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ABSTRACT 
Event-based middleware is currently being applied for 
application component integration in a range of 
application domains. As a result, a variety of event 
services have been proposed to address different 
requirements. In order to aid the understanding of the 
relationships between these systems, this paper 
presents a taxonomy of distributed event-based 
programming systems. The taxonomy is structured as a 
hierarchy of the properties of a distributed event system 
and may be used as a framework to describe such a 
system according to its properties. The taxonomy 
identifies a set of fundamental properties of event 
systems and categorises them according to the event 
model supported and the structure of the event service. 
Event services are further classified according to their 
organisation and their interaction models, as well as 
other functional and non-functional features. 

1. INTRODUCTION 
The event-based communication model represents a 
well-established paradigm for asynchronously 
interconnecting the components that comprise an 
application in a potentially distributed and 
heterogeneous environment, and has recently become 
widely used in a range of application areas including  
large-scale internet services [1] and mobile computing 
[2, 3]. 

Event-based communication is particularly useful in 
centralised and distributed applications that require one 
or more application components to react to changes 
occurring in other application components as it provides 
a one-to-many or many-to-many communication pattern 
[4-7]. The asynchronous nature of event-based 
communication [8, 9] results in a less tightly coupled 
communication relationship between application 
components compared to the traditional 
request/response communication model.  

Event-based communication also allows application 
components to interact anonymously [10] without 
concern for either the number or the location of the 
components involved. Anonymous interaction allows 
application components to establish communication 
relationships relatively easily, involving modest 
initialisation effort compared to the request/response 
communication model. It is therefore well suited for 
accommodating communities of cooperating distributed 

components that establish communication relationships 
dynamically over time in an unpredictable fashion. 

Event-based middleware is currently being applied in 
many application domains including finance, 
telecommunications, smart environments, multimedia, 
avionics, health care, and entertainment [1, 2, 11-18]. 
Moreover, with the widespread deployment and use of 
wireless technology, where communication relationships 
amongst heterogeneous application components [8] are 
established very dynamically during the lifetime of the 
components, event-based middleware will become even 
more prevalent as it addresses important application 
requirements including avoidance of long-lasting and 
hence potentially expensive connections, hiding of 
communication latency due to decoupled interaction 
phases, omission of centralised control, and 
heterogeneity. The notion of dynamically inaugurating 
communication relationships among application 
components without relying on centralised control is 
central to addressing the needs of a scalable system, 
representing the ability to accommodate growth in a 
potentially large-scale distributed environment. 

Event-based communication models, or simply event 
models, are used in applications ranging from small-
scale, centralised to large-scale, highly distributed 
systems [19]. On one hand, they are exploited to 
interconnect individual components of applications, for 
example, the components comprising graphical user 
interfaces [20, 21]. Such graphical components may 
disseminate user-driven and hence sporadic changes to 
their state to other components of the application that 
are required to react to these changes. At the other 
extreme, publishers of stock trading information may 
utilise an event service to post the latest trading rates to 
a group of brokers, potentially located in different cities 
or even countries [11, 12]. In between these extremes, 
smart environments often employ event-based 
communication models to interconnect a large number 
of application components [15] ranging from light and 
door actuators and sensors to robotic vehicles moving 
within and between buildings. 

As event-based middleware is used in a large 
number of applications in a range of domains, a variety 
of event services have been proposed to address 
different application requirements. This paper presents 
a survey of existing event systems structured as a 
taxonomy of distributed event-based programming 
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systems. Generally, a taxonomy is a classification that 
allows different examples of some generic type to be 
systematically arranged in groups or categorised 
according to established criteria. The taxonomy 
presented in this paper is structured as a hierarchy of 
the properties of a distributed event system and may be 
used as a framework to describe an event system 
according to its properties. Arranging the properties 
identified by a taxonomy in a hierarchical manner is a 
common mechanism for presenting and describing 
systems and their features. For example, Martin et al. 
[22] describe their taxonomy for distributed computing 
systems as a hierarchy of questions and answers about 
the features of such systems. 

The ultimate challenge of establishing a taxonomy is 
to identify the criteria according to which the area of 
interest is categorised and to arrange them 
systematically. Our taxonomy identifies a set of 
fundamental properties of event-based programming 
systems and categorises them according to the event 
model supported and the structure of the event service. 
Event services are further classified according to their 
organisation and interaction model, as well as other 
functional features, such as event propagation model 
and event filtering, and non-functional features, such as 
ordering semantics and security. These properties are 
then arranged in a hierarchical manner starting from the 
root of the taxonomy, which defines the relationship 
between event system, event service, and event model. 
Each property is described providing corresponding 
terminology. 

As far as possible, categories have been chosen to 
be independent but nevertheless, there are some 
interdependencies between certain categories. These 
interdependencies are discussed in the relevant 
sections. 

1.1 Exploiting the Taxonomy 
In addition to providing a means of describing an 

event system, the taxonomy can be used to broadly 
summarise event systems and the taxonomy 
terminology provides a common vocabulary to be used 
in the general discussion of event systems. Event 
systems can then be discussed using the same 
terminology and therefore, can easily be compared with 
each other or can be matched against system 
requirements. This can lead to the identification of 
families of event systems that support a common 
feature by identifying the set of systems that support a 
certain set of properties. For example, the properties 
described in Figure 30 can be used to identify the family 
of event systems that supports mobility. 

The taxonomy may also serve as a basis for 
identifying the canonical combination of the properties 
of an event system required by a particular application 
domain, simply by applying the taxonomy to a number 
of existing event systems used in that particular 
application domain and by extracting the common 
combination of properties. This can be useful for the 
requirements and design engineering of a novel event 
system. Moreover, the taxonomy is expected to be 
utilised to identify novel combinations of the properties 

of event systems and consequently, may serve as a 
basis for discovering potential research issues to be 
addressed in future work. This has already led us to 
develop STEAM [23], a location-aware event-based 
middleware for collaborative mobile applications. 

 

1.2 Related Work 
Our taxonomy presents a set of generic event system 
properties and hence can be used to classify virtually 
any distributed event-based programming system 
regardless of system scale or application domain. The 
taxonomy identifies a large variety of properties, 
including quality of service, mobility, and security, and 
describes these properties as well as possible 
implementation options in detail. 

Existing work on describing event systems has 
focussed either on providing a high-level reference 
model or on classifying event systems for a specific 
application area. Barrett et al. [24] present a framework 
for event-based software integration that provides a 
high-level model for identifying components commonly 
found at the heart of event-based software integration in 
large scale systems. This framework identifies the main 
components of an event system as informers, listeners, 
registrars, routers, message transformer functions, and 
delivery constraints. The framework describes the 
relationships among these components in detail using 
an object-oriented type model, but does not specify 
possible patterns of interaction between informers and 
listeners. Moreover, it does not explicitly identify 
functional event system features and omits non-
functional features altogether. 

The work of Rosenblum and Wolf [25] on a design 
framework for event observation and notification has 
focussed on supporting the construction of large-scale, 
event-based systems for the Internet. This framework 
comprises seven models, namely the object, event, 
naming, observation, time, notification, and resource 
models, to capture many of the design dimensions 
relevant to Internet-scale applications. Even though 
each of these models is discussed in detail, the overall 
number of properties according to which an event 
system may be classified is substantially smaller 
compared to the taxonomy presented in this paper. This 
is due to the fact that this framework imposes certain 
constraints in order to specifically support Internet-scale 
event observation and notification and because certain 
issues, such as quality of service, mobility, and security, 
have not been considered.  

Eugster et al. [26] identify the common denominators 
of variants of the publish/subscribe interaction scheme 
using three dimensions. These dimensions describe the 
decoupling between producers and consumers of 
information in terms of time, space, and 
synchronisation. This work focuses on implementation 
issues related to event dissemination, the underlying 
media, and quality of service aspects, and as such does 
address other functional and non functional features, 
such as mobility support, failure mode, and security 
mechanisms. 
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1.3 Interpreting the Taxonomy 
This taxonomy is presented using both figures and 
corresponding text. The figures outline the relationships 
among the fundamental properties of event systems 
and define the terminology to identify them. The text 
associated with each figure describes the 
corresponding properties in detail. The figures allow a 
taxonomy user to easily trace paths through the 
hierarchy to discover relevant properties. As 
summarised in Figure 1, the figures consist of nodes 
representing properties of interest, one of which is the 
root node and some of which are leaves. Nodes are 
connected by directed paths. The directed paths are 
represented by a set of arrows describing the nature of 
the paths leaving a specific node. A set of dashed 
arrows leaving a specific node indicates that exactly 
one path has to be chosen when tracing through that 
node. Solid arrows indicate that at least one path has to 
be chosen, whereas double lined arrows indicate that all 
possible paths need to be followed in parallel. In order 
to apply the taxonomy to an event system, a taxonomy 
user traces paths through the hierarchy starting from 
the root node and selecting the connections that most 
accurately describe the event system until each 
selected path reaches a leaf. The terms associated with 
the nodes along a path describe a property of the event 
system. 

