
 
Abstract— With more and more computing devices being 

deployed in buildings there has been a steady rise in buildings' 
electricity consumption. At the same time there is a pressing need 
to reduce overall building energy consumption. Pervasive 
computing could further exacerbate this problem but it could 
also provide a solution. Context information (e.g., user location) 
likely to be available in pervasive computing environments could 
enable highly effective device power management. The objective 
of such context-aware power management (CAPM) is to 
minimise the overall electricity consumption of a building while 
maintaining acceptable user-perceived device performance.  

To investigate the potential of CAPM we conducted 
experimental trials for two simple location-aware power 
management policies. Our results highlight the presence of two 
distinct user behaviour patterns but also show that location alone 
is not enough for effective power management. 

We therefore propose a CAPM framework that employs 
Bayesian Networks to support prediction of user behaviour 
patterns from multi-modal sensor data for effective power 
management. We further propose the use of acoustic data as an 
interesting context for predicting finer-grained user behaviour. 
The paper presents an initial evaluation of the resulting 
framework. 

Index Terms— Context-aware, power management, user 
behaviour, Bayesian Network.  

I. INTRODUCTION 
With more and more computing devices being deployed in 

buildings there has been a steady rise in buildings' electricity 
consumption [1], [2]. These devices not only consume 
electricity, they produce heat, which increases loading on 
ventilation systems, further increasing electricity consumption. 
At the same time there is a pressing need to reduce overall 
building energy consumption. The European Union's strategy 
for security of energy supply highlights energy saving in 
buildings as a key target area [3]. Pervasive computing will 
potentially further increase the number of computing and 
sensing devices in buildings. A key question is how will this 
affect electricity consumption? In particular, what we are 
interested in is whether user context (derived from pervasive 
computing) can enable highly effective power management of 
stationary devices to significantly reduce buildings’ overall 
electricity consumption. 

Dynamic power management [4] is a powerful technique 
for reducing device power consumption by taking advantage 
of idle periods during the operation of the device. The two 
fundamental assumptions are (i) idle periods will occur during 

the device's operation and (ii) these periods can be predicted 
with a degree of certainty. What makes dynamic power 
management difficult is the fact that for most devices power 
state transitions have a significant cost. Typically a power 
state transition may consume extra energy (e.g., spinning up a 
hard disk), reduce device performance (e.g., a user waiting for 
a monitor to wake up) and possibly reduce its lifetime (e.g., 
fluorescent light bulbs burning out). Therefore not all idle 
periods are long enough to justify powering down the device. 
The primary task of the power management policy is to 
predict (based on past information) whether the current idle 
period will be long enough (i.e., greater than the breakeven 
time) to justify the transition cost. Secondarily, if the policy 
can predict when the next user request will be made it can 
reduce the time the user is waiting for the device to wake up. 

Most current research in dynamic power management is 
applied to extending battery life for mobile devices with some 
research beginning in the area of power management for 
servers and server farms [5], [6]. The majority of policies are 
device-level and they concentrate on management of sub-
components within the computing device, either the hard disk, 
processor, memory or network card. More advanced policies 
use information from higher up in the system to make more 
intelligent power management decisions. 

To develop effective user-level policies for stationary 
devices we need to obtain context from the user of the device, 
in particular when the user is ‘not using’ the device (for longer 
than the breakeven time) and when the user is ‘about to use’ 
the device (the resume time beforehand). Determining this 
user context is the most challenging part of CAPM and there is 
a balance between how much energy additional context can 
save and how much it will cost both monetarily and energy 
wise.  

Section II discusses two recent papers that address CAPM. 
We then present results from experimental trials of two simple 
location-aware policies in Section III. The results highlight 
two distinct user behaviour patterns but also show that 
location alone is not enough for effective CAPM. The more 
clues we have of the user’s behaviour in the space the better 
we can power manage the devices. Section IV presents some 
requirements derived from the results and an initial design of 
the CAPM framework. Finally, Section V gives an initial 
evaluation of the resulting framework and Section VI 
concludes. 
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II. RELATED WORK 
We analysed two research papers that specifically examine 

using context to manage power of devices in an environment. 
We evaluated these CAPM solutions based on (i) the energy 
cost of the system, (ii) the potential energy savings and (iii) 
the user-perceived performance.  

