
 Taxonomy of Distributed Event Systems 1

Taxonomy of Distributed Event-Based
Programming Systems

René Meier and Vinny Cahill
Distributed Systems Group

Department of Computer Science, Trinity College Dublin
Ireland

Tel: +353 1 608 2666 Fax: +353 1 677 2204
Rene.Meier@cs.tcd.ie

ABSTRACT
Event-based middleware is currently being applied for
application component integration in a range of
application domains. As a result, a variety of event
services have been proposed to address different
requirements. In order to aid the understanding of the
relationships between these systems, this paper
presents a taxonomy of distributed event-based
programming systems. The taxonomy is structured as a
hierarchy of the properties of a distributed event system
and may be used as a framework to describe such a
system according to its properties. The taxonomy
identifies a set of fundamental properties of event
systems and categorises them according to the event
model supported and the structure of the event service.
Event services are further classified according to their
organisation and their interaction models, as well as
other functional and non-functional features.

1. INTRODUCTION
The event-based communication model represents a
well-established paradigm for asynchronously
interconnecting the components that comprise an
application in a potentially distributed and
heterogeneous environment, and has recently become
widely used in a range of application areas including
large-scale internet services [1] and mobile computing
[2, 3].

Event-based communication is particularly useful in
centralised and distributed applications that require one
or more application components to react to changes
occurring in other application components as it provides
a one-to-many or many-to-many communication pattern
[4-7]. The asynchronous nature of event-based
communication [8, 9] results in a less tightly coupled
communication relationship between application
components compared to the traditional
request/response communication model.

Event-based communication also allows application
components to interact anonymously [10] without
concern for either the number or the location of the
components involved. Anonymous interaction allows
application components to establish communication
relationships relatively easily, involving modest
initialisation effort compared to the request/response
communication model. It is therefore well suited for
accommodating communities of cooperating distributed

components that establish communication relationships
dynamically over time in an unpredictable fashion.

Event-based middleware is currently being applied in
many application domains including finance,
telecommunications, smart environments, multimedia,
avionics, health care, and entertainment [1, 2, 11-18].
Moreover, with the widespread deployment and use of
wireless technology, where communication relationships
amongst heterogeneous application components [8] are
established very dynamically during the lifetime of the
components, event-based middleware will become even
more prevalent as it addresses important application
requirements including avoidance of long-lasting and
hence potentially expensive connections, hiding of
communication latency due to decoupled interaction
phases, omission of centralised control, and
heterogeneity. The notion of dynamically inaugurating
communication relationships among application
components without relying on centralised control is
central to addressing the needs of a scalable system,
representing the ability to accommodate growth in a
potentially large-scale distributed environment.

Event-based communication models, or simply event
models, are used in applications ranging from small-
scale, centralised to large-scale, highly distributed
systems [19]. On one hand, they are exploited to
interconnect individual components of applications, for
example, the components comprising graphical user
interfaces [20, 21]. Such graphical components may
disseminate user-driven and hence sporadic changes to
their state to other components of the application that
are required to react to these changes. At the other
extreme, publishers of stock trading information may
utilise an event service to post the latest trading rates to
a group of brokers, potentially located in different cities
or even countries [11, 12]. In between these extremes,
smart environments often employ event-based
communication models to interconnect a large number
of application components [15] ranging from light and
door actuators and sensors to robotic vehicles moving
within and between buildings.

As event-based middleware is used in a large
number of applications in a range of domains, a variety
of event services have been proposed to address
different application requirements. This paper presents
a survey of existing event systems structured as a
taxonomy of distributed event-based programming

 2
systems. Generally, a taxonomy is a classification that
allows different examples of some generic type to be
systematically arranged in groups or categorised
according to established criteria. The taxonomy
presented in this paper is structured as a hierarchy of
the properties of a distributed event system and may be
used as a framework to describe an event system
according to its properties. Arranging the properties
identified by a taxonomy in a hierarchical manner is a
common mechanism for presenting and describing
systems and their features. For example, Martin et al.
[22] describe their taxonomy for distributed computing
systems as a hierarchy of questions and answers about
the features of such systems.

The ultimate challenge of establishing a taxonomy is
to identify the criteria according to which the area of
interest is categorised and to arrange them
systematically. Our taxonomy identifies a set of
fundamental properties of event-based programming
systems and categorises them according to the event
model supported and the structure of the event service.
Event services are further classified according to their
organisation and interaction model, as well as other
functional features, such as event propagation model
and event filtering, and non-functional features, such as
ordering semantics and security. These properties are
then arranged in a hierarchical manner starting from the
root of the taxonomy, which defines the relationship
between event system, event service, and event model.
Each property is described providing corresponding
terminology.

As far as possible, categories have been chosen to
be independent but nevertheless, there are some
interdependencies between certain categories. These
interdependencies are discussed in the relevant
sections.

1.1 Exploiting the Taxonomy
In addition to providing a means of describing an

event system, the taxonomy can be used to broadly
summarise event systems and the taxonomy
terminology provides a common vocabulary to be used
in the general discussion of event systems. Event
systems can then be discussed using the same
terminology and therefore, can easily be compared with
each other or can be matched against system
requirements. This can lead to the identification of
families of event systems that support a common
feature by identifying the set of systems that support a
certain set of properties. For example, the properties
described in Figure 30 can be used to identify the family
of event systems that supports mobility.

The taxonomy may also serve as a basis for
identifying the canonical combination of the properties
of an event system required by a particular application
domain, simply by applying the taxonomy to a number
of existing event systems used in that particular
application domain and by extracting the common
combination of properties. This can be useful for the
requirements and design engineering of a novel event
system. Moreover, the taxonomy is expected to be
utilised to identify novel combinations of the properties

of event systems and consequently, may serve as a
basis for discovering potential research issues to be
addressed in future work. This has already led us to
develop STEAM [23], a location-aware event-based
middleware for collaborative mobile applications.

1.2 Related Work
Our taxonomy presents a set of generic event system
properties and hence can be used to classify virtually
any distributed event-based programming system
regardless of system scale or application domain. The
taxonomy identifies a large variety of properties,
including quality of service, mobility, and security, and
describes these properties as well as possible
implementation options in detail.

