
A Proactive Approach to Semantically Oriented Service

Discovery

by

David Lynch, B.A. (Mod)

Dissertation

Presented to the

University of Dublin, Trinity College

in partial fulfillment

of the requirements

for the Degree of

Master in Science of Computer Science

University of Dublin, Trinity College

September 2005

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise for

a degree at this, or any other University, and that unless otherwise stated, is my own work.

David Lynch

September 9, 2005

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon re-

quest.

David Lynch

September 9, 2005

Acknowledgments

I would like to thank my dissertation supervisor, Declan O’Sullivan, for all his help and

support over the period in which this dissertation was researched and written. I would also

like to thank my NDS classmates for help, support and for lightening the mood in serious

times. Lastly, I would like to thank my family for their continued support over the course of

my school and college years.

DAVID LYNCH

University of Dublin, Trinity College
September 2005

iv

A Proactive Approach to Semantically Oriented Service

Discovery

David Lynch

University of Dublin, Trinity College, 2005

Supervisor: Declan O’Sullivan

Web Service based computing has evolved immensely in recent years, supported by stan-

dards bodies, academic research and industry alike. One of the noticeable omissions from

the web services architecture is that of standards to support automatic discovery, automatic

composition and invocation of web services. While semantic web service discovery im-

plementations exist research into autonomous semantically oriented service discovery is far

from an efficient, complete solution to the problem.

Current web-service capability matching research and implementation focuses on seman-

tically enhancing the UDDI standard for web-service discovery. While this is definitely a step

in the right direction, dependence on the UDDI standard may restrain capability matchers as

they mature. A prime example of this is the request/response nature of a UDDI look-up.

This dissertation researches an alternative approach to web service discovery that pro-

actively informs interested participants of the availability of new services that match ex-

pressed capability requirements. By evaluating and semantically enhancing a wide area no-

tification system this dissertation develops a scalable publish/subscribe platform for OWL-S

service discovery that incorporates efficient content-based routing and an expressive sub-

scription language.

Our evaluation shows that many of the documented optimisations for text-centric content

based routing actually hold in routing for more complex OWL-based concepts. We conclude

that a publish/subscribe model for semantic service discovery is feasible and can potentially

v

provide a pro-active discovery environment for human and autonomous agents alike. How-

ever, in order to realise this vision, much research in the area of distributed knowledge base

consistency, ontology alignment and intelligent sharing of OWL information is needed.

vi

Contents

Acknowledgments iv

Abstract v

List of Figures xi

Chapter 1 Introduction 1

1.1 Web Services . 1

1.2 Semantically Annotated Web Services . 2

1.3 The Publish/Subscribe Model . 3

1.3.1 Content Based Routing . 3

1.4 Research Objectives . 3

1.4.1 A Semantic Alternative to UDDI 4

1.4.2 A Publish/Subscribe Model for Web-Service Discovery 4

1.4.3 Efficient, OWL-S aware Content-Based Routing 4

1.4.4 Ontology Alignment . 5

1.5 Dissertation Outline . 5

Chapter 2 Background 6

2.1 The Semantic Web . 6

2.1.1 RDF . 7

2.1.2 Web Ontology Language - OWL 7

2.1.3 Reasoning with OWL . 9

2.2 Web Services . 10

2.2.1 UDDI . 10

vii

2.2.2 WSDL and SOAP . 11

2.3 Semantic Web Service Descriptions - OWL-S 11

2.3.1 An Upper Ontology for Web Services 12

2.3.2 Service Profile . 13

2.3.3 Process Model . 14

2.3.4 Service Grounding . 14

2.4 Publish / Subscribe . 15

2.4.1 Content Based Routing . 16

2.4.2 Siena . 16

2.4.3 Elvin . 20

Chapter 3 The State of The Art 22

3.1 Semantic Service Discovery . 22

3.1.1 UDDI and Service Discovery . 22

3.1.2 Semantically Enhanced UDDI . 23

3.1.3 OWL-S Matchmaker . 23

3.1.4 METEOR-S for Service Discovery 24

3.1.5 Ranked Matching . 24

3.1.6 OWL-S API . 25

3.1.7 Reasoning for OWL-S . 25

3.2 Publish/Subscribe . 27

3.2.1 Siena . 27

3.3 Ontology Alignment . 28

3.3.1 Ontology Alignment API . 29

3.4 Conclusions . 29

Chapter 4 Design 30

4.1 Overview . 30

4.2 Application Description . 32

4.2.1 Usage Scenario . 33

4.2.2 Activity Diagrams . 34

4.3 Enhancements . 39

4.3.1 Subscription Language . 39

viii

4.3.2 The Subscription Poset . 41

4.3.3 Subscription Insertion . 44

4.3.4 Subscription and Publication Forwarding 45

4.3.5 Ontology Mappings . 46

Chapter 5 Implementation 49

5.1 Technology Review . 49

5.1.1 OWL-S Matcher . 49

5.1.2 Siena Java Implementation . 51

5.2 Exploratory Implementation . 52

5.3 The Enhanced Prototype . 55

5.3.1 OWL-S Support Package . 56

5.3.2 Communications Layer . 58

5.3.3 Matching Integration . 59

5.3.4 Subscription (Client) . 59

5.3.5 Subscription (Server) . 61

5.3.6 Publication (Client) . 63

5.3.7 Publication (Server) . 63

5.4 Observations . 64

Chapter 6 Testing and Evaluation 67

6.1 Testing . 67

6.2 Evaluation Focus . 68

6.2.1 Siena Evaluation . 68

6.2.2 Further Evaluation . 70

6.3 Evaluation Scenario . 71

6.4 Test Results . 71

6.5 Evaluation Conclusion . 73

Chapter 7 Conclusions 74

7.1 Research Conclusions . 74

7.1.1 A Semantic Alternative to UDDI 74

7.1.2 A Publish/Subscribe Model for Service Discovery 74

7.1.3 Efficient, OWL-S aware Content Based Routing 75

ix

7.1.4 Ontology Alignment . 75

7.2 Future Work . 75

7.2.1 Evaluation . 75

7.2.2 Content Based Routing . 76

7.2.3 Ontology Integration and Alignment 76

7.3 Final Remarks . 77

Bibliography 78

x

List of Figures

2.1 An RDF example . 7

2.2 An OWL wine ontology excerpt . 8

2.3 An application of the abstract OWL Wine class 8

2.4 An Upper Ontology for Web Services [9] 12

2.5 An OWL-S Service Profile . 13

2.6 OWL-S to WSDL grounding . 15

2.7 A Siena filter.From [7] . 16

2.8 The Siena Notification/Subscription Covering Relation.From [7] 17

2.9 The Subscription Filter Poset.From [7] 18

2.10 A Hierarchical Topology.From [7] . 19

2.11 An OWL-S Process Model . 21

4.1 Design Overview . 31

4.2 The original and modified Siena Interfaces 32

4.3 Use Case Actors . 33

4.4 Plan View . 34

4.5 Server Subscription . 36

4.6 Server Publication . 37

4.7 Client Subscription . 38

4.8 A usage scenario . 39

4.9 The relation constraintC covers constraintC’ 42

4.10 The Enhanced Poset Structure . 43

4.11 Sevice Profile Covering . 44

4.12 Insertion Optimisation . 44

4.13 A distributed example of subscription forwarding 45

xi

4.14 Two aspects of ontology mappings . 47

4.15 Wine to Vino Ontology Mapping . 48

5.1 First prototype service notification . 54

6.1 Total Network Cost . 68

6.2 Cost Per Service . 69

6.3 Two Node Test Scenario . 71

6.4 Single Siena Node Scenario . 72

xii

Chapter 1

Introduction

The research presented here is concerned with the web services paradigm and, in particular,

web service discovery. Much has been made of the slow progress in the area of service

discovery and overall aim of this research is to contribute a novel body of work to this field.

The purpose of this chapter is to; first of all, introduce the web services paradigm and some

of the research gaps associated with the field. Following on from this, four research aims

and are introduced and motivations behind these aims discussed.

1.1 Web Services

Web Service based computing has evolved immensely in recent years, supported forcefully

by standards bodies, such as OASIS [42] and the W3C [16], industry, such as Microsoft

[38], IBM [37] and Hewlett-Packard [25], and a plethora of academic research. Web Ser-

vices, by definition, are self-contained, self-describing applications that can be published,

located and invoked remotely and in a dynamic fashion over the Internet [18]. This loosely-

coupled remote-service invocation capability has proven a particularly attractive proposition

for e-commerce and business integration models. Following this large research push, an

interoperability set of standards has been approved and cross-platform, cross-enterprise in-

tegration is becoming a reality.

One of the key success factors for the up-take of Web services technology is its focus

on implementing cross-organisation communications using already matured and widely im-

plemented protocols, such as HTTP. Three vital standards have been agreed upon to finalise

1

data-formatting, remote invocation and service description; respectively, eXtensible Markup

Language - XML [23], Simple Object Access Protocol - SOAP [11] and Web Services De-

scription Language - WSDL [8]. Complimenting these, Universal Description, Discovery

and Integration, or UDDI [13] is an OASIS standard means of locating, publishing and, to a

lesser extent, invoking such services.

Popular web services, which provide full WSDL definitions, include the Amazon API

[36], The Google Maps API [35] and the excellent E-Bay Web services API [17]. The E-

Bay API is a particularly useful example allowing advanced transaction histories, refunds

processing and customer tracking all by means of a SOAP/XML based request-response

dialogue over standard HTTP.

1.2 Semantically Annotated Web Services

One of the noticeable omissions from the web services architecture described previously is

that of standards to support automatic discovery, automatic composition and invocation of

web services. In their current form WSDL service descriptions and UDDI searches must be

created or conducted with human intervention. A very desirable scenario is one whereby

software agents can intelligently reason over required web-service functionality, automat-

ically discover supporting modules and seamlessly integrate them on-the-fly into desired

applications.

To realise this scenario, the fundamental absence of semantic information to complement

the syntactic provisions of WSDL must be remedied. Indeed, it is the vision of creators of

the Semantic Web [3]. Their goals are to better define web semantics in machine-terms so

that intelligent agents may feasibly reason over Internet and Web concepts thus enhancing

user experience of relevant information and interesting functionality.

Another stack of XML based languages, some not as-yet confirmed as standards, pro-

vide a framework for semantically annotating web elements with machine-understandable

information. The Resource Description Framework or RDF [10] has paved the way for more

complex, application specific semantic annotation standards such as The Ontology Web Lan-

guage, OWL [15] and An Upper Ontology for Web Services description - OWL-S [9].

OWL-S semantically annotated descriptions is a big step towards enabling automatic

invocation of services. The rise of OWL capable reasoners such as pellet [30], JESS [29]

and RACER [24] has further accelerated the progress.

2

1.3 The Publish/Subscribe Model

The Publish/Subscribe model for communication also lies firmly in the scope of loosely-

coupled, large-scale distributed systems [21]. The model consists of three basic elements;

Subscribers, who express interest in particular information by means of a subscription lan-

guage,publishers of information, who publish information of interest and an intermediary

event notification service connecting the two. Subscribers are notified upon the publication

of information which is of interest to them. Filters, which may be applied to specific content,

decide if a subscriber should be notified of the publication of a particular object of interest.

The asynchronous nature of the model and the general expressiveness of the subscription

language are vital to its operability, functionality and scalability. The selectivepushingof

content towards interested subscribers may be viewed as an interesting alternative to explicit

one-shot client-server based information retrieval. It is argued here and henceforth that there

is potential to integrate such a model into a web services discovery application.

1.3.1 Content Based Routing

Content Based Routing [6] is a closely associated with the publish/subscribe model. Imple-

mentations such as Siena [7] and Elvin [34] take a content-based routing approach within

their respective publish/subscribe implementations.

Content-Based Routing is distinguished from Address-Based routing by the fact that the

information of interest is routed towards the destination in terms of the actual content rather

than a simple destination address or a classification of contained information. Routing tables

are constructed from end-user specified requirements (e.g. a subscription expressed in some

language) and information to be routed navigates towards its destination through application

of these requirements to the explicit content of the information published. CBR is a progres-

sion of broadcast, flooding and topic-based techniques applied to earlier publish/subscribe

systems.

1.4 Research Objectives

Before pursuing any course of research it is necessary to clearly define research goals and

discuss the motivations behind such goals.

3

1.4.1 A Semantic Alternative to UDDI

While the UDDI approach outlines a method for describing how web services function there

is a fundamental lack of support for describing, in machine-understandable terms, the web

services’ capabilities. While work has been done in adding semantic capability to UDDI [39]

[1] the focus has been on modifying the UDDI registry to accommodate OWL-S descriptions.

Any modification of the UDDI in its current form still inherits poor support for large, loosely

integrated wide-area registries of services. The first research objective of this dissertation is

to explore the possibility of an alternative to UDDI that integrates semantic support from the

design stage together with a loosely-coupled yet co-operative network of server nodes. The

primary focus is the service discovery element of the UDDI standard.

1.4.2 A Publish/Subscribe Model for Web-Service Discovery

It is the opinion of the authors that discovery for web services fits naturally into the pub-

lish/subscribe paradigm. Currently, there are no standards or implementations that propose

to proactively push web service descriptions towards interested parties, such as autonomous

software agents. The second research objective of this dissertation is to explore the possi-

bility of a distributed publish/subscribe based service discovery platform. This exploration

will focus on enhancing the semantic capability of an existing publish/subscribe system,

integrating a semantic web capability matching component and increasing the expressive-

ness that implementations subscription language to cater for requirements expression in the

semantically enhanced environment.

1.4.3 Efficient, OWL-S aware Content-Based Routing

Since semantic capability, in the form of OWL support, will be added to an existing pub-

lish/subscribe system, it is a natural progression to explore whether the annotated semantic

information can be utilised to assist in content-based routing of semantic service descrip-

tions. It is postulated here that semantic information available from web service descriptions

combined with semantics derived from a semantically-enabled subscription language, can

help optimise the process of subscription matching and information routing. This research

avenue will focus on modifying the structure of an existing subscription storage algorithm

4

[7] and the optimisations, existing and new, that arise upon reasoning over semantically en-

hanced subscriptions.

