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Implementation of SAMPLE Protocol

Kevin Nash

University of Dublin, Trinity College, 2005

Supervisor: Jim Dowling

Wireless networks are pervasive in our society. With an increased interest shown by

the general public in wireless technologies, protocols and hardware are being actively

developed by academic and industrial groups alike. Moblie ad hoc networks (MANET)

are an important subset of wireless networks and have particular routing needs which

are not supported by 802.11, the most widely deployed wireless protocol. They must

operate in the presence of interference, contention and cope with challenges such as

limited energy resources mobility and lack of global state.

Numerous ad hoc protocols have been developed to support communication in

MANETs but take a discrete approach. To consider a link as discrete does not reflect

the reality of congestion and signal degradation. SAMPLE approaches these problems

using statistical analysis, reinforcement and collaborative learning. Network events are

observed over period of time and allow SAMPLE to determine the quality and sta-

bility of routes. This differs from a discrete approach which can trigger unnecessary

and inefficient route updates while consuming bandwidth. SAMPLE uses promiscuous
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listening to integrate data from overheard traffic to enhance its current view of the

network.

This dissertation presents an implementation of the SAMPLE protocol on the Linux

2.4 operating system. Increased portability and maintainability are obtained by inte-

grating the SAMPLE protocol with the more stable netfilter architecture rather than

the kernel core.

vi



Contents

Acknowledgments iv

Abstract v

List of Tables x

List of Figures xi

Chapter 1 Introduction 1

1.1 Wirless Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 MANETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Dynamic Topologies . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Bandwidth constrained . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Energy Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.4 Limited security . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 802.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Netfilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Collaborative Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Ad hoc Protocols 11

2.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Properties of MANET protocols . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Distributed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Loop-freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

vii



2.2.3 On Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Proactive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Hybrid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.6 Unidirectional link support . . . . . . . . . . . . . . . . . . . . . 13

2.2.7 Sleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.8 Bootstrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 DSR- Dynamic source routing . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Route discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Route maintenance . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 ZRP - Zone Routing Protocol . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 IARP - Intrazone Routing Protocol (IARP) . . . . . . . . . . . 17

2.4.2 IERP - InterZone Routing Protocol (IERP) . . . . . . . . . . . 17

2.5 AODV - Ad Hoc On-Demand Distance Vector Routing . . . . . . . . . 20

2.6 Life of a Linux Packet . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Chapter 3 SAMPLE Protocol 26

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Route Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Forwarding Packets . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 SAMPLE Routing Example . . . . . . . . . . . . . . . . . . . . 30

Chapter 4 Implementation 33

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 IOCTL- Input/Output Control . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Headers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 NETLINK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Packet flow in SAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.6.1 Packets generated by the local host . . . . . . . . . . . . . . . . 41

4.6.2 Unicast packet reception . . . . . . . . . . . . . . . . . . . . . . 42

4.6.3 Broadcast packet reception . . . . . . . . . . . . . . . . . . . . . 44

Chapter 5 Results 46

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

viii



5.2 Single Hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Multihop Hop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Proactive Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Design Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 6 Conclusions 52

6.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Appendix A Configurable Parameters 54

Appendices 54

Bibliography 56

ix



List of Tables

A.1 SAMPLE Configurable Parameters . . . . . . . . . . . . . . . . . . . . 55

x



List of Figures

1.1 802.11 Hidden node problem . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Netfilter Hooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Route Discovery in DSR Networks . . . . . . . . . . . . . . . . . . . . 15

2.2 Route maintenance in DSR Networks . . . . . . . . . . . . . . . . . . . 16

2.3 Two ZRP zones each with a radius of 2 hops. H,C and E act as periph-

eral nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Selective Bordercasting, Messages to R are Redundant . . . . . . . . . . 19

2.5 AODV uses 5 messages types.The arrows represent message flow between

source and destination . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The flow of IP packets though layer 2 and 3 in the Linux Kernel . . . . 23

3.1 Routing in SAMPLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Promiscuous Listening . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 SAMPLE header is placed between the IP and Transport Layers . . . . 36

4.3 Sample header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Broadcast forwarding in SAMPLE . . . . . . . . . . . . . . . . . . . . . 40

4.5 Packets arriving from the application layer . . . . . . . . . . . . . . . . 41

4.6 Unicast packet reception in SAMPLE . . . . . . . . . . . . . . . . . . . 43

4.7 Broadcast reception in SAMPLE . . . . . . . . . . . . . . . . . . . . . . 45

5.1 Single Hop set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Sub optimal decisions in SAMPLE between two nodes . . . . . . . . . . 47

5.3 Multi hop set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Sub optimal decisions in SAMPLE routing . . . . . . . . . . . . . . . . 49

xi



5.5 Proactive response in SAMPLE routing . . . . . . . . . . . . . . . . . . 50

xii



Chapter 1

Introduction

This chapter gives an overview of the different technologies involved in wireless com-

munication. The rest of this thesis will be structured as follows:

• Chapter 2 introduces MANET protocols, using three different protocols as sample

of the current state of the art. These are Zone Routing Protcol (ZRP), Dynamic

Source Routing (DSR), Ad Hoc On-Demand Distance Vector Routing (AODV).

It finishes by walking through the Linux protocol stack.

• Chapter 3 describes in more detail the SAMPLE routing protocol giving the

reasons why it offers better performance in networks where signal degradation,

interference and congestion are problems. It concludes by giving an example of

how a node would join and integrate itself into a SAMPLE network.

• Chapter 4 presents the implementation of SAMPLE, describing the reasons be-

hind the choice of architecture and highlighting some of the features in the design

which are not directly supported by Linux such as forwarding of packets.

• Chapter 5 describes the results of experiments using VMware to create a virtual

network and concludes by evaluating the design.
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• Chapter 6 concludes the thesis and presents possible future work.

1.1 Wirless Networks

Wireless networks use radio waves to transfer data without using wires. Radio waves

are created when electrically charged particles accelerate with a frequency that lies in

the radio frequency portion of the electromagnetic spectrum. In 1970, Norm Abramson

et al. developed a radio-based communication system know as ALOHANET[1]. This

was the first wireless packet switch network and was the result of an experiment of a

group of researchers in Hawaii trying to find the most effective means to share data

between four university sites on 4 separate Islands. Since then wireless technologies

have evolved and can be seen in many different forms today. Some of these include

[2][3],

• Wi-Fi used generically when referring to any 802.11 network, 802.11a,802.11b

or 802.11g. Operating in both the 2.4 and 5 GHz band with a theoretical data

transmission rate of 54Mb/s.

• GPS receivers communicate with a series of satellites to provide highly accurate

location and time references.

• Bluetooth is an industrial specification(802.15.1) for wireless personal area net-

works (PANs). The communication range, link speed, and transmit power level

for Bluetooth were chosen to support low-cost power efficient single chip imple-

mentations. Bluetooth also operates in the Industrial, Scientific and Medical

Band (ISM) 2.4GHz with a data rate of 1Mbp/s.

• SensorNets are based on the 802.15.4 IEEE specification and operate both in the

ISM band and 915Mhz with data transfer rates of 20 to 250Kb/s.