1 
Select all paths 

Select exactly one path 

Select at least one path
 

Leaf 

Node 

 
Figure 1. Taxonomy legend. 

For example, Figure 21 shows that the features of an 
event service include both functional and non-functional 
features by using double lined arrows to describe the 
paths between the nodes. Hence, when tracing through 
the features node, all paths, i.e., both of them, must be 
selected to describe the corresponding properties of the 
event system. The solid arrows connecting the nodes in 
Figure 22 indicate that one kind of event propagation 
model can be provided by an event service, although 
some event services may support both the sporadic and 
the periodic event propagation models. Therefore, 
either one or both paths may be traced. Figure 4 shows 
that an event model can be characterised as either 
peer-to-peer, mediator, or implicit. The dashed arrows 
connecting the nodes, which imply that exactly one path 
has to be chosen, illustrate this. 

2. THE TAXONOMY 
The root of the taxonomy, which is depicted in Figure 2, 
defines the relationship between an event system, an 
event service and an event model. Every event system 
has both an event service and an event model, which 
we define as follows: 

 

• An event system is an application that uses an 
event service to carry out event-based 
communication. 

• An event service is middleware that implements an 
event model, hence providing event-based 
communication to an event system. 

• An event model consists of a set of rules describing 
a communication model that is based on events. 

We differentiate between event service and event 
model in order to capture the facts that an event model 
defines an application-level view of an event service 
and that a range of different event services may 
implement a given event model. Event models 
essentially reflect the different uses for which they are 
intended. For example, the objectives of the Java AWT 
delegation event model [20] differ substantially form 
those of the CORBA notification service model [27], 
which leads to major differences in the Application 
Programming Interfaces (APIs) that they provide. The 
goal of the CORBA notification service model is to be 
extremely general-purpose and usable in virtually any 
domain. Consequently, it supports a wide range of 
features including typed and untyped event 
communication, as well as filtering and administrative 
capabilities. Moreover, a variety of quality of service 
properties, such as event reliability, connection 
reliability, event priority, and event delivery order, are 
supported to control the propagation characteristics of 
events. This is reflected in a fairly large and complex 
API. In contrast, the Java AWT delegation event model 
is intended for small-scale, centralised applications, 
such as graphical user interfaces, and therefore omits 
many of the features of the CORBA event model. This 
results in its API being much simpler than that of the 
CORBA event model. 

 
Event System 

Event Service Event Model 
 

Figure 2. The root of the taxonomy. 

The CORBA event model also serves as an example 
of an event model that was specified with the 
expectation of being implemented by a range of event 
services, and potentially being exploited in different 
application domains. The Object Management Group 
(OMG) leaves open the implementation of their model 
and therefore, leaves it to different vendors to provide 
implementations. Consequently, event services 
supporting the CORBA event model have been 
implemented and extended by a number of commercial 
and academic organisations [28], [4], [29]. 
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Figure 3. Event system overview. 

The relationships between event system, event 
service and event model are summarised from the 
event system’s perspective in Figure 3. Apart from 
depicting how an event system uses an event service 
that implements a particular event model, Figure 3 also 
outlines how event system and service map onto a 
transport mechanism and how applications use entities 
as hooks into the event service. Entities are the 
components of an application that produce and 
consume events, excluding components of the event 
service. An entity may play the role of a producer and/or 
a consumer of events. 

There is no generally accepted standard terminology 
used for the application components that act as 
consumers or producers of events. As a result, the 
event systems presented in this paper use a variety of 
alternative terminology, which is summarised in Table 1, 
when referring to event producers and consumers. We 
use the systems outlined in Table 1 later in this paper to 
illustrate the properties identified by our taxonomy. 

 
Table 1. Event system terminology. 

Event System Producer Consumer 

CEA [9, 30] Source object Client object 

CONCHA [4] Multicast 
supplier 

Multicast 
consumer 

CORBA [27, 31] Supplier Consumer 

COSMIC [32, 33] Publisher Subscriber 

ECO [5, 34] Object Object 

Elvin [35, 36] Producer Consumer 

Elvin Agents [37, 38] Producer Consumer 

Gryphon [6, 39, 40] Publisher Subscriber 

Hermes [41-43] Publisher Subscriber 

Java AWT [20] Source Listener 

Java Distributed [44] Generator Listener 

JEDI [45] Active object Active object 

Mobile Push [46] Publisher Subscriber 

Obvents [47, 48] Publisher Subscriber 

Rebeca [49, 50] Producer Consumer 

SECO, uSECO, mSECO 
[5] Object Object 

Event System Producer Consumer 

SIENA [51] Object of 
interest Interested party

STEAM [23, 52-55] Producer Consumer 

TAO RT CORBA [16, 29] Supplier Consumer 

ToPSS [56-58] Publisher Subscriber 

 

2.1 Event Model 
The event model defines the manner in which an event 
service is made visible to the application programmer. It 
specifies the components of an event service to which 
the application programmer is explicitly exposed and 
that are used to subscribe to events and to propagate 
them. In particular, the event model classifies the 
means by which consumers subscribe to the events in 
which they are interested and the means by which an 
application raises and delivers events, as well as the 
number and location of the components used. As 
shown in Figure 4, we have identified three distinct 
categories of event model, which are peer-to-peer, 
mediator, and implicit. 

 
Event Model 

Implicit Mediator Peer-to-Peer 

Multiple Single 

Non-Functionally
Equivalent 

Functionally 
Equivalent 

 
Figure 4. Event model categories. 

2.1.1 Peer to Peer 
A peer to peer event model allows consumers to 
subscribe at specific named producers directly and 
producers to deliver events to specific named 
consumers directly. The Java distributed event model is 
based on a peer-to-peer event model allowing a 
RemoteEventListener to subscribe to events by 
invoking a register method on an explicitly named 
EventGenerator. 
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TheConsumerApplication {//the 
                        //RemoteEventListener 
  //subscribe to an explicit producer 
  AnExplicitEventGeneratorRef = 
                  retrieveEventGeneratorRef(); 
  AnExplicitEventGeneratorRef.register(this); 
  //delivery handler implementation 
  notify(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
TheProducerApplication {//the EventGenerator 
  //register method implementation 
  register(RemoteEventListenerRef) { 
    SubscribedRemoteEventListenerRef = 
                       RemoteEventListenerRef; 
  } 
  //raise an event 
  AnEventInstance = new Event(someParameters); 
  SubscribedRemoteEventListenerRef.notify( 
                             AnEventInstance); 
  } 
} 

Figure 5. A producer and a consumer application using 
the peer-to-peer Java distributed event model. 

The simplified application shown in Figure 5 outlines a 
subscribing RemoteEventListener and an 
EventGenerator invoking the notify method on a 
subscribed RemoteEventListener using a 
RemoteEventListener reference to deliver a specific 
event instance. 

2.1.2 Mediator 
Event models utilising a mediator allow consuming 
entities to subscribe at a designated mediator and 
producing entities to deliver events to the mediator, 
which then forwards them to the subscribed entities. 

The mediator sub-hierarchy explores the number and 
functionality of mediators in the event model. We 
differentiate between models utilising a single mediator 
and models exploiting multiple mediators. The CORBA 
event model1 may use a single mediator (known as an 
event channel) for propagating all events from 
producers to consumers. Multiple mediators are further 
divided into functionally equivalent and non-functionally 
equivalent mediators. In the former, all mediators are 
functionally equivalent. Thus, entities may subscribe 
or deliver events to any one of them. Such a mediator is 
called an event server in the SIENA model. SIENA may 
use a set of different event server topologies of which 
all but the centralised topology exploit multiple, 
functionally equivalent event servers. When mediators 
are not functionally equivalent, entities have to 
subscribe or deliver events to the correct mediator. For 
example, an application exploiting the CORBA event 

                                                           
1 The CORBA specification allows its event model to use a 

single or multiple mediators. For the purpose of this 
example, we refer to a CORBA event model utilising a single 
mediator. 

model2 may use multiple event channels each 
propagating a different type of event. 

The simplified application shown in Figure 6 outlines 
how both CORBA consumers and producers connect to 
the explicitly-named event channel through which they 
intend to exchange events. Connected producers may 
raise events by pushing them to the event channel, 
which forwards them to all subscribed consumers by 
invoking their delivery handlers in turn. 

TheConsumerApplication { 
  //connect to an explicit event channel 
  ConsumerAdmin = 
           TheEventChannel.forConsumers(); 
  ProxyPushSupplier = 
           ConsumerAdmin.obtainPushSupplier(); 
  ProxyPushSupplier.connectPushConsumer( 
                                 TheConsumer); 
} 
TheConsumer { 
  //delivery handler implementation 
  push(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
TheProducerApplication { 
  //connect to an explicit event channel 
  SupplierAdmin = 
           TheEventChannel.forSuppliers(); 
  ProxyPushConsumer = 
           SupplierAdmin.obtainPushConsumer(); 
  ProxyPushConsumer.connectPushSupplier( 
                                 TheSupplier); 
} 
TheSupplier { 
  //raise an event 
  AnEventInstance = new Event(someParameters); 
  ProxyPushConsumer.push(AnEventInstance); 
} 

Figure 6. A producer and a consumer application using 
the mediator-based CORBA event model. 