1.4.4 Ontology Alignment

Knowledge-base consistency and accuracy of concept matching becomes an important issue

when considering a large scale distributed ontology constructed from different sources. The

final research objective of this dissertation is to examine the issues that arise when consider-

ing multiple, possibly conflicting, OWL ontologies. In researching possible avenues in this

field, the presence of an ontology mapping is assumed. As a result the primary focus is on

expression and organisation of ontology mappings across the proposed distributed discovery

architecture as well as integration of these mappings into the discovery service knowledge-

base.

1.5 Dissertation Outline

Chapter 2 introduces the technologies, standards and tools used throughout research, imple-

mentation and evaluation as well as detailed background information on their usage. Chapter

3 explores the current state of the art including examination of academic research into seman-

tic service discovery; publish/subscribe with content- based routing and ontology alignment,

concluding with the envisaged contributions of this dissertation. Chapter 4 details a design

for a Java implementation which will explore the feasibility of integrating existing tools into

a solution realising research objectives. Chapter 5 outlines, in detail, how the design was

implemented. Chapter 6 details an evaluation of the implementation in terms of research

objectives, feasibility and other selected measures. Finally, Chapter 7 concludes the overall

findings of the research conducted and outlines avenues for further work.

5

Chapter 2

Background

This chapter is intended as a precursor to the main dissertation. In order to fully understand

the dissertation research, design and implementation it is felt that an introduction to the main

technologies involved is essential. The first three sections of this chapter deal with web

services, the web services Stack, The Semantic Web and the OWL and OWL-S languages.

Section 2.4 handles the publish/subscribe model and content-based routing with particular

emphasis on the approach taken by Siena [7], the chosen basis implementation for this dis-

sertation.

2.1 The Semantic Web

The Semantic Web is intended as an extension of the web as it currently exists. Semantic

Web aims to improve upon the meaning, in machine-understandable terms, of information

currently available on the world-wide-web [3]. This enables computers, in the form of au-

tonomous software agents, to work with the wealth of world-wide-web information more

easily. Moreover, it enhances the human-computer co-operation by bringing the concept of

human understanding closer to the machine. The W3C [16] have pushed forward standards

to drive the vision of the semantic web. A stack of XML based languages, discussed in detail

later, have been standardised. These languages, at various levels, provide mechanisms by

which information about the target domain can be captured.

Description logic languages [2] such as OWL and RDF provide a means to capture con-

ceptual information in graph form. Nodes in a graph are used to represent concepts and

6

arcs the relationships between these concepts. Once captured, intelligence algorithms may

be applied and deductions derived autonomously from axioms and assertions provided. An

Ontology is an explicit, formal specification of how to represent objects, concepts and rela-

tionships between objects and concepts in some target domain. The semantic web languages

RDF and OWL are Ontology-based.

2.1.1 RDF

<class ID ="Parent">
<subClassOf resource="#Person">

</class>

Figure 2.1: An RDF example

RDF, or the Resource Description Framework [10], is an XML based ontology language

used for expressing semi-structured meta-data. There is no in-built restriction on semantics

but the triple-based syntactic structure of RDF allows applications to effectively extract po-

tentially useful meta-information from a document. A triple consists of a class, property and

value. Each class is considered athing. An example listing is shown in figure 2.1. Here it can

be deduced that a parent is a type of person. It is desirable, however, to express more sophis-

ticated assertions. RDF has no support for complex data types for properties and semantic

constraints on concepts defined as a class.

2.1.2 Web Ontology Language - OWL

The Web Ontology Language or OWL [15] extends the RDF language-schema addressing

the shortcomings outlined above. OWL was originally a part of the DARPA project as

DAML however having been integrated with OIL and submitted as a standard to the W3C,

was renamed to OWL.

An OWL knowledge base is constructed in a similar fashion to an RDF knowledge base.

A class hierarchy is defined and properties are assigned to class concepts. The power of

OWL emerges when we consider how it improves upon the RDF language. Firstly, OWL

expresses complex data-types and value restrictions on those data-types. Secondly, through

7

<owl:Class rdf:ID="Wine">
<rdfs:subClassOf rdf:resource="&food;PotableLiquid" />
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasMaker" />

<owl:allValuesFrom rdf:resource="#Winery" />
</owl:Restriction>

</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#locatedIn"/>
<owl:someValuesFrom rdf:resource="&vin;Region"/>

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:label xml:lang="en">wine</rdfs:label>
<rdfs:label xml:lang="fr">vin</rdfs:label>

</owl:Class>

Figure 2.2: An OWL wine ontology excerpt

<WhiteWine rdf:ID="StGenevieveTexasWhite">
<locatedIn rdf:resource="#CentralTexasRegion" />
<hasMaker rdf:resource="#StGenevieve" />
<hasSugar rdf:resource="#Dry" />
<hasFlavor rdf:resource="#Moderate" />

</WhiteWine>

Figure 2.3: An application of the abstract OWL Wine class

use of OWL keywords complex relationships between classes and types can be defined. The

figure 2.2 taken from the WC3 OWL tutorial1 shows how the concept of wine may be

captured in an OWL ontology.

OWL differentiates between the declaration of a concept and an instantiation of that

concept. Essentially, OWL individuals are the extensional knowledge of an OWL knowledge

base that serve as the application of the intentional knowledge defined by OWL structure

keywords. Figure 2.3 illustrates the instantiation of an OWL individual.

1http://www.w3.org/TR/owl-features/

8

OWL provides a means by which equality and difference between semantic concepts can

be expressed.

owl:equivalentClass , owl:equivalentProperty andowl:sameAs can each

be used to express equivalence between two syntactically differing concepts. For example,

the concept of wine the concept of vino can be considered as the same concept defined differ-

ently. By asserting theVino class equivalent toWine class usingowl:equivalentClass

the concepts become equivalent in the eyes of any reasoner and deductions are made ac-

cordingly. owl:sameAs works in the same fashion except it is applied to individuals,

not classes. The difference operatorsowl:differentFrom , owl:AllDistinct ,

owl:distinctMembers , apply the inverse semantics to individuals and individuals which

are declared part of collections.

OWL property characteristics are used to enrich the semantics available in terms of

class properties.owl:objectProperty and owl:datatypeProperty define ob-

ject types and data-types respectively. Assertions such asowl:transitiveProperty ,

owl:SymmetricProperty further enrich the semantics with assertions on related prop-

erties of classes. A for a fuller discussion and tutorial the reader is referred to the OWL

section of the W3C website[15].

2.1.3 Reasoning with OWL

There are several tools available for reasoning with OWL knowledge-bases. JESS [29] rule

engine, RACER [24] and Pellet [30] are three common rule-based tools used for querying

knowledge base assertions. All of these tools have in-built support for OWL reasoning.

The W3C OWL standard is presented in three flavours and provides different computability

guarantees. OWL Lite is a subset of the OWL DL language. Similarly, OWL DL is a subset

of OWL Full. The first two of the above omit certain semantic restrictions, such as multiple

cardinality, in order to guarantee a certain level of computability. The above mentioned

reasoners are capable of reasoning over at least the OWL DL language. In fact, most support

OWL-DL plus certain features of OWL-DL full. It is assumed, unless explicitly stated, that

any references to OWL will refer to the OWL-DL subset.

9

2.2 Web Services

The web services paradigm has already been introduced; however it is necessary to discuss

the stack of standards and languages that lie at its core. Among these include support for

abstract data-types and remote procedure call, message encoding, service description and

binding as well as a platform for service advertisement and discovery.

2.2.1 UDDI

The Universal Description, Discovery and Integration protocol is the standard method for

publishing and discovering the network based software components of a service oriented

architecture [12]. A UDDI registry stores data and metadata about published web services

allowing them to be discovered and consumed by applications across an enterprise or across

the internet.

The UDDI information model is captured by an XML schema of which the elements

businessService , businessEntity , bindingTemplate andtModel are used

to capture information about the service and the service providers’ business model in a struc-

tured way.businessEntity maintains the company info,businessService holds

the name of the business entity including a unique business key and service key offering

information about the services offered by a company,bindingTemplate provides infor-

mation on how to invoke a service and thetModel provides further invocation details.

There are two interesting additions to this data model from UDDI versions 2 and 3.

publisherAssertion is used to establish relationships among entities in the registry.

A subscription is a standing request from a client of a UDDI registry node to notify the

subscriber of any changes to any particular element, such as the tModel, of the associated

metadata held in the UDDI registry. UDDI entities are classified according to a specific

taxonomy. UDDI nodes can recognise multiple taxonomies of entities stored in its database.

There is an important distinction made between a UDDI node and a UDDI registry. A

node is a server that supports at least the minimum functionality as defined by the specifica-

tion and is a member of one UDDI registry. A registry, therefore, is composed of one or more

nodes. Registries may also have affiliate registries which share information and a common

UDDI namespace for identifying unique records across the network of nodes.

A UDDI registry lookup is a request/response dialog between the registry and an inter-

10

ested client. The UDDI publish-API is used to add and delete services, tModels, business

entities, publisher assertions as well as binding templates for the particular service. Once

registered, the potential client may search across the registry in terms of category, business

entity or tModel in order to find a specific service.

This request/response dialogue, despite the addition of the subscription API to version 2

and 3 of the UDDI specification, is a look-up service that requires human intervention and

cannot be accomplished autonomously by a software agent. Further discussion of this, and

other weaknesses of the UDDI registry, is left until chapter 3.

2.2.2 WSDL and SOAP

Web Service Description Language, or WDSL, is an XML format for describing network

services as a set of endpoints operating on messages containing either document-oriented or

procedure-oriented information[8]. The WSDL grammar allows web-services functionality,

in terms of message data-types and functions, to be described abstractly. As a result appli-

cations have a standard, extensible means of describing functionality of a service regardless

of data format or network protocol. In order to bind an abstract definition to a concrete tech-

nology it is necessary to extend the WSDL XML grammar. The most widespread WSDL

binding is described as the SOAP 1.1 protocol which is often used conjunction with HTTP

GET/POST and MIME.

SOAP, or Simple Object Access Protocol, is a lightweight protocol for exchange of in-

formation in a decentralized, distributed environment. [11]. Also an XML grammar, SOAP

is divided into three core elements. Firstly, SOAP provides an envelope which defines a

framework for describing message contents and how they may be processed. Secondly, the

standard provides a set of encoding rules for instances of data-types which are defined at

the application end-points. Lastly, SOAP provides a convention for remote request/response

based procedure call. Again, SOAP may be used in combination with any protocol. Of these

SMTP and HTTP are the most common.

2.3 Semantic Web Service Descriptions - OWL-S

While WSDL is capable of describing web services syntactically it is the drive of the se-

mantic web that has encouraged the emergence of a web service description language that

11

annotates web service descriptions with machine understandable semantics. It is this ad-

dition of semantic content for web-service descriptions that is enabling automated service

discovery, composition and invocation.

2.3.1 An Upper Ontology for Web Services

Taking advantage of the extensibility of XML, DAML [33] have submitted OWL-S [9], or

OWL for web services, to the W3C. Recently accepted as a standard, the goal of OWL-S is

to provide an upper ontology for web service descriptions. OWL-S integrates the capability

of OWL to describe a concept in human terms and defines four ontologies which are used

as a basis for providing structured, human and machine understandable information about a

web service. Theservice profileontology deals with advertising and discovery of services

and theprocess modelgives a detailed description of a service’s operation. A typical OWL-

S service description also includes agrounding, which is usually expressed as a binding to

some WSDL definition. Figure 2.4 illustrates these ontologies and their relationship.

Figure 2.4: An Upper Ontology for Web Services [9]

12

2.3.2 Service Profile

<profile:Profile rdf:ID="BookDetailsFinderProfile">
<service:isPresentedBy rdf:resource="#BookDetailsFinderService"/>

<profile:serviceName xml:lang="en">
Name
</profile:serviceName>

<profile:textDescription xml:lang="en">
Textual Description

</profile:textDescription>
<profile:hasInput rdf:resource="#BookInfo"/>
<profile:hasOutput rdf:resource="#BookResearcher"/>
<profile:hasOutput rdf:resource="#BookPublisher"/>
<profile:hasOutput rdf:resource="#BookAuthor"/>

</profile:Profile>

Figure 2.5: An OWL-S Service Profile

A Service Profileprovides a way to describe the services offered to an interested or po-

tentially interested client. There can be multiple service profiles for each service, as each

service may be capable of performing several functions depending on input and output para-

meters. There are three major elements of the service profile: provider contact information,

functional description and a range of quality factors which aid the intelligent agent, or hu-

man, in rating the quality of a service in terms of its requirements.

A profile is defined in terms ofInputs, Outputs, Pre-conditionsand effects(IOPEs).

Each IOPE is an OWL concept. An example functional description in a service profile is

shown in figure 2.5. Here theBookDetailsFinderService presents a profile which

returns to a user researcher, publisher and author information about a book. In addition to

the functional information provided above, provider information consists of details about

the entity that provides the service, for example, e-mail and telephone of customer sup-

port. The UNSPSC categorisation system may be used to categorise the given service via

owl:serviceCategory . A categoryName , taxonomy value and code may be speci-

fied to aid this categorisation. Additionally, non-functional service parameters may be spec-

ified via owl:serviceParameter . Quality factors, confidence and other rating factors

are examples of non-functional parameters that may be added to the service profile.

13

2.3.3 Process Model

The process model gives a detailed perspective on how the service operates. The OWL-S

specification defines a process as an entity that transforms a set of outputs into a set of inputs

or more generally; causes transition from one world state to another.

A process may have any number of inputs and any number of outputs. Similarly OWL-

S supports processes with any number of pre-conditions. A process following on from the

previously illustrated service profile is shown in figure 2.11 on page 21.

There are three types of process, atomic, simple and composite. Atomic processes are

directly invokable and execute in one single step from the invokers perspective. Each atomic

process is associated with a grounding. Simple Processes, in contrast, are not invokable.

They are abstract views of some atomic process and may be expanded or realised by a con-

crete definition.

A composite process is one that may be decomposed into several atomic processes. Their

decomposition and sequence of execution may be controlled by the sequence keyword and

by an if-then-else control structure. This dissertation deals mainly with atomic processes

defined with a set of inputs and outputs that are exposed by possibly multiple service profiles.

Service composition, pre-conditions and effects are not considered and the reader is referred

to [4] for a more detailed discussion in this area.

