architecture. The framework and the service de�nitions together form

the foundation of a platform for building service-oriented applications for communica-

tion with networked appliances . The OSGi framework allows for just-in-time service

delivery whereby a service can be downloaded over the network when the service is

needed. The service may then be used just once and discarded, or it may be kept

persisently on the server. The framework is also capable of updating existing services

dynamically from a remote location. This is useful for software used to interact with

networked appliances, since it is likely that new versions of the software will be fre-

quent. The framework also provides a service and discovery mechanism with which a

component or service in the framework can consult a service directory to obtain and use

a service within the framework. The service directory, or registry, contains service de-

scriptions published by service providers. The service registry allows service requesters

to discover and bind published services. This service-orientation is a key feature of the

OSGi framework allowing for a very dynamic networked environment in which a wide

variety of services may be o�ered. OSGi technology plays a complementary role to

other technologies operating with the home or vehicle, such as Jini, UPnP and HAVi.

[41, 42]

OSGi Framework

The OSGi framework is de�ned to run on top of the JVM (Java Virtual Machine). To-

gether, the operating system and the JVM make up the foundation for the execution

environment for the gateway. The advantage of specifying Java include platform inde-

pendence, the ability to dynamically load code, a rich and extensible object-oriented

programming language and a built-in-security architecture [43]. The framework pro-

vides the execution environment for the services. Within the framework, a service is

represented as a Java interface. The interface says what the service does and not how

it does it. This separation of interface and implementation ensures that the service

interface to the users of the service remains the same, while it is possible to have many

implementations for the same service. It is also possible to change the implementation

of a service while the interface seen by the users remains the same. Service implemen-

tations are delivered and deployed to the framework in a packaging form known as a

48

bundle. A diagrammatic representation of the OSGi framework is illustrated in Figure

3.2.

Figure 3.2: OSGi Framework taken from [1]

A bundle is a functional unit with life cycle operations and class loading capabilities.

More speci�cally, a bundle corresponds to a JAR (Java Archive) �le that contains class

�les, resources and a deployment manifest. The manifest is a standard entry in a JAR

�le and includes meta-information about the JAR itself. An optional set of manifest

headers have been de�ned in the OSGi Service Gateway Speci�cation. These headers

inform the framework of the external Java packages that the bundle depends on, and

any packages that the bundle is willing to share with other bundles. One other piece of

fundamental information contained in the deployment manifest is the name of the bun-

dle's activator class, which is used to perform customised operations at the time when

the bundle is started and stopped [44]. A bundle is self-contained with its own class

loader. This means that code within one bundle cannot refer to classes inside another

bundle, unless of course, the bundle has made its code available by exporting a package

in the manifest. This is how bundles achieve insulation from one another. A bundle

has one of six states on the framework during its lifetime, INSTALLED, RESOLVED,

STARTING, ACTIVE, STOPPING, and UNINSTALLED. This is illustrated in Figure

3.3. Once a bundle has been installed, the framework must resolve a bundle before

it can be started. This involves the framework checking the deployment manifest of

the framework for external packages that the bundle depends on. If the dependencies

exist then the bundle is resolved and ready to be started. When a bundle is instructed

49

to start, it implicitly moves into the STARTING state temporarily, for a brief period,

while the bundle is starting up. If the activator class is successful in starting up the

bundle, the bundle moves into the ACTIVE state, and the bundle is started, ready for

its services to be used by other bundles within the framework. When a bundle is to be

stopped, the framework takes up the responsiblity of tidying up after the bundle. The

framework unregisters and releases any services provided by the bundle, noti�es inter-

ested listeners that the bundle is being stopped and moves the bundle back into the

RESOLVED state. The framework can generate three kinds of events that interested

listeners can receive event noti�cations for; a ServiceEvent reports the registration,

unregistration, or changes for services, a BundleEvent reports changes in a bundle's

life cycle and a FrameworkEvent reports that the framework has encountered errors.

[44, 43]

Figure 3.3: Lifecyle of a bundle

Bundles can make services available by registering, or publishing, the services with

50

the service registry. This registration is done by the activator class of the bundle when

the bundle is started up. As part of registering a service, the registering bundle may

attach a set of properties in the form of attribute-value pairs to the service. These

properties can be used to distinguish between multiple providers of the same service.

When another bundle is looking for a service, it uses the service interface name and

an optional Lightweight Directory Access Protocol (LDAP) query selection �lter over

the service properties. When a bundle is deactivated the activator class unregisters

the services that it provides, and it releases the services of other bundles, that it is

using. It is therefore necessary for bundles that use services to monitor the availability

of those services. When a service departs the framework, as a result of a bundle being

deactivated, the bundle using that service must release references to the departing

service and take any necessary corrective actions, such as �nding an alternative provider

for the same service. [44, 43, 45]

OSGi Services

A number of basic OSGi services have been de�ned by the OSGi Alliance. The orig-

inal focus of the OSGi speci�cations was on services gateways but it has found uses

beyond this. For example, the Eclipse IDE uses OSGi as the underlying runtime for

their plugin architecture. OSGi is still mostly used however, as a services gateway for

homes and vehicles. Speci�cations for basic services such as logging and HTTP are

provided by the OSGi Alliance. OSGi Expert Groups are responsible for de�ning the

speci�cations for other speci�c services that may be o�ered. An Expert Group usually

consists of a group of organisations or companies. For example, BMW are part of the

Expert Group de�ning the speci�cations for services for vehicular networks. One of

the more important speci�cation as regards communication with networked appliances

is the Device Access Speci�cation (DAS), de�ned by the Device Expert Group (DEG).

DAS allows devices to be discovered, and their services advertised by the framework

so that they can be made available to other devices and services.

DAS works as follows [44]: It is detected, with the aid of base (operating system)

drivers that a device is connected, and a device service is registered to represent the

functionality of the device. For example, if a web cam has just connected to the USB

port, a USBService would be registered. Once a device service has been registered,

51

a device re�nement process takes place to �nd a better abstraction for the new de-

vice service. Continuing the web cam example, the device manager within the OSGi

framework asks the existing device driver services to re�ne (provide a better abstrac-

tion for) the web cam connected to the USB port. Driver services understand the

speci�cs of certain types of devices and if better abstractions are available. If a driver

service knows about web cams connected to the parallel port, then it will respond

positively to be considered by the device manager. At the same time that the de-

vice manager is asking the driver services for better abstractions, it also asks Driver

Locator services to �nd and download new driver services, from an external location,

to participate in the device re�nement process. Once all the potential driver services

have been found, the device manager queries them to determine which one can re�ne

the device the best. Simple matching criteria is used to determine this. The device

manager selects the best driver service to re�ne the device, and instructs that driver to

register its device services as a re�nement for the device. The process then repeats itself

for the new device service, until there are no further re�nements. What the Device

Access Speci�cation aims to achieve is to map the physical devices, which are dynamic

and �exible, to services in the OSGi framework, which are equally dynamic and �exible.

The Device Expert Group (DEG) has also de�ned a number of services that map

an external protocol to an OSGi service. DEG has recently de�ned a UPnP service

that can map UPnP devices as services to the OSGi framework and can map OSGi

services to the UPnP network. DEG has also recently de�ned a Jini speci�cation that

enables access to Jini services and devices from within the OSGi framework and also

allows members of a Jini federation to use OSGi services. Basically, these speci�ca-

tions work on an import/export model. Services registered within the OSGi framework

are exported out of the framework to be used by di�erent device protocols. Similarly,

devices and services provided by speci�c device protocols are imported into the OSGi

framework, to be used by OSGi entities.

The OSGi Forum Core Platform Expert Group (CPEG) is currently working on

de�ning a SIP service for communication with networked appliances. This service will

be based on the extended version of SIP for communicating with networked appliances

presented earlier. Recent research has been done [46] on how this new OSGi SIP service

52

speci�cation could be used. The obvious scenario is wide-area communication. A less

obvious scenario, also outlined in [46], is to allow OSGi device and service application-

layer mobility using SIP. An OSGi service can be exported as a SIP proxy service.

This service then gains the mobility feature of SIP, and can then move and register

with the SIP service of another SIP-enabled OSGi gateway while maintaining its SIP

service identity. This makes OSGi services importable into other OSGi frameworks.

3.5.2 OSGi Research E�orts

A signi�cant amount of research e�ort has been put into investigating OSGi as a so-

lution for communicating with networked appliances in a heterogeneous environment

[47, 48]. Most solutions present a similar solution by using the Device Access Speci�-

cation (DAS) import/export model to achieve heterogenity. There has been very little

research done on the more interesting applicaton of OSGi to achieve multi-modality or

context-awareness. The limited amount of available research is discussed below.