Existing work on describing event systems has
focussed either on providing a high-level reference
model or on classifying event systems for a specific
application area. Barrett et al. [24] present a framework
for event-based software integration that provides a
high-level model for identifying components commonly
found at the heart of event-based software integration in
large scale systems. This framework identifies the main
components of an event system as informers, listeners,
registrars, routers, message transformer functions, and
delivery constraints. The framework describes the
relationships among these components in detail using
an object-oriented type model, but does not specify
possible patterns of interaction between informers and
listeners. Moreover, it does not explicitly identify
functional event system features and omits non-
functional features altogether.

The work of Rosenblum and Wolf [25] on a design
framework for event observation and notification has
focussed on supporting the construction of large-scale,
event-based systems for the Internet. This framework
comprises seven models, namely the object, event,
naming, observation, time, notification, and resource
models, to capture many of the design dimensions
relevant to Internet-scale applications. Even though
each of these models is discussed in detail, the overall
number of properties according to which an event
system may be classified is substantially smaller
compared to the taxonomy presented in this paper. This
is due to the fact that this framework imposes certain
constraints in order to specifically support Internet-scale
event observation and notification and because certain
issues, such as quality of service, mobility, and security,
have not been considered.

Eugster et al. [26] identify the common denominators
of variants of the publish/subscribe interaction scheme
using three dimensions. These dimensions describe the
decoupling between producers and consumers of
information in terms of time, space, and
synchronisation. This work focuses on implementation
issues related to event dissemination, the underlying
media, and quality of service aspects, and as such does
address other functional and non functional features,
such as mobility support, failure mode, and security
mechanisms.

 3
1.3 Interpreting the Taxonomy
This taxonomy is presented using both figures and
corresponding text. The figures outline the relationships
among the fundamental properties of event systems
and define the terminology to identify them. The text
associated with each figure describes the
corresponding properties in detail. The figures allow a
taxonomy user to easily trace paths through the
hierarchy to discover relevant properties. As
summarised in Figure 1, the figures consist of nodes
representing properties of interest, one of which is the
root node and some of which are leaves. Nodes are
connected by directed paths. The directed paths are
represented by a set of arrows describing the nature of
the paths leaving a specific node. A set of dashed
arrows leaving a specific node indicates that exactly
one path has to be chosen when tracing through that
node. Solid arrows indicate that at least one path has to
be chosen, whereas double lined arrows indicate that all
possible paths need to be followed in parallel. In order
to apply the taxonomy to an event system, a taxonomy
user traces paths through the hierarchy starting from
the root node and selecting the connections that most
accurately describe the event system until each
selected path reaches a leaf. The terms associated with
the nodes along a path describe a property of the event
system.

1
Select all paths

Select exactly one path

Select at least one path

Leaf

Node

Figure 1. Taxonomy legend.

For example, Figure 21 shows that the features of an
event service include both functional and non-functional
features by using double lined arrows to describe the
paths between the nodes. Hence, when tracing through
the features node, all paths, i.e., both of them, must be
selected to describe the corresponding properties of the
event system. The solid arrows connecting the nodes in
Figure 22 indicate that one kind of event propagation
model can be provided by an event service, although
some event services may support both the sporadic and
the periodic event propagation models. Therefore,
either one or both paths may be traced. Figure 4 shows
that an event model can be characterised as either
peer-to-peer, mediator, or implicit. The dashed arrows
connecting the nodes, which imply that exactly one path
has to be chosen, illustrate this.

2. THE TAXONOMY
The root of the taxonomy, which is depicted in Figure 2,
defines the relationship between an event system, an
event service and an event model. Every event system
has both an event service and an event model, which
we define as follows:

• An event system is an application that uses an
event service to carry out event-based
communication.

• An event service is middleware that implements an
event model, hence providing event-based
communication to an event system.

• An event model consists of a set of rules describing
a communication model that is based on events.

We differentiate between event service and event
model in order to capture the facts that an event model
defines an application-level view of an event service
and that a range of different event services may
implement a given event model. Event models
essentially reflect the different uses for which they are
intended. For example, the objectives of the Java AWT
delegation event model [20] differ substantially form
those of the CORBA notification service model [27],
which leads to major differences in the Application
Programming Interfaces (APIs) that they provide. The
goal of the CORBA notification service model is to be
extremely general-purpose and usable in virtually any
domain. Consequently, it supports a wide range of
features including typed and untyped event
communication, as well as filtering and administrative
capabilities. Moreover, a variety of quality of service
properties, such as event reliability, connection
reliability, event priority, and event delivery order, are
supported to control the propagation characteristics of
events. This is reflected in a fairly large and complex
API. In contrast, the Java AWT delegation event model
is intended for small-scale, centralised applications,
such as graphical user interfaces, and therefore omits
many of the features of the CORBA event model. This
results in its API being much simpler than that of the
CORBA event model.

Event System

Event Service Event Model

Figure 2. The root of the taxonomy.

The CORBA event model also serves as an example
of an event model that was specified with the
expectation of being implemented by a range of event
services, and potentially being exploited in different
application domains. The Object Management Group
(OMG) leaves open the implementation of their model
and therefore, leaves it to different vendors to provide
implementations. Consequently, event services
supporting the CORBA event model have been
implemented and extended by a number of commercial
and academic organisations [28], [4], [29].

 4

P

C

P/C

Producer Entity

Consumer Entity

Producer and
Consumer Entity

Legend:
Event System

Event Service

Transport Mechanism

Event Model P/C
P

C

P
C

P/C

Figure 3. Event system overview.

The relationships between event system, event
service and event model are summarised from the
event system’s perspective in Figure 3. Apart from
depicting how an event system uses an event service
that implements a particular event model, Figure 3 also
outlines how event system and service map onto a
transport mechanism and how applications use entities
as hooks into the event service. Entities are the
components of an application that produce and
consume events, excluding components of the event
service. An entity may play the role of a producer and/or
a consumer of events.

There is no generally accepted standard terminology
used for the application components that act as
consumers or producers of events. As a result, the
event systems presented in this paper use a variety of
alternative terminology, which is summarised in Table 1,
when referring to event producers and consumers. We
use the systems outlined in Table 1 later in this paper to
illustrate the properties identified by our taxonomy.

Table 1. Event system terminology.