1.1.1 Operating Modes

As described in [4], As well as the existence of many different types of wireless networks

there a number of ways these networks can be be organised. The two main operating

modes for wireless networks are:
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1. First, an example of infrastructure mode is an 802.11 networking framework in

which devices communicate with each other by first going through an Access

Point (AP). In infrastructure mode, wireless devices can communicate with each

other or can communicate with a wired network. When one AP is connected to

wired network and a set of wireless stations it is referred to as a Basic Service Set

(BSS). An Extended Service Set (ESS) is a set of two or more BSSs that form a

single subnetwork. Most corporate wireless LANs operate in infrastructure mode

because they require access to the wired LAN in order to use services such as file

servers or printers.

2. Aternatively wireless networks can operate in Ad hoc mode. These are networks

with no pre-existing infrastructure. There are distributed because nodes which

operate in ad hoc mode tend to be highly mobile and therefore it is necessary to

ensure the communication does not collapse when one of the nodes powers down

or is moved out of range. In distributed networks all nodes have to operate in the

same frequency band since there is no special node to translate from one frequecy

to another. An example of an ad hoc network is Wireless Ad Hoc Network for

Dublin (WAND) which is an 802.11 networking framework in which devices or

stations communicate directly with each other, without the use of an access point

(AP). Ad-hoc mode is also referred to as peer-to-peer mode or an Independent

Basic Service Set (IBSS).

1.2 MANETS

A collection of nodes which operate in distributed mode are called Mobile Ad hoc

Networks (MANETS). SAMPLE is a protocol which has been designed to enable nodes

to communicate in MANETs because existing wireless protocol do not directly support

ad hoc communication.

A communication protocol is a sets of rules which define the way blocks of data,

which are called Protocol Data Units (PDU) can be sent though a network. Each PDU

consists of a packet header and a packet payload. A protocol specification defines the

operation of a protocol and should consider three areas:

1. Definition of the Protocol Control Information (PCI) which forms part of the

3



PDU header

2. The procedures for transmitting and receive PDU’s.

3. Definition of a the set of services provided by the protocol layers.

Chapter 2 describes in more detail the properties of MANET protocols.

As described in [5] MANETS are a collection of potentially highly mobile nodes

which can take various forms for example:

• Rovers exploring Mars.

• A group of sensor nets monitoring the habitats of wildlife [6].

• Laptops communicating at a conference.

These networks may operate in isolation or have gateways to fixed networks. The later

scenario is envisaged for SAMPLE in [7]. Here a core group of nodes with low mobility

and high quality links create stable paths for another set of highly mobile nodes which

wish to communicate with Internet gateways. MANETSs have several characteristics

which differentiate them from wired networks

1.2.1 Dynamic Topologies

Nodes are free to move at will and therefore the network topologies are constantly

evolving in ways which are impossible to predict in advance. This may result in both

bidirectional and unidirectional links. MANETs therefore have to keep the amount of

prior configuration to a minimum. As an exception to this are each node should have

a unique IP address and all nodes should operate on the same radio band.

1.2.2 Bandwidth constrained

Due to the effects of contention, degradation of signal, interference the realised through-

put of network links is often much less then the theoretical maximum rate. This is

in addition to the fact the wireless networks have significantly lower capacity to begin
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with compared to wired networks due limitations on the size, power and range of their

transmitters. The resources of MANETs will continue to be strained as end users will

expect the same level of service when using wireless networks as compared to wired

networks.

1.2.3 Energy Constraints

A significant percentage of nodes in MANETs rely on battery power. If some cases

such as in the deployment of certain sensor networks the life of the node is equal to

the life of its energy reserves. An example for this are sensors placed internally in the

structure of bridges to monitor the curing of concrete. In this case it is impossible to

retrieve the sensors and if it was they might be too numerous to make it practical.

Therefore energy constraints can have a huge impact on the behaviour of MANETs.

1.2.4 Limited security

Mobile networks are more prone to physical attack. In particular networks which are

deployed in hostile territory:

• may be under treat from physical tampering if the network is a military applica-

tion.

• or these threats might environmental, for example extreme temperatures in the

case of a sensor net been deployed in a burning building by a disaster management

team.

In addition the systems which have zero prior configuration, a distributed structure

and in some cases limited processing power may have difficulties using existing security

techniques used in wired networks.

1.3 802.11

Each MANET protocol must integrate with a Medium Access Control[4] (MAC) proto-

col at some level. Since one of the steps to fully evaluate SAMPLE will be to compare its
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performance to AODV on WAND which uses 802.11 this section will give an overview

of the 802.11 MAC protocol. The 802.11 standard specifies a common medium access

control (MAC) Layer, which provides a variety of functions that support the opera-

tion of 802.11 based wireless LANs. The 802.11 MAC Layer uses an 802.11 Physical

Layer, such as 802.11b, 802.11a or 802.11g, to perform the tasks of transmission, car-

rier sensing, and receiving of 802.11 frames. The main job of the MAC protocol is to

regulate the usage of the medium, and this is done through a channel access mechanism.

The 802.11 family used Carries Sense Multiple Access/Collision Avoidance) CSMA/CA.

It is a distributed protocol in that there is no need for any controlling node. If a node

wishes to send a packet using 802.11 is performs the following steps:

• listen on a desired channel

• if the channel is idle send the packet

• otherwise if the channel is busy, wait until the transmission stops plus an addi-

tional contention period. This contention period is a defined as a random interval

determined to allow all nodes to have statistically equal access to the media. The

random back off period significantly reduces the number of collisions and corre-

sponding retransmissions, especially when the number of active users increases.

• If the channel is idle at the end of the contention period the node can transmit

its packet other wise it repeats the random back off above.

Since most nodes cannot listen for collisions while sending data, because the transmitter

can’t have its receiver turned on while transmitting the frame, there is a need for the

receiving station to send an acknowledge (ACK) if it detects no errors in the received

frame. If the sender does not receive an ACK it will assume the packet was corrupted

or lost and will attempt to retransmit the packet. It should be noted that only unicast

packets above a certain size are acknowledged.

This is the physical interpretation of the notation of link cost described in Chapter

3. The fact that it may take a number of transmissions , up to a maximum of seven,

before a 802.11 considers a packet has been successfully sent or not, is considered by

SAMPLE. SAMPLE uses historical data to estimate the cost of a link.

802.11 also has the option to uses Request To Send (RTS) and Clear To Send (CTS)

to avoid the hidden node problem. This occurs when two nodes (A,C) see Fig. 1.1
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which are out of wireless range attempt to send to an intermediate node (B).Both A

and C consider the network channel idle and transmit simultaneously causing Node B

to receive corrupted data. The solution to this is to use a four-way handshake: RTS-

CTS-DATA-ACK where the RTS and CTS packets are significantly smaller than the

average data packet. A would first send a RTS packet and would not transmit until

a CTS packet has been received from B. Likewise C holds off from transmitting until

its receives a CTS from B.

Figure 1.1: 802.11 Hidden node problem
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802.11 also supports fragmentation which enables a node to divide data packets

into smaller frames. This is done to avoid needing to retransmit large frames in the

presence of interference. The bits errors resulting from interference are likely to affect

a single frame, and it requires less overhead to retransmit a smaller frame rather than

a larger one.

1.4 Linux

SAMPLE is implemented on the Linux 2.4 operating system. The WAND network also

runs on Linux 2.4 which provides an existing MANET for the evaluation of SAMPLE.

Linux was originally developed as a hobby by Linus Torvalds while attending the Uni-

versity of Helsinki. The first version was released in September 1991 and grow out of

all portion since then. It has four major parts:

• Kernel, a low level operating system.

• Shell, a user interface for executing commands.