2.3.4 Service Grounding

Once the function of a service has been defined it is necessary to ground the service to a

concrete realisation of the OWL concepts. Essentially a mapping from an abstract definition

to a concrete one, the service grounding explicitly ties each parameter message to a concrete

WSDL definition. There is a commonality between the OWL-S concept of grounding and

the WSDL concept of binding. Figure 2.6 on page 15 shows an OWL-S to WSDL/SOAP

grounding in terms of the operation definition and the input message to a book information

service.

14

<grounding:portType>
http://www.winisp.net/cheeso/books/LookyBookServiceSoap
</grounding:portType>

<grounding:operation>
http://www.winisp.net/cheeso/books/DoKeywordSearch
</grounding:operation>

Figure 2.6: OWL-S to WSDL grounding

2.4 Publish / Subscribe

In tandem with the rise of service-oriented computing another paradigm, publish/subscribe,

is receiving increased academic attention [21]. The fundamental idea behind the publish/-

subscribe model is a simple one.Subscribersexpress interest in a particulareventsor event

patternsand arenotifiedsubsequently of eventspublishedby anypublisherthat satisfy a set

of constraintsplaced on events by the subscriber.

Subscribers and publishers are decoupled in space i.e. there is no requirement that sub-

scribers and publishers know each other. Instead publishers and subscribers are aware of a

common interface through which events are published and notifications are delivered. This

interface, or publish/subscribe service provider, must track subscriptions and commonly pro-

vide the following functions.

• Subscribe(Filter f) : Allow interested parties express interest.

• Unsubscribe(Filter f) : Cancel expressed interest

• Publish(Notification n) : Publish Events to the Service

• Advertise(Filter f) : The Publisher indicates what type of events it may pub-

lish in future

Publishers and Subscribers are also decoupled in time and in synchronisation. As a re-

sult neither a publisher nor a subscriber need be active at time of publication or notification

respectively. Similarly, a publisher is not blocked until notification and a subscriber may

15

receive notification by means of call-back an any unspecified time after publication has com-

pleted.

2.4.1 Content Based Routing

Earlier publish/subscribe implementations used a topic based approach to classify event con-

tent. Hierarchies of topics are constructed organising content into a hierarchy according to

relationship. By subscribing to one topic, a subscription to a topic below the subscribed one

in the hierarchy is implied. However, as cited in [21], despite the introduction of a wildcard

matching scheme topic based routing systems were limited in expressiveness.

Content based routing schemes increase expressiveness by introducing routing based on

the actual content of an event. Asubscription languageis used as a means of specifying

filters. These filters describeconstraintswhich are applied to content via basic comparison

operators.

For example, if we wish to be notified of a situation where a share price reaches a thresh-

old then we could specifysharePrice = 50 and thus receive notification, including the

share price and associated information, when any share price surpasses this threshold.

2.4.2 Siena

In choosing an event notification service to work towards the outlined research goals two

freely available implementations were considered. Elvin [34] and Siena were examined. The

availability of a Siena implementation and the abundance of associated technical reports and

papers as well as its focus on expressiveness in a wide-area distributed environment resulted

in Siena being the implementation of choice for this dissertation. A detailed description of

Siena follows.

Figure 2.7: A Siena filter.From [7]

16

Figure 2.8: The Siena Notification/Subscription Covering Relation.From [7]

Any centralised wide area notification service that may realise the requirements of a

publish/subscribe implementation can be considered a nave one. Siena has been designed

as a wide area event notification service that is both expressive and scalable. Siena takes a

content based routing approach to providing the publish/subscribe service.

Primtives

A Siena notification is a set of typed attributes. Each attribute is a triple consisting of a type,

name and a value. The type is one ofstring, time , float andinteger . A filter is

constructed from a set ofconstraints which are applied to content ofnotifications. A con-

straint is also a triple, consisting of theattribute name , aconstraint operator

and avalue . Where multiple constraints exist they are evaluated as a conjunction. Siena

uses acovering relation to express a matching between a filter-event pair. Specifically, a

filter coversan event if that event satisfies each constraint applied to it by the content filter.

Figure 2.7 on page 16 shows a complex Siena filter composed of constraints and figure 2.8

shows some examples of holding and non-holding covering relations.

Siena supports Subscriber based semantics and Advertisement based semantics. As the

Siena Java implementation is subscriber based a discussion of advertisement based semantics

is left to the reader [7].Under both approaches, a notificationn is delivered to an interested

party X if X has submitted a subscription (as a filter, or conjunction of filters) that covers

the notification. Also, a filterf covers another filterf’ wheref constrains a superset of the

notifications covered byf’ . This is an important relation when a subscription is considered

17

as a filter, and is exploited by Siena for efficiency in subscription matching and storage.

Efficency

Figure 2.9: The Subscription Filter Poset.From [7]

Siena maintains a partially ordered data-structure that keeps track of subscriptions, previ-

ous requests and forwarding strategy. Each event server maintains its own copy of thisposet.

An example of this data structure, taken from [7], is shown in figure 2.9 on page 2.9. The

covering relation defines arcs to child nodes in this data structure. Each subscription filter is

either a root subscription, the case where there is no more general subscription that covers it,

or is a subscription with an immediate successor. In both cases a subscription may also have

an immediate predecessor. The covering relation, and therefore predecessor and successor

relation is a transitive one. A vertically growing subscription poset is indicative of multi-

ple subscriptions of a similar nature and in describing algorithms for the various topologies

Siena optimises for this case.

[7] illustrates and evaluates three topologies for the event service. Hierarchical, acyclic

peer-to-peer and cyclic peer-to-peer are all specified. However, implementations exist only

for the first two and of those the hierarchical one is the least complicated. The hierarchical

architecture is where Carizangia et. al begin and will be the subject of study in this dis-

sertation. For a discussion of the peer-to-peer architectures the reader is referred to [7]and

[6].

Each node in a hierarchical topology may have any number of incoming connections,

other than clients, but only one outgoing connection to its parent node. Conceptually, the

18

Figure 2.10: A Hierarchical Topology.From [7]

nodes have a client server relationship. Thus, a hierarchical node need only propagate infor-

mation it receives to its parent node in the form of root subscriptions and publications.

The main routing principle behind Siena is to push notifications as close as possible to

parties that may be interested in that information. Known asdownstream replication, this

can be achieved both by subscription forwarding and advertisement forwarding. Subscription

forwarding is the method used for routing in the Siena hierarchical implementation.

The filters poset is used to assist in pruning the number of subscriptions forwarded. Es-

sentially, root subscriptions are the only ones sent. As such, subscriptions covered by previ-

ously forwarded subscriptions are pruned and network traffic is kept to a minimum. In order

to ensure consistent notification across the network, Siena employs publication forwarding

to master nodes, and leaves further notification beyond that of root subscriptions to the nodes

on which the more specific subscriptions reside.

Subscription

The Event server receives a subscription viaSubscribe(X,f) and walks through its sub-

scription poset starting at each root subscription. If a subscription is found that covers the

filter f and contains X in its subscriber set the search terminates. Otherwise, the search ter-

minates with two possibly null sets,sf’ - sucessors andsf” - predecessors. If the filter exists

in the poset,X is simply placed in the subscriber set of that particular filter. Finally, should

19

neither of these apply a new subscription is inserted betweensf’ andf” in the subscription

set withX added to its subscriber set. Iff’ is null then the subscription is inserted as a root

subscription. In this case the subscription is sent to its master node. A detailed example of

subscription forwarding can be found in [7] section 5.5.5.1.

Notification

Upon reception of notifications (i.e. a publication) the event server initialises a queueQ with

all its root subscriptions. If the subscription covers the notification then the immediate prede-

cessors are appended toQ. If there is no covering then the subscription is removed from the

queue. Upon termination the subscribers in the subscriber sets ofQ are sent the notification.

If the master server was not the source of the notification than a copy of this notification is

also sent to the master server. A discussion of unsubscription and unpublication is deemed

beyond the scope of this introduction and may be reviewed in [7].

2.4.3 Elvin

Elvin [34] is a content-based routing system similar to the Siena system introduced in the

previous section. Elvin is a mature technology and active research is leaning towards stan-

dardisation of the protocols as currently implemented as well as adding increased security,

quality of service and other performance enhancements. Aside from the presence of a ma-

ture, efficient implementation the Elvin subscription language can be considered as a more

expressive form of that outlined for Siena. Introducing logical operators and tri-state logic

gives the Elvin subscription language a massive power advantage over the Siena subscription

language which still relies on conjunction for pattern matching. However, a driving factor

behind the Siena is the ability to function as a wide-area event notification service while

maintaining certain expressiveness. The closed-source nature of the Elvin implementation is

also prohibitive in terms of enhancing content based routing to include more complex data-

types, such as OWL class and is another major factor driving the choice of Siena as our basis

implementation.

20

<!-- Process Model description -->
<process:ProcessModel rdf:ID="BookDetailsFinderProcessModel">

<service:describes rdf:resource="#BookDetailsFinderService"/>
<process:hasProcess rdf:resource="#BookDetailsFinderProcess"/>

</process:ProcessModel>

<process:AtomicProcess rdf:ID="BookDetailsFinderProcess">
<process:hasInput rdf:resource="#BookInfo"/>
<process:hasOutput rdf:resource="#BookResearcher"/>
<process:hasOutput rdf:resource="#BookPublisher"/>
<process:hasOutput rdf:resource="#BookAuthor"/>

</process:AtomicProcess>

<process:Input rdf:ID="BookInfo">
<process:parameterType rdf:resource="bkont:Book"/>
<rdfs:label>BookDetails Name</rdfs:label>

</process:Input>

<process:Output rdf:ID="BookResearcher">
<process:parameterType rdf:resource="bkont:Researcher"/>

<rdfs:label>Book Researcher</rdfs:label>
</process:Output>

<process:Output rdf:ID="BookPublisher">
<process:parameterType rdf:resource="bkont:Organization"/>
<rdfs:label>Book Publisher</rdfs:label>

</process:Output>

<process:Output rdf:ID="BookAuthor">
<process:parameterType rdf:resource="bkont#Person"/>
<rdfs:label>Book Author</rdfs:label>

</process:Output>

Figure 2.11: An OWL-S Process Model

21

Chapter 3

The State of The Art

The purpose of this chapter is to outline the current state of research in the fields of seman-

tic service discovery, ontologies and publish/subscribe. Each section presents the research

conducted for this dissertation and includes an evaluation and general conclusions.

3.1 Semantic Service Discovery

Although heavily supported by languages such as OWL, OWL-S and RDF as well as SOAP

and XML research into semantic service discovery is still maturing and as a result a standard

means of discovery is still a way off. As a result of this non-convergence research continues

in several parallel avenues outlined below.

3.1.1 UDDI and Service Discovery

Not a semantically enhanced standard, the recently agreed UDDI specification version 3

[14]presents some interesting additions. Most notably, in the context of this dissertation, a

Subscription API has been added. Not explicitly a publish/subscribe application, at least in

the distributed event notification sense, the movement of the standard towards a publish/sub-

scribe concept is an interesting one. The Subscription API provides a means for tracking

new, modified and deleted UDDI entries forbusinessEntity, businessService, tModel and

publisherAssertion. Subscribers may be notified by email or via SOAP/HTTP by imple-

menting a subscriptionListener API.

22

Since subscribers must express explicitly the requirements, in terms of the selected cat-

egory, such as tModel, it is observed here that the UDDI subscription API more closely

resembles a topic-based subscription. Aside from the lack of UDDI support for semantic

concepts, more expressive textual content based subscriptions would offer more expressive-

ness of subscription language and hence more accurate notifications in terms of web service

discovery. It could however, also be argued that since automatic discovery and invocation is

not supported by UDDI web services that expressiveness and accuracy of category may not

necessarily be as important as in a semantically enhanced version.

3.1.2 Semantically Enhanced UDDI

There is a very active body of research in semantically enhancing the UDDI registry standard.

Since the UDDI standard is plentiful in features and a mature standard, it seems a logical

progression to attempt to build on this maturity by adding semantic annotation. In [1] the

authors endeavour to provide a structure whereby semantic information may be annotated

onto current UDDI elements, such as tModel. Similarly, [40] endeavour to ”import” the

semantic web into a UDDI standard implementation. Each of these works aims to introduce

concept matching to the UDDI registry by incorporating reasoning and OWL-S support to

current implementations. The active research in this area highlights one of UDDI’s main

weaknesses, lack of service capability support and emphasises a general consensus amongst

the web service academic community that semantic support for capability matching of web

services is primary the area forward.

3.1.3 OWL-S Matchmaker

In [32] Paolucci et al outline a methodology and efficient algorithm for semantic service

capability matching. The current body of research focuses primarily on comparing inputs and

outputs of a service as semantic concepts represented in OWL. By extracting subsumption

relationships between input requirements and outputs the authors propose a way of ranking

semantic matching results. This ranking can be used in conjunction with other user-defined,

or plug-in, constraints to inform of an exact, or potentially useful web-service capability

match.

In [41] the same authors propose an efficient way to apply the matching methodologies

outlined in [32] to the UDDI Registry. This basic extension adds acapability portto the cur-

23

rent UDDI implementation thus making it semantically aware. An interesting contribution of

[41] is an evaluation of ranked matching and a resulting focus on accelerating performance

by minimising the amount of matching and, therefore reasoning, that takes place. Any im-

plementation of a semantic matching engine into the publish subscribe model must take this

observation into consideration and must endeavour to minimise the frequency of concept

matching that takes place.

3.1.4 METEOR-S for Service Discovery

The METOR-S project [20] is a large research effort focusing on the application of seman-

tics to WSDL, in the form of WSDL-S, and semantic support to UDDI. Interestingly in the

context of this research, [20] appears to offer significant contribution in the area of distrib-

uted, peer-to-peer infrastructures for semantic publication and discovery of services. [20]

targets the area of semantic web-service discovery as an important and apparently underde-

veloped area in the context of current web-services research. [20] also makes the observation

that for a UDDI registry in its current form, web-service discovery across multiple UDDI-

registry nodes is inefficient. The research concludes that adding web service description

semantics and annotating the UDDI nodes themselves may provide avenues for improving

the efficiency of a distributed UDDI registry. This is interesting considering the content

based routing avenue of this research. Work done by the METEOR-S project shows that

the semantic concepts available in OWL can be used to for other purposes besides explicit

matching of service descriptions against requirements.