Event System Producer Consumer

CEA [9, 30] Source object Client object

CONCHA [4] Multicast
supplier

Multicast
consumer

CORBA [27, 31] Supplier Consumer

COSMIC [32, 33] Publisher Subscriber

ECO [5, 34] Object Object

Elvin [35, 36] Producer Consumer

Elvin Agents [37, 38] Producer Consumer

Gryphon [6, 39, 40] Publisher Subscriber

Hermes [41-43] Publisher Subscriber

Java AWT [20] Source Listener

Java Distributed [44] Generator Listener

JEDI [45] Active object Active object

Mobile Push [46] Publisher Subscriber

Obvents [47, 48] Publisher Subscriber

Rebeca [49, 50] Producer Consumer

SECO, uSECO, mSECO
[5] Object Object

Event System Producer Consumer

SIENA [51] Object of
interest Interested party

STEAM [23, 52-55] Producer Consumer

TAO RT CORBA [16, 29] Supplier Consumer

ToPSS [56-58] Publisher Subscriber

2.1 Event Model
The event model defines the manner in which an event
service is made visible to the application programmer. It
specifies the components of an event service to which
the application programmer is explicitly exposed and
that are used to subscribe to events and to propagate
them. In particular, the event model classifies the
means by which consumers subscribe to the events in
which they are interested and the means by which an
application raises and delivers events, as well as the
number and location of the components used. As
shown in Figure 4, we have identified three distinct
categories of event model, which are peer-to-peer,
mediator, and implicit.

Event Model

Implicit Mediator Peer-to-Peer

Multiple Single

Non-Functionally
Equivalent

Functionally
Equivalent

Figure 4. Event model categories.

2.1.1 Peer to Peer
A peer to peer event model allows consumers to
subscribe at specific named producers directly and
producers to deliver events to specific named
consumers directly. The Java distributed event model is
based on a peer-to-peer event model allowing a
RemoteEventListener to subscribe to events by
invoking a register method on an explicitly named
EventGenerator.

 5

TheConsumerApplication {//the
 //RemoteEventListener
 //subscribe to an explicit producer
 AnExplicitEventGeneratorRef =
 retrieveEventGeneratorRef();
 AnExplicitEventGeneratorRef.register(this);
 //delivery handler implementation
 notify(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {//the EventGenerator
 //register method implementation
 register(RemoteEventListenerRef) {
 SubscribedRemoteEventListenerRef =
 RemoteEventListenerRef;
 }
 //raise an event
 AnEventInstance = new Event(someParameters);
 SubscribedRemoteEventListenerRef.notify(
 AnEventInstance);
 }
}

Figure 5. A producer and a consumer application using
the peer-to-peer Java distributed event model.

The simplified application shown in Figure 5 outlines a
subscribing RemoteEventListener and an
EventGenerator invoking the notify method on a
subscribed RemoteEventListener using a
RemoteEventListener reference to deliver a specific
event instance.

2.1.2 Mediator
Event models utilising a mediator allow consuming
entities to subscribe at a designated mediator and
producing entities to deliver events to the mediator,
which then forwards them to the subscribed entities.

The mediator sub-hierarchy explores the number and
functionality of mediators in the event model. We
differentiate between models utilising a single mediator
and models exploiting multiple mediators. The CORBA
event model1 may use a single mediator (known as an
event channel) for propagating all events from
producers to consumers. Multiple mediators are further
divided into functionally equivalent and non-functionally
equivalent mediators. In the former, all mediators are
functionally equivalent. Thus, entities may subscribe
or deliver events to any one of them. Such a mediator is
called an event server in the SIENA model. SIENA may
use a set of different event server topologies of which
all but the centralised topology exploit multiple,
functionally equivalent event servers. When mediators
are not functionally equivalent, entities have to
subscribe or deliver events to the correct mediator. For
example, an application exploiting the CORBA event

1 The CORBA specification allows its event model to use a

single or multiple mediators. For the purpose of this
example, we refer to a CORBA event model utilising a single
mediator.

model2 may use multiple event channels each
propagating a different type of event.

The simplified application shown in Figure 6 outlines
how both CORBA consumers and producers connect to
the explicitly-named event channel through which they
intend to exchange events. Connected producers may
raise events by pushing them to the event channel,
which forwards them to all subscribed consumers by
invoking their delivery handlers in turn.

TheConsumerApplication {
 //connect to an explicit event channel
 ConsumerAdmin =
 TheEventChannel.forConsumers();
 ProxyPushSupplier =
 ConsumerAdmin.obtainPushSupplier();
 ProxyPushSupplier.connectPushConsumer(
 TheConsumer);
}
TheConsumer {
 //delivery handler implementation
 push(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //connect to an explicit event channel
 SupplierAdmin =
 TheEventChannel.forSuppliers();
 ProxyPushConsumer =
 SupplierAdmin.obtainPushConsumer();
 ProxyPushConsumer.connectPushSupplier(
 TheSupplier);
}
TheSupplier {
 //raise an event
 AnEventInstance = new Event(someParameters);
 ProxyPushConsumer.push(AnEventInstance);
}

Figure 6. A producer and a consumer application using
the mediator-based CORBA event model.

2.1.3 Implicit
An implicit event model allows consuming entities
subscribe to particular event types rather than at
another entity or a mediator. Producers generate events
of some type, which are then delivered to the
subscribed consumers. The direct approach for CEA
source objects to disseminate events to client objects,
described by Bacon et al. [30], is based on an implicit
event model. Figure 7 shows a simplified version of an
active badge application using direct CEA. The
consumer subscribes by invoking a register method
provided by a local library passing the event type of
interest as well as a reference to its delivery handler.
The producer declares its event type and subsequently
raises events of this type by invoking a signal method
provided by a local library. The event service delivers
events to all registered consumers by calling their
delivery handlers.

2 The CORBA specification allows its event model to use a

single or multiple mediators. For the purpose of this
example, we refer to a CORBA event model utilising multiple
mediators.

 6

TheConsumerApplication {
 //subscribe to an event type
 template = Badge_Seen(17, 29);
 EventClient.Register(EventHandler,
 template);
 //deliver handler implementation
 EventHandler(TheRemoteEventInstance) {
 processAnEvent(TheRemoteEventInstance);
 }
}

TheProducerApplication {
 //specify the event type
 Badge : INTERFACE = Seen : EVENTCLASS
 [badge : BadgeId;
 sensor : SensorId];
 END.
 //raise an event
 e = Badge_Seen(17, 29);
 EventSource.Signal(e);
}

Figure 7. A producer and a consumer application using
the implicit Direct CEA.