• X, a graphical system which provide a GUI

• Thousands of userspace programs for file editing, audio, mathematics etc.

It is one of the most prominent examples of free software and of open-source devel-

opment, unlike other major ’closed-source’ operating systems (such as Windows or

Mac OS) and programs, all of its underlying source code is available to the public and

anyone can freely use, modify, and redistribute it.

1.5 Netfilter

Netfilter [8] and iptables are building blocks of a framework inside the Linux 2.4.x and

2.6.x kernel. This framework enables, network address translation packet filtering, and

other packet mangling. Netfilter is a set of hooks 1.2 inside the Linux kernel that allows

kernel modules,such as the SAMPLE kernel module, to register callback functions with

the network stack. A registered callback function is then called back for every packet

8



that traverses the respective hook within the network stack. Netfilter has five hooks in

the kernel architecture.

Figure 1.2: Netfilter Hooks

1.6 Collaborative Learning

Finally a brief word on collaborative learning in SAMPLE, see reference [9] for more

details. SAMPLE uses collaborative learning in order to solve a problem,locating

routes, with no prior solution. SAMPLE interacts with an environment, the network,

through trial and error. Positive feedback occurs when routes of high quality are

advertised, which causes more nodes to use this route and will in turn advertise it.
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This causes a group of routing agents to converge on optimal routing decisions. On the

other hand negative feedback is provided by congestion and the notion that routing

information decays overtime. This allows SAMPLE to be operative in a dynamic

environment and respond to unpredictable changes.

10



Chapter 2

Ad hoc Protocols

This chapter opens with a description of the properties found in MANET protocols.

Following a brief overview is given of three protocols which have been studied during

the SAMPLE[7] implementation.

• Dynamic Source Routing (DSR)[10], a reactive protocol

• Zone Routing Protocol (ZRP) [11] , a hybrid protocol whose architecture most

closely resembles that of SAMPLE

• Ad Hoc On-Demand Distance Vector Routing (AODV) [12] , an improvement

on the Highly Dynamic Destination-Sequenced Distance-vector Routing (DSDV)

[13] protocol.AODV has been installed on the Wireless Ad Hoc Network for

Dublin (WAND).

The chapter is closed by tracing the path of a packet through the Linux kernel.

2.1 Routing

Routing consists of moving information through a network of interconnected nodes.

This is usually driven by routing tables which provide the next hop for the packet.

In wired networks these routing tables are generally reasonably static where as in

MANETs protocols update existing tables or create their own dynamically. Routing

in all networks,wired or wireless involves two main components:
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• Determining the optimal routing paths in a network. This is not a trivial task.

• Transporting information along these paths

Routing protocols in general should provide mechanisms to ensure packets have been

successfully delivered and notification of failures. Protocols should adapt to network

changes, for example if a network link goes down alternate routes should be located.

2.2 Properties of MANET protocols

MANET protocols have to provide similar functionality to wired protocols but in

addition they must have certain properties to deal with the particular challenges of

MANETs described in section 1.2. The following is a brief overview of these proper-

ties.

2.2.1 Distributed

The protocol should be distributed as MANETs are distributed by their vary nature.

2.2.2 Loop-freedom

A number of techniques can be used to stop packets from hopping continuously around

a network. A TTL field can be decremented until zero is reached at which time it can

be dropped. Sequence numbers can be used to detect stale packets. Where packets

with sequence numbers less than the current value of the node are dropped.

2.2.3 On Demand

On demand protocols are reactive, that is they do not initiate route discovery until it is

required. This allows the protocol to adapt to traffic patterns on a need basis. Proac-

tive route discovery causes an initial delay on route discovery but when implemented

intelligently can allow bandwidth and energy to be conserved.
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2.2.4 Proactive

Proactive protocols may be used if the delay in, On demand based route discovery is

unacceptable. Protocols which maintain a route table for all destinations in the net-

work have the advantage that communication with arbitrary destinations have minimal

delay in sending packets. Such protocols have the disadvantage of having to maintain

routing entries before they are needed and therefore require additional traffic to update

stale routing entries. Due to the fact that by their nature nodes in MANETs are mobile,

links can be broken frequently. Repairing such links can be costly, consuming scare

bandwidth and causing congestion at intermediate network points as nodes occupy

valuable queue space. A compromise between proactive and reactive protocols could

be to maintain several routes between source and destination though not necessarily

all routes. This approach would require a mechanism to purge stale routes otherwise

applications might experience even longer delays as each route in tried in turn.

2.2.5 Hybrid

Hybrid protocols delay the trade off between proactive and reactive protocols from

design to run time.This allows the protocol to observe current network characteristics

and then decide on the optimal routing policy.

2.2.6 Unidirectional link support

Some routing protocols make the assumption of the existence of symmetric communi-

cation links although unidirectional links are more general in radio networks. Such an

assumption might be justified in cases where it is considered that unidirectional links

may be on the verge of failure and therefore causing less stable routes to be discovered.

This places an extra strain on network resources as route discovery is initiated due to

early failure of less robust links.
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2.2.7 Sleep

In order to conserve energy supplies nodes may adopt a sleeping strategy. Protocols

should be able incorporate these sleep periods without unfavourable consequences.

2.2.8 Bootstrapping

When a network is first created or a node’s routing information has gone stale the pro-

tocol must have the ability to operate correctly and discover new routing information.

This can be achieved by broadcasting an initial route requests.

2.3 DSR- Dynamic source routing

DSR is a reactive source routing protocol which is able to manage routing in a MANET

without using periodic table-update messages. By placing a list of network addresses

in each packet it reduces the need for forwarding nodes to have routing tables which

need to be kept up to date. This helps to reduce the amount of network traffic.

The DSR protocol is composed of two components which work together to allow

routing in a MANET. The first of these is the path finding process.

2.3.1 Route discovery

Route discovery is initiated only when the source node wishes to send a packet to the

destination node and doesn’t already know a route to the destination.

In Fig 2.1 A wishes to send a packet to D. If A already has a suitable source route

in its cache it places the source route in the header of the packet. A source route is a

sequence of hops a packet should follow from the source to destination node. However

if A has no source route to D it initiates a route request. A route request is broadcast

to all nodes in wireless range and contains the

• identity of the initiator A

• identity of the target D
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Figure 2.1: Route Discovery in DSR Networks

• unique request ID

• route record

The route record is a list of all the intermediate nodes through which this copy of the

route request message has been through.

When B receives the Route Request messages it checks to see if is the target of the

route discovery. In this case B returns a route reply message to the route discovery

initiator. If node B has recently seen another Route Request from node A or the ad-

dress of node B is already in the route record node B discards the request. Otherwise

node B appends it address to the route record and broadcasts this message in turn.

When node A receives a route reply, it caches this route for use in sending subsequent

packets to this destination.

2.3.2 Route maintenance

When a node forwards a packet it is responsible for confirming that the packet has

been received by the next hop along the source route. A packet can be retransmitted

up to a specified maximum number of attempts. In Fig 2.2 B would be responsible for

receipt at C and likewise C is responsible for receipt at D.

Confirmation of packet reception can be achieved in a number ways.
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Figure 2.2: Route maintenance in DSR Networks

• The acknowledgement may come as part of the MAC protocol in use where in

wireless networks neighbouring nodes acknowledge the receipt of packets from a

transmitter.

• Passive acknowledge may occur when B overhears C forwarding the packet to D.

• Alternatively the forwarding node can set a bit in the header of the packet specif-

ically requesting acknowledgement.

