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Abstract

Decision support systems are currently achieving higher classification accuracies by using more

complex reasoning mechanisms. Examples of such mechanisms include support vector machines

and neural networks. However in spite of these increases in accuracy many decision support

systems are not accepted by users. In domains where there is a high cost associated with incorrect

classifications, such as medical domains, users are not always willing to accept a decision support

system’s classification without proper justification.

In every walk of life, from the home to the workplace, people use explanations all the time

to justify their opinions. Explanations can have many different forms depending on the context

in which they are used. Over the last few decades there has been a vast amount of research by

philosophers into the importance and the requirements of suitable explanations.

In spite of the importance of suitable explanations to justify an opinion, many decision support

systems fall sort of this requirement. Part of the reason for this is that in many types of decision

support systems it is often extremely difficult, if not impossible, to produce explanations. This

is particularly the case for black box systems such as support vector machines. However in other

systems such as rule-based systems, where the explanation can be in the form of a rule, the

explanations can often be complicated and result in confusion for users.

Alternatively Case-based Reasoning (CBR) Systems lend themselves naturally to producing

explanations. As the reasoning in CBR systems is performed on the most similar past case(s) to

a current problem, these similar cases can be used as an explanation for a classification. As these

similar cases are real past problems, they are generally easily understood by users.

It is our believe however, that in CBR systems, that there are more suitable cases to use as

an explanation than simply using the most similar cases. It is our belief that these more suitable

cases lie between the problem case and the perceived decision boundary. This results in the cases

forming an a fortiori argument. We describe a framework that we have developed for selecting

such cases.

We also believe that it is often not enough, regardless of the suitability, to just use a case as

an explanation. In our framework we included a mechanism for generating explanatory text that

can express why the case is suitable, or in some situations aspects of the case that may not be

suitable. This explanatory text can further assist users to decide if they agree with the opinion of

iv



CBR system.

Based on the developed framework we implemented a decision support system for use in the

domain of Bronchiolitis, a viral infection that effects young children. This system was used and

evaluated in the Kern Medical Center, Bakersfield, California during their Bronchiolitis season.
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Chapter 1

Introduction

Explanations are an important aspect of every day life. They are used in many different places for

many different reasons. Lawyers use them in court in an attempt to strengthen their arguments.

Teachers use them to help their students understand complicated concepts. Children use them to

argue why they should be allowed to do something, while parents use them in return to argue why

they are not allowed.

The primary goal of expert systems is to make expertise available to decision makers. However,

many of these systems are not used by end users because they don’t justify their decisions. For

example, in the medical domain it is extremely difficult for physicians to accept recommendations

without any justification. This shortcoming becomes more of a problem due to the fact that it is

often difficult to offer 100% accuracy with expert systems.

Decision support systems attempt to address this problem by aiding the process of decision

making (Finlay 1994). The philosophy behind this is that the system now aids the user in reaching

a decision rather than by presenting the solution as an expert might to a novice. One technique

for doing this is for decision support systems to generate explanations to support their recommen-

dations. These explanations are generally either a trace of the reasoning process or evidence that

supports the recommendation. In this thesis we describe a framework that we have developed for

producing more convincing explanations for case-based reasoning systems. We perform evaluations

of our explanations. If we can produce convincing explanations then our strategy is useful.

1.1 Case-Based Reasoning

Case-based Reasoning (CBR) is an artificial intelligence methodology for solving problems by using

or adapting solutions to old problems (Riesbeck and Schank 1989). Case-based Reasoning systems

are made up of a collection of cases called the case-base. These cases are previous experiences,

which are generally described as problem-solution pairs. The problem represents the description of

a previous situation, and the solution represents the outcome or the action taken on that occasion.

1



CBR systems have the defining characteristic of deferring their processing until run-time. This

is commonly referred to as being a lazy learner. Although leaving processing until run-time may

introduce certain penalties, albeit with faster computation power these penalties are diminishing,

it has the advantage of being as up to date as possible (Aha 1997). This is of particular benefit in

domains where data is scarce as new data can be easily added to the case-base at any time.

1.2 Explanations in Decision Support Systems

Explanations are an important part of our human lives. Every day, people use them to argue their

opinions. In a similar manner explanations are important for decision support systems to argue

their classifications. It is possible that part of the reason for the lack of usage of deployed Decision

Support Systems is that they don’t provide adequate explanations. Richards (2003) and Brzillon

et al. (1996) argue that verification is not enough, but Decision Support Systems need to justify

and be accountable for their classifications.

CBR has a major advantage over other types of decision support systems when it comes to

producing explanations. CBR systems can present the most suitable case(s) from the case-base,

often the most similar case, as an explanation. As these cases are real previous examples they are

understandable by users. Unlike CBR, other systems perform their reasoning on models extracted

from training data. In Rule Based Systems the underlying rules can be displayed as an explanation,

but these rules can become complicated for users to understand. However, in the case of support

vector machines and neural networks it is near impossible to generate explanations based on the

reasoning process.

1.3 Contributions of this Thesis

This thesis describes the implementation of a decision support system for use in medical domains.

During its development and operation several issues were encountered. The most interesting ones,

which constitute the main contributions of this thesis are:

• The implementation of a prototype decision support system for use in a medical domain

• An assessment of the usefulness of case-based explanations

• The implementation of an explanation utility framework

• The implementation of techniques to assess classification confidence

• The development of a representational format for CBR data called CBML
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1.3.1 Assessment of Case-Based Explanations

As already mentioned, a main advantage of CBR, compared to other types of Decision Support

Systems, is its ability to easily produce understandable explanations. Although this advantage has

never been empirically validated it is often mentioned by members of the CBR community. In this

thesis our initial work was to perform an evaluation to show that case-based explanations are in

fact more convincing than rule-based explanations.

1.3.2 Explanation Utility Framework

Although we showed that case-based explanations are convincing, we believe that their is still

room for improvement. Many CBR systems produce explanations by simply displaying the most

similar case to a given problem case. We believe that more convincing cases can be selected from

the case-base. We developed the explanation utility framework to select cases from the case-base

that we believe provide more convincing explanations. Also using this framework, we developed

techniques for highlighting aspects of the retrieved cases that support and oppose the systems

classifications.

1.3.3 Assessing Confidence

The main goal for decision support systems in providing explanations, is to increase users confidence

in the system. For this reason we feel that decision support systems should also convey its own

confidence in a classification as part of an explanation. To achieve this we implemented a number

of confidence measures to allow a CBR system to assess a level of confidence in its classification.

1.3.4 Bronchiolitis Decision Support System

To test our explanation utility framework and confidence assessment measures we developed a

CBR based system for use in the medical domain of Bronchiolitis. Bronchiolitis is a viral infection

that affects the lungs of young children. This system produces recommendations and explanations

on whether a child presented to an Emergency Department should be admitted or discharged.

While this system was being used we performed an evaluation on the quality of the explanations

produced.

1.3.5 CBR Representation

In Chapter 6 we describe the Case Based Mark-up Language (CBML), an XML-based language we

have developed to facilitate the representation of case bases for use by CBR systems. We detail its

benefits in terms of extensibility, ease of reuse and interoperability. The language allows us to make

the formal definition of the structure of our cases and similarity measures completely independent
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of the application code. In this way we allow the structure and definition of our cases to be easily

described and modified.

1.4 Publications Related to this Thesis

• Dónal Doyle, Pádraig Cunningham and Paul Walsh.: 2005, An Evaluation of the Usefulness

of Explanation in a CBR System for Decision Support in Bronchiolitis Treatment, Workshop

on CBR in the Health Sciences, The Sixth International Conference on Case-Based Reasoning

(ICCBR-05), pp32-41.

• Sarah Jane Delany, Pádraig Cunningham, Dónal Doyle and Anton Zamolotskikh.: 2005,

Generating Estimates of Classification Confidence for a Case-Based Spam Filter, 6th Inter-

national Conference on Case-Based Reasoning, eds. H. Muñoz-Avila and F. Ricci, pp177-190,

Springer LNAI 3620.

• Conor Nugent and Pádraig Cunningham and Dónal Doyle.: 2005, The Best Way to Instil

Confidence is by Being Right; An Evaluation of the Effectiveness of Case-Based Explanations

in providing User Confidence, 6th International Conference on Case-Based Reasoning, eds.

H. Muñoz-Avila and F. Ricci, pp368-381, Springer LNAI 3620.

• Conor Nugent, Dónal Doyle and Pádraig Cunningham.: Gaining Insight through Case-Based

Explanation. To appear in CBR in Knowledge Discovery and Data Mining, eds. S. Pal, D.

Aha and K. Moy Gupta, Wiley.

• Dónal Doyle, John Loughrey, Conor Nugent, Lorcan Coyle, Pádraig Cunningham.: 2005,

Fionn: A Framework for Developing CBR Systems, in P. Funk and P. Calero (eds), Expert

Update 8(1), 11-14.

• Dónal Doyle, Pádraig Cunningham, Derek Bridge and Yusof Rahman.: 2004, Explanation

Oriented Retrieval, in P. Funk and P. Calero (eds), Advances in Case-Based Reasoning (Procs.

of the Seventh European Conference on Case-Based Reasoning), Springer, pp. 157-168.

• Lorcan Coyle, Dónal Doyle and Pádraig Cunningham.: 2004, Representing similarity for

CBR in XML, in P. Funk and P. Calero (eds), Advances in Case-Based Reasoning (Procs. of

the Seventh European Conference on Case-Based Reasoning), Springer, pp. 119-127.

• Pádraig Cunningham, Dónal Doyle and John Loughrey.: 2003, An Evaluation of the Useful-

ness of Case-Based Explanation, in K.D. Ashley and D.G. Bridge (eds), Case-Based Reason-

ing Research and Development, 5th International Conference on Case-Based Reasoning, Vol.

2689 of Lecture Notes in Computer Science, Springer, ICCBR 2005, Trondheim Norway, pp.

122-130.
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• Dónal Doyle, Alexey Tsymbal and Pádraig Cunningham.: 2003, A Review of Explanation

and Explanation in Case-Based Reasoning, Technical Report TCD-CS-2003-41, Department

of Computer Science, Trinity College, Dublin.

1.5 Summary and Structure of this Thesis

In brief: Chapter 2 describes some case-based reasoning techniques that can be applied to our

explanation process. Chapter 3 describes the use of explanations and confidence assessment in

decision support systems. Chapter 4 describes our explanation utiliy framework and Chapter 5

describes our work in developing confidence measures. Chapter 6 describes the implementation

of our work on a case representation format and a decision support system in a medical domain.

Chapter 7 contains evaluations of our explanation techniques and the thesis is concluded with

Chapter 8.

In more detail: Chapter 2 gives a description of the case-based reasoning methodology. It

focuses on aspects of the methodology that are most significant for our work on producing case-

based explanations.

Chapter 3 discusses explanation generation and confidence assessment in decision support sys-

tems. It also describes some systems that have been developed in this area.

Chapter 4 describes our explanation utility framework. This framework is used to select cases

that can be used as a fortiori arguments. The framework can also be used to produce explanatory

text that can be included with a recommendation. This chapter also includes descriptions of three

medical problem domains, e-Clinic, Breathalyser and Bronchiolitis, that are used throughout this

thesis.

Chapter 5 describes some measures that we have used for assessing classification confidence.

This chapter also includes an evaluation of these measures.

Chapter 6 contains an in-depth description of CBML. CBML is used in the development of the

machine learning toolkit called Fionn. Fionn was used to develop a decision support system for

the Bronchiolitis domain which is also described in this chapter.

Chapter 7 discusses the advantages and shortcomings of our explanation strategies. It contains

detailed results, including comparisons against other explanation techniques and discusses the

implications of these results.

Finally Chapter 8 concludes the thesis and describes some further work that could be investi-

gated.
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Chapter 2

Case-Based Reasoning

From the start, AI research (Turing 1950, Minsky 1961) has often attempted to replicate problem-

solving techniques in computers in a similar manner to how humans perform problem-solving.

Neural Networks are mathematical models that attempt to mimic the human brains computational,

adaptation and learning capabilities. Rule-based Systems use the chaining of generalised rules to

imitate the human reasoning process. Fuzzy Logic Systems are models attempting to replicate

the brain’s ability to represent and reason with imprecise knowledge and data. However, all these

approaches rely on knowledge of a domain, resulting in problems being solved from first principles.

It was research by Roger Schank and his students into cognitive science (Schank and Abelson

1977, Schank 1982, Kolodner 1983, Hammond 1988) that recognised that people commonly solve

problems by remembering how they solved similar problems in the past. They discovered that

solutions to real life problems are rarely truly original solutions, but merely adaptations to pre-

viously known solutions to similar problems. It is from this principle that Case-Based Reasoning

(CBR) emerged. A major advantage of this approach is that CBR supports incremental learning,

since each time a problem is solved it can be retained for future problem solving scenarios.

Another advantage of CBR is that it has proven itself to be a suitable methodology in weak

theory domains. In these domains it is often impossible or extremely difficult to use first principles

as a basis for solving problems. It is for this reason that in such domains, CBR can potentially result

in a lower knowledge engineering cost than using other systems (Cunningham 1998). CBR has

become widely used in both academic and industrial applications. Examples of some applications

include:

• Classification

• Diagnosis

• Recommender Systems

• Planning
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• Decision Support

Recently an emphasis has been placed on CBR’s ability to produce more useful explanations

to support its solutions to problems. In this chapter we will examine some of the background and

general theory of how CBR systems operate.

2.1 CBR Background

The CBR approach is based on two observations of real world problem solving. The first is

that similar problems tend to have similar solutions, and secondly that the types of problems

encountered tend to reoccur over time. The idea behind CBR is to retrieve and adapt previous

cases when solving a problem. This process eliminates the need to model the causal interactions

in a particular domain. The process is illustrated in Figure 2.1 where Qp represents the details of

a problem. During the retrieval stage Sp is found to be the most similar previous problem with a

solution of Ss. Using Ss an adapted solution, Qs can be derived as the solution for the problem

Qp. Using a retrieval and adaptation technique in this way, is often a simpler task to implement

than solving the problem from first principles.

Using CBR as a reasoning system has a number of advantages over other knowledge based

systems including rule-based and model-based systems. According to Leake (1996) there are five

main problems identified in real-world AI systems that can be alleviated using CBR systems.

1. Knowledge Acquisition: In complicated domains the development of rule-based or model-

based systems often involves an intensive knowledge engineering effort. If these domains

have previous case solutions readily available (in the form of records, diagnostic logs or

catalogues) the knowledge acquisition task becomes relatively easier. In domains that do

not have previous case solutions readily available there may be a significant effort needed for

knowledge acquisition, but may result in easier maintenance of the system after deployment

2. Knowledge Maintenance: CBR is considered a lazy learning technique Aha (1997) as it

does not perform any reasoning until presented with a query. As a result cases can be easily

added to the CBR systems even after system deployment. This ease of maintenance contrasts

favourably to models that would need to be recompiled when new cases are added.

3. Increasing Problem-Solving Efficiency: CBR systems often retain failed as well as successful

solutions. Retaining failed solutions can warn of future potential problems.

4. Increasing Quality of Solutions: In complicated domains where the underlying theories are

not well understood, it is a difficult task to build a model or rule based systems to accurately

represent the domain. However cases are real world solutions to real world problems, so they

generally have a higher quality solution. The ability of CBR systems to expand its case-base

allows for solutions to become more accurate over time.
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Figure 2.1: Transformation mappings used in CBR

5. User Acceptance: No matter how accurate an AI system is, it must still be accepted by the

end user. In order for a user to accept a solution, the user must be convinced that the solution

was achieved in a reasonable manner. This is a difficult task with many AI systems: Neural

Networks, Support Vector Machines and Simulations generally cannot provide explanations

to support their decisions, and rule-based systems explain their decisions using rules that

the user may not fully understand or accept (Riesbeck 1988). Chapter 3 will provide a more

detailed analysis on explanations in decision support systems.

2.2 CBR Methodology

In its most general form the CBR methodology can be described in terms of a four phase cycle

that occurs at runtime (Aamodt and Plaza 1994) . Figure 2.2 shows these four stages which are

also known as the four REs.

1. Retrieve the most relevant previous case(s).

2. Reuse the knowledge and information contained in the retrieved case(s) to propose a solution

8



Retrieved

Case

Confirmed

Solution
Proposed

Solution

Problem

Description

New Case

Retrieve

Retrieved

Case

New

 Case

Reuse

Solved

Case

Tested/

Repaired

Case
Revise

Learned

Case

Retain

Retrieved

Case

Case

Base

General

Knowledge

Figure 2.2: CBR Cycle (Aamodt and Plaza 1994)

to the current problem.

3. Revise the proposed solution.

4. Retain the parts of this experience which can be used to solve new problems that may occur

in the future.

This model is beneficial in that it separates the design of a CBR system into distinct steps.

The remainder of this section will describe each of these steps in more detail.

2.2.1 Retrieval Phase

The retrieval phase in the CBR cycle is generally considered the most important phase, as the

solution to the problem will be based upon the retrieved case(s). Before retrieval the case-base

is organised into a structure called the case-memory that supports retrieval. Retrieval is then

triggered when a problem or target case is presented to the CBR system. Using a retrieval mecha-

nism the most relevant previous case(s) are selected from the case-memory. As selecting the most
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relevant case(s) from the case-memory is considered an important part of CBR it will be dealt

with in more detail in section 2.5

2.2.2 Reuse Phase

In the Reuse Phase of CBR the retrieved case(s) are used to propose an adapted solution to suit

the current problem case. A common way of performing adaptation is to use a rule-based system

to adapt the solutions of the retrieved cases. Although this approach may be suitable in some

domains, it is often not an adequate solution in knowledge-intensive domains. Adaptation rules

may often rely on strong domain knowledge, but since CBR is often used in domains that are not

well understood, the adaptation phase may not be efficiently possible. This is a particular problem

for planning or configuration domains. In this situation a small difference between a retrieved case

and the problem case can require a significant adaptation process to generate a suitable solution.

It is for this reason that Watson (1997) refers to the adaptation process as the Achilles’ heel of

CBR.

However adaptation techniques have been developed in a number of knowledge intensive do-

mains. These include Cbr-Tfs a system that proposes useful ingredients in order to manufacture

viable tablets (Craw et al. 1998), PARIS a case based action planning system (Bergmann 1993)

and MOCAS a fully developed diagnostic system of a CNC (Computer Numeric Control) machine

(Pews and Wess 1993)

Kolodner (1991) argues that although people find it difficult to remember suitable past solutions

for new problems, they find it easy to adapt suitable past solutions to solve new problems. Based

on this argument CBR systems can be used to retrieve suitable cases, while leaving the adaptation

to the user. Clavier (Mark et al. 1996) is an example of a successfully developed system in which

the users were willing to participate in the adaptation process once the retrieval was performed by

the system.

In knowledge-light classification the simplest method of reusing the retrieved case(s) is to use

the solution(s) from the most relevant case(s) as the solution to the current problem. A number

of techniques can be used to propose a solution to a given problem based on the solutions to the

most similar previously occurring cases. These include:

• Solution of the most relevant retrieved case,

• Majority solution of a predetermined number of the most relevant retrieved cases,

• Solution based on a majority voting by a predetermined number of the most relevant retrieved

cases where the vote can be proportional to the degree of similarity of each of the retrieved

cases to the original problem case.
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2.2.3 Revise Phase

It is not always possible to have a CBR system that is 100% accurate. However, one of the advan-

tages with CBR systems is that their solutions can be easily evaluated and repaired if necessary.

The evaluation of the quality of a solution is often performed outside of the CBR system. This

is done by using the solution as the solution to the real world problem for which it was proposed.

The results from applying the solution are then validated. For example in a fault diagnosis system,

if the proposed solution corrects the fault, then the solution was correct, otherwise there is a

problem with the solution. Alternatively in a classification task, if the classification by the CBR

system was incorrect then there was a problem with the solution.

If the solution proposed by a CBR system is considered incorrect, the solution needs to be

repaired. In the situation of a classification task, this is simply a matter of updating the classifica-

tion of the problem. However, in fault diagnosis the actual cause of the fault must be determined

and the solution updated to be the determined fault.

2.2.4 Retain Phase

Once the solution has been evaluated, and if necessary repaired, a decision is made as to what

information from the problem solving experience should be retained in order to assist problem

solving in the future. The retention policy might be to store the entire contents of the problem

case along with the revised solution, or to only store relevant parts of the problem. It should

be noted that the revise and retain stage may be performed anywhere from moments to many

months after the start of the cycle. This is due to a possible time delay for the effects of applying a

solution to take effect. For example in a medical diagnosis task, the success or failure of a particular

treatment may not be known for months afterwards (Aamodt and Plaza 1994).

2.3 The Knowledge Contained in CBR Systems

A knowledge container contains structured knowledge that can be used by many tasks. For example

prominent knowledge containers in rule based systems are facts and rules. Richter (1995, 1998) has

identified four knowledge containers which defines the knowledge used in CBR systems. Richter’s

knowledge containers are:

• Vocabulary Knowledge: Consists of structural and semantic components that describes

the system.

• Case Knowledge: Consists of the previous problems that can be used to solve future

problems.

• Similarity Knowledge: Describes how the most relevant case(s) for solving a given problem

are selected from the case knowledge.
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• Adaptation Knowledge: Is the knowledge required to translate a prior solution to fit a

given query.
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Figure 2.3: CBR Knowledge Containers

While vocabulary, similarity and adaptation knowledge are structured and used at compile time,

the knowledge contained in the case-base is not used until run-time. According to Richter this is a

major advantage of CBR as the acquisition of cases provides a minimal work load, circumventing

the knowledge acquisition bottleneck of other knowledge based systems. Figure 2.3 shows how the

knowledge containers interact with the CBR cycle. As retrieval is most pertinent to our research

Section 2.5 will provide further detail on the similarity knowledge container. Firstly in order to

understand similarity knowledge better, we will briefly cover how case knowledge is structured in

the next section.

2.4 Case Knowledge

The case knowledge is stored as unique cases that represent a particular problem. Cases are made

up of several features and the corresponding values that occurred in the situation. The first part
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of the case, the specification, consists of a set of features made up of attribute-value pairs. The

second part, the solution is an optional part of a case. Table 2.1 shows an example of a case from

the travel case-base (Lenz 1993). In this example the solution for the case is the Hotel field. In

this situation the case is simply represented as a list of features (made up of attribute-value pairs).

Using a flat layout like this to represent cases is a commonly used technique in CBR. However, in

some domains a flat representation scheme cannot adequately describe cases in the domain.

Table 2.1: Example of a flat attribute-value case representation from the travel case base (Lenz
1993)

Case Journey 149

Holiday Type Recreation
Price 922
Number Of Persons 3
Region Black Forest
Transportation Car
Duration 7
Season August
Accommodation Three Stars

Hotel Berghotel Kandel, Black Forest

There has been a number of representation schemes developed that can also be used to represent

cases. Examples of which include:

Textual Representation Cases can be represented as free text as described in Lenz and Ashley

(1998) or as a list of questions and answers as used by the Navy Conversational Decision

Aids Environment NaCoDAE (Aha et al. 2001).

Object Oriented Representation Cases are made up as a collection of objects each of which

contain their own set of features. This approach is useful for complex or structured case

knowledge as taxonomic relations and inheritance features can be represented. However in

such situations similarity and case retrieval are more complex (Bergmann and Stahl 1998).

Examples of object oriented representation schemes include CASUEL (Manago et al. 1994)

and Noos (Plaza 1997).

XML-based Representations Over the past few years several XML-inspired representation

schemes have been introduced into the CBR community. Some of the earliest work on using

XML was the introduction of CBML (CBMLv1) by Hayes et al. (1998). The main motivation

behind the development of CBML was to facilitate the storage and distribution of case data

over a network and possible inter-operability with non-CBR systems. The initial plan for

CBML was to provide similar functionality to that provided by the CASUEL representation

scheme, therefore a lot of its design as it initially evolved was based on CASUEL. A more
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detailed description of CBML can be found in Section 6.1. Other early work on using XML

was in the CARET system (Shimazu 1998), which used XML to mark-up cases of natural

language text describing support problems and solutions. This representation scheme was

also the basis for a scheme used by the sales support system HVAC developed by (Watson

and Gardingen 1999). A more recent version of XML based representation schemes is OML

(Outline Markup Language) (Bergmann 2002).

Using the most similar case to solve a problem can often leave CBR systems susceptible to noisy

cases. This problem is overcome to a certain extent by generating a solution based on a number

of similar cases rather than just one. More information on this approach is given in section 2.6.

Another approach to handling the noise problem is the removal of problem cases from the case

base. Some of the early work in removing noisy training examples in case-based classifiers was

performed by Wilson (1972) and Tomek (1976). Recently there has been a renewed focus on case

editing (Delany and Cunningham 2004, Brighton and Mellish 2002, McKenna and Smyth 2000).

Noise reduction is not just useful for improving the accuracy of a CBR system, but also useful

in areas where retrieved cases are used for explanation since unsuitable cases will undermine the

credibility of the explanation for the user (Roth-Berghofer 2004).

2.5 Similarity Knowledge

As it is the retrieved cases that are used to solve a problem in a CBR System, it is important that

the retrieval phase selects the case(s) that are most suitable for adaptation (Bergmann et al. 2001).

Even in situations where adaptation is not performed or left to the user, the retrieval phase should

still select the most re-useable case(s). The function that is used to identify the most suitable case

is often referred to as the similarity function Althoff and Richter (1999).

Generally similarity functions work by attempting to select cases with the most similar problem

description. This is based on the assumption that the greater the similarity between the specifica-

tion of a query case and the specification of another case the more useful that case is for solving

the query case. This section will look at how similarity knowledge can be used to calculate the

similarity between two cases.

There are three aspects to similarity:

• Local Similarity: Refers to similarity at the feature level,

• Feature Weight: Refers to the importance of the feature,

• Global Similarity: Refers to overall similarity at the case level. The global similarity function

is an amalgamation of the local similarity functions and the corresponding feature weights.

The amalgamation function is commonly the weighted sum of the local similarity measures.

Equation 2.1 shows a commonly used amalgamation function to calculate the global similarity

14



between a query case Q and a case in the case base X, where qf and xf are particular features

from a set of possible features F , σ(qf , xf ) represents the local similarity between qf and xf and

wf is the weight associated with the feature f

Sim(Q,X) =
∑

f∈F

wf σ(qf , xf ) (2.1)

Sometimes specially suited measures need to be developed to calculate the local similarity,

σ(qf , xf ), between two features. However there are a number of generic measures that are often

used in CBR systems. Equation 2.2 shows a commonly used generic function for calculating local

similarity.

σ(qf , xf ) =





1 f discrete and qf = xf

0 f discrete and qf 6= xf

1− |qf−xf |
xmax−xmin

f continuous

(2.2)

For example if comparing two discrete attributes with the same value, then they would have a

local similarity of 1. However, if they contained different values their similarity would be 0. For

real valued attributes the similarity will result in a value in the range of [0-1], 1 if their values are

both equal.

However the local similarity measures defined in Equation 2.2 are often too simple for practical

applications. There are numerous other techniques for defining the local similarity measure. Often

the local similarity measure is not feature specific but based on the feature type. The following

are a list of some possible feature types:

• Numeric - can be integer or double type with a particular range.

• Boolean - the value can be either true or false.

• Symbolic - the attribute value must be from a specified list of possible values.

• String - the value can be any string.

• Taxonomy - similar to symbolic type except that the possible values are represented with a

tree structure.

Although there are no similarity measures that can cover a particular feature type for all

situations, there are a number of measures that can be used to cover a lot of situations. Sections

2.5.1 and 2.5.2 investigate two techniques that are often useful for defining local similarity measures

for some of the above mentioned feature types.
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2.5.1 Array Similarity Measure

Consider the feature Temperature in the Tennis dataset1, this feature is of a symbolic type and can

have three possible values; Hot, Mild and Cool. Although the values Cool and Hot are completely

dissimilar and hence a corresponding similarity value of zero (using Equation 2.2) is an appropriate

value, it may be beneficial to represent a partial similarity between Cool and Mild, and likewise

between Mild and Hot. To allow a partial similarity representation in a local similarity measure for

symbolic features the array similarity measure can be used. The main advantage of array similarity

measures is that they allow a partial similarity between attribute values, even if they are not equal.

Table 2.2 shows an example array similarity measure for the Temperature feature. In this example

the similarity between the values Hot and Cool is 0, while the similarity between Hot and Mild is

0.5.

