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1 Introduction

Ever increasing volumes of data in electronic format are being produced and
stored, due mainly to the relatively inexpensive cost of storage and emerging
techniques for extracting useful information from such data. A large corpus of
data, in itself does not offer a lot of value but if it were categorised into relevant,
prescribed categories, this data could become quite useful.

Text classification is the name given to automated techniques for grouping
textual information into categories. The task of categorisation lends itself fully
to automation. Large corpora of data require administration and a technique
to effectively manage the data, since the rate at which data is produced is far
in greater that the rate at which it can be manually processed. Manual cate-
gorisation of data is feasible only in the small scale. Even a small organisation
can now produce large amounts of data.

Modern machine learning techniques (supervised learning) allow for a classi-
fier1 to be produced using only labelled examples from concept that is required
to be learned. Previously, considerable human effort was required to manually
construct and maintain hand-crafted rules which formed the classifier. Modern
machine learning techniques has allowed for off the shelf learners which given
enough training data can construct an accurate classifier.

Large quantities of training data are required for an accurate classifiers to
be produced. However, obtaining labelled training examples can often be an
expensive task in itself. Typically, examples need to be manually labelled which
is a laborious, time consuming and repetitive task. Most humans do not relish
the idea of labelling thousands of examples.

In many domains labelled training data is either scarce or expensive to pro-
duce. Unlabelled data, on the other hand, is plentiful and inexpensive to collect.
The learner should make use of this unlabelled data to help it produce an ac-
curate classifier without the need for large amounts of labelled training data.

Active learning and Co-Training are methods which require very little la-
belled training data and exploit unlabelled data in order to increase accuracy

1sometimes called a model
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of a produced classifier. Both are employed at the initial stages of a learner’s
life-cycle and are iterative in nature.

Active learning is a term used to describe a learning method whereby the
learner assumes (some) control over the training data. This differs from the tra-
ditional passive learning, indicative of supervised learning, whereby the learner
has no control over the training data. An active learner makes use of an external
teacher (an oracle) which will label a presented example correctly thus produc-
ing more training data. It is the task of active learner to select and present to
the oracle, the most informative cases which will maximise learning.

Co-Training is a process which uses multiple views of the same data to boost
classifier accuracy. A view is simply a way to describe the data, for example
an e-mail can be described by both the header and the body information. The
learner will exploit nuances in each view to help it automatically label those
unlabelled examples which its classifier has predicted with high confidence -
which then becomes new training data.

There are many domains in which machine learning could be applied but is
not due to the lack of labelled training data. Methods such as Active Learning
and Co-Training allow machine learning solutions to be applied to new domains
previously thought to be unsuitable for machine learning solutions. These meth-
ods also have an impact for traditional machine learning domains. Productivity
could increase as more tasks that should be automated (but are not due to
scarcity of training data) are solved using machine learning techniques com-
bined with active learning and co-training.

The rest of the paper is organised as follows. Section 2 describes Active
Learning and the various different approaches used to select unlabelled exam-
ples. Section 3 describes Co-Training and also its merger with active learning,
namely, Co-Testing. In Section 4 we discuss our conclusions and future work.
We start, however, with a very brief review of Text Classification.

2 Text Classification

Text classification 2 can be defined as assigning categories to textual units of
data. As the production of data increases, the adoption and use of text classi-
fication systems needs to also increases in order to help humans deal with the
large volumes of data. This can be seen in scenarios whereby large corpora
of business documents are being categorised allowing humans to make more
specific searches and navigate the information easily. Another role is that of
filtering, whereby a classifier learns a specific user’s preference and filters out
information that would be deemed irrelevant. Thus the user views only relevant
and precise information leading to increased productivity.

A brief history of machine learning and its adoption into real world applica-
tion is given below, followed by an overview of the text classification architecture.
This section gives only a brief overview. For a full discussion on all the topics
related to text classification please consult [Seb02].

2Classification and Categorisation are merely synonyms thus are used interchangeably
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2.1 Text Classification History

In recent years the adoption of machine learning into modern complex systems
has seen a dramatic increase. The main reason for this is that it often works
very well. The examples presented in [LMF+04] show that given the correct
domain and sensible requirements, machine learning can produce very useful
systems.

Expert systems were among the first applications to be used in the real
world. More recently, data mining has become very popular because it can
allow the extraction of potentially useful (business) logic from dormant data
that has been collected over time.

Information retrieval has grown prominent in recent years, mainly due to the
meteoric popularity of the internet. It is concerned with the retrieval, storage
and extraction of information from documents.

Text classification can be defined as: “the activity of labelling natural lan-
guage texts with thematic categories from a predefined set” as given in [Seb02].
This differs from information retrieval but a lot of common ground exists. In-
deed many techniques of text classification are taken from the work done in
information retrieval.

2.1.1 Knowledge Engineering

One of the first approaches was that of Knowledge Engineering, commonly
known as Expert Systems. Expert systems are constructed by domain experts
manually constructing and configuring a set of rules in the form of:

if (condition) then (classification).

The condition was normally concerned with some attribute of the example pre-
sented to the system (e.g. if the document contained the word ‘wheat’). If
and only if, the conditions were met in the rule then the classification would be
assigned to the instance. These systems performed well, but they suffer from
the problem of knowledge acquisition bottleneck, which refers to the high cost in
defining and maintaining rules for the system. The initial cost is extremely high
as analysis of the domain and domain experts are required in order to construct
the rules within the expert system. Moreover the costs associated with chang-
ing the system over time, as the role or requirements of the system changes,
are also extremely high, due to the fact that domain experts are again needed
to construct an updated set of rules. If the system is legacy then it may be
necessary to train personnel to become domain experts before the system can
be updated.

Despite the drawbacks of knowledge acquisition bottleneck, expert systems
were extremely successful. The first system was Dendral which was developed in
1969 [BSF69]. It goal was to infer molecular structure from input obtained from
a mass spectrometer. General rules that analytical chemists used were applied
to the system, which made dramatic improvements in performance. Perhaps the
most famous knowledge engineering (expert system) is Mycin [Sho76] developed
in 1976 and its role was to diagnose blood infections. Unlike dendral, there were
no well known general rules that could be simply implemented by the system,
rather, extensive interviews with the domain experts were needed and from
these rules were formed within the system. MYCIN performed very well, better
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than junior doctors, but included a certainty factor which allowed doctors to
determine whether or not to accept the decision of the system. Big business has
also adopted such systems with dramatic affects, the R1 expert system [McD82]
developed for the Digital Equipment Corporation. It’s role was to configure
orders for new computer systems and was estimated at saving the company $40
Million. Soon practically every large company or organisation was investing in
expert systems. In more recent times, knowledge engineering has been used in
the fight against spam. Systems such as Spamassassin use a list of rules, which
are updated at regular intervals, to filter out spam from legitimate e-mail (in
fact Spamassassin has also incorporated a machine learning approach also).

Knowledge engineering does offer very good performance and accuracy but
it does have drawbacks. As mentioned previously the knowledge acquisition
bottleneck is perhaps its most serious flaw. These systems are very domain
specific, that is, they can not easily be ported to another domain. For example,
the MYCIN system could not easily be ported to look at astronomical images for
detection of meteorites. It would require considerable cost and effort to update
the rules in order to comply with the new requirements. This is where Machine
Learning methods show their strength. Machine learning is roughly defined as:
“the ability to adapt to new circumstances and to extrapolate patterns”. The
important point to note here is the ability to adapt to new circumstances.

2.1.2 Machine Learning Approach

Rather than focusing on developing domain specific systems, researchers began
to focus on developing a way construct a system which could work in any do-
main. Machine learning approaches allowed for rules to be constructed from
a set of labelled training examples. This allowed for a generic algorithm to
be developed, where it would construct a domain specific classification system
based on series of labelled training examples (collectively known as training
data) given as input. This relieves the knowledge acquisition bottleneck since
domain experts are no longer consulted and only training data is needed for a
system to be produced. However, as is noted in [LMF+04], training data needs
to be carefully constructed. Using poor or noisy training data can result in a
system which fails to meet some or all of the requirements since the training
data used as input do not reflect the unseen instances from the domain.

Since the task of labelling a set of training examples is far easier than that of
constructing precise and robust set of rules, the number of areas and applications
incorporating machine learning has grown. However, for an accurate classifier to
be constructed, a large number of training examples are needed. This is bounded
by PAC learnability which stipulates a minimum number of examples needed
in order to have a bounded error on accuracy. Discussion of PAC learnability
is outside the scope of this document, for more information on this topic please
consult [Mit97].

For text classification, the main areas are that of news agency stories cat-
egorisation, spam classification and web page categorisation. One of the most
prominent benchmarks available for text classification is the Reuters news feed
(and its various incarnations). The task is to assign each news story one or more
label. Spam classification makes use of the lingspam [SAP+03] corpus as well
as the recently published Enron corpus [KY04]. Finally web page categorisa-
tion [DC00] will allow users to have finer control on queries and allow for faster
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retrieval of relevant information.

2.2 Types of Learning

Text classification is concerned with assigning predefined labels to documents
by means of a function f . This is accomplished by inductive learning, that is,
learning a hypothesis 3 (h) based on examples or observations of an unknown
real world function (f).

There is a number of different learning strategies in which a learner is ex-
pected to learn. Some are just given a list of examples and expected to learn
some general rules from these. Others are even more neglected and are just
given unlabelled examples and expected to learn some rules from this data.
There are three main types of learning:

Supervised Learning is where the learner is supplied with exemplars of the
form 〈x, f(x)〉 where f(x) is the label assigned by the unknown target
function for the instance x. From the training examples the learner con-
structs hypotheses (h) which are consistent with the training exemplars.
The hypotheses space H is the collection of all consistent hypotheses. In-
duction is then the task of returning a function h ∈ H that approximates
f . A good hypothesis is one that will generalise, that is, it will predict
unseen examples (x) correctly.