2.1.3 Implicit 
An implicit event model allows consuming entities 
subscribe to particular event types rather than at 
another entity or a mediator. Producers generate events 
of some type, which are then delivered to the 
subscribed consumers. The direct approach for CEA 
source objects to disseminate events to client objects, 
described by Bacon et al. [30], is based on an implicit 
event model. Figure 7 shows a simplified version of an 
active badge application using direct CEA. The 
consumer subscribes by invoking a register method 
provided by a local library passing the event type of 
interest as well as a reference to its delivery handler. 
The producer declares its event type and subsequently 
raises events of this type by invoking a signal method 
provided by a local library. The event service delivers 
events to all registered consumers by calling their 
delivery handlers. 

                                                           
2 The CORBA specification allows its event model to use a 

single or multiple mediators. For the purpose of this 
example, we refer to a CORBA event model utilising multiple 
mediators. 
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TheConsumerApplication { 
  //subscribe to an event type 
  template = Badge_Seen(17, 29); 
  EventClient.Register(EventHandler, 
                       template); 
  //deliver handler implementation 
  EventHandler(TheRemoteEventInstance) { 
    processAnEvent(TheRemoteEventInstance); 
  } 
} 
 
TheProducerApplication { 
  //specify the event type 
  Badge : INTERFACE = Seen : EVENTCLASS 
                          [badge  : BadgeId; 
                           sensor : SensorId]; 
  END. 
  //raise an event 
  e = Badge_Seen(17, 29); 
  EventSource.Signal(e); 
} 

Figure 7. A producer and a consumer application using 
the implicit Direct CEA. 

2.1.4 Discussion 
An event system exploiting either a peer-to-peer or a 
mediator-based event model allows its entities to 
interact by invoking remote methods directly on each 
other or on one or more mediators respectively whereas 
entities of an event system with an implicit event model 
interact by subscribing and delivering events locally 
using event types. 

Significantly, these approaches differ in the way the 
identifiers of the components exposed to the application 
programmer are obtained and maintained. Peer-to-peer 
and mediator-based event models require the 
application programmer to obtain the identifiers of 
specific producers or mediators respectively, usually by 
means of a naming service, and to maintain them. 
Every consumer of an event system utilising a peer-to-
peer event model is required to obtain the identifier of 
each producer in which it is interested, i.e., the 
application programmer must ensure a consumer 
subscribes to the correct set of producers, and to 
maintain the correct set of subscriptions during its 
lifetime. Similarly, entities of an event system using a 
mediator-based event model need to acquire the 
identifiers of the mediators involved, i.e., the application 
programmer must track the identifiers to the mediators 
to which a specific entity needs to connect. However, 
mediator-based event models are likely to obtain and 
maintain a smaller number of different identifiers 
compared to peer-to-peer models. There are likely to be 
significantly fewer mediators in an event system than 
producers and their number is unlikely to change over 
time3, certainly compared to the number of producers as 
they may be created frequently to provide services for a 
limited period of time. In contrast, the application 
programmer in an event system with an implicit event 
model is not required to acquire the identifiers of 

                                                           
3 An event system may exploit a single mediator whose 

reference characteristically remains unchanged, assuming 
the absence of failure, during the lifetime of the system. 

producers or mediators at all. The application 
programmer does not need to explicitly identify the 
producers with which a consumer needs to 
communicate as consumers subscribe to producers 
transparently using event types. This requires a more 
sophisticated event service as it is responsible for 
locating peers, maintaining the corresponding 
identifiers, mapping event types to identifiers, and for 
providing a means to define and check the type of 
events. 

Most significantly, the event model exploited by an 
event system affects one of the main concepts of event-
based communications, namely the degree of 
anonymity among the entities in the system. The means 
by which consumers subscribe to the events in which 
they are interested and by which events are propagated 
and delivered influences the degree of anonymity 
among them. The peer-to-peer approach permits 
specific named entities to interact directly with each 
other. Consequently, entities are not anonymous to 
each other. Mediator-based event models, where 
entities register with one or more mediators, provide a 
degree of anonymity where entities are anonymous to 
each other but known to the mediator(s). The implicit 
approach allows entities to interact anonymously. Such 
entities are anonymous to each other and are only 
known by the event service that implements the 
mapping of event types to entities. Nevertheless, 
entities may choose to identify themselves at the 
application level regardless of the degree of anonymity 
provided by the underlying event model. This may be 
useful for example, in applications that wish to assess 
the level of trust between producers and consumers. 

2.2 Event Service 
This section deals with the classification of the 
properties of event service middleware. As Figure 8 
shows, we divide the properties of an event service into 
three distinct categories. The organisation sub tree 
focuses on the distribution of the producers and 
consumers as well as the components of the 
middleware and on the fashion in which the components 
that comprise an event service cooperate. The 
interaction model defines the communication path over 
which event producers and consumers communicate 
with each other. The feature sub hierarchy addresses 
the other (functional and non-functional) features 
provided by an event service. 

 
Event Service 

Interaction Model Organisation Features 

 
Figure 8. The event service. 
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Figure 9. Event service organisation. 

2.2.1 Organisation 
As summarised in Figure 9, the organisation sub tree 
classifies an event service as either centralised or 
distributed according to the location of the event 
system’s entities. These two sub categories are further 
divided exploring the location of the event service’s 
components. 

The entities of an event system are centralised if 
they reside in the same address space on the same 
physical machine. In contrast, if the entities of an event 
system are distributed they may be located in different 
address spaces possibly on different physical 
machines. 

Whether the entities of an event system are 
centralised or distributed, the middleware can be either 
collocated or separated. 
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Figure 10. Centralised event service with collocated 

middleware. 

Collocated Middleware. The event service is 
collocated with the entities if it resides only in the same 
address space(s) on the same physical machine(s). As 
illustrated in Figure 10, the organisation of a centralised 
event service with collocated middleware results in both 
the entities and the middleware being located 
exclusively in the same address space. No part of the 
event system resides outside the implicit single address 
space. This organisation may be used for small-scale 
applications consisting of a relatively small number of 

entities, such as graphical user interfaces. For example, 
the Java AWT delegation event model is implemented 
by the Java Virtual Machine (JVM) to connect the 
graphical components of an application sharing their 
address space with the middleware. Another event 
service that may be used in a similar fashion is provided 
by the C# programming language [21]. In contrast, the 
organisation of a distributed event service with 
collocated middleware results in the middleware being 
distributed with the entities, each entity using the part of 
the middleware that is local to it. Figure 11 shows the 
organisation of a distributed event service with 
collocated middleware, which may include an arbitrary 
number of address spaces. 
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Figure 11. Distributed event service with collocated 

middleware. 

This organisation has been adopted by mSECO, an 
event service implementing the ECO event model. 
mSECO is implemented as a library that is collocated 
with each entity. Notably, mSECO is exclusively located 
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in the same address spaces as the entities. Moreover, 
the address spaces in which the entities reside may or 
may not be located on different physical machines. 
Likewise, STEAM adopts this organisation in order to 
avoid dependence on a service infrastructure other than 
the machines hosting producers and consumers. This 
enables STEAM to support the wireless, ad hoc 
networks for which it has been designed. 

Separated Middleware. In this case, the event 
service is at least partially located in one or more 
separate address spaces possibly on different physical 
machines. We divide separated middleware into two 
categories depending on the partitioning of the 
middleware. Figure 12 depicts an event service with 
separated single middleware, whose entities are 
centralised and whose middleware is located in a 
separate address space. This organisation uses exactly 
two separate address spaces, one including the entities 
and the other containing the middleware. The two 
address spaces may reside on the same or on two 
different physical machines. 

Figure 13 illustrates a distributed event service with 
separated single middleware, whose entities are 
distributed and whose middleware is located on a single 
machine. This organisation may involve a large number 
of address spaces and possibly physical machines, 
depending on the location of the entities and the 
middleware. However, all the address spaces may 
reside on a single physical machine. A CORBA event 
service providing a single event channel4 serves as an 
example of such an organisation. Its entities typically 
reside in different address spaces distributed over 
multiple physical machines using an event channel 
located on another machine. However, the address 
space in which the event channel resides may be 
located on the same physical machine as some of the 
entities’ address spaces. 

 

Address Space 

Machine 

Address Space 
Address Space 

Address Space 

M 
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Figure 12. Centralised event service with separated 

single middleware. 

Figure 14 and Figure 15 show event services with 
separated multiple middleware, whose middleware is 
distributed over a set of cooperating address spaces 
possibly on different physical machines, for a 
centralised and a distributed organisation respectively. 

                                                           
4 The CORBA event service may utilise one or more event 

channels. For the purpose of this example, we refer to a 
CORBA event service utilising a single event channel. 
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Figure 13. Distributed event service with separated 

single middleware. 