A. Location Aware Resource Management in Smart Homes 
The MavHome project’s goal is the creation of an 

intelligent home environment [7]. The paper [8] focuses on 
resource (power) management of the electrical devices in a 
home environment. Their example floor plan (see Fig. 1) is 
divided into 15 zones containing 11 RFID readers and 9 
pressure mats. Zone connectivity is represented as a simple 
graph with each edge of the graph containing a list of the 
sensors a user would pass to get from one zone to the next. 
These are termed “paths” and there may be more than one path 
between zones. Zones and sensors are labelled alphabetically. 

 
Fig. 1 MavHome sample floorplan (Source: [8]) 

The user’s symbolic location is determined by sampling the 
20 sensors and user mobility is captured as a string of 
characters, for example, “ajlloojhhaajlloojaajlloojaajlm”. This 
gives room-level location granularity with the use of pressure 
mats to divide up the large open plan kitchen, dining, and 
living rooms. There are two parts to their CAPM algorithm: 

1. When the user leaves a zone, predict the path to the 
next zone based on their current zone and the user’s 
mobility history. 

2. Switch on all devices along the path. (We assume that 
all devices in the previous zone are switched off after 
a short timeout period.) 

Emphasis is given to the user mobility part of the algorithm. 
The Lempel-Ziv text compression scheme is used to compress 
user mobility strings, which are subsequently sent to a server 
and stored in a search trie. This reduces the cost of data 
acquisition but delays the propagation of the user’s location 
potentially causing large delays in power management of 
devices. The mobility prediction scheme makes its decisions 
based solely on the history of room-level user mobility and 
does not take into account other valuable data such as the 
time-of-day or day-of-week to aid its prediction.   

The power management decision to switch on all devices in 
the user’s predicted path from one zone to the next is naïve. 
First, they do not categorise the devices into “continuous” and 
“intermittent” devices. Continuous devices experience no idle 
periods during their operation and typically they are devices 
that carry out a well-defined task such as making coffee, 
cooking food, washing clothes etc. Only intermittent devices 
(i.e., devices that experience idle periods) are suitable for 
context-aware power management. Intermittent devices 
include lighting, sound, video display, heating, cooling and 
ventilation. Second, a user will typically not require all 
intermittent devices all the time. Switching on all of these 
devices all of the time will potentially frustrate the user and 
waste energy.  

We estimated the energy consumption of the devices that 
comprise the MavHome IT infrastructure. Where possible 
power estimates have been measured, otherwise they have 
been derived from manufacturers’ datasheets. We assume the 
IT system runs 24 hours per day. The estimated daily energy 
consumption of the system is 8 kiloWatt hours (kWh). If we 
consider the network to be an existing infrastructure providing 
many other services then we can attribute the energy 
consumption of the location sensors to the energy cost of the 
CAPM system. This alone consumes 2.5 kWh per day, which 
is 30% of the total IT system.  

The total power of all domestic devices is 10.5 kW and 
estimated daily energy consumption is 17.7 kWh. We 
estimated the number of usage hours based on a not very 
energy conscious user. All intermittent devices are left on 
when awake and in the house (i.e., 7am to 9am and 6pm to 
12am). Usage of task specific continuous devices has also 
been estimated. Fig. 2 shows that location sensing consumes 
up to 10% of the total energy consumption with only a 
potential to save an estimated ½ of the 37% through more 
efficient management. The system just breaks even bringing 
into question its practicality. 
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Fig. 2 MavHome energy consumption 

User-perceived performance of power management 
algorithms is sensitive to even small delays in response and 
subtle changes from the normal operation of the device. Since 
the predictive policy was not actually implemented in reality it 
is hard to estimate what the real user-perceived performance 
of the policy is. Our first concern, however, is the delay in 
actuation caused by the compression approach withholding 
sensor data from the policy. They also assume negligible 
transfer time from sensor to policy and back to actuator, which 



is not the case. Mozer cites even a 700ms delay in his system 
is enough to annoy the user [10]. Second, the path prediction 
success is 85% meaning 15% of time the predictive policy will 
switch on the wrong set of devices and the user will be left to 
manually switch these off and the desired ones on. For the 
system to be workable we believe the predictive success has to 
be close to 100% to avoid user annoyance. Probably the most 
fundamental flaw is assuming the user will want all devices in 
their future path switched on. There is no mechanism for 
capturing the user’s preferences. A simple improvement to the 
policy would be to only switch on the devices that had been on 
the last time the user was in the room. 