Unsupervised Learning is concerned with identifying classes or labels within
a set of data. The input is just a collection of instances from the domain,
which have not been labelled by the unknown target function f(x). This
method is useful in the context of text classification when trying to clus-
ter instances. It is not discussed in detail in this paper, for a complete
background see [Mit97] [Seb02].

Reinforcement Learning is primarily concerned with how a learner interacts
with its environment. Actions which the learner conducts are rewarded
or punished. The learner can build up an internal representation of its
environment which may help it achieve its goal. Reinforcement Learning
has seen most use in robotics and computer vision.

For the rest of this paper, we will concentrate on supervised learning as it
is most applicable to the realm of text classification. In the text classification
scenario, sufficient training data (documents from a domain along with their
correct classification) is given to the learner, where it induces a hypothesis h that
approximates the unknown target function for the domain f . The hypothesis
h can then be used to classify new and previously unseen documents that are
presented to the system.

2.3 Passive Learning

Modern machine learning typically happens in what we call a passive learning
scenario. That is the learning machine (the learner) does not participate in-
teractively with the teacher. Examples of the task which we wish the learner

3hypothesis is a synonym for classifier
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to learn are provided but after that no other stimulus is given. In this sec-
tion we discuss the different aspects of the passive machine learner starting by
explaining what we call a learner.

2.3.1 The Learner

The notion of a learner is often presented in the literature. A learner encapsu-
lates the process of inducing a classifier. The learner is given training data and
from it produces a classifier. The more traditional notion of a learner is that
of a passive learner whereby the learner induces a classifier based on just the
training data. There are other types of learner (such as an active learner) that
do more with the training data before inducing and output a classifier.

2.3.2 Text Classification System Life-Cycle

Figure 1 is a generic life-cycle for a text classification system. Raw data is given
as input. The system needs to convert from the raw data into a notation it can
use and manipulate. Typically this is the vector space model which is described
in more detail in subsequent sections. Transforming the raw data is done in
the pre-processing stages which include feature extraction and feature selection.
Once the data is in a useable format, the system can induce a classifier, which
is used to classify new and unseen instances. Validation may be performed
in order to fine-tune the classifier. Hopefully the classifier should be a good
approximation (or indeed equivalent) to the real target concept.

Figure 1: Text Classification System Life-Cycle.

Of course, there is a lot happening in each stage. In the sections that follow
processed from each stage are elaborated, giving the reader sufficient under-
standing for the rest of the topics raised in the paper. A full discussion of the
multitude of different approaches in each stage of the text categorisation system
is outside the scope of this document.

2.4 Preprocessing

Text classification systems need examples to train on (commonly known as
training data), these are typically provided by the users of the system. In most
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applications, training data is very limited. It is comprised of a subset of the
domain (of length m), for which their corresponding category labels are known.

{〈d1, c1〉 , 〈d2, c2〉 . . . 〈dm, cm〉}
d ⊂ Domain

c ∈ Range

Training data is critical for the success of a classification system, given bad
training data the accuracy of the system may be dramatically diminished.

A number of standard benchmarks are used in text classification systems,
the most notable addition being the news wire data such as the Reuters corpora.
An important recent addition is that of the Enron corpus [KY04]. This may
prove to be a valuable resource since it contains a large quantity of real users
e-mail together with classification done by the users into folders. Finally the
UCI repository contains a large collection of data sets which can be used, while
not specifically text classification data, these can still be useful for testing and
evaluating the separate, constituent parts that form a text classification system.

2.4.1 Feature Extraction

The first stage in pre-processing is that of feature extraction. A feature can be
any piece of information known about a document, these include the individual
words within the document (known as tokens) or non-token features such as the
size of the document. Establishing a coherent and descriptive set of features
is vital for a successful text classification system. Unless we can extract mean-
ingful information from documents the system may not perform accurately or
efficiently. Each state of each document can then be represented as a vector of
N features, where N is the number of unique tokens in the entire collection of
documents.

di = 〈a1, a2, a3 . . . aN 〉

2.4.2 Feature Selection

Even for the most trivial of tasks, N can grow to be extremely large, making
searching this state space of all documents infeasible. Using feature selection
the dimensionality of the state space can be significantly reduced allowing for
efficient searching. There are two possible ways to conduct feature selection:
local, where we do feature selection with respect to each category c ∈ Range or
global, where feature selection is done with respect to all categories.

Local Global

|N ′| � |N | |N ′| � |N |
∀c∈Range

Table 1: Local versus Global TSR, in the local for every category feature se-
lection is conducted resulting in different features being used for each category.
In the global case feature selection is only done once and the same features are
used for all categories
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There are a number of methods that are widely used for feature selec-
tion, these include Information Gain[SW48] and the method which shows most
promise Latent Semantic Indexing (LSI)[DDL+90]. While the latter does seem
to produce better results, patent issues associated with it have stunted its wide
scale adoption.

2.5 Learning

At this stage the data has been transformed from its raw state into a model
which can be easily processed. In addition the demensionality of this model has
been reduced to make it more managable. A classifier can now be constructed
from this data.

2.5.1 Classifier Induction

Inductive learning is concerned with learning from examples about which class
membership is already known. An inductive learner will induce a hypothesis
(h) that will approximate the target function (f) as much as possible.

The goal of a text classification system is to find a function that will map
all the documents in the domain to the correct classification in the range. This
ideal function is called the target function. Text classification systems, given
enough correctly labelled examples, will deduce hypotheses based on the exam-
ples. There can be numerous hypotheses that satisfy all the training examples.
The collection of all the hypotheses that satisfy the training data is called the
version space[Mit97]. In Machine Learning, the target function is considered to
be within a version space, the goal is then to either find the target function by
searching the version space. Inductive learning is concerned with learning from
examples about which class membership is already known. An inductive learner
will induce a hypothesis (h) that will approximate the target function (f) as
much as possible.

There are two main types of classification problems, namely, multi-class and
binary. The majority of the research has concentrate on binary classification
problems, that is, the total number of possible labels is two (for example, f(x) =
y, y ∈ {spam, legit}). The reason for concentrating on binary classification
problems is that multi-class classification problems can be decomposed into a
series of binary classification problems.

The output from the pre-processing stage typically results in a number of
training examples (for i = 0 . . . M where M is the number of training examples),
each represented by a feature vector (di) and an associated classification label
(yi).

di = 〈a1, a2, a3 . . . aN 〉
f(di) = yi

Classifiers which give a binary output, that is, y ∈ {1, 0} (1 and 0 can be
replaced with T and F respectfully) are seen to give hard classifications. Hard
classifications can also be done using a classifier which outputs a probability
score, that is, y ∈ [0, 1], by incorporating a threshold θ. The threshold can
be constructed analytically or empirically. Three methods discussed in [YL99]
namely Scut, Pcut and Rcut.
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Scut involves testing different values for the threshold using a validation
set and choosing a value which maximises the effectiveness of the classifier.
With Scut there will be different thresholds for the different categories. Rcut is
simply where a fixed threshold is used. Pcut, as described in [Seb02], is when
the value of the threshold is chosen so that the generality of the training set
gtr(yi) is closest to the generality of the validations set gV s(yi), that is the same
percentage of documents, for both the training and validation set, are classified
under category yi.

gΩ(yi) =
|{dj ∈ Ω|h(dj , yi) = T |

|Ω|

2.5.2 Types of Classifier

While a full enumeration of all inductive classifiers is beyond the scope of this
paper, a brief discussion will be given on some of the more popular and inter-
esting classifiers seen in text classification systems.

Perhaps one of the most widely used classifiers is the näıve Bayesian classifier.
It is a probabilistic classifier, thus it produces hypothesis h(x) = y where y =
[0, 1]. It uses the training data to construct conditional probabilities which are
used to infer probabilities about the classification of future instances presented
to the learner. The näıve part stems from the independence assumption, which
assumes that features are conditionally independent. In reality this is not the
case but this assumption simplifies the calculations significantly. Please consult
[Mit97] for a full discussion on Bayesian classifiers.

yNB = arg maxyi∈Y P (yi)
∏

j

P (aj |yi)

The k Nearest Neighbour (kNN) is a memory based classifier, called so as
it keeps in memory all the training examples. It does not do any processing
during training, rather it does its processing during classification. For this
reason it is called a lazy learner. As an instance is presented to the learner,
it will search through its memory looking for examples which are similar to
the instance presented to it. It will then select the k training examples that
are most similar and use these to determine the classification of the presented
instance. Similarity is normally measured in terms of Euclidean distance, while
a majority vote (or the mode of the classification) of the training examples
is used to determine the classification. Because of its simplicity and ease of
comprehension, kNN is a widely used classifier.

Decision trees are called symbolic learners which humans find easier to
comprehend. They construct a tree in which internal nodes are features and
branches departing from these nodes represent the values associated with the
feature. Leaf nodes correspond to categories in the classification task. There
are numerous algorithms for constructing decision trees, the more popular are
ID3 and C4.5. A divide and conquer strategy is used in the construction of a
decision tree, in which the feature which best splits the data into categories are
chosen as nodes in the tree. Clearly quite large trees can be produced which
can also overfit. Pruning can be done with a validation set in order to reduce
the size and help generalise the decision tree.

Support vector machines (SVM) are a recent addition to machine learning.
The idea is to find a hyper-plane that will separate (classify) the instances
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correctly. If this can not be achieved in the original feature space, instance
can be mapped into a higher dimension feature space where the instances are
linearly separable. This is done using a kernel method. For a full description of
support vector machines please consult [Vap98].