2.1.4 Discussion
An event system exploiting either a peer-to-peer or a
mediator-based event model allows its entities to
interact by invoking remote methods directly on each
other or on one or more mediators respectively whereas
entities of an event system with an implicit event model
interact by subscribing and delivering events locally
using event types.

Significantly, these approaches differ in the way the
identifiers of the components exposed to the application
programmer are obtained and maintained. Peer-to-peer
and mediator-based event models require the
application programmer to obtain the identifiers of
specific producers or mediators respectively, usually by
means of a naming service, and to maintain them.
Every consumer of an event system utilising a peer-to-
peer event model is required to obtain the identifier of
each producer in which it is interested, i.e., the
application programmer must ensure a consumer
subscribes to the correct set of producers, and to
maintain the correct set of subscriptions during its
lifetime. Similarly, entities of an event system using a
mediator-based event model need to acquire the
identifiers of the mediators involved, i.e., the application
programmer must track the identifiers to the mediators
to which a specific entity needs to connect. However,
mediator-based event models are likely to obtain and
maintain a smaller number of different identifiers
compared to peer-to-peer models. There are likely to be
significantly fewer mediators in an event system than
producers and their number is unlikely to change over
time3, certainly compared to the number of producers as
they may be created frequently to provide services for a
limited period of time. In contrast, the application
programmer in an event system with an implicit event
model is not required to acquire the identifiers of

3 An event system may exploit a single mediator whose

reference characteristically remains unchanged, assuming
the absence of failure, during the lifetime of the system.

producers or mediators at all. The application
programmer does not need to explicitly identify the
producers with which a consumer needs to
communicate as consumers subscribe to producers
transparently using event types. This requires a more
sophisticated event service as it is responsible for
locating peers, maintaining the corresponding
identifiers, mapping event types to identifiers, and for
providing a means to define and check the type of
events.

Most significantly, the event model exploited by an
event system affects one of the main concepts of event-
based communications, namely the degree of
anonymity among the entities in the system. The means
by which consumers subscribe to the events in which
they are interested and by which events are propagated
and delivered influences the degree of anonymity
among them. The peer-to-peer approach permits
specific named entities to interact directly with each
other. Consequently, entities are not anonymous to
each other. Mediator-based event models, where
entities register with one or more mediators, provide a
degree of anonymity where entities are anonymous to
each other but known to the mediator(s). The implicit
approach allows entities to interact anonymously. Such
entities are anonymous to each other and are only
known by the event service that implements the
mapping of event types to entities. Nevertheless,
entities may choose to identify themselves at the
application level regardless of the degree of anonymity
provided by the underlying event model. This may be
useful for example, in applications that wish to assess
the level of trust between producers and consumers.

2.2 Event Service
This section deals with the classification of the
properties of event service middleware. As Figure 8
shows, we divide the properties of an event service into
three distinct categories. The organisation sub tree
focuses on the distribution of the producers and
consumers as well as the components of the
middleware and on the fashion in which the components
that comprise an event service cooperate. The
interaction model defines the communication path over
which event producers and consumers communicate
with each other. The feature sub hierarchy addresses
the other (functional and non-functional) features
provided by an event service.

Event Service

Interaction Model Organisation Features

Figure 8. The event service.

 7

Centralised

Separated
Middleware

Collocated
Middleware

Multiple Single

Separated
Middleware

Multiple Single

Collocated
Middleware

Distributed

Organisation

Figure 9. Event service organisation.

2.2.1 Organisation
As summarised in Figure 9, the organisation sub tree
classifies an event service as either centralised or
distributed according to the location of the event
system’s entities. These two sub categories are further
divided exploring the location of the event service’s
components.

The entities of an event system are centralised if
they reside in the same address space on the same
physical machine. In contrast, if the entities of an event
system are distributed they may be located in different
address spaces possibly on different physical
machines.

Whether the entities of an event system are
centralised or distributed, the middleware can be either
collocated or separated.

Address Space

Machine

Address Space

M

Legend:

M

Producer Entity

Consumer Entity

Middleware

Communication

P

C

P

C

P

C

Figure 10. Centralised event service with collocated

middleware.

Collocated Middleware. The event service is
collocated with the entities if it resides only in the same
address space(s) on the same physical machine(s). As
illustrated in Figure 10, the organisation of a centralised
event service with collocated middleware results in both
the entities and the middleware being located
exclusively in the same address space. No part of the
event system resides outside the implicit single address
space. This organisation may be used for small-scale
applications consisting of a relatively small number of

entities, such as graphical user interfaces. For example,
the Java AWT delegation event model is implemented
by the Java Virtual Machine (JVM) to connect the
graphical components of an application sharing their
address space with the middleware. Another event
service that may be used in a similar fashion is provided
by the C# programming language [21]. In contrast, the
organisation of a distributed event service with
collocated middleware results in the middleware being
distributed with the entities, each entity using the part of
the middleware that is local to it. Figure 11 shows the
organisation of a distributed event service with
collocated middleware, which may include an arbitrary
number of address spaces.

Machine

Addr.
Space

Machine

Addr.
Space

M M

Machine

Addr.
Space

M

Machine

Addr.
Space

M

P C

P C

Figure 11. Distributed event service with collocated

middleware.

This organisation has been adopted by mSECO, an
event service implementing the ECO event model.
mSECO is implemented as a library that is collocated
with each entity. Notably, mSECO is exclusively located

 8
in the same address spaces as the entities. Moreover,
the address spaces in which the entities reside may or
may not be located on different physical machines.
Likewise, STEAM adopts this organisation in order to
avoid dependence on a service infrastructure other than
the machines hosting producers and consumers. This
enables STEAM to support the wireless, ad hoc
networks for which it has been designed.

Separated Middleware. In this case, the event
service is at least partially located in one or more
separate address spaces possibly on different physical
machines. We divide separated middleware into two
categories depending on the partitioning of the
middleware. Figure 12 depicts an event service with
separated single middleware, whose entities are
centralised and whose middleware is located in a
separate address space. This organisation uses exactly
two separate address spaces, one including the entities
and the other containing the middleware. The two
address spaces may reside on the same or on two
different physical machines.