OSGi and Context-Awareness

Most solutions for adding context-aware functionality to OSGi compliant-gateways

propose the use of some type of context-inference engine deployed as an OSGi bundle.

The context inference engine could be used to customise the user-interface according

to the user's preference and situation [49]. This customisation information would then

be passed on to a user-interface contructor that builds the interface based on this infor-

mation. The context inference engine would contain a series of rules that are applied to

the user-interface. It gathers information from the environment based on input from

sensors embedded in the environment (current location, noise levels etc). Informa-

tion can also be gathered from user pro�les containing preferences, abilities and other

such information. The use of video surveillance to perform object tracking and hu-

man behaviour analysis is also suggested as a method of gathering information about

the environment [50]. The video surveillance service transforms the raw video data

into high-level descriptions of scenes and events that characterise a speci�c scenario.

Audio analysis could also be used to detect abnormal audio events from raw audio

signals. In [51], a solution is presented for realising context-aware automotive services.

An ontology-based context model is employed throughout the entire process of sens-

53

ing, interpreting, managing and exchanging context information. The Web Onotology

Language (OWL) is used as the modelling language to implement the context model.

Context-aware services then trigger actions when a speci�c event happens using basic

IF-THEN rules. For example, if a phone call comes in and the driver is driving at

high speed, then the context-aware service puts the call straight through to voice mail

(in order not to distract the attention of the driver).

3.6 State-of-the-Art Conclusion

Clearly there are a broad range of technologies to choose from when designing an

architecture for multi-modal communication with networked appliances. Many of these

technologies compliment one another rather than compete with one another. It is clear

that no one particular user interface technology, transport protocol, or discovery and

communication protocol is likely to win out as the exclusive solution for communicating

with networked appliances. Thus, it is neccessary for a potential solution be as �exible

and dynamic as possible. A discussion of the technology choices, based on the state-of-

the-art just presented, takes place in the next chapter. This chapter presents a proposed

architectural solution for communicating multi-modally with networked appliances in

a heterogeneous environment and is based on the most appropriate state-of-the-art

technologies chosen from the technologies presented in this chapter.

54

Chapter 4

Proposed Architecture

Based on an analysis of the requirements of the project and the state-of-the-art, an

architecture for communicating multi-modally with networked appliances in a heter-

geneous environment is now proposed. The architecture is designed to meet the re-

quirements as closely as possible and is based on available state-of-the-art technology.

The architecture is speci�cally designed to be as �exible as possible since it is realised

that home and vehicle networks are dynamic environments and are likely to become

more dynamic in the future with innovations in the services o�ered. The proposed

architecture will be described under four headings. Firstly, the general physical layout

of the components will be presented. Secondly, the technologies and protocols that

have been decided as most appropriate for meeting the design issues will be justifed

and explained. Thirdly, a detailed software architecture and design will be presented.

Finally, considering the extensibility of the proposed architecture, possible additional

components to the architecture will be discussed.

4.1 Physical placement of components

As discussed in the speci�cation, there are three entities in the system capable of

performing actions; a local client user, a remote client user in an external network (e.g.

the Internet) and the gateway server. The client users access the networked appliances

55

through the gateway server. The user device could be a laptop, PDA, mobile phone

etc. The concept of external networks interacting with the internal network through

the residential gateway is illustrated in Figure 4.1. There are numerous di�erent wired

and wireless networks and protocols in operation within the internal network. It is the

responsibility of the gateway server to federate these technologies.

Figure 4.1: External networks interacting with internal networks (image taken from
http://www.ida.gov.sg)

4.2 Technologies and Protocols

The previous chapter presented the state-of-the-art technologies currently available for

communicating with networked appliances. In this chapter, the state-of-the-art tech-

nologies deemed most appropriate for communicating multi-modally with networked

appliances, both locally and remotely, will be chosen. The technology choices that

need to be made are: the protocol used for wide-area communication, the deploy-

ment of the gateway server, the hardware and transport protocols, the discovery and

communication protocols, and how multi-modal communication is to be realised.

56

4.2.1 Protocol used for Wide-Area Communication

There are a few existing wide-area protocols that could be considered for communica-

tion with networked apppliances [22]. SMTP (Simple Mail Transfer Protocol) seems

a likely candidate on �rst inspection, however, it does not support events and media

sessions and can sometimes exhibit very high latency. Since, a networked appliance

could be considered a managed object, SNMP (Simple Network Management Protocol)

seems like a good candidate. SNMP also supports events and noti�cations which is a

big advantage for communicating with networked appliances. The problem with SNMP

however is that it only supports network-layer addressing, and networked appliances

need to support application layer addressing. Furthermore, SNMP does not support

multimedia sessions. [22]

Since there is no wide-area protocol currently available speci�cally designed for

communicating with networked appliances, there may be motivation for designing a

completely new protocol from scratch. The new protocol would be designed exclu-

sively for communication with networked appliances. This protocol would be unlikely

to resemble any wide-area protocol currently in existence [22]. There are a number of

reasons why designing a new protocol from scratch is not appropriate. Firstly, a new

protocol would be unable to reuse any existing infrastructure. Secondly, introducing

yet another protocol may add to the confusion generated by the myriad of protocols

and technologies currently in operation for in-domain communication with networked

appliances. Thirdly, a new protocol would require widespread adoption to justify the

development. This can be di�cult to achieve since it may require organisations and

users to set up a new infrastructure or change an existing infrastructure. Lastly, if a

new protocol was designed it would probably look di�erent from the extended version

of SIP, which was modi�ed for communicating with networked appliances, but it would

still be likely to share many of the same characteristics of the extended SIP [22]. The

bene�ts of being able to reuse the existing SIP infrastructure for communicating with

networked appliances, provides su�cient motivation for not creating yet another pro-

tocol.

The extended version of SIP o�ers an ideal solution to communicating with net-

57

worked appliances. There are reasons, however, why HTTP might still be considered

for communicating with networked appliances. Many users are comfortable with web

browser technology, so, it makes sense for users to be able to interact with their net-

worked appliances through a browser. Despite the fact that HTTP has no support for

noti�cations, it could still be useful for checking the status of networked appliances

by sending HTTP GET requests and sending simple commands to networked appli-

ances, by sending HTTP PUT requests. The request can be processed by servlets or

CGI (Common Gateway Interface) scripts on the gateway to be passed on to the net-

worked appliance. This would su�ce for many types of users and would be no more

complicated for them than sur�ng the web. Despite user-interfaces becoming more

user-friendly and easy to learn, some users are still reluctant to change from what they

know best. This is one of the main reasons why HTTP should be chosen to be a part

of the solution to any networked appliance architecture.

The extended version of SIP should also be chosen as part of the solution to the

problem of communicating remotely with networked appliances. It is the only wide-

area protocol currently available that is speci�cally designed or in this case, modi�ed,

for communicating with networked appliances. This is enough justi�cation for its se-

lection. It was designed speci�cally with the requirements for communicating with

networked appliances in mind. DMP (Device Messaging Protocol) has been speci�-

cally designed as the payload of the extended SIP [2], so this should be availed of to

carry the body of the SIP messages. This data format captures all the requirements

for communicating with networked appliances. Protocol bridges are required between

DMP and the protocol or API used by the gateway server.

4.2.2 Deployment of the Gateway Server

Since user devices communicating with networked appliances are unlikely to be aware

of every protocol used by the appliances within their range, it is necessary to have a

gateway server to federate the disparate technologies. The gateway server also accepts

wide-area requests from remote users and provides user-interfaces for the user devices.

The choice of gateway server is an important decision, since all of the communication

between user devices and networked appliances is done through the gateway server.

58

The gateway server needs to be standards based and capable of dynamically changing

the state of services (installing, stopping, starting etc.) without requiring a reboot

of the server. A proprietary solution is undesirable since this locks applications and

services into speci�c platforms. Application servers such as J2EE and .NET could be

considered. The problem with using these platforms in the home or vehicle is that they

have high resource consumption and have limited support for dynamic deployment and

dependency management. Applications servers are much more suited to corporate set-

tings. The only standardised services gateway currently available is the OSGi platform.

The OSGi platform is probably the most rational choice for a services gateway within

a home or vehicle. OSGi-compliant service gateways support dynamic component de-

ployment, component dependency management, and component lifetime management.

The only major drawback in using an OSGi solution is that a JVM (Java Virtual Ma-

chine) must be present on the gateway server which increases the footprint required to

run applications on the gateway server. A possible solution to this might be, for the

Java community, to specify a small footprint JVM for use on service gateways. This

would require the backing of the Java standardization body which would probably take

a lot of time. The advantages of using Java far outweigh its disadvantages however.

Java is platform independent and is a rich and extensible, widely used, object-oriented

language. It is capable of dynamically downloading code, and has an extensive security

architecture that can guard against the downloaded code.