Linear (also known as an On-line) classifiers produce a classifier almost im-
mediately after examining the first training example, which is in contrast to
batch classifies (like the ones above) which examine the entire training set be-
fore inducing a classifier. They receive examples one at a time and incrementally
refine the classifier. These refinements are characterised by additive and multi-
plicative update algorithms.

2.5.3 Committee Based Classifiers

Committee based classifiers (also known as an ensemble) combine the predictions
of multiple classifiers in order to increase accuracy. A committee is characterised
by the choice of the constituent classifiers and on how to combine the predictions
of the individual classifiers into one overall classification. Diversity is essential
for a committee [MM03]. The easiest way in which to combine the predictions
of the individual classifiers is that of majority vote. Alternatively a weighted
vote can be done where each classifier is assigned a weight based on its expected
relative effectiveness. Dynamic classifier selection is where the classifier which
was most accurate on examples encountered during training that are similar to
the presented instance, is selected as the classifier that will produce the overall
classification.

There are two main approaches to producing ensembles, bagging and boost-
ing. Bagging is a re-sampling technique used to construct an ensemble. Several
bootstrap samples are drawn at random, with replacement, from the training
set. Each sub sample is then used to train a single classifier which then becomes
a constituent member of the ensemble. A majority voting scheme is normally
used to give an overall classification.

Boosting is a technique for constructing an ensemble in a sequential process,
where extra attention is given to hard to classify examples. In this way subse-
quent classifiers produced during the boosting procedure can incorporate knowl-
edge about how previous classifiers performed. Each training example is given
a weight according on how difficult it was to classify (i.e. based on previous
classifiers misclassifying it). Similarly to bagging, boosting randomly selects
samples from the training set, with replacement, except instead of assuming a
uniform distribution like in bagging, it will perform weighted sampling using
the weights assigned to each training example. The idea is that more difficult
to classify examples will be more likely to be selected. The most prominent
boosting technique is AdaBoost [Sch99].

2.6 Evaluation

The performance of a text classification system is measured empirically using
a variety of standard metrics borrowed from other fields such as information
retrieval.

True positive refers to the case where the classifier correctly identifies a
positive case as being positive (i.e. belonging to a category). True negative
refers to the case where the classifier correctly identifies a negative case as being

10



negative (i.e. not belonging to a category). False negative refers to the case
where the classifier incorrectly identifies a positive case as being negative. False
positive refers to the case where the classifier incorrectly identifies a negative
case as being positive.

In some scenarios the costs associated with each of these are equal while
in others scenarios the cost of a false positive far outweighs the cost of a false
negative, as is the case in the spam filtering (getting a few spam in your inbox
is bearable, but loosing an important e-mail because it was marked incorrectly
as spam is disastrous).

Precision and Recall, which are used in information retrieval, can be defined
as follows.

Recall(ρ) =
TP

TP + FN

Precision(π) =
TP

TP + FP

There are two different approaches to calculating precision and recall, which
are micro averaging and macro averaging. In the micro case, the values for
TP, TN, FP and FN are computed per category and are then combined for an
overall figure of precision and recall. In the macro case, the values of precision
and recall are computed in each category and then these values are averaged to
give an overall value.

Precision (micro) Recall (micro)

πµ =
∑|C|

i=1
TPi∑|C|

i=1
(TPi+FPi)

ρµ =
∑|C|

i=1
TPi∑|C|

i=1
(TPi+FNi)

Precision (macro) Recall (macro)

πM =
∑|C|

i=1
πi

|C| ρM =
∑|C|

i=1
ρi

|C|

Table 2: Formulas for calculating the Micro-Averaged and Macro-Averaged
precision & recall values.

Micro averaging gives equal weight to each document while macro averaging
gives equal weight to each category.

The breakeven point is the value at which precision equals recall (π = ρ).
While the Fβ measure is a way of combining precision and recall into a single
value for easier comparison.

Fβ =
(β2 + 1)πρ

β2π + ρ

Typically β = 1 which means that there is equal importance to both precision
and recall, where as if β = 0 then all importance is given to precision. Similarly
if β = +∞ then all importance is given to recall.

Accuracy is defined as.

Accuracy =
TP + TN

TP + TN + FP + FN
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while error is defined as.

Error = 1−Accuracy

If accuracy is used in parameter tuning validation, the classifier may behave
like a trivial rejecter. This is due to the fact that a large denominator makes it
insensitive to changes in TP and TN which is not the case with precision and
recall.

3 Active Learning

A general principle in machine learning is that the more training data a learner
has, the more accurate it should be. This stems from PAC learnability, which
tries to measure how many training examples are required for a learner to achieve
a bounded error rate. From PAC learnability it is safe to deduce that the more
training data given to the learner the more accurate the model produced by
the learner should be (in other words, more consistent with the target concept).
The reason why, in practice, machine learning classifiers are trained with very
large amounts of training data is due to the fact that not all examples are
equally informative, some possess little to no information value while others
are extremely informative. Thus the larger the training dataset the higher the
probability that the training data contains the minimum number of informative
training examples (as described by PAC learnability) needed by the learner in
order to induce an accurate classifier.

In most domains there is an abundant amount of raw unlabelled data avail-
able. Considerable effort is needed in order to construct a training dataset
from which a passive learner can induce a hypothesis consistent with the tar-
get concept. A large number of examples must be labelled in order to produce
the training dataset. In some cases the effort in constructing a large training
dataset is prohibitive. The reason may be that the training data is very limited
or extremely costly to acquire (for example an expensive blood test). It would
be very beneficial if we could reduce the size of the training dataset without
impacting on accuracy of the classifier learned.

Active learning allows for a dramatic reduction in the size of the training
dataset needed by a learner. The reduction in the number of labelled training
examples is possible by giving the learner more control in the choice of the
examples in the training data. The learner typically has a large training dataset
but has not control in the choice of the training data.

The active learner can present queries to an oracle, where a query is a case
from the domain for which the learner does not know the label. The oracle which
is considered a domain expert has the task of correctly labelling the presented
query. These queries are the crux of the active learning framework and allow
the learner a way to control the training data it uses. Queries can either be
constructed by the learner or selected from a source of unlabeled queries.

An active learner is supplied with an initial, very limited training dataset
that contains very few training data. It then begins a series of interactions with
the oracle whereby it will present queries and the oracle will label the queries,
thereby increasing the training dataset with the newly acquired training data
obtained at each iteration. The premise is that the queries that the active
learner presents to the oracle are very informative, thus it can learn faster and
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with fewer training data. This reduces the number of labelled examples needed
in order for the learner to find a hypothesis consistent with the target concept.
In other words, the non-informative examples are removed from the training
data.

The oracle, typically a human that is a domain expert, is a vital part of the
active learning framework. Its role is to supply correct labelling to the queries
presented by the learner. Since there is a human-in-the-loop, the learning task
changes from a batch process to an interactive process. It is assumed that the
oracle is infallible thus the labels it provides are indeed correct. This is an
important fact since this implies that the training data contains no noise. In
the literature the oracle is commonly referred to as a teacher, in this paper
oracle and teacher are used interchangeably.

As active learning is an interactive process there is a clear question on how
to decide the stopping criteria. An obvious stopping criterion is the number of
labellings the oracle is willing to make. Another way of deciding when to stop
is to examine the accuracy obtained in each iteration and stop if the accuracy
falls. The stopping criteria are still an open issue in the literature.

In this chapter we begin by outlining the differences between passive and
active learning. A simple comparison between the two is presented. Next our
attention turns to the structure of an active learner. This describes the processes
that happen and in what order. Finally we consider how an active learner
chooses informative examples. As we will see later this is crux of active learning
and several approaches have been tried.

3.1 Active versus Passive Learning

There are two different types of learner, passive and active. The two really differ
on how much training data they receive and on how much control they have
over the choice of the training data. Both types of learning also use exactly the
same machine learning classifiers but differ in the way they induce the classifiers
(active learning induces a classifier after each interaction with the oracle). Of the
two, passive learning is by far the more straight forward and easier to implement.

3.1.1 Passive Learning

The term passive learning is used to describe a learning algorithm which has
no control or influence over the training data it receives as input. This is the
most common approach for supervised machine learning algorithms. In these
learners there is no oracle; rather the learning is fully automated in a batch
process. These learners require a large training dataset in order to produce an
accurate classifier. This is because the training dataset may contain a number
of non-informative training data.

3.1.2 Active Learning

The term active learning is used to describe a learner which has some control
or influence over the training data received as input. This differs from a passive
learner in that it can select informative examples to train on rather than relying
on the training dataset to contain a large number of informative examples. The
learner obtains the correct label for queries by presenting them to an oracle. The
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oracle is assumed to be infallible for the sake of simplicity. Rather than being
a batch type process, active learning is somewhat interactive and incremental
in nature. Each iteration consists of the learner interacting with the oracle.
The learner presents a query to the oracle which then labels the query thereby
producing a new training example. This new example is added to the training
dataset and a new classifier is induced using all the training dataset.

A number of classifiers are produced during active learning. The final clas-
sifier can either be an ensemble of these classifiers or can be a classifier based
on all the labeled training dataset once a stopping criterion has been met.

The goal of an active learner is to achieve comparable levels of accuracy (from
a reduced number of training data) with that of a passive learning. Equally, it
can also be seen as trying to achieve the highest possible accuracy using all of
the (limited) training data. The former goal is more applicable to most scenarios
where active learning is used.

3.1.3 Comparison

By its very nature, active learning requires less training data than a passive
learner. The point that makes active learning interesting is the fact that the
reduction in the size of the training dataset can be of several orders of magnitude!