Figure 15 also illustrates that some of the middleware’s 
address spaces may be located on the same machines 
as some of the entities. This also applies for centralised 
entities with separated multiple middleware. We admit 
the possibility of an organisation supporting centralised 
entities with separated multiple middleware although we 
cannot provide an example for such an organisation. 
SIENA, which uses an organisation as shown in Figure 
15, proposes a set of middleware topologies, called 
server topologies, of which all but the centralised 
topology use middleware that is distributed over a set of 
cooperating machines. 
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Figure 14. Centralised event service with separated 

multiple middleware. 
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Figure 15. Distributed event service with separated 

multiple middleware. 

Discussion. The organisation adopted by an event 
service has a major impact on issues related to the 
scalability of the system, its behaviour in the presence 
of failed components, and on the mechanism for 
communication between entities and the middleware. 
Conventionally, approaches containing centralised 
middleware components are more likely to experience 
performance bottlenecks with increasing scale and tend 
to suffer more in the presence of failures than 
distributed approaches. The use of middleware located 
in multiple address spaces allows the distribution of the 
communication load reducing the risk of performance 
bottlenecks. Instead of having middleware located in a 
single address space handling all the communication 
between the entities in an event system, middleware 
distributed over multiple address spaces may divide the 
load. Exploiting middleware distributed over multiple 
address spaces also avoids potential single points of 
failure in the system. For example, if the middleware in 
the organisations illustrated in Figure 10, Figure 12 and 
Figure 13 fails none of the entities in the corresponding 
systems will be able to communicate. In contrast, a 
middleware component failing in one of the 
organisations depicted in Figure 11, Figure 14, or 
Figure 15 has a less devastating effect on an event 
system allowing the entities to communicate even in the 
presence of failure. Significantly, this depends on the 
middleware being located in multiple address spaces 
and not on the distribution of the entities in a system. 

The organisation of an event service also affects the 
mechanism through which entities communicate with 
the middleware. Approaches where entities and 
middleware reside in different address spaces 
distributed over different physical machines require a 

mechanism that supports cross-network 
communication. A much simpler inter-process 
communication mechanism may be sufficient for 
organisations where entities and middleware reside in 
different address spaces on the same physical 
machine. Entities and middleware sharing an address 
space may communicate using a programming-
language-specific mechanism, such as procedure call 
or method invocation. 

This taxonomy may serve as a basis for identifying 
the combinations of event system properties that are 
well suited as well as the combinations that are less 
suited or even incompatible. For instance, mediator-
based event models map well onto event service 
organisations with separated middleware. Separated 
middleware residing in an independent address space 
may naturally implement a mediator to which producers 
and consumers may connect. Peer-to-peer and implicit 
event models are well suited for organisations with 
collocated middleware. These organisations allow 
entities to directly connect to each other using 
interfaces specified by the collocated middleware, which 
provides a means for mapping events and their types to 
entities. In addition, the centralised organisation with 
collocated middleware may map onto mediator-based 
event models as the collocated middleware may 
implement a mediator. In contrast, combinations based 
on separated middleware and peer-to-peer event 
models, are less suitable as peer-to-peer models imply 
that entities interact directly. 

2.2.2 Interaction Model 
The interaction sub tree classifies an event service 
according to the interaction model used by the event 
system. Generally, the interaction model defines the 
communication path over which event communication 
between event producers and consumers takes place. It 
defines the number of intermediate middleware 
components involved and the manner in which 
intermediates cooperate to route events from the 
producers to consumers. Compared to the organisation 
model, which focuses on the distribution of the entities 
and the middleware of an event system, i.e., providing a 
static view of an event service, the interaction model 
describes the information flow in an event system. 
Hence, it describes the dynamic aspect of an event 
service. 

As Figure 16 depicts, we divide the interaction model 
into two main categories, namely intermediate and no 
intermediate, exploring whether and how many 
intermediate middleware components an event passes 
through. 
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Figure 16. Event service interaction model. 

No Intermediate. The communication path over 
which event communication between producers and 
consumers takes place does not include separated 
intermediate middleware components. Producers and 
consumers communicate with each other through the 
middleware collocated with each entity. As Figure 17 
illustrates, events that are routed from producers to 
consumers pass through the collocated middleware, but 
not through any intermediate middleware component. 
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Figure 17. No intermediate. 

We sub divide this model into three categories 
according to the means by which entities address each 
other. These interaction models are called the point-to-
point, named, and implicit models. 

Producer and consumer entities may communicate 
directly with each other in a point-to-point fashion, 
using explicit entity addresses, which are provided by 
the application. The middleware uses explicit entity 
addresses and a unicast communication pattern when 
routing events from producing to consuming entities. 
The Java distributed event model allows producers to 

route events to the subscribed consumers using the 
explicit consumer addresses provided by the 
application. 

Producer and consumer entities may communicate 
directly with each other using a name service to map 
event descriptions, such as event types, to entity 
addresses provided by the application. The middleware 
uses either a unicast or a multicast communication 
pattern to route events from a producer to the interested 
consumers. uSECO uses a name service, called the 
Application Instance Repository (AIR), to resolve the 
addresses of the entities that are interested in a specific 
event type and a unicast communication pattern to 
route events. 

Producers and consumers may communicate directly 
with each other using an implicit means to map event 
descriptions to entity addresses provided by the 
application. The middleware uses a multicast 
communication pattern when routing events from 
producers to consumers. mSECO, a multicast version 
of the uSECO event service, does not rely on an AIR 
since it uses an implicit means, based on generating 
addresses from event descriptions, to map events to 
the multicast addresses representing the interested 
consumers. 

Intermediate. The communication path over which 
event communication between producers and 
consumers takes place includes at least one separated 
intermediate middleware component. Thus, events that 
are routed from producers to consumers pass through 
one or more intermediate middleware components. 
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Figure 18. Distributed intermediate. 

The intermediate interaction model is divided into two 
sub categories according to the number of intermediate 
middleware components in the communication path. In 
the centralised intermediate model, the 
communication path includes a single intermediate 
middleware component. In contrast, the distributed 
intermediate model involves two or more intermediates 
through which events are routed. Figure 18 depicts the 
distributed intermediate interaction model with a 
communication path that includes two distributed 
intermediates. 

Both centralised and distributed intermediates can be 
divided further. We classify centralised intermediates 
according to their number as an event service may 
exploit one or multiple centralised intermediates. 

All communication paths between producing and 
consuming entities may include the same single 
centralised intermediate. An event system using this 
interaction model includes exactly one centralised 
intermediate. In contrast, an event system may exploit 
multiple centralised intermediates. In this case, 
producers and consumers are divided into groups and 
all communication paths between the producers and 
consumers within each group include a centralised 
intermediate that is specific to that group. This results in 
an event system that uses several centralised 
intermediates, the number of which corresponds to the 
number of groups. Multiple centralised intermediates 
may be used to support groups of entities that share a 
common interest. The common interest of an individual 
group may be expressed by a specific type of event that 
is handled exclusively by a particular centralised 
intermediate. For example, the CORBA event service 
may utilise multiple centralised intermediates 
implemented as event channels. Each channel may 
handle a specific type of event exclusively. Producers 
and consumers intending to communicate using a 
specific event type connect to the corresponding event 
channel, therefore defining the communication path 
over which event communication takes place. 
Alternatively, the CORBA event service may use a 
single centralised intermediate implemented as a single 
event channel through which all events are routed. 
Figure 19 and Figure 20 illustrate the single centralised 
intermediate and multiple centralised intermediate 

interaction models respectively. Figure 20 shows two 
groups of entities, each comprising of a producer and a 
consumer using a single centralised intermediate 
through which events are routed. The communication 
path associated with one group is outlined with solid 
arrows and the communication path associated with the 
other is depicted using dashed arrows. 
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Figure 19. Single centralised intermediate. 
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Figure 20. Multiple centralised intermediate. 

We classify distributed intermediates as partitioned 
or cooperative according to the fashion in which 
intermediates cooperate to route events from event 
producers to consumers. 

Generally, the distributed intermediate interaction 
model includes two or more intermediate middleware 
components in the communication path between 
consumers and producers. An event service 
implementing the partitioned distributed intermediate 
interaction model consists of a number of independent 
groups of intermediates, each group handling only a 
specific type of event. Entities sharing a common 
interest need to connect to the group that handles the 
type of event that corresponds to their common interest. 
For example, the CORBA event model specification 
proposes to chain different implementations of event 
channels, acting as a group of partitioned distributed 
intermediates, in order to combine non-functional 
features supported by individual event channels. 
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In contrast, cooperative distributed intermediates 

do not form independent groups, all intermediates 
cooperate to route events from consumers to 
producers. Entities connect to the most convenient, 
e.g., physically closest, intermediate. Each intermediate 
manages the events for the entities that are physically 
connected to it and cooperates with other intermediates 
to route them to remote entities. Cooperative distributed 
intermediates cooperate with each other either in a 
hierarchical or in a non-hierarchical manner. 