[20] also addresses the issue of diverging ontologies within such a distributed system.

The paper proposes a specialised ontology, the registries ontology, designed to maintain

relationships between registries. However, no explicit Ontology alignment takes place. In-

stead, registered publications are restricted to a set of ontologies explicitly defined by the

registry of publication.

3.1.5 Ranked Matching

The work done in [26], focuses on a finer grained approach to matching than presented in

[32]. By consideration of the service category and finer-grained user constraints based on

concept properties as well as input and output matching the work done by Jaeger et al. pro-

poses a more accurate approach to semantic matching. The matching process is broken into

24

four distinct phases; input matching, output matching, service category matching and user

constraint matching, each of which scores a numerical ranking, also based on the subsump-

tion relation. The semantic matcher then aggregates a ranking in each of these categories and

as a result can produce an accurate match with informative matching statistics. A Java pro-

totype has been built and is hosted by the Technischen Universitat at Berlin1. Examination

of this prototype shows a well designed, apparently efficient implementation based on JESS,

RDF/QL and an OWL knowledge base for JESS, all discussed in section 2.1.3. As a freely

available and mature implementation of progress in the semantic matching area, integration

of this Java implementation into our publish/subscribe implementation would definitely be a

useful and worthwhile course of action.

3.1.6 OWL-S API

The OWL-S API [31]2 provides a Java API for programmatic access to read, write and

invoke OWL-S service descriptions. While the focus of this research is in the area of seman-

tic web-service discovery, any implementation of a service-discovery system would involve

parsing of an OWL-S service description mark-up as well as integration of the concepts rep-

resented in the service into a programmatic model of some form. The OWL-S API has a

stable basis for accomplishing this task. Coupled with this the OWL-S API has been built

on the Jena framework allowing for relationships to be asserted and reasoned over through

a Java API, possibly via the Pellet [30] reasoner. As the most comprehensive Java API for

OWL-S that has additional support for reasoning it is felt that the API could be an interesting

and valuable component of any implementation developed in the context of this dissertation.

3.1.7 Reasoning for OWL-S

As outlined in section 2.1.3 there is an abundance of technologies available supporting rea-

soning over OWL concepts and services via programmatic interfaces. A discussion of these

tools follows.
1http://ivs.tu-berlin.de/Projekte/owlsmatcher/
2http://www.mindswap.org/2004/owl-s/api/

25

Jena

The Jena [27] semantic web framework provides a programmatic environment that includes

an RDF/RDFS/OWL inference engine, an OWL API, and RDQL3 support. The OWL rea-

soner as included with version 2.2 of the framework is a rule-based implementation that

supports fully only the OWL-Lite subset of the Ontology Web Language. The Jena 2.2 doc-

umentation actually highlights the weakness of the default reasoner and, through the Jena

DIG description logic interface, recommends the use of an external reasoner for complete-

ness and for performance reasons. Our implementation will not rely on Jena reasoning alone

but will incorporate a more fully featured reasoner. However, due comprehensive nature of

the Jena API which, interestingly, includes an API through which RDF assertions may be

made persistent in a MySQL or Oracle database, its contribution cannot be ignored. The Jena

framework was the only semantic framework encountered that explicitly supported persistent

RDF objects through Java.

Pellet

Pellet [30] is an OWL DL reasoner based on the tableux algorithms developed for expressive

description logics. Pellet fully supports the OWL-DL subset of the Ontology Web Language

specification. Pellet can deal with both ABox (assertions about individuals), TBox (ax-

ioms about class definitions) and RBox (axioms about properties) each of which can be

considered as an important feature in the context of OWL-S service matching, particularly

when considering the subsumption relation which can be deduced via reasoning over TBox

axioms. The Pellet API may be used in conjunction with the OWL-S API , via the Jena DIG

interface or as a standalone API. The most recent version, 1.2, was not available at the time

of evaluation, however versions 1.1 and 1.0 were freely available for download.

JESS and The OWLJessKB Project

JESS [29] is a general purpose rule engine and scripting environment. Tightly integrated with

Java and incorporating the latest in rule-based reasoning algorithms JESS claims to be one

of the smallest and fastest rule engines available. OWLJessKB [28] is an OWL Reasoner

based on the Jena and JESS APIs. The majority of the semantics are implemented using

3A Query Language for RDF

26

the JESS API. The OWLJessKB supports the TBox reasoning. OWLJessKB has explicit

support for subsumption and classification reasoning as well support for transitive properties,

subsumption and classification on datatypes defined in the XML schema.

RACER

RACER [24] is another reasoning API for the semantic web. Fully supporting T-Box and A-

Box axioms, the RACER API is a core component of several semantic web tools. Currently a

commercial endeavour4 in the context of this research, especially considering the capabilities

of freely available tools already discussed, further analysis of the RACER API was not un-

dertaken. However, an interesting observation in [24] is the inclusion of a publish/subscribe

interface for registering interest in specific knowledge. Registered IPs are automatically no-

tified of the modification of knowledge based information in terms of permanently-expressed

queries. Although not explicitly relevant the similarity between the RACER approach and

the goals of this dissertation are obvious.

3.2 Publish/Subscribe

The state of the art in terms of the publish/describe paradigm is captured nicely by Eugster

et. al in [21]. This work not only details publish/subscribe implementations, mature and

new, but serves as a gentle introduction to the publish/subscribe paradigm. Classification of

publish/subscribe systems and related technologies is undertaken. The research conducted

for the purposes of this dissertation focused entirely on wide-area publish/subscribe systems

that incorporated content-based routing.

3.2.1 Siena

The Siena implementation has already been introduced in 2.4.2. The Siena project is sur-

rounded by a very active body of research. In [7] the foundations for the Siena imple-

mentations were outlined. Following on from this, two implementations have arisen. The

first, a C++ implementation of the acyclic peer-to-peer network, is maintained for archival

4http:/www.racer-systems.com

27

reasons only and is cited as an obsolete implementation. The Siena Java project is an up-

to-date implementation of the hierarchical Siena topology. Full source code is available for

both implementations. The Java implementation is currently at version 1.3.2 and is a full

implementation of the Siena interface except for the omission of patterns and the correct

implementation of the unpublish and unsubscribe functions. On testing the Java interface

another, apparently undocumented requirement is for a subscriber to have subscribed before

the publication of interested information. This clearly violates time-decoupling as outlined

in [21] but whether this is an intentional omission is not clear from the documentation or the

surrounding literature.

Siena’s forwarding architecture is best detailed in [5]. This work includes various optimi-

sations and enhancements, such as short-circuit filter evaluation and addition of a selectivity

table for forwarding as well as other optimisations that have not been implemented in the ba-

sic Java implementation. The fast forwarding enhancements, including the new forwarding

tables are currently available as an independent C++ module.5

In the most recent Siena-related publication [6], Carzangia et al. focus on the presentation

of a routing scheme for a cyclical peer-to-peer wide-area-event notification service architec-

ture. The main contribution of this work is to outline algorithms for progressing Siena from

the hierachical and acyclical topologies outlined in [7], to the more general environment of

a peer-to-peer network and to prove the scalability of the proposed implementation.

3.3 Ontology Alignment

The diverse nature of any wide-area service that integrates ontologies requires that vary-

ing representations of the same concept via multiple ontologies is considered. The state of

the art in Ontology alignment field is presented in [19]. This work presents the numerous

methodologies and tools currently available. A detailed discussion of this work is deemed

beyond the scope of this dissertation research. The implementation, for simplicity, will as-

sume the existence of a mapping, or several mappings, relating ontological concepts in a way

meaningful in the context of the whole system.

5http://serl.cs.colorado.edu/ carzanig/siena/forwarding/index.html

28

3.3.1 Ontology Alignment API

[22] presents an interesting piece of work in the area of generic ontology alignment. The

interesting contributions are two fold. Firstly, an XML format for alignment is presented.

This general XML format abstractly defines the relationships between ontologies and the

concepts contained within. A relation, such as equality, or subsumption, can be defined be-

tween two ontological concepts and an associated confidence factor assigned. The standard

defined also supports more complex concept matching, such as that provided by SWRL6.

The API itself may not be as useful. Despite integration with the OWL API, there is no

support for the full level of abstract mappings as expressed in the XML format definition.

3.4 Conclusions

This chapter has shown that the research area of semantic service discovery is a very active

one. This is especially the case when considering the addition of capability matching to the

service discovery. Work undertaken in the field of content based routing for the publish/sub-

scribe paradigm is currently focused on fast forwarding and improvement of performance

for large-scale notification services. There is little evidence of driving progress in the area of

subscription language enhancement, or movement towards more complex data-types other

than string, integer and date-time. Lastly, work done in the OWL-S service discovery par-

adigm does not consider the possibility of explicit ontology mapping, instead focusing on

standardising ontologies for use in the discovery paradigm.

It can thus be concluded that development of a publish/subscribe model for web-service

discovery incorporating expressive complex data-types for subscription, OWL-S enhanced

content-based routing and on-the-fly ontology integration is an original concept. It is hoped

that this dissertation may make a significant contribution in realising the development and

implementation of such a platform.

6Semantic Web Rule Language

29

Chapter 4

Design

This chapter outlines the implementation design. Two phases of implementation took place

over the period this dissertation was completed. The first exploratory phase was a simple,

centralised text-based system designed as a means by which tools such as the Siena server

nodes and semantic reasoning could be tested. Since the main aim was to explore the Siena

system, explicit description of the simple design has been amalgamated with the imple-

mentation details of chapter 5. The following sections outline the design of an enhanced

prototype in terms of our target use case, the details of which are based on the Siena Java

implementation discussed in previous chapters.

4.1 Overview

Figure 4.1 illustrates the specific components of our proposed implementation. These com-

ponents are divided explicitly into three facets; subscription, publication and matching.

Within these there are requirements for subscription set structure, a communications layer,

ontology integration and ontology alignment.

It has already been established that the implementation will consist of a modified version

of hierarchical implementation for Java. The original implementation for Java has no noti-

fication support beyond the simple types discussed in [7]. Similarly, no support for OWL-S

matching, or OWL programmatic support structure exist. In order to realise the goals of a

semantically aware implementation the following enhancements are necessary.

• Integration of an OWL/OWL-S Java support package.

30

Figure 4.1: Design Overview

• Integration of the JESS/OWLJessKB reasoner API.

• Development of an OWL-S matching component.

• Client and Server Interface Support.

• Modification of the Sienaposetstructure.

• Expansion of the Siena subscription language.

A detailed technical discussion of these components as implemented is undertaken in

chapter 5 and therefore the remainder of this chapter proceeds at an abstract level.

Figure 4.2 illustrates the Siena interface. The implementation of this interface is the most

basic requirement in fulfilling the goal of any publish/subscribe system. The original Siena

interface is capable of receiving and registering a filter and a Javanotifiableobject, which

handles the delivery of a notification to the calling subscriber. Similarly, the publish abstract

method allows for injection of a notification into the Siena network.

The solution to providing a basic publish/subscribe architecture was modify the current

Siena architecture to reflect the requirements of an OWL-S capable publish subscribe system.

At the highest level, we must first modify the Siena interface as currently implemented.

31

Figure 4.2: The original and modified Siena Interfaces

Firstly, this interface must be changed so that OWL-S services may be directly presented

to the Siena node for publication. Secondly, since we are enhancing the subscription lan-

guage, we must provide classes that encapsulate the required information necessary for cor-

rect subscription registration as well as an interface method for the presentation of subscrip-

tion information to the Siena server.

4.2 Application Description

In order to solidify the vision of a semantically-enhanced publish/subscribe system for web-

service discovery a usage scenario was constructed. In this instance a service discovery

architecture is presented whereby an OWL-S service may be published and subscriptions

constructed.

The aktors1 publication support ontology provides a comprehensive ontology that cap-

tures the publication media domain. This OWL ontology was a component of the MINDSWAP

sample services for the OWL-S API.

1http://www.aktors.org/ontology/portal.owl

32

4.2.1 Usage Scenario

There are three main actors involved in this usage scenario; the subscriber the publisher and

the discovery node(s). This is illustrated in figure 4.3.

Figure 4.3: Use Case Actors

At the most abstract level a typical enhanced Implementation exchange takes the follow-

ing form.

1. A Subscriber presents its expressed discovery constraints to the Siena server.

2. The Siena server registers the constraints and the location of the subscriber.

3. The Siena server is presented with an OWL-S Service by a publisher.

33

Figure 4.4: Plan View

4. The Siena server parses this service extracting the service profiles.

5. These profiles are subsequently matched against our subscription/subscriber set and a

notification list generated.

6. Each subscriber is notified of the publication of a new OWL-S service that matches

the content-based requirements previously expressed.

An top-down illustration of this is presented in figure 4.4.

4.2.2 Activity Diagrams

Illustration of the methodology for publication and subscription, both on the client and server

side is done by means of activity diagram.

34

Figure 4.5 shows an activity diagram for subscription from the point of view of the server.

Figure 4.6 shows publication on the server side and figure 4.7 shows client side subscription.

Server Subscription

Figure 4.5 starts with the examination of provided ontologies. Should an ontology be unfa-

miliar to the system the ontology is first integrated into the subscription. The subscription

is then examined, if it is a root subscription it is inserted into theposetand the subscription

is forwarded to the server node. Otherwise the subscription is inserted into the tree and the

subscriber is mapped, a record of its ip-address is maintained.

Server Publication

Figure 4.6 shows server publication. Once the profile has been presented and parsed the

accompanying ontologies are integrated into the knowledge base. A poset queue is initialised

and covering relation applied iteratively. Should a match be found the subscription subscriber

set is added to a notify set. Finally each subscriber in the notify set is sent a copy of the

published service profile.

Client Subscription

Having initialised a notification handler, the client forks into two threads as illustrated in

figure 4.7. In parallel, constraints are specified using the enhanced subscription language,

ontologies and mappings used to specify concepts are provided and the subscription sent to

the Siena server. Once the service profiles have been received it is up to the client to handle

integration and invocation of the service.

35

Figure 4.5: Server Subscription

36

Figure 4.6: Server Publication

37

Figure 4.7: Client Subscription
38

4.3 Enhancements

The following sections describe necessary enhancements to the current Siena implementa-

tion.