On the other hand, active learning normally requires a lot more resources
than passive learning in the form of an oracle and increased complexity in im-
plementation issues. There is a need to weigh up the costs of labelling data
manually or employing an active learning strategy. If the later is more expen-
sive then there is no point in deploying such a system.

By far the most important difference between the two methods is in how
much control they can influence over the training examples used to train clas-
sifiers. Passive learning exerts absolutely no control; the examples used are
selected by the end-user. Active learning does have some influence, ranging
from the ability to construct an entirely new example itself, to selecting exam-
ples from a pool of unlabeled examples.

Passive Active
Number of training examples Large Relatively Small
Number of classifiers induced One (Batch) Many (Iterative)
Choice over training examples None Some

Stopping criteria Simple Complex

Table 3: A simple, high level comparison between passive and active learning

In passive learning, it is very easy to determine when to stop the process.
Since passive learners typically use all the training examples to induce one clas-
sifier the stopping criteria are trivial. On the other hand active learning poses
some problems as to when to stop the process. A classifier induced on run n
may actually have a better classifier accuracy than one induced on run n + 1 of
active learning. Should we have stopped earlier? Is the number of iterations of
active learning determined by the number of examples the oracle is willing to
label? The problem of knowing when to stop has not yet been answered in the
literature.
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3.2 A Generic Active Learning Structure

There is a question of how exactly the process of active learning happens and
in what order. Amongst all the different implementations in the literature, a
generic structure can be extracted. This structure is meant as a representation
of an active learner and not a definitive structure that an active learner should
adhere to. Its goal is to help in understanding the processes and sub-processes
that happen during active learning.

Given:
Training dataset L of labelled examples
Oracle T
Source of unlabeled examples U
Stopping criteria M .

While stopping criteria not met

- Obtain query x for Teacher to label.

- Have the Teacher label the query y = T (x).

- Add example to set of labelled examples L = L
⋃{(x, y)}.

- Induce new classifier from training dataset Ci = I(L).

Output a final classifier C

Figure 2: Generic Active Learning Structure

Presented in Figure 2 is a generic structure for an active learner. A number
of items are required before active learning can proceed. The definitions of these
items given here are deliberately abstract. More concrete definitions are given
later when we discuss the different aspects of active learners.

First and foremost the active learner needs a source of unlabeled examples
U . Second, it requires a place to store the labeled training data L. To label the
examples, an oracle T (commonly referred to as a Teacher) is required. Finally,
a way of knowing when to stop active learning is needed M .

The procedure is as follows; obtain a query that we want the oracle to label.
These queries should be very informative. Once obtained, we present these to
the oracle which will correctly label them. Placing the newly labeled examples
into training dataset, we then induce a new classifier based on the training
dataset (and possibly the unlabeled examples also). We keep doing this until
the stopping criterion is met.

From this generic structure we can see that active learning is an iterative
process - differing from passive learning which is a batch process (the structure of
a passive learner is not presented here for brevity). This structure is a good way
at looking at the different ways in which active learning has been implemented
in the literature. Indeed for the most part, implementations share a lot of this
generic structure. They differ mostly on the way in which queries are obtained.
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3.3 The Oracle

Let us firstly discuss the one aspect of the structure which does not seem to
change amongst implementations. The teacher or oracle is generally not dis-
cussed in the literature. If it is mentioned then it is almost always assumed to
be a human. The active learner assumes the presence of an external oracle. The
oracle is willing to correctly classify queries presented to it and it can be as-
sumed that the oracle is infallible, thus it is not a source of noise in the training
data.

The oracle operates in a query-response manner whereby the learner can
query the oracle with a particular query and it will return the correct classifi-
cation for the query. In many cases the oracle is a human but it could equally
be an additional test (for example additional expensive blood tests) which, if
conducted, would supply the correct classification.

In [Tur00], cost associated with the oracle is discussed. Turney describe that
a “wise learner is one which will classify easy cases by itself and reserve difficult
cases for the teacher”. Thus a rational learner would, for each new case pre-
sented to it, calculate the cost of classifying the case by itself (misclassification
cost) versus the cost of asking the oracle to classify the example.

There is an assumption that the oracle has a cost associated with it. It is
necessary to decide whether a misclassification is more expensive than asking
the oracle. A form of cost benefit analysis is needed in order to determine when
the valuable resource (i.e. the oracle) should be consumed. If the cost of asking
the oracle is too high then the learner may never ask a query. On the other hand,
if the cost of asking the oracle is too low then the learner may ask numerous
trivial questions causing frustration in the oracle.

There is the idea of punishing the learner for asking trivial queries while
rewarding the learner for querying difficult and complex examples. Punishment
does not seem to be a common approach at present in active learning although
it does have some form in reinforcement learning where the agent is punished
for making the wrong decision.

One final consideration about the oracle is the way in which it answers
queries. The oracle can be configured in one of two ways, the first being that
when presented with a query the oracle will return the correct classification for
that particular query. The second configuration is that the oracle can return
a set of counter examples [Ang88] for each query presented to it. Of the two
configurations the former is the more practical and popular.

3.4 Query Sources

Active Learning requires a source of queries. Queries take the form of an unla-
belled example, that is, a case for which we do not know the label. The question
of where these unlabeled examples come from has created a number of divisions
in the active learning literature.

The first possible source is to allow the learner to construct its own queries.
This we call query construction. A second possible source is to allow the learner
to select queries from collection of unlabeled examples which we call query se-
lection. Within query selection there is a further subdivision based on the form
the collection of unlabeled examples takes. One form is that of a large pool
of unlabeled examples, which is referred to as pool based query selection. The
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other form is that of a stream from which the learner can extract unlabeled
examples. This is referred to as stream based query selection. Of the various
sources the pool based query selection is the most popular. Figure 3 shows the
hierarchy of queries.

Query

Construction Selection

Pool Stream

Figure 3: Different Types of Queries

3.4.1 Query Construction

One way in which to obtain queries is to have the learner construct its own.
Queries can contain any information as long as they conform to the input space.
The learner can then find the membership of this constructed query. This comes
from a method of learning called query learning that was proposed by [Ang88].

An accurate classifier can be constructed from fewer training data if the
learning algorithm is allowed to create artificial examples, often called ’queries’
[Ang88]. The learner explicitly constructs the query that will be presented to the
teacher. In each of the iteration of active learning the learner will construct an
example that conforms to the input space (the domain) and request its label.
In this way the learner can exploit its knowledge of the domain in order to
construct queries from a region of the input space that it has little knowledge
about.

This method has the advantage of utilising the learner’s internal knowledge
in order to construct informative queries which should further dramatically in-
crease the learner’s knowledge of the domain. However, certain problems arise
when constructing such queries, the most notable being that constructed queries
are sometimes nonsensical. This is important since the oracle is often a human,
thus if they can not understand the query they can not correctly label it. This
problem is particularly prevalent in the case of text based domains. Constructed
queries are often nonsensical as shown in [BL92].

3.4.2 Pool Based Query Selection

Rather than constructing queries an alternative approach is to select (filter) one
from a pool of unlabelled examples (that is, cases for which class membership
is unknown). The learner is given a set of unlabelled examples from which it
can choose a query. Once an example is selected, it is presented to the oracle
which will return its correct label.
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Given

- pool of unlabeled examples U

- set of labeled examples L

- classifier induction algorithm A which will
produce a classifier Ct

- example selection function Q

- oracle T that returns the correct label y for example x such that
y = T (x)

while stopping criteria is not met

- Use Q to select the most informative example x.
x← Q(U)

- Present the example x to the oracle and obtain the correct label
y = T (x).

- Remove the example from the set of unlabeled examples U .
U ← U \ {x}

- Add the newly labeled example to the set of known labeled examples.
L← L

⋃{(x, y)}
- Induce a new classifier

Ct ← A(L).

Output: Final classifier(s) C1 . . . Ct.

Figure 4: Pool Based Active Learning Structure

We can modify the generic structure of an active learner presented in Figure
2 to reflect a generic pool based query selection active learner structure as given
in Figure 4. The learner will select queries from the pool of unlabeled examples
with the aim of selecting a query that will maximise the knowledge obtained
from knowing the label of this one query. Another way to look at this is that
the learner wishes to find the query that will reduce the hypothesis space the
most - thus eliminating the hypothesis that are not consistent with the target
concept.

The query is chosen using a query selection function. It is the responsibility
of this function to select the most informative queries. The query will then
presented to the teacher where it is given the correct label. Once the correct
label is known the query becomes a training example, whereby it is added to
the training dataset. The query is also removed from the pool of unlabelled
examples. Finally the learner induces a new classifier based on all the training
data in the training dataset.

The underlying idea is that the learner will select the most informative ex-
amples from the pool, thus achieving higher accuracy with fewer training exam-
ples since non-informative examples are not considered in the training process.
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Clearly the improvement in accuracy is gradual, as the number of training data
increase so too should the accuracy of the induced classifier and a reduction
in generalisation error. Typically in each run of active learning one example is
selected but for reasons of optimisation, multiple examples can be selected in
each phase.

Clearly the query selection function is vital for the success of active learning.
The function should pick the most informative query from the pool in order to
improve the performance of future classifiers. There have been numerous ways
suggested in the literature about how to select the next example. We discuss
some of the various methods in a later section (3.6).

There are some advantages that pool based selection has advantages over
constructed queries. Clearly in the case of text problems the main advantage is
that the queries presented to the oracle are existing cases (documents etc. . . )
from the domain. These are comprehensible to the oracle thus a correct label
can be assigned.

3.4.3 Stream Based Query Selection

In a slight variation of pool based query selection, stream based selection re-
places the pool of unlabelled examples with a stream, from which the learner
can draw examples from. The learner has no control over the stream other than
the ability to draw examples from it. It is assumed the stream will present
examples which are indicative of the underlying distribution in the domain.