In Fig 2.2 if a packet is transmitted by B the maximum number of times, a route

error is returned to A stating the link from B to C has been broken. A then removes

this route from its route cache. It can attempt to retransmit the packet if it has another

suitable source route in its cache due to either additional responses to its initial route

request or from overheard traffic. If no other route is available a route request packet

is broadcast.

DSR has the advantage of not creating additional network traffic while updating

routing tables or by maintaining a list of neighbouring nodes. DSR is capable of routing

correctly over networks that have unidirectional links since a route reply need not be

sent over the reverse path of a route request. Likewise acknowledgements may follow

a different multihop path to the previous node in the source.

A disadvantage of this protocol is that as the source route of the packet increases

so does the size of the actual packet. Problems occur in MANETs which contain a

large number of nodes. In a network of 100 nodes simulations have shown that DSR

[14] can deliver 5-50% fewer packets compared to AODV.
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2.4 ZRP - Zone Routing Protocol

While DSR is a purely reactive protocol, ZRP combines the advantages of both reac-

tive and proactive protocols deciding which is the optimal solution depending on the

circumstances. ZRP provides support for unidirectional links and actively maintains a

list of neighbours so broken links can be tracked. This section introduces how packets

are forwarded in ZRP and where proactive and reactive decisions are made.

2.4.1 IARP - Intrazone Routing Protocol (IARP)

IARP [15] is a proactive table driven protocol. Routing zones are constructed using

the Neighbour Discovery Protocol (NDP). A node maintains its list of neighbours using

Hello beacons. Neighbours may be selected based on strength of signal or frequency.

If no beacon was received from neighbour during a defined period the neighbour is

considered lost. Conversely if a beacon is received from a neighbour that was pre-

viously unrecorded it is considered found. The IARP is notified of any change in

status. Although IARP provides very efficient routing within a zone, in order to con-

serve bandwidth this proactive approach is not used for routing between different zones.

2.4.2 IERP - InterZone Routing Protocol (IERP)

IERP [16] in contrast to IARP is reactive, that is it is only used on request. If a

node encounters a packet whose destination is outside of its own zone, it forwards this

packet to a peripheral node instead of flooding its own zone. Peripheral nodes maintain

routing information about neighbouring zones. Thus a decision on where to forward a

packet can be made using a Bordercast Resolution Protocol (BRP) [17] . BRP is used to

direct requests made by the global reactive IERP. It maximises efficiency by removing

redundant queries. BRP keeps track of which nodes a query has been delivered to

and so it can prune the bordercast tree of nodes that already have received a query.

When a node A receives a query packet from a node not in its local zone it constructs a

bordercast tree and forwards this to it neighbours. Its neighbours will then reconstruct

the bordercast tree and check whether or not it belongs to the bordercast tree of the

sending node. If it doesn’t it will determine whether the destination node lies within its
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Figure 2.3: Two ZRP zones each with a radius of 2 hops. H,C and E act as peripheral
nodes

zone and which neighbours the packet has been sent to. Two levels of query detection

exist:

• QD1: As nodes relay queries, the note which zones have already been queried

• QD2: Zones which have a single broadcast and can overhear queries been sent.

Fig 2.3 gives an example of IERP. A wished to send a packet to G and therefore

constructs a bordercast tree spanning the peripheral nodes H,C and E. It forwards

this to its neighbours B and D who verify that node G is not within their zone and

so construct another bordercast tree. B and D only include nodes which have node
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been covered previously, which means B will node not include node D. D forwards the

request to E who realises G is within its zone and therefore replies with the correct

route.

As well as detecting whether or not nodes have been covered they must drop packets

which would be forwarded to nodes which have already been covered. This is carried

out through Early Termination[18] and Loopback Termination[18], in order to avoid

queries been sent back to their originating node. In addition BRP uses selective Bor-

dercasting, see Fig 2.4 to further reduce redundant bordercasting.

Figure 2.4: Selective Bordercasting, Messages to R are Redundant
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2.5 AODV - Ad Hoc On-Demand Distance Vector

Routing

AODV is a reactive routing protocol introduced in 1997 based on DSDV. AODV im-

proves on DSDV because it minimises the number of required broadcasts by creating

routes on a demand basis. It was designed for networks with a large number of mobile

nodes. Broken links are reported using RERR messages and loop freedom is provided

by the use of Sequence numbers. AODV is of interest because its the protocol which

the Wireless Ad Hoc Network for Dublin (WAND) uses and where SAMPLE will even-

tually be evaluated. This section gives an overview of how messages are routed through

an AODV network.

AODV contains five message types, Fig. 2.5 (adapted from [19]):

• RREQ, Route Request

• RREP, Route Reply

• RERR, Route Error

• HELLO

• DATA

AODV uses HELLO messages to detect and to maintain active links to its current

neighbours. A node maintains its list of current neighbours by listening to periodic

broadcasts of HELLO messages. In this manner if a node fails receive several HELLO

messages from its neighbour it can detect broken links. On detection of a broken link

a node will check for all nodes which use this neighbour as the next hop, mark them

as invalid and add them to a RERR message. Every node which receives a RERR

message will remove all routes from its routing tables containing the invalid next hop.

A node will also broadcast a RERR messages if it receives a data message for which it

has no route.

When a source node desires to send a packet to a destination and does not already

have a valid route to the destination, it initiates a route discovery process. A route re-
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Figure 2.5: AODV uses 5 messages types.The arrows represent message flow between
source and destination

quest packet, RREQ is broadcast to its neighbours. Each RREQ contains the following

fields:

• Hop Count

• RREQ ID

• Destination IP Address

• Destination Sequence Number

• Originator IP Address

• Originator Sequence Number

A broadcast ID is incremented every time a node sends a RREQ. Together the nodes

IP address and Broadcast ID are combined to create a unique RREQ ID. The source

node attaches the most recent sequence number for the destination of which it is aware.

AODV utilises sequence numbers to eliminate routing loops and to ensure freshness

of routes. A receiving node may send a RREP if it is the destination or its sequence
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number for the destination is greater than the one contained in the RREQ. If neither

of these is the case the receiving node decrements the TTL field and rebroadcasts the

RREQ message. Every node maintains a list containing the RREQ IDs it has already

received and discards any duplicate messages. As RREQ propagates back through the

network each intermediate node updates its routing information for the destination

node if:

• The RREQ contains a greater sequence number

• Or the same sequence number with a reduced hop count

AODV has the advantage that its distance vector routing approach is simple and

does not require much processing or memory.

2.6 Life of a Linux Packet

Every protocol has to be integrated into an operating system. The SAMPLE protocol

was implemented on the linux 2.4 kernel. This section takes a look at the journey of a

packet through the kernel.

Each network card is hard wired with a particular MAC address and listens for

packets on its interface. When the interface sees a packet whose MAC address is equal

to its own address or the link layer broadcast address it starts reading it into memory.

Once a packet reception has been completed the card generates an interrupt request.

The interrupt service routine in the card driver handles the request and carries out the

following operations.

• Allocates a new sk buff packet structure, which is how the kernel sees the packet.

The sk buff structure is defined in include/linux/skbuff.h

• The packet data is read from the card buffer and places into the newly created

sk buff structure

• The sk buff gets timestamped if the driver has not already done so

• The generic network reception handler net/core/dev.c : netif rx() is called.
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Figure 2.6: The flow of IP packets though layer 2 and 3 in the Linux Kernel
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• On return from netif rx() interrupts are re-enabled and the service routine is

terminated

The netif rx() function has the task of receiving the sk buff from the network driver.