The OSGi framework would most likely run on a home PC, a set-top box or other

such device. It is also possible for the framework to run on a user's mobile device,

such as, a PDA. Thus, it would be possible for the services gateway to move across

domains with the user. This is desirable for situations where a user is authorised to

use appliances across a number of domains and a gateway server may not be available

on a desktop computer or set-top box within the domain.

4.2.3 Hardware and Transport Protocols

The most convenient way of communicating in a networked appliance environment is

wirelessly. This is also the most likely way that users will interact with networked

appliances in the home and vehicle of the future. IEEE 802.11, Bluetooth, the IEEE

802.15 standards and other wireless hardware and transport protocols will complement

59

one another within the environment. At the same time, there may be a need to

communicate through a wired link, for example, if a higher bit-rate is required over a

longer distance. Thus, any solution to communicating with networked appliances will

need to accomodate a wide range of hardware and transport protocols.

4.2.4 Discovery and Communication Protocols

It is clear, for the meantime anyway, that no one particular discovery and communica-

tion protocol is going to be used for communication with networked appliances. Like

the hardware and transport protocols, there is going to be a broad range of discovery

and communication technologies in operation within the environment. Of all the ser-

vice and discovery protocols available, UPnP seems to be one of the more attractive

options. UPnP is based on industry standards, and because its description is in an

XML �le, devices are able to provide a rich description of the capabilities they o�er.

In contrast, Jini has a simple interface API description and requires devices to have a

JVM. Also, Jini is not meant directly for networked appliances, whereas UPnP is. But

again, each of the discovery and protocols were designed with di�erent audiences and

purposes in mind, so it is likely that protocols such as UPnP, Jini, HAVi, Salutation,

SLP and others are going to be deployed together to complement one another within

the domain. Since the OSGi framework has been decided as method of deployment

for the services gateway, the discovery and communication protocols used by the net-

worked appliances need to be translated to OSGi method calls. As discussed in the

previous chapter, DAS (Device Access Speci�cation), as de�ned by the DEG (Device

Expert Group) provides a solution speci�cally for this. DAS also allows for the dy-

namic discovery of drivers at runtime, which allows for even more �exibility. The DEG

is working on speci�ng design patterns for OSGi discovery APIs to form a template that

can enable rapid development of additional discovery APIs. For example, as explained

previously, it is possible to import an UPnP or Jini service into the OSGi framework

so that it appears as a valid OSGi entity and makes the service fully accessible by

other OSGi entities. Similarly, it is possible to export registered OSGi services so that

they become discoverable using native discovery techniques. For example, a Jini ser-

vice could be discovered by an UPnP control point through the OSGi framework. The

OSGi Device Access Speci�cation is used in this architecture to enable heterogeneous

60

appliance discovery, registration and communication.

4.2.5 Multi-Modal Interaction

There is likely to be at least a half a dozen user devices operating wihtin a domain

at any one time. Users may have PDAs, mobile phones, wearable computers, laptops

and desktop computers. As innovations are made, more and more interaction modes

will become available. Interaction with numerous di�erent devices by the same user

will become part of the user's daily routine. Interaction modes may be personalised

according to the users situation and location, to provide a more intelligent environment

for the user. In all these situations, the user-interface for interacting with a particular

applicance operating within the domain will not be known in advance by the user de-

vice. Also, the characteristics and features of the user device will not be known by the

gateway server. The gateway server should be able to provide user-interfaces for all

the networked appliances that it has access to. It can do this by either storing a static

representation of the user-interface on the server or by generating the user-interface

when it is required. The ability to generate user-interfaces at run-time is particularly

attractive for situation-dependent interfaces. Obviously, because of this diversity, a

solution to multi-modal communication with networked appliances needs to be based

on open standards. An ideal solution, as shown in the previous chapter, would be

to provide a generic description which allows for transformation to any possible tar-

get speci�c user-interface. An XML-based representation would be the most obvious,

since it has gained widespread acceptance and is relatively easy to process. Having

the developer provide his or her own XML based generic description and providing

XSLT stylesheets to transform those representations would be inadequate. This would

require other developers to adhere to that developers standards every time they wanted

to deploy an additional networked appliance user-interface on the gateway server. In-

stead, it is necessary for the generic user-interface language used to be standardised as

much as possible. XIML is the most advanced generic user-interface language currently

available but is still under development. Similarly, DISL o�ers a method of specifying

user-interfaces at a high level of abstraction, but again it is still under development

and tools are not freely available.

61

Currently, UIML is the only practical choice as a generic user-interface language. It

is well-speci�ed and tools are freely available to manipulate UIML representation. Its

major limitation is the fact that it is still too tightly coupled to the target-speci�c rep-

resentation. Harmonia and uiml.org have developed di�erent component vocabularies

for a number of target user-interface platforms (Java Swing, WML, VoiceXML, HTML)

containing target language speci�c information [7]. However this approach only works

when the target languages are known in advance. In the case of future home envi-

ronments, it is virtually impossible to know what the user-interfaces for future user

devices might be. As shown, there is much research being done at the moment by the

UIML community to solve this problem. Solutions suggest to divide the styles of inter-

action into parallel interaction (such as GUIs) and serial interaction (speech dialogs)

and provide separate support for both styles of interaction [7]. This solution is similar

to providing support for separate families of devices, which was outlined earlier. The

proposals are not really adequate for communicating multi-modally with networked

appliances since it is highly likely that parallel interaction and serial interaction will

both be in operation together.

Thus, the current UIML speci�cation does not completely meet the requirements

for communication with networked appliances. The most ideal solution in the pipeline

is probably XIML, but until it is further developed and tools are freely available, cur-

rent solutions will have to make do with UIML. Once XIML has been fully developed,

converting from an UIML solution to an XIML solution should not require too much

e�ort since XIML is more generic than UIML and would require less descriptions to

achieve the same functionality. The UIML transcoders would also need to be replaced

with XIML transcoders. Harmonia Inc. de�nes vocabularies for HTML, Java Swing,

WML and VoiceXML and provides tools for transcoding these UIML representations.

These tools are used in the architecture of this system.

4.3 Software Architecture and Design

A high-level architectural solution using the chosen technologies is illustrated in Figure

4.2. The architecture, as shown, consists of seven components: SIP Service, HTTP

Service for wide-area interaction, User Device Adapters providing access points

62

to various types of user devices within the domain, User Device Registry for au-

thenticating users, Generic User Interface Manager for providing the generic user-

interface description, Appliance Registry for providing access to networked appli-

ances and Appliance Drivers for communicating with networked appliances in their

native protocol. It is designed to be implemented on an OSGi-compliant services

gateway and to meet the requirements outlined for communicating with networked ap-

pliances as much as possible. Each component in the diagram is a bundle within the

OSGi framework. That is, each component is a self-contained JAR �le that can be de-

ployed at run-time. The bundles rely on services provided by other bundles within the

framework. The OSGi framework automatically manages the dependencies between

these bundles. Services are provided by the bundles in the form of interface APIs.

Figure 4.2: Proposed Architecture

63

4.3.1 SIP Service

The choice of a SIP Service in the architecture is based on the assumption that

the extended version of SIP will gain acceptance as the method for communicating

remotely with networked appliances. The OSGi Forum Core Platform Expert Group

(CPEG) is currently working on the details of the SIP Service API for services gateway.

This work is expected to be rati�ed by the OSGi Alliance in the near future. The

SIP Service component accepts SIP messages from remote users and translates the

payload of the SIP message from the DMP format into OSGi method invocations. It

also sends messages, generated within the OSGi framework back to SIP enabled user

devices. It is envisioned that most SIP user devices will be remote devices rather than

local devices, but SIP Service operates equally well in remote or local conditions. SIP

Service depends on the User Device Registry for authenticating users, the Generic

User Interface Manager for providing the generic user-interface descriptions and the

Appliance Registry for interacting with the networked appliances. The SIP Service

transcodes the generic user-interface format into the target-speci�c format or returns

the generic user interface description to be transcoded locally by the client.

4.3.2 HTTP Service

The OSGi Alliance has de�ned a HTTP service that can act as a lightweight HTTP

server. Having a HTTP server on the gateway allows users to interact with the net-

worked appliances through one of the most universal user-interfaces, a web browser.

The HTTP service is among other things, a servlet runner. Bundles can provide

servlets on the gateway which can be made available through the HTTP service. The

dynamic update facility of the OSGi service platform makes the HTTP Service a very

attractive web server that can be updated with new servlets and resources without

requiring a restart. Resources such as images, static HTML pages and other �les can

also be made available through the HTTP Service. Servlets are capable of generating

dynamic content and invoking methods within the framework. A command from a web

browser to control a networked appliance is sent to a servlet registered with the HTTP

Service. This invokes the doPost() method of the servlet. Within the body of the

doPost() method, the servlet invokes a method in the Appliance Registry compo-

nent to send the command to the networked appliance. This component, similar to

64

SIP Service depends on the User Device Registry, the Generic User Interface

Manager and the Appliance Registry components.