This method is more suited to an on-line system, for example an e-mail
routing system. At distinct time intervals new instances arrive. The learner
will draw the example from the stream where upon it has two choices. It can
decide to classify the instance itself or ask the oracle to label it. Typically the
learner will decide classify examples for which it has a confident classification.
Similarly it will decide to ask the oracle to label the example if its does not have
a confident classification.

Once again the learner must do a form of cost benefit analysis to make the
decision. If the cost of misclassification is very high, then the system will tend
to ask the oracle to label many examples. On the other hand if the cost of
labelling by the oracle is high then the cost of misclassification will tend to be
more acceptable, thus accuracy may suffer.

Similarly to the generic pool based structure presented in Figure 4, we can
modify the generic active learner structure of Figure 2 to reflect a generic struc-
ture of a stream based active learner as shown in Figure 5.

In this case, the source of unlabeled examples is given by a stream S. The
learner will sample from this stream; for an example which the current classifier
is confident about, the learner will decide to label itself and for an example
which the current classifier is not confident about, the learner will present to
the oracle for labelling.

The remaining structure of a stream based active learner is the same as a
pool based active learner. The newly labelled query is added to the training
dataset and a new classifier is induced based on all the training data in the
training dataset.

Once again the stream based approach has advantages over constructed
queries. The queries in the stream represent documents from the domain, thus
are understandable by the oracle. Stream based approaches have the disad-
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Given

- stream of unlabelled examples S

- set of labeled examples L

- classifier induction algorithm A which will
produce a classifier Ct

- teacher T that will return the correct label y for an example x such
that y = T (x)

while stopping criteria is not met

- Remove example x from Stream S about which classification is not
confident.

- Present the example x to the teacher T and obtain the correct label
y = T (x).

- Add the newly labelled example to the set of known labelled exam-
ples.
L← L

⋃{(x, y)}
- Induce a new classifier

Ct ← A(L).

Output: Final classifier(s) C1 . . . Ct.

Figure 5: Stream Based Active Learning

vantage of the learner not being able to examine all unlabelled examples when
trying to select the most informative query. In addition, the classifiers induced
depend on the sequence of examples in the stream - this may make experiments
difficult to replicate or cause instability in an active learning scheme.

3.5 Query Construction Methods

An accurate learner can often be constructed from fewer examples if the learn-
ing algorithm is allowed to create artificial examples, often called membership
queries [Ang88]. This is where the learner explicitly constructs the query that
will be presented to the teacher at each phase of the active learning life-cycle.
On each phase the learner will construct an example from the input space (the
domain) and request its label.

Certain problems arise when constructing examples, the most notable being
that constructed queries are sometimes nonsensical to human observers. This is
important since the teacher is often a human. Particularly in the case of text,
constructed examples are nonsensical as shown in [BL92].

This method is not very popular in the literature and few examples using
this method can be found.
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3.5.1 SGnet

In [CAL94] a region of uncertainty in the domain is identified and unlabelled
examples from that region are sampled. While not specifically constructing
queries, the method does select examples from the entire domain, thus we are
not dealing with a pool based approach. In addition the learner has control
over which examples it will select from the domain thus it is not a stream based
approach.

The region of uncertainty is defined as consisting of the unlabelled examples
from the input domain for which there is a disagreement amongst the consistent
concepts in the version space[Mit97]. For a given input x, and concepts cicj ∈ C
where C is the version space consisting of all the concepts which are consistent
with the training data. ci(x) 	= cj(x). Defining the region of uncertainty may be
difficult, if not impossible for real problems, thus we can approximate it using
a subset of the real region of uncertainty.

In the method we assume the selection of an unlabelled example x and its
classification is not an atomic operation. Therefore we can select numerous
unlabelled examples and filter out those which do not reside in the region of
uncertainty.

A näıve approach would be to search for unlabelled examples for which
the classifier is uncertain about. In [CAL94] neural networks are used, where
classifier output above a threshold of 0.9 and below a threshold of 0.1 were
classifications about which the classifier is confident, while classifier outputs
between 0.1 and 0.9 being classification about which the classifier is uncertain.
The latter classification corresponds to a region where the classifier is uncertain
thus it the approximation of the region of uncertainty. This method is very
similar to that of uncertainty sampling as described in [LG94].

A less näıve approach is SGnet. This method uses two concepts, S the most
specific concept from the version space and G the most general concept from the
version space. Once found, S and G are used to search the domain for unlabelled
examples for which S(x) 	= G(x). Unlabelled examples for which S(x) 	= G(x)
corresponds to the region of uncertainty. Thus an unlabelled example from
the region of uncertainty is guaranteed to reduce the version space (the set
of all consistent concepts) size. If the unlabelled example is positive, it will
invalidate S and this will need to change, becoming more general. Similarly if
the unlabelled example is negative, G will need to become more specific.

The authors specify some limitations for this method, namely that it is
hard to maintain a definition on the region of uncertainty. In addition, the
region may not be a small distinct area; it may be the entire domain until the
concept is already well known. Not all unlabelled examples within the region of
uncertainty have the same utility. For example an unlabelled example from the
edge of the region may not reduce the area of the region to the same degree as
an unlabelled example from the centre of the region. Thus not only should the
unlabelled example be from the region of uncertainty it must also have a high
utility value.

3.6 Query Selection

In this section we examine the query methods used to select informative exam-
ples in sample selection learners.
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3.6.1 Random Sampling

One of the simplest methods for selecting queries is to randomly sample from
the unlabeled examples. Random sampling, however, may not select a repre-
sentative or indeed an informative training set. It relies on the underlying data
conforming to a uniform distribution, which is often not the case. An example
given in [LG94]

If only 1 in 1000 texts are class members and only 500 texts can
be labelled, then a random sample will usually contain 500 negative
examples and no positive.
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Figure 6: Random Sampling Baseline. Accuracy shown on the Y axis and
increments of Active Learning are shown on X axis

However, random sampling is a very useful tool in examining the effectiveness
of other methods. In short, an effective query selection technique should beat
random sampling. For example in Figure 6 the area between the two curves
shows the extra accuracy obtained by using active learning with some query
selection algorithm versus using active learning with random sampling. In some
of the literature this type of graph is shown with error rates instead of accuracy
rates leading to the name “Banana graphs”.

3.6.2 Uncertainty Sampling

Uncertainty Sampling [LG94] is a method for query selection from a pool of
unlabelled examples using a single classifier. The method uses the uncertainty
which the current classifier has about the unlabelled examples in the pool in
order to choose queries. Uncertainty is understood to be the confidence the
classifier has in predicting the correct label for a given unlabelled example. For
example, if the classifier is unable to give an unlabelled example a confident
prediction then it is said to be uncertain. Clearly there is a problem in how to
measure the classifiers confidence. Lewis and Gale suggest the use the proba-
bility estimate from the classifier as a measure of its confidence. Others believe
that the numeric scores from classifiers such as a Näıve Bayes classifier are not
well correlated with classification confidence [DCD05]
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This method is very similar to that of boosting, where we direct the training
of subsequent classifiers based on the misclassification of the current classifier.
The main difference is that we do not know the true classification of the exam-
ples in uncertainty sampling until we query the oracle. The stopping criterion
for active learning is the number of examples the oracle is willing to classify. Ide-
ally the most informative examples about the domain would be the unlabelled
example about which the current classifier has the most difficulty in classifying.

A probabilistic classifier is used in [LG94] to measure uncertainty, with those
unlabelled examples which have a probability of 
 0.5 being selected as queries.
In the ideal case, for each iteration of active learning the number of queries n
would be 1, but for efficiency reasons n can be > 1. In their experiments, unla-
belled examples from above and below 0.5 are chosen, since there was evidence
[HCOI91] showing that training on both sides of the decision boundary to be
useful

The threshold used to decide when to classify an example based on its prob-
ability estimate is given by the following equation.

l21P (C|w) + l22(1− P (C|w)) > l11P (C|w) + l12(1− P (C|w))

where lij is the cost associated with i being classified as j.
The experiments in [LG94] compared uncertainty sampling with random

sampling and relevance sampling used on news story titles (AP newswire be-
tween 1988 and early 1993). The choice of the initial classifier is important in
this algorithm since there may be a low frequency class we are trying to con-
struct a classifier for. Unless this initial classifier has some knowledge of this
class a long period of random sampling may ensue until it happens to find an
example of the desired class. In the experiments the initial classifier was sup-
plied with three, randomly selected positive examples and the value of n used
in each round of uncertainty sampling was 4. Relevance sampling was done by
selecting the n examples with the highest probability.

The result of the experiment was that uncertainty sampling performed better
than the other two techniques (random sampling and relevance sampling) and
performed comparably or better than a classifier trained on all the training
data. Using uncertainty sampling and relevance sampling resulted in increased
learning rates as compared with that of random sampling in the early stages
of learning. Effectiveness levels achieved by 100,000 randomly chosen examples
were achieved by uncertainty sampling using less than 1,000 examples.

Some drawbacks of the approach are that the final classifier produced was
unstable. The authors believe this was caused by the randomness involved with
selecting the three positive instance used for the initial classifier. When the
three training data cases were not representative of the class being modelled,
there was a considerable delay before uncertainty sampling found additional
positive examples.

The choice of always retaining the features of the initial classifier examples
is questionable, it may be worthwhile doing feature selection in each phase. The
construction of the final classifier is identified as an area of future work, as is
the investigation of relationship between the size of n and effectiveness. While
a smaller n may be more effective it does cause additional computation than if
a larger size for n were used.
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3.6.3 Query By Committee (QBC)

The Query By Committee algorithm [SOS92] [FSST97] fall under the category
of stream based selection. The learner is given access to a stream of unlabelled
examples drawn from the input space at random according to some unknown
distribution D. As examples are drawn from the stream, the learner must
decided whether reject the example (it can easily classify the example itself) or
present the example to the oracle (it finds it difficult to classify the example).