It then places the sk buff onto the appropriate queue for the processor handling which

will handle it.Due to the fact that this function runs in interrupt context with other

interrupts disabled the amount of work it has to do is minimised.Prior to placing

packets on the congestion levels of the queue is checked and if necessary the packet it

dropped due to critical congestion.

Further handling of the packet is done in the network receive softirq, NET RX SO−

FTIRQ, which is called from the kernel/softipq.c : do softirq(). This represents a

major difference between the linux 2.2 and 2.4 architectures. softirq have the advan-

tage that they can run simultaneously on more that one CPU. A softirq can get called

in three main ways inside the kernel.

• arch/i386/kernel/do IRQ(), the generic interrupt handler

• arch/i386/kernel/entry.S, when a system call is invoked by an application

• kernel/sched.c : schedule(), when a new process is scheduled for execution

So if execution passes one of these points, do softirq() is called. This function veri-

fies a bit mask and if the correct bit is set, the corresponding handling routine is called,

which in this case is the net rx action(). The sk buff is dequeued and the packet type

verified. Each protocol handler function registered for this particular packet type is

called in turn.

So for example ARP packets are sent to net/ipv4/arp.c : arp rcv() and IP packets

are sent to net/ipv4/ip input.c : ip rcv(). New protocol handlers can be added using

the net/core/dev.c : dev add pack() function. This adds a packet type structure de-

fined in include/linux/netdevice.h containing a pointer to the function that will be

called when a packet of that type received. It is possible to define custom protocols

and their handlers with the help of this function.

Once the sk buff has been received the ip rcv() function it performs sanity checks

on the IP header such as checksum verification. If the sk buff looks correct it is

passed on to the through the first netfilter hook, NF IP PRE ROUTING, and on
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to net/ipv4/ip rcv finish(). This is the last IP layer function involving sk buffs des-

tined for the local host. After this point it carries on past the NF IP LOCAL OUT

hook through the upper layers.

If a packet is destined for another host if the net/ipv4/ip route() function is called.

Again various sanity checks are preformed. Packets will be dropped if ip header des-

tination address is a broadcast address or the source address is equal to that of the

local host. The packet is then passed on to the net/ipv4/ip forward.c : ip forward()

function which decrements the TTL value and drops the sk buff if necessary. The

sk buff ′s header is checked to see if there is enough tailroom for the destination de-

vice’s link layer header and expanded if necessary. If the don’t fragment bit is set in the

IP header and the size of the sk buff payload is bigger than the MTU the skb buff

is dropped. A ICMP message is returned to the sender telling it a fragmentation is

needed.

The packet then passes the NF IP FORWARD hook and assuming it is not

dropped by any userspace application or kernel module it will be sent to the net/ipv4/i−

p forward finish() function which set any additional options in the IP header. The

net/ipv4/ip forward : ip finish output() function checks to set if the sk buff needs

to be fragmented otherwise the it will join local outgoing packets at the NF IP POST−

ROUTING hook in net/ipv4/ip forward : ip finish output().

Transport functions call net/ipv4/ip output.c : ip build xmit() in order to build a

packet. An sk buff is allocated using sock alloc send skb() and space is reserved for

the hardware header. The packet then passes the NF IP LOCAL OUT hook and if

it isn’t stolen it will carry on to net/ipv4/ip output/ip output(). ip output() checks to

see if fragmentation is necessary after which the sk buff passes the final netfilter hook

NF IP POST ROUTING. net/ipv4/ip finish output2 checks to see if the destina-

tion entry has a hardware cache. Finally the sk buff is queued for driver output. The

driver is then woken up and the actual transmission occurs.
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Chapter 3

SAMPLE Protocol

3.1 Overview

SAMPLE is an on demand statistical protocol which does not separate control and data

messages. This approach is different from other statistical protocols like AntNet[20]

which is built upon the ant colony metaphor. AntNet uses routing agents, called

ants, to adaptively estimate the quality of each local routing choice. These agents are

routed probabilistically1 whereas data packets are routed using links that give the high-

est probability of success. This is in contrast to SAMPLE where control information

is added to the packet and all packets are routed probabilistically.

This approach exploits that fact that the cost of sending additional packets in a

wireless network is more expensive then increasing the size of each packet by a small

amount. One of the advantages of including routing information in every packet is that

the more popular destinations receive a higher volume of routing traffic and therefore

the quality of routing information to these destinations is higher. In simulations SAM-

PLE has been show to exploit this increased quality of routing information by detecting

stable paths2 to popular destinations such as internet gateways.

1With the possibility of sub optimal decisions occurring
2Stable paths occur when high quality links between less mobile nodes allow other more mobile

nodes to use these stable routes to form traffic corridors to popular destinations such as Internet

gateways
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3.1.1 Route Costs

Link quality is defined as the probability of a successful transmission of a unicast packet

to a given neighbouring node. In order to estimate such a probability it is necessary

to track the rate of certain network events. SAMPLE observes the following network

events:

• Attempted Unicast transmission NA

• Failed Unicast transmission NF

• Unicast Receive NU

• Broadcast Receive NB

• Promiscuous received NB

Once the rate of these network events in the current window3 is known it is possible

to estimate the likelyhood of a sucessful transmission in the following manner:

NT = NU + NB + NP : Total number of packets received by the routing agent

NS = NA − NF : Number of Successful Unicasts

α : The belief about a transmission been successful, 0.5

β : The significance of received packets compared to transmitted packets, 0.2

P (success) =
NS + αβNT

NA + βNT

(3.1)

This approach differs from discrete protocols such as AODV which considers a link

as either on or off depending on the most recent communication. SAMPLE is using

recent historical data in an attempt to distinguish a broken link from temporary con-

gestion.

3SAMPLE only considers events which have occurred in a certain time interval τ . The interval

τ is discretised into a number of increments m ,such that every τ

m seconds the oldest increment is

discarded
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A routing end point is defined as either a source of or destination for a packet.

The current estimate (V value) for the cost of a routing end point is calculated by

calculating the optimal value of a set of Bellmann equations. The result is presented

in Eq. 3.3, further details can be found in references [7] [21] [22]

CL : Last advertised cost of a route end point by neighbour

TE : Time elapsed, difference between current time and last time route end point was adver-

tised

D : Decay per second,1.01

V (Neighbour) = CLDTE (3.2)

Advertised costs in SAMPLE are considered to decay, therefore stale routes can be re-

moved. If a route has not been advertised within a defined period ROUTE TIMEOUT,

(10secs) the route is considered stale and the last advertised value set to COST MAX,

(-1000). This is a similar concept to “pheromone evaporation” used in Ant Colony

Optimisation (ACO) protocols.

RF : Reinforcement received for a failed packet transmission, -7

RS : Reinforcement received for a successful unicast transmission, -1

PS,PF : Probability of success and failure respectively as described by Eq. 3.1

V(Neighbour) : see Eq. 3.2

max
[

V (Neighbour) + RF +
PF

PS

RF

]

(3.3)

3.1.2 Forwarding Packets

The SAMPLE routing agent on each node maintains a routing table with the current

estimated cost to a route end point as described in Eq. 3.3 above. This current

estimated cost is updated every time the SAMPLE daemon receives a network event, a

packet. Every neighbouring node who has advertised a cost for this routing end point
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is kept in a next hop table. When a routing agent wishes to forward a packet to a

destination it will calculate the cost value (Q values) of each neighbouring node for

this destination. SAMPLE will not blindly considering every neighbouring node as a

potential next hop for the packet. It employs a greedy heuristic to minimise the length

of time it takes to deliver a packet and restrict exportation to the most profitable

parts of the network. This greedy heuristic prevents a routing agent from forwarding

a packet to a neighbouring node whose advertised cost for the destination is greater

than the current estimate plus MINIMUM REWARD for the destination maintained

by the routing agent.