4.3.3 User Device Adapters

The User Device Adapter bundles act as access points for the user devices operat-

ing within the domain that the networked appliances operate. Multiple User Device

Adapters are made available for the di�erent types of user devices and protocols that

are in operation within the network. The OSGi framework is ideal for this since user de-

vice adapters can be downloaded from the Internet and deployed dynamically without

requiring a restart of the server. The adapters translate the protocol speci�c messages

sent from the user devices into OSGi method calls to be invoked in the other compo-

nents. As the User Device Adapters act as access points, similar to the SIP Service

and the HTTP Service, they also depend on the User Device Registry, the Generic

User Interface Manager and the Appliance Registry.

4.3.4 User Device Registry

The component could be considered the access control point of the system, as it pro-

vides both authentication and authorisation of both internal and external users. Au-

thentication is required every time that a user tries to connect to the domain from

outside. Also, authentication is required for internal users, since many of the user

devices will be attempting to connect wirelessly to the services gateway. Only users

accepted by the User Device Registry can interact with the networked appliances.

Once accepted, the User Device Registry allows the SIP Service, HTTP Service

and the User Device Adapters to set up sessions with the user devices.

4.3.5 Generic User Interface Manager

The Generic User Interface Manager provides generic user-interface descriptions

for all the networked appliances available within the domain. The generic user-interface

descriptions can either be stored statically on the server, generated dynamically, or

retrieved from an external location such as a remote repository maintained by the

manufacturer of the networked appliance [7]. When the generic user-interface descrip-

65

tion is fetched by either the SIP Service, HTTP Service or the Local User Device

Adapters, it is either transcoded by these components, or it is returned to the client

device still encoded in the generic description to be transcoded locally by the client.

The client caches the user-interface representation so it is not necessary to download

the user-interface when it repeatedly interacts with the same appliance. In this archi-

tecture, UIML will be used as the generic user-interface description format, and UIML

transcoders from Harmonia Inc. will be used to transcode the user-interfaces into

target-speci�c representations. XIML or DISL representations and transcoders could

be added fairly easily when they become available. The Generic User Interface

Manager may also take responsiblity for updating versions of the user-interface repre-

sentations. This could be done either by regularly checking the appliance manufac-

turer's user-interface remote repository, or by a human providing a new user-interface

description to the server.

4.3.6 Appliance Registry

The Appliance Registry has knowledge of every registered appliance and service

within the domain. It stores the names and addresses of the networked appliances, and

provides an interface between the appliance drivers and the other components in the

architecture. The SIP Service component, the HTTP Service component and the

User Device Adapter components interact with networked appliances through the

Appliance Registry. The Appliance Registry also allows user devices to subscribe

to events �red by networked appliances. Appliance Registry relies on the Appliance

Drivers to interact with the networked appliances. The Appliance Registry obtains

a reference to every active Appliance Driver in the framework.

4.3.7 Appliance Drivers

The Appliance Drivers bundles translate between the appliance-speci�c protocol

used by the networked appliances and the OSGi method calls. Di�erent appliances

need di�erent drivers bundles. For example, UPnP appliances would need a UPnP

driver bundle, and Jini appliances would need a Jini driver bundle. These bundles ad-

here to the DAS (Device Access Speci�cation) as de�ned by the Device Expert Group

(DEG).

66

4.4 Sequence Diagrams

To demonstrate the interactions occurring within the architecture, two sequence di-

agrams are presented. Figure 4.3 shows a SIP-enabled client connecting to the SIP

Service, being authenticated by the User Device Registry, and the Generic User

Interface Manager providing the generic user interface to the SIP Service to be

transcoded and returned to the client. A SIP-enabled client subscribing to and receiv-

ing an UPnP event is also shown in Figure 4.3. Note that theDO, SUBSCRIBE, and

NOTIFY messages of the extended SIP are shown. The payload of these messages is

the DMP (Device Message Protocol) proposed as the body of the new SIP messages.

A local user sending a command to a Jini appliance is also shown in Figure 4.4. The

messages sent between the local user devices and the Local User Device Adapter

are in the format used by the local user device. It can be seen from the diagrams that

the method calls within the architecture are the same regardless of the type of user

that is connected.

67

Figure 4.3: A SIP user subscribing to an UPnP state variable and being noti�ed of an
UPnP event.

68

Figure 4.4: A local user sending a command to a networked appliance.

4.5 Additional Functionality

The appliance interaction architecture presented and the technologies it is based on are

designed to be as dynamic and �exible as possible. This facilitates the deployment of

additional components and functionality without interfering with existing components.

One of the more obvious additional features to the architecture would be a context-

awareness feature to provide for a more intelligent environment. Context-awareness is

especially useful in a rapidly changing environment. Context-aware functionality could

be added to an OSGi framework by providing a context sensing bundle to determine

the location, situation etc. of the user and a context manager bundle to process this

information. The context sensing bundle could sense the context of the user through

sensors or using the video and audio analysis technique presented by [50]. A Pro�les

Manager bundle could also be added, storing user preferences, capabilities and other

such information. Both the Context Manager and the Profiles Manager could be

utilised by the SIP Service, HTTP Service and the Local User Device Adapters to

customise the modality and the information that is sent to the user. The architecture

69

with a new Context Sensors bundle and a Context Manager bundle is shown in

Figure 4.5.

Figure 4.5: Extended architecture with context awareness functionality.

Another additional component that could be added to the system would be a bundle

that manages the downloading of new User Device Adapters. This would be similar

in concept to the device manager and driver locator bundles in the Device Access Spec-

i�cation. For example, if a new user device tries to connect to the services gateway and

there is not a Local User Device Adapter available to translate the device speci�c

format into OSGi method calls, the User Device Adapter Locator would start o� a

process to �nd a user device adapter from a remote location.

70

In actuality, because of the �exibility and extensibility of the OSGi framework,

there is no limit to the number of functions and features that can be added to the ar-

chitecture. This is probably one of the most attractive features; both of the architecture

and the technologies used to realise the architecture.

71

Chapter 5

Implementation and Evaluation

A proof-of-concept implementation of the architecture presented in the previous chapter

was developed to analyse the issues that may arise from such an implementation. The

implementation was built using the currently available state-of-the-art technologies and

standards and reusing as many existing software components as possible. Since the

architecture is an OSGi based solution designed to be deployed on an OSGi-compliant

server, a decision needed to be made on which OSGi implementation to use. This

choice is not really an issue since all the OSGi implementations are based on the same

standard. Bundles developed and tested on one implementation should operate the

exact same on other implementations. There are two commonly used, freely available

OSGi implementations; the Oscar and Knop�er�sh OSGi frameworks. Oscar provides

a bundle repository (the Oscar Bundle Repository or OBR) which acts as a repository

for OSGi bundles [52]. This enables reuse of existing bundles and services. It is also

possible to dynamically deploy OBR bundles into an executing OSGi framework. For

example, the DAS device manager can instruct driver locators to look in the OBR

for appliance drivers at run-time. The OBR provides a substantial number of services,

including HTTP, Logging and recently a UPnP base driver. The bundles in the OBR

can be deployed successfully to any OSGi-compliant services gateway and not just

Oscar. Based on preliminary experiments carried out before the implementation, it was

decided that Oscar is stable, has a relatively easy-to-use command-line interface, is fully

compliant with the OSGi speci�cation, and would be used during the implementation

stage of the project. The �nal implementation was tested on both the Oscar and

72

Knop�er�sh OSGi frameworks, giving the exact same behaviour on both.

5.1 Scenario

To prove the intended functionality of the architecture, it was necessary to demonstrate

an implementation that allows multi-device access to networked appliances based on

di�erent communication technologies. The scenario devised was to allow a web browser

client and a Java Swing client to communicate with networked appliances based on

di�erent technologies. The web browser and Java Swing client can interact with two

simulated UPnP appliances, a clock and an air conditioning unit. A service to grab an

image from an USBWeb Cam was also provided. A UPnP subscription and noti�cation

mechanism was also implemented; allowing the Java client to subscribe to changes in

the clock time and the temperature of the air conditioner.

5.2 Implementation Details

To realise the above scenario, the shaded components of the architecture shown in

Figure 5.1 needed to be provided.