Initially most examples will be informative for the learner since it has little
knowledge of the target concept. As active learning continues, the prediction ca-
pabilities of the learner will improve and it discards the majority of the examples
drawn from the stream. Initially the learner will query the oracle extensively,
this should subside reducing the workload for the oracle.

In [FSST97] the learner is given access to two oracles plus an algorithm.

Sample this oracle will return an example randomly selected from the domain
according to some unknown distribution D

Label an oracle which will return the true label of the example supplied as the
parameter.

Gibbs this computes the Gibbs prediction for an example using a randomly
selected hypothesis from the current version space[Mit97].

In QBC the stopping criteria is measured on the number of rejection. A
threshold is computed based on the prediction error and the desired reliability.
While the stopping criteria are not met the following is done.

1. Sample is called to get an instance x.

2. Gibbs is then called twice on x

3. If the two agree then the example is rejected (goto step 1)

4. Else Label is called to get the true classification of x. Update the ver-
sion space to be the set of consistent hypothesis with the newly labelled
instance.

As a brief example of stream based active learning, [NS04] shows an appli-
cation for detecting and evaluating collisions at road junctions. The real world
problem lends itself to stream based approach as it is linear in nature and the
authors report good results when using stream based active learning.

3.6.4 Lookahead Algorithm

In [LMR99] a selective sampling methodology for the nearest neighbour classifier
is presented. Most selective sampling methods focus on choosing examples from
regions of uncertainty. The authors propose a method which will use a utility
function for appraising classifiers and a posteriori class probability estimate for
examples in the instance space (domain).

The proposed approach relies on using a random field model for labelling the
unlabelled examples which serves as the basis for a class probability estimation.
The lookahead based framework chooses the next example in order to maximise
the expected utility of the resulting classifier.
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The method performance is comparable or better than random sampling,
uncertainty sampling and maximal distance on both artificial and real world
problems. Maximal distance is where the example selected is one which will have
different labels amongst is three nearest neighbours and is the most distant from
its closest labelled neighbour. Lookahead performs especially strongly when the
instance space contains more than one region of some class, (e.g. two Gaussian).
Lack of exploration in other methods results in failure to capture these in their
models. The drawback with the lookahead method is its computational expense.

3.6.5 Bootstrap-LV

Presented in [STP04], Bootstrap-LV describes an active learning method for
construction of class probability estimates (CPE). These are used to rank doc-
uments in order of interest, or to present offers to users in order of probability
of purchase (read, expected benefit to seller) rather than conduct a hard classi-
fication.

The process first estimates the estimation variance (using the Local Vari-
ance) of each example in the pool of unlabelled examples. If the LV is high,
then the example is not well captured by the current model. The LV also cap-
tures some information about the potential error reduction for other examples if
the classification of this example were known. In Bootstrap-LV the LV estima-
tions, together with a specialised sampling procedure, are used to identify the
unlabelled examples that are particularly likely to reduce the average estimation
error across the entire input space.

Bootstrap-LV deviates from the generic framework for a pool based sampling
algorithm. It generates k bootstrap subsamples Bj for j = 1 . . . k. It then
induces a model Ej for each of the subsamples. These models are used to
calculate the estimated variance for each example in the pool of unlabelled
examples. The estimate (LV) is calculated by the variance amongst the Class
Probability Estimations predicted by the models Ej . Finally each example
in the pool of unlabelled examples is assigned an effectiveness score that is
proportional to it LV.

The final part of the query selection function in Bootstrap-LV is selecting
queries from the pool, this can be done in one of three ways. Direct selection
is where we select queries based on the effectiveness score of the unlabelled
examples. Random selection can also be used. Weighted sampling is where
we select unlabelled examples from the pool using a distribution where the
probability of each example being sampled is proportional to its local variance.

A serious limitation with this approach is that it incurs a large computation
cost at each phase. The authors state that the method does become like random
sampling after the initial phases, thus as an optimisation the authors suggest
to only apply the method at the initial phases of active learning. Future work
proposed includes applying the same weighted sampling technique with other
metrics:

Our empirical analysis suggests the application of weighted sampling
with other effectiveness scores proposed in the literature
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3.7 Related Work

There has been developments which do not change the query selection function,
rather they alter the active learning framework. The addition of adaptive resam-
pling techniques has seen some interest in the literature. In addition there has
been work in the area of relevance feedback in the information retrieval arena,
which is very similar to active learning in classification, except that instead of
trying to optimise a classifier with respect to precision, the system should return
the most relevant documents, thus recall also becomes important.

3.7.1 Active Learning using boosting and Bagging

In [AM98], Abe and Mamutsuka, propose a query learning strategy by com-
bining the idea of QBC with boosting and bagging. This idea is also done by
[STP04] in the bootstrap phase of Bootstrap-LV. Bagging works by randomly
resampling (with replacement) from the training data according to some (uni-
form) distribution. For each of the subsamples produced, a classifier is induced
from the subsample and the final classifier output is formed by a majority vote
amongst the constituent classifiers. Boosting improves the performance of a
weak learner by repeatedly resampling the training data, with the distribution
weighted each time in order to focus on misclassified examples. This can be
done using a weighted sampling procedure. A common boosting technique is
called AdaBoost [Sch99].

Query by Bagging, is where the at each stage of active learning, bagging is
used to construct an ensemble of models from the set of labelled examples.

1. Resample according to a uniform distribution on the set of labelled exam-
ples to create subsamples S1 . . . ST

2. Induce a classifier using each subsample C1 . . . CT

3. Find the instance x for which there is maximal disagreement.

4. Obtain label for instance x and update the labelled set accordingly.

Query by Boosting is a slight adaption where the resampling distribution
is changed in order to focus the next induced classifier Ct+1 on the examples
misclassified by Ct. The query selected is one for which the final hypothesis
obtained by boosting has the least margin. The margin is the difference between
the total weight assigned to the correct label and that assigned to the incorrect
label.

1. Run AdaBoost on labelled examples to obtain hfin(x) = arg maxy log 1
βt

2. Find the instance x for which there is minimum margin
x = arg min|∑ht(x)=0 log 1

βt
−∑

ht(x)=1 log 1
βt
|.

3. Obtain label for instance x and update the labelled set accordingly.

Where βt comes from AdaBoost and hfin(x) is the final hypothesis produced
by AdaBoost. In both cases, an improvement was seen when tried empirically.
Query by Boosting showed more of an improvement than Query by Bagging.
One point to mention is that both had a high time complexity which may impede
use as an on-line method.
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The term adaptive resampling refers to methods like boosting and bagging
that adaptively resample data biased toward the misclassified examples in the
training data, then combine the predictions of several classifiers. In [IAZ00] the
authors apply adaptive resampling to active learning. The goal was to retain
some of the advantages of adaptive resampling methods (e.g. accuracy and
robustness of the generated model) and combine it with a reduction in the size
of the required training set.

Active Learning using Adaptive Resampling (ALAR), presented in [IAZ00]
uses two classification methods in each active learning phase. The first classifier
(M1) is used to guess the labels of the unlabelled documents. A second classifier
(M2) is induced from the labelled data set, using adaptive resampling to con-
struct an ensemble of models. The next step selects a subset of examples from
the unlabelled examples from the weights calculated using the guessed labels
and the ensemble. These selected examples are then labelled by the teacher
and added to the list of known labelled examples. For the final round of active
learning the final classifier is the combination of the ensemble.

The resampling was done using the normalised version of the following
weighting function for each instance i in labelled examples.

w(i) = (1 + error(i)3)

where error(i) is the cumulative error for the instance i over all models in the
ensemble.

In [AM98], Abe and Mamutsuka, propose a query learning strategy by com-
bining the idea of QBC with boosting and bagging. This idea is also done by
[STP04] in the bootstrap phase of Bootstrap-LV. Bagging works by randomly
resampling (with replacement) from the training dataset according to some (uni-
form) distribution. For each of the subsamples produced, a classifier is induced
from the subsample and the final classifier output is formed by a majority vote
amongst the constituent classifiers. Boosting improves the performance of a
weak learner by repeatedly resampling the training dataset, with the distribu-
tion weighted each time in order to focus on misclassified examples. This can
be done using a weighted sampling procedure. A common boosting technique
is called AdaBoost [Sch99].

Query by Bagging, is where at each stage of active learning, bagging is used
to construct an ensemble of models from the set of labelled examples.

1. Resample according to a uniform distribution on the training dataset to
create subsamples S1 . . . ST

2. Induce a classifier using each subsample C1 . . . CT

3. Find the unlabelled example x for which there is maximal disagreement.

4. Obtain label for x and update the training dataset accordingly.

Query by Boosting is a slight adaptation where the resampling distribution
is changed in order to focus the next induced classifier Ct+1 on the examples
misclassified by Ct. The query selected is one for which the final hypothesis
obtained by boosting has the least margin. The margin is the difference between
the total weight assigned to the correct label and that assigned to the incorrect
label.
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1. Run AdaBoost on training dataset to obtain hfin(x) = arg maxy log 1
βt

2. Find the unlabelled example x for which there is minimum margin
x = arg min|∑ht(x)=0 log 1

βt
−∑

ht(x)=1 log 1
βt
|.

3. Obtain label for x and update the training dataset accordingly.

Where βt comes from AdaBoost and hfin(x) is the final hypothesis produced
by AdaBoost. In both cases, an improvement was seen when tried empirically.
Query by Boosting showed more of an improvement than Query by Bagging.
One point to mention is that both had a high time complexity which may impede
use as an on-line method.