B. Lessons from an Adaptive House 
The Adaptive House project [9] has a similar floor plan and 

device energy consumption to the MavHome project but has a 
more sophisticated CAPM framework that has been developed 
from 8 years of actual implementation and experimentation. 
The real life experience from this project highlights the subtle 
requirements for effective power management. Here user 
mobility prediction is only one component of their CAPM 
framework and they utilise dozens of environment and user 
context variables in making their power management 
decisions. Also, the project focuses only on “home comfort” 
devices, namely air temperature, water temperature and 
lighting devices. These devices fall into the category of 
intermittent use.  

The system is composed of 75 sensors monitoring room 
temperature, ambient light, motion, sound level, door and 
window positions, and outside weather and insolation. 
Actuators control a central heating furnace, electric space 
heaters, water heating, lighting and ventilation. [10] 
concentrates on the issue of lighting control, the objective 
being to automate the setting of lighting levels within the 
house to maximise inhabitant comfort and minimise energy 
consumption. The main challenges are: 

1. There are several lights in each room, each with 16 
settings. The user prefers different lighting moods 
depending on the task s/he is doing.  

2. Motion sensors have a time lag in detecting user 
occupancy and there is delay in the X10 comms of 
700ms causing a delay in system response. 

3. Motion sensors detect the presence of a person well, 
but they do not detect their absence. A person could 
still be in the room reading but not moving.  

4. The policy must satisfy two often opposing 
constraints, user comfort and energy consumption. 

The lighting control system architecture is shown in Fig. 3 
below. 

Fig. 3 Adaptive House Architecture (Source: [10]) 
 
It has two levels of abstraction that filter noisy sensors and 

provide higher-level information to the Q-learning controller. 
This reinforcement learning technique models user discomfort 
and energy costs and uses trial and error learning to minimise 
the total average cost. The implementation has a partial model 
of the environment (It can learn about other “bad decisions” in 
lighting level based on the setting the user selects. If the 
decision was A and user corrected up to C, then any B lower 
than A would also have been a “bad decision”).  

The natural light estimator estimates natural daylight from 
raw sensors (as if the lighting was turned off). The anticipator 
is a neural network that predicts if a zone will be entered in the 
next 2 seconds. It runs every 250ms and inputs are motion, 
door status, sound level, zone occupancy and time of day. This 
component has been identified as not predicting sufficiently 
accurately due to sparse sensor representation. This caused 
user annoyance when lights would go on in an unoccupied 
zone. The occupancy model predicts whether a zone is 
occupied or not and the inputs are motion sensed in zone, 
number of people in house and motion in adjacent zones. The 
state estimator forms a high-level state representation for 
decision-making with the most important inputs being 
estimated user activity and natural light level. The user’s 
activity is determined by zone change frequency.  

We estimated the energy consumption of the IT system 
including the sensors, power supplies, conditioning boards and 
X10 lighting device actuators to be 4 kWh. The power of the 
sensor system was difficult to estimate, as full details of the 
actual hardware implementation was not known. However, our 
current estimate envisages the sensor equipment consuming up 
to 0.8 kWh, which is 20% of the IT system. 

Again, the domestic device power consumption is based on 
a non-energy conscious user leaving all intermittent devices 
on for 8 hours of the day. The intermittent devices consume 8 
kWh and the continuous consume 11 kWh. Fig. 4 shows the 
sensor system to consume up to 4% of the total energy 
consumption with a potential to save an estimated ½ of the 
47% through more efficient management. 
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Fig. 4 Daily energy consumption for non-energy conscious user 

 
The Q Learning policy costed energy ($0.072 per kWh) and 

user discomfort ($0.01 per manual adjustment, $0.01 per 
failed anticipation and $0.01 per false turn on) in dollar units 
and graphed these costs over time. Fig. 5 shows the “energy 
cost per event” dropped over time from 0.5 cent to 0.05 cent. 
However, it is not clear how this cost relates to the actual 
energy cost of the lighting. The graph also shows the user 
discomfort cost starting at 0.1 “cent per event” rising to 0.8 
and decreasing again to 0.01 cent per event (after an error in 
the system code was fixed). 