73

Figure 5.1: Deployed components of the architecture

Each of the components are deployed as bundles on the OSGi framework. All the

code and the resources needed to run the bundles are contained in the bundle JAR

�les. The HTTP Service was needed as a servlet container for a Appliance Servlet

bundle to provide access for the web browser, the Local User Device Adapter was

implemented as a Java Sockets Adapter and was needed to provide access to the Java

client, the Generic User Interface Manger provided the generic user interface de-

scriptions, the Appliance Registry provided access to the di�erent appliances based

on di�erent technologies and the Appliance Drivers were used to communicate di-

rectly with the neworked appliances. The bundles provide services to one another in

the form of interface APIs with each bundle implementing its own service.

Before going into detail on how each bundle was developed, the workings of the

OSGi framework APIs need to be explained. Most bundles are designed to provide a

74

service, but it is also possible to design bundles that do not provide any service of their

own and simply use the services of other bundles. In this implementation though, most

of the bundles make services available to the other bundles. The process of developing

an OSGi service bundle is as follows: [44]

1. Design the service interface API.

2. Implement the service.

3. Provide a bundle activator to register the service when the bundle starts up and

unregister the service when the bundle stops. The bundle activator may also do

other operations when the bundle starts up and stops, such as binding to other

services when the bundle starts up and closing a socket when the bundle stops.

4. Declare the packages exported by the bundle in the Export-Package manifest

header. The package that is to be exported is the package that contains the

service interface that is being provided. The packages that the bundle relies on

are declared in the Import-Package manifest header.

5. The �nal step is to compile the classes and pack everything into a bundle JAR

�le. The bundle is then ready to be deployed on the OSGi framework.

The org.osgi.framework APIs are used to develop and deploy bundles. The

bundle activator implements the public void start(BundleContext context) and

public void stop(BundleContext context) methods of the

org.osgi.framework.BundleActivator interface. Each bundle has what is known as

a bundle context that allows the bundle to access the functionality of the OSGi frame-

work. The start and stop methods are passed org.osgi.framework.BundleContext

objects to interact with the framework on behalf of the bundle. The bundle activator

uses this object to register and unregister services on behalf of the bundle and also to

obtain services registered by other bundles in the services registry of the framework.

The operation of these methods and APIs will become clear from the implementation

discussions below.

The bundle manifest provides the framework with information about how to de-

ploy the bundle. The properties in the manifest �le include the name of the bundle

75

activator, the import packages that the bundle needs to use and the export packages

that the bundle is willing to provide. For example, every bundle deployed on the OSGi

framework needs to import the org.osgi.framework package. Thus, every bundle

manifest will have the following property in its manifest �le:

Import-Package: org.osgi.framework

Additional packages can be imported by separating each package name with a

comma. Similarly, packages can be exported by the bundle by declaring an

Export-Package. It also is possible to specify the minimum version numbers of the

packages that the bundle wishes to import or export. In the example below, the bundle

wishes to import at least version 1.0 of the org.osgi.service.http package. If a ver-

sion lower than 1.0 is available, then the package will not be imported by the bundle.

If a speci�cation version is not speci�ed than the default is version 0.0, meaning any

version will do.

Import-Package: org.osgi.service.http; specification-version=1.0

A discussion of the implementation of each of the components (bundles) will now

take place. The services o�ered and used by each bundle will be explained along with

any implementation issues. To give the reader a feel for how the org.osgi.framework

packages are used, some code will be displayed for the �rst component discussed; the

Appliance Registry. The manifest �les, and the code to implement the activators

for bundles are shown in Appendix B.

Appliance Registry

The other bundles in the architecture rely on the Appliance Registry to interact

with the networked appliances. The Appliance Registry is aware of all the net-

worked appliances in the domain and has references to the Appliance Drivers used

to communicate with them. It provides a service to the other bundles, allowing them to

76

interact with the networked appliances through the Appliance Registry service API.

To provide its service API to the other bundles, it has the following Export-Package

and Export-Service headers as entries in its manifest �le:

Export-Package: AdvancedApplianceRegistry.Registry

Export-Service: AdvancedApplianceRegistry.Registry.ApplianceRegistry

To allow other bundles to dynamically bind to the services provided by the Appliance

Registry, it must register its services with the framework's service registry. It does

this in the public void start(BundleContext context) of its Activator class. The

code for this method is shown in Figure 5.2:

77

public void start(BundleContext context) throws Exception {

System.out.println("Appliance Registry is starting up....");

Activator.context = context;

applianceRegistry = new ApplianceRegistryImpl ();

ServiceRegistration serviceRegistration = context.registerService

(ApplianceRegistry.class.getName(),applianceRegistry , null);

}

Figure 5.2: Activator's start method

Any other bundle wishing to use this service must �rst obtain a reference to the

service from the framework's service registry. For example, the Servlet that the browser

interacts with and the Java Sockets Adapter both obtain a reference to the services

provided by the Appliance Registry. This is done in the activator class of these

bundles and is achieved using the following code shown in Figure 5.3:

ServiceReference reference = context.getServiceReference(

"AdvancedApplianceRegistry.Registry.ApplianceRegistry");

Figure 5.3: Obtaining a reference to services o�ered by the Appliance Registry

Once the client bundles have obtained a reference to the service o�ered by the

Appliance Registry, they are free to invoke methods provided by the

ApplianceRegistry interface API. To do this however, the client bundles need to have

the following header entry in their manifest �les:

Import-Package: AdvancedApplianceRegistry.Registry

A speci�cation-version is not de�ned so clients are happy with any version of the

package. Now that the client bundles have a reference to the Appliance Registry

they can interact with the networked appliances by invoking methods in the Appliance

Registry interface API. The Appliance Registry provides the interface API shown

in Figure 5.4.

78

public interface ApplianceRegistry{

public void invokeCommand(String applianceID ,

String commandID , String commandValue);

public Object getValue(String applianceID , String valueID);

public void subscribe(String applianceID , String stateID);

}

Figure 5.4: Interface provided by the Appliance Registry

To interact with a networked appliance, a client bundle simply invokes one of the

methods of the Appliance Registry service retrieved from the services registry. As an

example, Figure 5.5 shows code for a client obtaining the time from the UPnP enabled

networked clock.

ServiceReference reference = context.getServiceReference(

"AdvancedApplianceRegistry.Registry.ApplianceRegistry");

if(reference != null){

ApplianceRegistry applianceRegistry = (ApplianceRegistry)context.

getService(reference);

String time = applianceRegistry.getValue("upnpClock1", "time");

}

Figure 5.5: Client bundle getting the time from the networked clock

The Appliance Registry in this implementation provides access to two simulated

UPnP appliances as well as a USB web cam. The Appliance Registry interacts with

the UPnP appliances by acting as a UPnP control point and talking directly to the

UPnP base driver. The details of how this was implemented are presented next.

As stated earlier, a UPnP base driver bundle was recently made available on the

OBR (Oscar Bundle Repository). The UPnP base driver adheres to the Device Ac-

cess Speci�cation de�ned by the OSGi Alliance. To interact with UPnP appliances

through the OSGi framework, this bundle needs to be installed and started on the

framework. Any bundle interacting with the UPnP base driver needs to use the UPnP

APIs speci�ed by the OSGi Alliance, to interact with the UPnP base driver. A class

79

was developed and packaged with the Appliance Registry bundle to act as a UPnP

Control Point; UPnPApplianceRegistry. This class has the functionality to subscribe

to UPnP events generated on the network. The UPnP clock and the UPnP air con-

ditioner, both generate UPnP events. The clock sets o� an event when the time is

updated, and the air conditioner sets o� an event when the temperature of the air

conditioner is changed. The UPnPApplianceRegistry class also has functionality to

update the temperature of the air conditioner. The simulated clock appliance is an

open source implementation provided by Domoware Software [53] and the code for the

simulated air conditioning unit was derived from the code for this clock. The UPnP

control point bundle that was developed in this implementation was also derived from

an open source UPnP control point implementation from Domoware Software.

When the UPnP base driver is started on the framework, it multicasts out a search

request using SSDP (Simple Service Discovery Protocol) to look for any UPnP ap-

pliances that are attached to the network. Any UPnP appliances or simulated UPnP

appliances respond directly to this request. On receipt of this response, the UPnP

base driver registers the newly discovered appliance within the OSGi framework as an

implementation of the org.osgi.service.upnp.UPnPDevice interface. The services

o�ered by the UPnP appliance, described in the XML description �le, are contained

in a java.util.Dictionary object within the org.osgi.service.upnp.UPnPDevice.