Table 2.2: An example array similarity measure definition for the Temperature attribute

Cool Mild Hot

Cool 1 0.5 0
Mild 0.5 1 0.5
Hot 0 0.5 1

The array similarity measure is useful for features with a finite number of possible values, but

requires the user to precalculate the similarities in advance. For symbolic features that contain

a small list of possible values, this is not a major problem. However, as the number of cells in

the similarity array is n2, where n is the number of possible attribute values, there is a significant

increase in the workload required to setup this type of measure as n increases.

2.5.2 Difference Similarity Measure

Local similarity measures can also be directly related to the difference, δ, between features. This

measure is only suitable where a difference can be defined between attribute values, e.g. with

numeric features the difference between two features could be the arithmetic difference between the

two feature values. There also exist some simple techniques that are sometimes useful to compute

the difference between features of symbolic and taxonomic types. For taxonomic attributes the

differences can be calculated as the number of branches between the two attribute values in the

taxonomy (Bergmann 1998). On the other hand for symbolic features, if the possible feature values

can be logically ordered, the difference could be the relative difference between the two positions

in the ordered list of possible values. It is also possible to define difference functions for string
1The tennis dataset contains data for whether it is suitable to play tennis or not. Its specification contains 4

different attributes Outlook, Temperature, Humidity and Wind. The full dataset can be found in Appendix A
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attributes. However, it would be difficult to define one as a generic function as these functions

would generally be domain specific.

Once a difference function has been defined, a relationship between difference and similarity

is required. One solution to this is the use of a mathematical equation, e.g. an inverse function.

Another alternative is to use a graph to relate them. Figure 2.4 shows an example graph for the

mapping of difference to similarity. In this example if the difference between two attribute values

is 8 then the similarity from the graph is 0.4. Likewise a difference of 4 results in a similarity of

0.6.
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Figure 2.4: Example similarity graph

2.5.3 Utilising Similarity Knowledge

Bergmann et al. (2001) argue that similarity measures should consider knowledge about the utility

of cases used to solve problems. The local similarity measures examined so far have been used to

select cases that look similar by only considering the syntactical differences between the attributes

being compared. By incorporating a notion of utility into similarity a more relevant case for

problem solving can be selected.

Stahl (2002) illustrates this approach with a simple example in the domain of PC sales where

each case represents the configuration of a particular computer. Figure 2.5 shows an example from

this domain where, Q is the query specification and C a target case, with each containing three

attributes: Price, CPU-Clock and CD Drive. The local similarity measure used for the price is a

difference function where the similarity graph represents a ‘less is perfect’ function. This type of

function implies that if a customer is looking for a PC configuration at a particular price, that a PC

with the same configuration but cheaper is a perfect solution, however the utility of a PC decreases

as the price increases over what the customer was originally intending to pay. Complementing this
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approach is the ‘more is perfect’ function which is used for the CPU-Clock attribute. In this

situation the utility of a PC increases as the CPU-Clock increases over the original query.

Attribute Weights

Local
Similarity
Measures

x
q

1.0 1.0 0.9
0.0 1.0 0.3
0.0 0.3 1.0

DVD

CD-ROM
CD-RW
DVD

CD-ROM CD-RW

q-c

sim

q-c

sim

Price
[0..500EUR]

CPU-Clock
[400..2500MHz]

CD Drive
[CD-ROM,CD-RW]

PC

1 12

Amalgamation
Function( , ) ( , )i i iSim Q C w sim q c=∑ i

Figure 2.5: Local similarity measures for the domain of PC sales (from Stahl 2002)

Also shown in Figure 2.5 is an example of an asymmetrical array similarity measure. The

reasoning behind this measure is that a CD-RW is a perfectly acceptable replacement and a DVD is

a highly acceptable replacement for a situation where a CD-ROM is requested. However, if a DVD or

CD-RW was requested, a CD-ROM is an inadequate compromise.

The use of utility-based similarity measures, may enable a customer to find a PC that has a

faster CPU-Clock, a better type of CD-Drive but is actually less expensive than requested in their

original query, hence a more useful case being identified than one that might have been retrieved

if distance based similarity metrics were used. One problem with utility-based similarity metrics

is that it adds to the knowledge acquisition bottleneck that CBR attempts to avoid. This leads to

a trade off between the usefulness of the cases being selected during the retrieve phase, and the

intensity of knowledge acquisition. Nevertheless a number of current CBR applications already

employ some forms of utility in their similarity measures. It should also be noted that similarity

measures often attempt to approximate some form of utility (von Neumann and Morgenstern 1944).

This can often lead to similarity measures becoming extremely sophisticated and also resulting in

a knowledge acquisition bottleneck.

Another main problem with using utility functions for retrieval is that they are most often

given by a-posteriori criteria, i.e., they can only be used after the problem is solved. However

some techniques have been adopted to allow the use of utility measures before a problem is solved

Bergmann et al. (2001).
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2.5.4 Feature Weight

An important component of the amalgamation function (Equation 2.1) is the attribute weight. The

attribute weight is an indication of its relevance. Therefore the weight associated with important

attributes needs to be greater than the weight associated with less important attributes. In a

similar manner irrelevant or noisy attributes need to have their associated weights reduced so

that they have less of an influence compared to relevant attributes. Feature weighting is a well

established domain in machine learning and CBR, with many techniques available for automatically

learning feature weights (Wettschereck et al. 1997). An alternative to feature weighting is feature

selection, whereby features are assigned binary weights. Work on feature selection has been around

for a considerable length of time (Fu 1968, Mucciardi and Gose 1971, Quinlan 1993). The main

advantage of feature selection is that it reduces the search space, hence resulting in faster retrievals.

A number of techniques can be easily used for both feature selection and feature weighting, these

include RELIEF (Kira and Rendell 1992a,b, Kononenko 1994) and wrapper based approaches

(Kohavi et al. 1997).

2.6 Retrieval

The simplest retrieval technique is the k -Nearest Neighbour (k -NN) approach. Retrieval is per-

formed by sequentially comparing the query case to each case in the case base, and returning the k

cases with the highest similarity score. The main advantage of k -NN is its simplicity. It does not

require indexing structures for retrieval and cases can be added to the case base without having

to recompile the case memory. The major drawback with k-NN is its scalability as Retrieval time

increases linearly with the size of the case base.

Lenz and Burkhard (1996) presents three major conditions that should be met by a retrieval

system:

Efficiency: Access to relevant cases should avoid an exhaustive search through the entire case

memory.

Completeness: Every sufficiently similar case in memory will be found during retrieval.

Flexibility: Users should be allowed to conduct a search with whatever information is available

to the user.

Based on these criteria they have developed Case Retrieval Nets to perform retrieval (Lenz

1999). Case retrieval nets are an efficient memory model that uses a bottom up approach to

calculate similarity where cases are indexed based on information that they have in common. Case

retrieval nets contain the following components:

Case Nodes: Represent the cases in the case-base.
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Information Entities: Represents attribute-value pairs.

Relevance Arcs: link case nodes to the information entity that represents a particular attribute-

value pairs in that case.

Similarity Arcs: interconnect information entities of the same feature. These arcs contain a

weight which is equal to the local similarity between the two attribute-value pairs

Part of a Case Retrieval Net :

(Travel Agency Domain)

Place:

Offer

20024

Type:

Swimming

Type:

Winter Sports

Place:

Sliema

Place:

Kufstein

Place:

Matala

Region:

Malta

Region:

Crete

Region:

Alps

Distance to beach:

500m

Distance to beach:

200m

Price:

1099,-

Price:

980,-

Price:

850,-

Price:

798,-

Offer

500122

Offer

23456

Offer

20219

IE-Nodes Case-Nodes

Relevance - Arcs

Similarity - Arcs

Figure 2.6: The case retrieval net structure (from Lenz and Burkhard 1996)

Figure 2.6 illustrates the structure of a case retrieval net using data from the travel case base

(Lenz 1993). In this figure each case node is associated with a set of information entities using

relevance arcs. For example, the information entities in Figure 2.6 for case node “Offer 20219” is

represented in Table 2.3.

We can see from Figure 2.6 that several other case nodes share the information entities used

by “Offer 20219”. For example “Offer 500122” also contains the same information entities for

Distance to beach, Region and Place as “Offer 20219”. Each information entity is also connected
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Table 2.3: Offer 20219 from the travel case base

Case Offer 20219

Place Matala
Region Crete
Distance to Beach 500m
Price 980
Type Swimming

to other information entities of the same type by a similarity arc that represents the local similarity

between the two nodes.

When a query case is presented for retrieval, the following stages occur:

1. Activation of the information entities that are described by the query case.

2. Propagating the activation according to the similarity arcs through linked information enti-

ties.

3. Calculation of the total activation for each case node.

The case node with the highest activation is the most similar case to the target case.

The main advantage of case retrieval nets is that the local similarity calculations are only

performed once and that missing values are ignored. However case retrieval nets are not suitable

for all case-base applications as there is a significant cost with initialising a case retrieval net.

There is a trade-off between the time spent setting up the net and faster retrieval times. The case

retrieval net speed up mechanisms are counter-productive if features contain many possible feature

values. Therefore the speed-ups should not be used unless there are features in the case-base which

will benefit from the net structure.

2.7 Conclusion

Starting with the origins of CBR, in Section 2.1, this chapter described some of the important

principles common in CBR systems. After a high level overview of the methodology of CBR in

Section 2.2 the four knowledge containers in CBR were described in 2.3. As the case and similarity

knowledge containers are the most important containers in our work on producing explanations

these containers are described in further detail in Sections 2.4 and 2.5. In Chapter 6 we present

a medical decision support system that we implemented using the case retrieval nets described in

Section 2.6 of this chapter. This system uses case-based explanations to produce explanations in

the hope of increasing user confidence in the system. Next, in Chapter 3 we describe the use of

explanations and confidence measures in decision support systems.
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Chapter 3

Explanation

Aamodt (1991) defines two different interpretations of explanations in AI:

• Explanation as part of the reasoning process itself.

• Explanation for the benefit of a user.

This thesis is concerned with the latter interpretation of explanation. The purpose of explanations

for the benefit of a user is to make the reasoning process, its result or the usage of the result

understandable to the user (Sørmo et al. 2005). For example, in rule based explanation systems,

the user is often presented with a rule or set of rules as an explanation, while in case-based

explanations the user is often presented with actual cases. However, the task of producing good

explanations does not stop at simply presenting a set of rules or a case to the user.

The first part of this chapter will provide a review on what is needed to produce good quality

explanations; both in everyday life and in decision support systems. After this review some ex-

amples of explanation techniques used in decision support systems in general will be presented in

Section 3.2 with Section 3.3 focusing more on explanations in CBR systems. Finally Section 3.4

will provide a brief review on how confidence measures can be used to improve explanations.

3.1 Explanations

In our daily lives explanations are used everywhere in numerous different forms. The type of

explanation used is often determined by the circumstance. For example it may be suitable for

a parent to say to a child ”Because I said so!” as an explanation to why the child can’t see a

particular movie. However in many situations a more informative explanation is required. For

example lawyers in a court case often use past cases to support their arguments. From these two

examples it is possible to imagine how diverse types of explanations can be. According to Leake

(1995a) it is the goals of both the sender and the recipient of an explanation that influence what

types of explanations are acceptable.

22



Although, it is difficult to completely define how an explanation should be formed to cover

every circumstance, explanations can be considered to consist of two main elements; what is to

be explained, called the explanandum, and the explanatory expression, called the explanans. For

example: You cannot go to the cinema (explanandum); You are too young (explanans); You cannot

go to the cinema because you are too young (explanation).

Over the last few decades there have been numerous different approaches to explanations pro-

posed by philosophers. Early approaches include a logical deductive approach suggested by Carl

Hempel and Paul Oppenheim (Hempel and Oppenheim 1948, Hempel 1965) to more pragmatic

approaches given by Gilbert Harman (1965) and Wesley Salmon (1971). More recent work on ex-

planations includes explanation in natural language by Peter Achinstein (1983) and using cognitive

models of explanation by Roger Schank (1986) and David Leake (1995b)

It is possibly the work on scientific explanation by Bas van Fraassen (1980) that presents the

minimum criterion necessary for explanations. Van Fraassen takes a strictly empiricist approach

claiming that explanations are always an answer to an implicit or explicit contrastive why question.

By ‘contrastive’ he means a question of the form “Why S0 rather than S1. . . Sn?”. Van Fraassen

maintains for an explanation to be acceptable, it must favour the observed state S0 over the other

states. In other words the explanation must increase the probability of S0 relative to S1. . . Sn.

This approach is of particular use when generating explanations in decision support systems based

on a given classification.

Van Fraassen’s approach provides the minimum criterion for a suitable explanation. However

it is not adequate to just have a suitable explanation. In order to improve on this approach other

properties of a good explanation must be considered. The philosopher Stephen Toulmin developed

a six-element argument structure that can be used in a broad range of situations (Toulmin 1958,

Toulmin et al. 1984). The six elements of Toulmin’s argument structure as given by Shankar and

Musen (1999) are:

1. Data: The particular facts about a situation on which a claim is made.

2. Warrant : The knowledge that justifies a claim made using the data.

3. Backing : The general body of information or experience that validates the warrant.

4. Qualifier : The phrase that shows the confidence with which the claim is supported to be

true.

5. Rebuttal : The anomaly that shows the claim not to be true.

6. Claim: The assertion or conclusion put forward for general acceptance.

Figure 3.1 shows how these six elements are used to perform an argument. This argument

structure has been widely used in explanation research. In fact Wick (1992) states that a lot
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of early research in explanation has, without stated intent evolved to engulf Toulmin’s argument

structure.

3. Because

Backing

2. Since

Warrant

1. Given

Data

6.

Claim

4. Therefore

Qualifier

5. Unless

Rebuttal

Figure 3.1: Toulmins Argument Structure. The structure reads given Data, therefore Claim, since
Warrant, because Backing, therefore Qualifier unless Rebuttal. The elements of the structure and
the relationship among them can be used to generate explanations.

Although Toulmin’s argument structure provides a good basis for what is required in a decent

explanation, other factors must be considered when generating explanations in Decision Support

Systems. Swartout and Moore (1993) present five requirements for explanations in decision support

systems:

1. Fidelity: The explanation should mirror the knowledge used by the system in its reasoning

2. Understandability: Users should be able to understand the explanation. Components to

consider are terminology, user sensitivity, abstraction, summarisation, perspectives, linguistic

competence and feedback.

3. Sufficiency: There should be enough knowledge to provide explanations in different contexts.

4. Low construction overhead: Explanations should not be time consuming and difficult to

build.

5. Efficiency: Generation of explanations should not degrade runtime performance of the system.

Most of these requirements are straight forward and acceptable. However there is some debate

as to the importance of fidelity when generating explanations in decision support systems. Although

expert system designers might find explanations that accurately represent the reasoning done by

an expert system useful, actual users of the system may not find them useful. In fact the use

of explanations with a high fidelity may cause confusion for users. According to Majchrzak and

Gasser (1991) more than 50% of decision support systems, which are installed in companies, are
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not being used. An analysis of many of these early Decision Support Systems showed that a

major cause of these systems failing was that the explanations produced were incomprehensible

by users or they failed to address the users’ goals in an explanation. Wick and Thompson (1992)

go a step further by arguing that fidelity should be avoided in explanations. They argue that the

generation of explanations should be a completely separate process from the classification process.

In support of their argument they point out that explanations provided by human experts often

tend to lack fidelity even though they may often be considered to be useful. Swartout (1984)

and Chandrasekaran et al. (1989) have also shown that providing effective explanations frequently

requires supplementary knowledge in addition to the knowledge required for reasoning.

3.2 Decision Support System Explanations

The use of explanations to increase a users confidence is quite common in decision support systems.

Some types of systems are inherently easier to generate explanations for than others. This section

will examine some techniques used for generating explanations in decision support systems.

3.2.1 Decision Trees

A decision tree is a hierarchical model for supervised learning whereby the local region is identified

in a sequence of recursive splits in a smaller number of steps (Alpaydin 2004). A decision tree

can be considered as a tree-like map of the reasoning process and is composed of internal decision

nodes and terminal leaves. Figure 3.2 shows an example decision tree from the tennis dataset. Each

decision node implements a test function with discrete outcomes labelling the branches. Given an

input, at each node, a test is applied. Depending on the outcome of this test a particular branch

is taken. This process starts at the root and repeats until a leaf node is hit, at which point the

value of the leaf is the output. For example, if the outlook is sunny and the humidity is high

then the output is not to play tennis.

The construction of a decision tree is considered a greedy process. At each step, starting at

the root, the complete set of training data is analysed for the best attribute to split the data

on. Generally the selection of the best attribute to split on is performed using an entropy based

algorithm. Some popular algorithms include ID3 (Quinlan 1986), its successor C4.5 (Quinlan 1993)

and ASSISTANT (Kononenko et al. 1984, Cestnik et al. 1987). After the best attribute to split

on is selected, depending on wether the chosen attribute is numeric or discrete, the training data

is split into two or n groups of data. The splitting process then continues recursively with the

corresponding subsets until there is no need to split anymore. At this stage a leaf node is created

and labelled. In the decision tree for the tennis dataset the attribute Outlook is considered the

best attribute to use as the root node. In this situation the data is split into Sunny, Overcast and

Rainy subsets. All the cases of the Overcast subset have a yes classification, hence a leaf node
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Outlook

Humidity WindYes

YesNo No Yes

Sunny Overcast Rainy

High StrongNormal Weak

Figure 3.2: An example decision tree whether to play tennis or not from the tennis dataset
(Appendix A)

is created and labelled as Yes. However, the examples for Sunny and Rainy need to be further

expanded. Mitchell (1997) provides further information on generating decision trees.

A major advantage of decision tress is their interpretability and ease for generating explanations.

As each path from the root to a leaf corresponds to one conjunction of tests the paths can be written

down as a set of IF-THEN rules. One method of producing rules is C4.5 (Quinlan 1993). These

rules can then be used as the basis for an explanation. For example consider a hot humid sunny

day with a high temperature and weak winds. From Figure 7.3 we can see that this type of day

is not suitable for playing tennis. The leaf node for this decision is the bottom left node of the

decision tree. Therefore an example rule that can be used as an explanation for this path is:

Rule: IF(Outlook=Sunny) AND (Humidity=High) THEN NO

Explanation: As the outlook is sunny and humidity is high it is not suitable to play

tennis today.

Explanations of this form are not always that simple for a user to understand. The decision tree

shown in Figure 3.2 is a fairly simple decision tree, hence the path traces are relatively simple for

a user to understand. However as the depth of a decision tree increases so to does the complexity

of the generated rules. Figure 3.3 shows an example rule generated from a medical domain using a

bigger decision tree. This type of rule would result in a longer more complicated explanation than

the one produced from the tennis dataset.

The reason why such an explanation is less understandable for a user is the information over-

load on the user. One solution to reducing the information overload is to prune the decision tree.

There are two approaches to pruning a decision tree; pre-pruning (Quinlan 1987) and post-pruning

(Quinlan 1993). Alternatively the rules produced can be pruned to make them more understand-
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If Overall Work of Breathing is not Moderate
and Change in Work of Breathing is not Worse
and Alertness is not Drowsy
and Change in Work of Breathing is not Improved
and Overall Work of Breathing is not None
and Age is less than 5.9 months
and Respiratory Rate is less than or equal to 46
and Respiratory Rate is greater than or equal to 38
and Heart Rate is less than 151
then Admit the patient

Figure 3.3: Example explanation from a medical domain.

able. Another solution to reduce the complexity of rules presented to a user is the use of viewpoints

(Finch 1999). A simplistic approach to viewpoints is to consider them as a filter that can be passed

over the knowledge, only allowing certain facts and concepts to be seen through it and holding

back the facts and concepts that the user may not understand or are “insignificant” in explaining

the produced classification.

3.2.2 MYCIN

MYCIN (Shortliffe 1976) an early expert system for diagnosing meningitis disorders introduced

explanation queries that formed the foundation of many other explanation facilities (Wick and

Slagle 1989). MYCIN consists of five components (Jackson 1986):

1. A knowledge base which consists of factual and judgemental knowledge about the domain.

2. A dynamic patient database containing information about a particular case.

3. A consultation program which asks questions, draws conclusions, and gives advice about a

particular case based on the patient data and the static knowledge.

4. An explanation program which answers questions and justifies this advice, using static knowl-

edge and a trace of the program’s execution.

5. A knowledge acquisition program for adding new rules and changing existing ones.

MYCIN’s knowledge base is organised around a set of rules of the general form

if condition1 holds with certainty x1 and . . . and conditionm holds with certainty xm

then draw conclusion1 with certainty y1 and . . . and conclusionn with certainty yn

MYCIN uses a backward chaining mechanism to search through the set of rules. As MYCIN is

running it asks the user particular questions in order to further the search. To support this process

MYCIN supplies two forms of explanation:
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• why a particular question was put;

• and how a particular conclusion was reached.

The answer to how a conclusion was reached is the set of rules that enabled the conclusion to be

inferred. This is similar to the types of explanation from decision trees described in the last section.

In general the answer to why a question is being asked is the goal that is trying to be achieved by

asking the question. For example when attempting to answer the following why question:

‘Why do you ask if the stain of the organism is Gram negative?’

the system will look at the rule that caused this question to be asked, any other conjunctive

conditions and the goal that it is trying to achieve from an answer to the question. Therefore an

example answer is:

If: 1) The stain of the organism is gram negative, and
2) The morphology of the organism is rod, and
3) The aerobicity of the organism is aerobic

Then: There is strongly suggestive evidence (0.8) that the
class of the organism is enterobacteriaceae.

3.2.3 Black Box Explanations

In the drive to increase accuracy some machine learning techniques have evolved to use more com-

plicated algorithms. Ensemble approaches and algorithms such as Support Vector Machines and

Neural Networks have reached a level of complexity where they are not readily interpretable. Such

approaches are commonly referred to as black box algorithms owing to their lack of transparency

with regard to the logic behind the classifications they make. In contrast to explanation generation

in rule-based systems this lack of transparency makes it near to impossible to generate explanations

based directly on the reasoning process of black box systems. Although these increases in accuracy

are welcome, interpretability and explanation are still needed for people to accept classifications

by decision support systems (Andrews et al. 1995).

Many approaches to explanation generation for black box systems use the black box systems

as an oracle to generate an unlimited amount of training data. Based on this data more inherently

interpretable machine-learning systems, such as tree-based or rule-based systems, can be trained

in an attempt to describe the underlying black box system (Andrews et al. 1995, Tickle et al. 1998,

Zhou and Jiang 2003). The hope is that, with an abundance of training data, the explanation

system should offer a good description of the underlying black-box system. However, in reality

it is difficult for these tree-based and rule-based systems to fully capture the operations of the

black-box without them become overly complex and also losing their transparency. As mentioned
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in Chapter 2, a common means of producing explanations in CBR systems is to display an actual

prior case from the training set as an explanation. The use of actual training data, cases from

the case-base, as evidence in support of a particular classification is a powerful and convincing

form of explanation. Nugent et al. (2004, 2005) have developed a case-based explanation facility

for black-box systems that avoids the complexity of tree-based and rule-based methods discussed

previously.

By treating the black box system as an oracle, an artificial case-base can be built up generating

artificial cases that are similar to the query case and presenting them for predication to the black

box system. This artificial case-base approximates points on the function that is learnt by the black

box system. Once the artificial case-base is constructed around the query case a locally weighted

linear model can be derived from the artificial cases. Figure 3.4 shows an example function that

might be learnt from a black box system with two artificial cases AC1 and AC2, plotted on the

function, and the local linear approximation of the function at the query case, QC.
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Figure 3.4: Locally weighted linear model applied to black box learnt function

The linear approximation provides a set of coefficients for each attribute. These coefficients can

be used to infer how sensitive the prediction variable P(t) is to changes in the feature value, hence

the relevance of the feature on a local level, and whether the feature is negatively or positively

correlated with the prediction variable around the query case. The learnt feature weights can then

be used in Equation 2.1 to select the nearest neighbour, from the original dataset, to the query

case. The nearest neighbour can then be used as the explanation for the prediction generated by

the black box system. Using the learnt feature weights and the correlation of the features it is
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also possible to generate supporting explanatory text to present as an explanation along with the

selected nearest neighbour.

3.3 Explanation in CBR Systems

Most tutorials on CBR point to the advantages arising from the transparency and interpretability

of the CBR approach. This transparency has particular advantages for explanation as pointed out

by Leake (1996):

“. . . neural network systems cannot provide explanations of their decisions and rule-

based systems must explain their decisions by reference to their rules, which the user

may not fully understand or accept. On the other hand, the results of CBR systems

are based on actual prior cases that can be presented to the user to provide compelling

support for the system’s conclusions.”

The view that case-based explanations are more convincing than rule-based explanations is a view

that is shared by many CBR researchers (McSherry 2003a). Research by us has provided empirical

evidence that supports this hypothesis (Cunningham, Doyle and Loughrey 2003). Section 7.1

provides a detailed analysis of this research.

Work on case-based explanation can be divided into knowledge-light and knowledge-intensive

approaches. However, all approaches to explanation in CBR will share an important characteristic.

On the spectrum of possibilities between specific and general, the case-based explanation will be

at the specific end of the spectrum. When discussing explanation patterns (see (Kass and Leake

1988) for instance) Kolodner (1996) argues that what differentiates CBR from similar ideas in

model-based reasoning is the concreteness of the cases. So, whether knowledge-light or knowledge

intensive, case-based explanation is case-based.

There is still disagreement among CBR researchers on the implications CBR has for knowledge

engineering effort. Some, such as Mark et al. (1996), argue that CBR still entails a “full knowledge

acquisition effort”. Others would argue that knowledge-intensive CBR is missing the point of CBR,

which is the potential CBR has to finesse knowledge engineering effort by manipulating cases that

are compiled chunks of knowledge. These alternative views of CBR are reflected in the different

approaches to case-based explanation.

A knowledge-intensive approach to case-based explanation will incorporate mechanisms such

as rule-based or model-based inference that can be used to generate explanations. Developing

knowledge-intensive case-based applications will, in the words of Mark et al. (1996), involve a “full

scale knowledge acquisition effort”. Amongst the earliest examples of this approach is the work

on SWALE and its descendants. These systems incorporate explanation patterns (XPs) that can

be used for explanation. Typically, these XPs are pretty specific, e.g. the JANIS-JOPLIN-XP.
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Even the more abstract XPs are pretty specific; the MAFIA- REVENGE-XP can be instantiated

directly. The key point is that the system designers have incorporated model-based representations

that can be used for explanation.

XPs are made up of facts and belief-support nodes that link the facts together. The facts

include the premise, intermediate facts and conclusions. The intermediate facts are inferred from

the facts. The JANIS JOPLIN XP is shown in figure 3.5. Janis Joplin was a young rock star who

died as a result of a drugs overdose. The fact that she is a “Rock Star”, leads to intermediate

facts that she has “Wealth”, “Drug Using Friends” and “Stress”. In turn “Wealth” and “Drug-

Using Friends”, leads to another intermediate fact that she has “Access to Drugs” and so forth.

Finally this explanation pattern concludes with “Death” due to a “Drug Overdose”. The idea with

SWALE is that this explanation can be invoked to explain target cases that map appropriately to

this explanation pattern.

Rock Star Young

Wealth Stress
Drug-Using

Friends
Influenceable

Access to

drugs

Want

Drugs

Take recreational drugs

Drug overdose

Death

Figure 3.5: An illustration of the JANIS JOPLIN XP from (Kass 1988).

Another more recent example of a knowledge-intensive approach to case-based explanation is

the DIRAS system for assessing long-term risks in diabetes (Armengol et al. 2001). The approach

in DIRAS is more dynamic than that in the SWALE systems in that the explanation is built at

run-time using a process called Lazy Induction of Descriptions.

The majority of commercially successful CBR applications have been knowledge-light systems;

usually retrieval-only systems or mixed initiative systems involving interactive adaptation. In

CBR systems that use a feature-value based representation, the retrieved cases can be used in
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explanation as follows:

“The system predicts that the outcome will be X because that was the outcome in

case C1 that differed from the current case only in the value of feature F which was f2

instead of f1.

In addition the outcome in C2 was also X. . . ”

Explanation in these terms (i.e. expressed in the vocabulary of the case features) will not always

be adequate but in some situations, such as in medical decision support, it can be quite useful.

The main difference between this and the more knowledge-intensive approach is that the explana-

tion is expressed in terms of similarity only. The more knowledge-intensive systems still produce

explanations that reference the retrieved case but the explanation is expressed in terms of causal

interactions rather than simple similarity.