As well as considering the cost advertised for all neighbouring nodes SAMPLE

also gives the possibility of Broadcasting the packet a cost. Broadcasting a packet is

considered for two reasons:

1. In the case of bootstrapping or when existing routing information has gone stale,

a routing agent has no next hop to unicast the packet too. In such a scenario

SAMPLE must behave correctly, therefore broadcasts are used when no next hop

exists.

2. In order to discover new routes SAMPLE allows suboptimal decisions to be made.

A suboptimal decision may be either a unicast to a node whose total route cost is

not the lowest or a broadcast when unicast options are available. A comprise has

to be achieved between exploration and exploitation . If optimal decisions were

taken whenever possible the quality of SAMPLES routing information would be

severely effected. On the other hand if some limitation is not placed on when

suboptimal decisions can be taken the cost of routing packets is greatly increased.

SAMPLE controls the frequency of suboptimal decision occurring by placing a

virtual cost for a broad cast.In addition the temperature value for the Bolzmann

discussed can be changed to reduce or increase the likelyhood of suboptimal

decisions being taken.

Once the total route costs have been calculated the next hop is picked probabilistically

using the Boltzmann distributed-exploration. The probability of picking N as the next

hop is:
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M : Set of all eligible4 next hops

T : TEMPERATURE, 1

P (N) =
e

CostofrouteviaN

T

∑

M e
CostofrouteviaM

T

(3.4)

As T increases it is more likely suboptimal decisions will be taken. The IP desti-

nation address is set to the value of the next hop and source and destination costs

added to the SAMPLE header. Once the destination receives the packet it uses the

source and destination costs included in the SAMPLE header to improve its view of

the network. In addition the destination node has the option of sending a proactive

response to help disperse routing information through out the network. The MAXI-

MUM RECEIVES WITHOUT SEND is set to 2.

3.1.3 SAMPLE Routing Example

In Fig. 4.2 (adapted from [7]) node A joins a MANET using SAMPLE as their routing

protocol. A wishes to open an ssh session to F but as it has just joined the network

and has not overheard an other traffic it has to broadcast its first packet. When the

packet arrives at B it has to decide on the which next hop will A’s packet be sent on.

G and H are ruled out because of the greedy heuristic due to the fact their advertised

costs for F are greater than B’s current estimate for F. B then calculates the total

cost of routing through C as 10 (9+1), this includes the probability of successfully

transmitting the packet to C. Like wise the total cost through E is calculated as 13.

Due to the fact that SAMPLE picks its next hop probabilistic B has now possible next

hops:

• The optimal unicast via node C

• A sub optimal unicast via node E

• A suboptimal Broadcast

Using the Boltzmann distributed-exploration the routing agent at B selects E as the

next hop, opting for exploration over exploitation. G overhears this unicast by promis-

4All neighbours whose current estimate for the destination is greater then the routing agents

estimation plus MINMUM REWARD, 0.5
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Figure 3.1: Routing in SAMPLE
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cuously listen for all unicasts in range. E then forwards the packet to F via D. F sends

a proactive response back to the source A. For the rest of the ssh session A can exploit

the stable routing A-G-C-D-F while carrying out exploratory options by choosing

suboptimal next hops.
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Chapter 4

Implementation

This chapter describes the implementation approach taken and presents some of the

important components of the SAMPLE design. The chapter is concluded by looking

at how packets are handled in the SAMPLE protocol.

4.1 Overview

Creating a working implementation of MANET protocol is a necessary step in the

validation of a new protocol. An implementation will test the protocol under real con-

ditions and verify whether any assumptions made were valid. This prepares the way

for field tests to be carried out and eventually full deployment of the protocol. The

first step in this process is to find a design which will allow the protocol to be ported

from its simulation environment, in SAMPLEs case NS2, and integrated it into a full

operating system. This is not a trivial task.

The most fundamental decision is where the protocol should reside: in userspace,

kernelspace or both? It is possible to implement a protocol in userspace by using

events external to the protocol to trigger actions. For example an Address Resolution

Protocol (ARP) message is generated when the host does not know the MAC address

of the next hop. This message can be used to indicate that no path to the destination

is know and therefore a route discovery process needs to be initiated. The advantage

of this approach is that no kernel space code is required, reducing the complexity of

the development and installation process. Disadvantages of this process include the
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dependency on ARP for initiating protocol events. This can cause problems if the

ARP cache and routing tables are out of sync. For example the ARP cache might

contain an entry for a destination not in the protocols routing tables. Also since route

discovery is initiated by outgoing ARP packets these are an unnecessary overhead and

waste of bandwidth. It is possible to avoid these problems by modifying ARP to suit

the needs of the protocol.

Another possibility is to support the protocol events directly with the kernel. While

this increases efficiency it comes at cost of a longer and more tortuous development

cycle. In addition installation requires a kernel rebuild plus the protocol is now directly

dependent on the operating system, creating potential porting issues for the future.

The third option is to implement a kernel module which sits on top of the netfilter

architecture. This approach has the advantage of intercepting incoming and outgoing

packets directly in kernel space with out having to modify kernel source code. Instal-

lation is greatly simplified, loadable kerenel modules are installed and uninstalled by

using a bash command. Portability and maintainability are greatly increased by re-

placing a dependency on the the kernel core which is constantly in flux with the more

stable netfilter architecture. This was the approach taken for the implementation of

the SAMPLE protocol.

The Linux operating system was not built with MANET protocols in mind. Im-

plementation problems surface when required features of the protocol are not directly

supported by the operating system. The following sections introduces some of the

implementation issues which arose.

4.2 IOCTL- Input/Output Control

Promiscuous listening allows the local node to gather information shared between other

nodes but not directly destined to the local node. This provides an alternate mechanism

for propagating information through out the network at no extra cost in terms of

number of transmissions. Network interfaces do not normally listen for frames other

than those addressed to its 6 byte mac address or broadcast address. The ioctl function

call can be used to manipulate the underlying device parameters for special files, in

this case the network interface. See Fig. 4.1 for an overview of promiscuous listening

34



in SAMPLE.

Figure 4.1: Promiscuous Listening

The call which allows the interface PROMISC flag to is be set is as follows:

#include <sys/ioctl.h>

ifr.ifr_flags |= IFF_PROMISC

ioctl (sock, SIOCSIFFLAGS, &ifr)

The paramters are

• 1. An open socket descriptor ”sock”

• 2. requests the flags of the interface

• 3. is an address of an interface request structure ifr which holds the name of the

interface that will be manipulated
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4.3 Headers

The sample header Fig. 4.2, is included in every out going IP packet sitting between

the IP and transport layer headers. Each packet buffer is expanded to include the

SAMPLE header at the local outgoing hook, NF IP LOCAL OUT. The SAMPLE

header is stripped on arriving at its destination.