4.3.1 Subscription Language

Figure 4.8: A usage scenario

One of the primary goals of the design of this implementation is to enhance the Siena sub-

scription language. The primary addition to the data-types supported by Siena isowl:Class.

This addition facilitates the subscriber in specifying concepts representing the capabilities

of a service in terms of inputs and outputs. Also, the Siena reasoner is now capable of

understanding the concepts of explicit interest to the subscriber.

In this form the subscription language is capable of expressing only the exact require-

ments concepts. Since the matching algorithm is based on the subsumption relation it seems

natural to provide the facility for the subscriber to express interest in more general terms

via knowledge of this relation. To accommodate this, there are three additions to the Siena

39

constraint operators, each of which works in terms of the class hierarchy as provided by the

ontology referenced by the subscription. The` operator is used to express subsumption.

In figure 4.8input ` Publicationcan be used to express the constraint that this particular

subscription is interested in having the concept Publication as an input. The nature of the

subsumption operator also expresses interest in concepts that aresubsumed bythe Publi-

cation concept. Thea operator expresses an inverse-subsumption constraint. In the case

of figure 4.8 the subscriber has expressed an interest in the article concept or concepts that

subsumethis.

There is an or-relation between these constraints represented by the broken-line box. As

a result, this constraint is a complex one whereby the subscriber is interested in concepts that

lie between publication and article in the class concept hierarchy defined in blue. Since the

concept of a book is on the same level of the hierarchy as the article concept, an expression

of interest in inputs of type book is implicit. The remainder input and output utilise the≡
operator. A subscriber may not wish to register interest in concepts related by subsumption

and simply request a concept equivalent to that in which interest is expressed.

An enhanced subscription will consist of a conjunction of constraints on inputs and out-

puts. The enhanced constraint triple takes the forminput or output ,≡ or ` or a, owl:Class

and an or-relation can be used to form complex subscription requirements for each input and

output.

An English expression of the subscription follows :

This subscriber wishes to receive notification of the publication or modification of any

service profile with at least two inputs and one output. One of these inputs must, concep-

tually, be a publication, article or book. This subscriber wishes to receive confirmation of

reservation by receipt of reservation information or an equivalent concept and as a result

requests that this be an output of the desired service.

The right hand side of figure 4.8 shows three sample service profiles which have been

published to the Siena server. The first of these iscoveredby the subscription since we have

satisfaction for each constraint placed on the content of the service profile. The second of

these profiles fails on the first constraint, since the concept of research article is too specific

in terms of the class hierarchy shown. The failure of one constraint results in the failure of

the match as a whole.

40

The third service profile illustrates an interesting application of the covering semantics

used in the Siena content based routing system. Each constraint has been satisfied correctly

and therefore the subscriber is notified of the existence of a matching subscription. An

important observation is that the input concept Genre is also required of the published service

profile. The omission of the Genre input parameter may be interpreted as an expression

of not caring what other inputs exist on the service. It is assumed in this case that the

registered subscriber agent is capable of reasoning over this input requirement in order to

provide enough information to invoke the service successfully. However, the omission may

also express disinterest in any other inputs or outputs of any time on behalf of the subscriber,

perhaps since the subscribing agent is not capable of handling them. Since it is infeasible to

express disinterest in every unsupported concept in a large scale system, e.g. by means of a

not operator and since the inclusion of service inputs and outputs numbers decreases greatly

the expressiveness of the notification in this scenario, from henceforth it is assumed that an

automatic agent is capable of handling parameters it has not specifically expressed interest

in. In this way the covering semantics of the content based routing scheme are preserved

more effectively.

Subscription Language Evaluation

The advantages of enabling such an expressive language in a publish/subscribe context are

three-fold. Firstly, agents are pro-actively notified of matches that they may explicitly invoke,

allowing agents to seamlessly integrate different services and improved publications of the

services they may already invoke. Secondly, an agent may be informed of the appearance of

potentially useful services that may be invoked given extra-information, or, may provide a

less-than-ideal level of service. Similarly, upon the appearance of exact matches these less-

ideal matches may be switched out and the more suitable matches switched in. Lastly, the

pro-active nature of the notification removes the need for the device to explicitly search for

new publications on a regular basis. The agent and end-user can thus automatically assume

that it is always aware of the most suitable web-services given the specified constraints.

4.3.2 The Subscription Poset

While remaining at an abstract level it is necessary to discuss enhancements and modifica-

tions to the Siena subscription Poset structure and subscription forwarding architecture at the

41

C Operator C’Operator Concept Relation
Subsumption equivalence C subsumes C’

Inverse Subsumption equivalence C subsumed by C’
Equivalence Inverse SubsumptionC subsumed by C’
Equivalence Subsumption C subsumes C’
Subsumption Subsumption C subsumes C’

Inverse Subsumption Subsumption C subsumed by C’
Inverse SubsumptionInverse Subsumption C subsumes C’
Inverse Subsumption Subsumption C subsumed by C’

Figure 4.9: The relation constraintC covers constraintC’

design stage. Figure 2.9 on page 18 shows the Siena subscription poset. The main consid-

eration behind enabling OWL-S based subscriptions in such a manner is the preservation of

the covering relation between filters. In particular, the partial ordering between subscriptions

within the structure must be maintained.

In order to accomplish this we must define a covering relation between our enhanced

subscriptions. It remains that an OWL-S based subscriptionScovers another subscriptionS’

if the notification set generated byS is a superset of the notification set generated byS’ given

all publications presented to the Siena server. In less formal terms ifS is a less specific case

of S’ thenScoversS’. The introduction of the semantic operators, in effect, does not change

this relation. In fact, thè , a and≡ operators are analogous to the≥, ≤ and = operators in

Siena.

The introduction of the or-relation on specific constraints does complicate things slightly.

However, if the covering relations are broken down granularly this the relations still hold.

The relation constraintC is covered by another primitive constraintC’ is defined exhaus-

tively in terms of the subsumption operators in figure 4.9. The concept relation in this figure

is the relation that must hold between concepts expressed between the parameter of each of

the constraints. The case where two constraints are equivalent occurs when they have equiv-

alent concepts for the same parameter type of input and output. Although not explicitly true,

it is assumed for these purposes that equivalent concepts subsume themselves.

In terms of the subscription set structure there are two more relations we need to examine.

It must be possible to determine successors and predecessors in this hierarchy. In particular,

a parameter constraintPC, i.e. a disjunction of one or more constraints placed upon one

parameter, is asuccessorto PC’ if for every primitive constraint there is a corresponding

42

Figure 4.10: The Enhanced Poset Structure

primitive constraintC’ in PC’ that is covered by each constraintC in PC. The predecessor

relation is the inverse of this definition. From this it can be concluded that a subscriptionS is

a successor ofS’ for each parameter constraintPC in S there is a parameter constraintPC’

that is covered byPC’ in PC’.

These verbose assertions are most easily illustrated by an example scenario. Figure 4.10

illustrates an example enhanced poset. We can see here that the input parameter is the fac-

tor that determines the covering relation between the subscriptions. The fiction based input

subscription covers the book based input subscription which transitively covers the publica-

tion based subscription. It can be seen clearly that the fiction subscription is a more general

case of the Book and Publication based subscriptions and as any service profile matching

the publication subscription would also result in the notification of every subscriber in the

subscriber sets of each of the other subscriptions in the diagram.

The final covering relation that must be discussed is that between a service-profile and

a subscription. Should a covering relation exist, then the subscriber set for that subscrip-

tion must be added to the notification set for the matcher. Following on from the relations

discussed at the start of this section a parameterP part of the OWL-S serviceScsatisfies a

primitive constraintC subject to conditions holding between the parameter conceptSp in the

service profile and the parameter concept in the constraintPc. These holding conditions are

shown in figure 4.11.

43

Concept Relation Operator(s)

Equivalent Concepts Subsumption, Inverse Subsumption, Equivalence
SpsubsumesPc Subsumption

Spsubsumed byPc Inverse Subsumption

Figure 4.11: Sevice Profile Covering

4.3.3 Subscription Insertion

Figure 4.12: Insertion Optimisation

The subscription insertion algorithm remains unchanged. A root subscription is consid-

ered such if it has no successors. Given a call to the Siena interfaceSubscribe (Subscripton:S,

Notifiable:X) the subscription hierarchy is traversed. ShouldX exist in the subscriber

set of an equivalent or covering subscription then nothing is inserted to the subscription

poset. Should there exist a subscription equivalent toS in the poset thenX is simply inserted

into that subscriptions’ subscriber set. ShouldS not be found then the poset is traversed and

the set of predecessors and successors is derived. Should both of these be null thenS is in-

serted as a root subscription withX initialising its subscriber set. Similarly, if the successor

set is non-empty and the predecessor set is non-empty then the subscriber set is initialised

with X and the new subscription is inserted into the subscription poset preserving the par-

tial ordering relation currently existing on the set. Figure 4.12 illustrates how the partial

ordering relation and the explained algorithm gives rise to an important optimisation in the

context of the enhanced Siena server. It can be concluded that maintaining a subscriber set

per subscription as illustrated, instead of vice versa gives rise to a more efficient method of

subscription storage.

44

4.3.4 Subscription and Publication Forwarding

Figure 4.13: A distributed example of subscription forwarding

In the hierarchical implementation subscription forwarding takes place via client node

and master node only. In order to maintain the consistency, publications are also forwarded

to master nodes. In fact, the relationship between a client Siena node and its master is very

similar to that of a subscriber client and the Siena node itself. All root subscriptions are

forwarded to master nodes. The reference subscriber in the case where a subscription has

been forwarded to a master node is the sending node itself. As a result a root subscription in

the master node will cause the client node to be forwarded a copy of the publication. The net

45

effect of this is that no matter where a publication, or subscription takes place on the network

the correct subscriber subset is notified.

Figure 4.13 illustrates subscription forwarding in a sample scenario. At stage 1 sub-

scribera registers interest in the concept of written work or less specific. Since this is a root

subscription in the subscriber set for node 1 it is forwarded to node 2 where it handled in the

same way as a subscription from a client. In the second illustration clientb registers interest

in the concept of a publication. This is covered by the previous subscription and arranged in

the subscription poset accordingly. Note that this subscription is not forwarded to the master

node. Illustration 3 seesa register a more general subscription and the subsequent covering

sees the removal of the redundant subscription fora. When the publication takes place to

master node 2 the root subscriptions of 1 are also present in 2 therefore the publication is

forwarded to node 1 where matching takes place as usual and clientsa andb are notified cor-

rectly. Only sending root subscriptions in such a manner keeps network cost low however the

trade off between duplicated matching through nodes and distributed storage of publications

is a subject for careful evaluation.

4.3.5 Ontology Mappings

Design description up until this point has assumed the presence of universal knowledge. In

this design, universal knowledge will never be achieved and as a result partial knowledge

about the reasoning domain must be assumed. Before subscription insertion, forwarding and

matching takes place it is necessary it assert our Ontology knowledge base. To avoid multiple

integrations of the same concepts, an expensive process, it is necessary to keep track of the

ontologies previously integrated. This may be done via any efficient data-structure and string

comparison of ontology URL.

While on the surface a sufficient approach, this may still lead to duplicated assertions

and may result in integration of the same assertion into the knowledge base multiple times.

While the string comparison eliminates the most obvious cause of duplication it does not ac-

count for two other major factors. Firstly, multiple ontologies may exist that assert the same

information in exactly the same fashion. These ontologies may provide the same knowledge

to the database but differ in terms of namespace and URI. Secondly, the notion of equivalent

concepts defined in differing ontologies is not considered by our niave approach. It is there-

fore concluded that considering ontology integration and ontology alignment at the design

46

Figure 4.14: Two aspects of ontology mappings

stage may yield some interesting optimisations beneficial to the implementation as a whole.

Automatic construction of mappings between two concepts is deemed beyond the scope

of this dissertation so ontology alignment will focus entirely on assertion of relationships

defined in existing mappings. At an abstract level we must consider an ontology mapping as a

relationship defined between two or more equivalent concepts. The default relation is defined

as equivalence between entities. Figure 4.14 part one shows a level 0 mapping. These basic

mappings may be captured by theowl:equivalentClassrelationship as defined in chapter

2. The second, more complex mapping, require a more complex means of representation,

perhaps via a SWRL2 expression.

Both cases of ontology map can be expressed in a file separate to the subscription and

OWL-S Service presented to the enhanced Siena server. It is concluded that any XML repre-

sentation is advantageous because it does not bind itself to one particular method of ontology

mapping. Figure 4.15 shows how a level 0 mapping between Vino and Wine can be repre-

sented in a generic XML format.

This design proposes that during publication or subscription the actor may be allowed to

express level zero mappings in this XML format. Before Ontology integration, this XML

mapping can be parsed and equivalence relations concerning know concepts may be estab-

lished by asserting an equivalence relation in the knowledge base. This may thus expands the

reasoners knowledge assertions in a way that may increase accuracy of matching across the

notification service as a whole. For example, if Vino and Wine exist as unrelated entities in

the knowledge base and the concepts are equivalent in real terms then any expression of inter-

est in the concept of Vino is completely independent of that of the concept of Wine. Should

there be an ontology-map defined assertion between these two concepts the subscriber reg-

istering interest in Wine will also receive notification of appearance of suitable services that

2Semantic Web Rule Language

47

<Alignment>
<xml >yes</ xml >
<level>0</level>
<type> ** </type>
<onto1>http://www.wine.org/wine.owl</onto1>
<onto2>http://www.vino.org/vino.owl</onto2>
<map>
<Cell>
<entity1 rdf:resource=’http://www.wine.org/wine#Wine’/>
<entity2 rdf:resource=’http://www.vino.org/vino#Vino’/>
<measure rdf:datatype=’&xsd;float’>1</measure>
<relation>=</relation>
</Cell>
</map>
</Alignment>

Figure 4.15: Wine to Vino Ontology Mapping

deal with both equivalent concepts.

48

Chapter 5

Implementation

This chapter details how the design ideas and principles outlined in the previous chapter were

implemented. The first section reviews in detail the supporting tools used for implementa-

tion purposes. The remaining sections introduce the simple prototype and then enhanced

prototype in detail.