A good example of knowledge-light explanation in CBR is the Strategist system developed by

McSherry (2001) for fault diagnosis in a toy domain. Strategist organises its cases into a decision

tree using decision tree induction and it can use that tree to explain its reasoning. Explanation in

Strategist is focused on explanation of reasoning (for example the relevance of a question) rather

than explanation of diagnoses/predictions. The commercial CBR tool Orenge from Empolis1 relies

on comparison to retrieved cases as a mechanism for explanation. The following subsections will

present three examples of knowledge-light systems.

3.3.1 CARES

Colorectal cancer is becoming the leading cause of death from cancer in the Western World. The

main treatment for colorectal cancer is surgery. However, up to 50% of people that undergo surgery

will eventually die within the following 5 years, the majority from local, regional or distant tumour

recurrence. Early identification of recurrence can greatly increase the effectiveness of therapy and

survival of patients. The National University of Singapore in conjunction with Singapore General

Hospital have developed the CARES (Cancer Recurrence Support) System with the primary ob-

jective of predicting the recurrence of colorectal cancer (Ong et al. 1997). In the CARES system

doctors are presented with the 10 most similar cases to the current query case, This allows the

doctor to detect any possible anomalies in the prediction generated by the system.

3.3.2 ProCon

McSherry (2004) argues that the challenge in generating convincing explanations is not to convince

users that the classification is correct, but that it is justified in spite of opposing evidence. McSherry

argues that although the technique of displaying the most similar case as an explanation is a major

advantage of case-based explanations, it can sometimes present contradictory evidence against the
1See the White Paper on Orenge available at www.empolis.com
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classification. This occurs when some of the features of the most similar case actually oppose the

classification when compared to the original problem. As similarity measures are often symmetrical,

rewarding features that are more similar to the problem case regardless of whether they support

the classification or not, it is common for this situation to occur in case-based explanations.

McSherry (2004, 2003b) developed ProCon-2 a system that highlights supporting and opposing

features present in a case-based explanation. McSherry (1999) argues that a given feature always

increase the probability of an outcome class if it is more likely in that outcome class than in any

competing class. He refers to such features as supporters of the outcome class. In a similar manner

he refers to features that are less likely in the outcome class than in any other competing class

as opposers of the outcome class. Based on the Bayes theorem, McSherry defines supporting and

opposing features of an outcome class using the following criteria:

The Support Criterion A feature E is a supporter of an outcome class H1 if there is at least

one competing outcome class H2 such that p(E|H1) > p(E|H2) but no competing class H2 such

that p(E|H1) < p(E|H2)

The Opposition Criterion A feature E is an opposer of an outcome class H1 if there is at

least one competing outcome class H2 such that p(E|H1) < p(E|H2) but no competing class H2

such that p(E|H1) > p(E|H2)

In a binary classification task these criteria can be simplified to the following criterion:

In a classification task with two possible outcomes H1 and H2, a given feature E is a supporter

of H1 if p(E|H1) > p(E|H2) and an opposer of H1 if p(E|H1) < p(E|H2)

In the Breathalyser Domain2 there are two possible outcome classes; over the legal drink

driving limit and under the legal drink driving limit. One of the features in this domain

is gender. Considering this feature we can see that.

p(gender = female|over the limit) = 0.23

p(gender = female|under the limit) = 0.19

Using the above criteria we can see that female is a supporter of over the limit and an opposer

of under the limit.

Using the above criteria the task of determining supporters or opposers for nominal or discrete

features compared to continuous features is a relatively trivial task. For continuous features the

task is complicated by the fact that a decision needs to be made as to where to “draw the line”

between values that support and oppose the outcome class. For example, for the feature units

consumed with a value of x or greater to be supportive of over the limit the following inequality

must hold true

p(units ≥ x|over the limit) > p(units ≥ x|under the limit)

2The Breathalyser Domain is used for predicting blood alcohol levels based on weight, gender, meal, duration of
drinking and units of alcohol consumed. No prior knowledge is assumed on this domain for this section, however
Section 4.2.1 provides further details on this domain.
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The main problem with this approach is what value of x to use for a realistic threshold to support

over the limit. For a binary classification, with H1 and H2 as the possible outcome classes, the

selection of the threshold x is given by that value of x that maximises:

MIN(we(units ≥ x, over the limit), we(units < x, under the limit))

where

we(E, H1) =
p(E|H1)
p(E|H2)

Using the above techniques for the breathalyser domain, supportive and opposing attributes

can be selected for each feature. Table 3.1 shows the supportive and opposing features for the

outcome over the limit. As this domain is a binary classification task, features that support an

outcome of over the limit are opposers of under the limit. Likewise opposers of over the

limit are automatically supporters of under the limit.

Table 3.1: Supportive and Opposing attributes for over the limit in the Breathalyser Domain
(McSherry 2004).

Feature Supportive Opposing

Weight ≥ 73 < 73
Duration ≥ 150 < 150
Gender Female Male
Meal Lunch Full

None
Snack

Units Consumed ≥ 9.1 < 9.1

Although this technique is useful for selecting supportive and opposing features of a classifica-

tion, the a priori global determination of supportive and opposing attributes can have detrimental

affects on the explanation produced. The first problem is that the local interactions between fea-

tures are completely ignored. For example the attribute female is always considered to be an

opposer of being under the limit regardless of the values of the other attributes. Consider a

problem case of a female that has consumed no alcohol with a predicted outcome of under the

limit. The explanation in this situation would highlight the fact that the problem case is a female

opposes the classification of under the limit in spite of the fact that no alcohol has been con-

sumed. Such an explanation can have a negative effect on the confidence a user may have in the

system.

Another problem with this approach is that what was originally considered to be a supporter

of a particular class can become the opposer of that class after the addition of new cases to the

case base. This reversal can have a major affect on the users of a system. Imagine the reaction

of a user being told for numerous classifications that being female is a supporter of over the
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limit and then all of a sudden after some cases have been added that being female is actually an

opposer of over the limit. This problem is likely to occur when a particular attribute is evenly

distributed between different classes. Table 3.2 shows the distribution of cases based on gender in

the Breathalyser dataset. Here we can see that the addition of some more under the limit females

would cause a reversal of the supporters and opposer for this feature. As a major advantage of CBR

systems is their suitability in domains with small amounts of training data, hence the addition of

cases to the case-base being a common occurrence, it is perhaps naive to make global assumptions

on the data.

Table 3.2: Distribution of Gender in the Breathalyser Dataset

Over the limit Under the limit

Female 7 8
Male 23 35

Total 30 43

3.3.3 FormuCaseViz

There have been a number of tools developed for visualising case-bases. Inselberg (1985) proposed

and implemented a parallel coordinate plot. This approach was further extended by Falkman (2002)

to develop, The Cube, which displays a case-base using three dimensional parallel co-ordinate plots.

This approach allows the underlying data and the similarity metrics to be visualised. McArdle

and Wilson (2003) present a dynamic visualisation of case-base usage by using a spring based

algorithm. Although this technique was developed for supporting the maintenance of case-bases

it could also be easily adapted to visualise retrieved cases. The work of Falkman is exploited by

Massie et al. to display the case-base and the underlying knowledge from the CBR knowledge

containers and the retrieval process itself in the FormuCaseViz System (Massie et al. 2004a,b).

The formulation of a pharmaceutical tablet for a given dose of a new drug is a complicated

task. The process involves selecting inert excipients (e.g. Lactose, Maize Starch, etc.) to mix with

the drug so that the tablet can be manufactured in a robust form.

In addition to the drug a tablet consists of five distinct components:

Filler: Provides bulk to be large enough to handle and compress.

Binder: Makes it cohesive to hold together.

Lubricant: To eject tablet from die.

Disintegrant: Allows rapid break down after swallowing.
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Surfactant: Aids drug wetting and dissolution.

The formulation task is made up of choosing a suitable excipient and amount of excipient for each

component so that they can perform their roles and be compatible with each other. Craw et al.

(1998) provides further information on this problem domain.

FormuCase, the predecessor of FormuCaseViz, was developed along the normal CBR lines

for use in the problem domain of tablet formulation. The case is made up of 5 physical attributes

20 chemical attributes and 10 solution attributes; 5 nominal values identifying the excipients used

and 5 numeric values representing the quantity of each excipient. The output from FormuCase is

presented in a report form. An evaluation of this system showed a low confidence in the retrieval

system due to a reluctance to accept that the retrieved cases were in fact the most similar cases and

difficulty in accepting the adaptation because the differences between the problem and retrieved

cases were not obvious.

FormuCaseViz was developed to address these problems. In FormuCaseViz the problem

and solution are displayed in parallel coordinate plots. These have the advantage of being able

to display multi-dimensional data in two dimensions. The graphical display of FormuCaseViz

is of three panels each containing a two-dimensional parallel coordinate plot; one for the chemical

properties, one for the physical properties and one for the solution. Figure 3.6 shows an example

problem and solution. The problem case is shown by the continuous black line, while the coloured

dashed lines represents the nearest neighbours. The attributes are ordered based on correlation

to reduce line crossing on the graph. An evaluation of FormuCaseViz by two domain experts

resulted in a higher level of confidence in the solutions and the selection of similar cases than in

the original text based version. One evaluator commented that The graphical display is excellent

and shows up similarities and differences in a very clear way.

3.4 Explaining System Confidence

One of the main goals of employing user orientated explanations in decision support systems is

to promote user confidence. All the explanation generation techniques mentioned in the previous

sections of this chapter have the goal of increasing users’ confidence not only for a current classi-

fication but also in the underlying reasoning system as a whole. However, if a system is to fully

maximise a users’ confidence in a classification, then the system should also have an idea of its own

confidence, or lack of confidence, in the classification. In fact, in Toulmins argument structure the

qualifier element shows the confidence with which the claim is true (Toulmin 1958, Toulmin et al.

1984).

Cheetham and Price have recently emphasised the importance of being able to attach confidence

values to predictions in CBR (Cheetham 2000, Cheetham and Price 2004). This has been a research

issue since the earliest days of Decision Support Systems research: it is part of the body of research
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Figure 3.6: Output screen of FormuCaseViz with a problem and proposed solution. Taken
from Massie et al. (2004b)

on meta-level knowledge (Lenat et al. 1983, Davis and Buchanan 1985), the view being that it is

important for a system to ‘know what it knows’. TEIRESIAS is a system in this spirit, it was

designed to simply admit its ignorance instead of venturing risky advice (Davis 1982).

More recently, the system SIROCCO from McLaren and Ashley (2001) uses meta-rules to

determine the system’s confidence. Their system operates in an engineering ethics domain, in

which incorrect suggestions could be considered sensitive and damaging. In this system, if any one

of the meta-rules are fired then the system considers itself inadequate for the task. Their evaluation

of SIROCCO shows that allowing the system to produce ‘don’t know’ results, significantly reduced

the number of incorrectly classified cases, with a small trade off, whereby the number of correctly

classified cases was only slightly reduced.

Cheetham and Price (2004) describe 12 measures of confidence that can be applicable for a k-

NN classifier. Some of these indicators increase with confidence and some decrease. Since no single

indicator is capable of producing a robust measure of confidence they explore the use of a decision

tree, that is allowed to use all the measures, as a mechanism for aggregating all the available

metrics. The authors show that, even using a decision tree to learn a good confidence measure

from historic data, it is difficult to avoid the situation where predictions labelled as confident prove

to be incorrect. They also emphasise that the confidence estimation mechanism will need to be

updated over time as the nature of the problems being solved can change.

Both of these techniques look at binary estimations of confidence or lack of confidence. However

37



sometimes it is useful to have a numeric confidence interval for predictions instead of binary

confidence. This is of particular importance in meteorological and financial domains. For example

a 20% probability of flooding might be enough to place emergency services on alert, while a 50%

probability might be required for preventive measures such as sand bagging to be put into place.

Using an ensembles of mixture density networks Carney et al. (2005) have developed a system for

predicting surf conditions. Instead of performing a classification the system makes a probabilistic

prediction for each of the three possible outcome classes, Flat, Surfable and Closed Out. The

predictions are based on the range of surfable wave heights supplied by a user. Figure 3.7 shows an

example surf prediction for a surfer with a 3-6ft range of surfable wave heights. In this situation

the system is predicting surfable conditions for this surfer with an 83% confidence level. Also

included is a 2 day probability forecast for the different classes.

Figure 3.7: Two day probabilistic surf prediction for a surfer based on a surfable wave height
range of 3-6ft (Carney et al. 2005).

Regardless of whether a systems confidence is represented as a binary or a probability measure

they have a major potential to promote a users confidence. All of the measures can be incorporated

into the final explanation that is displayed to a user. For example, in the work of McLaren and

Ashley (2001) if the system is not confident an explanation to this extent is a lot better than
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an incorrect prediction. Alternatively the approach of Cheetham and Price (2004) can be used to

convey to the user if a system has a high confidence in a prediction. However generating confidence

measures can be difficult. In binary confidence measures, predictions with a high confidence should

rarely, if ever, be incorrect. When probability measures are used the percentage accuracy for a

particular probability level should correspond to that probability level. For example in the surf

domain surf conditions should be flat 14% of the time that it gives a 14% probability of flat

conditions.

3.4.1 Active Learning

A research area where classifier confidence plays an important role is Active Learning (Davy 2005).

In many domains there is an abundance of unlabelled data. Very often this abundance of unlabelled

data results in a considerable effort required to create a training set. This is particularly the case

in situations where it is costly to label the data. Active learning allows for a considerable reduction

of the dataset that is needed by a learner. This is achieved by allowing the learner to have some

control over the cases that are added to the training set. The chosen cases are then presented to

an oracle for labelling. In most circumstances the oracle is a domain expert. The cases can either

be constructed by the learner or selected from the original unlabelled data.

Active learners are initially supplied with a small training dataset. The cases selected for

labelling are the cases that the learner considers to be the most informative, thus speeding up the

learning process with less training data.

There are numerous techniques for selecting the most informative cases for labelling. Such

techniques include:

Confidence Based: One of the most common approaches for the selection of informative cases

is based on the uncertainty of cases in the unlabelled data. The uncertainty of a case is

considered to be the lack of confidence the classifier has in its ability to correctly classify the

case. The main problem with this approach is the ability to measure the confidence level.

Lewis and Gale (1994) suggest that probability estimates from classifiers can be used as a

measure of confidence. However work by us, (Delany, Cunningham, Doyle and Zamolotskikh

2005), show that the numeric scores form classifiers such as Näıve Bayes are not well correlated

with classification score.

Random Sampling: Although this is the simplest technique it requires the underlying data to

be uniformly distributed (Lewis and Gale 1994).

Query By Committee: Learning is performed based on the level of disagreement in the predic-

tions by different committee members (Seung et al. 1992, Freund et al. 1997).

Lookahead Algorithm: Many selection policies are based on selecting cases from regions of

uncertainty. The lookahead policy chooses the next example in an attempt to maximise
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the expected utility of the resulting classifier. Lookahead policies are are of main benefit in

domains where a class may occupy more than one region in the problem space.

3.5 Conclusions

In this chapter we opened in Section 3.1 with a review of components of good explanations. This

section explored qualities of good explanations along with requirements of generating explanations

in decision support systems. Section 3.2 went on to describe approaches to explanation generation

in decision trees, the MYCIN system and in black box systems. Section 3.3 moved on from

looking at explanation generation in decision support systems in general to focus in on explanation

generation in CBR systems. Here a distinction was made between knowledge-light and knowledge-

intensive approaches to explanation in CBR, with some examples of knowledge-light explanation

systems that have been developed. Finally, Section 3.4, described how prediction confidence can

be measured and used as part of the explanation process to increase user confidence. In the next

chapter we present a framework that we have developed for generating knowledge-light explanations

in CBR systems.
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Chapter 4

Explanation Oriented Retrieval

As previously mentioned in Section 3.3 the most common means of producing explanations in

knowledge-light CBR systems is to simply display the nearest neighbour, or a certain predefined

number of the nearest neighbours, to a given problem case. However, we do not believe that the

most similar case will always be the must convincing case available in the case-base to use as an

explanation. In this chapter we present a mechanism that we believe retrieves more useful cases for

explanation. This mechanism is based on selecting cases that make strong ‘a Fortiori ’ arguments

to support a classification. Section 4.1 explains what an ‘a Fortiori ’ argument is and Section 4.3

describes our framework for selecting cases to use as ‘a fortiori ’ arguments. Section 4.2 presents

three medical domains that are used in describing the framework and in the evaluations of the

framework presented in Chapter 7.

Roth-Berghofer (2004) expresses doubt in displaying the best case as being sufficient for an ex-

planation. To address this we have developed a technique for highlighting supporting and opposing

features in the case selected as the best case for explaining a classification. Techniques for empha-

sising relevant features based on a classification are also used in the HYPO (Ashley 1987, 1991)

and CATO (Ashley and Aleven 1997) systems. It is hoped that communicating these features in

free text along with the selected case will help improve users confidence in a system.

4.1 A Fortiori Arguments

Most parents are familiar with the use of a fortiori1 arguments by children. A fortiori arguments

are used to invoke compelling examples in support of a position. Let us consider an example of a

child using an a fortiori argument to plea their case to see the latest Harry Potter movie.

Figure 4.1 shows an example of a child called Mark (the triangle) who wants to see the latest

Harry Potter movie. The circles represent the children who have seen the movie and the squares
1“a fortiori - adv. for similar but more convincing reasons: if Britain cannot afford a space program, then, a

fortiori, neither can India.” - Collins English Dictionary
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Not allowed to

see Harry Potter

Allowed to see

Harry Potter

Age

John

Mark

Kate

Figure 4.1: Using a fortiori arguments

the children who have not. Mark knows that Kate is the closest in age to him and she has seen

the movie. But Mark knows that the older you are the more likely you are to be allowed to see the

movie. If Mark were to use Kate as an argument to convince his parents to let him to the movie,

there is a possibility that Mark’s parents can argue that Mark is still a little too young to see the

movie. However Mark knows that if he uses John who is younger than him as his argument to see

the movie, he has a stronger case.

The above example shows that the most similar situation is not always the most convincing

situation to support an argument. In the above situation, picking a child between himself and the

perceived decision boundary (Mark doesn’t know the exact cutoff age to be allowed see the movie,

but knows the younger you are the less likely you are to be allowed to see it) increased the strength

of his argument. Similar to the above example, we believe that when supporting a classification

in CBR, the most similar neighbour to a query case is not necessarily the most convincing case to

support the classification. For instance, if a decision is being made on whether to discharge a sick

12 month old baby from hospital, a similar example with a 9 month old baby that was discharged

is more compelling than one with a 13 month old baby (based on the notion that younger babies

are more likely to be kept in).

4.2 Example Problems

Our work on selecting more suitable cases in CBR systems predominately focused on medical do-

mains. The first of these domains is the Breathalyser domain which is used to predict if a person

who has consumed alcohol is under or over the legal limit to be allowed to drive in Ireland. The

second domain contains data of patients with Bronchiolitis, which is a viral infection that affects
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young children up to two years of age. In this domain the CBR system attempts to recommend

if a patient with bronchiolitis presented to an Emergency Department should be discharged or

admitted. The final domain we used contains data on the suitability of diabetic patients to par-

ticipate in an e-Clinic, a situation where more stable patient are more suitable for participation.

This section will provide information about these three domains, along with how certain features

have an influence on the classification.

4.2.1 Breathalyser Domain

When an alcoholic beverage is consumed it pases down the esophagus through the stomach and

into the small intestine. Approximately 20% of alcohol is absorbed into the bloodstream through

the mucous membrane (lining of the stomach) with the remaining 80% entering the blood stream

through the walls of the small intestine. All blood from the stomach and intestines first goes

through the liver before circulating around the whole body. So, the highest concentration of

alcohol is in the blood flowing through the liver.

Liver cells contain enzymes which metabolise alcohol. The enzymes break down alcohol into

other chemicals which in turn are then broken down into water and carbon dioxide. These are then

passed out in urine and through the lungs. The liver cells can metabolise only a certain amount of

alcohol per hour. A general rule of thumb is that it takes approximately one hour to metabolise

one unit2 of alcohol, but this rate differs slightly for everyone. So, if you drink alcohol faster than

your liver can deal with it, the excess alcohol travels through your body where it accumulates in

the blood and body tissues (including the brain) until it can be metabolised.

It is difficult to measure directly the amount of alcohol accumulated in the brain. As a result,

blood alcohol levels were first used to assess the concentration of alcohol in a person’s brain tissue.

Currently in Ireland a driver is considered to be over the drink driving limit if they contain over 80

milligrams per 100 millilitres of blood. Although there are advantages when testing with blood to

determine alcohol concentrations in the human body, the sample collection process can be viewed

as both invasive, painful and the analysis process is both time consuming and costly.

Ethanol is volatile and as a result, an amount of alcohol, in proportion to the concentration in

the blood, transfers from the blood into the alveolar air sacs in the lungs. This occurs in much the

same way that carbon dioxide leaves the alveolar blood and enters the lungs for exhalation from the

body. As a result, it is possible to analyse an alveolar breath sample, determine the breath alcohol

concentration (BrAC) and predict with a high degree of accuracy, the blood alcohol concentration

at that same point in time. Breath testing instruments were manufactured to capture a sample for

analysis. Breath analysis has since evolved into a technology that offers a low cost, highly accurate,

rapid analysis of a breath sample that is simple and painless to collect. Currently in Ireland a
2The alcohol content of drinks is measured in units. A unit is a measure of the amount of pure alcohol in a drink.

In this domain a unit is considered to be the UK measure of a unit which is eight grams of pure alcohol.
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sample of breath containing over 35 micrograms per 100 millilitres of breath, is considered to be

over the legal drink driving limit.

There are numerous factors that influence the blood alcohol content in humans. Some of the

factors that affect blood alcohol content include; age, speed of drinking, type of drinks consumed,

body metabolism, percent of body that is blood, percent of body that is fat and height.

The breathalyser dataset (Cunningham, Doyle and Loughrey 2003, Doyle et al. 2004) is a real

world dataset that was collected between December 2002 and January 2005 to predict blood alcohol

levels based on a number of features. The dataset contains 127 cases and 5 features, The features

used for determining blood alcohol levels in the Breathalyser dataset are:

Weight The more a person weighs the higher the water content in their body. As alcohol readily

dilutes with water, the extra water in a heavier person has the effect of diluting the alcohol

content, resulting in a lower blood alcohol level value.

Gender The process of absorbtion and metabolism of alcohol differs between men and women.

Women tend to have a higher blood alcohol content after consuming the same amount of

alcohol as men. The difference in blood alcohol levels between women and men has been

mainly attributed to women having a smaller water content than men. This can be likened

to dropping the same amount of alcohol into a smaller pail of water. An additional factor

contributing to the difference in blood alcohol level is that women often contain a lower

activity of the alcohol metabolising enzyme ADD in the stomach, causing a larger proportion

of the ingested alcohol to reach the blood.

Meal The rate at which alcohol is absorbed depends on how quickly the alcohol can pass into

the intestine. The higher the amount of food consumed, the more time this will require and

the longer the process of absorption will take (Wallgren 1970, Fraser et al. 1995). One study

found that subjects who drank alcohol after a meal absorbed alcohol about three times more

slowly than when they consumed alcohol on an empty stomach (Jones and Jönsson 1994).

Duration of Drinking As the liver can remove approximately one unit of alcohol every hour,

the duration of drinking has an influence on the blood alcohol content.

Units Consumed Needless to say this is the most important factor in predicting blood alcohol

level. The more units of alcohol a person consumes, the higher their blood alcohol content.

4.2.2 Bronchiolitis Domain

Bronchioles are the non-cartilaginous tubules in the pulmonary tree and are less than 1mm in

diameter (Online-Encyclopedia). Bronchiolitis means inflammation of these bronchioles. In current

usage by Family Practitioners, Pediatricians and Emergency Physicians ‘Bronchiolitis’ generally

refers to a viral illness leading to virally mediated inflammation of the bronchioles in children less
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than two years of age (Baker and Ruddy 2000). The effect of this inflammation is to narrow the

calibre of the bronchioles. This in turn leads to decreased airflow to and from the alveoli (Baker

and Ruddy 2000, Orenstein 2000).

Bronchiolitis is common, being the leading cause of hospital admission for this age group in

many hospitals (Orenstein 2000). The same viruses that cause this presentation in infants cause

little more than a bad cold in older children and adults.

The complications of bronchiolitis arise from airway obstruction, hypoxia, obligate nasal breath-

ing, and the infants’ need to bottle or breast feed. The proportion of lung comprised of smaller

airways and the size of these directly relates to the size and age of the child. Younger children

are more severely affected. Infants less than two months of age, those with co-morbidities, and

premature infants are most at risk of respiratory failure and death (Baker and Ruddy 2000).

The clinical picture is of an infant or toddler with runny nose, wheezing, and laboured breathing

who may be dehydrated. The diagnosis is generally straightforward. Which children should be

admitted and which should be discharged is controversial. The decision to admit or discharge is

termed disposition. It is one of the most important decisions an Emergency Physician makes. For

many patients the disposition is clear-cut. In marginal cases, being able to draw on the collective

outcome experience of the entire Emergency Department staff would be desirable. In other cases

it could serve as a safety device by flagging anomalous dispositions in real time.

The Bronchiolitis Dataset is a dataset of 318 patients up to the age of 18 months that were

suffering from Bronchiolitis. The data was collected by the Emergency Department of Kern Medical

Center3. The Emergency Department is based in a county hospital in Kern County, California and

has an university affiliated emergency medicine residency program. The department serves a mixed

urban rural population and has annual census of approximately 46,000 patients.

For each patient enrolled in the study approximately 200 features were recorded4. These fea-

tures are broken up into the following categories

Review of Systems: Contains information about how long the patient has been sick, changes in

behaviour and eating habits.

Past Medical, Family and Social History: Investigates birth conditions of the patient, im-

munisations and medicines received, history of asthma in the family and the presence of

smokers in the household.

Physical Examination: Contains records of vitals such as hearth rate, temperature, respiration

rate, oxygen saturation, reflexes and lung sounds before any treatment is given to the patient.

Lab and X-Ray: Contains results from laboratory tests and/or x-rays performed on the patient.

3This research into bronchiolitis was approved by the Kern Medical Center’s Institutional Review Board. In-
formed consent was obtained from the parents or legal guardians of all subjects.

4Appendix B contains the template used for collecting data for each patient

45



Hospital Course: Contains records of some of the vitals such as respiration, heart rate, temper-

ature and oxygen saturation after treatment has been given to the patient. This section also

contains information on the disposition of the child.

All patients attending the emergency department with bronchiolitis are seen by either a mid

level provider (e.g. Nurse Practitioner) or a Resident Physician. All patients seen by residents

are also seen by faculty Emergency Physicians. All faculty are board certified in Emergency

Medicine. The disposition of a patient has three possible values; Discharge, Admit and Prolonged

Emergency Department Observation. If a patient is discharged a three day telephone follow-up

is performed to ensure the patient was not subsequently admitted to hospital.

Using a forward sequential search algorithm (Whitney 1971, Aha and Bankert 1994) the feature

space was reduced down to twelve features for use in a CBR system. Using these features a hold

one out accuracy of 72% was achievable on the original training data of 228 cases collected up until

the end of January 2005. These features are:

• Age

• Birth Type

• Smoking Mother

• Hydration before treatment

• O2 Saturation before treatment

• Retraction Severity before treatment

• Heart Rate after treatment

• Overall increase in Work of Breathing after treatment

• Oxygen Saturation under 92 after treatment

• Respiratory Rate over 60 after treatment

• Temperature over 100.4 after treatment

• Work of Breathing after treatment

4.2.3 e-Clinic Domain

The final domain used is the e-Clinic domain. This is a domain for assessing suitability for partici-

pation in a diabetes e-Clinic. Patients with stable diabetes can participate in the e-Clinic whereas

other patients need closer monitoring. The decision support system acts as a triage process that

assesses whether the patient is stable or not. In this domain we have 300 cases collected in St.

James’ Hospital in Dublin by Dr. Yusof Rahman (Rahman et al. 2004).
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Some of the factors for deciding if a patient is stable and suitable for the e-Clinic include: the

type of diabetes they have, the treatment they are on, if they have any complications and their

HbA1c level (see below for details). For example, if a patient has any complications, if they have

type II diabetes or are treated by injecting insulin instead of being treated by oral hypoglycaemic

agents (OHA) they would not be considered suitable for the e-Clinic. The HbA1c feature is a test

that can provide an average rating for blood sugar levels over the three month period prior to

testing. The lower the value for HbA1c the more likely a patient is to be stable enough to remain

in the e-Clinic. However if the value for HbA1c is greater than 7- 7.5 % the patient is unlikely to

be suitable for the e-Clinic.