Figure 4.2: SAMPLE header is placed between the IP and Transport Layers

By registering a hook in the kernel module, where pf in the hook structure below can

be set to NF IP LOCAL OUT for example, all packets which traverse this hook can be

dropped,stolen,accepted or in SAMPLEs case queued to userspace using NF QUEUE

and the IPQ library.

struct nf_hook_ops

{

struct list_head list;

nf_hookfn *hook;

int pf;

int hooknum;

int priority;

};

In order to read packets sent using LIBIPQ in userspace an IPQ handle needs to be

registered, after which packets can be read using the ipq read function and returned

to kernel space using ipq set verdict.

h = ipq_create_handle(0, PF_INET);

ipq_read(h, buf, sizeof(buf), 0);

ipq_set_verdict(h, pkt->packet_id, NF_ACCEPT, 0, NULL);
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Manipulation of the sample header is carried out by the memmove function. For

example the code below moves the ip payload, including transport headers, by an

amount equal to the size of the SAMPLE header structure.

memmove ( (char *) sh + sizeof (struct sample_header),

(char *) sh, ntohs (ip->tot_len) - (ip->ihl << 2) );

The SAMPLE header is composed of

• Source Address, The IP address from where the packet originated

• Destination Address, The final destination of the packet

• PrevHop Address, Previous Hop of the packet. This is necessary because the IP

source address can’t be equal to the source address of the local host

• SAMPLE Type, Defined in the implementation of NS-2

• Protocol, Original IP protocol id

• Sequence Number, Checks the freshness of routing information

• Source Value, Cost from the source

• Destination Value, Cost to the destination

• Checksum , Verify data integrity

• TTL, Time to Live, This prevents packets from circulating in the network con-

tinuously

• Broadcast, Identify broadcast packets

The packet header is of fixed size, 31 bytes, and contains the information necessary

to route itself through through the MANET and convert back to its original IP format.
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Figure 4.3: Sample header

4.4 NETLINK

Once an overheard packet has been successfully retrieved and the SAMPLE and IP

headers extracted they must be passed to the SAMPLE daemon in userspace. At

the IP layer, in the kernel core the IPQ library can be used to communicate between

kernel and userspace. No such support is provide for the link layer. An alternative

option is to used to use Netlink. As described in[23], Netlink socket is a special IPC

used for transferring information between kernel and user-space processes. It provides

a full-duplex communication link between the two by way of standard socket APIs

for user-space processes and a special kernel API for kernel modules. Netlink socket

uses the address family AF NETLINK, as compared to AF INET used by TCP/IP

socket. Each netlink socket feature defines its own protocol type in the kernel header

file include/linux/netlink.h. SAMPLE takes the used protocol type of 15 and so avoids

having to modify netlink.h. The kernel-space netlink API is supported by the netlink

core in the kernel, net/core/af netlink.c. In the code below a netlink socket is created

with a protocol type of NETLINK SAMPLE.

struct sock *

ksamplenl = netlink_kernel_create(NETLINK_SAMPLE,

ksample_netlink_rcv_sk);
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Once a netlink socket has been created, messages can be sent using netlink broadcast

with the struct sk buff holding the SAMPLE and IP headers. Below SAMPLE-

GRP NOTIFY is the ORed bitmasks of all the receiving groups and GFP USER is

the allocation is the kernel memory allocation type.

netlink_broadcast(ksamplenl, skb, 0, SAMPLEGRP_NOTIFY, GFP_USER);

4.5 Forwarding

Once inter process communication between kernel and userspace has been established

at the IP and link layer, and the SAMPLE daemon has the ability to manipulate and

redirect packets the final step is to allow the forwarding of packets through kernel space.

Packet forwarding refers to the process of taking a packet, consulting the SAMPLE

daemon, and sending the packet towards its destination as determined by next hop.

For unicast packets this is achieved by manipulating the appropriate proc file. The

/proc directory is a virtual hierarchy of special files which represent the current state of

the kernel, allowing applications and users to observe the kernel’s view of the system.

As a general rule, most virtual files within the /proc directory are read only. However

some proc files particularly in the sys directory can be used to adjust settings in the

kernel. The following proc file allows unicast packets to be forwarded.

echo 1 > /proc/sys/net/ipv4/ip_forward

It should be noted that the kernel will drop all forwarding packets whose source ad-

dress is equal to that of the local host. This in part helps to prevent packet spoofing.

While enabling the forwarding of unicast packets is only a matter of manipulating

the appropriate proc files the forwarding of broadcasts is not so trivial.Fig. 4.4 presents

an overview of packet forwarding in SAMPLE.

The Linux operating system does not feel the need to support the forwarding of

broadcasts messages to the same sub-net. The reasoning behind this decision lies in

conserving network bandwidth. In a manner similar to some Denial Of Service [24]

(DOS) attacks if a node were to ping 1 every machine on a subnet and each node were to

1In a DOS attack the original ping request has the spoofed source address of the victim and is

replicated a large number of times.
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Figure 4.4: Broadcast forwarding in SAMPLE

simultaneously respond to the original request and forward the packet this would cause

a huge increase in network traffic. SAMPLE prevents such as scenario by not indis-

criminately forwarding broadcast packets.This is achieved by inserting a Time to Live

(TTL) field and using the sequence number to drop stale packets. SAMPLE enables

broadcast forwarding by setting a broadcast flag at the NF IP PRE ROUTING hook

and leaving the IP destination hook to be updated by the NF IP POST ROUTING

hook.

4.6 Packet flow in SAMPLE

Now that the main technical difficulties impending the porting of SAMPLE from NS-

2 have been resolved, the rest of the SAMPLE code can be ported and placed in a

userspace daemon. Apart from promiscuous packets which have been looked at in

section 4.2 packets arrive in SAMPLE daemon in three other ways

• Packets generated by applications running on the local host

• Unicast packets addressed to the local host

• Broadcast packets destined for all nodes on the subnet
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4.6.1 Packets generated by the local host

Packets generated by the local host are intercepted at the NF IP LOCAL OUT hook,

see Fig 4.5.

Figure 4.5: Packets arriving from the application layer
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If no route exists then the broadcast address is chosen as the next hop. Otherwise

as described in chapter 3 the cost of all the neighbouring nodes with the associated

probability of successfully sending a packet to them is calculated. The probability of

successfully sending a packet to a neighbouring node is calculated from the number of

times the local node has attempted to send and failed to send packets to the neighbour

plus the number of packets successfully received. The next hop is chosen probabilis-

tically with links of higher quality having the a greater chance of been chosen. The

SAMPLE header is added, with the IP protocol field set to the SAMPLE protocol ID

and the destination address set to the next hop. Following this the packet is returned

to kernelspace where it will eventually be queued for transmission by the network card.

4.6.2 Unicast packet reception

Upon reception of a unicast packet, see Fig. 4.6 the packet is queued to userspace

at the NF IP POST ROUTING hook. Upon reception the packet counters associated

with the neighbour node and local routing agent are incremented. If the packet is

stale, that is its sequence number is less than the minimum sequence number a verdict

of NF DROP is returned to the kernel. At this point all packets addressed to the

local are stripped of their SAMPLE header. The SAMPLE protocol id used to identity

SAMPLE packets on the network is replaced with the original IP protocol id. A verdict

of NF ACCEPT is returned to the kernel and the packet will continue on its way up

the protocol stack to the waiting userspace application. However if the packet is not

addressed to the local host the next hop will be chosen in the manner described in

section 4.6.1
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Figure 4.6: Unicast packet reception in SAMPLE
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4.6.3 Broadcast packet reception

Reception of Broadcast packets is very similar with two exceptions see Fig 4.7.