JEDI proposes a hierarchical structure of cooperative 
distributed intermediates, called dispatching servers. 
Dispatching servers are interconnected in a tree 
topology through which events are routed. Entities may 
connect to any dispatching server, each of which 
forwards the events it receives from the producers 
connected to it to its parent and to its descendants to 
route them to all interested consumers. SIENA 
describes four different topologies of cooperative 
distributed intermediates. One of them serves as an 
additional example of hierarchical cooperative 
distributed intermediates, another two, namely the 
acyclic and the so-called peer-to-peer topologies, 
illustrate non-hierarchical cooperative distributed 
intermediates. 

Burcea et al. [57] use a tree-based topology of 
cooperative distributed intermediates in a simulation of 
a network of ToPSS event brokers servicing an urban 
area. Producers may be co-hosted with and consumers 
may connect to any of these intermediate brokers. 
Brokers route events from producers to subscribers and 
are capable of storing state for deferred transfer to 
temporarily unavailable subscribers. 

Gryphon assumes a network of non-hierarchical 
brokers to which producers and consumers can connect 
at their convenience. Gryphon organises these brokers 
into a logical tree structure, called the spanning tree, 
that allows for efficient matching of events to 
subscribers, i.e., to efficiently determine the set of 
consumers interested in a specific event. Hermes 
introduces the notion of an overlay routing network for 
organising a network of nodes into a non-hierarchical 
application-level network of event brokers. Producers 
and consumers connect to the broker network and 
individual brokers subsequently route events through 
the overlay network. 

Discussion. Mediator-based event models map 
naturally onto interaction models that include 
intermediate middleware components. For example, 
interaction models using either multiple centralised or 
partitioned distributed intermediates may implement 
event models that include multiple non-functionally 
equivalent mediators. These event models expose 
mediating application components to the application, 
which must ensure entities subscribe to the correct 
intermediate middleware component. Cooperative 
distributed intermediates may implement multiple 
functionally equivalent mediators whereas a single 
centralised intermediate may implement an event model 

based on a single mediator. Both the named and the 
implicit interaction model are appropriate for implicit 
event models, since neither of them relies on 
intermediates and because implicit event models do not 
prohibit the use of middleware components providing 
naming services. The peer-to-peer event model 
exposes entities explicitly to the application. It is 
therefore best implemented by a point-to-point based 
interaction model using these entity addresses to route 
events from producers to consumers. 

There are numerous possible combinations of 
interaction and organisation models as many 
organisations are appropriate for different interaction 
models. For example, both centralised and distributed 
organisations with separated middleware are suitable 
for interaction models whose communication paths 
between producers and consumers involve intermediate 
middleware components. Distributed organisations with 
collocated middleware may be combined with 
interaction models that do not rely on intermediates. 
Centralised organisations with collocated middleware 
may possibly be combined with every interaction model. 
Although centralised collocated organisations may be 
best suited for the single intermediate interaction model 
as its middleware component maps naturally onto a 
single intermediate, it is also appropriate for the implicit 
interaction model with its middleware component 
implementing a means to map event types to entity 
addresses. 

2.2.3 Features 
The features supported by an event service can be 
classified as either functional or non-functional as 
shown in Figure 21. 

These functional and non-functional features address 
requirements regarding the functional and non-
functional behaviour of a system. Functional 
requirements are statements of services a system 
should provide, how a system should react to particular 
inputs and how a system should behave in particular 
situations. In some cases, the functional requirements 
may also explicitly state what a system should not do 
[59, p.118]. Non-functional requirements are constraints 
on the services or functions offered by a system. They 
include timing constraints, constraints in the 
development process, standards to be adopted and so 
on [59, p.119]. 

Based on these definitions, we classify the functions 
made available by an event service as functional 
features and consider constraints on (or properties of 
other) system attributes as non-functional features. For 
example, we classify mobility support as a functional 
feature because it describes services to enable event-
based communication for mobile entities but threat 
security as a non-functional feature since it describes 
techniques that address how event-based 
communication is secured. 
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Figure 21. Event service features. 

2.2.3.1 Functional Features 
Event Propagation Model. Events are delivered by an 
event service according to an event propagation model. 
Figure 22 depicts the event propagation model sub 
hierarchy and shows how the event propagation model 
is divided into two categories describing sporadic and 
periodic event propagation. Sporadic event 
propagation models propagate events only if the 
relevant state of the producer has changed. Periodic 
event propagation models propagate events 
periodically, even if no state change has occurred since 
the last event. 

Both sporadic and periodic event propagation can 
be based either on the push or the pull model. The 
sporadic push model is considered the traditional 
event propagation model and is therefore most likely to 
be supported by an event service. However, an event 
service may support several of the propagation models 
shown in Figure 22. 

Event propagation based on the sporadic push 
model is producer-driven and producers propagate 
events as they are generated. The sporadic push model 
is supported by many event models including the Java 
AWT delegation event model, CORBA-based event 
models, Mobile Push, Obvents, ToPSS, and STEAM. 

Event propagation based on the sporadic pull 
model is also known as event polling. Event 
propagation is consumer-driven as consumers poll 
producers for available events. Event producers 
propagate events in response to requests from 
consumers. Among others, this propagation model is 
supported by the CORBA notification service, by 
Obvents, and by ToPSS. 

Event propagation based on the periodic push 
model is well suited for “heartbeat” or “watchdog” 
mechanisms as well as for disseminating events 
according to a predefined schedule. Event propagation 
is producer-driven and producers propagate events 
periodically. Both the COSMIC and TAO RT CORBA 
event services use the periodic push propagation model 
as a means to statically schedule event propagation 
while reserving the required resources for events that 
have hard real-time delivery deadlines. 

Event propagation based on the periodic pull model 
represents traditional polling. Event propagation is 

consumer-driven as consumers poll producers 
periodically. Producers propagate events in response to 
requests from consumers. 

Periodic event propagation models imply that events 
with identical content may be propagated as the state of 
the producer may not have changed since the previous 
event was propagated. We argue that periodic events 
still conform to our definition of events when considering 
the passage of time as a change to a producer’s state 
even though periodic events may not contain an explicit 
description of time. 
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Sporadic Periodic 

Event Propagation 
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Figure 22. Event propagation model. 

Event Type. Events propagated by an event service 
can be classified according to their structure and hence 
are said to be of a specific event type. As outlined in 
Figure 23, we differentiate between generic and typed 
events. 

The information that constitutes a generic event, 
which is also known as an un-typed event, is a data 
blob with an implicit structure. The structure is neither 
recognised nor interpreted by the event service. The 
CORBA event service is one of the few event services 
that supports propagation of generic events. 

In contrast, the information that describes typed 
events includes an explicit and expressive structure that 
may be recognised and interpreted by the event 
service. Typed events enable the use of event filters. 

Event types are represented by a structure with 
varying expressive power. The expressive power of an 
event type describes the variety of information that they 
can be included in an event of that type. The expressive 
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power of the structures outlined in Figure 23 increases 
from left to right. 

The structure that represents an event type is either 
fixed or application-specific. The former is predefined 
by the event service whereas the latter may be defined 
by the application. 

Both fixed and application-specific structures can be 
sub divided. Fixed structures consist either of a name, a 
name and some numeric parameters, or a name and 
some string parameters. A name usually consists of a 
single string. The name and string parameters 
structure therefore consists of a set of strings. The first 
string representing the event name and the remaining 
strings representing the event parameters. JEDI uses 
an event structure consisting of a name and a set of 
string parameters. The name and numeric 
parameters structure consists of a single string and a 
set of numbers: the string representing the event name 
and the numbers representing the event parameters. 
The version of CEA described by Bacon et al. [30] 
supports typed events that consist of a structure 
consisting of a name and a set of number parameters. 

Application-specific structures consist of either 
attributes or an object. The attributes structure consists 
of a set of attributes in which each attribute is a triple of 
name, type, and value. The CORBA notification service 
supports a general event structure consisting of 
attributes. The object structure consists of a 
programming-language-specific object including a set of 
attributes. One of the key properties of both ECO and 
Obvents is their support of events in the form of specific 
application defined objects. 

Event types may be organised into type hierarchies. 
Such event type hierarchies are similar to class 
hierarchies in object-oriented programming languages 
like Java or C++ in that event types can be derived from 
each other. Specialised event types can be derived 
from more general event types using inheritance. Event 
filters that match events of a certain general type will 
also match events of sub-types derived from that 
general type. Hermes is an event service that centres 
around the notion of event types and supports event 
type hierarchies. 
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Figure 23. Event type. 
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Figure 25. Event filter location.

Event Filter. Event filters control the propagation of 
events by allowing consumers to subscribe to the exact 
subset of the events in which they are interested. 
Events are matched against filters and are only 
delivered if the match produced a positive result. Figure 
24 shows the properties according to which we classify 
event filters. 