4.3 Explanation Utility Framework

As already mentioned, many CBR systems perform explanations by simply displaying the most

similar case to the end user. However, we believe that the most similar case will not necessarily

always be the most convincing case to use as an explanation. Based on the ‘a fortiori ’ argument

(Section 4.1), we believe that, a case lying between the target case and a decision boundary results

in a more convincing explanation than a case that lies on the opposite side of the target case.

For example, consider the two feature problem in Figure 4.2 and the justification for the classifi-

cation of query case Q. There must be a decision boundary in the solution space, however the exact

location of this boundary is not known. The boundary must lie between the nearest neighbour NN

and the nearest unlike neighbour NUN. Typically users will have some intuition about the decision

boundary and will be less comfortable with the NN as a justification for the classification of Q if

Q is considered to be closer to the decision boundary than NN. The case EC would be a more

convincing example because it is more marginal. Overall the selection of a case from the shaded

region in Figure 4.2 would provide a more convincing argument than a case located outside the

shaded region.

We have developed a framework that attempts to select a case that lies between the target

case and a decision boundary for use as an explanation. Unless otherwise specified we will refer to

the case that is selected by the framework as the Explanation Case. The framework selects more

suitable cases by using a set of explanation utility measures that are dependent on the classification.

4.3.1 Explanation Utility Measures

We believe that in order to select a suitable case to support a recommendation, the actual recom-

mendation needs to be taken into account. In other words the metrics used in the retrieval of such

a case would vary for different recommendation. In fact Bergmann et al. (2001) mentions that

utility functions used for retrieval are often given by a-posteriori-criteria.

Our framework works by first of all performing a classification using a case retrieval net as
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Figure 4.2: A nearest neighbour example where case EC would be a better explanation for the
decision on query case Q than the nearest neighbour NN; case NUN is the nearest unlike neighbour.

described in Section 2.6. Once a classification is performed, the most similar neighbours to the

query case are re-ranked in order of their explanation utility to support the classification. This

re-ranking is performed using a utility measure as shown in Equation 4.1.

Util(Q,X, C) =
∑

f∈F

wfξ(qf , xf , c) (4.1)

where ξ() measures the contribution to explanation utility from feature f. The utility measure

closely resembles the similarity measure used for performing the initial nearest neighbour classi-

fication Equation 2.1 except that the ξ() functions will be asymmetric compared with the corre-

sponding σ() functions and will depend on the class label c.
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Figure 4.3: Similarity Graph for the feature Age

In Section 2.5.2 we presented an example of how difference graphs can be used for calculating
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similarity. Figure 4.3 shows a possible similarity graph that could be used for comparing the age

of infants. In this situation the graph shows a high similarity for children that are aged within five

months of each other. However once the age gap between two cases increases beyond five months

the similarity between the two cases drops off more rapidly.

The graph used for calculating similarity can be used as a basis for generating utility measures.

To generate the utility measures we need to utilise cases that support the recommendation. For

example if recommending that a patient should be discharged a case that is younger than the

patient and was also discharged should have a higher utility than a case that is older than the

patient (based on the notion that younger babies are more likely to be kept in). Alternatively

when recommending a patient should be admitted, cases that are older and also admitted should

have the highest utility. Figure 4.4 shows example explanation utility graphs for both admit and

discharge recommendations that captures this.
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Figure 4.4: Explanation Utility for the feature Age

For example, consider a recommendation to discharge a 15 month old baby. A 20 month old

case (i.e. an age difference of -5 months) that was also discharged would have an explanation

utility of 0.9. However a 10 month old case (i.e. an age difference of +5 months) would have an

explanation utility of 1.0. Here we can see that as the positive age difference increases the utility

decreases. Alternatively, regardless of the age difference for younger cases the utility remains at a

maximum of 1.0.

This method of creating explanation utility measures leaves us with one problem. In the case

of Discharge, all examples with a positive or zero difference have an explanation utility of 1 in

this dimension. This implies that the explanation utility measure is indifferent over a large range

of difference values. This results in the order of the cases stored in the case base having an impact
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on the cases returned for explanation. For example, the three cases, C1, C2 and C3 shown in Table

4.1, all have the same utility score as they all lie in the direction of the decision boundary from

the query case, based on a discharge recommendation. As they all have the same utility score

the selection of an explanation case will be based on the order of these cases, which is influenced

by their original ordering in the case-base. Therefore in this situation C1 could be selected purely

because it is the first in the list of cases. A further problem with this indifference is that it also

ignores the fact that a case that is three months younger could possibly be better for explaining a

discharge recommendation than a case that is only two month younger.

Table 4.1: Case Ordering Problem

Query
Case C1 C2 C3

Heart Rate 130 150 140 160
Temp 98.5 99.2 99.9 99.5
Age 12 10 11 9

To address both of these problems the explanation utility measure is adjusted so that maximum

utility is not returned at equality. There are many possible shapes that the utility measure can

take on. We believe that the best shape is feature, domain and possibly user specific. Figure

4.5 shows one possible explanation utility measure for the feature age for a recommendation to

discharge. In this situation the utility of a case older than the query case (negative age difference)

is still lower than the utility of a case that is younger than the query case (positive age difference).

However, this modification will now favour outlying cases over more similar cases. For example

if trying to argue that a 7 month old patient should be discharged a similar case aged 4 months

that was also discharged might be considered to be more useful as an argument in support of the

discharge than a discharged case that is 6 months of age. Using the explanation utility measure

shown in figure. 4.5 we can see that the 4 month old patient will receive a higher utility score than

the 6 month old.

Although this adjustment corrects the problems associated with the utility measures shown

in 4.4, this type of utility measure can still cause some problems. The most prevalent of these

problems is that there is a high repetition in the cases selected as explanation cases. This problem

is caused by the fact that more marginal cases are selected using this type of utility measure. For

example consider the 4 query cases Q1 - Q4 in Fig. 4.6. In this situation there are 5 possible cases

that can be used as explanation cases EC1 - EC5. For each of the query cases there are numerous

suitable cases to select as an a fortiori argument. However, using the explanation utility measures

described in Figure 4.5, EC1 will always be selected as the explanation case.

Repetitively selecting the same case as an explanation case could cause users to lose confidence

in the system. Furthermore a users confidence in the system can be further diminished if the user
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Figure 4.5: Utilising more marginal cases for a discharge recommendation

EC
1

Decision

Boundary

Q
4

Q
3

EC
2

EC
3

EC
4

Q
1

Q
2

EC
5

Figure 4.6: When more marginal cases are selected as explanation cases, repetition of cases can
occur. In this situation EC1 will be selected for all 4 query cases Q1 - Q4

is not entirely convinced that the classification of a repeatedly used explanation case is correct.

By selecting more marginal cases as explanation cases there is a higher risk of selecting cases that

the user is not entirely convinced is correctly classified. Another problem that can occur using this

shape of utility measure is that the explanation cases that are selected can be heavily affected by

one or two outlying features.

In order to select less marginal cases the explanation utility measure needs to be adjusted to

favour cases that are more similar to the query case. Figure 4.7 shows how the age explanation

utility measure to support discharge can be adjusted so that utility is maximised for younger cases

that are more similar to the query case. In this example a patient 5 months younger than the

query case has maximum utility when trying to support a discharge disposition. Once the age

difference increases to more than 5 months the utility starts to fall off.
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Figure 4.7: Discharge utility measure for selecting more similar/less marginal cases

In Figure 4.2 the shaded region showed the optimum area for selecting cases to use as a fortiori

arguments. Using explanation utility measures similar to the one just described in Figure 4.7,

cases closer to the query case in this optimum area are preferred over more distant cases. This

preference is displayed in Figure 4.8 where the darker shaded regions are considered more suitable

than the lighter regions. In this situation EC1 would be selected as the explanation case rather

than the more marginal case EC2.
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Figure 4.8: When using explanation utility measures that utilise less marginal cases, cases that
are more similar to the query case receive a higher utility. In this situation a case in darker shaded
region will receive a higher utility, hence EC1 will have a higher utility than EC2

We have just looked at two methods of improving the explanation utility of the original measure

shown in Figure 4.4. These improvements consisted of two extremes; The first utilising more

marginal a fortiori cases (Figure 4.5) while the second utilised more similar a fortiori cases to the

query case (Figure 4.7). Although these extreme measures may be suitable for some features, they
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may also be too restrictive for other features. There are an infinite number of possible measures

that lie between these two extremities. An example of a possible measure is shown in Figure 4.9.

In this situation similar cases are preferred slightly over more marginal cases without marginal

cases being penalised as much as they are using explanation utility measures similar to that shown

in Figure 4.7.

0

0.2

0.4

0.6

0.8

1

-20 -15 -10 -5 0 5 10 15 20

Age Difference [months] (q-x)

U
til

ity

c

Figure 4.9: Alternative Explanation Utility Measures to Discharge for the feature Age

4.3.2 Explanation Utility Measures for Symbolic Features

So far the explanation utility measures described have focused only on numeric features. When it

is possible to define a method for calculating the difference between two symbolic values, utility

graphs can also be used for calculating explanation utility. In situations where symbolic features

can be logically ordered, the difference could be the relative difference between the two positions

in the ordered list of possible values. An example of a feature that can be ordered is the Meal

feature in the breathalyser domain. This feature has four possible values: None, Snack, Lunch and

Full. The explanation utility measure for the feature meal when the classification is over the limit

is shown in Figure 4.10. In this situation a case that has consumed more food than the query case

will have a higher utility than a case that has consumed less food. This is based on the principle

that the more you eat, the slower the rate of absorption of alcohol into the blood stream. In this

situation if the query case had only consumed a snack, the utility for a case that had consumed

nothing would result in a utility of approximately 0.5 (This is based on a difference of +1 as snack

is the 2nd item in the ordered list, while none is the first item in the list). Alternatively the utility

of a case that was full would be 0.9 (This is based on a difference of -2, as full is the 4th item

in the list).

Using a similar approach utility measures can be developed for features that contain boolean

values (i.e. features that can only have true or false values). In this situation the values are

53



0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

Meal Difference (q-x)

U
til

ity

Figure 4.10: Explanation Utility measure for the feature meal for an over the limit classification
in the Breathalyser domain

considered to be in an ordered list where the first value in the list is true and the second value

is false. Figure 4.11 shows a possible utility measure for the feature High Temperature for a

recommendation to discharge. If the temperature for the query case is low, i.e the feature is false,

the utility for a case that has a high temperature would be 1 (based on a difference of +1 between

the two relative positions).
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Figure 4.11: Explanation Utility measure for the feature High Temperature for a discharge
recommendation.

4.3.3 Selecting Utility Measures

In Section 4.3.1 we demonstrated a number of possible utility metrics that can be used for selecting

a case to use as an explanation for a given recommendation. The selection of an appropriate shape

for a particular utility measure can be performed with the assistance of a domain expert. Although

this may go against the general ethos of knowledge-light systems, the amount of input that is needed

from a domain expert is minimal. The only information that is needed is the general direction of
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the decision boundary for a particular feature given a recommendation and whether marginal or

more similar cases would be preferred. So for example for the feature age and a recommendation

to discharge the information given by a domain expert might be that the decision boundary is in

the direction of younger cases and that marginal cases are preferred. From this information and

knowing the range of possible ages, an engineer developing the system can define n explanation

utility measure similar to that shown in Figure 4.9.

The first problem that may occur with this approach is that once people start using the system,

they might actually prefer less marginal cases for the feature age. There are two ways of dealing

with this approach. The first way is for the explanation utility metrics to be updated manually.

As the metrics are not hard-coded (Section 6.2.1) this update is a minor change without recoding.

Another solution is that if a user is not happy with the explanation case that is presented they

can see a list of possible explanation cases. From this list they can then select the one that they

prefer as an explanation. Based on this selection the utility metrics can be automatically updated

to reflect the users preference. In this situation the advice from the expert is simply used to

bootstrap the utility measures. This approach can be useful in situations where different users

may have different preferences. In this situation a new user could be given the original explanation

utility measures, devised by the domain expert, and they will then be updated according to the

preference of the user.

Another problem that may occur is that the expert may not know the direction of the decision

boundary for a particular feature. As CBR is often used in weak theory domains this is a situation

that needs to be addressed. Although Bridge and Cummins (2005) have developed a technique

to analyse neighbouring cases to approximate the direction of the decision boundary, we believe

that this approach may have two potential weaknesses. The first is that, although they have some

clever techniques for dealing with noisy cases, it is possible that noisy cases can cause incorrect

assumptions to be made about the direction of the decision boundary. The most important point

to note is that, if for a given classification, the expert does not know the correct direction of the

decision boundary for a particular feature, then the feature cannot contain any useful explanation

utility for the generation of an a fortiori argument based on the perceived direction of the decision

boundary. Also their technique does not have any method for controlling wether more or less

marginal cases are preferred for certain features.

Just because a feature may not contain any useful explanation utility for the generation of an

a fortiori argument based on the perceived direction of the decision boundary, does not mean that

the feature has no use in the selection of explanation cases. It is still important for such features

to have a high level of similarity between a target case and an explanation case. For this reason in

situations where a utility measure cannot be generated for a feature, the original similarity measure

used for retrieval is used for utility. In other words in this situation the utility of a feature is based

on similarity and is independent of the predicted class.
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4.4 Highlighting Features of Retrieved Cases

As mentioned by McSherry (2004) it is important for the user to make meaningful comparisons

between the feature values in the query case and explanation cases. Using explanation utility mea-

sures we have developed a technique for selecting features to highlight to the user. The features that

are highlighted could be both features that support and features that oppose the recommendation.

Our approach is to compare the explanation utility of a feature based on the recommendation to

the utility of the feature using the explanation utility measures of alternative recommendations.

In a two class problem this can be simplified to an inequality. When the following inequality

holds true we consider that the feature value in the explanation case, xf , supports the recommen-

dation:

ξ(qf , xf , cp) > ξ(qf , xf , cn) (4.2)

where qf is the corresponding feature in the query case, cp is the classification and cn is the opposite

classification.

For example consider a recommendation to discharge a patient where the explanation case is

5 months younger than the query case. Using the explanation utility measures shown in Figure

4.12 we can see that the utility associated with the feature age is 1.0. Alternatively if the Admit

utility measures were used the utility would be reduced to 0.675. In this situation we can see that

Inequality 4.2 holds true, hence the feature age in the explanation case is a feature that supports

the recommendation. Also in this situation we can see that the difference in utility between the

two utility measures is 0.325 (1.0 - 0.675). Using this difference in utility value supporting features

can be ranked in order of level of support, where the greater the difference the more supportive

the feature is of the recommendation.
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Figure 4.12: Supportive Utility Feature

In a similar manner a feature does not support the recommendation when the opposite inequal-
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ity holds:

ξ(qf , xf , cp) < ξ(qf , xf , cn) (4.3)

Staying with a recommendation to discharge a patient, consider an explanation case that

has a heart rate of 20bpm lower than the query case. Using the utility measures for Heart Rate

difference shown in Figure 4.13, it can be seen that the discharge utility measure has a lower utility

than the admit utility measures. Therefore in this situation Inequality 4.3 holds true suggesting

that this feature opposes the recommendation to discharge. Similar to supporting features, the

greater the difference between the different utility values the more it opposes the recommendation.
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Figure 4.13: Non-Supportive Utility Feature

4.5 Explanation for Classification

In some of our reviews we received some suggestions that the explanation utility framework could

be considered as a classification mechanism and should be used to perform the classification as

well. We investigated the possibility of using the explanation utility measure for performing the

entire retrieval process, instead of using it to simply re-rank the highest neighbours based on the

classification. This is not completely straightforward as the utility metric is class dependent. This

can be addressed by using the utility metrics to rank the entire case-base twice, once for each

outcome class. The utility score for the k nearest neighbours for each class is summed and the

class with the highest score is returned as the classification.

In order to test the effectiveness of this approach to classification, a leave-one-out validation was

performed comparing this utility based classification with the standard similarity based process.

The results of this comparison on three datasets is show in Table 4.2. From this table we can see

a clear reduction in accuracy when using this explanation utility based classification approach to

a standard nearest neighbour approach.
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Table 4.2: Comparison of accuracies using explanation utility for classification compared to sim-
ilarity measures.

Nearest Neighbour Explanation Case

Breathalyser 77 74
Bronchiolitis (Original Utility) 77 40
Bronchiolitis (Updated Utility) 72 47
e-Clinic 96 83

This shows that the requirements for classification accuracy and explanation are different and

supports Wick and Thompsons (1992) idea of having an explanation utility framework that is

separate from the similarity mechanism used for classification.

4.6 Conclusions

This chapter is based on the idea that, in case-based explanation, the nearest neighbours may not

be the best cases to explain classifications. In classification problems there will normally be a notion

of a decision surface and cases that are closer to the decision surface should be more compelling as

explanations. These more compelling explanations are referred to as ‘a fortiori ’ arguments which

are described in more detail in Section 4.1. In Section 4.3 we introduced an explanation utility

framework that formalises this idea and show how it can be used to select explanation cases in

knowledge-light CBR systems. In Section 4.4 we describe a technique for selecting supporting

and opposing features of the selected explanation case for highlighting. Finally in Section 4.5 we

showed that the use of explanation utility measures are not suitable for use in classification. In

the next chapter we present a technique for estimating a binary confidence level in a classification.

Using this technique and the explanation utility framework we have developed a real time decision

support system for the bronchiolitis domain. This system is presented in Chapter 6.
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Chapter 5

Assessing Confidence

In Section 3.4 we discussed how the level of confidence a system has in a classification can be

used in explanations. In this chapter we introduce techniques for estimating binary confidence

levels. Section 5.1 describes a number of possible confidence measures, that are mainly based on

similarity metrics, and how they can be configured to produce binary estimations of confidence

(Section 5.2). A major problem with these measures individually is that they often result in

highly confident classifications occurring a low proportion of the time. Section 5.3 looks at how

these individual measures can be aggregated into an ensemble to increase the occurrence of high

confidence classifications.

5.1 Confidence Measures

This section describes a number of confidence measures that could be used to assess confidence

in CBR systems. We concentrate on using measures appropriate for a k-NN classifier. The k-NN

measures that we propose perform some calculation on a ranked list of neighbours of a target

case. Many of these measures are similar to or inspired by the measures used by the case-based

spam filter called ECUE (Email Classification Using Examples) (Delany, Cunningham, Doyle and

Zamolotskikh 2005). The objective of the k-NN measures is to identify those cases that are ‘close’

(i.e. with high similarity) to cases of the same class as the target case and are ‘far’ (i.e. low

similarity) from cases of a different class. The closer a target case is to cases of a different class,

the higher the chance that the target case is lying near or at the decision boundary. Whereas the

closer a case is to other cases of the same class, the higher the likelihood that it is further from

the decision boundary.

For each k-NN confidence measure discussed in this section the same process occurs. Each

target case is classified by the CBR system and a ranked list of neighbours of the target case is

retrieved. This list of neighbours is a list of all the cases in the case-base ordered by distance from

the target case. Those cases with classification equal to that of the target case are considered to
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be like cases, while cases with other classifications are considered to be unlike cases. The measures

can use

• the distance between a case and its nearest neighbours (let NNi(t) denote the ith nearest

neighbour of case t),

• the distance between the target case t and its nearest like neighbours (let NLNi(t) denote

the ith nearest like neighbour to case t),

• the distance between a case and its nearest unlike neighbours (let NUNi(t) denote the ith

nearest unlike neighbour to case t) and/or

• the distance between a case and its explanation cases (let ECi(t) denote the ith nearest

explanation case to case t).

The number of neighbours used in each measure is adjustable and is independent of the number

of neighbours used in the initial classification. All measures are constructed to produce a high score

to indicate high confidence and a low score to indicate low confidence.

5.1.1 Average Nearest Unlike Neighbour Index

The Average Nearest Unlike Neighbour Index (Avg NUN Index) is a measure of how close the first

k NUNs are to the target case t as given in Equation 5.1.

AvgNUNIndex(t, k) =
∑k

i=1 IndexOfNUNi(t)
k

(5.1)

where IndexOfNUNi(t) is the index of the ith nearest unlike neighbour of target case t, the index

being the ordinal ranking of the case in the list of NNs.

This is illustrated in Figure 5.1 where NLNs are represented by circles, NUNs are represented

by stars and target cases are represented by triangles. For k = 1, the index of the first NUN to

target case T1 is 5 whereas the index of the first NUN to target case T2 is 2, indicating higher

confidence in the classification of T1 than T2.

5.1.2 Similarity Ratio

The Similarity Ratio calculates the ratio of the similarity between the target case t and its k NLNs

to the similarity between the target case and its k NUNs, as given in Equation 5.2.

SimRatio(t, k) =
∑k

i=1 Sim(t,NLNi(t))∑k
i=1 Sim(t,NUNi(t))

(5.2)

where Sim(a, b) is the calculated similarity between cases a and b.

This is illustrated in Figure 5.2 where, for k = 1, the similarity between the target case T1

and its NLN is much higher than the similarity between T1 and its NUN. Whereas the similarity
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Figure 5.1: Average NUN Index Confidence Measure

between target case T2 and its NLN is only marginally higher than the similarity between T2 and

its NUN. The ratio of these similarities for T1 will give a higher result than that for T2 indicating

higher confidence in the classification of T1 than T2.
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Figure 5.2: Similarity Ratio Confidence Measure

5.1.3 Explanation Case Similarity Ratio

Using the Similarity Ratio does not take into account that the target case may actually lie between

the decision boundary and the nearest neighbour. Consider two possible nearest neighbours, NN1

and NN2 to a target case T as illustrated in Fig. 5.3. In this situation the similarity between

NN1 and T is equal to the similarity between NN2 and T . Therefore for k = 1 the similarity ratio

for NN1 would be equal to the similarity ratio for NN2. Similarly any neighbour located on the

dashed circle would have an equal similarity ratio.

The Explanation Case Similarity Ratio attempts to correct this problem associated with the

Similarity Ratio. The Explanation Case Similarity Ratio calculates the ratio of the similarity

between the target case t and its k ECs to the similarity between the target case and its k NUNs,

as given in Equation 5.3.
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Figure 5.3: Similarity Ratio Confidence Measure Problem

SimRatio(t, k) =
∑k

i=1 Sim(t, ECi(t))∑k
i=1 Sim(t,NUNi(t))

(5.3)

where Sim(a, b) is the calculated similarity between cases a and b.

This measure is similar to the Similarity Ratio described in the previous section except that

the k ECs are used instead of the k NNs. This is to prioritise the use of neighbours between t

and the decision boundary in calculating the ratio. This is illustrated in Figure 5.4 where, for

k = 1, the similarity between the target case T1 and its explanation case, EC1, is much higher

than the similarity between T1 and its NUN. Whereas the similarity between target case T2 and

its explanation case, EC2 is only marginally higher than the similarity between T2 and its NUN.

The ratio of these similarities for T1 will give a higher result than that for T2 indicating higher

confidence in the classification of T1 than T2.

NUNs

NLNs

T
1

T
2

EC
2

EC
1

Figure 5.4: Explanation Case Similarity Ratio Confidence Measure

5.1.4 Similarity Ratio Within K

The Similarity Ratio Within K measure is similar to the Similarity Ratio as described above except

that, rather than consider the first k NLNs and the first k NUNs of a target case t, it only uses

the NLNs and NUNs from the first k neighbours. It is defined in Equation 5.4.
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SimRatio(t, k) =
∑k

i=1 Sim(t,NNi(t))1(t,NNi(t))

1 +
∑k

i=1 Sim(t,NNi(t))(1− 1(t,NNi(t)))
(5.4)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b) returns one if the

class of a is the same as the class of b or zero otherwise.

This measure will attempt to reward cases that have no NUNs within the first k neighbours,

i.e. are in a cluster of k cases of the same class. This is illustrated in Figure 5.5 where, considering

k = 3, the target case T1 has no NUNs within the first three neighbours whereas target case T2

has two NUNs and one NLN. The Similarity Ratio Within K will be much larger for T1 than that

for T2 indicating higher confidence in the classification of T1 than T2.
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T
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Figure 5.5: Similarity Ratio Within K Confidence Measure

If a target case t has no NUNs then Equation 5.4 is effectively Equation 5.2 with the denominator

set to one.

5.1.5 Similarity Voting

The Similarity Voting measure is the total similarity of the NNs in the first k neighbours of the

target case t, see Equation 5.5.

SumNNSim(t, k) =
k∑

i=1

1(t,NNi(t))Sim(t,NNi(t)) (5.5)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b) returns one if the

class of a is the same as the class of b or zero otherwise.

For target cases in a cluster of cases of similar class this number will be large. For cases which

are closer to the decision surface and have NUNs within the first k neighbours, this measure will

be smaller. In fact for target cases with no NUNs within the first k neighbours this measure will

be equal to the value of the Similarity Ratio Within K. Although this measure does not reward

such cases as strongly as the Similarity Ratio Within K does as the resulting measure for the sum

of the NLNs is not reduced by the influence of the NUNs.
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5.1.6 Average NN Similarity

The Average NN Similarity measure is the average similarity of the NLNs in the first k neighbours

of the target case t, see Equation 5.6.

SumNNSim(t, k) =
∑k

i=1 1(t, NNi(t))Sim(t,NNi(t))∑k
i=1 1(t, NNi(t))

(5.6)

where Sim(a, b) is the calculated similarity between cases a and b and 1(a, b) returns 1 if the class

of a is the same as the class of b or 0 otherwise.

5.1.7 Nearest Like Neighbours Accuracy

The Nearest Like Neighbours Accuracy (NLN Accuracy) measure calculates the number of k like

neighbours that would have been correctly classified by the CBR system as given in Equation 5.7.

NLNAccuracy(t, k) =
k∑

i=1

1(NLNi(t)) (5.7)

where 1(a) returns one if the actual class of a is the same as the predicted class of a using a k-NN

classifier or zero otherwise.

This is represented in Figures 5.6 and 5.7 where NLNs are represented by circles, NUNs by

stars and target cases are represented by triangles. In Figure 5.6 we can see that the first NLN to

target case T1 would be incorrectly classified due to its close proximity to the two stars hence for

k = 1 the number of correctly classified cases in the first k NLNs to T1 is 0. This compares to the

number of correctly classified cases in the first k NLNs to T2 in Figure 5.7 being 1, indicating a

higher level of confidence in the classification of T2 than T1
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1

T
1

Figure 5.6: Classification of T1 has a low
confidence as NLN1 would be incorrectly
classified as a star
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Figure 5.7: Classification of T2 has a
high confidence as NLN1 would be cor-
rectly classified as a circle
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5.2 Predicting Confidence

The previous section looked at a number of possible measures for estimating confidence in a pre-

diction. The basis of each of these measures is that the higher the score for a measure the higher

the confidence in the given prediction. In this section we look at a technique to select a threshold

for each measure so that if the score is above the threshold there is a high confidence in the pre-

diction, while if the score is lower than the threshold the system has a reasonable confidence in the

prediction.

The calculation of a threshold involves performing a leave-one-out validation on a dataset for

each measure. We evaluated each measure using k neighbours from k = 1 up to k = 30 and identi-

fied the confidence threshold, over all the k values, that gave us the highest proportion of confident

and correctly classified cases while minimising the number of confident incorrect predictions. This

is illustrated in Figure 5.8.
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Figure 5.8: Criteria used to identify the best confidence threshold level

This was achieved by recording the confidence measure results for each target case ci, i = 1 . . . N ,

that was classified by a nearest neighbour algorithm. The results recorded included the number

of neighbours k used in the measure, whether the target case was classified correctly or not and

the measure calculated, mik. Setting the threshold tk equal to the minimum value of mik for a

given k and varying the threshold in small units (tk = tk + .01) up to the maximum value of

mik, the number classified correctly with confidence (CCk), the number classified incorrectly with

confidence (CIk), the number classified correctly without confidence (NCCk) and the number

classified incorrectly without confidence (NCIk) as given by Equations 5.8, 5.9, 5.10 and 5.11 ,

were calculated.
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CCk =
N∑

i=1

gte(mik, tk)1(ci) (5.8)

CIk =
N∑

i=1

gte(mik, tk)(1− 1(ci)) (5.9)

NCCk =
N∑

i=1

lt(mik, tk)1(ci) (5.10)

NCIk =
N∑

i=1

lt(mik, tk)(1− 1(ci)) (5.11)

where gte(a, b) = 1 if a >= b and gte(a, b) = 0 otherwise, lt(a, b) = 1 if a < b and lt(a, b) = 0

otherwise and 1(a) = 1 if a is correctly classified and 1(a) = 0 otherwise.

The selected threshold value, for a given k is the threshold tk that maximises the odds ratio as

given by Equation 5.12.