 
Fig. 5: Energy versus user discomfort (Source: [10]) 

These figures do not really give a good idea of the user-
perceived performance. The two main “discomforts” the 
author experienced were the slow response of the system (due 
mainly to X10 communication delay) and the occasional false 
anticipation of zone entry. This caused switching of lights on 
in unoccupied zones. Surprisingly, there is no specific 
evaluation of the control of lighting level based on user 
activity prediction. User activity is based only on recent user 
mobility patterns. For example, the user being still for 5 
minutes equates to “user reading” and frequent zone change 
equates to “cleaning house”. 

C. Conclusions 
The Adaptive House system is quite advanced and benefits 

from actual implementation and real experimental trials. 
However, neither of the papers give a clear model or 
measurement of the environment’s overall power 
consumption, which we believe is necessary in fully 
evaluating the effectiveness of CAPM. 

Finally, Mozer notes that user activity (behaviour) 
classification is an interesting area of future research. This 
suggests the control of lighting level based on user activity 
prediction needs further work. 

III. INITIAL EXPERIMENTAL RESULTS 
To explore further the requirements of context-aware power 

management and gain insight into user behaviour patterns, we 
examined in detail the power management of users’ stationary 
desktop PCs in an office environment. The objective was to 
minimise overall electricity consumption of the system while 
maintaining acceptable desktop PC performance. In particular, 
we evaluated the use of location as a key piece of context for 
CAPM. We are interested in the relation between the user’s 
location and their user behaviour (i.e., whether they are using 
the device or not). We implemented two simple location-
aware policies and performed 6 user trials, each over a period 
of a week. The trace data collected from the trials was 
analysed to gain insight into the energy consumption and user-
perceived performance of the location-aware policies.  

The office spaces included personal and shared spaces, and 
there was only one user per desktop PC. The two simple 
location-aware policies use the location context derived from 
detecting users’ Bluetooth-enabled mobile phones. A power 
manager service executes on each desktop PC and 
continuously polls to discover Bluetooth devices in the area. 

 
 
 
 
 
 
 
 
 
 
Figure 6 PC polls to discover Bluetooth-enabled mobile phones 
The two location-aware policies were: 

1. Standby On Bluetooth (SOB). When the PC is on the 
power manager polls for the user's phone via the 
Bluetooth discovery mechanism. If the phone is not 
found the PC powers down to standby. The user 
manually wakes-up the PC when s/he next requests it. 

2. Standby/Wake-up On Bluetooth (SWOB). When the 
PC powers down to standby the power manager 
passes control to a nearby server. When the server 
detects the phone again it sends a wake up message to 
the user's PC. (We used a server to implement wake 
up because currently we do not know of a Bluetooth 
device that can wake up the PC from standby. We 
expect this functionality to be available soon). 

The polling Bluetooth discovery process takes place in the 
PC’s power manager and the mobile phone just needs to set its 
Bluetooth discover mode to on. Initial observations suggest 
that the discover mode does not drain the phone’s batteries 
significantly. Using the Windows power management API we 
recorded all power state change events for the PC during each 
user trial. This included recording when the PC was powered 



down to standby, when it resumed to the on state, both 
automatically and manually, and when the PC was on but idle 
for the last minute. This on-idle time enables us to estimate 
how much energy the policy wasted by the machine being on 
but (potentially) not being used. Knowing the idle times 
enables us to generate the “oracle” policy trace and the range 
of threshold policy traces. The oracle policy [11] is a 
theoretically optimal policy, which has future knowledge of 
user requests for the device. The threshold policy [12] is a 
simple policy that powers the device down after the given 
threshold idle period has elapsed. 

The range of the Bluetooth connection is 10 metres and its 
latency is approximately 10 seconds (i.e., it can take up to 10 
seconds for the Bluetooth inquiry to find the phone). We also 
noted during implementation that sometimes the inquiry 
would not find the phone even though it was there. To 
overcome this source of error it was necessary to duplicate the 
number of inquiries. This polling process takes approximately 
90 seconds to complete so there is a significant delay before 
the machine is powered down. 

Policy traces were collected from 6 separate user trials, 4 of 
which used the SOB policy and 2 of which used the SWOB 
policy. Software was written for analysing the traces in terms 
of energy consumption and user perceived performance. For 
each trace collected, the oracle policy trace and a range of 
threshold policy traces were generated. Also, for the SWOB 
policies, corresponding SOB policy traces were generated. 