5.1 Technology Review

Of the tools examined in the state of the art chapter several were used for implementation.

In the first, exploratory phase, of the project the Siena server was used in conjunction with

the OWL-S API, The Pellet reasoner and the Jena Framework. The OWL-S API provided

a means for parsing services into a Java class structure for easy manipulation. Jena and the

pellet reasoner were used for Ontology assertion, integration and manipulation.

As the project progressed to a second prototype the services parsing and integration was

merged into the OWL-S matcher Java implementation. This more efficient implementation

uses SAX for XML parsing and JESS with the OWLSJessKB knowledge base scripting

engine for OWL concept reasoning. Significant modification of the Siena source code was

necessary to enable the integration of the matcher and other tools.

5.1.1 OWL-S Matcher

The OWL-S Matcher consists of four Java packages of which two are relevant to this im-

plementation. The first of these isde.tuberlin.ivs.owl.service . This package

49

provides the Java support structure allowing for the parsing of an OWL-S service. The

classesService andProfile have been modified to include a linked list of ontology

URLs which maintain a list of the ontologies that are used by the service and also by the

profile.

The classOWLSParser provides the SAX based service parsing functionality and cre-

ates the instances ofService andProfile . The packagede.tuberlin.ivs.matching

contains support classes for the matching algorithm implemented in the matcher application.

Of these the most useful is the classReasoner . The OWLJessKB is the object through

which JESS script initialises assertions.

\texttt{kb.executeCommand("(defquery query-equivalentClass

(declare (variables ?y)) (triple(predicate\"

http://www.w3.org/2002/07/owl#equivalentClass\")

(subject ?x)(object ?y)))");}

The text above shows an example of an equivalent class query set up to interact with the

knowledge base. TheloadOwlFile(URL path) is the method by which any OWL file

may be integrated to the knowledge-base. The listing below illustrates the most important

method of the reasoner in the context of this implementation.

public int conceptMatch(String conceptA, String conceptB) {

if (conceptA.equals(conceptB) || sameClass(conceptA,conceptB)) {

return EQUIVALENT;

} else if (subsumes(conceptA,conceptB)) {

return SUBSUMES;

} else if (subsumes(conceptB,conceptA)) {

return SUBSUMES_INVERT;

} else {

return FAIL;

}

}

This method captures the concept-matching functionality desired in our Siena imple-

mentation, returning equivalent, subsumes, subsumes invert or match failure when given two

fully-qualified OWL concepts. The methodsubsume(String concepta, String

50

conceptb) queries the knowledge base and the underlying JESS reasoner actually proves

the assertion.

5.1.2 Siena Java Implementation

Two main packages come bundled with the Siena Java source code. The first of these is the

underlying communications layer packaged insiena.comm . This package contains the

classesPacketReceiver andPacketSender which are abstract. Concrete implemen-

tations of these classes result in Siena supporting TCP communications viaTCPPacketSender ,

UDP Communications viaUDPPacketSender and SSL based communications via

SSLPacketSender .

The unit of Siena communications is packaged inSiena is based on theSENPPacket

class. Each SENPPacket is capable of transmitting instances of theFilter andNotification

class. The SENPPacket is encoded manually by the implementation i.e. given a set of filters

or notifications code to generate a packet stream is provided. This is probably a legacy from

an older version of the code as implementing the JavaSerializable interface for the

SENP packet and related instance variables would have the same effect.

TheHierarchicalDispatcher class in theSiena package is the core of the im-

plementation logic.HierarchicalDispatcher includes the subscriber poset, a refer-

ence to master node, an instantiation of the communications layer objects and a hash-map

of its subscribers interfaces amongst its member variables. By default five threads listen for

Siena packets to be broadcast from subscribers, other nodes or publishers. Various codes are

used to distinguish the function of the packet. Among theseSUB,PUB,UNSandCNFindicate

subscription, publication, unsubscription and configuration respectively.

Subscription

Upon the receipt of aSENP.SUBtype SENPPacket thesubscribe method is called. The

first goal of the subscribe method is to map the subscribers notifiable object associating it

with a reference point in a hash-map. Should a contact for the subscriber not be present in

this map then a new classInterface is created with the subscriber identification and a

PacketSender . This is again inserted into an instance of classRemoteSubscriber .

Having mapped the subscriber a method invocation on thePoset inserts the subscriber into

the subscription poset and an instance of classSubscription is returned. Should this be

51

a root subscription it is then forwarded through the master node interface. The subscription

process is now complete.

ThePoset class features an exact implementation of the poset graph shown in earlier

chapters. Methods to connect, disconnect, insert, and remove subscriptions are all present.

For a more detailed view of this, the reader is referred to theposet.java class on the

accompanying CD.

Publication, Matching and Notification

As outlined, all publications are immediately forwarded to the parent node of the current

node, should it exist. Upon publication, the notification is extracted from the siena packet

andmatchingSubscribers(Notification n) method invoked on the subscriber

set. This method conducts a breadth first search through the poset starting at the root sub-

scriptions as per outlined in chapter 2. The resultingSubscriberIterator contains the

all the relevant instances of

RemoteSubscriber . This iterator is traversed and thenotify(Notification n)

method invoked resulting in a notification encoded and sent to listening notification handlers

via the chosen concretisation of thePacketSender class. AThinClient utility class is

provided for clients that do not wish to join the network as a node.ThinClient provides

a listener interface and tracks objects on the same JVM via theLocalSubscriber class

in much the same way the Hierarchical dispatcher tracks remote subscribers. However, the

notify(Notificaton n) method may be invoked locally and not over the network in

this instance.

5.2 Exploratory Implementation

The exploratory implementation was based on edge-based matching on standard Siena noti-

fications. No explicit matching takes place on the Siena server. Instead, during publication,

concepts are parsed and extracted at the edge of the network. OWL concepts are extracted

and sub-classes and super-classes of these concepts are then registered with the Siena node.

The packageie.cs.tcd.owlsiena consists of classes which provide a wrapper around

the Siena server.

52

Publication

The ServicePublisher class provides a wrapper to the Siena notification server. Its

constructor is provided with a reference to the Siena server and a URI to the OWL-S service

that is to be parsed and published. AreadService(URL) method parses an OWL-S ser-

vice using the stream based OWL-S reader imported from the OWL-S API package. From

this service, a list of inputs, outputs, preconditions and effects are extracted and placed in

a the holder classIOPERecord . The classNotificationGenerator contains an in-

stance of the JenaOntModel class and this is where our ontology model will be initialised

for publication. Once this has been initialised reasoning then takes place on the inputs and

outputs presented to the ontology model. AgetFilters() method then generates filters

based on parsed service inputs, outputs their sub-classes and super classes. Figure 5.1 shows

how the input Book from our publication ontology is extracted as a text-based Siena notifica-

tion. Extracting subclasses and super classes of inputs and outputs was the first step towards

incorporating generalised concept matching, whereby exact inputs/output concepts as well

as input/output concepts that may have a subsumption, or inverse subsumption relation are

considered. Figure 5.1 shows the notification generated by the class structure for a service

that has an input book and an output author. This representation is constructed from Siena

string data-types as follows :

• hasExactInput/hasExactOutput- The specific parameter concepts.

• hasSubInput/hasSubOutput- The subclasses of the parameter concepts as expressed

in the input OWL-S service ontology

• hasSuperInput/hasSuperOutput- The super classes of the parameter concepts as

expressed in the input OWL-S service ontology

• ServiceURI - From where the Web-Service description may be downloaded.

The code listing below illustrates how these notifications are extracted through Java.

/ * New service publisher Siena reference and URI * /

ServicePublisher sp = new ServicePublisher(sienaServer, \

new URI("http://localhost:8080/owl/WineFinder.owl"));

Service service = sp.getService();

53

/ * publish the service * /

sp.publishService();

Figure 5.1: First prototype service notification

Subscription

Subscription in the first prototype involves explicit instantiation of theIOPERecord class.

Explicit constraints are specified by providing the fully qualified URI of the OWL concept

input desired. The code listing below illustrates how this can be done in the first prototype

implementation.

IOPERecord record = new IOPERecord();

record.addInput("http://www.aktors.org/portal.owl#Book");

record.addOutput("http://www.aktors.org/portal.owl#Author ");

OWLSMatcher handler = new OWLSMatcher(record);

/ ** generate our subscription * /

Subscription sub = new Subscription(handler,record);

/ ** new subscriber service * /

ServiceSubscriber subscriber = new \

ServiceSubscriber(sienaServer,sub);

/ ** subscribe to the service * /

subscriber.registerSubscriptionFilters();

54

Evaluation

The net effect of a publish/subscribe interaction in this prototype is that subscribers receive

notification of the publication and modification of web-service notifications that are in any

way related to their expressed constraints in the subscription hierarchy. Upon receipt of noti-

fication it is then up to the subscribing agent to implement a matching algorithm to determine

the quality of the match. While this does somewhat fulfil the goal of a publish/subscribe sys-

tem for service discovery in the context of the research aims the implementation is lacking.

Firstly, no attempt is made to utilise OWL-S information to enhance content based rout-

ing. Secondly, the expressiveness of subscription language has not been enhanced. On the

contrary, limitation to the types explained in previous chapters actually restricts the expres-

siveness of the Siena subscription language. Thirdly, there is no support for ontology inte-

gration and duplication of information and multiple unnecessary parse requests exist across

the network.

To conclude, this exploratory implementation was a useful exercise in analysing some

of the reasoning and event notification tools available but, especially given the design spec-

ifications in the previous chapter falls short of the research goals. In light of this, the first

prototype was shelved and a second, enhanced prototype constructed the details of which are

outlined in the following sections.

5.3 The Enhanced Prototype

The second prototype is much more of an attempt at realising the goals outlined in the

first chapters of the dissertation. An OWL-S subscription support Java package was de-

veloped intended as an extension to theSubscriber , Subscription , Filter and

Notification classes introduced in the previous section. The next step was to re-write

the communications layer to support TCP communication via theSerializable Java in-

terface. OWL-S matching was then integrated to the now modified Siena server. Having

integrated the OWL-S matching capability, subscription and publication handlers were then

modified to handle OWL-S based requirements.

55

5.3.1 OWL-S Support Package

The packageie.cs.tcd.owls.discovery.siena contains the class

RemoteOWLSubscriber . This essentially captures the same functionality of

RemoteSubscriber modified for correct function with the remaining support packages.

By writing

RemoteOWLSubscriber to extend the abstract SienaSubscriber we ensure neat

compatibility with the Siena subscriber mapping functionality. As a result the subscriber

tracking component of the hierarchical server can remain largely unchanged.

ie.cs.tcd.owls.discovery.structure contains five classes that enable sub-

scription language enhancement. At the top levelOWLSubscription replaces the Siena

Subscription class. Each OWLSubscription has a linked list of ontologyURLs, input

and output constraints and a reference to an instance of classReasoner which will be used

to extract subsumption relations between concepts.

At the very lowest levelOWLConstraint captures the(parameter concept, operator,

value)constraint triple. An operator of type String, an instance of classParameter and a

reference to the reasoner is also kept. Four primary methods capture the functionality of the

OWLConstraint class and allow ordering relations to be defined between constraints as illus-

trated in chapter 4.satisfiesInput(Input i) andsatisfiesOutputOutput

o proved the capability to execute concept comparisons between inputted parameters and the

constraint parameters. The following code listing illustrates this.

public boolean satisfiesInput(Input p) {

if (this .operator.equals(OP.EQU)|| \

operator.equals(OP.MORESPEC)|| \

operator.equals(OP.LESSPEC)) {

if (reasoner.conceptMatch(p.getRestrictedTo(), \

param.getRestrictedTo())==Reasoner.EQUIVALENT) {

return true ;

}

else {

return false ;

}

}

56

/ ** more specific ** /

else if (this .operator.equals(OP.MORESPEC)) {

if (reasoner.conceptMatch(p.getRestrictedTo(),

param.getRestrictedTo())==Reasoner.SUBSUMES) {

return true ;

}

else {

return false ;

}

/ ** less specific ** /

} else if (this .operator.equals(OP.LESSPEC)) {

if (reasoner.conceptMatch(p.getRestrictedTo(),

param.getRestrictedTo())==Reasoner.SUBSUMES_INVERT) {

return true ;

}

else {

return false ;

}

}

return false ;

}

Three methods deal with comparing individual constraints against each other. Firstly,

boolean equivalent(OWLConstraint p) compares two OWLConstraints for equiv-

alency in terms of concept and operator. The

isSucessor(OWLConstraint c andisPredecessor(OWLConstraint) imple-

ment the functionality necessary for the relations to hold. Again the reasoner subsumption

relation is used. The following code piece gives a snap shot of this functionality.

if (this.operator.equals(OP.MORESPEC))

&& (p.operator.equals(OP.EQU))) {

if(reasoner.conceptMatch(source,target)

==Reasoner.SUBSUMES)

57

return true;

else

return false;

}

Since we have now established an ordering relation at the lowest level of granularity it

is now necessary to abstract one level and consider multiple constraints on the same input

or output. The classesOWLInputConstraint andOWLOutputConstraint classes

each support theisSucessor(OWLInputConstriaint) type relations by applying

an conjunction to eachOWLConstraint it has in its constraint linked list. The requirement

for matching is that everyConstraint must hold on everyOWLInputConstraint.

andOWLOutputConstraint to which it is applied. This is illustrated in the following

code sippet.

public boolean matches(Input p) {

Iterator i = constraints.iterator();

while (i.hasNext()) {

OWLConstraint c = (OWLConstraint)i.next();

if (!c.satisfiesInput(p)) {

return false ;

}

}

return true ;

}

ServiceNotificationHandler is the last of the support classes. The purpose of

this class is a simple one. This class implements the SienaNotifiable interface and runs

as a simple listening thread until it gets woken up by theThinClient class. It is intended

that code for the handling of services, the appearance of which has just been notified, takes

place here.

5.3.2 Communications Layer

The modified Siena interface should be capable of acceptingOWLSubscription over a

chosen transport protocol. As previously pointed out, the Siena communications layer relies

58

on manual encoding of packets for transport over the network. In order to simplify some-

what the transportation process this encoding of Siena packets has been removed. Taking

advantage of the Java package support structure that exists, we may simply implement the

Serializable interface and allow Java to take care of marshalling between the client and

the Siena server node.