Event filters must be evaluated at a particular 
location. If supported, event filters may be evaluated at 
the consumer side, the producer side or at the 
intermediate. Furthermore, a set of event filters may be 
evaluated sequentially at more than one location, thus 
they may be applied at any combination of consumer, 
producer, and intermediate. Figure 25 summarises all 
possible combinations of event filter locations. 

Filters are not supported and events are 
consequently propagated to all subscribers. The 
CORBA event service is an example of an event service 
that does not support event filters. 

Filters are evaluated at the producer side. This 
minimises the use of network bandwidth and consumer 
processing overhead as events are filtered as close to 
the producer as possible. SECO serves as an example 
of an event service that supports producer-side filtering. 

Filters are evaluated at the consumer side. This 
allows an implementation of a precise matching 
algorithm as the required set of events is typically well-
known at the consumer side. The Java distributed event 
model allows filters to be applied at the remote event 
listener. 

Filters are evaluated at the intermediate. This is a 
natural location for service-wide filters (as well as quality 
of service properties) since all events are propagated 
through the intermediate. 

Filters are evaluated at the producer and the 
consumer side. ECO supports filters in the form of pre- 
and post constraints, which may be applied at the 
producer and the consumer side respectively. 

Filters are evaluated at the producer side and at the 
intermediate thereby combining the characteristics of 
producer-side and intermediate filter evaluation. 

Filters are evaluated at the consumer side and at 
the intermediate. In addition to allowing filtering at the 
remote event listener, the Java distributed event model 
supports optional event adapters at which filters may be 
applied as well. 

Filters are evaluated at the producer and the 
consumer side, as well as at the intermediate. The 
CORBA notification service supports filtering in a 
hierarchical manner that allows filters to be evaluated at 
the producer and the consumer side, as well as at 
intermediates. 

As shown in Figure 26, event filters can be defined 
by the application by using a constraint language that 
is specified as part of the event service or by using the 
features of an application programming language. 
The CORBA notification service specifies a constraint 
language that allows applications to use constraint 
expressions to define event filters. When using a 
programming language to define event filters, 
applications may use a subset of the types, operators, 
and combinators supported by the programming 
language or may be permitted to use all types, 
operators, and combinators supported by the language. 
SIENA limits applications to using a specific subset of 
the types, operators, and combinators available 
whereas SECO allows them to use all available types, 
operators, and combinators. 
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Figure 26. Event filter definition. 

Figure 27 summarises possible implementations 
techniques for event filters. An event filter can be 
implemented using either a character string, a function, 
or an object. Character strings can provide a textual 
representation of filter expressions that are typically 
parsed by the event service applying them. Filters that 
are implemented as functions are applied by executing 
these functions. Object filters must be instantiated 
before they can be applied by invoking a method of the 
object. Both the CORBA notification service and SIENA 
implement event filters as strings that are parsed at run 
time whereas SECO filters are implemented as objects 
providing an evaluate() operation. 
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Figure 27. Event filter implementation. 

Event filters are evaluated by the event service to 
determine the list of interested subscribers. As shown in 
Figure 28, event filters are evaluated at a particular 
time using a specific mechanism to match events 
against filters. 

The evaluation mechanism is divided into two sub 
categories depending on whether filter specifications 
are interpreted or compiled. The former are 
characteristically evaluated using an event model 
specific interpretation mechanism while the latter can be 
evaluated using operations provided by the 
programming language. Both interpretable and 
executable filters are either generated by a pre-
processor or are implicitly provided by the application. 
The CORBA notification service specifies a constraint 
language that allows applications to implicitly provide 
filter expressions that are interpreted by the evaluation 
mechanism. STEAM on the other hand, allows 
applications to implicitly define and then to compile their 
filters. 

Event filters are evaluated either at subscription 
time or at event propagation time. Evaluating filters at 
subscription time may be useful when matching 
parameters describing the current context of the 
subscriber that are only relevant at that point in time or 
when matching pre-constraint filters. Such pre-
constraint filters may assess the availability of 
resources, authenticate a connection, or process 
admission control. However, event services, including 
the CORBA notification service, SIENA, STEAM, Elvin, 
and COSMIC, traditionally evaluate event filters at event 
propagation time when the actual list of interested 
subscribers can be determined. 

Figure 29 summaries issues related to the 
expressive power of event filters. Event filters may be 
defined using an expressive structure that is described 
using a set of types, operators, and combinators. 

The structure enclosed in an event filter may contain 
a set of types with varying expressive power. These 
sets are either implicit or predefined by the event 
service and their expressive power generally increases 

with the number of types they comprise. While both 
implicit and predefined sets can contain one or more 
types, predefined sets are typically larger and hence 
more expressive than implicit sets. 

JEDI and CEA [30] are examples of event models 
supporting implicit types. Both of them support string 
types while CEA provides a second implicit type, 
namely number. In contrast, event models such as 
SIENA and STEAM provide predefined sets comprising 
a larger number of types. 

An event filter may contain a set of operators with 
varying expressive power. From left to right, the sets 
outlined in Figure 29 are supersets of each other and 
hence increase in their expressive power. The filter may 
support equality and inequality operators, less than and 
greater than magnitude operators that may be 
combined with equality operators, or magnitude 
operators that can be combined to form range 
operators. JEDI and CEA only support equality 
operators whereas SIENA and STEAM support equality, 
magnitude, and range operators. 

An event filter may employ a set of combinators 
with varying expressive power that may be used to 
combine terms including types and operators. The 
expressive power of the set of combinators outlined in 
Figure 29 increases from left to right. The structure may 
not contain any combinator or may contain either a 
single implicit combinator or an arbitrary number of 
combinators. CEA supports an implicit conjunctive 
combinator that requires all terms defined by a specific 
filter to match individually for the filter to return a 
positive result while SIENA and STEAM provide a range 
of arbitrarily applicable combinators. STEAM filters are 
defined as a collection of either conjunctive or 
disjunctive terms. These filter terms are matched 
against the relevant parameters of an event either in a 
conjunctive or a disjunctive manner, thus defining 
whether all or at least one of the terms that comprise a 
filter must be true for the filter to match. 
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Figure 28. Event filter evaluation. 
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Figure 29. Event filter expressive power. 

Mobility. Another functional event service property, 
which is becoming increasingly important with the 
emergence of wireless communication, is support for 
entity mobility. Figure 30 summaries the degree of 
mobility that may be provided by an event service. 

Many event services do not support mobility; all 
entities in such an event system are assumed to have a 
static location. However, an event system may contain 
entities that may move location from one host machine 
to another thereby assuming the address of the current 
host machine. The mobile code category refers to 
event services that support entities that can move from 
one computer to another and subsequently execute at 
their destination. JEDI supports this feature through its 
concept of reactive objects. Loke et al. [37, 38] propose 
an extension to Elvin that enables mobile code, referred 
to as mobile agents, to migrate from one host to 
another in order to perform computations on behalf of 
mobile multi-agent applications. 

The mobile device category refers to event services 
that support portable computing devices, such as 
notebook computers and handheld devices, which may 
move location while keeping their addresses, thereby 
moving the entities they host. Mobile devices may host 
nomadic and collaborative entities and may be capable 

of wireless networking. Nomadic entities interact 
through either a fixed network infrastructure or a mobile 
computing environment to which they connect via nodes 
acting as access gateways. Characteristically, they may 
suffer periods of disconnection while moving between 
points of connectivity. For example, SIENA’s mobility 
support service allows nomadic entities to connect to 
proxy components using wireless connections based on 
General Packet Radio Services (GPRS) [60] 
technology. These proxy components run on event 
servers that act as access points and transparently 
manage (and synchronise) subscriptions and events on 
behalf of a moving entity. Mobile Push and ToPSS 
propose a similar approach to supporting nomadic 
application components in which entities disconnect 
from the event service infrastructure while moving. 
ToPSS supports application scenarios in which nomadic 
entities disconnect for substantial periods of time as 
well as those where disconnection periods are very 
short. The former scenario reflects the behaviour of 
subscribers accessing the event service at distinct 
locations with considerable commuting times from one 
area of connectivity to another whereas the latter 
characterises subscribers employing handover 
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mechanisms when roaming between overlapping 
connectivity areas. 

Nomadic entities may access the event service 
infrastructure either through fixed or wireless 
connections. In contrast, collaborative entities use a 
wireless network to interact with other mobile entities 
that have come together at some common location. 
Collaborative entities may use ad hoc networks to 
support communication without the need for a separate 
infrastructure, thus allowing loosely-coupled entities to 
communicate and collaborate in a spontaneous 
manner. STEAM exploits geographical scopes, called 
proximities [61], in order to accommodate collaborative 
entities. It allows entities residing in the same proximity 
to dynamically establish wireless ad hoc connections to 
one another and subsequently to deliver events at the 
location of the proximity. 
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Figure 30. Mobility support. 

Composite Events. Subscribers may require an 
event service to recognise the occurrence of a specific 
pattern of two or more particular events possibly 
propagated by different producers. Services inform 
subscribers of such a combination of event occurrences 
by means of a notification called a composite event. 
Subscribers express their interest in composite events 
by defining what can be termed composite event filters, 
which specify the sequences of event occurrences of 
interest, typically using an application-level language. 