We estimated the mobile phone consumes an extra 6 Watt 
hours (Wh) of energy over the 4-day trial due to extra 
recharging necessary because the Bluetooth discover mode 
was on all the time. The extra energy consumed on the PC by 
the power manager was not measurable and we have 
considered it negligible. Also, for the SWOB policy we do not 
take into account the energy consumed by the wake up server, 
as we assume this functionality will be provided in the near 
future within the USB Bluetooth adapter. The 6 Wh has been 
added to the energy cost of the location-aware policies.  

A. SOB policy energy performance 
Fig. 7 below graphs the energy consumption in Watt hours 

for each policy for each policy trace. The SOB policy values 
are the actual estimated consumption from the real trace 
(except for A-SWOB and D-SWOB) and the other values are 
calculated from the generated policy traces. The traces are all 
the same length of 4 days, Tuesday to Friday. Each user has 
different user behaviour, which affects the performance of the 
policies. Previous monitoring of policy traces and actual 
measurement of PC power consumption show that, on 
average, the estimated power consumption (from the trace) 
correlates well with the measured power consumption (within 
7.2% over a period of a week).    

Fig. 7 SOB Energy Consumption 
From the graph, it seems that there are two distinct user 

behaviour patterns (or limits) emerging. The SOB policy 
performs quite well for the A-SOB, A-SWOB and B-SOB 
traces (HeavyUsePattern). In these cases the SOB policy is 
close to the oracle policy (~8% from oracle) and similar in 
consumption to the Threshold-5 minute policy. The reason for 
the good performance is that A and B are heavy users of their 
PC while in its vicinity (i.e., the usage traces have a relatively 
small amount of idle time when the user is in the 10-metre 
vicinity).   

The SOB policy performs similarly badly for the D-SOB, 
D-SWOB and C-SOB traces (LightUsePattern). In these cases 
the SOB policy is far from the oracle (> %50) and the traces 
have a significant amount of idle time when the user is in the 
10-metre vicinity. We can state as a general rule, the SOB 
policy will perform well for devices that are heavily used 
when the user is in their vicinity. 

Another pattern to note within the traces is the slope of the 
threshold policies’ consumption. The A-SOB, A-SWOB, B-
SOB and C-SOB traces threshold consumption slopes are very 
similar (10.8, 9.3, 10.3, 10.5) (LowFrequencyUsePattern) 
compared to the slope of the D-SOB and D-SWOB threshold 
consumptions (18.0, 21.6) (HighFrequencyUsePattern). This 
indicates another distinct user behaviour pattern in the traces 
that affects the performance of the threshold policies. 
Intuitively, the higher the user’s frequency of idle periods the 
worse the threshold policy performs from oracle as it 
consumes extra power waiting to timeout, each time there is 
an idle period. So while the SOB policy performs badly for all 
three LightUse user traces, due to the large quantity of idle 
period time, the threshold policies perform worse for D-SOB 
and D-SWOB than C-SOB as user D has a high frequency of 
idle periods (41 and 47 periods) compared to user C (24). 

B. SOB policy user perceived performance 
We evaluate the quantitative user-perceived performance of 

the SOB policy by counting the maximum number of times 
(over the 4-day trace) the user had to resume the PC in a 10 
minute, 30 minute, one hour, four hour and eight hour period. 
Fig.8 graphs the performance values per user trace for the 
eight hour period. The Threshold-5 policy shows the 
HeavyUse traces having (7, 8, 9) resumes in an eight-hour 



period compared to the LightUse traces (11, 12, 14). As would 
be expected the performance improves as the threshold 
increases, with 20 minutes appearing to reach saturation (i.e., 
after this threshold there is little improvement in 
performance). What is interesting to note is that for the 
HeavyUse traces, the SOB policy performs similarly to the 
Threshold-5 policy but for the LightUse traces, the SOB 
performs considerably better. This intuitively makes sense, as 
the HeavyUse users do not allow the Threshold-5 policy to 
power down while in the office, whereas the LightUse users 
would. So, another general rule is that the SOB policy keeps 
the user-perceived performance acceptable for LightUse users.  

 
Fig. 8 SOB User Performance 

A qualitative survey of the users revealed that for 2 of the 
users the performance penalty of resuming the PC every time 
they came back to their office would not stop them 
implementing the SOB policy. The other 2 users thought it 
necessary that the PC would resume automatically to avoid the 
performance penalty. Clearly user-perceived performance is 
subjective and there is a balance for each user of how long the 
standby period should be to justify the subsequent 
performance penalty  (i.e., a performance break-even time). 