To facilitate ease of integration we also only support communications that take place

over the TCP protocol via Java Object streams. This is an important consideration when

conducting an evaluation on a wide scale system as it must be established whether the TCP

overhead outweighs the less-strict guarantees of the UDP protocol. An examination of Java

marshalling performance may also be a desirable endeavour. TheSENPPacket class has

been modified and is now capable of the transmission ofOWLSubscription classes over

a TCP stream.

5.3.3 Matching Integration

The HierarchicalDispatcher must be extended to support reasoning and an OWL

knowledge-base for concept tracking. The modular way in which the OWL-S matcher has

been developed allows us to include an instance ofReasoner as a member variable directly

with only slight modification to the private java modifiers in the concept matching code. Each

subscription in the subscription poset, and subsequent constraints will use a reference to this

reasoner to conduct its’ concept comparison and matching. This all takes place in line with

the concept matching code outlined earlier. This extreme ease of integration was one of the

driving factors behind the change from Pellet/Jena based reasoning to JESS/OWLJessKB

based reasoning.

5.3.4 Subscription (Client)

Step 1 - Instantiate Parameter Classes

Importing thede.tuberlin.ivs.service classes the subscriber must first instantiate

the parameter concepts of interest.

Output o = new Output();

Input i = new Input();

i.setPropertyName("Input");

59

i.setRestrictedTo("http://www.aktors.org/ontology/portal#Book ");

o.setPropertyName("Output");

o.setRestrictedTo("http://www.aktors.org/ontology/portal#Person ");

Step 2 - Initialise Notification Handler

An instance of the notification handler class or equivalent must be created and the listener

thread started.

ServiceNotificationHandler sH1

\= new ServiceNotificationHandler("Subscriber 1 - BookFinder Exact");

sH1.start();

Step 3 - Create Subscription and Constraints

Next the subscriber must create a new subscription. Instances ofOWLInputConstraint

andOWLOutputConstraint are created and one or more instances ofOWLConstraint

are added to each. In this instance we are expressing interest in all published services with at

least two outputs, one input equivalent toBook and one output equivalent toAuthor . The

subscriber must also provide the ontology where the concepts used are defined.

OWLSubscription os1 = new OWLSubscription();

OWLInputConstraint ics = new OWLInputConstraint();

ics.addConstraint(new OWLConstraint(OP.EQU,i, true));

OWLOutputConstraint ocs = new OWLOutputConstraint();

ocs.addConstraint(new OWLConstraint(OP.EQU,o, false));

os1.addInputPredicate(ics);

os1.addOutputPredicate(ocs);

os1.addOntologyURL("http://www.aktors.org/ontology/support.owl")

Step 4- Register Subscription

An instance ofThinClient is then created, feeding the transport protocol, server address

and port number to the constructor. Subscription takes place as follows.

60

ThinClient t = new ThinClient("tcp:localhost:1224");

t.subscribe(os1,sH1);

5.3.5 Subscription (Server)

Upon the receipt of a newSENPPacket the subscribe(SENPPacket) method is

invoked and subscriber mapping takes place as per the original Siena implementation. A

RemoteOWLSubscriber instance is then created and passed to a new subscribe method,

RemoteOWLSubscriber s, SENPPacket req) .

Step 1 - Ontology Integration

integrateOntology(req.sub.getOntologyURLs());

The integrateOntology(LinkedList URLs) method is invoked and passed

the linked list of URLs to the ontologies that are referenced by the subscriber. Due to time

constraints, the string-compare method outlined in previous chapters has been implemented

only. Provided the ontology has not been previously integrated a direct call to the reasoners

loadOWLFile(URI) method is placed an the knowledge asserted in the knowlegebase.

Step 2 - Subscription Insertion

Subscription sub = subscriptions.insertsubscription(req.sub,s);

The subscription is now passed to the modified subscriber poset for examination. The

modified predecessor set firstly finds the predecessors and successors in the proposed sub-

scription insertion. The following method is then invoked and the subscription inserted into

the correct poset location preserving the partial ordering relation. This is done iteratively

across possibly null set of predecessors and subscribers.

private void insert(Subscription new_sub,

Collection pre, Collection post) {

//

// inserts new_sub into the poset between pre and post. The

// connections are rearranged in order to maintain the

// properties of the poset

61

//

Subscription x; // x always represents something in the preset

Subscription y; // y has to do with the postset

Iterator xi, yi;

if (pre.isEmpty()) {

roots.add(new_sub); // root subscription!

roots.removeAll(post);

} else {

xi = pre.iterator(); /

while(xi.hasNext()) {

x = (Subscription)xi.next();

yi = post.iterator();

while(yi.hasNext())

disconnect(x, (Subscription)yi.next());

connect(x, new_sub);

}

}

yi = post.iterator();

while(yi.hasNext()) {

y = (Subscription)yi.next();

connect(new_sub, y);

}

++mods_since_save;

}

Step 3 - Distribution

The subscription is returned to the handling method and then tested. As per design, if the

subscription is a root subscription and our master interface exists, then the subscription is

forwarded through the master interface to the parent node.

62

5.3.6 Publication (Client)

Client side publication also requires an instance ofThinClient . Firstly the web-service

must be parsed and service profiles extracted.

Profile pf1;

final String publishURL1 = \

"http://localhost:8080/owl/BookFinder.owl";

OwlsParser op = new OwlsParser(System.out);

Service s = op.parse \

(new URL(publishURL1),new Reasoner(null));

s.setURL(publishURL1);

Vector v = s.getProfiles();

Iterator it = v.iterator();

while(it.hasNext()) {

pf1 = (Profile)it.next();

pf1.setServiceURL(publishURL1);

t.publish(pf1);

}

We must then loop through the list of service profiles and individually publish them to

the Siena server via the thin-client.

5.3.7 Publication (Server)

All publications are first forwarded to the master server as per the Siena specification. The

OWL-S service and related ontologies are integrated into the knowledge base in a similar

fashion as with subscriptions. The service profile is then passed to the Subscriptions poset

instance and the set of subscribers we wish to notify is returned. The

(matchinSubscribers(Profile p) method is responsible for this matching.

First, the covering roots are added

while (i.hasNext()) {

sub = (OWLSubscription)i.next();

if (sub.coversProfile(p)) {

to_visit.addLast(sub);

63

result.addAll(sub.subscribers);

}

}

then we iterate through post sets

while ((li = to_visit.listIterator()).hasNext()) {

sub = (OWLSubscription)li.next();

li.remove();

i = sub.postset.iterator();

while (i.hasNext()) {

OWLSubscription y = (OWLSubscription)i.next();

if (visited.add(y) && y.coversProfile(p)) {

to_visit.addLast(y);

result.addAll(y.subscribers);

}

}

}

return result;

}

Once the subscription subset has been defined we send a copy of the published service

profile to each subscriber node. All our child nodes with root subscriptions that cover the

profile also receive a copy of this published service provided they are not the original senders

of the service.

5.4 Observations

Due to the nature of integration and the development of glue code across two differing im-

plementations, in software engineering terms, this implementation is inconsistent in its ap-

plication of the principles of object-oriented design. As a result there is potential to increase

efficiency and thus performance. However, having said this, the matching capability im-

plementation is a modular one, and the currently integrated matching capability may be re-

placed by any concept matching engine that implements aconceptMatch(String a,

String b) method combined with support for aloadOWLFile(URL) method.

64

The first suggestion for improvement applies at the matching stage of the enhanced im-

plementation. The code in the previous section illustrates how subscriptions are matched

against profiles in a breadth first manner. This approach is also explicitly outlined in [7].

However, it may be more beneficial to conduct this matching in a depth first manner. Ap-

plication of the covering semantics and the subscription language and reasoning can be con-

sidered an expensive process. The original subscription language requires execution of a

significant amount of code to conduct each match evaluation. While on the surface the en-

hanced version requires less explicit code to execute, any request of the JESS rule engine

to perform a concept match should also be considered an expensive call. There is scope in

this implementation to reduce the number of explicitly requests to the JESS engine. While

time constraints were prohibitive in the integration of correctly working code for delivery,

the pseudo-code solution below illustrates the application of our breadth first principle.

for each root in sub_set

if root.covers(profile) then

find the last predecessor(s) to root

for each predecessor p

for each successor s of p

find first s or p covering profile

when found

add all unique predecessors of s

next

next

next

The idea behind the above optimisation is that according to the ordering restrictions on

the poset, if we find the deepest match in our tree then it follows immediately, without

matching, that all the successors, that is more general subscriptions, will cover the profile

matched. This optimisation is of benefit particularly in nodes where similar subscriptions

are plentiful and subscribers are numerous i.e. the case where the poset tree is a deep one.

In the opposite case, the depth first approach becomes closer to a breadth first one and the

performance penalty is not hugely significant.

The second observation concerns the client and server side publication algorithms. Cur-

65

rently, a service is parsed on the client side and individual profiles sent to the Siena server.

In the case where related ontologies have not been integrated into our knowledge base, the

service must again be parsed and the ontologies integrated. There is a clear overlap here and

a definite duplication of activity. The proposed solution to this is very much a trade-off. If

we provide a publication interface that allows the OWL-S service URL alone to be sent to

the server, then all the parsing may be done on the server side. In the case where there are

multiple profiles we may also wish to specify which of these profiles to expose to the Siena

server. The trade off comes when we consider scalability. Service parsing, for XML is an

expensive process and must be kept minimal. A busy Siena server may wish to alleviate

the necessity to parse by encouraging parsing on the client side and subsequent publication

via the original interface. Again, time constraints have prohibited the integration of such a

solution into the implementation.

66

Chapter 6

Testing and Evaluation

This chapter discusses the testing and evaluation that has been conducted on the enhanced

Siena prototype. The first section explores the Siena evaluation in [7] and its omissions

concluding with desired evaluation focus. The remaining sections focus on test scenario,

evaluation and results.

6.1 Testing

The implementation required testing on several fronts. Firstly, it was necessary to confirm

the correct operation of the communications layer. A simple set of tests to confirm server-

to-server communication and client-server communication showed that the communications

layer modifications were correctly implemented for TCP communications only. Only slight

modifications are needed to implement the UDP protocol.

The second set of tests confirmed the functionality of the subscribe method in terms

of subscriber tracking and subscription insertion. All tests verified that subscriber tracking

functionality had been correctly implemented. The functionality of the subscription ordering

relation support functions was also confirmed.

Tests conducted to verify matching functionality confirmed the correct operation of the

reasoner and correct implementation with regard to each of the enhanced subscription lan-

guage operators.

Lastly, it was necessary to confirm the function of the subscription and publication for-

warding mechanism. After a slight modification to theNotifiable interface, correct

67

Figure 6.1: Total Network Cost

function of the forwarding mechanisms were confirmed.

All tests conclude that the implementation correctly provides a wide-area OWL-S based

publish/subscribe model for service discovery including an enhanced subscription language

for specification of requirements. Ordering relations and subscription structure optimisations

remain intact, however the enhanced prototype can no longer match and deliver simple, text

based Siena notifications.

6.2 Evaluation Focus

6.2.1 Siena Evaluation

The fundamental measurement behind the evaluation conducted in the original Siena server

was theTotal Costin providing the service. The total cost is calculated by summing the

costs of all site-to-site message traffic. In terms of total cost the hierarchical architecture

has a threshold where total cost becomes approximately constant. This occurs at about the

200 interested parties level as illustrated in figure 6.1. This is called saturation point and

represents the point where interested parties and objects of interest are very likely to be at

68

Figure 6.2: Cost Per Service

the same site, or close by. While this metric is a very effective way of illustrating how

a structured content-based routing approach may improve on a general-flooding approach

in network terms, it is questionable whether total cost of providing the service should be

a network traffic measurement alone. It is the opinion of the authors that the matching

algorithm and its complexity are vital factors when considering total cost. Any assumption of

infinite computing power over such matches (which appears to be implicitly the case here),

especially in the case where both high network loads and thus high CPU utilisation loads

exist, will most definitely skew the results. It is expected that this characteristic curve as it is

pictured will remain generally the same. However, transporting parsed service profiles and

accessing sites across the internet not only adds to network costs and processing time costs,

but may also introduce a high variance in terms of service processing frequency making it

difficult to conduct a total-cost evaluation in the same circumstances.

We continue to theCost Per Service Requestmetric which, according to Carzangia et

al [7], measures how effectively the service amortises cost of satisfying new requests over

69

the cost of satisfying previous requests. In real terms this metric is tracking how effectively

the poset data-structure and the subscription distribution mechanism work with the optimi-

sations outlined in previous chapters. Figure 6.2 shows that this amortization is definitely an

effective one in the hierarchical architecture, particularly when considering large amounts

of subscriptions and large amount of interested parties, a scenario expected of a wide-are

web-service discovery platform. It illustrates that as we approach 1000 subscriptions the per

service request cost has decreased dramatically. Since hierarchical architecture distribution

and the partial order relation mechanisms have been preserved in making the enhanced pro-

totype OWL-S aware, it is expected, aside from network cost increase, that this characteristic

curve will remain static assuming identical evaluation scenarios.

ThePer SubscriptionandPer Notificationcosts measure the total network cost per sub-

scription and notification process within the Siena server. Both of these metrics have similar

characteristic curves to figure 6.2. It is expected that both of these metrics, per unit, will

cost, in general, more in the enhanced prototype. This increase in cost is due to ontology

integration and service sourcing that must take place.

6.2.2 Further Evaluation

Since, due to time and other constraints, replication of the Siena evaluation scenario was not

possible, we defer a complete evaluation in terms of the above metrics to further work.

In addition, the authors would like to see an evaluation of the above metrics in a high-

network/high-CPU load environment outlining the effect on characteristic curves, if any.

Another very interesting metric in the context of this dissertation is the variance of network

cost per subscription and per notification given a statistical analysis of the frequency of

parsing and integration of the same OWL-S service and OWL ontologies.

Time constraints have only allowed a smaller scale evaluation of the enhanced Siena

prototype. The primary focus of the evaluation metrics is on match time and ontology inte-

gration time, metrics either totally ignored or not relevant in the context of the original Siena

evaluation.