The term adaptive resampling refers to methods like boosting and bagging
that adaptively resample data biased toward the misclassified examples in the
training data, then combine the predictions of several classifiers. In [IAZ00] the
authors apply adaptive resampling to active learning. The goal was to retain
some of the advantages of adaptive resampling methods (e.g. accuracy and
robustness of the generated model) and combine it with a reduction in the size
of the required training dataset.

Active Learning using Adaptive Resampling (ALAR), presented in [IAZ00]
uses two classification methods in each active learning phase. The first classifier
(M1) is used to guess the labels of the unlabelled documents. A second classifier
(M2) is induced from the training dataset, using adaptive resampling to con-
struct an ensemble of models. The next step selects a subset of examples from
the unlabelled examples from the weights calculated using the guessed labels
and the ensemble. These selected examples are then presented to the teacher,
labelled and added to the training dataset. The final classifier produced is an
ensemble of the subsequent classifiers.

The resampling was done using the normalised version of the following
weighting function for each instance i in labelled examples.

w(i) = (1 + error(i)3)

where error(i) is the cumulative error for the instance i over all models in the
ensemble.

3.7.2 Relevance Feedback

Relevance Feedback, as noted in [LG94], does a form of non-random sampling.
After supplying a query, users are presented with a listing of instance which the
current classifier finds most probable to belonging to the desired class. The user
is asked to label these instances, normally as a relevant/not relevant label, with
the feedback used to retrain the learner in order to return more relevant cases.
This approach puts more onus on retrieval of relevant texts than production of
a stable accurate final classifier with high precision. There is a claim [LG94]
that relevance feedback has many problems as an approach to sampling. It
works poorly as the classifier improves and is susceptible to selecting redundant
examples.

Active learning for context based image retrieval is described in [FCPF01].
Called RetinAL, at each feedback stage, the system optimises the image set
presented to the user in order to speed up retrieval. The paper focuses on the
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retrieval of large categories, starting with some relevant images brought by the
user. It can be seen as a binary classification between relevant and irrelevant
images. They propose an active learning method to select the most difficult to
classify images and to reduce redundancy in the training data set. Instead of
asking the user to label randomly selected images, the active learner tries to
focus the user on labelling the images that the system finds difficult to classify.
Their method is similar to SVMactive, where the user is asked to label the 20
images closest to the SVM boundary. The closer an image is to the boundary
the more difficult it becomes to classify.

4 Co-Training

In order for a learner to induce a classifier it needs data to train with. In other
words it needs labelled examples. However in many machine learning problems it
is often difficult to obtain labelled examples while obtaining unlabelled examples
is relatively easy.

This is because the task of labelling data is a tedious and time consuming,
thus volunteers are scarce. In addition for many domains it is simply not feasible
to collect large amounts of training data (for example in the medical domain -
expensive medical tests can not be justified for large number of potential can-
didates). Ideally the learner should be able to learn from a small number of
labelled examples and a larger number of the easily obtained unlabelled exam-
ples. Blum and Mitchell [BM98] propose a method called Co-Training that will
meet these requirements.

Co-training is a method which can be applied to machine learning problems
with multiple views. By this we mean that the problem has a natural way in
which to divide their features into subsets which we call views. In these problems
there is sufficient redundant information in the description of the examples that
a number of distinct sets of features can be formed - each of which is sufficient for
describing the target function. Thus an example in the domain can be described
by two or more different sets of features (views) which are sufficient to learn the
target concept for the particular problem domain.More formally we have the
instance space X = X1 × X2 where X1 and X2 correspond to two different
views of an example in the problem domain.

The most well cited example is that of trying to classify web pages [BM98].
Blum and Mitchell explain how they constructed two separate views of the same
problem by using both the body text of the web page and the anchor text of
the links that pointed to the web page. In this problem we have two separate
views, the first being the body text and the second being the anchor text.

The Co-Training process (as shown in Figure 7) begins with a small number
of labelled examples which are used to induce (construct) a weak classifier for
each view. These weak classifiers are then used to tentatively label the unla-
belled examples. Each classifier can then select p examples which it is most
confident are positive and n examples which it is most confident are negative.
Generally p and n are chosen to reflect the underlying data distribution.

The selected examples are then added to the set of labelled examples and
assigned the label the classifiers have predicted. Blum and Mitchell define a
formal framework in which they define two views of the input domain X =
X1 × X2 such that an example x from the input space can be given as a pair
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(x1, x2). It is also assumed that the target concepts in each view are consistent
with the target concept in the original input space F (x) = F1(x1) = F2(x2) and
that there is a zero probability of F1(x1) 	= F2(x2). It is also important to note
that X1 and X2 are conditionally independent.

Given

- Learning Problem with Multiple Views V1 and V2

- Training dataset of Labelled Examples Tr

- Learning Algorithm L

- Unlabelled Training Dataset U

- Test dataset Ts

- Number of iterations to perform k

for k iterations

- Use L to train classifier h1 using only V1.

- Use L to train classifier h2 using only V2.

- Let h1 label all the unlabelled examples U and select p positive ex-
amples and n negative examples.

- Let h2 label all the unlabelled examples U and select p positive ex-
amples and n negative examples.

- Remove the example from the set of unlabeled examples U .

- Add the self-labelled example to the set of labelled examples Tr and
remove from U .

Output: The classifiers from each view and possibly a classifier combining
the classifiers from each view.

Figure 7: Co-Training Algorithm

In the Blum and Mitchell experiments it was shown that Co-Training can
indeed help in reducing error of classifiers. The experimental setup started with
a labelled training dataset of 12 labelled examples and a pool of 75 randomly
chosen unlabelled examples. The p and n values were 1 and 3 respectfully.
Three output classifiers were produced, one based on the body text, one based
on the anchor text and one which combined the two probabilistic scores of the
previous two classifiers (simply multiplied the two scores together).

What can be seen is a marked reduction in error as the Co-Training iterations
continue. Although only 30 iterations were conducted in the experiments a
significant reduction in the error level can be seen with the body text classifier
while the anchor text classifier had a smaller reduction in error. In addition the
combined classifier achieves the best reduction.

As an example application of Co-Training, Kititchenko and Matwin [KM01]
developed an application to classify e-mail. They used the subject line text as
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one view and the body text as the second view. They found that Näıve Bayes
classifiers performed poorly on their particular domain while Support Vector
Machines performed much more favourably. The major reasoning behind the
poor performance of Näıve Bayes given in the experiments was the sparseness
of the feature sets thus SVM worked much better since it is able to cope with
large numbers of features.

4.1 Co-Testing

Efforts to incorporate Co-Training and Active Learning have appeared in the lit-
erature. Muslea et al. have developed a technique called Co-Testing [MMK00]
that leverages the power of Co-Training with that of Active Learning - specifi-
cally selective sampling.

The idea is simple yet very effective. Learners are given some initial (very
small) training data and classifiers are induced with one classifier per view us-
ing this training dataset. The classifiers are then used to tentatively label each
unlabelled example in the unlabelled dataset. Contention points are those ex-
amples for which the classifiers disagree. In other words F1(x1) 	= F2(x2). From
the list of these contention points examples are selected and displayed to the
user. The user is supplies the correct label for the given example and it is then
added to the training dataset of labelled examples. The algorithm is given in
Figure 8.

Co-Testing is the name given to a whole family of algorithms which differ-
entiate themselves by the manner in which they select which contention points
to present to the user (oracle) for labelling (the SelectQuery method in Figure
8). The one seen in the literature is that of näıve Co-Testing which simply picks
among the contention points at random. This has the advantage of being the
most general member of the Co-Testing family as it can be applied to practically
any type of learner since no assumption is made on the type of prediction made
by the classifier.

Other more powerful techniques can be made in selecting among the con-
tention points. For example if the assumption is made that the classifier can
make a confidence prediction of its classification then we can select the con-
tention point which both classifiers disagree most strongly on. This leads to
maximal improvements in at least one of the classifiers.

Co-Testing has a major advantage in that the examples it selects have the
potential to be more informative that those selected by active learning tech-
nique. Low confidence predictions tend to be those examples closest to the
decision surface. However in Co-Testing we are interested in the unlabelled
examples which the two classifiers disagree most strongly on, these tend to be
those examples which are furthest away from the decision surface of both clas-
sifiers. At least one of the classifiers is incorrect thus the information gained
from knowing the correct classification of these unlabelled examples is greater
than those closer to the decision boundary.

4.2 Effectiveness of Co-Training

There is still the question of why Co-Training works. Is it due to the fact that
the differences in the two feature sets is sufficient to direct the learner in finding
a good approximation of the target concept or is there another reason. In a
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Given

- Learning Problem with Multiple Views V1 and V2

- Training dataset of Labelled Examples Tr

- Learning Algorithm L

- Unlabelled Training Dataset U

- Test dataset Ts

- Number of iterations to perform k

- Oracle O

for k iterations

- Use L to train classifier h1 using only V1.

- Use L to train classifier h2 using only V2.

- Let h1 label all the unlabelled examples U .

- Let h2 label all the unlabelled examples U .

- Find ContentionPoints = {x ∈ U, h1(x) 	= h2(x)}
- Let x = SelectQuery(ContentionPoints) .

- Query the Oracle O with the selected example x and find its label.

- Add the Oracle-labelled example x to the set of labelled examples Tr
and remove from U .

Output: The classifiers from each view and possibly a classifier combining
the classifiers from each view.

Figure 8: Co-Testing Algorithm

paper [NG00] by Nigam and Ghani the authors investigate this very question
and produce some results which seem to backup the argument presented by
Blum and Mitchell. Nigam and Ghani look at why Co-Training algorithms are
successful. They compare the results obtained using Co-Training with those
obtained using techniques such as EM.