Fig. 9 shows the standby period frequency in minutes for 
the SOB and Threshold-5 policies for the D-SOB (LightUse) 
trace. The graph shows the Threshold-5 policy has many more 
short standby periods. Also, the total number of standbys for 
the SOB policy is 24 compared to 52 for the Threshold-5 
policy. Therefore, 28 of the Threshold-5 policy standbys 
occurred when the user was in the vicinity. Clearly, these short 
standby periods when the user is in the vicinity would severely 
degrade the user-perceived performance, making the 
Threshold-5 policy unlikely to be implemented by any user. 

Fig. 9 Standby Period Frequency 

C. SWOB policy energy performance 
The SWOB policy is an extension to the SOB policy where 

the PC powers up again when the mobile phone is next 
detected in the 10-metre vicinity. For this reason we chose to 
evaluate the policy with just two user trials. Fig. 10 shows the 
policies’ energy consumptions for the A-SWOB and D-SWOB 
traces. The graph compares the SWOB policy to the generated 
oracle, SOB and threshold policy traces. Again, the two users 
have similar performance to their original traces with A-
SWOB performing well and D-SWOB performing badly 
compared to the oracle. Also, again the slope of the threshold 
performances is similar to the original user traces. For A-
SWOB the SWOB policy energy performance is very similar 
to the SOB policy but for D-SWOB it is significantly worse. 
The increase in energy consumption is caused by the SWOB 
policy automatically resuming the PC when the user enters the 
vicinity. Hence, the PC can be on and idle before the user 
requests its use.  

The trace distinguishes between when the PC is resumed 
automatically (i.e., over the network) and when the user first 
pressed the keyboard after being in standby. So, we can 
measure the time from when the PC is resumed automatically 
until when the user first requests the PC. We call this period 
the auto-on-idle period. There are significantly more auto-on-
idle periods for the D-SWOB trace (154 minutes in total) than 
the A-SWOB trace (5 minutes in total). Also, there were 14 
occurrences in the D-SWOB trace where the PC was resumed 
and later went back to standby without being used by the user. 
In interview after the experiment, user D stated that he would 
nearly always use the PC immediately after entering the room. 
This suggests that the PC was automatically resumed when the 
user passed by the room.    



 
Fig. 10 SWOB Energy Consumption 

D. SWOB user perceived performance 
On average the Bluetooth discovery takes ~10 seconds to 

discover the mobile phone and the desktop PC takes ~7 
seconds to fully resume from standby. Therefore, under the 
SWOB policy it takes ~17 seconds from the time the user 
enters the 10-metre vicinity until the PC fully resumes, ready 
for use. To evaluate the user-perceived performance of the 
SWOB policy we have to determine whether the PC was 
resumed in time for the user. Fig. 11 shows the graph of auto-
on-idle period frequency in seconds for both traces. 

 
Fig. 11 Auto-on-idle period frequency in seconds 

The graph shows the D-SWOB trace to have few short 
periods (3 periods < 8 seconds) compared to the number of 
longer periods (25 periods > 60 seconds). On the other hand 
the A-SWOB trace has relatively many short idle periods (10 
periods < 8 seconds) compared to no periods greater than 60 
seconds. This data suggests that user A experienced delays in 
waiting for the PC to fully resume and user D experienced 
relatively few delays. The length of the delay is partly 
dependent on the geographical layout of the user’s return path 
and how long it takes the user to return to their PC after they 
have entered the 10-metre vicinity. In general, the current 
Bluetooth discovery time makes the auto wake up of the PC 
borderline functional and very dependent on the user’s return 
path and their time to reach the PC. A more responsive sensor 
could improve the SWOB policies user-perceived 
performance and be less dependent on geographical layout. 

E. Conclusions 
The experimental user trials and subsequent policy trace 

analysis has highlighted several user behaviour patterns that 
affect the performance of the power management policies. The 
location aware SOB and SWOB policies perform well energy-
wise for HeavyUse users where the device is used a lot when 
the user is in the 10-metre Bluetooth vicinity. For LightUse 
users they begin to deteriorate, consuming energy when the 
user is in the vicinity but not using the device. For 
FrequentUse users (i.e., the user uses the device many times 
during the day) the threshold policies deteriorate as energy is 
wasted every time the policy waits for the timeout period. The 
SOB and SWOB policies are less affected by this FrequentUse 
pattern, as the timeout period is less (90 seconds).  