70

6.3 Evaluation Scenario

Figure 6.4 and 6.3 illustrate our two evaluation scenarios. Figure 6.4 shows a single node

Siena set-up and figure 6.3 shows the distributed model. The effect of publishing to both the

centralised and the hierarchical model should be exactly the same.

Figure 6.3: Two Node Test Scenario

These evaluation tests correspond to the filessienatest.java , sienatesta.java ,

sienatestb.java and StartServer.java on the accompanying CD. Each node

was hosted on a Dell D400 notebook with JDK 1.5, an Intel M 1.2Ghz processor and 256MB

of RAM with minimum resident programs.

6.4 Test Results

The average matching time for the most complex subscription over 10 separate runs was

23ms, with the lowest 10ms (least complex) and the longest 28ms. This match time includes

71

Figure 6.4: Single Siena Node Scenario

the period of traversal through the poset structure and, possibly multiple, calls to the reasoner

for the capability match. Although a loose comparison, a covering match on a 5 subscrip-

tion original Siena implementation (text-based) takes on average 8ms. This comparison can

only be considered indicative of the more complex nature of a capability match and a full,

larger scale study is needed to confirm if or how this matching time scales linearly. Initial

indications, i.e. by inspection, indicate that capability matching does not hugely increase the

amount of processing required to match across the poset structure. This can be considered

an encouraging result.

The most interesting performance bottleneck occurs when we consider ontology integra-

tion time. Integration of OWL ontology, and parsing of an OWL-S service seems a very

expensive process. In our sample implementation integration of a standard OWL ontology,

http://www.aktors.org/portal.owl, takes on average 1.2 seconds and requires a 98kb down-

load. On the surface of this measurement it seems that ontology integration is definitely a

bottleneck when it comes to analysis of matching performance in this system. When the

72

system is scaled to thousands of interested subscribers over thousands of services this ineffi-

ciency has the potential to overload servers.

Another interesting observation is the time it takes to parse and load an OWL-S ontology.

On average, our simple book finder service, devoid of pre-conditions, effects, complex asser-

tions and conditional executions, takes 12.5s to parse and load into the knowledge base from

a server running on localhost. It is speculated that one of the reasons why this takes so long

is the insistence of the OWL-S reasoner in loading, parsing and integrating all ontologies

that are imported and referenced by the service itelf. In this case, the aktors ontology was

loaded and parsed despite already being asserted in the knowledge base. A similar scenario

occurs when we consider the OWL-S specification and the XSD specification. This metric

would indicate that the system as a whole would benefit from a finer level of OWL parsing

and loading granularity.

6.5 Evaluation Conclusion

In conclusion, the tests confirm the correct function of the OWL-S enhanced wide area no-

tification service in terms of OWL-S matching, enhanced Subscription Language and sub-

scription and publication distribution.

However, performance evaluation conducted was not on a large enough scale to draw

valid statistical conclusions regarding increases in network load and network cost as well

as CPU cost, however initial tests indicate that parsing and integration of Web-Services and

associated ontologies is a definite issue to be considered in future implementations. The final

chapter outlines some avenues for future work concerning this finding.

73

Chapter 7

Conclusions

7.1 Research Conclusions

There were four main aspects of research to this dissertation each of which has been outlined

in chapter one. Here, a review of the research and implementation is conducted and research

conclusions are drawn.

7.1.1 A Semantic Alternative to UDDI

This dissertation has outlined the need for a semantic alternative to the UDDI model and has

shown, through discussion of active research in the area that there is, in fact, a large push to

semantically enhancing the Web-Services paradigm as a whole. We have shown that more

tightly integrated, distributed models for service discovery are possible and are feasible. We

conclude here that active research into this domain, and particularly into a more general

wide-area UDDI model, or similar alternative, should continue.

7.1.2 A Publish/Subscribe Model for Service Discovery

By developing a service-discovery platform that uses the publish/subscribe model we have

shown a pro-active approach to service discovery that unites research in the service discovery

and publish/subscribe domains. We have shown by evaluation that the model holds strong in

the presence of OWL-S based capability matching at the core of the event notification system.

It is concluded here that in order to solidify this model for discovery, further evaluation of

74

implementation and further research into application of the more realistic cyclical peer-to-

peer architecture must take place.

7.1.3 Efficient, OWL-S aware Content Based Routing

Through semantic-enhancement of the Siena subscription language it has been shown that

OWL data-types and OWL concept reasoning can be used to implement content-based rout-

ing and, more importantly, this content based routing maintains much of the characteris-

tics of content based routing on simpler data-types notifications. The Siena subscription-

storage structure and subscription distribution algorithm can be used to make our publish/-

subscribe UDDI alternative scalable while maintaining an expressive way of specifying gen-

eral content-requirements based on OWL concepts.

7.1.4 Ontology Alignment

At various points throughout this dissertation it has been shown that ontology alignment and

ontology integration are vital factors in the realisation of any wide-area publish/subscribe

system for semantic service discovery. We have suggested integration of an XML format for

ontology concept mapping and outlined the need to minimalise the frequency of ontology

integration. It has been shown that even in a small ontology based system such as the en-

hanced Siena implementation, re-assertion of knowledge-base axioms and relationships must

be kept at a minimum through a finer granularity of control over knowledge-base assertions.

7.2 Future Work

While some of the questions posed by the research objective have been answered, as work on

this dissertation has progressed further avenues for research and evaluation have emerged.

7.2.1 Evaluation

Time and technology constraints have been prohibitive in terms of conducting a full evalua-

tion of the implementation developed. The primary goal of a further evaluation must be an

analysis of the performance of a scaled version of the enhanced system. This evaluation may

be conducted in a similar fashion to that conducted in [7]. Another interesting metric in such

75

an evaluation would be both the network and CPU costs of providing a multi-node wide-area

service discovery system under heavy load and network congestion conditions. As outlined

in chapter 6, a fuller statistical analysis of ontology integration, in terms of frequency and

integration cost is a necessity.

7.2.2 Content Based Routing

Chapter 3 has outlined active research in the area of content based routing. Of particular

interest are the fast-forwarding content-based routing algorithms designed for a peer-to-peer

implementation of the hierarchical Siena server evaluated. Fast-forwarding algorithms are

especially relevant in these more expensive routing topologies. An interesting course of

further research would be to consider the OWL enhancements in the context of the rout-

ing enhancements of the peer-to-peer architecture that are not relevant to the hierarchical

architecture.

One example of this is the application of OWL based subscriptions to the short-circuit-

filter evaluation method outlined in [5]. This forwarding enhancement aims to short-cut the

amount of filter evaluations and thus matching that must be conducted in terms of the filters

poset. Since we have already established that concept matching via the JESS reasoner is an

expensive process, research into the application of this forwarding mechanism to the OWL

based system could be one solution for increasing the performance of the service-discovery

system in general.

7.2.3 Ontology Integration and Alignment

The first obvious course of further work in this area is the actual implementation of the

ontology alignment methodology outlined in the design chapter of this dissertation.

Aside from this, there are potential solutions to the ontology integration problems dis-

covered in evaluation of the implementation. Since actual XML parsing of an OWL ontology

is an expensive part of an ontology integration, work on minimising XML parsing across the

system would be beneficial to the performance of the system as a whole. One possible so-

lution to this would be to ensure once-only semantics for XML parsing on any one OWL-S

service or OWL ontology. One method of doing this involves two steps. Firstly, an efficient

marshalling algorithm must be devised whereby an asserted OWL knowledge base can be

transmitted across the network to other nodes. This has an immediate effect in reducing

76

XML parsing frequency provided, as expected, the cost of marshalling outweighs the cost of

XML parsing and integration conducted across service-discovery system.

Having implemented efficient transmission of a populated knowledge-base it is suggested

here that an intelligent means of sharing ontology information be developed. In an ideal sce-

nario, knowledge bases of information, and ontology mappings, should be pushed towards

nodes in the network with conceptually similar information. This has two primary effects.

By the principle of locality of reference, the more complete knowledge-bases in specific

areas of the network become better able to provide accurate concept matches to their sub-

scribers. Further to this, automatic routing of knowledge and maps provides the subscriber

with a larger base of information from which to construct ontologies and through which to

map concepts. It can be postulated here that, over time, this will have the net effect of reduc-

ing the frequency of knowledge based information, reducing cost per subscription and cost

per publication metrics in a large-scale set-up. In a similar vein, any caching mechanism

based on

7.3 Final Remarks

The semantic web service discovery is very much at the bleeding-edge of semantic web

service research. As popularity of the web services paradigm increases we believe a standard

for web service discovery for semantic web-service descriptions should be presented.

Our research and evaluation has shown that the publish/subscribe model for OWL-S ser-

vice discovery opens up avenues for wide area service discovery platforms, optimised rout-

ing algorithms, expressive subscription languages and pro-active discovery and integration.

We conclude, overall, that any push towards a standard for semantic web service discovery

must include further investigation into the models that the publish/subscribe paradigm pro-

vide. We believe that work around this model can provide significant contributions to the

development of a single standard for semantic web service discovery.

77

Bibliography

[1] Rama Akiragiu, Richard Goodwin, Prashant Doshi, and Sasha Roeder. A

method for semantically enhancing the service capabilities of uddi.ACM, 2003.

http://dali.ai.uic.edu/pdoshi/research.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-

Schneider. The descripton logic handbook - theory, implementation and applications.

January 2003.

[3] Tim Berners-Lee and Hendler J. Lassila. The semantic web.Scientific American, 5/02,

May 2001.

[4] Colm Brady. Runtime discovery, composition and invocation of web-services using

semantic descriptions. Technical report, Univeristy of Dublin,Trinity College, 2004.

http://www.cs.tcd.ie/techreports.

[5] Antonio Carizangia and Alexander L. Wolf. Forwarding in a content-based network.

ACM, 2003.

[6] Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Content-based ad-

dress and routing: A general model and its application. Technical report, University of

Colorado, Boulder CO, University of California, Irvine,CA, January 2000.

[7] Antonion Carzaniga, David S. Rosenblum, and Alexander L. Wolf. SIENA : The De-

sign and Evaluation of a Wide-Area Event Notification Service.ACM, 2001.

[8] Erik Christenson, Francio Garber, Gre Meredith, and Sanjeeva Weerawaran. WSDL :

Web Services Description Language. http://www.w3c.org/TR/WSDL.

78

[9] DAML Technical Committee. OWL-S : Web Ontology Language for Web Services.

http://www.daml.org/services/owl-s/.

[10] RDF Technical Committee. The resource description framework.

http://www.w3.org/RDF/.

[11] SOAP Committee. SOAP : Simple Object Access Protocol.

http://www.w3c.org/TR/SOAP.

[12] The OASIS Committee. Introduction to UDDI: Important features and concepts. Oc-

tober 2004.

[13] UDDI Technical Committee. UDDI API specification v2.0.4.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf.

[14] UDDI Technical Committee. UDDI API specification v3.0.2.

http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.pdf.

[15] OWL Technical Committeee. OWL web ontology language.

http://www.w3.org/2004/OWL/.

[16] The World Wide Web Consortium. http://www.w3c.org.

[17] The E-bay Web Services API. http://developer.ebay.com/common/api.

[18] David Booth et. al. Web services architecture technical report, 2004.

http://www.w3c.org/TR/ws-arch/.

[19] Jerome Euznat et al. The state of the art on ontology alignment. Research conducted

for INRA - http://www.inrialpes.fr.

[20] Kunal Verma et al. METEOR-S WSDI: A Scalable P2P Infrastructure of Registries

for Semantic Publication and Discovery of Web Services. Large Scale Distributed

Information Systems (LSDIS) Lab Department of Computer Science, University of

Georgia Athens.

[21] Patrick TH. Eugster, Pascal A. Felber, and Anne-Marie Kenmarrec Rachid Guerrout.

The many faces of publish/subscribe.ACM, 2003.

79

[22] Jerome Euznat. The ontology alignment api, June 2005. Research conducted for INRA

- http://www.inrialpes.fr.

[23] eXtensible Markup Language. http://www.w3.org/XML/.

[24] RACER An Inference Engine for the Semantic Web.

http://www.franz.com/products/racer/.

[25] HP Web Services Management Framework. http://devresource.hp.com/drc/specifications/wsmf/index.jsp.

[26] Michael C. Jaeger, Gregor Rojec-Goldmann, Christoph Gero Muhl, , and Kurt Geihs.

Ranked matching for service descriptions using owl-s. Technical report, TU Berlin,

Institute of Telekommunication Systems.

[27] JENA. A semantic framework for java. http://jena.sourceforge.net/.

[28] Joe Kopena. OWLJessKB : OWL Reasoning for JESS.

http://edge.cs.drexel.edu/assemblies/software/owljesskb/.

[29] Sandia National Laboratories. JESS - The Rule Engine for Java.

http://herzberg.ca.sandia.gov/jess/.

[30] MINDSWAP. Pellet : An OWL Reasoner. http://www.mindswap.org/pellet.

[31] Mindswap. The OWL-S API. http://www.mindswap.org/2004/owl-s/api/.

[32] Massimo Paolucci, Takahiro Kawamura, Rerry R. Payne, and Katia Sycara. Semantic

matching of web services capabilities.ISWC2002, pages 333–347, 2002.

[33] The DARPA Agent Markup Language Programme. http://www.daml.org.

[34] Bill Segall, David Arnold, Julian Boot, Micheal Henderson, and Ted Phelps. Content

based routing with elvin4. University of Queensland, St Lucia, Austrailia.

[35] The Google-Maps Web Service. http://www.google.com/apis/maps.

[36] AWS Amazon Web Services. http://www.amazon.com.

[37] IBM Web Services. http://www-130.ibm.com/developerworks/webservices/.

80

[38] Microsoft Web Services. http://mdsn.microsoft.com/webservices/.

[39] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. Adding owl-s to uddi, im-

plementation and throughput. Technical report, Robotics Institute, Carnegie Mellon

University, USA.

[40] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. An Efficent Algorithm for

OWL-S based Semantic Search in UDDI. Robotics Institue, Carnegie-Mellon Univer-

sity, USA.

[41] Naveen Srinivasan, Massimo Paolucci, and Katia Sycara. An Efficent Algorithm for

OWL-S based Semantic Search in UDDI. Robotics Institue, Carnegie-Mellon Univer-

sity, USA.

[42] The OASIS Organisation. http://www.oasis.org.

81