OddsRatiok =
CCk

CIk

NCCk

NCIk

(5.12)

Table 5.1 shows values for CCk, CIk, NCCk and NCIk for a range of similarity ratio thresholds

in the Breathalyser domain. Also shown in this table is the odds ratio, calculated using Equation

5.12, for each of the possible thresholds. From the table we can see that there is a sudden increase

in the odds ratio when a threshold of 1.18 is used, after this the odds ratio starts to fall off as

the threshold increases. Figure 5.9 plots the odds ratio over a range of possible similarity ratio

threshold values.

Table 5.1: Odds ratio for different similarity ratio thresholds

Similarity Ratio
Threshold

CCk CIk NCCk NCIk Odds Ratio

1.10 52 2 50 23 12.0
1.11 47 2 55 23 9.8
1.12 42 2 60 23 8.1
1.13 41 1 61 24 16.1
1.14 39 1 63 24 14.9
1.15 36 1 66 24 13.1
1.16 34 1 68 24 12.0
1.17 33 1 69 24 11.4
1.18 32 0 70 25 1.1∗108

1.19 32 0 70 25 1.1∗108

1.20 30 0 72 25 1.0∗108

1.21 24 0 78 25 7.6∗107

1.22 17 0 85 25 5.0∗107

1.23 11 0 91 25 3.0∗107
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Figure 5.9: Odds Ratio for different Similarity Ratio Thresholds

5.3 Aggregated Confidence Measure

Although the primary importance of using confidence measures is to have a near if not perfect

accuracy when there is a high level of confidence, it is also important to have a high confidence

a high proportion of the time. Very often using a single confidence measure will result in a high

confidence being achieved only a small proportion of the time. An approach to increasing the

proportion of confident predictions is to use an aggregation approach that involves combining the

results from individual confidence measures. Some possible aggregation approaches include:

(i) Summing the results from each of the 5 individual measures evaluated at the same value of

k and comparing the sum against a threshold;

(ii) Using the best threshold for each individual measure and indicating confidence if a certain

number of the measures indicate confidence;

(iii) Using a fixed k across all measures and indicating confidence if a certain number of the

measures indicate confidence.

We found that the simplest and most effective method of aggregating the results is to assign

confidence to a prediction if any of the individual measures indicated that the prediction was

confident as in (ii) above. We call this measure the Aggregated Confidence Measure. The algorithm

for using this measure has two stages:

(i) calculation of the constituent measure threshold values in a pre-classification stage,

(ii) determination of the aggregated confidence measure during classification.

The pre-classification stage involves pre-processing of the case-base to identify the best threshold

for each individual constituent measure. This is performed in the manner described in Section 5.2.
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A threshold consists of two values; the k value indicating the number of neighbours to use in

the calculation and the actual threshold value above which the prediction is considered confident.

These constituent measure thresholds are stored.

The aggregated confidence measure is then determined during classification for each target

case that is classified. This is performed by first calculating the actual score for each individual

constituent measure for the target case. The aggregated confidence measure specifies that if at

least one of the calculated scores for the individual measures is equal to or greater than the stored

threshold value for that measure, confidence is expressed in the classification.

5.4 Confidence Evaluation

In this section we present some of the results from an evaluation of the assessment of confidence

in CBR systems. These evaluations examine confidence accuracy on unseen data and the effects

of the addition of cases to a case base on confidence prediction.

5.4.1 Real-time Confidence

The first analysis on confidence measures was to check the accuracy of the confidence measures that

were being used during the realtime evaluation of the developed Bronchiolitis Decision Support

System (Section 6.3 provides a description of the developed system). In the first part of this

evaluation 9 out of the 46 predictions had a high confidence while in the second part of the

evaluation 12 out of the 65 predictions had a high confidence. However, when the recommendation

of each of these cases were compared to the final disposition1 the recommendation was correct 8

out of the 9 times in the first part of the evaluation and 10 out of the 12 times in the second part.

From these results in the bronchiolitis domain we can see that we were achieving a high confidence

only 18-20% of the time. This level of achieving a high confidence is extremely low as it is only

occurring at most one out of every five predictions.

5.4.2 Confidence in relation to Case-base size

To try and address this low level of confidence we performed an analysis to see how the confidence

varies in relation to the case-base size. The first part of this analysis was on the Bronchiolitis

domain. Figure 5.10 shows the accuracy of the system and confidence levels for the aggregated

confidence measure and the individual confidence measures for case-base sizes varying in intervals

of 10 from 100 to 330 using a leave-one-out validation. It should be noted that as the case-base

increases in size the cases that are added are such that the original ordering of the case-base is
1If a patient is discharged a follow up call is made three days later to make sure the patient was not subsequently

admitted to hospital with bronchiolitis. If the patient was subsequently admitted their final disposition is an
admission.
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maintained. This is to mimic how the system would have operated if the confidence measures were

retrained each time after 10 cases were added to the system in real life.
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Figure 5.10: Accuracy and Confidence levels in relation to case-base size for the Bronchiolitis
domain

Overall the accuracy remains relatively stable as cases are added to the case-base with the

accuracy varying by 5% throughout the evaluation with only a slight fall off in accuracy as the

case-base contains more than 230 cases. The results from the confidence measures present a more

interesting picture. The general trend for the measures are to initially increase in the percentage of

the time that they yield a high confidence and then to decrease as the case-base continues to grow.

This evaluation was repeated on a randomised version of this case-base to see if this characteristic

was an artefact of the order of the cases. Although the overall confidence level never reached the

same maximum value, the same trend of rising initially and then falling off could still be seen.

To check if this trend was due to noise in the case-base, noisy cases were removed from the

case-base. The techniques we used for noise reduction were Repeated Edited Nearest Neighbour

(Tomek 1976) and Blame Based Noise Reduction (Delany and Cunningham 2004). The results

for confidence and accuracy after two different runs of each of the noise reduction techniques are

shown in Table 5.2. After noise reduction the confidence levels and accuracy levels have actually

decreased.

This evaluation was also performed on the Breathalyser domain. In a similar manner the

confidence level and accuracy was calculated for different sizes of the case-base from 50 to 120

cases. The results of this evaluation are shown in figure 5.11. In this situation significantly higher
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Table 5.2: Confidence and Accuracy after noise reduction

Number of
Cases

Aggregated
Confidence

Level

Accuracy
Level

Original
Accuracy

RENN run 1 271 15% 65% 66%
RENN run 2 291 15% 63% 65%
BBNR run 1 277 19% 64% 65%
BBNR run 2 308 15% 64% 66%

values for the confidence level were obtained, however the overall trend of a decreasing confidence

level as the case-base grows is again apparent.
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Figure 5.11: Accuracy and Confidence levels in relation to case-base size for the Breathalyser
domain

These results show how sensitive confidence measures are to new cases being added to a case-

base. Further evidence of this sensitivity is shown by the variance in parameters for the different

confidence measures when retrained after new cases are added. Table 5.3 shows the optimum k

and threshold values for each of the measures for the different case-base sizes for the Bronchiolitis

domain. The variance in these values further show that the confidence measures are sensitive to

new cases.

While it is clear that it is useful to produce estimates of confidence, it is clear that generating

reliable estimates is not straightforward. In this section we saw that the addition of cases to a
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Table 5.3: k and threshold, t, levels for different case-base sizes in the Bronchiolitis domain.

Number
of

Cases

Similarity
Ratio

Exp Case
Similarity

Ratio

Average NUN
Index

Similarity
Vote

Nearest
Neighbour
Accuracy

k t k t k t k t k t

100 5 1.21 4 1.04 13 24 23 1829 27 22
110 13 1.11 11 1.02 17 27 4 467 23 20
120 13 1.11 11 1.02 26 35 3 362 19 15
130 12 1.12 12 1.02 19 24 4 414 29 21
140 7 1.13 13 1.02 27 32 4 414 17 14
150 12 1.12 12 1.01 27 33 5 518 18 14
160 29 1.11 29 1.09 1 6 4 486 8 7
170 1 1.17 17 1.05 1 6 30 2474 14 12
180 14 1.10 30 1.05 1 7 4 486 13 12
190 17 1.11 18 1.05 14 33 4 486 17 15
200 18 1.11 19 1.05 13 33 30 2654 10 9
210 29 1.11 29 1.08 7 24 4 486 22 20
220 6 1.14 30 1.08 11 31 5 616 13 12
230 6 1.14 1 1.06 7 28 5 616 15 14
240 6 1.14 30 1.07 8 31 5 616 13 12
250 3 1.23 26 1.05 10 32 5 591 14 13
260 3 1.23 26 1.05 12 35 5 591 17 16
270 2 1.23 23 1.04 9 33 5 591 25 24
280 1 1.22 27 1.02 17 51 1 142 15 14
290 1 1.22 1 1.04 14 47 3 420 16 15
300 1 1.22 1 1.04 14 48 3 420 17 16
310 1 1.22 1 1.04 14 50 3 420 17 16
320 1 1.22 1 1.04 16 55 3 420 23 22
330 1 1.22 1 1.04 18 59 4 560 14 13

case-base can have detrimental effects on confidence estimation. These detrimental effects can still

occur even if the confidence measures are updated after the addition of cases. These findings agree

with those of Cheetham and Price (2004) who showed that it is difficult to avoid the situation where

predictions labelled as confident prove to be incorrect. They also emphasise that the confidence

estimation mechanism will need to be updated over time as the nature of the problems being solved

can change.

5.4.3 Confidence in Spam Filtering

These confidence measures were also used for generating estimates of classification confidence for a

case-based spam filter called ECUE (Email Classification Using Examples) (Delany, Cunningham

and Coyle 2004, Delany, Cunningham, Doyle and Zamolotskikh 2005). ECUE has the advantage of

being very effective at tracking concept drift but this requires the user to identify false positives and

false negatives so that they can be used to update the case-base. Concept drift occurs as a result

of the constantly evolving nature of spam. Identifying false negatives is not a problem because

they turn up in the Inbox (i.e. spam that has been allowed through the filter). Identifying false
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positives involves monitoring a spam folder to identify legitimate email that has been classified as

spam. Our objective here is to be able to partition this class so that the user need only monitor a

subset - the set for which the confidence is low.

A straightforward success criterion in this regard is the proportion of positives for which pre-

diction confidence is high and the prediction is correct (clearly there cannot be any false positives

in this set). A mechanism that could label more than 50% of the positive class (i.e. classified as

spam) as confident and have no false positives in this set would be useful. The lower-confidence

positives could be allowed into the Inbox carrying a Maybe-Spam marker in the header or placed

in a Maybe-Spam folder that would be checked periodically.

In order to assess the performance of the confidence measures in the spam domain we evaluated

each of them on a number of spam datasets. Five datasets were used. Each consisted of legitimate

and spam emails received by a single individual over a period of time. Each dataset represents a

different period of time for a single individual. Two different individual’s mail were used over all

datasets. The legitimate emails in the datasets include a mixture of business, personal and mailing

list emails. Case-bases were built from each of the five original datasets. Case representation

details are available in (Delany, Cunningham and Coyle 2005, 2004).

The evaluation involved performing a leave-one-out validation on each dataset for each measure.

We evaluated each measure using k neighbours from k = 1 up to k = 15 and identified the

confidence threshold, over all the k values, that gave us the highest proportion of correctly predicted

spam emails when there were no incorrect predictions (i.e. false positives). This is illustrated in

Figure 5.12.
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Figure 5.12: Criteria used to identify the best confidence threshold level in the spam domain

The selection of the optimum parameters, the k and threshold values, were selected using a

slightly modified technique to that described in Section 5.1. In this situation there is no tolerance

for any false positives, so instead of using the parameters that maximised the odds ratio the

selected threshold value was the one that maximised the number of spam correctly predicted with

high confidence, while the number of incorrect predictions with high confidence was zero.
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The results of this evaluation are presented in rows 1 to 5 of Table 5.4. It details for each

measure the highest percentage confidence that can be achieved on each dataset. This is the

proportion of spam predictions that are made with high confidence. In all situations no highly

confident incorrect predictions were made so no false positives are included in this proportion. In

effect, this proportion of the spam can be ignored by the user, whereas the remaining percentage

would have to be checked by the user. Row 6 of this table shows the highest percentage confidence

that is achievable when the aggregated confidence measure is used. Here we can see that the

aggregated measure resulted in an increase in accuracy in each dataset compared to using a single

measure to assess confidence.

Table 5.4: Best percentage confidence achievable for each spam dataset using different confidence
measures

Confidence Measure Dataset
1

Dataset
2

Dataset
3

Dataset
4

Dataset
5

Average

Similarity Ratio 46% 84% 50% 49% 16% 49.0%
Average NUN Index 23% 76% 75% 41% 44% 51.8%
Similarity Vote 21% 29% 68% 91% 58% 53.4%
Similarity Ratio Within k 21% 29% 71% 91% 57% 54.8%
Average NN Similarity 20% 29% 49% 91% 60% 49.8%

Aggregated Confidence 55.4% 85.4% 83.8% 93.7% 77.3% 79.1%

To evaluate the ACM on unseen data involved building confidence thresholds for the ACM con-

stituent measures on the initial case-base and then classifying the remaining emails using the ACM

to determine how confident the spam predictions are (Delany, Cunningham, Doyle and Zamolot-

skikh 2005). In this way, the test emails were not used in the determination of the confidence

thresholds in any way.

The test emails were presented in date order for classification. Since this email data is subject to

concept drift, ECUE’s case-base update policy was applied to allow the classifier to learn from the

new types of spam and legitimate email presented. The update policy has a number of components;

an immediate update of the case-base with any misclassified emails when a FP occurred, a daily

update of the case-base with any other misclassified emails that occurred that day, and a monthly

feature reselection process to allow the case representation to take any new predictive features into

account. In order to keep the confidence thresholds in line with the updates to the case-base an

update policy for the confidence thresholds was also applied. This policy had two components;

the confidence thresholds were updated whenever a confident FP email occurred and also after a

monthly feature reselect.

Tables 5.5 and 5.6 show the results of testing the performance of the ACM on unseen data

using the two datasets 6 and 7. The tables present the accumulated monthly results for each

dataset listing the total number and types of emails that were classified, the percentage of incorrect

73



spam predictions (i.e. FPs) made (labeled %FP classified) and the percentage of incorrect spam

predictions made with high confidence (labeled %Confident FPs). The table also gives the total

percentage of spam predictions with high confidence (labeled %Confidence).

Table 5.5: Performance of ACM on unseen data using Dataset 6
Month 1 2 3 4 5 6 7 8 Overall
Number of emails 772 542 318 1014 967 1136 1370 1313 7382
Number of Spam 629 314 216 925 917 1065 1225 1205 6496
Number of Non Spam 93 228 102 89 50 71 145 108 886
%FPs classified 4.3% 2.6% 1.0% 1.1% 6.0% 1.4% 0.0% 1.9% 2.0%
%Confident FPs 0.0% 0.9% 0.0% 1.1% 0.0% 0.0% 0.0% 0.9% 0.5%
%Confidence 70% 87% 76% 94% 89% 73% 77% 99% 85%

Table 5.6: Performance of ACM on unseen data using Dataset 7
Month 1 2 3 4 5 6 Overall
Total emails classified 293 447 549 693 534 495 3011
Number of Spam 142 391 405 459 406 476 2279
Number of Non Spam 151 56 144 234 128 19 732
%FPs classified 0.7% 3.6% 3.5% 2.6% 1.6% 0.0% 2.2%
%Confident FPs 0.0% 3.6% 0.7% 0.4% 1.6% 0.0% 0.8%
%Confidence 95% 95% 87% 64% 89% 88% 85%

In both datasets predictions of confidence are high, averaging 85% in both cases with a lowest

monthly level of 64%. This is the percentage of spam predictions that can be ignored by the user,

the remaining spam predictions can either be flagged in the Inbox as Maybe Spam or placed in a

separate Maybe Spam folder for the user to check.

However in some of the months the ACM has resulted in confident incorrect predictions. Al-

though the actual numbers of emails are low (four emails for Dataset 6 and six emails for Dataset

7) the ideal situation is one where all incorrect predictions have low confidence and will be flagged

for the user to check. FPs flagged as confident will end up in the spam folder and may be missed by

the user. Examining the confident FPs, three are emails from mailing lists and two are responses

to Web registrations which users may not be too concerned with missing. The remaining five are

important, some work related and one even a quotation in response to an online car hire request.

It is clear that we are approaching the limits of the accuracy of machine learning techniques in

this domain. We see two possibilities for addressing these FPs. Close examination of such emails

may identify domain specific characteristics that could be used as a feature or number of features

in the case representation. Secondly, most deployed spam filtering solutions do not rely on one

approach for filtering spam, they combine a number of techniques including white and black listing,

rules, collaborative and learning approaches. Incorporating additional techniques into ECUE to

add to its case-based approach could help in catching these outlier FPs.
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5.5 Conclusions

In this chapter we introduced a number of confidence measures (Section 5.1) and how they can be

amalgamated into an ensemble to increase the occurrence of high confidence predictions (Section

5.3). Section 5.4 presented the results from evaluations on confidence measures. In the next

chapter, Chapter 6, we describe the implementation of a system that use these measures and the

explanation utility framework, described in Chapter 4, in a real-time decision support system for

the Bronchiolitis domain.
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Chapter 6

Implementation

In this chapter we implement a real time CBR system for predicting dispositions and producing

explanations for patients presented to the Emergency Department of the Kern Medical Center

with Bronchiolitis. This system uses the CBR techniques described in Chapter 2, the explanation

utility framework presented in Chapter 4 and the confidence measures described in Chapter 5. The

Bronchiolitis Decision Support System (Section 6.3) is implemented in Java based on the Fionn

framework which uses the CBML markup language. CBML and Fionn are described in more detail

in Sections 6.1 and 6.2 respectively.

6.1 CBML

XML (eXtensible Mark-up Language) is currently commonly used for marking up structured,

knowledge-rich data. XML is a description language that supports meta-data descriptions for

particular domains and these meta-descriptions allow applications to interpret data marked-up

according to this format. Some useful advantages of using XML to represent data include: inter-

operability, ease of reuse, as well as the application-independent exchange of data over existing

network protocols and access for developers to the entire XML tool-set. This tool-set includes

fast, reliable document parsers, e.g. SAX and DOM, validating documents e.g. DTDS and XML-

Schema, and document transformers, e.g. XSLT.

As previously mentioned in Section 2.4 there have been numerous XML-based CBR represen-

tation formats. The earliest work in the CBR community on an XML-based case representation

language was the introduction of CBML (Case Based Markup Language) by Hayes et al. (1998) The

main motivation behind this first version of CBMLv1 was to facilitate the storage and distribution

of case data over a network, thus allowing the creation of distributed CBR applications.

CBMLv1 was represented by two documents; the case document and the structure document.

The case document contained the contents of the case and the structure document contained the

definition of the case as well its constituent features. It was possible to define symbol, integer
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and string feature types. The case structure also contained a simple similarity measure represen-

tation containing feature weights and some simple local similarity measures in the case structure

definition.

6.1.1 CBMLv3

CBML has continued to develop to the point where it currently is at CBMLv31 Coyle et al. (2003,

2004). The maturity of XML-Schema led to the redevelopment of CBML and now the description

of CBML is stored in an XML-Schema document — the CBML Schema. The CBML Schema is

shown in Appendix C.1. Only documents that follow this schema exactly can be considered valid

CBML.

CBMLv3 continued the tradition of separating structure from content. New feature types were

added, the ability to restrict case data and support for hierarchical cases along with flat cases were

also added. We also separated the similarity measure description from the structure document and

stored it in a new CBML document — the similarity profile document. Transferring structural

and similarity information away from the case document resulted in a significant simplification

and condensing of the case content document. The remainder of this section will give an overview

of each of the CBML documents with emphasis on the similarity profile document. Example case

structure, case content and similarity documents for the Breathalyser domain can be found in

Appendix D.

6.1.2 Case Structure Document

The case structure document defines the hierarchy and cardinality of its features, their types and

possible restrictions on their values. A case structure document is made up of feature structure

definitions describing the features that can occur in a case. The feature structure defines the

feature’s type, its value restrictions, and other attributes. Table 6.1 describes the four attributes

of a feature structure description. If any of these attributes is omitted from a feature structure

definition the parser assumes the default values.

Table 6.1: Description of a CBML Feature Structure

Attribute Definition Default
name The name of the feature — used for identification N/A
discriminant If true this feature is used in the CBR Process true
mandatory If true this feature is required to appear in every case true
solution If true this feature is the solution component of the case.

N.B. only one feature can be defined as a solution feature
in a case.

false

1The CBML web page is located at http://www.cs.tcd.ie/research groups/mlg/CBML/
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Figure 6.1 shows an example feature structure definition. This feature is called Units and is

the units consumed feature in the Breathalyser domain (Section 4.2.1). Because the definition

does not have an explicit value for the discriminant and solution attributes it takes the default

values (true and false respectively). The tag <double/> defines the feature’s type as a double

feature with the enclosed tags further restricting the feature to only contain values in the range

of 0-30. There are seven possible feature types in CBML: symbol, integer, double, boolean,

string, taxonomy and complex. More information on defining other feature types can be found

in Coyle et al. (2003).

<feature name=”Units”>
<double>

<minInclusive value=”0.0”/>
<maxInclusive value=”30.0”/>

</double>
</feature>

Figure 6.1: An Example Feature Structure Definition

The Case parser requires the case structure document to understand and convert a case content

document into a case or case-base. If it parses a case from a content document that does not follow

the structure definition exactly it will fail. In effect, this means that the case structure document

is used to validate the case content document. This validation serves to protect the CBR system

from an unexpected failure due to bad case or feature content. The Case Structure document is

itself validated against the CBML Schema document by the CBML document parser.

6.1.3 Case Content Representation

The syntax of a case is described in CBML as follows: feature values are encased by a pair of XML

tags with the feature name. This makes them easy to read and easy to translate into other formats

since their tags do not contain attributes. Figure 6.2 shows an example case from the Breathalyser

domain in CBML format. The values of each feature are enclosed within the feature tags, i.e. the

value for the feature Units is 5.2.

<case name=”xxxxxxx”>
<Kgs>51.0</Kgs>
<Duration >120.0</Duration>
<Gender>Female</Gender>
<Meal>Lunch</Meal>
<Units >5.2</Units>
<BAC>Over</BAC>

</case>

Figure 6.2: An Example CBML Case
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6.1.4 Similarity Measure Representation

In Section 2.5 we defined the similarity between two cases as the amalgamation of the local simi-

larities of features common between two cases:

Sim(Q,X) =
∑

f∈F

wf σ(qf , xf ) (6.1)

where wf is the feature relevance weight and σ(qf , xf ) is the local similarity measure for feature f.

In order to provide a representation of the similarity measure it is therefore necessary to represent

both a relevance weight and a description of the local similarity measure for every feature. These

are defined in the similarity profile document Coyle et al. (2004). Similarity profile documents are

defined by the CBML Schema and are validated by the CBML parsers in the same way as case

structure documents.

Feature similarities have attributes containing their name and the relevance weight attached

to them in the amalgamation function. The relevance weight is simply an attribute called weight

that can have any floating-point value. Within each feature-similarity description there is also

the description of the local similarity measure. These fall into one of four categories: exact,

difference-based, array or complex. These local similarity types are described in the following

sections.

Exact Similarity Measures

This type of similarity measure is based on exact matching. Similarity is assigned the value 1 if two

feature values are equal, otherwise it is assigned the value 0. We represent this type of function as

an exact type similarity function. Figure 6.3 shows the representation of a local similarity measure

for a feature called Gender that uses an exact similarity measure. Gender is a symbol feature used

in the Breathalyser domain. Gender is defined as having a relevance weight of 0.25, and that it

uses an exact similarity function.

<feature name=”Gender” weight=”0.25”>
<exact/>

</feature>

Figure 6.3: An Example Exact Similarity Measure Definition

Difference-based Similarity Measures

In Section 2.5.2 we described difference based similarity measures. The similarity graphs are defined

in CBML by points that are on the graph. By defining a suitable set of points, any piece-wise linear

relationship between similarity and difference can be represented. This graph may be symmetrical

(the default) or asymmetrical. A symmetrical graph only deals with absolute difference values.
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Figure 6.4 shows the representation of an asymmetrical difference function similarity measure for

the feature price from the PC Sales domain (Section 2.5.3). Price is a numeric (double) feature

that represents the price of a PC. Price is defined as having a relevance weight of 1.0. A graph

of similarity versus difference is defined with a number of point definitions. For demonstration

purposes, this graph is also plotted. From the graph, the calculated similarity between two prices

with a negative difference of e100 is 0.5 (whereas a difference of positive e100 would have yielded

a similarity of 1).
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<feature name=”pr i c e ” weight=”1.0”>
<graph type=”asymmetrical”>

<point difference=”− I n f i n i t y ” similarity=”0”/>
<point difference=”−200” similarity=”0”/>
<point difference=”0” similarity=”1”/>
<point difference=”I n f i n i t y ” similarity=”1”/>

</graph>
</feature>

Figure 6.4: An Example Difference-based Similarity Measure Definition

Array Similarity Measures

The array similarity measure (Section 2.5.1) is defined by specifying the exact similarity for each

combination of feature value. If a similarity value is not defined in this array, the exact similarity

measure will be used. Figure 6.5 shows the CBML representation of an array similarity measure

for the feature meal. Meal is a symbolic feature used in the Breathalyser domain. Meal is defined as

having a relevance weight of 0.75. The similarity definition also defines an array of every possible

feature value combination with a similarity value for each, e.g. σMeal (‘none ′, ‘snack ′) = 0.8. The

array as defined is also shown in this figure.
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<feature name=”meal” weight=”0.75”>
<array>

<primary name=”none”>
<secondary name=”snack” value=”0.8”/>
<secondary name=”lunch” value=”0.4”/>

</primary>
<primary name=”snack”>

<secondary name=”none” value=”0.8”/>
<secondary name=”lunch” value=”0.8”/>
<secondary name=” f u l l ” value=”0.4”/>

</primary>
<primary name=”lunch”>

<secondary name=”none” value=”0.4”/>
<secondary name=”lunch” value=”0.8”/>
<secondary name=” f u l l ” value=”0.8”/>

</primary>
<primary name=” f u l l ”>

<secondary name=”snack” value=”0.4”/>
<secondary name=”lunch” value=”0.8”/>

</primary>
</array>

</feature>

none snack lunch full
none 1 0.8 0.4 0
snack 0.8 1 0.8 0.4
lunch 0.4 0.8 1 0.8
full 0 0.4 0.8 1

Figure 6.5: An Example Array Similarity Measure Definition

Complex Similarity Measures

It is impossible to provide for a representation scheme that could cover every possible type of

similarity measure, e.g. polynomial or exponential. If the number of possible values is finite, it

may be appropriate to calculate all possibilities a priori and store them using the array similarity

definition. If this is impossible or impractical it is possible to define a similarity measure externally

from the similarity profile document, e.g. in a Java function or MathML document, and refer to it

using the complex similarity definition. Figure 6.6 shows the representation of a complex similarity

measure for the feature sepal-length that contains a reference to a predefined local similarity

measure (iris.similarity.SepalLength). sepal-length is a numeric (double) feature used

in Fisher’s Iris domain (Fisher 1936). It defines sepal-length as having a relevance weight of

0.25. It also tells the Similarity Profile to use the iris.similarity.SepalLength local similarity

function.

iris.similarity.SepalLength actually refers to a Java class that implements a CBML Sim-

ilarity Measure Interface (shown in Figure 6.7). Any Java class that implements this interface can

be referred to in the CBML Similarity Profile document. It will then be used by the similarity
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<feature name=”sepal−l ength ” weight=”0.25”>
<measure name=” i r i s . similarity . SepalLength”/>

</feature>

Figure 6.6: An Example Complex Similarity Measure Definition

profile to calculate the similarity between feature1 and feature2. In this way CBML similarity

profiles are capable of calling any user-defined local similarity measure. The interface itself con-

tains a single method that takes in two features and returns a double — the similarity value. This

ensures a level of interoperability. However, since complex similarity measures depend on external

resources that are outside the CBML core specification their use is discouraged.

package cbml . cbr ;

public interface Simi la r i tyMeasure extends java . i o . S e r i a l i z a b l e {
double c a l c u l a t e S im i l a r i t y ( Feature f ea ture1 , Feature f e a tu r e 2 ) ;

}

Figure 6.7: The Local Similarity Measure Java Interface

6.2 Fionn

Based on CBML we have also developed a machine learning workbench called Fionn. Fionn

provides a range of machine learning techniques while creating a level of abstraction from the

CBML syntax. Figure 6.8 shows the architecture of Fionn. The core specifications of Fionn are

used by all the other components and CBML makes up an important part of this. Although case-

bases are stored in CBML documents they can also be imported from comma separated files and

arff files (files that are compatible with the Weka toolkit2).