For example, the device type of the clock is represented as

"urn:schemas-upnp-org:device:clock:1" and the timer service o�ered by the clock is

represented as "urn:schemas-upnp-org:service:timer:1". Similarly, the air conditioner

provides a temperature service. The control point can then search for speci�c service

descriptions and use that service. The timer service de�nes a time state variable and the

temperature service provides a temperature state variable. The UPnPApplianceRegistry

control point subscribes to receive noti�cations when these state variables change. It

does this by registering as a UPnPEventListener within the OSGi service registry and

implementing the public void notifyUPnPEvent(String deviceId,

String serviceId, Dictionary events); method of this interface. This method is

called by a UPnPDevice when an event that the UPnPEventListener is subscribed to

has �red. When a change is made to a state variable, this method is called on all

the UPnPEventListener implementations subscribed to recieve noti�cations when the

80

state variable changes. For example, when a change is made to the temperature of the

air conditioner, the UPnPDevice representing the air conditioner, obtains a reference

to the UPnPEventListeners from the OSGi service registry and calls the public void

notifyUPnPEvent(String deviceID, String serviceID, Dictionary events)method

on this object. The UPnPEventListener that the method has been invoked on can then

extract the air conditioner temperature from the Dictionary object that represents

the event generated by providing the code shown in Figure 5.6 within the implementa-

tion of the public void notifyUPnPEvent(String deviceID, String serviceID,

Dictionary events) method.

public void notifyUPnPEvent(String deviceId ,

String serviceId , Dictionary events) {

if (deviceId.indexOf("Airconditioner") != -1){

airconTemp = (String) events.get("Temperature");

}

}

Figure 5.6: Implementation of notifyUPnPEvent method by a UPnPEventListener

This code checks to see if the appliance that generated the event is the air condi-

tioner by checking if the device has an ID of "Airconditioner". If it does then the value

generated by the "Temperature" event is obtained and set.

A bundle was also developed to grab images from an USB webcam; ImageGrabber

using the JMF (Java Media Framework). The code for this was based on code available

at http://www-adele.imag.fr/ donsez/dev/osgi/webcamproducer/readme.html. The

very simple interface for ImageGrabber is shown in Figure 5.7

public interface ImageGrabber {

public java.awt.Image getImage ();

}

Figure 5.7: ImageGrabber interface

The ImageGrabberService is registered in the OSGi framework using the code in

Figure 5.8.

81

ServiceRegistration imageGrabberService = context.

registerService(

ImageGrabber.class.getName(),

imageGrabber ,

null

);

Figure 5.8: Registering the Image Grabber service

The Appliance Registry obtains a reference to the ImageGrabber service from the

OSGi service registry, and invokes the getImage()method to obtain a java.awt.Image

object, representing an image grabbed from the web cam. The code for this is shown in

Figure 5.9. This code is run within the public Object getValue(String applianceID,

String valueID)method when the Appliance Servlet and the Java Sockets Adapter

bundles request an image from the web.

try{

imageGrabberReference = context.getServiceReference(

"ImageGrabberService.ImageGrabber");

imageGrabber = (ImageGrabber)context.getService

(imageGrabberReference);

}catch(Exception e){ System.out.println(e);}

if(imageGrabberReference != null){

//grab the image from the webcam

Image imageFromWebCam = imageGrabber.getImage ();

return imageFromWebCam;

}

Figure 5.9: Grabbing an image

Generic User Interface Manager

The Generic User Interface Manager that was implemented is a relatively simple com-

ponent that stores generic user-interface representations for interacting with the net-

worked appliances. This bundle provides a simple UIML documents based on the

Harmonia Inc's HTML vocabulary. The fact that only a few documents are stored

almost negates the need for this component. However, this is a proof-of-concept im-

plementation, and the Generic User Interface Manager is provided to demonstrate how

82

a large number of generic user-interface descriptions would be stored and provided.

The UIML documents based on Harmonia's HTML vocabulary are returned to the

Appliance Servlet on request. The Appliance Servlet then invokes Harmonia's

UIML-to-HTML transocoding tool to transform the representation from UIML into

HTML. The HTML representation is then returned to the browser client.

Appliance Servlet

The Appliance Servlet allows a web browser client to interact with the networked

appliances within the domain. Appliance Servlet is developed using the standard

javax.servlet API. For the servlet to be made available to remote web clients, it must

be registered with the HTTP Service, a lightweight web server available on the OBR.

To do this, the Appliance Servlet obtains a reference to the HTTP Service from the

OSGi service registry. Once the reference to HTTP Service has been obtained, the

Appliance Servlet is registered under the alias, /networkedAppliances. The code

for this is shown in Appendix B. The client browsers use this alias to interact with the

networked appliances. The doGet and doPost methods in the servlet process HTTP

GET and HTTP POST requests respectively. To obtain the time of the networked clock

and the temperature of the air conditioner, the client browser sends a GET request to

the /networkedAppliances alias. To change the temperature of the air conditioner,

the temperature is changed in a drop-down combo box, and a form with the new value

of the temperature is sent to the servlet in the HTTP POST request. The Appliance

Servlet uses its reference to the Appliance Registry obtained from the OSGi service

registry to change the temperature of the air conditioner.

Java Sockets Adapter

The �nal component to be discussed is the Java Sockets Adapter. This bundle pro-

vides access for a Java client communicating through the Java sockets API. Like the

Appliance Servlet, it obtains a reference to, and invokes methods on, the Appliance

Registry bundle to interact with the appliances. It is possible for Java clients to

subscribe to UPnP events generated by the appliances (the time and the tempera-

ture changes) through this adapter. This is achieved by the Appliance Registry in-

voking the public void notifyEvent(String serviceID, String value) method

83

provided by the Java Sockets Adapter. This method is invoked every time the Appliance

Registry receives a noti�cation of an UPnP event. The Java Sockets Adapter bundle

exports a package to allow the Appliance Registry to invoke this method. Every

time this method is invoked the Java Sockets Adapter sends the noti�cation back to

the Java client. Communication between the Java client and the Java Sockets Adapter

is achieved by the passing of a series of serialized objects. The Java client sends

RequestToJoinMessage, RequestToSubscribeMessage, RequestToUnSubscribeMessage

and ApplianceCommandMessage messages. The Java Sockets Adapter sends

ApplianceListMessage, RefuseRequestMessage, NotifyMessage,

and UpdateMessagemessages. These objects all implement the java.io.Serializable

interface. The objects contain attributes relating to information about the messages

and methods to set and get this information. The code for the Java Sockets Adapter

activator is shown in Appendix B.

5.3 Evaluation of the architecture

The proof-of-concept implementation proved the viability of the architecture reason-

ably well. No major issues that might act as a disincentive for using the proposed

architecture arose from the implementation. One problem that might be an issue is

the lack of reusable OSGi driver bundles currently available. This will become less of

an issue in the future, however, as there is currently much work underway to develop

driver bundles to map between OSGi and speci�c protocols, such as Jini, HAVi and

other communication protocols. The developers of the Knop�er�sh OSGi framework

are currently working on a Jini base driver that conforms to the DAS speci�cations for

mapping beteen Jini and OSGi.

As was acknowledged in the state-of-the-art, UIML does not fully meet the re-

quirements as the generic interface representation language for communicating with

networked appliances. During the implementation, this became even more apparent.

Using the vocabularies made available by Harmonia, it was still necessary to have

knowledge of the target-speci�c platforms which almost defeats the purpose of having

a generic user-interface representation. Also, Java Swing user-interfaces speci�ed using

UIML were too basic, and this approach was abandoned in favour of hand-coding the

84

user-interface. It is very unlikely that the current UIML speci�cation will gain accep-

tance, but some of the more advanced generic user-interface options such as, XIML

and DISL, which are still currently under development might take o�. These solutions

could be easily deployed on an implementation of the proposed architecture.

The performance of the architecture was also analysed. The latency of the com-

mands and requests sent through the network was almost instantaneous in most sit-

uations. Also, the time taken for messages to be passed through the framework (i.e.

methods to be invoked within the OSGi framework) was almost instantaneous. The

implementation was tested with numerous web browser clients and Java clients simul-

taneously connected to the gateway server. The Java clients were all subscribed to

receive UPnP noti�cations. There was no noticable di�erence in performance with

this set-up. A large number of bundles were also installed and started on the OSGi

framework to determine how well it would cope with such a situation. Such a scenario

may occur where there are a large number of user devices and networked appliances

based on di�erent technologies connected to the domain. Again, there was no notica-

ble degradation in performance with this set-up. Finally, considering that the gateway

server should be capable of running for months on end, the implemented architecture

was left running on the server for a number of days and again, as expected, there was

no signi�cant degradation in performance.

85

Chapter 6

Conclusion and Future Work

The appliance interaction architecture proposed facilitates multi-modal communication

with networked appliances and is designed to be as �exible and future-proof as possible.

It achieves this �exiblity from being based on open, rather than proprietary, standards.