Figure 13 illustrates a distributed event service with
separated single middleware, whose entities are
distributed and whose middleware is located on a single
machine. This organisation may involve a large number
of address spaces and possibly physical machines,
depending on the location of the entities and the
middleware. However, all the address spaces may
reside on a single physical machine. A CORBA event
service providing a single event channel4 serves as an
example of such an organisation. Its entities typically
reside in different address spaces distributed over
multiple physical machines using an event channel
located on another machine. However, the address
space in which the event channel resides may be
located on the same physical machine as some of the
entities’ address spaces.

Address Space

Machine

Address Space
Address Space

Address Space

M
P

C

P

C

Figure 12. Centralised event service with separated

single middleware.

Figure 14 and Figure 15 show event services with
separated multiple middleware, whose middleware is
distributed over a set of cooperating address spaces
possibly on different physical machines, for a
centralised and a distributed organisation respectively.

4 The CORBA event service may utilise one or more event

channels. For the purpose of this example, we refer to a
CORBA event service utilising a single event channel.

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

P

C

P

C

Figure 13. Distributed event service with separated

single middleware.

Figure 15 also illustrates that some of the middleware’s
address spaces may be located on the same machines
as some of the entities. This also applies for centralised
entities with separated multiple middleware. We admit
the possibility of an organisation supporting centralised
entities with separated multiple middleware although we
cannot provide an example for such an organisation.
SIENA, which uses an organisation as shown in Figure
15, proposes a set of middleware topologies, called
server topologies, of which all but the centralised
topology use middleware that is distributed over a set of
cooperating machines.

Address
Space

Machine

Addr. Space

Address
Space

Machine

Addr. Space

M

P C

P C

Address
Space

Machine

Addr. Space

M

Figure 14. Centralised event service with separated

multiple middleware.

 9

Machine

Addr.
Space

Machine

Addr.
Space

Addr.
Space

M

Machine

Addr.
Space

Machine

Addr.
Space

Machine

Addr.
Space

M

P

C

P

C

Figure 15. Distributed event service with separated

multiple middleware.

Discussion. The organisation adopted by an event
service has a major impact on issues related to the
scalability of the system, its behaviour in the presence
of failed components, and on the mechanism for
communication between entities and the middleware.
Conventionally, approaches containing centralised
middleware components are more likely to experience
performance bottlenecks with increasing scale and tend
to suffer more in the presence of failures than
distributed approaches. The use of middleware located
in multiple address spaces allows the distribution of the
communication load reducing the risk of performance
bottlenecks. Instead of having middleware located in a
single address space handling all the communication
between the entities in an event system, middleware
distributed over multiple address spaces may divide the
load. Exploiting middleware distributed over multiple
address spaces also avoids potential single points of
failure in the system. For example, if the middleware in
the organisations illustrated in Figure 10, Figure 12 and
Figure 13 fails none of the entities in the corresponding
systems will be able to communicate. In contrast, a
middleware component failing in one of the
organisations depicted in Figure 11, Figure 14, or
Figure 15 has a less devastating effect on an event
system allowing the entities to communicate even in the
presence of failure. Significantly, this depends on the
middleware being located in multiple address spaces
and not on the distribution of the entities in a system.

The organisation of an event service also affects the
mechanism through which entities communicate with
the middleware. Approaches where entities and
middleware reside in different address spaces
distributed over different physical machines require a

mechanism that supports cross-network
communication. A much simpler inter-process
communication mechanism may be sufficient for
organisations where entities and middleware reside in
different address spaces on the same physical
machine. Entities and middleware sharing an address
space may communicate using a programming-
language-specific mechanism, such as procedure call
or method invocation.

This taxonomy may serve as a basis for identifying
the combinations of event system properties that are
well suited as well as the combinations that are less
suited or even incompatible. For instance, mediator-
based event models map well onto event service
organisations with separated middleware. Separated
middleware residing in an independent address space
may naturally implement a mediator to which producers
and consumers may connect. Peer-to-peer and implicit
event models are well suited for organisations with
collocated middleware. These organisations allow
entities to directly connect to each other using
interfaces specified by the collocated middleware, which
provides a means for mapping events and their types to
entities. In addition, the centralised organisation with
collocated middleware may map onto mediator-based
event models as the collocated middleware may
implement a mediator. In contrast, combinations based
on separated middleware and peer-to-peer event
models, are less suitable as peer-to-peer models imply
that entities interact directly.

2.2.2 Interaction Model
The interaction sub tree classifies an event service
according to the interaction model used by the event
system. Generally, the interaction model defines the
communication path over which event communication
between event producers and consumers takes place. It
defines the number of intermediate middleware
components involved and the manner in which
intermediates cooperate to route events from the
producers to consumers. Compared to the organisation
model, which focuses on the distribution of the entities
and the middleware of an event system, i.e., providing a
static view of an event service, the interaction model
describes the information flow in an event system.
Hence, it describes the dynamic aspect of an event
service.

As Figure 16 depicts, we divide the interaction model
into two main categories, namely intermediate and no
intermediate, exploring whether and how many
intermediate middleware components an event passes
through.

 10

Intermediate

Distributed
Intermediate

Partitioned

Implicit Named Point to Point

No Intermediate

Interaction Model

Cooperative

Non-Hierarchical Hierarchical

Multiple Single

Centralised
Intermediate

Figure 16. Event service interaction model.

No Intermediate. The communication path over
which event communication between producers and
consumers takes place does not include separated
intermediate middleware components. Producers and
consumers communicate with each other through the
middleware collocated with each entity. As Figure 17
illustrates, events that are routed from producers to
consumers pass through the collocated middleware, but
not through any intermediate middleware component.

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 17. No intermediate.

We sub divide this model into three categories
according to the means by which entities address each
other. These interaction models are called the point-to-
point, named, and implicit models.

Producer and consumer entities may communicate
directly with each other in a point-to-point fashion,
using explicit entity addresses, which are provided by
the application. The middleware uses explicit entity
addresses and a unicast communication pattern when
routing events from producing to consuming entities.
The Java distributed event model allows producers to

route events to the subscribed consumers using the
explicit consumer addresses provided by the
application.

Producer and consumer entities may communicate
directly with each other using a name service to map
event descriptions, such as event types, to entity
addresses provided by the application. The middleware
uses either a unicast or a multicast communication
pattern to route events from a producer to the interested
consumers. uSECO uses a name service, called the
Application Instance Repository (AIR), to resolve the
addresses of the entities that are interested in a specific
event type and a unicast communication pattern to
route events.