There are a number of assumptions which are given in the framework of Co-
Training. The first of these is that of the instance distribution being compatible.
This means that for all (perhaps this can be relaxed to say ’most’) examples
the target concept in each view gives the same label F (x1) = F (x2). The
second assumption is that an examples feature’s in one view are conditionally
independent to the features in the second view. In [MMK02a] this is referred to
as being uncorrelated

In order to evaluate the impact on the effectiveness of Co-Training when
these assumptions are violated Nigam and Ghani produced a semi-artificial
dataset based on newsgroup data. They also devised a new algorithm Co-EM
which is an iterative process of applying EM. They believe this is closer match
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to the theoretical argument by Blum and Mitchell than the Co-Training algo-
rithm since the initial classifier is used to create a larger noisily-labelled data
to train the second classifier. Finally the authors also constructed an algorithm
called self-training which, in essence, is an inverse selective sampling algorithm
without the aid of an oracle. In other words, the most confident example is
selected and is added to the labelled training dataset with the label prescribed
by the classifier rather than a label assigned by an oracle.

The authors were able to show that in datasets where there was a clear
feature split, Co-Training outperformed EM algorithms. Indeed even randomly
splitting a flat feature set and applying Co-Training algorithms can result in
improved accuracy. These results are very promising for the applicability of
Co-Training methods.

4.3 View Creation

Clearly what is needed is a way to identify and establish natural feature splits
in data. This is a non-trivial problem especially in certain domains, such as text
classification for example.

4.3.1 Random Splits

One way is to just randomly split the data into separate views. In their paper
[CKP04] Chan et al. have evaluated the effect of randomly splitting a feature
set into two views. They test their random technique on two well studied real
world datasets; WebKB and LingSpam. In order to evaluate whether or not
randomly splitting the feature set is as effective as using a natural split, the
authors compare results using the header-body natural split of e-mails in the
LingSpam corpus.

Their results suggest that random splits of the feature set are equivalent and
in some cases better than the natural split results. They attribute the increased
performance to the fact that the natural split often produces an extremely
weak classifier (in the case of LingSpam the subject classifier is particularly
weak) whereas in random split the two classifiers produced are generally quite
accurate. They go far as to suggest that Co-Training with a random split of a
single natural feature set is preferable to Co-Training with two natural feature
sets if and only if one of the natural feature sets is considerably weaker than
the other.

4.3.2 View Validation

Ideally instead of creating views by a random process - with no scope for even
evaluating if one view is better than another - a way is needed to examine a
single feature set and identify if a natural split of the features exists and if more
than one is present, identify the optimal one. Thus what is needed is a metric
to measure the effectiveness of a particular view. Following from this, a way
to identify patterns that clearly show good feature splits would allow for the
creation of optimal views in a domain.

Indeed [MMK02a] discusses their future work as trying to establish solid
techniques for the identification of views. Muslea et al. suggest generating
many candidate views and applying their Adaptive View Validation to establish
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if the views are appropriate for multi-view learning. A näıve approach would
be to randomly split the feature set then use the view validation to select the
most appropriate candidate views. This is, however, not an optimal solution.

In a companion paper [MMK02b] Muslea et al. discuss a view validation
technique in which different views can be examined to see if they can be applied
to a multi-view algorithm. It is very beneficial to know whether, for the specific
problem, the use of a multi-view algorithm would result in better performance
that that of a single view (i.e. all the features) algorithm.

View validation can assess the usefulness of a set of view for a particular
learning task. Clearly the aim is to select the most useful views that will result
in an increase in performance. The optimal views may not be a natural split
of the features since in some cases the natural feature split can result in a very
weak classifier from one of the views (e.g. the anchor text classifier from the
Blum and Mitchell paper [BM98]).

Validation happens by means of the user providing several examples of learn-
ing tasks which were solved using the views under investigation. These are
converted into a view validation example, which consists of seven features that
measure how compatible the two views are. Ideally the view validation example
should consist of just one feature: the percentage of examples labelled differ-
ently in the different views but this would require knowledge the correct labels
of all examples in the problem domain.

The users must also supply some training examples for each learning task.
This small number of examples is used to construct a hypothesis (classifier) in
each view. The classifiers are then used in the construction of the view validation
example. Finally a C4.5 decision tree is constructed on all the view validation
examples from which we can generalise about other learning tasks.

This validation technique is not ideal since it requires a lot of information
from the user which may not be available for every problem domain. The
limitations of this technique are that it’s only really beneficial to problems where
the same views can be used to solve a large number of learning tasks. For
example the split of anchor text and body text can be used to solve a large
number of learning tasks such as ’faculty’/’non faculty’ as given in the Blum
and Mitchell paper [BM98].

4.3.3 View Detection

It is important to note that Muslea et al. describe a view validation technique
and not a view detection technique. The later is more difficult to accomplish
but a validation technique is a promising start. The problem of finding suitable
views is the critical problem facing the wide scale adoption of Co-Training in
other problem domains. This is possibly the largest open issue. A robust view
detection algorithm would allow Co-Training (and similar methods) to be used
on problems with natural feature splits.

5 Conclusions and Future Work

Machine learning systems have proven to be very successful and of great benefit
to their users. They allow the mundane and menial tasks to be automated
thus giving users more time to do more creative and productive tasks. Large
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quantities of data are now being collected and solutions to some of the mundane
tasks of managing such corpora need adequate machine learning solutions.

In many situations where machine learning should be applied it is not due
to some of the assumptions made by current techniques. The most important
assumption is that there is an abundance of training material. This is often
an inaccurate assumption since the collection of labelled training data can be
extremely expensive in many domains.

While labelled training data is expensive to collect, unlabelled data is often
plentiful and easy to collect. We then have a situation where we have just a
small number of labelled training data and a very large amount of unlabelled
training data. Techniques can be used to incorporate the unlabelled information
into the training of classifiers with the aim of improving accuracy without the
need to increase the number of labelled training data required.

Active learning has shown considerable promise in reducing the labelled
training data requirements. In some experiments conducted authors report
orders of magnitude reductions in the number of labelled training data required.
This shows there is scope for this research and that it offers to allow machine
learning to penetrate previously infeasible problem domains.

Similarly Co-Training allows for a different way to use unlabelled informa-
tion. The use of different views allows greater accuracy to be achieved from a
small amount of training data and a large amount of unlabelled data. It also
has the advantage that it does not use an oracle, thus can be run in a batch
process. Co-Training is a successful amalgamation between co-training and ac-
tive learning. It can be seen as an example selection technique in the context
of an active learning framework.

While there is a lot of benefit to be gained using these techniques there are
some disadvantages. One drawback is that there needs to be an oracle. This is
essentially a ’human-in-the-loop’ which is used to give extra information about
the problem we are trying to solve. This introduces considerable loss in speed
since the interaction with humans is orders of magnitude slower. There is also
the possibility of error entering the training data via the oracle. Normally the
oracle is assumed to be infallible but labelling is subjective by nature thus there
may not always be a single correct label for an example.

The most obvious drawback is that these techniques are quite resource in-
tensive. They require a lot of processing power and may have large space and
time requirements. There is clearly a need to conduct a cost benefit analysis
to establish if these techniques are worthwhile compared with the expense of
collecting more labelled training data.

There are still a number of open questions with respect to both active learn-
ing and co-training. Determining when to stop these iterative processes has yet
to be solved successfully. Typically the stopping criteria in both active learning
and co-testing are given by the number of examples the oracle is willing to clas-
sify. In co-training is a bit more difficult to determine when to stop since there
is no oracle. We can just specify a number of iterations to conduct.

In co-training and co-testing there is an extra requirement in that there must
be two or more views of the same data. While some problems naturally have
these different views others do not. It was noted that a single natural feature
set can be randomly split into different views; however, it is not yet possible
to optimally split a single natural feature set into two or more views. This is
a current area of research and one which could have a serious impact on the
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adoption of co-training.
Little attention has been paid to feature selection and the possible informa-

tion leak that may happen during the pre-processing stage. Information gain
for example takes advantage of knowing the correct labels for all the examples.
This information is simply not known in the case of Co-Training and Active
Learning where we only have a small number of labelled examples and a large
number of unlabelled examples. It is not clear whether or not this fact is some-
times overlooked in the literature. While this may seem trivial, the increases in
performance attributed to Active Learning and Co-Training are sometimes so
small that such information leak could play a contributing factor to the increase
(or decrease) in performance recorded.

Underpinning all the techniques discussed is the idea of a confidence mea-
sure. In active learning confidence was used to determine what examples to
select from the pool of unlabelled examples when using selective sampling. Sim-
ilarly in co-training and co-testing confidence was used to select examples and
contention points. At present the confidence metric used is the probability es-
timate given by the classifier. This value is often an inaccurate measure of
confidence thus different metrics are required to capture the true confidence of
a prediction. Advanced metrics would give techniques such as active learning
and co-training/testing increased accuracy and efficiency.

The future work is thus threefold. First we will investigate active learning,
co-testing and co-training in the context of text classification. We wish to study
the effect different classifier strategies will have in the active learning process.
We are also interested in the way examples are selected and will study different
strategies for selecting informative examples from a pool of unlabelled examples.

Second in co-training and co-testing we wish to look at views and how they
will be constructed. We wish to evaluate if different views affect the accuracy
of the classifiers significantly. Motivated by this we will look at determining
why certain views performed better than others with the aim of selecting better
views. This is different to the idea of selecting optimal views, in that, we just
want to find view that are better than a given random feature split.

Finally the idea of confidence is essential to the success of all the techniques.
We wish to investigate different techniques in determining the confidence of a
prediction. The ability to accurately measure confidence would benefit all the
techniques leading to better accuracy and possibly even a further reduction in
labelled training data.
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