• Broadcast packets whose source address is equal to that of the local host will be

dropped to prevent circular forwarding of broadcast packets.

• If the calculated rewarded for forwarding the broadcast packet to a destination

is less than the minimum reward, the packet will be dropped.
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Figure 4.7: Broadcast reception in SAMPLE
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Chapter 5

Results

5.1 Overview

This chapter reviews the implantation of the protocol. Evaluation was carried out

by creating a virtual network using VMware [25]. Vmware provides an abstraction

of x86 PC hardware so that multiple operating systems can run unmodified and at

the same time on a standard PC. Using Vmware a SAMPLE node can be cloned

extremely quickly and virtual networks created with full operating systems within a

half an hour. This offers huge advantage over having to build a physical network

from scratch. Simulating wireless nodes out of range is relatively simple but recreating

contention and signal degradation would be quiet difficult. While Vmware does provide

a test environment at relatively little expense in terms of time and hardware this step

is seen only as the first step in a a full evaluation of the protocol.

5.2 Single Hop

The experiment test is to evaluate packet flow over a single hop. Two VMware nodes,

A and B, are set up within wireless1 communication range of each other, see Fig. 5.2.

1Within wireless range is defined as whether or not a node can process packets from another node.

In these experiments nodes which are set up to be out of range artificially drop packet after the

netif rx() function, see section 2.6, so neither SAMPLE nor the upper protocol layers will see this

packet.
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Figure 5.1: Single Hop set up

Figure 5.2: Sub optimal decisions in SAMPLE between two nodes
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When two nodes have not communicated for a period of such that existing routing

information is stale2 or on bootstap the node which initiates communication will broad-

cast the initial packet. This can be see in Fig. 5.2. The initial packet is broadcast.

Once routing information has been gathered by both nodes, packets are unicast. At

times 20.1 seconds, 21.2 seconds and 67.6 seconds the packets are broadcast. These

are suboptimal decisions in an attempt to discover alternative lower cost routes. The

non IP traffic in this experiment are ARP requests and responses.

5.3 Multihop Hop

The second experiment is to evaluate packet flow over multiple nodes. For this experi-

ment nodes A and C are out of wireless range and are therefore forced to communicate

via B, see 5.3

Figure 5.3: Multi hop set up

As in section 5.2 nodes begin communication by broadcasting the first packet. The

number of data packets per second seen across the network has increased, see Fig. 5.3.

While A is sending packets to C at the same frequency as in the single hop experiment

above each packet has to be forwarded via B. Therefore it takes at two transmissions

to send a packet from A to C. At 11 seconds A sends a broadcast packet in an attempt

2This is defined by the ROUTE TIMEOUT configurable parameter in SAMPLE which for this

experiment is set to 10 seconds.

48



at exploration. As in single hop case non IP packets are ARP packets.

Figure 5.4: Sub optimal decisions in SAMPLE routing

5.4 Proactive Response

In order for routing information to be propagated effectively throughout the MANET

a certain amount of communication from destination to source is desirable. This is

controlled by the MAXIMUM RECEIVES WITHOUT SEND configurable parameter

and is reset every time a packet is sent to a destination. Using the same setup as in

Fig. 5.3, Fig. 5.5 shows that on bootstrap the initial number of proactive replies is

quiet high but reduces quiet significantly once nodes A, B and C have send a certain

level of traffic.
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Figure 5.5: Proactive response in SAMPLE routing
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5.5 Design Analysis

The SAMPLE protocol was implemented using a kernel module, communicating with

the kernel via the netfilter [8] architecture and userspace via IPQ. Originally it was

planned to place more of the SAMPLE code directly into the kernel module but as well

as increasing the programming difficulty communication between kernel and userspace

was becoming overly complicated. Therefore code such as adding and removing SAM-

PLE headers was moved to userspace along with the rest of the SAMPLE code. This

had the advantage of reducing dependencies on the kernel and increasing easy of pro-

gramability. As the number of lines of code in the kernel module was significantly

reduced stability was dramatically increased reducing the number of kernel crashes

to zero since the change in design. But does increased stability come at the expense

of consuming local host resources to the point where context switching is a major

overhead? At the moment there is no official benching marking[26] data on context

switching for the netfilter architecture. However, netfilter is being widely used for net-

work administration purposes and in other MANET routing protocols. For example

Guido Albertengo et al [27] have used the netfilter architecture in the emulation of

satellite links which had to handle 180Mb/s of traffic. As the theoretical maximum

data rate for 802.11 networks is 54Mb/s this would indicate that IPQ/netfilter should

be suitable for the implementation of MANET protocols.
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Chapter 6

Conclusions

6.1 Achievements

The goal of this project was to provide a real world implementation of the SAMPLE

protocol on Linux 2.4. This involved porting SAMPLE from the NS2 simulator and

providing solutions for SAMPLE features not directly supported by the Linux operating

system. The main achievement of this project was to present an architecture which

would allow SAMPLE to integrate successfully with the Linux Kernel. The decision to

use loadable kernel modules, which interface with the stable netfilter architecture was

taken with a view to:

• Increasing portability by replacing dependencies on the kernel with the more

stable netfilter architecture.

• Ensuring the SAMPLE implementation was stable by avoiding an over complex

kernel solution.

• Increasing the ease of supporting and developing the project without compromis-

ing performance.

In addition a preliminary evaluation of SAMPLE was carried out using VMware

verifying that the SAMPLE protocol behaves as expected in the following areas:

• bootstrap,
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• forwarding of unicast and broadcast packets,

• correctly balancing exploration and exploitation

• advertising of routing information proactively

• listening promiscuously to overheard traffic

6.2 Future Work

Since the WAND operating system is Linux 2.4, this provides an excellent testing

environment for the next step in the evaluation of the protocol. Detection of failed

unicast packets has not been integrated into the current implementation. This can be

achieved in a number of ways. Passive acknowledgement can be achieved by listening

to neighbouring nodes forwarding packets. The 802.11 layer provides acknowledgement

of unicasts packets over a certain size or a specific SAMPLE acknowledgement message

could be used similar to DSR. In addition the feasibility and value of neighbour node

and unidirectional link detection could be investigated. Finally as promiscuous listening

places a significant strain on battery resources increasing the energy efficiency of the

code could therefore be worth investigating.
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Appendix A

Configurable Parameters
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Parameter Significance Value
COSTMAX Maximum cost of a

route
-1000

DECAYPERSECOND Routing information
will decay over a period
of time

1.01

PROBABILITYHISTORY Width in seconds of
sliding sample window

20

PROBABILITYSAMPLES Number of samples to
keep

50

RECEIVESIGNIFICANCE The importance of re-
ceiving packets com-
pared to sending them

0.2

UNICASTSUCCESSREWARD Reward for successful
Unicast

-1

UNICASTFAILREWARD Reward for failed Uni-
cast

-3

BROADCASTREWARD Reward for Broadcasts -4
MINIMUMREWARD Reward necessary to

consider a node as a po-
tential next hop

0.5

TEMPERATURE Influences probability
of picking sub optimal
paths

1

NUMBEROFSEQNOSTOSTORE Number of sequence
numbers stored

20

MAXIMUMRECEIVESWITHOUTSEND Number of packets re-
ceived before sending a
proactive response

2

Table A.1: SAMPLE Configurable Parameters
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