Producers and consumers may communicate directly
with each other using an implicit means to map event
descriptions to entity addresses provided by the
application. The middleware uses a multicast
communication pattern when routing events from
producers to consumers. mSECO, a multicast version
of the uSECO event service, does not rely on an AIR
since it uses an implicit means, based on generating
addresses from event descriptions, to map events to
the multicast addresses representing the interested
consumers.

Intermediate. The communication path over which
event communication between producers and
consumers takes place includes at least one separated
intermediate middleware component. Thus, events that
are routed from producers to consumers pass through
one or more intermediate middleware components.

 11

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 18. Distributed intermediate.

The intermediate interaction model is divided into two
sub categories according to the number of intermediate
middleware components in the communication path. In
the centralised intermediate model, the
communication path includes a single intermediate
middleware component. In contrast, the distributed
intermediate model involves two or more intermediates
through which events are routed. Figure 18 depicts the
distributed intermediate interaction model with a
communication path that includes two distributed
intermediates.

Both centralised and distributed intermediates can be
divided further. We classify centralised intermediates
according to their number as an event service may
exploit one or multiple centralised intermediates.

All communication paths between producing and
consuming entities may include the same single
centralised intermediate. An event system using this
interaction model includes exactly one centralised
intermediate. In contrast, an event system may exploit
multiple centralised intermediates. In this case,
producers and consumers are divided into groups and
all communication paths between the producers and
consumers within each group include a centralised
intermediate that is specific to that group. This results in
an event system that uses several centralised
intermediates, the number of which corresponds to the
number of groups. Multiple centralised intermediates
may be used to support groups of entities that share a
common interest. The common interest of an individual
group may be expressed by a specific type of event that
is handled exclusively by a particular centralised
intermediate. For example, the CORBA event service
may utilise multiple centralised intermediates
implemented as event channels. Each channel may
handle a specific type of event exclusively. Producers
and consumers intending to communicate using a
specific event type connect to the corresponding event
channel, therefore defining the communication path
over which event communication takes place.
Alternatively, the CORBA event service may use a
single centralised intermediate implemented as a single
event channel through which all events are routed.
Figure 19 and Figure 20 illustrate the single centralised
intermediate and multiple centralised intermediate

interaction models respectively. Figure 20 shows two
groups of entities, each comprising of a producer and a
consumer using a single centralised intermediate
through which events are routed. The communication
path associated with one group is outlined with solid
arrows and the communication path associated with the
other is depicted using dashed arrows.

Event Service

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Figure 19. Single centralised intermediate.

Application

Event Service

C

Application

Event Service

P

Transport Mechanism

Application

Event Service

C

Application

Event Service

P

Event Service Event Service

Figure 20. Multiple centralised intermediate.

We classify distributed intermediates as partitioned
or cooperative according to the fashion in which
intermediates cooperate to route events from event
producers to consumers.

Generally, the distributed intermediate interaction
model includes two or more intermediate middleware
components in the communication path between
consumers and producers. An event service
implementing the partitioned distributed intermediate
interaction model consists of a number of independent
groups of intermediates, each group handling only a
specific type of event. Entities sharing a common
interest need to connect to the group that handles the
type of event that corresponds to their common interest.
For example, the CORBA event model specification
proposes to chain different implementations of event
channels, acting as a group of partitioned distributed
intermediates, in order to combine non-functional
features supported by individual event channels.

 12
In contrast, cooperative distributed intermediates

do not form independent groups, all intermediates
cooperate to route events from consumers to
producers. Entities connect to the most convenient,
e.g., physically closest, intermediate. Each intermediate
manages the events for the entities that are physically
connected to it and cooperates with other intermediates
to route them to remote entities. Cooperative distributed
intermediates cooperate with each other either in a
hierarchical or in a non-hierarchical manner.

JEDI proposes a hierarchical structure of cooperative
distributed intermediates, called dispatching servers.
Dispatching servers are interconnected in a tree
topology through which events are routed. Entities may
connect to any dispatching server, each of which
forwards the events it receives from the producers
connected to it to its parent and to its descendants to
route them to all interested consumers. SIENA
describes four different topologies of cooperative
distributed intermediates. One of them serves as an
additional example of hierarchical cooperative
distributed intermediates, another two, namely the
acyclic and the so-called peer-to-peer topologies,
illustrate non-hierarchical cooperative distributed
intermediates.

Burcea et al. [57] use a tree-based topology of
cooperative distributed intermediates in a simulation of
a network of ToPSS event brokers servicing an urban
area. Producers may be co-hosted with and consumers
may connect to any of these intermediate brokers.
Brokers route events from producers to subscribers and
are capable of storing state for deferred transfer to
temporarily unavailable subscribers.

Gryphon assumes a network of non-hierarchical
brokers to which producers and consumers can connect
at their convenience. Gryphon organises these brokers
into a logical tree structure, called the spanning tree,
that allows for efficient matching of events to
subscribers, i.e., to efficiently determine the set of
consumers interested in a specific event. Hermes
introduces the notion of an overlay routing network for
organising a network of nodes into a non-hierarchical
application-level network of event brokers. Producers
and consumers connect to the broker network and
individual brokers subsequently route events through
the overlay network.

Discussion. Mediator-based event models map
naturally onto interaction models that include
intermediate middleware components. For example,
interaction models using either multiple centralised or
partitioned distributed intermediates may implement
event models that include multiple non-functionally
equivalent mediators. These event models expose
mediating application components to the application,
which must ensure entities subscribe to the correct
intermediate middleware component. Cooperative
distributed intermediates may implement multiple
functionally equivalent mediators whereas a single
centralised intermediate may implement an event model

based on a single mediator. Both the named and the
implicit interaction model are appropriate for implicit
event models, since neither of them relies on
intermediates and because implicit event models do not
prohibit the use of middleware components providing
naming services. The peer-to-peer event model
exposes entities explicitly to the application. It is
therefore best implemented by a point-to-point based
interaction model using these entity addresses to route
events from producers to consumers.