While it is not absolutely certain that the technologies chosen will remain the de-facto

standards in the future, it is likely that they will be strong candidates for any solution

that provides communication with networked appliances. The choice of how the ser-

vices gateway should be deployed is one the more important choices since it dictates

what other technologies and protocols can be used within the environment. Propri-

etary solutions do not o�er much value since it is expected that appliances, services

and applications for communicating with networked appliances will be made available

by a broad range of companies and organisations. Thus, it is desirable that users are

not locked into using one particular group of services or applications. The standardised

OSGi services gateway speci�cation has achieved broad industry support from many

of the major, highly in�uential, technology companies. Companies such as BMW and

IBM are using OSGi solutions in important projects. For example, BMW uses an OSGi

compliant services-gateway in their latest 5-Series and 7-Series models. For this very

reason, it is very likely that the OSGi will remain, and possibly gain strength, as the

de-facto standard for services gateways. With OSGi becoming widespread, the choice

of what other technologies to use within the home or vehicle becomes less of an issue

as the component-oriented model that OSGi provides allows the dynamic deployment

of new drivers and adapters at run-time. It is left up to the developer to decide what

86

communication protocols are most appropriate, and then use an existing OSGi driver

bundle or develop a new driver bundle to allow communication using the chosen pro-

tocol.

6.1 Future Work

The most interesting future service that could be deployed and tested on the archi-

tecture would be the SIP Service, once it has been fully speci�ed and rati�ed by the

OSGi Alliance. Using the extended version of SIP, speci�cally designed for wide-area

communication with networked appliances, would provide much richer functionality for

remote clients. The SIP Service is set to be rati�ed in the near future, and a SIP Ser-

vice implementation could be plugged in to the architecture easily. Also, as the DEG

(Device Expert Group) speci�es more appliance drivers for the di�erent discovery and

communication technologies, there will be a broader range of driver bundles available

for communicating with appliances. Again, these components can be easily plugged in

to the architecture.

As pointed out earlier, components providing context-awareness features would o�er

a lot more functionality to the architecture. This is a huge area of research encompass-

ing a range of �elds, requiring expertise in Neural Networks, Fuzzy Logic and other

areas. It is worth the time and e�ort to research this area, however, since the true

bene�t of the architecture proposed would be realised for certain users, particularly

the disabled and elderly, by advances made in this area.

87

Appendix A

88

Use Case Diagrams

USE CASE JOIN DOMAIN

GOAL IN CONTEXT User Device joins the domain

Preconditions The user device has the proper client program

to communicate with the gateway server.

The user device is announcing its presence to

the gateway server.

The user has knowledge of the password to join

the domain.

The gateway server understands the communi-

cation protocol used by the user device.

Success End Condition The user device has successfully joined the do-

main and the user is ready to interact with the

networked appliances in the domain.

Failed End Condition The user device cannot join the domain or the

user has his/her password rejected.

Primary, Secondary Actors User device, gateway server.

Trigger A user device launches the application to com-

municate with the networked appliances

DESCRIPTION

Step 1 The user launches the networked appliance

communication program on their user device.

Step 2 The user device announces its presence to the

gateway server.

Step 3 The gateway server discovers the user device

and challenges the user to provide a password.

Step 4 The user provides the password.

Step 5 The user device successfully joins the domain

and waits to receive a list of appliances within

range.

89

USE CASE DOWNLOAD USER INTERFACE

REPRESENTATION FROM GATE-

WAY SERVER

GOAL IN CONTEXT A generic user interface representation, or a

target-speci�c user interface representation is

downloaded from the gateway server.

Preconditions The user has selected an appliance from the list

to interact with.

The relevant user interface is not stored locally

on the client device.

The generic user interface reprentation, or the

target-speci�c representation is stored on the

gateway server.

Success End Condition The correct user interface for the selected ap-

pliance is downloaded to the client device from

the gateway server.

Failed End Condition Either the user interface representation is not

downloaded or an incorrect user interface rep-

resentation is downloaded from the server.

Primary, Secondary Actors User device, gateway server.

Trigger The user device program sends a request to the

server for the user interface

DESCRIPTION

Step 1 A request is sent to the gateway server for the

user interface representation for the selected ap-

pliance

Step 2 The request is processed by the server and the

server sends the interface description to the

client device.

Step 3 The client device receives the user interface rep-

resentation, from the server and is ready to ren-

der it.

90

USE CASE INTERACT WITH NETWORKED AP-

PLIANCE

GOAL IN CONTEXT The sends requests/commands to a selected net-

worked appliance.

Preconditions The user device has joined/connected to the do-

main.

The user interface for the appliance has been

rendered on the client device.

Success End Condition The request/command sent by the user is suc-

cessfully carried out. Information is returned to

the user device if required.

Failed End Condition The request/command is not carried out or an

incorrect command is carried out.

Primary, Secondary Actors User device, gateway server.

Trigger The use selects a command from the user inter-

face of the appliance.

DESCRIPTION

Step 1 The user selects a command from the interface.

Step 2 The command is sent to the gateway server.

Step 3 The gateway server processes the command,

translates it to the protocol used by the selected

appliance, and sends it on to that appliance.

Step 4 The command is carried out by the appliance

and/or information is returned to the client de-

vice through the gateway server

Non-Functional Requirements

Fault Tolerance If a device cannot carry out the requested ac-

tion, then this information must be returned to

the client device.

Performance The translation done by the server must be as

e�cient as possible.

91

USE CASE CONNECT TO A REMOTE DOMAIN

GOAL IN CONTEXT A user connects to a domain remotely over the

Internet

Preconditions The user device has the proper client program

to communicate with the gateway server.

The user has access to an Internet connection.

The user has the address of the remote gateway

server.

The user has the proper authentication (i.e.

username and password) to connect to the re-

mote domain.

Success End Condition The user device has connected to the remote

gateway server and the user is ready to interact

with the networked appliances in the domain.

Failed End Condition The user has not connected to the remote gate-

way server.

Primary, Secondary Actors User device, gateway server.

Trigger The user enters an address of a remote gateway

server to connect to, and commands the client

device to connect to the server over the Internet.

DESCRIPTION

Step 1 User selects the option to connect to a remote

gateway server by providing the address of the

remote gateway server.

Step 2 The user device connects to the remote gateway

server and is ready to receive a list of appliances

to interact with.

Non-Functional Requirements

Fault Tolerance If the remote gateway server is down, then the

client device should be made aware of this.

Performance The messages sent over the network must be as

small as possible.

92

Appendix B

Implementation

Bundle -Name: Appliance Registry

Bundle -Activator: AdvancedApplianceRegistry.Registry.Activator

Import -Package: org.osgi.framework , org.osgi.service.upnp ,

UserDevices.SocketsAdapter , ImageGrabberService

Import -Service: UserDevices.SocketsAdapter.SocketsOSGiAdapter ,

ImageGrabberService.ImageGrabber

Export -Package: AdvancedApplianceRegistry.Registry

Export -Service: AdvancedApplianceRegistry.Registry.ApplianceRegistry

Figure B.1: Manifest entries for the Appliance Registry

93

package AdvancedApplianceRegistry.Registry;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import org.osgi.service.upnp.UPnPDevice;

public class Activator implements BundleActivator {

static BundleContext context = null;

private ApplianceRegistry applianceRegistry = null;

public void start(BundleContext context) throws Exception {

System.out.println("Appliance Registry is starting up....");

Activator.context = context;

applianceRegistry = new ApplianceRegistryImpl ();

ServiceRegistration serviceRegistration = context.

registerService(ApplianceRegistry.class.getName(),

applianceRegistry , null);

}

public void stop(BundleContext context) throws Exception {

System.out.println("Appliance Registry shutting down ...");

Activator.context = null;

applianceRegistry.shutDown ();

}

}

Figure B.2: Activator for the Appliance Registry Bundle

Bundle -Name: ApplianceServlet

Bundle -SymbolicName: ApplianceServlet

Bundle -Activator: Activator

Import -Package: AdvancedApplianceRegistry.Registry ,

javax.servlet , javax.servlet.http , org.osgi.service.http

Import -Service: AdvancedApplianceRegistry.Registry.ApplianceRegistry

Figure B.3: Manifest entries for Appliance Servlet

94

import java.net .*;

import java.io.IOException;

import javax.servlet .*;

import javax.servlet.http .*;

import org.osgi.framework .*;

import org.osgi.service.http .*;

import AdvancedApplianceRegistry.Registry .*;

public class Activator implements BundleActivator{

private HttpService http;

final static String SERVLET_ALIAS = "/networkedAppliances";

final static String HTML_ALIAS = "/htmlFiles";

ApplianceRegistry applianceRegistry = null;

public void start(BundleContext context)

throws ServletException , NamespaceException

{

ServiceReference ref = context.getServiceReference(

"org.osgi.service.http.HttpService");

http = (HttpService)context.getService(ref);

HttpContext hc = new HttpContext (){

public String getMimeType(String name){

return null;

}

public boolean handleSecurity(HttpServletRequest req ,

HttpServletResponse resp)throws IOException

{

return true;