The user-perceived performance of the SOB policy appears 
to be acceptable to some users but not others. The 
performance remains constant for both HeavyUse and 
LightUse users while the Threshold-5 policy performance 
deteriorates significantly for LightUse users. The SWOB 
policy user-perceived performance is dependent on the 
geographical layout of the user’s return path and how long it 
takes for the user to return to their PC after entering the 10-
metre Bluetooth vicinity. This makes it suitable for only some 
cases. Furthermore, the SWOB policy comes at a price in 
increased energy consumption, particularly in the case of 
LightUse users and unsuitable geographical layouts (e.g., 
where the user passes by the office within the 10-metre range).  

A further concern of implementing these policies is that of 
device lifetime. For many devices, switching them on and off 
affects their expected lifetime. We have estimated the break-
even due to lifetime for a desktop PC to be around 1 minute 
[13]. Other devices have longer lifetime break-even times such 
as fluorescent lighting (~5 to 10 minutes) [14]. Fig. 12 shows 
a relatively large number of short standby periods occurring 
for all users. Policies may have to take device lifetime into 
consideration when making their power off decisions.  

 
Fig. 12 Standby period frequencies (minutes) 

IV. CAPM REQUIREMENTS AND BASIC DESIGN 
From the experimental trials we have identified several 

requirements for CAPM. First, there is a need for distant (time 
wise) prediction to offset delay in sensor response and long 
device resume times. For example, some form of mobility 



prediction could overcome the problem of the latent Bluetooth 
sensing. Furthermore, there is a need for distant sensing of 
users and possibly recognition of user plans to predict longer 
future idle periods (for cases where the device breakeven time 
is an order of minutes). For example, given the results it would 
not be sensible to switch off fluorescent lighting every time 
the user leaves the room as this would cause premature failure. 
Finally, location context alone is not sufficient to determine 
detailed user behaviour necessary for effective CAPM. Further 
context is needed to predict (i) the user in the vicinity but not 
using the device and (ii) the user in the vicinity and about to 
use the device. Passing by the device but not going to use it is 
a special case of scenario (i). The second scenario will be 
difficult to achieve, as one key advantage of location is that it 
is a distant sensing device, which enables time for the device 
to resume before the user requests its use. Saving energy by 
switching off devices in the vicinity of the user will be 
difficult to achieve transparently. 

The initial experimental location-aware polices used a 
simple rule-based design where, observed states are matched 
to power management actions. There is no learning of new 
rules based on usage and there is no representation of 
uncertainty, which is required in most real-world decision 
applications to account for incomplete and noisy data [15]. 
This design would not scale well to accommodate more 
contexts, as the rules would become increasingly complex 
making it successively harder to configure for each individual 
user.   

Some form of AI-based learning technique was needed, 
which could cope with incomplete and noisy sensor data and 
continually learn from device usage history. Our process of 
selecting a suitable technique involved first determining 
whether CAPM is a supervised or unsupervised learning 
problem. We believe that CAPM is best cast as a supervised 
learning problem. The success of the decision to power-down 
or power-up the device can be easily measured. Therefore 
sometime after, the reward for each decision can be evaluated 
and attributed to the specific decision the policy made. The 
total reward for the policy is simply the sum of the individual 
rewards. An unsupervised or reinforcement learning technique 
could possibly be applied (as in Mozer) but this will inherently 
be a more heavyweight solution, and slower to learn. The 
specific technique we chose for modelling the CAPM problem 
is Bayesian Networks [16].  

A Bayesian Network is a graphical model that enables 
causal domain modelling and computes probability or ‘belief’ 
of inferred data (query data) based on the available evidence 
(input data). The fundamentals of Bayesian Networks come 
from Bayes’ theorem, which states that the probability of a 
hypothesis h given some evidence e is equal to the evidence’s 
likelihood P(e|h) times the prior probability of the hypothesis 
P(h), normalised by dividing by the evidence’s probability 
P(e).  P(h|e) = P(e|h)P(h)/P(e). 

The advantages of Bayesian networks for CAPM are:   
1. The graphical programming model is simple to 

understand and modify by non-technical users. 

2. The model naturally represents the causal 
modelling of the inferred data ‘Not Using’, ‘About 
to use’. 

3. The policy decision and utility can be represented 
with the Decision Network extension. The utility is 
easily user configurable. 

4. The model can be configured with prior 
distributions so it can make intelligent 
(conservative) decisions from the start. 