There are numerous possible combinations of
interaction and organisation models as many
organisations are appropriate for different interaction
models. For example, both centralised and distributed
organisations with separated middleware are suitable
for interaction models whose communication paths
between producers and consumers involve intermediate
middleware components. Distributed organisations with
collocated middleware may be combined with
interaction models that do not rely on intermediates.
Centralised organisations with collocated middleware
may possibly be combined with every interaction model.
Although centralised collocated organisations may be
best suited for the single intermediate interaction model
as its middleware component maps naturally onto a
single intermediate, it is also appropriate for the implicit
interaction model with its middleware component
implementing a means to map event types to entity
addresses.

2.2.3 Features
The features supported by an event service can be
classified as either functional or non-functional as
shown in Figure 21.

These functional and non-functional features address
requirements regarding the functional and non-
functional behaviour of a system. Functional
requirements are statements of services a system
should provide, how a system should react to particular
inputs and how a system should behave in particular
situations. In some cases, the functional requirements
may also explicitly state what a system should not do
[59, p.118]. Non-functional requirements are constraints
on the services or functions offered by a system. They
include timing constraints, constraints in the
development process, standards to be adopted and so
on [59, p.119].

Based on these definitions, we classify the functions
made available by an event service as functional
features and consider constraints on (or properties of
other) system attributes as non-functional features. For
example, we classify mobility support as a functional
feature because it describes services to enable event-
based communication for mobile entities but threat
security as a non-functional feature since it describes
techniques that address how event-based
communication is secured.

 13

Functional

Event
Type

Non-Functional

Features

Event Propagation
Model

Event
Filter

QoS Mobility Ordering Failure Mode Composite
Events

Security

Figure 21. Event service features.

2.2.3.1 Functional Features
Event Propagation Model. Events are delivered by an
event service according to an event propagation model.
Figure 22 depicts the event propagation model sub
hierarchy and shows how the event propagation model
is divided into two categories describing sporadic and
periodic event propagation. Sporadic event
propagation models propagate events only if the
relevant state of the producer has changed. Periodic
event propagation models propagate events
periodically, even if no state change has occurred since
the last event.

Both sporadic and periodic event propagation can
be based either on the push or the pull model. The
sporadic push model is considered the traditional
event propagation model and is therefore most likely to
be supported by an event service. However, an event
service may support several of the propagation models
shown in Figure 22.

Event propagation based on the sporadic push
model is producer-driven and producers propagate
events as they are generated. The sporadic push model
is supported by many event models including the Java
AWT delegation event model, CORBA-based event
models, Mobile Push, Obvents, ToPSS, and STEAM.

Event propagation based on the sporadic pull
model is also known as event polling. Event
propagation is consumer-driven as consumers poll
producers for available events. Event producers
propagate events in response to requests from
consumers. Among others, this propagation model is
supported by the CORBA notification service, by
Obvents, and by ToPSS.

Event propagation based on the periodic push
model is well suited for “heartbeat” or “watchdog”
mechanisms as well as for disseminating events
according to a predefined schedule. Event propagation
is producer-driven and producers propagate events
periodically. Both the COSMIC and TAO RT CORBA
event services use the periodic push propagation model
as a means to statically schedule event propagation
while reserving the required resources for events that
have hard real-time delivery deadlines.

Event propagation based on the periodic pull model
represents traditional polling. Event propagation is

consumer-driven as consumers poll producers
periodically. Producers propagate events in response to
requests from consumers.

Periodic event propagation models imply that events
with identical content may be propagated as the state of
the producer may not have changed since the previous
event was propagated. We argue that periodic events
still conform to our definition of events when considering
the passage of time as a change to a producer’s state
even though periodic events may not contain an explicit
description of time.

Push Pull Push Pull

Sporadic Periodic

Event Propagation
Model

Figure 22. Event propagation model.

Event Type. Events propagated by an event service
can be classified according to their structure and hence
are said to be of a specific event type. As outlined in
Figure 23, we differentiate between generic and typed
events.

The information that constitutes a generic event,
which is also known as an un-typed event, is a data
blob with an implicit structure. The structure is neither
recognised nor interpreted by the event service. The
CORBA event service is one of the few event services
that supports propagation of generic events.

In contrast, the information that describes typed
events includes an explicit and expressive structure that
may be recognised and interpreted by the event
service. Typed events enable the use of event filters.

Event types are represented by a structure with
varying expressive power. The expressive power of an
event type describes the variety of information that they
can be included in an event of that type. The expressive

 14
power of the structures outlined in Figure 23 increases
from left to right.

The structure that represents an event type is either
fixed or application-specific. The former is predefined
by the event service whereas the latter may be defined
by the application.

Both fixed and application-specific structures can be
sub divided. Fixed structures consist either of a name, a
name and some numeric parameters, or a name and
some string parameters. A name usually consists of a
single string. The name and string parameters
structure therefore consists of a set of strings. The first
string representing the event name and the remaining
strings representing the event parameters. JEDI uses
an event structure consisting of a name and a set of
string parameters. The name and numeric
parameters structure consists of a single string and a
set of numbers: the string representing the event name
and the numbers representing the event parameters.
The version of CEA described by Bacon et al. [30]
supports typed events that consist of a structure
consisting of a name and a set of number parameters.

Application-specific structures consist of either
attributes or an object. The attributes structure consists
of a set of attributes in which each attribute is a triple of
name, type, and value. The CORBA notification service
supports a general event structure consisting of
attributes. The object structure consists of a
programming-language-specific object including a set of
attributes. One of the key properties of both ECO and
Obvents is their support of events in the form of specific
application defined objects.

Event types may be organised into type hierarchies.
Such event type hierarchies are similar to class
hierarchies in object-oriented programming languages
like Java or C++ in that event types can be derived from
each other. Specialised event types can be derived
from more general event types using inheritance. Event
filters that match events of a certain general type will
also match events of sub-types derived from that
general type. Hermes is an event service that centres
around the notion of event types and supports event
type hierarchies.

Expressive
Power

Generic

Event Type

Typed

Fixed

Name and Number
Parameters

Name and String
Parameters

Application
Specific

Object Attributes Name

Type
Hierarchies

Supported Omitted

Figure 23. Event type.

Expressive Power

Event Filter

Evaluation Implementation Definition Location

Figure 24. Event filter.

 15

Producer,
Consumer and
Intermediate

Location

Producer and
Consumer

IntermediateProducer Nowhere Producer and
Intermediate

Consumer Consumer and
Intermediate

Figure 25. Event filter location.