Composite event filters can be applied analogously 
to ordinary event filters. However, the location at which 
composite event filters may be evaluated depends on 
the locations of the set of producers potentially 
propagating relevant events. Composite event filters 
must be evaluated at a location included on the 
propagation paths of all events of interest. For example, 
composite event filters for recognising event patterns 
composed of events propagated by several distributed 
producers generally cannot be evaluated at the 
producer side. Such composite event filters must be 
evaluated at an intermediate, at the consumer side, or 
at a combination of consumer and intermediate. 
Furthermore, when intermediates are distributed, 
composite event filters must be evaluated at an 
intermediate located on all event propagation paths. 

As depicted in Figure 31, an event service may omit 
composite events. However, when supported, the 
occurrence of composite events causes the service to 

notify subscribers accordingly. Subscribers may specify 
the number of the events involved, their logical 
relationship, and the time window in which the events 
involved must occur. Exactly two or three or more 
events may be defined in a pattern that describes their 
sequence of occurrence along with a time window that 
may be defined implicitly by the event service or 
explicitly by the subscriber application. This window 
defines the time interval during which a certain number 
of events must occur in a given pattern for composite 
events to be detected. 

As part of their work on CEA, Bacon et al. [62] have 
defined an application-level language for specifying 
sequences of event occurrences of interest. Monitors 
then use a combination of event filters to detect 
composite events that conform to these sequences. 
Pietzuch et al. [63, 64] propose a general composite 
event detection framework that is similar to the CEA 
approach in that it also introduces a high-level 
specification language for event occurrences of interest. 
However, this framework has been designed 
independently of specific event system and as such, 
can accompany a range of existing event-based 
middleware architectures. The language for composite 
event specification can be used to express patterns 
including sequence (event1 followed by event2), 
alteration (event1 or event2), and parallelisation (event1 
and event2). The interval timestamp model [65] has 
been adopted for handling the clock uncertainties that 
are intrinsic to distributed systems. 

Other specification languages for the detection of 
composite events have been proposed by Mansouri-
Samani and Sloman [66] as well as by Chakravarthy 
and Mishra [67]. GEM [66] is a generalised event 
monitoring language that is based on rules. It proposes 
a tree-based approach for composite event detection 
and supports temporal constraints. Snoop [67] is an 
expressive event specification language designed to 
accommodate the requirements of a wide range of 
applications. It is event-model independent and focuses 
on supporting powerful temporal constraints. 
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Figure 31. Composite events. 
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Figure 32. Quality of service. 

2.2.3.2 Non-functional Features 
Quality of Service. The QoS of an event service may 
be configured according to the requirements of a 
particular application. Figure 32 shows that we divide 
the QoS supported by an event service into four 
categories describing the behaviour of an event service 
when propagating and delivering events. 

The real-time category explores the guarantees 
provided by an event service regarding the timely 
delivery of events. Real-time guarantees can be either 
best-effort, soft or hard. In the best-effort case, no 
deadlines can be associated with events. An event 
service supporting soft real-time provides guarantees 
with a probability that is sufficient to be used for soft 
real-time deadlines and a hard real-time service 
provides guarantees with a probability that is sufficiently 
high to be used for hard real-time deadlines. Hard real-
time guarantees must meet their temporal specification 
in all anticipated load and fault scenarios [68]. The 
CORBA notification service allows deadlines defining 
earliest and latest delivery time to be assigned to events 
that are enforced with a probability that is sufficient to 
be used for soft real-time deadlines. Generally, hard 
real-time guarantees are difficult to provide as they 
require a predictable communication pattern, usually 
only available in a small-scale environment. This is 
particularly true for distributed event systems. 
Distributed event systems are traditionally based on 
anonymous one-to-many communication patterns that 
tend to be unpredictable and are likely used in systems 
consisting of a large number of loosely-coupled entities. 
However, the TAO RT event service, an extension to 
the CORBA event service that was developed for 
avionics applications, supports hard real-time 
guarantees. COSMIC uses event channels as an 
abstraction for network resources and allows 
applications to assign timeliness properties to channels. 
It supports best-effort guarantees in the form of non 
real-time event channels as well as soft and hard real-
time guarantees through soft real-time channels and 
hard real-time channels respectively. 

In order to influence the sequence in which events 
are delivered, a priority may be assigned to an 
individual event. Usually, no priority can be assigned 

and therefore all events have identical priority. An event 
service that supports alarm events allows a single 
priority to be assigned to certain events. The CORBA 
notification service provides multiple priorities. 

Store occupancy describes the maximum size of 
memory required by an event service to operate at any 
point during its lifetime. This size can be either implicit 
or it may be configurable according to the 
requirements of a particular application. Implicit store 
occupancy either imposes a fixed maximum memory 
size or allocates the required memory dynamically 
whereas configurable store occupancy typically 
depends on a number of parameters. These 
parameters may describe the maximum size of the 
queues that buffer events as well as the maximum 
number of producers, consumers, and mediators that 
may be supported by an event service. 

The reliability category investigates the guarantees 
provided by an event service regarding the delivery of 
events in the presence of failure. An event service is 
said to provide best-effort reliability if no specific 
delivery guarantees are made. Events may or may not 
be delivered to subscribers in the presence of failure. 
An event service that supports reliable connections 
guarantees events being delivered to all correctly 
functioning subscribers. Upon restart from a failure, 
connections between producers and subscribers are re-
established without re-subscription and event delivery 
resumes. A persistent event service guarantees events 
being delivered to all subscribers. Upon restart from a 
failure, connections between producers and subscribers 
are re-established without re-subscription and 
persistently buffered events are retransmitted. The 
CORBA notification service may support any of these 
three delivery policies. 

Ordering. An event service delivers events 
according to a certain ordering semantic. Figure 33 
shows that an event service may deliver events in a 
certain order in a subset of the system or system 
wide, i.e., throughout the system. Event services with a 
system wide ordering strategy employ exactly one 
delivery order whereas event systems with subset 
orders associate different ordering strategies with 
various parts of the system. 
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Figure 33. Ordering. 

Events may be delivered in any order. Such 
unordered events may be received by any subscriber in 
any order. FIFO order refers to a strategy where two 
events that are raised by the same producer are 
delivered by consumers with matching subscriptions in 
the order in which they were raised. Causally-ordered 
events are delivered in the order they were published as 
determined by the well-known happens-before 
relationship [69] while totally-ordered events are 
delivered in the same order by all subscribers but not 
necessarily in the order they were raised [70]. 
Mechanisms for providing unordered and FIFO order 
semantics are generally relatively straightforward since 
they do not require distributed coordination. In contrast, 
enforcing causal and total order semantics requires 
cooperation between all producers and consumers 
involved. 

Alternatively, events may be delivered according to 
an associated priority or deadline. These semantics 
imply that the delivery of some event can be pre-
empted in order to deliver an event that has a higher 
priority or to deliver an event that has a deadline that is 
close to expiring. Ordering in real-time systems may 
also be determined by deadlines. 

The CORBA notification service supports various 
semantics for defining event delivery order for a specific 
event channel, including any, FIFO, priority, and 
deadline order. This approach allows applications with a 
single event channel to define a system wide order and 
applications comprising multiple channels to associate a 
specific order with each channel. CONCHA and TAO 
RT are other CORBA-based event services that support 
delivery order semantics. CONCHA features totally-
ordered event delivery and TAO RT CORBA provides a 
dispatching mechanism for priority-based event 
delivery. 

Security. As discussed below, event services can 
support a number of mechanisms to alleviate the 
security concerns that may arise in applications that 
disseminate events among a population of distributed 
producers and consumers. However, the event model 
that is exploited for such applications can have an 
impact on security concerns as some models are more 
secure than others. Peer to peer models, in which 
explicitly named entities interact directly, can be 
considered more secure than mediator-based models 

where interaction requires a trusted mediator (or group 
of mediators) or indeed implicit models where the 
middleware as a whole must be trusted. 

Event services may omit mechanisms that address 
security concerns or may support security properties by 
providing techniques for event message confidentiality 
and for authentication.  

 

Supported 

Authentication 

Set of Events 

Confidentiality 

Individual Event 

Security 

Omitted 

 
Figure 34. Security. 

Event messages that contain sensitive content may 
be transmitted over a network in an encrypted and 
therefore confidential form rather than as plain text. This 
enables producers and consumers to keep event 
messages secret from third parties. For example, Elvin 
supports a security framework that exploits the Secure 
Socket Layer (SSL) protocol for managing the security 
of its message transmissions over the Internet. 

Essentially, authentication establishes the identity of 
specific events and serves as the basis for a 
mechanism that polices access to certain operations. 
Such an access control mechanism may regulate 
access privileges for event dissemination, forwarding, 
and delivery. Access may be granted to an individual 
event or to a set of events. Such a set of events may 
be defined by various means. Access may be granted 
to events of a specific type, to the events disseminated 
by a specific producer or a group of producers, to the 
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events described by a subscription or by the 
subscriptions issued by a certain consumer, or to the 
events handled by a particular mediator. For example, 
Elvin’s security framework enables servers to authorise 
access to events using keys, which may be associated 
with either a connection to a specific entity or an 
individual event. 