5. The learning process is relatively simple and 
should continually improve with more data. 

6. Bayesian Networks can solve up to 36 nodes with 
a tractable / lightweight algorithm. 

One possible disadvantage of Bayesian Networks is that if 
the prior distributions are incorrect, they can adversely affect 
the learning of an optimal policy. We believe the causal 
modelling and estimation of prior distributions are reasonably 
intuitive for the CAPM domain and this extra domain 
knowledge will add to the power of the solution, increasing its 
accuracy and speed of learning.  

The CAPM decision problem naturally divides into two 
policies, the power-down policy and the power-up policy. Fig. 
13 details a possible Bayesian Decision Network for the 
power-down policy. The IsNotUsing and IsNotUsingLater 
nodes are the query nodes. The probabilities for these nodes 
are inferred from the state of the CurrentIdleTime, 
BluetoothPhone, AcousticSensor and TimeOfDay input nodes. 
From a causal modelling perspective, the state of the user 
IsNotUsing ‘causes’ the observed states of the input nodes. 
The decision to power down is made based on the utility of the 
decision and the probability of IsNotUsingLater. This node 
represents whether the user will request use of the device 
before the device’s breakeven time. The Utility node can be 
weighted to change the value of the policy’s decision. 

 
Fig. 13 Power-down policy 
The power-up policy is similar in structure to the power-down 
policy but has different inputs, BluetoothPhone and 
DoorOpenSound. Again the Utility node can be weighted to 
suit user preferences. 



V. EVALUATION METHODOLOGY 
We have implemented an initial prototype of the CAPM 

policies using the Netica Bayesian Network tool [17]. We 
conducted a case-based evaluation of the CAPM policies 
using test cases to demonstrate implementation of a number of 
scenarios. The additional (non-location) contexts 
CurrentIdleTime, TimeOfDay and AcousticSensor enable the 
policies to cope with the following scenarios. When the user 
passes by the office door (in Bluetooth range) the policy does 
not switch on as no sound of door opening is detected in the 
room. When the user is in the vicinity but is talking and has 
not used the PC for a while, after a sufficient CurrentIdleTime 
the policy powers down the PC. When talking ceases the 
probability “About to use” increases and the PC is powered 
up. The requirement for distant sensing could be fulfilled by 
enabling power managers to communicate. 

To evaluate the learning capability of the policies we 
simulated two distinct case-base sets of 25 samples each. 
Table 1 below lists part of this sample data. 

TABLE 1: SAMPLE CASES 

ID 
Current 
IdleTime 

Bluetooth 
Phone 

TimeOf 
Day 

Acoustic 
Sensor IsNotUsingLater 

1 3 Found 10 Silent Using 

2 4 Found 12 Silent Using 

6 20 Found 20 Silent NotUsing 

7 24 Found 13 Silent NotUsing 

11 4 NotFound 19.2 Silent NotUsing 

12 2 NotFound 13.2 Silent NotUsing 

19 3 NotFound 14 Silent NotUsing 

20 1 NotFound 16 Silent Using 

21 15 Found 15 Talking NotUsing 

22 16 Found 15.2 Talking NotUsing 

25 13 Found 16.5 Talking NotUsing 
 

 The policy networks were initialised with prior probability 
distributions and tested against the test set of cases. The 
decision error-rate was high at 72%. The network was then 
trained with the separate training set of cases and the error-rate 
improved to 20%. The results show that a relatively small set 
of sample data can greatly improve the accuracy of the 
policies.  

VI. CONCLUSIONS 
There are two strong motivating forces for context-aware 

power management; the steady rise in buildings’ electrical 
energy consumption and the pressing need to reduce energy 
consumption. User context could potentially enable highly 
effective context-aware power management to significantly 
reduce buildings’ electrical energy consumption. 

Our results indicate that user location alone is insufficient 
for CAPM and further context is needed to determine finer-
grained user behaviour for effective power management. A 
simple acoustic sensor could potentially tell us many things 
about the user behaviour. Is the office quiet? Is someone 
talking? Did the phone ring? Are there many people talking? 
Where is the sound coming from? Is that the sound of the door 

opening? However, processing this data will have a cost in 
both CPU cycles and hence energy consumed.  

Finally, there is a need to evaluate the CAPM framework in 
real-world situations. This will include a concrete evaluation 
of power consumed by the total system in order to evaluate the 
potential energy savings. 
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