The other main components of the Fionn core are a suite of classifiers (including k-NN, support

vector machines, neural nets, logistic regression, linear regression and näıve Bayes) and an evalu-

ation framework which supports a variety of validation schemes and a selection of error functions.

Much of the current work being done in the Fionn Framework is in developing the CBR Ex-

planations, Feature Selection and Weighting, and Noise Reduction components. There are three

applications currently in development that use the Fionn Framework:

Medical Decision Support As described in this thesis

Spam Filtering Application Delany, Cunningham and Coyle are working on a spam filtering

application called ECUE (E-mail Classification Using Examples) that dynamically adapts to

the changing nature of spam e-mails (Cunningham, Nowlan, Delany and Haahr 2003, Delany,

2www.cs.waikato.ac.nz/ml/weka
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Figure 6.8: The Fionn Workbench

Cunningham, Tsymbal and Coyle 2004). Because of the volume of spam e-mail and its

evolving nature their application uses several case-base maintenance techniques that remove

noisy and redundant cases (Delany and Cunningham 2004). Their application uses many

features of the Fionn framework including the k-NN classifiers and evaluation framework.

The Personal Travel Assistant The Personal Travel Assistant is a flight recommender applica-

tion that uses CBR. It allows users to search multiple flights based on their individual travel

preferences. These preferences are implicitly learned from observations of user behaviour

after a flight is purchased (Coyle 2004).

The CBR explanations component of Fionn is most relevant to our research. This component

contains mechanisms for using the explanation utility measures to select explanation cases (Section

4.3) and for generating discursive text based on the selected features for highlighting (Section 4.4)

and the confidence in a classification (Section 5.1). Following on from using XML, in the form of

CBML, these mechanisms are also based on XML representation schemes. The remainder of this

section will briefly describe the representation schemes for defining explanation measures and the

discursive text.

6.2.1 Explanation Utility Profile

The representation for explanation utility measures extends the similarity representation of CBML.

In this situation there is a set of feature-level explanation utility measures for each possible classi-

fication. The individual measures have the same syntax as the local similarity measures defined in

Section 6.1.4. Figure 6.9 shows part of an explanation document from the Bronchiolitis domain.

In this example there are two sets of explanation utility measures. One for a Discharge classifi-

cation and the other for an Admit classification. Explanation profile documents are also defined
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by a schema document and are validated by the parsers in the same way as case structure and

similarity documents. The explanation schema document is given in Appendix C.2.

6.2.2 Explanatory Text Profile

The explanatory text profile is used to describe the syntax of textual parts of an explanation. The

explanatory text profile is also represented using XML. There are a number of components that

make up this profile. The main component is the actual text to display when a classification is

performed. This component can contain normal text along with dynamic text that is based on

the actual classification and comparisons between the query case and the retrieved explanation

case. The comparisons can highlight features in the explanation case that are supportive of the

classification and features that are not supportive of the classification. The following is a list of

components that are used in generating the dynamic section of the discursive text:

Descriptive Feature Names As certain characters are restricted from being used in XML tags3

this component creates a mapping from feature names used by the system to a more user

friendly syntax. For example in the Breathalyser domain the feature “Units” could be

mapped to “units of alcohol consumed”. This can also be used when displaying a table

containing case details (similar to Table 2.1).

Utility Text This component is used to express differences in feature values in a natural language.

For example if there is a positive difference in age between two cases this could be expressed

as “older” instead of “positive age difference”.

Classification Text text to display based on the classification. For example a predicted disposi-

tion to discharge could be mapped to “discharged from hospital”

Confidence Settings and Confidence Text This component contains information on what mea-

sures and associated k and threshold values to use when calculating confidence. Also con-

tained in this section is the text to display depending on the level of confidence.

The explanatory text profile is also validated against a schema document which is included in

Appendix C.3.

6.3 Bronchiolitis Decision Support System

The Bronchiolitis Decision Support System was developed in Java using the Fionn framework. The

initial use of Fionn was for feature selection (Loughrey and Cunningham 2004) and noise reduction

(Pasquier et al. 2005). The system generates recommendations and explanatory text for patients

presented to the Emergency Department with bronchiolitis. For the most part this text supports
3Tags cannot contain spaces and non alpha-numeric values
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<expdoc>
<exp lanat ion c l a s s i f i c a t i o n=”Discharge”>

<feature name=”Age” weight=”1.0”>
<graph type=”asymmetrical”>

<point difference=”−20.0” similarity=”0.0”/>
<point difference =”0.0” similarity=”0.9”/>
<point difference =”2.0” similarity=”1.0”/>
<point difference =”3.0” similarity=”0.9”/>
<point difference =”20.0” similarity=”0.0”/>

</graph>
</feature>
.
.
.

</explanat ion>
<exp lanat ion c l a s s i f i c a t i o n=”Admit”>

<feature name=”Age” weight=”1.0”>
<graph type=”asymmetrical”>

<point difference=”−20.0” similarity=”0.0”/>
<point difference=”−3.0” similarity=”0.9”/>
<point difference=”−2.0” similarity=”1.0”/>
<point difference =”0.0” similarity=”0.9”/>
<point difference =”20.0” similarity=”0.0”/>

</graph>
</feature>
.
.
.

</explanat ion>
</expdoc>
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Figure 6.9: An Example Explanation Utility Document Definition
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the recommendation; however it can also highlight issues that might support a different disposition

(see Fig. 6.10). The system operates as follows:

• A new patient suffering from bronchiolitis is entered into the emergency department’s records

in the normal way.

• The Bronchiolitis Decision Support System generates a recommendation and supporting

explanation (Figure 6.10). In this system the three most similar cases to a presented target

case are considered. If all three of the most similar cases were discharged than the target case

is classified as a discharge; otherwise an admission is recommended. This biases the system

towards recommending admission.

• The recommended disposition and supporting explanation are presented to any Attending

Doctors, Resident Doctors or Nurse Practitioners dealing with the patient, who then fill out

an evaluation on the recommendation and the explanation. The results from this evaluation

will be presented in Chapter 7.

Figure 6.10 shows an example recommendation and explanatory text for a particular patient.

The first line of the text shows that the system recommends that the patient should be discharged

from hospital. The next paragraph displays the features that it believes supports its recommen-

dation. The third paragraph is included if the system believes that certain features should be

considered before a user accepts the recommendation. Finally the system indicates that it has a

high level of confidence in the recommendation.

6.4 Conclusions

In this chapter we presented the Bronchiolitis Decision Support System that we implemented

for predicting dispositions and producing explanations for patients admitted to the Emergency

Department of the Kern Medical Center with Bronchiolitis. This system was developed using

Fionn and CBML which were described in more detail in Sections 6.1 and 6.2 respectively. In the

next chapter we present an evaluation of this system along with evaluations of the explanation

utility framework described in Chapter 4 and the confidence measures described in Chapter 5.
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Features Patient
Explanation

Case

Age (months) 10.2 6.3
Birth Vaginal Vaginal
Smoking Mother No Yes
Hydration before treatment 5% dehydrated Normal
O2 saturation before treatment 95 95
Retraction severity before treatment Mild Mild
Heart rate after treatment 136 155
Overall increase in work of breathing af-
ter treatment

Mild Mild

Oxygen saturation under 92 after treat-
ment

No (99.0) No (98.0)

Respiratory rate after treatment No (30) No (35)
Temperature over 100.4 after treatment No (98.0) Yes (101.0)
Work of breathing after treatment Improved Same

Disposition Discharge

We suggest that this patient should be discharged from hospital.

In support of this recommendation we have the Explanation Case that
appears to have been sicker than this patient (due to smoking mother,
higher temperature after treatment and worse work of breathing after
treatment) but was still discharged from hospital.

However it should be noted that the patients better hydration before
treatment in relation to the Explanation Case is a feature that goes
against our argument that the explanation case is sicker than the patient.

We have a high confidence in our recommendation

Figure 6.10: Example Case output from the deployed Bronchiolitis Decision Support System.
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Chapter 7

Evaluation

Since the foundations of CBR, CBR researchers have argued that case-based explanations are more

convincing than other types of explanations. The main argument that case-based explanations are

considered to be more convincing is that explanations are based on actual prior cases (Leake 1996).

This is a process that is often present in explanations generated by humans. The first part of our

evaluation was to perform an empirical analysis to test this hypothesis. The results of this analysis

are presented in 7.1.

With empirical evidence that supports the appropriateness of using case-based explanation

the usefulness of the explanation utility framework we introduced in Chapter 4 needed to be

assessed. The following sections of this chapter presents the results from a number of analyses on

the framework. These analyses include:

Usefulness of the Explanation Case (Section 7.2) This analysis was performed on the rec-

ommendations and explanations produced by Bronchiolitis Decision Support System de-

scribed in Section 6.3.

Explanation Case and Nearest Neighbour Comparison (Section 7.3) In this section we

performed direct comparisons between the explanations using the explanation case and ex-

planations using the nearest neighbour in the e-Clinic, Breathalyser and Bronchiolitis do-

mains.

Explanation Case Occurrence (Section 7.4) It is possible that the explanation case can also

be the nearest neighbour. Regardless of the quality of explanations produced using the

explanation case the benefits are not justifiable unless the explanation case is generally not

also the nearest neighbour. Here we investigated how often the explanation case isn’t one of

the three nearest neighbours.

Usefulness of Counter Example (Section 7.5) Including counter examples with explanations

can have the possible benefit of allowing users to realise if an incorrect recommendation has
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been made. In this section we describe an evaluation in which we test if the inclusion of a

counter examples results in any significant benefits for a user.

7.1 Analysis of Case Based Explanations

The first part of our evaluation was to evaluate the usefulness of typical knowledge-light CBR

explanations compared with rule based explanations or no explanations. This evaluation was

performed using an online evaluation with the Breathalyser domain (Section 4.2.1). Eight unique

problem cases were used in the experiment. 37 subjects were presented with each of these problem

cases three times, once with classifications and case-based explanations, once with classifications

and rule-based explanations and once with classifications only without explanation. The rule-based

and case-based explanations were presented together but the order was varied to avoid any bias

due to familiarity. The format in which the cases and explanations were presented to the user is

shown in Figure. 7.1 and figure 7.2. Figure 7.1 shows the case-based explanation while Figure 7.2

shows the rule-based explanation.

The Weka toolkit provides the J48 algorithm, a decision tree-learning algorithm, which is an

extension of the C4.5 algorithm (Quinlan 1993). This code was used to produce the decision

tree from which the rules were extracted (see Figure 7.3). Weka provides code for automatically

extracting rules from a decision tree. This code was not used as the rules it produces are designed to

be applied in order. Because of this, rules late in the order are incomplete if used as explanations.

Instead we extracted complete rules with a comprehensive rule describing each of the possible

paths from the root to the leaves of the tree shown in Figure 7.3. When a new case is passed to

the resulting rule-based system for classification, the classification is produced from the rule that

covers it and the rule is also returned as an explanation(see figure 7.2). A 10-fold cross validation

assessment of the accuracy of the classification system produced a figure of 80%.

The case-based explanation system was also developed on top of Weka. In the similarity metric

used, nominal values such as Gender and Meal simply contribute binary similarity scores. The

accuracy of the case-based classification was assessed using 10-fold cross validation. Using a single

nearest neighbour for classification yielded an accuracy of 81%. In the evaluation, the nearest

neighbour was returned as an explanation of the classification.

The subjects were asked to score how convinced they were by the explanations on a 5-point

scale (No, Maybe No, Maybe, Maybe Yes, Yes). In the evaluation of the results these scores were

interpreted as numeric values from 1-5. The target cases were presented in turn to the subjects

and the subjects were able to backtrack to change their score. The subjects were all staff and

postgraduate students in the Computer Science Department of Trinity College Dublin and it was

explained to them that the objective of the experiment was to compare the usefulness of case-based

and rule-based explanation.
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Target Case 

Kgs  79  

Duration  90  

Gender  Male  

Meal  Full  

Units  10.1   
 

1 Stone = 6 Kgs 
1 Pint = 2.5 Units 

Blood Alcohol Limit = 36ug/100ml  
 

The System predicts that the subject is Over The Limit:  
 

Why?  Does this prediction convince you? 

This has been calculated by 
comparing the above case to the 
following similiar case: 

  Weight: 79 Kgs 

  Duration: 240 Mins 

  Gender: Male 

  Meal: Full 

  Units 9.6 

  
Blood Alcohol 
Level 

37 ug/100ml 
 

No  Maybe  Yes 

     

 
Maybe 

No 
 

Maybe 
Yes 

 
 

Next Case  

[2 / 24]  

Figure 7.1: An example case-based classification and explanation from the experiment
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Target Case 

Kgs  79  

Duration  90  

Gender  Male  

Meal  Full  

Units  10.1   
 

1 Stone = 6 Kgs 
1 Pint = 2.5 Units 

Blood Alcohol Limit = 36ug/100ml  
 

The System predicts that the subject is Over the Limit  
 

Why?  Does this prediction convince you? 

Satisfies the following rules: 
 
Rule: Units > 9.1 AND Kgs > 71 
AND Meal = Full  

No  Maybe  Yes 

     

 
Maybe 

No 
 

Maybe 
Yes 

 
 

Next Case 

[10 / 24]  

Figure 7.2: An example rule-based classification and explanation from the experiment

Out of the eight unique problem cases an incorrect classification coupled with a poor explanation

was included in each category to help assess the attention paid by subjects to the evaluation. The

average rating for these poor classifications was 1.5 while the average for the other classifications

was 3.9 (on a scale of 1-5). The ratings for these poor classifications were not considered further

in the evaluation. The averages of the remaining ratings are shown in Figure 7.4.

We used the Student’s paired t-test (Gosset 1908) to assess the statistical significance of the

usefulness of case-based explanations over rule-based explanations and against not using explana-

tions at all. This distribution is useful in estimating significance when the sample size is small.

This is a parametric test that looks at the evaluation differences between two techniques. Let xi

and yi be the evaluation value for user i using techniques A and B respectively and di be the

difference between the evaluations. Using Equation 7.1 we can calculate a value for the paired t:
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Units

No

<=5.9 >5.9

Meal

Yes

=None

No

=Snack =Lunch =Full

Gender Meal

=Male

Yes

=Female

Kgs

Yes

<=66

Units

<=66

No

<=15.8

Yes

>15.8

Yes

<=71 >71

Units

No

<=9.1 >9.1

Yes

Figure 7.3: The decision tree on which the rule-based explanation system was built

1

1.5

2

2.5

3

3.5

4

4.5

5

No Explanation Case-Based Rule-Based

Figure 7.4: The average ratings of the three alternative classification and explanation systems
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t =
d̄

σ/
√

N
(7.1)

where d̄ is the mean difference for all the evaluations, N is the number of evaluations and σ is the

standard deviation of the differences as given by Equation 7.2.

σ =

√√√√√
N∑

i=1

(di − d̄)2

N − 1
(7.2)

By using the t value, the number of degrees of freedom df , (df = N − 1), and the t test

table (Appendix E) we can test the confidence level that technique A is significantly preferred to

technique B.

The first test was to check that the case-based explanation was statistically better than using

no explanation. Table 7.1 shows the results from this analysis. Here we can see that there is a

99.75% confidence level that case-based explanation is better than no explanation.

Table 7.1: Summary Statistics for case-based explanation against no explanation

Statistic Value

Number Of Samples (N) 37
Degrees Of Freedom (df) 36
Sample Standard Deviation (σ) 7.1
Paired Student’s t (t) 3.32
99.75 Percentile Student’s t Distribution (t.9975) 2.75

Table 7.2 shows a summary of the statistical analysis of using case-based explanations compared

to rule-based explanations. This time there is a 99.95% confidence that the case-based explana-

tions are statistically better than the rule-based explanations. Further analysis of the case-based

explanations and rule-based explanations showed that the case-based explanations outperformed

rule-based explanations 105 times, while rule-based explanations outperformed case-based expla-

nations 48 times with 106 draws between the two techniques.

Table 7.2: Summary Statistics for case-based explanation against rule-based explanation

Statistic Value

Number Of Samples (N) 37
Degrees Of Freedom (df) 36
Sample Standard Deviation (σ) 4.75
Paired Student’s t (t) 4.22
99.95 Percentile Student’s t Distribution (t.9995) 3.65
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Although these results show a significant benefit in using case-based explanations over rule-

based explanations, it also shows that there is room for further improvement for knowledge-light

case-based explanations.

7.2 Analysis of the Explanation Case

In the previous section we found empirical evidence that case-based explanations are more useful

than rule-based explanations. In this section we evaluate how useful using an explanation case

selected by the explanation utility framework (Section 4.3) and explanatory text are in supporting

classifications by CBR systems in a real life situation. This evaluation was performed using the

Bronchiolitis Decision Support System that is described in Section 6.3. The system was prospec-

tively validated during the months February to April 2005. After completion of patient care,

the users were asked to fill out an evaluation for each recommendation and explanation that was

produced. The evaluation consisted of three questions:

Question One Do you agree with the suggested course of action?

Question Two Did you find the explanation case useful?

Question Three Did you find the explanatory text useful?

Each of these questions had five options to select from; Definitely Not, No, Maybe, Yes and

Absolutely. Also included in the evaluation was a facility for the user to add any comments they

may have. As a result of feedback from these comments the system was updated half way through

the evaluation period. Therefore the evaluation was split up into two parts. Section 7.2.1 describes

the initial part of the evaluation and the updates made to the system. Section 7.2.2 describes the

results of the evaluation after the update.

7.2.1 Results: Part 1

This part of the evaluation ran until mid March 2005. During this period the system was used for

46 recommendations with a classification accuracy of 72%. In total 82 evaluations were collected;

27 from Residents, 43 from Attendings and 12 from Physician Assistants / Nurse Practitioners

(PAs/NPs)1. Figure 7.5 shows the results from question one of the evaluation. Here we can see

that the users agreed with the recommendations a majority of the time.

The results from question two (Figure 7.6) show that both the Residents and the PAs/NPs

found the explanation case useful a vast majority of the time; the Residents found the explanation

case to be useful 66% of the time while the PAs/NPs found it useful 100% of the time. However

an analysis of the results from the Attendings for this question show that they did not find the

explanation case as useful as the Residents or the PAs/NPs. In this situation the Attendings only

1Attendings have the highest level of expertise. PAs/NPs have less training but more experience than residents.
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Figure 7.5: Q1: Do you agree with the suggested course of action?

found the case to be useful 46% of the time compared to not useful 37% of the time. This pattern

is repeated in the results for question three which examines the usefulness of the explanatory text

(Figure 7.7).
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Figure 7.6: Q2: Did you find the explanation case useful?

An analysis of the comments helped to explain why the Attendings did not find the explanation

case as useful as the Residents or the PAs/NPs. There were a number of comments by Attendings

that complained about the age difference being too great between the explanation case and the

target case to allow a suitable comparison between the two cases. In the comments the Attendings

often suggested that a less marginal case with respect to the patients age would be more useful.

These comments suggested that we should modify the shape of the utility graph for the age

feature to reduce the tendency to invoke extreme example cases. The original explanation utility

measure for age when the classification is discharge is shown in figure 7.8. In this scenario consider

a query case, q, with Age equal to 15 months and a retrieved case, x, with Age equal to 10 months.

The difference between these two values (q−x) is +5. By looking up the graph it can be seen that

a difference of +5 returns an explanation utility of 1.
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Figure 7.7: Q3: Did you find the supporting explanatory text useful?
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Figure 7.8: Original age explanation util-
ity measure for a discharge disposition
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Figure 7.9: Updated age explanation util-
ity measure for a discharge disposition

An explanation utility of 1 is high for an age difference of +5 months if we wish to retrieve

cases that are closer in age to the patient. Figure 7.9 shows the updated explanation utility metric.

Here we can see that the utility of a difference of +5 has now dropped, while smaller differences

remains high.

7.2.2 Results: Part 2

The second part of the evaluation used the updated utility measures as described in the previous

section and ran from mid March until the end of April. A predication accuracy of 80% was achieved

on the 65 patients presented with bronchiolitis during this part of the evaluation. In this part there

were 106 evaluations; 39 from Residents, 59 from Attendings and 8 from PAs/NPs. In question

one we looked at the users overall confidence in the recommendation generated by the system.

Figure 7.10 shows that over 85% of each group had either some confidence or total confidence in

the recommendation.

In question two we were checking to see if the users found the explanation case to be a suitable

case for explaining the recommendation. The results for this question are shown in Figure 7.11.

Here we can see that 54% of Residents, 56% of Attendings and 100% of PAs/NPs found the
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Figure 7.10: Q1: Do you agree with the suggested course of action?

explanation case to be useful. It is the responses on this question from the Attendings that had

the most significant change when compared to the first part of the evaluation. In the first part

44% of Attendings answered yes to this question, while only 2% answered absolutely while in

the second part this increased to 49% and 7% respectively. Although it could be argued that

this increase could be partially attributed to an increase in accuracy of the system from 73% to

80%, it appears that the increase is mainly due to patients of a more similar age being used as

explanation cases. This is shown by a substantial reduction in comments complaining about an

excessive age gap. As more cases are added to the case base this problem should be completely

eliminated. However it should be noted that the increase in acceptance of the Explanation Case

by the Attendings is traded off by a reduction in acceptance with Residents and PAs/NPs. This

shows that different utility measures could be used depending on the persons level of expertise.

This agrees with Sørmo and Cassens (2004) who argue that explanations are both domain and

user dependent, and this should be reflected in the case retrieval process.

0%

20%

40%

60%

80%

100%

Definite ly
No t

No Maybe Yes Abs o lutely

Res idents

Attendings

P A/NP

Figure 7.11: Q2: Did you find the explanation case useful?

Finally in question three we are interested in the quality of the generated explanatory text.
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Figure 7.12 shows the results for this part of the evaluation. As with the explanation case the

majority were happy with the explanatory text. Also in a similar manner to question two there

was an increase in acceptance by Attendings but also a decrease in acceptance by Residents and

PA/NPs when compared to the results from the first part of this evaluation.

0%

20%

40%

60%

80%

100%

Definite ly
No t

No Maybe Yes Abs o lute ly

Res idents

Attendings

P A/NP

Figure 7.12: Q3: Did you find the supporting explanatory text useful?

7.3 Comparison of Explanation Case to Nearest Neighbour

In the last section we presented results that showed that explanation cases, retrieved by explanation

utility measures, are a suitable technique for generating explanations in a knowledge-light CBR

system. In order to determine the full usefulness of these cases a direct comparison against the use

of the nearest neighbour as an explanation needs to be performed. This evaluation was performed

by evaluating domains with a low number of directional features separate to domains with a higher

number of directional features. Table 7.3 shows the number of directional features in the three

domains that we used. From this table we can see that the e-Clinic and Breathalyser domains

have a low number of directional features, having three and four directional features respectively,

compared to the Bronchiolitis domain which has ten directional features. In this section we will

present the results from evaluations on domains with low and high numbers of directional features.

Table 7.3: Directional Features

Domain Number of
Features

Number of
Directional
Features

e-Clinic 5 3
Breathalyser 5 4
Bronchiolitis 12 10

98



7.3.1 Low Number of Directional Features

In order to support the assertion that our explanation cases are in fact better explanations than

the nearest neighbour, we asked an expert in the e-Clinic domain to evaluate some of the results.

The expert was presented with nine target cases and associated nearest neighbour and explanation

cases - labelled as Explanation 1 and Explanation 2. In eight out of the nine cases the domain

expert indicated that the case selected by the explanation utility measure was more convincing

than the nearest neighbour.

Due to a difficulty in obtaining experts in the e-Clinic domain to further our evaluation we

performed a similar evaluation using the breathalyser domain. In this situation ten unique prob-

lem cases were used in the experiment; 5 cases over the legal drink driving limit and 5 cases under

the limit in a random order. Each problem had an associated recommendation and two support-

ive cases; the nearest neighbour and an explanation case retrieved using the explanation utility

measures. To remove bias these two cases were labelled Case 1 and Case 2 and their ordering

randomised. The subjects were asked to select the case that they felt was most supportive of

the recommendation. They had the option to indicate that they found both cases to be equally

supportive or if they found neither case to be supportive. An example case is displayed in figure

7.13.

In total 13 subjects from the Computer Science Department of Trinity College Dublin performed

the evaluation2. The time spent per question was recorded to help assess the attention paid by

subjects to the evaluation. The average time taken to complete the evaluation was over ten

minutes. Any users spending less than five minutes performing the evaluation were removed from

the evaluation.

Table 7.4 shows a summary of the results from this evaluation. Here we can see that the

explanation case was found to be more supportive of the recommendation over five times as often

as the nearest neighbour. On further analysis we can see that the majority of the subjects selected

the explanation case over the nearest neighbour a majority of the time. The only exception to this

was subject 3 who showed a strong preference for the nearest neighbour.

7.3.2 High Number of Directional Features

Both the Breathalyser and the e-Clinic domains have a small number of directional features to

be considered. It has in total five features with the units consumed being the most dominant

feature by far. The Bronchiolitis domain was therefore used to compare the explanation case to

the nearest neighbour. The layout of this evaluation was the same as the evaluation used with the

Breathalyser domain. Again 10 unique problem cases were selected; five with recommendations to

discharge and five with recommendations to admit.
2The subjects were from the Image Synthesis Group and the Centre for Telecommunications Value-Chain-Driven

Research (Subjects were selected to exclude members of the Machine Learning Group).
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7/10  

The system predicts that the target case is Over the limit 

  Target Case Case 1  Case 2  

Weight in Kgs 76 79 73 

Duration of Drinking 240 240 240 

Gender Male Male Male 

Food consumed Full Full Full 

Units consumed 12.4 9.6 12 

Over / Under Limit   Over Over 

 

Case 1   

 

Case 2   

 
Please select the case that you feel is most 
convincing in support of the recommendation 
that the target case is Over the limit. 

Either  Neither  
 

Comments 

 

 7/10  

Figure 7.13: Evaluation of the Explanation Case compared to the Nearest Neighbour in the
Breathalyser Domain.
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Table 7.4: Summary results of Explanation Case v’s Nearest Neighbour in the Breathalyser
domain.

Subject Explanation
Case

Nearest
Neighbour

Neither Either

1 8 2 0 0
2 6 1 1 2
3 0 8 0 2
4 7 0 2 1
5 8 1 0 1
6 7 1 2 0
7 9 1 0 0
8 9 1 0 0
9 9 0 0 1

10 10 0 0 0
11 5 2 0 3
12 9 0 0 1
13 9 1 0 0

Total 96 18 5 11

Table 7.5: Summary results of Explanation Case v’s Nearest Neighbour in the Bronchiolitis
domain.

Subject Explanation
Case

Nearest
Neighbour

Neither Either

1 6 4 0 0
2 2 8 0 0
3 1 9 0 0
4 4 1 1 4
5 1 5 0 4
6 1 8 0 1
7 1 7 0 2
8 1 8 0 1
9 6 2 0 2

10 0 8 1 1
11 1 1 3 5
12 7 2 1 0
13 1 2 1 6
14 0 7 0 3

Total 32 72 7 29

The evaluation was performed by 14 subjects. The subjects were all staff from the Emergency

Department of Kern Medical Center, Bakersfield, California. Table 7.5 shows a summary of the

results from this evaluation. In this situation the nearest neighbour was considered to be more

supportive of the recommendation than the explanation case.

It is clear that the explanation framework works well for the e-Clinic and Breathalyser domains

but is not favoured in the Bronchiolitis domain. We feel this is because of the increased complexity
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of the Bronchiolitis cases which have 10 directional features compared to three and four respectively

in the e-Clinic and Breathalyser domains.

7.4 Explanation Case Occurrence

An important question is, how often will a case selected using the explanation utility measures

actually be different to the nearest neighbour. In case-based explanation using nearest neighbours,

it is reasonable to assume that explanation will be based on the top cases retrieved. This evaluation

involved performing a leave-one-out validation on the Breathalyser, Bronchiolitis and e-Clinic

datasets to see how often cases selected by the explanation utility measure were not among the

nearest neighbours (the top three were considered). The results of this evaluation are shown

in Table 7.6. Here we can see that the explanation case was found outside the three nearest

neighbours a majority of the time. Thus, useful explanation cases - according to this framework -

are not necessarily nearest neighbours and would not normally be presented to the user.