}

public URL getResource(String name){

URL u = this.getClass (). getResource(name);

return u;

}

};

ServiceReference reference = context.getServiceReference(

"AdvancedApplianceRegistry.Registry.ApplianceRegistry");

if(reference != null){

applianceRegistry = (ApplianceRegistry)context.

getService(reference);}

ApplianceServlet servlet = new ApplianceServlet(context);

http.registerResources(HTML_ALIAS , "/htmlFiles", hc);

http.registerServlet(SERVLET_ALIAS , servlet , null , hc);

}

public void stop(BundleContext context) {

if(http != null){

http.unregister(SERVLET_ALIAS);}

}

}

Figure B.4: Activator for Appliance Servlet
95

Bundle -Name: Sockets OSGi Adapter

Bundle -SymbolicName: Sockets OSGi Adapter

Bundle -Activator: UserDevice.SocketsDevice.Activator

Import -Package: AdvancedApplianceRegistry.Registry

Import -Service: AdvancedApplianceRegistry.Registry.ApplianceRegistry

Export -Package: UserDevice.SocketsDevice

Export -Service: UserDevice.SocketsDevice.SocketsOSGiAdapter

Figure B.5: Manifest entries for Java Sockets Adapter

96

package UserDevice.SocketsDevice;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import org.osgi.service.upnp.UPnPDevice;

import AdvancedApplianceRegistry.Registry .*;

public class Activator implements BundleActivator {

static BundleContext context = null;

private SocketsOSGiAdapter socketsOSGiAdapter = null;

ApplianceRegistry applianceRegistry = null;

public void start(BundleContext context) throws Exception {

System.out.println("Sockets OSGi Adapter is starting up....");

Activator.context = context;

try{

socketsOSGiAdapter = new SocketsOSGiAdapter(context);

}catch(Exception e){ System.out.println(e);}

ServiceRegistration serviceRegistration = context.

registerService(SocketsOSGiAdapter.class.getName(),

socketsOSGiAdapter , null);

ServiceReference reference = context.getServiceReference(

"AdvancedApplianceRegistry.Registry.ApplianceRegistry");

if(reference != null){

applianceRegistry = (ApplianceRegistry)context.getService(reference);

}

}

public void stop(BundleContext context) throws Exception {

System.out.println("Sockets OSGi Adapter is shutting down ...");

socketsOSGiAdapter.closeSocket ();

Activator.context = null;

}

}

Figure B.6: Activator for Java Sockets Adapter bundle

97

Bibliography

[1] Osgi alliance. http://www.osgi.org.

[2] Khurana S. et al. Xml based wide area communication with networked appliances.

IEEE Conference on Wired and Wireless Communication, 2004.

[3] S Moyer et al. Service portability of networked appliances. IEEE Communications

Magazine, pages 13�19, 2002.

[4] S Tsang. Requirements for networked appliances: Wide-area access, control, and

interworking. IETF Draft, September 2001.

[5] Trace research and development centre - university of wisconsin at madison, usa.

http://trace.wisc.edu.

[6] Abrams M. et al. Uiml: An appliance-independent xml user interface language.

WWW8/Computer Networks, 1999.

[7] J Plomp. Uiml in future home environments. Submitted to the �rst UIML confer-

ence held in Paris, January 2001.

[8] SH Maes et al. Multi-modal interaction in the age of information appliances. IEEE

International Conference on Multimedia and Expo, 2000.

[9] Stajano F. et al. Security issues for internet appliances. IEEE Symposium on

Applications and the Internet (SAINT) Workshops, 2002.

[10] Anderson et al. The resurrecting duckling: Security issues for ubiquitous comput-

ing. Supplement to Computer Magazine, pages 22�26, May 2002.

98

[11] Chan T. On applying sip security to networked appliances. IEEE 4th International

Workshop on, pages 31�40, 2002.

[12] Bull P. et al. Residential gateways. BT Technology Journal, 20:73�80, April 2002.

[13] Teger S et al. End-user perspectives on home networking. IEEE Communications

Magazine, 40:114�119, April 2002.

[14] Zahariadis Th. et al. A comparison of competing broadband in-home technolo-

gies. Electronics and Communication Engineering Journal, pages 133�142, August

2002.

[15] Wikipedia. http://www.wikipedia.org.

[16] Vaxevanakis K. et al. A review on wireless home network technologies. Mobile

Computing and Communications Review, 7:59�68, April 2003.

[17] Gaetano Borriello. Embedded computation meets the world wide web. Commu-

nications of the ACM, 43(5):59�66, 2000.

[18] Choonhwa Lee. Protocols for service discovery in dynamic and mobile networks.

International Journal of Computer Research, 11:1�12, 2002.

[19] Reilly D. et al. A jini-based infrastructure for networked appliance management

and adaptation. IEEE 5th Annual Workshop on Networked Appliances, pages

161�167, Oct 2002.

[20] Wu Lan et al. Service discovery for personal networks. Master's thesis, University

of Stuttgart, December 2004.

[21] Moyer S. et al. Service portability of networked appliances. IEEE Communications

Magazine, pages 13�19, 2002.

[22] Moyer S. et al. A protocol for wide-area secure networked appliance communica-

tion. IEEE Communications Magazine, 39:52�59, October 2001.

[23] Rosenberg J. et al. Rfc 3261 - sip: Session initiation protocol. Network Working

Group, June 2002.

99

[24] Moyer S. et al. Sip extensions for communicating with networked appliances. IETF

Draft, 2002.

[25] A.Roach et al. Event noti�cation in sip. IETF Draft, 2002.

[26] A Roychowdhury et al. Instant messaging and presence for sip enabled networked

appliances. 2001.

[27] Marples D. et al. Feature interactions in services for internet personal appliances.

IEEE International Conference on Communications, 2002.

[28] Tsang S. et al. Accessing networked appliances using the session initiation protocol.

IEEE Conference on Communication, pages 1280�1285, 2001.

[29] Srpp. pages 97�111. Internet Society Network and Distributed System Security

Symposium, Mar 1998.

[30] Mozilla xul. http://www.mozilla.org/projects/xul/.

[31] extensible interface markup language (ximl). http://www.ximl.org.

[32] Mayora-Ibarra O. et al. A visual programming environment for device independent

generation of user interfaces. 2004.

[33] Angel Puerta et al. Ximl: A common represenation for interaction data. ACM,

January 2002.

[34] User interface markup language (uiml). http://www.uiml.org.

[35] Harmonia inc. http://www.harmonia.com.

[36] Mueller W. et al. Interactive multimodal user interfaces for mobile devices. IEEE

Proceedings of the 37th Hawaii International Conference on System Sciences, 2004.

[37] Shell E. et al. Building multi-platform user interfaces with uiml. Proceedings of

CADUI, 2003.

[38] Schaefer R. et al. Object oriented speci�cation with odsn. In Proceedings of Hawaii

International Conference on System Sciences, 2002.

100

[39] Schaefer R. et al. Multimodal interactive user interfaces for mobile multi-device

environments. http://www-users.cs.umn.edu, 2003.

[40] Mueller W. Adaptive pro�les for multi-modal interaction in intelligent environ-

ments. AI Moves to AI: Workshop on Arti�cial Intelligence, Information Access

and Mobile Computing, 2003.

[41] Hall R. et al. Challenges in building service-oriented applications for osgi. IEEE

Communications Magazine, pages 144�149, May 2004.

[42] David Jordan. Java in the home: Osgi residential gateways. Java Report, pages

38�43, September 2001.

[43] Gong L. et al. A software architecture for open service gateways. IEEE Internet

Computing, 2001.

[44] Gong Li. Programming Open Service Gateways with Java Embedded Server. Ad-

dison Wesley, 2001.

[45] Zhang D. et al. Open service residential gateway for smart homes. 2002.

[46] Bushmitch D. A sip-based device communication service for osgi framework. IEEE,

2004.

[47] Li X. et al. The design and implementation of home network system using osgi

compliant middleware. IEEE Transactions on Consumer Electronics, 50(2):528�

534, May 2004.

[48] Ditze M. et al. Service-based access to distributed embedded devices through the

open service gateway. 2003.

[49] Ishikawa H. et al. Building smart appliance integration middleware on the osgi

framework. IEEE International Symposium on Object-Oriented Real-Time Dis-

tributed Computing, 2004.

[50] Zhang D. et al. Osgi based service infrastructure for context aware connected

homes.

101

[51] Hackbarth K et al. Osgi based service infrastructure for context aware automotive

telematics. IEEE Vehicular Technology Conference, pages 2957�2961, 2004.

[52] Oscar bundle repository. http://oscar-osgi.sourceforge.net/.

[53] Domoware software. http://domoware.isti.cnr.it/.

102