Wang et al. [71] outline security issues in event 
services without attempting to present an actual security 
model. Their work specially focuses on Internet-scale 
event systems and discusses security paradoxes, such 
as anonymity vs. authentication, that arise due to the 
nature of event systems. 

Failure Mode. The failure mode describes the 
behaviour of an event service in the presence of a 
single component failing silently. A fail-silent component 
is a self-checking component that either functions 
correctly or stops functioning after an internal failure is 
detected [72]. As outlined in Figure 35, the failure mode 
category explores support for the failed component 
being an entity, a middleware component, or a part of 
the network. 

A failed entity may be either a consumer or a 
producer. A failed consumer does not cause the 
remainder of the system to suffer. A failed producer 
causes a partial or a total system failure. A partial 
system failure affects the communication related to 
some event types that may result in fewer events being 
propagated. No event communication can take place in 
case of a total system failure. A system consisting of a 
single producer and a number of consumers fails totally 
if the sole producer fails silently. 

A middleware component failing silently causes a 
partial or a total system failure similar to the effect of a 
failed producer. A partial system failure affects either 
a geographical or a functional part of the system. The 

former disconnects a part of the system from the rest of 
the system. Event communication may take place within 
the partitions, but no event communication takes place 
between the partitions. A geographical partial system 
failure may be caused by a failing SIENA event server 
that is part of a hierarchical or an acyclic non-
hierarchical server topology. The latter stops 
communication related to a particular event type 
throughout the system. However, communication 
related to other event types does not suffer. A functional 
partial system failure may be caused by a failed event 
channel in a CORBA event service utilising multiple 
channels, each managing a specific event type. A failing 
centralised JEDI event dispatcher causes a total system 
failure. 

A part of the network failing silently may be 
redundant or may cause partial or total system failure. A 
redundant part of the network failing in SIENA utilising 
a general non-hierarchical server topology may not 
cause the remainder of the system to suffer. Similarly, 
Hermes’ overlay routing layer enables a system to 
overcome failures in redundant parts of the network by 
using an adaptive routing strategy. 

A partial system failure disconnects a part of the 
system from the rest of the system. Event 
communication may take place within the partitions, but 
no event communication takes place between the 
partitions. SIENA utilising an acyclic non-hierarchical 
server topology and Rebeca, which assumes an acyclic 
non-hierarchical network topology, behave in this 
manner. A system in which all producers are connected 
through a single network is susceptible to total system 
failure where no event communication can take place. 
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Figure 35. Failure mode. 
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3. CLASSIFICATION OF EVENT SYSTEMS 
Table 2 illustrates how a taxonomy user may apply the 
taxonomy to existing event systems. It presents a 
number of selected event services that have been 
summarised using the terminology of the taxonomy 
presented in this paper. These event services have 
been selected to cover various properties and because 
sufficiently detailed documentation is available to 
describe them. The CORBA notification service has 
been chosen due to its widespread use and due to its 
support of a wide range of non-functional features. 
SIENA, SECO, and Hermes, which have been designed 
in academia, have been chosen because of their 
organisational and interaction models as well as their 
exploitation (or lack) of event server topologies. 

Table 2 demonstrates that using a common 
vocabulary for describing event services facilitates 
comparison of service properties. For example, Table 2 
shows that both, the CORBA notification service and 
SIENA are based on an event model that includes 

either a single event server or a topology of multiple 
event servers and that the SECO event model excludes 
the use of such mediators altogether. It also shows that 
Hermes’ fault tolerance mechanisms alleviate the 
effects of failed middleware components once its 
overlay routing layer has adapted. The implementation 
of Hermes’ client-side programming model is 
application-specific since Hermes defines the set of 
Extensible Markup Language (XML) [73] messages 
to be exchanged across brokers and clients but not the 
bindings between client programming language and 
these XML messages. The programming model 
properties shown are based upon the Java version of a 
client implementation proposed in [43]. Moreover, 
Pietzuch [43] proposes a set of higher-level middleware 
services for composite event detection, security, and 
congestion control that can be built on top of Hermes. 
However, these services are not intrinsic to Hermes and 
as a result, were not considered in Table 2. 

 

Table 2. Categorisation of event systems. 

 CORBA 
Notification Service SIENA SECO Hermes 

Event Model 

Single mediator or 
multiple, non-

functionally equivalent 
mediators 

Single or multiple 
mediators Implicit Multiple mediators 

Event Service 
Organisation 

Single or multiple 
distributed, separated 

middleware 

Single or multiple 
distributed, separated 

middleware 

Distributed, collocated 
middleware 

Multiple distributed, 
separated middleware 

Event Service 
Interaction Model 

Centralised 
intermediate or 

partitioned, distributed 
intermediate 

Centralised 
intermediate or 

cooperative, distributed 
intermediate 

No Intermediate, 
named (uSECO) or 
implicit (mSECO) 

Cooperative, 
distributed 

intermediate 

Functional Event Service Features 

 Event Propagation 
 Model Sporadic push and pull Sporadic push Sporadic push Sporadic push 

 Event Type Typed Typed Typed Typed 

  Expressive 
  Power 

Application specific 
attributes 

Application specific 
attributes 

Application specific 
object 

Application specific 
object 

  Type 
  Hierarchies Omitted Omitted Omitted Supported 

 Event Filter 

  Location Producer, consumer, 
and intermediate Intermediate Producer and 

consumer Intermediate 

  Definition Constraint language Constraint language Programming 
language 

Programming 
language 

  Implementation String String Object Object 

  Evaluation 

   Mechanism Implicit interpreted Implicit interpreted Implicit compiled Implicit interpreted 

   Time Propagation Propagation Propagation Propagation 

  Expressive Power 

   Type Predefined Predefined Predefined Predefined 

   Operator Range Range Range Range 

   Combinator Arbitrary Arbitrary Arbitrary Arbitrary 
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 CORBA 
Notification Service SIENA SECO Hermes 

 Mobility Static Static and nomadic 
entity Static Static 

 Composite Events Omitted Omitted Omitted Omitted 

Non-Functional Event Service Features 

 Quality of Service 

  Real-time Soft Best effort Best effort Best effort 

  Priority Multiple No No No 

  Store Occupancy Configurable Implicit Implicit Implicit 

  Reliability 
Best effort, reliable 

connection or 
persistent 

Best effort 
Best effort (uSECO) or 

reliable connection 
(mSECO) 

Reliable connection 
(temporarily) and then 

best effort 

 Ordering Any, FIFO, priority or 
deadline Any Any Any 

 Security Omitted Omitted Omitted Omitted 

 Failure Mode 

  Entity Partial system failure Partial system failure Partial system failure Partial system failure 

  Middleware 
Functional partial 

system failure or total 
system failure 

Geographical partial 
system failure or total 

system failure 
Results in failed entity 

Geographical or 
functional partial 
system failure 
(temporarily) 

  Network Partial system failure Redundant or partial 
system failure Partial system failure Redundant or partial 

system failure 

 

4. CONCLUSION 
This paper presented a taxonomy of distributed event-
based programming systems. The taxonomy identifies a 
set of fundamental properties of event-based 
programming systems and categorises them according 
to their event model and the structure of their event 
service. The event service is further classified according 
to its organisation and interaction model, as well as 
other functional and non-functional features. These 
properties are then arranged in a hierarchical manner 
starting from the root of the taxonomy, which defines 
the relationships between an event system, an event 
service and an event model. Each of these properties is 
described in detail and a range of event systems are 
used as examples. 

We have demonstrated how a taxonomy user may 
apply the taxonomy to existing event systems by 
categorising a number of selected event services, which 
have been chosen to cover various properties, 
according to the taxonomy.  

Our taxonomy differs from related work in that it 
identifies an extensive set of generic event system 
properties describing various systems dimensions in 
detail. The taxonomy considers functional and non-
functional properties, including mobility, security, and 
quality of service, and describes the possible options for 
these properties. As a result, it can be used to classify 
virtually any distributed event-based programming 
system regardless of system scale or application 
domain whereas existing work focuses on providing a 
framework designed for a specific application area or 
based on a particular high-level model. 

Event systems may evolve together with future 
advancements in the information technology industry. 
Such next-generation event systems may support 
additional, novel properties in order to accommodate 
new application requirements that may result from these 
advances. For example, a means for consumers to 
electronically pay producers for the information they 
disseminate may arise as an important feature in future 
event-based systems. Consequently, the taxonomy may 
need to be extended to support such novel properties. 
The hierarchical structure on which our taxonomy is 
based may easily cope with such potential 
enhancements. Adding novel properties or refining 
existing properties is straightforward as such changes 
affect a specific part of the taxonomy only and do not 
require a reorganisation of the existing hierarchy. 
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