Table 7.6: Explanation Case Usage

1st Nearest
Neighbour

2nd Nearest
Neighbour

3rd Nearest
Neighbour

Total first 3
Neighbours

Breathalyser 10% 7% 14% 31%
Bronchiolitis 18% 13% 10% 41%
e-Clinic 4% 3% 3% 10%

7.5 Counter Example

The explanation utility measures attempt to retrieve cases that lie between a problem case and

the decision boundary. A possible improvement to just displaying the explanation case is to also

display a counter example. The HYPO system (Ashley 1989) contests arguments by also citing a

past case as a counter example. The motivation for showing the counter example is to give the user

a sense of the “robustness” of the classification. If the nearest counter example is quite different

to the query case then the user can have some confidence that the recommendation is correct. If

the counter example is close to the query then classification may be more marginal. The counter

example could play an important role when classification is incorrect as it could show that the

situation is marginal. However one problem with displaying the counter example is that it adds

to the amount of information a user has to process when presented with a recommendation and

explanation. This can cause information overload for the user and end up confusing the user.

To test the usefulness of displaying a counter example we set up an evaluation using the Bron-

chiolitis domain. The evaluation was made up of ten unique problem cases; 5 with correct recom-
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mendations and 5 with incorrect recommendations randomly order. For each of the problem cases

subjects were presented with the problem case, recommendation, explanation case and counter

example. The counter example was selected as the most similar case with a different classification

to the recommendation. The evaluation comprised of two questions:

Question One Do you consider the recommendation to be correct?

Question Two Do you think the counter example was useful?

Each of these questions were scored on a 5-point scale using five options to select from; Absolutely

Not, No, Maybe, Maybe Yes and Yes. Also included in the evaluation was a facility for the user

to add any comments they may have and the ability to backtrack to change their score. In the

evaluation of the results these scores were interpreted as numeric values from 1-5. Figure 7.14 shows

an example from this evaluation. The subjects were again staff from the Emergency Department

of Kern Medical Center, Bakersfield, California. The time spent per question was recorded to help

assess the attention paid by subjects to the evaluation.

In total 12 subjects performed the evaluation. Table 7.7 shows the average ratings on a scale

of 1-5 for both questions amongst the 12 subjects for the correct and incorrect recommendations.

The results from question one show that users had a good understanding of the accuracy of the

recommendations. The average rating for correct recommendations is 4.6 out of a possible max of

5. On the other hand incorrect recommendations had an average rating of 2.9. The results from

question two present a more interesting picture. The average rating for the incorrect recommenda-

tions is higher than for correct recommendations. This shows that users found the inclusion of the

counter example more useful when they believed that the case had an incorrect recommendation

than when it had a correct recommendation. In spite of the subjects finding the counter example

useful for detecting incorrect recommendations overall they did not find the counter example very

useful. This is shown by the poor overall ratings for question two where the average value of use-

fulness of the counter example for incorrect recommendations of 3.3 equating to a slightly positive

maybe and the average rating for correct recommendations of 2.9 equating to a slightly negative

maybe.

Table 7.7: Results from the evaluation of the usefulness of using a counter example in explanations.

Q1 Q2

Average Rating Correct Recommendations 4.6 2.8
Average Rating Incorrect Recommendations 2.9 3.3

We conclude from this that any benefits the counter example might offer in providing insight

on incorrect recommendations will be more than offset by creating confusion around correct rec-

ommendations.
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7/10  

The system predicts that the target case should be Discharged 

  Target Case 
Explanation 

Case  
Counter 
Example  

Age (months) 3.2 2 1 

Birth Vaginal Vaginal Vaginal 

Smoking Mother False True False 

Hydration before treatment Normal Normal Normal 

O2 saturation before treatment 99 99 97 

Retraction severity before treatment Mild Mild Mild 

Heart rate after treatment 151 158 170 

Overall increase in work of breathing 
after treatment 

None None None 

Oxygen saturation under 92 after 
treatment 

False False False 

Respriratory rate over 60 after treatment False False False 

Temperature over 100.4 after treatment False False False 

Work of breathing after treatment Improved Improved Improved 

Disposistion   Discharged Admitted 

  
Absolutely 

Not 
No Maybe 

Maybe 
Yes 

Yes 

Q1. Do you consider the 
recommendation to be correct?      

Q2. Do you think the counter example 
was useful?      

  

Figure 7.14: Evaluation of the usefulness of using a counter example in explanations.
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7.6 Conclusion

The first part of the evaluation performed in this chapter was to evaluate the effectiveness of case-

based explanation over rule-based explanations or not using explanations at all. This evaluation

found that case-based explanations were statistically more convincing than the alternatives.

The next stage was to evaluate the explanations produced by the explanation utility framework

described in Chapter 4. This evaluation was performed using the Bronchiolitis Decision Support

System described in Section 6.3. The results from this evaluation showed a high acceptance for both

the explanation case and the explanatory text. The most significant finding from this evaluation

was the need to update the utility metrics for the feature Age. This shows that a major benefit of

using the utility measures is the ease of changing the retrieval preference without a major workload.

The results of an evaluation that compared the usefulness of this explanation case to the

simple alternative of selecting the nearest neighbour showed that in the absence of explanatory

text the nearest neighbour was found to be more useful than the explanation case in a domain

with a high number of directional features. While the benefit of the explanation case over the

nearest neighbour is lost in domains with a high number of directional features the knowledge-

light explanation framework still offers the benefit of the explanatory text.

The final part of the analysis of the explanation utility measures was to determine how often

the explanation case is one of the nearest neighbours. The results on three domains showed that

for over a majority of the time the explanation case was not one of the three nearest neighbours

and at most was the nearest neighbour 18% of the time.

The final part of out evaluation was on the usefulness of the counter example in explanations.

Although the counter example proved to be of some benefit for users when an incorrect recommen-

dation was made overall it did not show any significant benefits as it seemed to be a hinderance

when correct recommendations were made.
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Chapter 8

Conclusions and Future Work

8.1 Overview

This thesis described the Bronchiolitis Decision Support System, an application for recommending

if a child presented to an Emergency Department should be admitted or discharged. These type of

systems often fail as users are not convinced by their recommendations. Using case-based reasoning

we have developed an explanation utility framework and confidence assessment system that can

be used to produce more convincing explanations.

Although our explanation utility framework and confidence assessment system described in

this thesis were developed with the Bronchiolitis Decision Support System in mind, we believe

that these techniques can be applied to other systems. This is supported by our evaluations of

the techniques in both the e-Clinic and Breathalyser domains. Also the success of the confidence

measures in the spam domain, shows their potential for use in a wide range of CBR Systems.

8.2 Case-Based Explanation

The first stage of our work was to show that case-based explanations are in fact a convincing method

for developing explanations. We performed an evaluation of case-based explanations against rule-

based explanations and having no explanations. The results of this evaluation showed, with a

statistical significance, that case-based explanations are more convincing than the alternative ap-

proaches. This provided concrete evidence to the usefulness of case-based explanations which has

been argued by the CBR community for years.

8.3 Explanation Utility Framework

The explanation utility framework we developed consists of two parts. The first part is the re-

trieval of the most suitable case to use as an a fortiori argument. A real time evaluation of these
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explanation cases showed that they are useful for producing convincing explanations. The second

part of the framework is the generation of explanatory text to accompany the explanation case

as the part of the overall explanation. Evaluations showed that this text is useful in supporting

explanations. In particular the explanatory text is more beneficial as the number of directional

features increases.

8.4 Assessing Confidence

We implemented confidence measures for use in case-based systems. These measures are generally

based on the similarity measures used for retrieval. The measures attempt to approximate the

distance of a problem case to the decision boundary. The greater the distance the higher the

confidence level. Although the confidence measures worked well in the Spam and Breathalyser

domains they did not perform well in the Bronchiolitis domain. In our evaluations we discovered

that these types of measures are highly influenced by the inclusion of new cases to the case-base.

Unfortunately these influences generally have a detrimental affect on confidence levels.

8.5 Bronchiolitis Decision Support System

We developed a prototype system, called the Bronchiolitis Decision Support System. This system

incorporated the explanation utility framework and confidence measures. The results from an

evaluation of this system showed that overall the medical professionals using the system were

satisfied with its explanations. As the Bronchiolitis season only runs for a small number of months

a year, typically 3-4 months, many medical professionals do not see many cases of Bronchiolitis. It

is hoped that this system could also be a useful training system helping resident doctors to retrieve

suitable past cases.

8.6 CBR Representation

In Section 6.1 we presented CBML, an XML-based CBR representation language. CBML separates

three of Richter knowledge containers, the domain knowledge, case data and similarity knowledge,

from application code into ASCII documents. This makes it easier for developers to alter the CBR

process by changing the CBML documents without having to recompile any code.

CBML is an important component of the Bronchiolitis Decision Support System. It assisted

in easy updating of the Bronchiolitis Decision Support System once it was active. This was an

important aspect considering the distance between Dublin and Bakersfield California. As a further

demonstration of the usefulness of CBML we also mentioned work been done by other researchers

in a diverse range of research areas to represent their CBR data. These areas include recommender

systems, spam filtering and feature selection.
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8.7 Future Work

Explanation Utility Framework

As a result of CBML being separate to application code this allows for each user to have their

own set of explanation utility measures. This is useful in situations where different users have

different preferences for what they consider to be convincing explanation cases. Some users may

prefer marginal cases while other users may prefer less marginal cases. In order to implement such

a system new users would start off with the original measures defined by the domain expert. As

they use the system if they don’t find a case convincing they would then select what they consider

to be a more convincing case. Based on the selected case the utility measures would be adjusted

to favour the selected case and to reduce the utility for the originally retrieved case.

Confidence Measures

Although the confidence measures were useful in some domains, the introduction of new cases

into the case-base resulted in the measures becoming unstable. These findings correspond with

the findings of Cheetham and Price (2004). Further work is needed in the area of developing

confidence measures for case-based systems that remain stable after the addition of new cases to

the case-base.

CBML

The current implementation of CBML can represent three of Richter’s four knowledge containers

— the case base, the similarity measure and the domain vocabulary. It is clear that if CBML is to

develop further, the next step should be the development of a representation format for the fourth

container — adaptation knowledge.

108



Bibliography

Aamodt, A.: 1991, A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained

Learning, PhD thesis, Norwegian Institute of Technology, Department of Computer Science,

Trondheim.

URL: http://www.idi.ntnu.no/grupper/su/publ/phd/aamodt-thesis.pdf

Aamodt, A. and Plaza, E.: 1994, Case-based reasoning: Foundational issues, methodological

variations, and system approaches., Artificial Intelligence Communications 7(1), 39–59.

Achinstein, P.: 1983, The Nature of Explanation, Oxford University Press, Oxford.

Aha, D. and Bankert, R.: 1994, Feature selection for case-based classification of cloud types: An

empirical comparison, in D. Aha (ed.), Case-Based Reasoning: Papers from the 1994 Workshop

(Technical Report WS-94-01), AAAI Press., Menlo Park, CA:.

Aha, D., Breslow, L. and Munoz-Avila, H.: 2001, Conversational case based reasoning, Applied

Intelligence, special issue on Interactive CBR 14(1), 9–32.

Aha, D. W.: 1997, Special issue on lazy learning, Artificial Intelligence Review 11, 7–10.

Alpaydin, E.: 2004, Introduction to Machine Learning, The MIT Press, chapter 8, pp. 173–196.

Althoff, K.-D. and Richter, M.: 1999, Similarity and Utility in Non-Numerical Domains, Physika-

Verlag, pp. 403–413. http://www.cbr-web.org/documents/RichterSimilarity99.pdf.

Andrews, R., Diederich, J. and Tickle, A.: 1995, A survey and critique of techniques for extracting

rules from trained artificial neural networks, Knowledge Based Systems 8, 187–202.

Armengol, E., Palaudries, A. and Plaza, E.: 2001, Individual prognosis of diabetes long-term risks:

A CBR approach, Methods of Information in Medicine: Special issue on prognostic models in

Medicine 40, 46–51.

Ashley, K.: 1991, Reasoning with cases and hypotheticals in hypo., International Journal of Man-

Machine Studies 34, 753–796. Academic Press. New York.

109



Ashley, K. and Aleven, V.: 1997, Reasoning symbolically about partially matched cases, In Pro-

ceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI-97),

Morgan Kaufmann: San Francisco, Nagoya, Japan, pp. 335–341.

Ashley, K. D.: 1987, Modelling Legal Argument: Reasoning with Cases and Hypotheticals, PhD

thesis, Department of Computer and Information Science, University of Massachusetts.

Ashley, K. D.: 1989, Defining salience in case-based arguments, in N. Sridharan (ed.), Eleventh

International Joint Conference on Artificial Intelligence (IJCAI-89), Morgan Kaufmann, San

Mateo, CA, pp. 537–542.

Baker, M. and Ruddy, R.: 2000, Pulmonary emergencies, in G. Fleischer and S. Ludwig (eds),

Textbook of Pediatric Emergency Medicine, 4 edn, Lippincott Williams & Wilkins, Philadelphia,

pp. 1067–1087.

Bergmann, R.: 1993, Integrating abstraction, explanation-based learning from multiple exam-

ples and hierarchical clustering with a performance component for planning, in E. Plaza (ed.),

Proceedings of the ECML-93 Workshop on Integrated Learning Architectures (ILA-93), Vienna,

Austria.

Bergmann, R.: 1998, The use of taxonomies for representing case features and local similarity

measures, in L. Gierl and M. Lenz (eds), 6th German Workshop on CBR.

Bergmann, R.: 2002, Experience Management: Foundations, Development Methodology, and

Internet-Based Applications., Vol. 2432 of Lecture Notes in Artificial Intelligence, Springer-

Verlag Berlin Heidelberg New York.

Bergmann, R., Richter, M. M., Schmitt, S., Stahl, A. and Vollrath, I.: 2001, Utility-oriented

matching: A new research direction for case-based reasoning, Proceedings of the 9th German

Workshop on Case-Based Reasoning, GWCBR’01, Baden-Baden, Germany, pp. 264–274.

Bergmann, R. and Stahl, A.: 1998, Similarity measures for object-oriented case representations, in

B. Smyth and P. Cunningham (eds), Proceedings of EWCBR 1998, Vol. 1488 of Lecture Notes

in Artificial Intelligence, p. 2536.

Bridge, D. and Cummins, L.: 2005, Knowledge lite explanation oriented retrieval, to appear AAAI

Fall Symposium on EXPLANATION-AWARE COMPUTING (ExaCt 2005), Washington DC

(USA).

Brighton, H. and Mellish, C.: 2002, Advances in instance selection for instance-based learning

algorithms., Data Mining and Knowledge Discovery 6(2), 153–172.

Brzillon, P., Pomerol, J. (eds.), C. and Hall, pp44-60, .: 1996, Misuse and nonuse of knowledge-

based systems: The past expreiences revisited, in P. Humphreys, L. Bannon, A. McCosh,

110



P. Migliarese and J. Pomerol (eds), Implementing Systems for Supporting Management Deci-

sions, Chapman and Hall, pp. 44–60.

Carney, M., Cunningham, P., Dowling, J. and Lee, C.: 2005, Predicting probability distribu-

tions for surf height using an ensemble of mixture density networks, In Proceedings of the 22nd

International Conference in Machine Learning, ACM, Bonn, Germany, pp. 113–121.

Cestnik, B., Kononenko, I. and Bratko, I.: 1987, Assistant 86: a knowledge-elicitation tool for

sophisticated users, Progress in Machine Learning, Sigma, Wilmslow, England, pp. 31–45.

Chandrasekaran, B., Tanner, M. C. and Josephson, J. R.: 1989, Explaining control strategies

in problem solving, Vol. 4, IEEE Educational Activities Department, Piscataway, NJ, USA,

pp. 9–24.

Cheetham, W.: 2000, Case-based reasoning with confidence., in E. Blanzieri and L. Portinale

(eds), Advances in Case-Based Reasoning, 5th European Workshop, EWCBR 2000, Trento, Italy,

September 6-9, 2000, Proceedings, Vol. 1898 of Lecture Notes in Computer Science, Springer,

pp. 15–25.

Cheetham, W. and Price, J.: 2004, Measures of solution accuracy in case-based reasoning systems.,
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Appendix A

Tennis Dataset

Table A.1: Tennis Dataset

Day Outlook Temperature Humidity Wind Play Tennis

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes
D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No
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Appendix B

Bronchiolitis Questionnaire
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KERN MEDICAL CENTER  BRONCHIOLITIS TEMPLATE 
1830 FLOWER ST., BAKERSFIELD, CA 93305  Circle positives, Slash negatives, Check box if present 
 

CC:   ________________________________             Stamp Card here                                              
 
HPI: ________________________________ 
_____________________________________    Study #                                                       
First episode of these Symptoms?  Yes/No   Duration of illness ____days   Clinic/EMS Albuterol given yes/no? 
 
 
SOB     for __days 
Fever  for __days 
Tachypnea    for __days 
Fussy  for __days 
Rhinorrhea   for __days 
Apnea   (cyanosis  Yes/No) 
Appetite:  breast/bottle/solids 
    Minutes on Breast  ____  ___  hours  When Well 
    Minutes on Breast  ____ per ___  hours NOW 
 Bottle fed 

No. ounces ____ per ___  hours  When Well  
 No. ounces ____ per ___  hours   NOW 

Cyanosis:  peripheral /central 
Vomiting: alone/post-tussive/no bile/no blood 
Diarrhea: Diaper 

�
s ____/day  (foul smell/blood) 

�  All other systems reviewed and are negative

Temp:______  HR:______RR:_____ O2 % ______ 
                    on room air 
General Alert/reactive/drowsy/lethargic/dusky/cyanotic 
 Toxic/Nontoxic 
Hydration:  Normal/ % dehydrated 5/10/15  
                    Tears normal/decreased/absent 
HEENT:   Fontanel: flat/sunken 
 TMs: red/fluid, bulging/insufflation wnl 
 Pharynx: Moist/red/swollen/exudate 
Neck:  Supple/adenopathy/swelling 
CVS:  Clubbing/ Femorals nl                               

Murmur-Systolic/diastolic/ __ /VI location____  
Resp:  Nasal flaring/tracheal tug/ grunting 
Retractions: supraclavicular/intercostals/subcostal 

/substernal       mild/moderate/severe 
Cyanosis: central/peripheral, stridor: barky/high pitch 

 
O=wheeze  
X=Crackles 
/// = shade dullness  
 
 
Overall increase in work of 
breathing   
None/mild /Moderate/severe 

 
GI:  BS/distension/tenderness/hepato-spleno-megaly 
Ext:  Pulses 2+/cap refill < 2 secs. 
Musk/Skel: Tone: wnl/decreased 
Reflexes:  Appropriate for age 
RSV:  Positive Negative Not Done 
CXR:Y/N PA/Port/hyperinflated/infiltrate _______ 
ABG:  pO2        pCO2        pH         HCO3    
 
ED Treatment_____________________________ 
__________________________________________

Hospital Course: 
Response to Rx:  Temp:______  P:_______ R:______ O2 Sat____RA____%O2  Weight___________Kg 
  Work of breathing:  improved/same/worse  
  Retractions: supraclavicular/intercostals/subcostal /substernal    mild/moderate/severe 
             Overall increase in work of breathing  None/mild /Moderate/severe 
            Hydration:  Better/Same/Worse            Feeding: Yes/No 
Disposition:   At 3 hours ________Home/Admit/Prolonged ED Observation/Transfer 
 If Prolonged ED observation Discharge at  _____ or Admit at ___________. 
ED Attending  __________________________  ED Resident _____ ___________________  Date_______ 

Review of Systems           Physical Exam 

PASTMEDICAL, FAMILY AND SOCIAL HISTORY

PMH:  None_________________ Surgical Hx:  None

Preterm/Term Vag/Cesarian ___________________

BPD/Apnea/CHD Immunizations:  UTD

Ever on vent? yes/no time____ MMR/HIB/Polio/HAV/HBV

Asthma:  Mother/Father/sibling Pneumovax

_________________________ Meds:  _____________
Family Hx: None                                        

COPD/Athsma/RAD Allergies:  NKDA

_________________________ ________________
Daycare  Yes/No

Social Hx: How much

Smoking Mother ............................ ________/day

Father .............................. ________/day

Smoking only Other _________ ________/day

outside [] Total Smokers in Househousehold

Figure B.1: Bronchiolitis data collection form.
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Appendix C

Schema Documents

C.1 CBMLv3 Schema Document

1 <?xml version="1.0" encoding="UTF -8"?>
2 <xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema">
3 <xs:element name="case">
4 <xs:complexType >
5 <xs:choice >
6 <xs:element name="structure" maxOccurs="1">
7 <xs:complexType >
8 <xs:sequence >
9 <xs:element name="feature" maxOccurs="unbounded" type="

structure_feature"/>
10 </xs:sequence >
11 </xs:complexType >
12 </xs:element >
13 <xs:element name="similarity" maxOccurs="unbounded">
14 <xs:complexType >
15 <xs:sequence >
16 <xs:element name="feature" minOccurs="0" maxOccurs="unbounded"

type="similarity_feature"/>
17 </xs:sequence >
18 <xs:attribute name="username" type="xs:ID" use="required"/>
19 <xs:attribute name="extends" type="xs:IDREF" use="optional"/>
20 </xs:complexType >
21 </xs:element >
22 </xs:choice >
23 <xs:attribute name="domain" type="xs:string" use="required"/>
24 </xs:complexType >
25 </xs:element >
26

27 <xs:complexType name="similarity_feature">
28 <xs:choice >
29 <xs:element name="feature" minOccurs="1" maxOccurs="unbounded" type="

similarity_feature"/>
30 <xs:element name="array" minOccurs="1" maxOccurs="1">
31 <xs:complexType >
32 <xs:sequence >
33 <xs:element name="primary" minOccurs="0" maxOccurs="unbounded">
34 <xs:complexType >
35 <xs:sequence >
36 <xs:element name="secondary" minOccurs="0" maxOccurs="

unbounded">
37 <xs:complexType >
38 <xs:attribute name="name" type="xs:string" use="required"/

>
39 <xs:attribute name="similarity" type="xs:double" use="

required"/>
40 </xs:complexType >
41 </xs:element >

123



42 </xs:sequence >
43 <xs:attribute name="name" type="xs:string" use="required"/>
44 </xs:complexType >
45 </xs:element >
46 </xs:sequence >
47 </xs:complexType >
48 </xs:element >
49 <xs:element name="graph" minOccurs="1" maxOccurs="1">
50 <xs:complexType >
51 <xs:sequence >
52 <xs:element name="point" minOccurs="0" maxOccurs="unbounded">
53 <xs:complexType >
54 <xs:attribute name="difference" type="xs:double" use="required"/

>
55 <xs:attribute name="similarity" type="xs:double" use="required"/

>
56 </xs:complexType >
57 </xs:element >
58 </xs:sequence >
59 <xs:attribute name="type" type="graphType" use="required"/>
60 </xs:complexType >
61 </xs:element >
62 <xs:element name="measure" minOccurs="1" maxOccurs="1">
63 <xs:complexType >
64 <xs:attribute name="name" type="xs:string" use="required"/>
65 </xs:complexType >
66 </xs:element >
67 <xs:element name="exact" minOccurs="1" maxOccurs="1"/>
68 </xs:choice >
69 <xs:attribute name="name" type="xs:string" use="required"/>
70 <xs:attribute name="weight" type="positiveDouble" use="required"/>
71 </xs:complexType >
72

73 <xs:simpleType name="positiveDouble">
74 <xs:restriction base="xs:double">
75 <xs:minInclusive value="0"/>
76 </xs:restriction >
77 </xs:simpleType >
78

79 <xs:simpleType name="normalisedDouble">
80 <xs:restriction base="xs:double">
81 <xs:minInclusive value="0"/>
82 <xs:maxInclusive value="1"/>
83 </xs:restriction >
84 </xs:simpleType >
85

86 <xs:simpleType name="graphType">
87 <xs:restriction base="xs:string">
88 <xs:enumeration value="symmetrical"/>
89 <xs:enumeration value="asymmetrical"/>
90 </xs:restriction >
91 </xs:simpleType >
92

93 <xs:complexType name="structure_feature">
94 <xs:choice >
95 <xs:element name="complex">
96 <xs:complexType >
97 <xs:sequence >
98 <xs:element name="feature" minOccurs="0" maxOccurs="unbounded" type=

"structure_feature"/>
99 </xs:sequence >

100 <xs:attributeGroup ref="references"/>
101 </xs:complexType >
102 </xs:element >
103 <xs:element name="symbol">
104 <xs:complexType >
105 <xs:sequence >
106 <xs:element ref="enumeration" minOccurs="0" maxOccurs="unbounded"/>
107 </xs:sequence >
108 <xs:attributeGroup ref="references"/>
109 </xs:complexType >
110 </xs:element >
111 <xs:element name="string">
112 <xs:complexType >
113 <xs:attributeGroup ref="references"/>
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114 </xs:complexType >
115 </xs:element >
116 <xs:element name="taxonomy">
117 <xs:complexType >
118 <xs:sequence >
119 <xs:element ref="node" minOccurs="0" maxOccurs="unbounded"/>
120 </xs:sequence >
121 <xs:attributeGroup ref="references"/>
122 </xs:complexType >
123 </xs:element >
124 <xs:element name="integer">
125 <xs:complexType >
126 <xs:all >
127 <xs:element name="maxInclusive" minOccurs="0">
128 <xs:complexType >
129 <xs:attribute name="value" type="xs:int" use="required"/>
130 </xs:complexType >
131 </xs:element >
132 <xs:element name="minInclusive" minOccurs="0">
133 <xs:complexType >
134 <xs:attribute name="value" type="xs:int" use="required"/>
135 </xs:complexType >
136 </xs:element >
137 </xs:all >
138 <xs:attributeGroup ref="references"/>
139 </xs:complexType >
140 </xs:element >
141 <xs:element name="double">
142 <xs:complexType >
143 <xs:all >
144 <xs:element name="maxInclusive" minOccurs="0">
145 <xs:complexType >
146 <xs:attribute name="value" type="xs:double" use="required"/>
147 </xs:complexType >
148 </xs:element >
149 <xs:element name="minInclusive" minOccurs="0">
150 <xs:complexType >
151 <xs:attribute name="value" type="xs:double" use="required"/>
152 </xs:complexType >
153 </xs:element >
154 </xs:all >
155 <xs:attributeGroup ref="references"/>
156 </xs:complexType >
157 </xs:element >
158 <xs:element name="boolean">
159 <xs:complexType >
160 <xs:attributeGroup ref="references"/>
161 </xs:complexType >
162 </xs:element >
163 </xs:choice >
164 <xs:attribute name="name" type="xs:string" use="required"/>
165 <xs:attribute name="discriminant" use="optional" default="true" type="

xs:boolean"/>
166 <xs:attribute name="solution" use="optional" default="false" type="

xs:boolean"/>
167 <xs:attribute name="mandatory" use="optional" default="true" type="

xs:boolean"/>
168 <!--Although manditory will be accepted , it will be removed in future

versions , so should not be used -->
169 <xs:attribute name="manditory" use="optional" default="true" type="

xs:boolean"/>
170 </xs:complexType >
171

172 <xs:attributeGroup name="references">
173 <xs:attribute name="name" type="xs:ID" use="optional"/>
174 <xs:attribute name="ref" type="xs:IDREF" use="optional"/>
175 </xs:attributeGroup >
176 <xs:element name="enumeration">
177 <xs:complexType >
178 <xs:attribute name="value" type="xs:string" use="required"/>
179 </xs:complexType >
180 </xs:element >
181 <xs:element name="node">
182 <xs:complexType >
183 <xs:sequence >
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184 <xs:element ref="node" minOccurs="0" maxOccurs="unbounded"/>
185 </xs:sequence >
186 <xs:attribute name="name" type="xs:string" use="required"/>
187 </xs:complexType >
188 </xs:element >
189

190 </xs:schema >

C.2 Explanation Schema Document

1 <?xml version="1.0" encoding="utf -8"?>
2 <xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema" xmlns:xi="http://www.w3.

org /2001/ XMLSchema">
3 <xs:include schemaLocation="http: //www.cs.tcd.ie/research_groups/mlg/CBML/

Schema/cbmlv3.xsd"/>
4 <xs:element name="expdoc">
5 <xs:complexType >
6 <xs:sequence >
7 <xs:element minOccurs="1" maxOccurs="unbounded" name="explanation">
8 <xs:complexType >
9 <xs:sequence >

10 <xs:element minOccurs="0" maxOccurs="unbounded" name="feature"
type="similarity_feature" />

11 </xs:sequence >
12 <xs:attribute name="classification" type="xs:ID" use="required" />
13 </xs:complexType >
14 </xs:element >
15 </xs:sequence >
16 <xs:attribute name="domain" type="xs:string" use="required" />
17 </xs:complexType >
18 </xs:element >
19 </xs:schema >

C.3 Explanatory Text Schema Document

1 <?xml version="1.0" encoding="utf -8"?>
2 <xs:schema xmlns:xs="http: //www.w3.org /2001/ XMLSchema" xmlns:xi="http://www.w3.

org /2001/ XMLSchema">
3 <xs:element name="explanation_dialogue">
4 <xs:complexType >
5 <xs:choice maxOccurs="unbounded">
6 <xs:element name="utility">
7 <xs:complexType >
8 <xs:sequence >
9 <xs:element minOccurs="1" maxOccurs="unbounded" name="feature">

10 <xs:complexType >
11 <xs:sequence >
12 <xs:element minOccurs="0" maxOccurs="unbounded" name="difference

">
13 <xs:complexType >
14 <xs:attribute name="change" type="differenceString" use="

required"/>
15 <xs:attribute name="dialogue" type="xs:string" use="required

"/>
16 </xs:complexType >
17 </xs:element >
18 </xs:sequence >
19 <xs:attribute name="name" type="xs:string" use="required"/>
20 </xs:complexType >
21 </xs:element >
22 <xs:element name="dialogue" minOccurs="1" maxOccurs="1">
23 <xs:complexType mixed="true">
24 <xs:choice maxOccurs="unbounded">
25 <xs:element ref="replace" minOccurs="0" maxOccurs="unbounded"/>
26 <xs:element minOccurs="0" maxOccurs="unbounded" name="

conditional_replace">
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27 <xs:complexType mixed="true">
28 <xs:choice maxOccurs="unbounded">
29 <xs:element ref="replace" minOccurs="0" maxOccurs="unbounded"/>
30 <xs:element minOccurs="0" maxOccurs="unbounded" name="br"/>
31 </xs:choice >
32 <xs:attribute name="condition" type="conditionalReplace" use

="required"/>
33 <xs:attribute name="value" type="xs:integer" use="required"/

>
34 <xs:attribute name="equality_type" type="equality" use="

required"/>
35 </xs:complexType >
36 </xs:element >
37 <xs:element minOccurs="0" maxOccurs="unbounded" name="br"/>
38 </xs:choice >
39 </xs:complexType >
40 </xs:element >
41 </xs:sequence >
42 </xs:complexType >
43 </xs:element >
44 <xs:element minOccurs="1" maxOccurs="unbounded" name="similarity">
45 <xs:complexType >
46 <xs:sequence >
47 <xs:element minOccurs="1" maxOccurs="unbounded" name="feature">
48 <xs:complexType >
49 <xs:sequence >
50 <xs:element minOccurs="0" maxOccurs="unbounded" name="similar">
51 <xs:complexType >
52 <xs:attribute name="dialogue" type="xs:string" use="required

"/>
53 </xs:complexType >
54 </xs:element >
55 </xs:sequence >
56 <xs:attribute name="name" type="xs:string" use="required"/>
57 </xs:complexType >
58 </xs:element >
59 <xs:element name="dialogue" minOccurs="1" maxOccurs="1">
60 <xs:complexType mixed="true">
61 <xs:choice maxOccurs="unbounded">
62 <xs:element minOccurs="0" maxOccurs="unbounded" name="replace">
63 <xs:complexType >
64 <xs:attribute name="value" type="replaceString" use="

required"/>
65 </xs:complexType >
66 </xs:element >
67 </xs:choice >
68 </xs:complexType >
69 </xs:element >
70 </xs:sequence >
71 </xs:complexType >
72 </xs:element >
73 <xs:element minOccurs="1" maxOccurs="unbounded" name="solution">
74 <xs:complexType >
75 <xs:sequence >
76 <xs:element minOccurs="0" maxOccurs="unbounded" name="classification">
77 <xs:complexType >
78 <xs:attribute name="value" type="xs:string" use="required"/>
79 <xs:attribute name="classification_dialogue" type="xs:string" use=

"required"/>
80 <xs:attribute name="utility_shift" type="xs:string" use="required"

/>
81 </xs:complexType >
82 </xs:element >
83 </xs:sequence >
84 </xs:complexType >
85 </xs:element >
86 <xs:element minOccurs="1" maxOccurs="unbounded" name="mappings">
87 <xs:complexType >
88 <xs:sequence >
89 <xs:element minOccurs="0" maxOccurs="unbounded" name="feature">
90 <xs:complexType >
91 <xs:attribute name="name" type="xs:string" use="required"/>
92 <xs:attribute name="mapping" type="xs:string" use="required"/>
93 </xs:complexType >
94 </xs:element >
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95 </xs:sequence >
96 </xs:complexType >
97 </xs:element >
98 <xs:element minOccurs="0" maxOccurs="1" name="confidence">
99 <xs:complexType >

100 <xs:choice maxOccurs="unbounded">
101 <xs:element minOccurs="0" maxOccurs="unbounded" name="confidenceMeasure"

>
102 <xs:complexType mixed="true">
103 <xs:attribute name="threshold" type="xs:double" use="required"/>
104 <xs:attribute name="measure" type="confidenceMeasures" use="required"/

>
105 <xs:attribute name="neighbours" type="xs:integer" use="optional"

default="3"/>
106 </xs:complexType >
107 </xs:element >
108 <xs:element minOccurs="0" maxOccurs="unbounded" name="confidenceDialogue

">
109 <xs:complexType mixed="true">
110 <xs:attribute name="level" type="confidence" use="required"/>
111 </xs:complexType >
112 </xs:element >
113 </xs:choice >
114 </xs:complexType >
115 </xs:element >
116 </xs:choice >
117 <xs:attribute name="domain" type="xs:string" use="required" />
118 </xs:complexType >
119 </xs:element >
120

121

122 <xs:simpleType name="differenceString">
123 <xs:restriction base="xs:string">
124 <xs:enumeration value="positive"/>
125 <xs:enumeration value="equal"/>
126 <xs:enumeration value="negative"/>
127 </xs:restriction >
128 </xs:simpleType >
129

130 <xs:simpleType name="replaceString">
131 <xs:restriction base="xs:string">
132 <xs:pattern value="target_case_name"/>
133 <xs:pattern value="classification_dialogue"/>
134 <xs:pattern value="nun_classification_dialogue"/>
135 <xs:pattern value="utility_case_name"/>
136 <xs:pattern value="similarity_case_name"/>
137 <xs:pattern value="nun_case_name"/>
138 <xs:pattern value="utility_shift"/>
139 <xs:pattern value="positive_utilty_features_ [0 -9]{0 ,3}"/>
140 <xs:pattern value="positive_utilty_features_ [0 -9]{0 ,3}"/>
141 <xs:pattern value="negative_utilty_features_ [0 -9]{0 ,3}"/>
142 <xs:pattern value="strong_similarity_features_ [0 -9]{0 ,3}"/>
143 <xs:pattern value="negative_nun_features_ [0 -9]{0 ,3}"/>
144 <xs:pattern value="num_negative_nun_features_ [0 -9]{0 ,3}"/>
145 <xs:pattern value="num_negative_nun_features_words_ [0 -9]{0 ,3}"/>
146 <xs:pattern value="confidence"/>
147 <xs:pattern value="system_date_ .+"/>
148 <xs:pattern value="include_ .+"/>
149 </xs:restriction >
150 </xs:simpleType >
151

152 <xs:simpleType name="conditionalReplace">
153 <xs:restriction base="xs:string">
154 <xs:pattern value="positive_utilty_features"/>
155 <xs:pattern value="negative_utilty_features"/>
156 <xs:pattern value="strong_similarity_features"/>
157 <xs:pattern value="negative_nun_features"/>
158 </xs:restriction >
159 </xs:simpleType >
160

161 <xs:simpleType name="equality">
162 <xs:restriction base="xs:string">
163 <xs:pattern value="greater_than"/>
164 <xs:pattern value="less_than"/>
165 <xs:pattern value="equal_to"/>
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166 </xs:restriction >
167 </xs:simpleType >
168

169 <xs:simpleType name="confidence">
170 <xs:restriction base="xs:string">
171 <xs:pattern value="confident"/>
172 <xs:pattern value="not_confident"/>
173 </xs:restriction >
174 </xs:simpleType >
175

176 <xs:simpleType name="confidenceMeasures">
177 <xs:restriction base="xs:string">
178 <xs:enumeration value="similarity_ratio"/>
179 <xs:enumeration value="explanation_ratio"/>
180 <xs:enumeration value="average_nun_index"/>
181 <xs:enumeration value="similarity_vote"/>
182 <xs:enumeration value="neighbour_accuracy"/>
183 </xs:restriction >
184 </xs:simpleType >
185

186 <xs:element name="replace">
187 <xs:complexType >
188 <xs:attribute name="value" type="replaceString" use="required"/>
189 </xs:complexType >
190 </xs:element >
191 </xs:schema >
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Appendix D

Breathalyser CBML Documents

D.1 Breathalyser Structure Document

1 <?xml version="1.0" encoding="UTF -8"?>
2 <case domain="breathalyser2002" xsi:noNamespaceSchemaLocation="http://www.cs.tcd

.ie/research_groups/mlg/CBML/Schema/cbmlv3.xsd" xmlns:xsi="http://www.w3.org
/2001/ XMLSchema -instance">

3 <structure >
4 <feature name="Kgs">
5 <double >
6 <minInclusive value="47.0"/>
7 <maxInclusive value="101.0"/>
8 </double >
9 </feature >

10 <feature name="Duration">
11 <double >
12 <minInclusive value="5.0"/>
13 <maxInclusive value="435.0"/>
14 </double >
15 </feature >
16 <feature name="Gender">
17 <symbol >
18 <enumeration value="Male"/>
19 <enumeration value="Female"/>
20 </symbol >
21 </feature >
22 <feature name="Meal">
23 <symbol >
24 <enumeration value="None"/>
25 <enumeration value="Snack"/>
26 <enumeration value="Lunch"/>
27 <enumeration value="Full"/>
28 </symbol >
29 </feature >
30 <feature name="Units">
31 <double >
32 <minInclusive value="0.0"/>
33 <maxInclusive value="31.2"/>
34 </double >
35 </feature >
36 <feature name="BAC" solution="true" discriminant="false">
37 <symbol >
38 <enumeration value="Under"/>
39 <enumeration value="Over"/>
40 </symbol >
41 </feature >
42 </structure >
43 </case>
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D.2 Breathalyser Similarity Document

1 <?xml version="1.0"?>
2 <case domain="breathalyser2002" xsi:noNamespaceSchemaLocation="http://www.cs.tcd

.ie/research_groups/mlg/CBML/Schema/cbmlv3.xsd"
3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance">
4 <similarity username="default">
5 <feature name="Kgs" weight="1.0">
6 <graph type="symmetrical">
7 <point difference="0.0" similarity="1.0"/>
8 <point difference="5.0" similarity="0.9"/>
9 <point difference="10.0" similarity="0.8"/>

10 <point difference="40.0" similarity="0.0"/>
11 </graph >
12 </feature >
13 <feature name="Duration" weight="0.25">
14 <graph type="symmetrical">
15 <point difference="0.0" similarity="1.0"/>
16 <point difference="10.0" similarity="0.9"/>
17 <point difference="20.0" similarity="0.8"/>
18 <point difference="100.0" similarity="0.0"/>
19 </graph >
20 </feature >
21 <feature name="Gender" weight="1.0">
22 <exact/>
23 </feature >
24 <feature name="Meal" weight="1.0">
25 <graph type="symmetrical">
26 <point difference="0.0" similarity="1.0"/>
27 <point difference="1.0" similarity="0.8"/>
28 <point difference="2.0" similarity="0.4"/>
29 <point difference="3.0" similarity="0.0"/>
30 </graph >
31 </feature >
32 <feature name="Units" weight="1.0">
33 <graph type="symmetrical">
34 <point difference="0.0" similarity="1.0"/>
35 <point difference="5.0" similarity="0.9"/>
36 <point difference="30.0" similarity="0.0"/>
37 </graph >
38 </feature >
39 </similarity >
40 </case>

D.3 Breathalyser Case Base Document

1 <?xml version="1.0"?>
2 <casebase domain="breathalyser2002">
3 <case name="n0">
4 <Kgs>76.0</Kgs>
5 <Duration >60.0</Duration >
6 <Gender >Male</Gender >
7 <Meal>Full</Meal>
8 <Units >2.9</Units>
9 <BAC>Under </BAC>

10 </case>
11 <case name="n1">
12 <Kgs>60.0</Kgs>
13 <Duration >60.0</Duration >
14 <Gender >Female </Gender >
15 <Meal>Full</Meal>
16 <Units >2.6</Units>
17 <BAC>Under </BAC>
18 </case>
19 <case name="n2">
20 <Kgs>63.0</Kgs>
21 <Duration >90.0</Duration >
22 <Gender >Female </Gender >
23 <Meal>Full</Meal>
24 <Units >1.2</Units>
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25 <BAC>Under </BAC>
26 </case>
27 <case name="n3">
28 <Kgs>63.0</Kgs>
29 <Duration >120.0 </Duration >
30 <Gender >Male</Gender >
31 <Meal>Full</Meal>
32 <Units >5.2</Units>
33 <BAC>Under </BAC>
34 </case>
35 <case name="n4">
36 <Kgs>51.0</Kgs>
37 <Duration >120.0 </Duration >
38 <Gender >Female </Gender >
39 <Meal>Lunch </Meal>
40 <Units >5.2</Units>
41 <BAC>Over</BAC>
42 </case>
43 .
44 .
45 .
46 <case name="n124">
47 <Kgs>73.0</Kgs>
48 <Duration >155.0 </Duration >
49 <Gender >Male</Gender >
50 <Meal>Full</Meal>
51 <Units >9.8</Units>
52 <BAC>Over</BAC>
53 </case>
54 <case name="n125">
55 <Kgs>79.0</Kgs>
56 <Duration >205.0 </Duration >
57 <Gender >Male</Gender >
58 <Meal>Full</Meal>
59 <Units >12.2</Units >
60 <BAC>Over</BAC>
61 </case>
62 <case name="n126">
63 <Kgs>76.0</Kgs>
64 <Duration >130.0 </Duration >
65 <Gender >Male</Gender >
66 <Meal>Full</Meal>
67 <Units >9.8</Units>
68 <BAC>Over</BAC>
69 </case>
70 </casebase >

D.4 Breathalyser Explanation Profile Document

1 <?xml version="1.0"?>
2 <expdoc domain="breathalyser2002" xsi:noNamespaceSchemaLocation="http://www.cs.

tcd.ie/research_groups/mlg/FIONN/Schema/explanation.xsd"
3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance">
4 <explanation classification="Under">
5 <feature name="Kgs" weight="1.0">
6 <graph type="asymmetrical">
7 <point difference=" -40.0" similarity="0.0"/>
8 <point difference=" -10.0" similarity="0.7"/>
9 <point difference=" -5.0" similarity="0.85"/>

10 <point difference="0.0" similarity="0.9"/>
11 <point difference="5.0" similarity="0.92"/>
12 <point difference="10.0" similarity="0.95"/>
13 <point difference="40.0" similarity="1.0"/>
14 </graph >
15 </feature >
16 <feature name="Duration" weight="0.25">
17 <graph type="asymmetrical">
18 <point difference=" -100.0" similarity="0.0"/>
19 <point difference=" -20.0" similarity="0.6"/>
20 <point difference=" -10.0" similarity="0.8"/>
21 <point difference="0.0" similarity="0.95"/>
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22 <point difference="10.0" similarity="0.97"/>
23 <point difference="20.0" similarity="0.98"/>
24 <point difference="100.0" similarity="1.0"/>
25 </graph >
26 </feature >
27 <feature name="Gender" weight="1.0">
28 <exact/>
29 </feature >
30 <feature name="Meal" weight="1.0">
31 <graph type="asymmetrical">
32 <point difference=" -3.0" similarity="0.0"/>
33 <point difference=" -2.0" similarity="0.25"/>
34 <point difference=" -1.0" similarity="0.5"/>
35 <point difference="0.0" similarity="0.8"/>
36 <point difference="1.0" similarity="0.9"/>
37 <point difference="2.0" similarity="0.95"/>
38 <point difference="3.0" similarity="1.0"/>
39 </graph >
40 </feature >
41 <feature name="Units" weight="1.0">
42 <graph type="asymmetrical">
43 <point difference=" -10.0" similarity="0.75"/>
44 <point difference=" -5.0" similarity="1.0"/>
45 <point difference="0.0" similarity="0.85"/>
46 <point difference="10.0" similarity="0.0"/>
47 </graph >
48 </feature >
49 </explanation >
50 <explanation classification="Over">
51 <feature name="Kgs" weight="1.0">
52 <graph type="asymmetrical">
53 <point difference=" -40.0" similarity="1.0"/>
54 <point difference=" -10.0" similarity="0.95"/>
55 <point difference=" -5.0" similarity="0.92"/>
56 <point difference="0.0" similarity="0.9"/>
57 <point difference="5.0" similarity="0.85"/>
58 <point difference="10.0" similarity="0.7"/>
59 <point difference="40.0" similarity="0.0"/>
60 </graph >
61 </feature >
62 <feature name="Duration" weight="0.25">
63 <graph type="asymmetrical">
64 <point difference=" -100.0" similarity="1.0"/>
65 <point difference=" -20.0" similarity="0.98"/>
66 <point difference=" -10.0" similarity="0.97"/>
67 <point difference="0.0" similarity="0.95"/>
68 <point difference="10.0" similarity="0.8"/>
69 <point difference="20.0" similarity="0.6"/>
70 <point difference="100.0" similarity="0.0"/>
71 </graph >
72 </feature >
73 <feature name="Gender" weight="1.0">
74 <exact/>
75 </feature >
76 <feature name="Meal" weight="1.0">
77 <graph type="asymmetrical">
78 <point difference=" -3.0" similarity="1.0"/>
79 <point difference=" -2.0" similarity="0.95"/>
80 <point difference=" -1.0" similarity="0.9"/>
81 <point difference="0.0" similarity="0.8"/>
82 <point difference="1.0" similarity="0.5"/>
83 <point difference="2.0" similarity="0.25"/>
84 <point difference="3.0" similarity="0.0"/>
85 </graph >
86 </feature >
87 <feature name="Units" weight="1.0">
88 <graph type="asymmetrical">
89 <point difference=" -10.0" similarity="0.0"/>
90 <point difference="0.0" similarity="0.85"/>
91 <point difference="5.0" similarity="1.0"/>
92 <point difference="10.0" similarity="0.75"/>
93 </graph >
94 </feature >
95 </explanation >
96 </expdoc >
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D.5 Breathalyser Explanatory Text Document

1 <?xml version="1.0"?>
2 <explanation_dialogue domain="Bronc2004 -Evaluation"

xsi:noNamespaceSchemaLocation="http: //www.cs.tcd.ie/research_groups/mlg/
FIONN/Schema/dialogue.xsd" xmlns:xsi="http: //www.w3.org /2001/ XMLSchema -
instance">

3 <utility >
4 <feature name="Age">
5 <difference change="positive" dialogue="being older"/>
6 <difference change="equal" dialogue="same age"/>
7 <difference change="negative" dialogue="being younger"/>
8 </feature >
9 <feature name="Crs.HR">

10 <difference change="positive" dialogue="higher heart rate after treatment"
/>

11 <difference change="equal" dialogue="same heart rate after treatment"/>
12 <difference change="negative" dialogue="lower heart rate after treatment"/

>
13 </feature >
14 <feature name="Crs.IncrWOB">
15 <difference change="positive" dialogue="higher overall increase in work of

breathing after treatment"/>
16 <difference change="equal" dialogue="same overall increase in work of

breathing after treatment"/>
17 <difference change="negative" dialogue="lower overall increase in work of

breathing after treatment"/>
18 </feature >
19 <feature name="Crs.OxSAT_Under_92">
20 <difference change="positive" dialogue="higher oxygen saturation after

treatment"/>
21 <difference change="equal" dialogue="same oxygen saturation after

treatment"/>
22 <difference change="negative" dialogue="lower oxygen saturation after

treatment"/>
23 </feature >
24 <feature name="Crs.RR_Over_60">
25 <difference change="positive" dialogue="lower resp rate over 60 after

treatment"/>
26 <difference change="equal" dialogue="same resp rate over 60 after

treatment"/>
27 <difference change="negative" dialogue="higher resp rate over 60 after

treatment"/>
28 </feature >
29 <feature name="Crs.Temp_Over_100 .4">
30 <difference change="positive" dialogue="lower temperature after treatment"

/>
31 <difference change="equal" dialogue="same temperature after treatment"/>
32 <difference change="negative" dialogue="higher temperature after treatment

"/>
33 </feature >
34 <feature name="Crs.WOB">
35 <difference change="positive" dialogue="worse work of breathing after

treatment"/>
36 <difference change="equal" dialogue="same work of breathing after

treatment"/>
37 <difference change="negative" dialogue="better work of breathing after

treatment"/>
38 </feature >
39 <feature name="PE.Hydr">
40 <difference change="positive" dialogue="worse hydration before treatment"/

>
41 <difference change="equal" dialogue="same hydration before treatment"/>
42 <difference change="negative" dialogue="better hydration before treatment"

/>
43 </feature >
44 <feature name="PE.O2">
45 <difference change="positive" dialogue="higher O2 saturation before

treatment"/>
46 <difference change="equal" dialogue="same O2 saturation before treatment"/

>
47 <difference change="negative" dialogue="worse O2 saturation before

treatment"/>
48 </feature >
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49 <feature name="PE.Rtr.Sev">
50 <difference change="positive" dialogue="better retraction severity before

treatment"/>
51 <difference change="equal" dialogue="same retraction severity before

treatment"/>
52 <difference change="negative" dialogue="worse retraction severity before

treatment"/>
53 </feature >
54 <feature name="PE.Gen1">
55 <difference change="positive" dialogue="different birth"/>
56 <difference change="equal" dialogue="same birth"/>
57 <difference change="negative" dialogue="different birth"/>
58 </feature >
59 <feature name="PastMFS.SmokeMother">
60 <difference change="positive" dialogue="none smoking mother"/>
61 <difference change="equal" dialogue="same smoking mother"/>
62 <difference change="negative" dialogue="smoking mother"/>
63 </feature >
64 <dialogue >
65 <br/>We suggest that this patient should be <replace value="

classification_dialogue"/> hospital.
66

67 <br/><br/>In support of this prediction we have the Explanation Case that
appears to have been

68 <replace value="utility_shift"/> than this patient (due to <replace value=
"positive_utilty_features_3"/>)

69 but was still <replace value="classification_dialogue"/> hospital.
70

71 <conditional_replace condition="negative_utilty_features" value="0"
equality_type="greater_than">

72 <br/><br/>However it should be noted that the patients <replace value="
negative_utilty_features_2"/>

73 in relation to the Explanation Case
74 </conditional_replace >
75 <conditional_replace condition="negative_utilty_features" value="1"

equality_type="equal_to">
76 is a feature that goes
77 </conditional_replace >
78 <conditional_replace condition="negative_utilty_features" value="1"

equality_type="greater_than">
79 are features that go
80 </conditional_replace >
81 <conditional_replace condition="negative_utilty_features" value="0"

equality_type="greater_than">
82 against our argument that the explanation case is <replace value="

utility_shift"/> than the patient.
83 </conditional_replace >
84

85

86 <br/><br/><replace value="confidence"/>
87 <br/><br/><replace value="include_data/questionnaire.htm"/>
88 <br/><br/>Explanation type 2 generated <replace value="system_date_dd MMMM

yy HH:mm"/> for patient <replace value="target_case_name"/>,
Explanation Case: <replace value="utility_case_name"/>

89 </dialogue >
90 </utility >
91 <solution >
92 <classification value="Discharge" classification_dialogue="discharged from"

utility_shift="sicker"/>
93 <classification value="Admit" classification_dialogue="admitted to"

utility_shift="healthier"/>
94 </solution >
95 <mappings >
96 <feature name="Age" mapping="age"/>
97 <feature name="Crs.HR" mapping="heart rate after treatment"/>
98 <feature name="Crs.IncrWOB" mapping="overall increase in work of breathing

after treatment"/>
99 <feature name="Crs.OxSAT_Under_92" mapping="oxygen saturation under 92 after

treatment"/>
100 <feature name="Crs.RR_Over_60" mapping="respriratory rate over 60 after

treatment"/>
101 <feature name="Crs.Temp_Over_100 .4" mapping="temperature over 100.4 after

treatment"/>
102 <feature name="Crs.WOB" mapping="work of breathing after treatment"/>
103 <feature name="PE.Hydr" mapping="hydration before treatment"/>
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104 <feature name="PE.O2" mapping="O2 saturation before treatment"/>
105 <feature name="PE.Rtr.Sev" mapping="retraction severity before treatment"/>
106 <feature name="PastMFS.Birth" mapping="birth"/>
107 <feature name="PastMFS.SmokeMother" mapping="smoking Mother"/>
108 <feature name="Crs.HR_Over_150" mapping="Heart Rate over 150 after treatment

"/>
109 <feature name="PE.RR_Over_70" mapping="respriratory rate over 70 before

treatment"/>
110 <feature name="Crs.Disp.3Hr" mapping="disposistion"/>
111 </mappings >
112 <confidence >
113 <confidenceMeasure measure="average_nun_index" neighbours="3" threshold="

19.1"/>
114 <confidenceMeasure measure="similarity_ratio" neighbours="1" threshold="1.18

"/>
115 <confidenceMeasure measure="similarity_vote" neighbours="3" threshold="

1050.46"/>
116 <confidenceMeasure measure="neighbour_accuracy" neighbours="12" threshold="

12"/>
117 <confidenceMeasure measure="explanation_ratio" neighbours="30" threshold="

1.01"/>
118 <confidenceDialogue level="confident">
119 We have a high confidence in our prediction
120 </confidenceDialogue >
121 <confidenceDialogue level="not_confident">
122 We have a reasonable confidence in our prediction
123 </confidenceDialogue >
124 </confidence >
125 </explanation_dialogue >
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Appendix E

Student’s t-Distribution
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Table E.1: Critical values of t at various levels of probability (t test)

For any particular df the observed value of t is significant at a given level
of significance if it is equal to or larger than the critical values shown
in the table

Level of significance for one tailed test

df 0.10 0.05 0.025 0.005 0.0025 0.0005

1 3.078 6.314 12.706 31.821 63.657 636.619
2 1.886 2.920 4.303 6.965 9.925 31.598
3 1.638 2.353 3.182 4.541 5.841 12.941
4 1.533 2.132 2.776 3.747 4.604 8.610
5 1.476 2.015 2.571 3.365 4.032 6.859
6 1.440 1.943 2.447 3.143 3.707 5.959
7 1.415 1.895 2.365 2.998 3.499 5.405
8 1.397 1.860 2.306 2.896 3.355 5.041
9 1.383 1.833 2.262 2.821 3.250 4.781

10 1.372 1.812 2.228 2.764 3.169 4.587
11 1.363 1.796 2.201 2.718 3.106 4.437
12 1.356 1.782 2.179 2.681 3.055 4.318
13 1.350 1.771 2.160 2.650 3.012 4.221
14 1.345 1.761 2.145 2.624 2.977 4.140
15 1.341 1.753 2.131 2.602 2.947 4.073
16 1.337 1.746 2.120 2.583 2.921 4.015
17 1.333 1.740 2.110 2.567 2.898 3.965
18 1.330 1.734 2.101 2.552 2.878 3.922
19 1.328 1.729 2.093 2.539 2.861 3.883
20 1.325 1.725 2.086 2.528 2.845 3.850
21 1.323 1.721 2.080 2.518 2.831 3.819
22 1.321 1.717 2.074 2.508 2.819 3.792
23 1.319 1.714 2.069 2.500 2.807 3.767
24 1.318 1.711 2.064 2.492 2.797 3.745
25 1.316 1.708 2.060 2.485 2.787 3.725
26 1.315 1.706 2.056 2.479 2.779 3.707
27 1.314 1.703 2.052 2.473 2.771 3.690
28 1.313 1.701 2.048 2.467 2.763 3.674
29 1.311 1.699 2.045 2.462 2.756 3.659
30 1.310 1.697 2.042 2.457 2.750 3.646
40 1.303 1.684 2.021 2.423 2.704 3.551
60 1.296 1.671 2.000 2.390 2.660 3.460

120 1.289 1.658 1.980 2.358 2.617 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.291

N.B. When required df is not shown use the next lowest number, except
for very large dfs (well over 120), when you can use the row for infinity
(∞).
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