Event Filter. Event filters control the propagation of
events by allowing consumers to subscribe to the exact
subset of the events in which they are interested.
Events are matched against filters and are only
delivered if the match produced a positive result. Figure
24 shows the properties according to which we classify
event filters.

Event filters must be evaluated at a particular
location. If supported, event filters may be evaluated at
the consumer side, the producer side or at the
intermediate. Furthermore, a set of event filters may be
evaluated sequentially at more than one location, thus
they may be applied at any combination of consumer,
producer, and intermediate. Figure 25 summarises all
possible combinations of event filter locations.

Filters are not supported and events are
consequently propagated to all subscribers. The
CORBA event service is an example of an event service
that does not support event filters.

Filters are evaluated at the producer side. This
minimises the use of network bandwidth and consumer
processing overhead as events are filtered as close to
the producer as possible. SECO serves as an example
of an event service that supports producer-side filtering.

Filters are evaluated at the consumer side. This
allows an implementation of a precise matching
algorithm as the required set of events is typically well-
known at the consumer side. The Java distributed event
model allows filters to be applied at the remote event
listener.

Filters are evaluated at the intermediate. This is a
natural location for service-wide filters (as well as quality
of service properties) since all events are propagated
through the intermediate.

Filters are evaluated at the producer and the
consumer side. ECO supports filters in the form of pre-
and post constraints, which may be applied at the
producer and the consumer side respectively.

Filters are evaluated at the producer side and at the
intermediate thereby combining the characteristics of
producer-side and intermediate filter evaluation.

Filters are evaluated at the consumer side and at
the intermediate. In addition to allowing filtering at the
remote event listener, the Java distributed event model
supports optional event adapters at which filters may be
applied as well.

Filters are evaluated at the producer and the
consumer side, as well as at the intermediate. The
CORBA notification service supports filtering in a
hierarchical manner that allows filters to be evaluated at
the producer and the consumer side, as well as at
intermediates.

As shown in Figure 26, event filters can be defined
by the application by using a constraint language that
is specified as part of the event service or by using the
features of an application programming language.
The CORBA notification service specifies a constraint
language that allows applications to use constraint
expressions to define event filters. When using a
programming language to define event filters,
applications may use a subset of the types, operators,
and combinators supported by the programming
language or may be permitted to use all types,
operators, and combinators supported by the language.
SIENA limits applications to using a specific subset of
the types, operators, and combinators available
whereas SECO allows them to use all available types,
operators, and combinators.

Constraint
Language

Definition

Programming
Language

Language Subset

Figure 26. Event filter definition.

Figure 27 summarises possible implementations
techniques for event filters. An event filter can be
implemented using either a character string, a function,
or an object. Character strings can provide a textual
representation of filter expressions that are typically
parsed by the event service applying them. Filters that
are implemented as functions are applied by executing
these functions. Object filters must be instantiated
before they can be applied by invoking a method of the
object. Both the CORBA notification service and SIENA
implement event filters as strings that are parsed at run
time whereas SECO filters are implemented as objects
providing an evaluate() operation.

 16

String

Implementation

Object Function

Figure 27. Event filter implementation.

Event filters are evaluated by the event service to
determine the list of interested subscribers. As shown in
Figure 28, event filters are evaluated at a particular
time using a specific mechanism to match events
against filters.

The evaluation mechanism is divided into two sub
categories depending on whether filter specifications
are interpreted or compiled. The former are
characteristically evaluated using an event model
specific interpretation mechanism while the latter can be
evaluated using operations provided by the
programming language. Both interpretable and
executable filters are either generated by a pre-
processor or are implicitly provided by the application.
The CORBA notification service specifies a constraint
language that allows applications to implicitly provide
filter expressions that are interpreted by the evaluation
mechanism. STEAM on the other hand, allows
applications to implicitly define and then to compile their
filters.

Event filters are evaluated either at subscription
time or at event propagation time. Evaluating filters at
subscription time may be useful when matching
parameters describing the current context of the
subscriber that are only relevant at that point in time or
when matching pre-constraint filters. Such pre-
constraint filters may assess the availability of
resources, authenticate a connection, or process
admission control. However, event services, including
the CORBA notification service, SIENA, STEAM, Elvin,
and COSMIC, traditionally evaluate event filters at event
propagation time when the actual list of interested
subscribers can be determined.

Figure 29 summaries issues related to the
expressive power of event filters. Event filters may be
defined using an expressive structure that is described
using a set of types, operators, and combinators.

The structure enclosed in an event filter may contain
a set of types with varying expressive power. These
sets are either implicit or predefined by the event
service and their expressive power generally increases

with the number of types they comprise. While both
implicit and predefined sets can contain one or more
types, predefined sets are typically larger and hence
more expressive than implicit sets.

JEDI and CEA [30] are examples of event models
supporting implicit types. Both of them support string
types while CEA provides a second implicit type,
namely number. In contrast, event models such as
SIENA and STEAM provide predefined sets comprising
a larger number of types.

An event filter may contain a set of operators with
varying expressive power. From left to right, the sets
outlined in Figure 29 are supersets of each other and
hence increase in their expressive power. The filter may
support equality and inequality operators, less than and
greater than magnitude operators that may be
combined with equality operators, or magnitude
operators that can be combined to form range
operators. JEDI and CEA only support equality
operators whereas SIENA and STEAM support equality,
magnitude, and range operators.

An event filter may employ a set of combinators
with varying expressive power that may be used to
combine terms including types and operators. The
expressive power of the set of combinators outlined in
Figure 29 increases from left to right. The structure may
not contain any combinator or may contain either a
single implicit combinator or an arbitrary number of
combinators. CEA supports an implicit conjunctive
combinator that requires all terms defined by a specific
filter to match individually for the filter to return a
positive result while SIENA and STEAM provide a range
of arbitrarily applicable combinators. STEAM filters are
defined as a collection of either conjunctive or
disjunctive terms. These filter terms are matched
against the relevant parameters of an event either in a
conjunctive or a disjunctive manner, thus defining
whether all or at least one of the terms that comprise a
filter must be true for the filter to match.

 17

Mechanism

Compiled

Implicit Pre-processed

Interpreted

Implicit Pre-processed

Time

Propagation Subscription

Evaluation

Figure 28. Event filter evaluation.

Expressive Power

Implicit

Combinator

Implicit None Arbitrary

Operator

MagnitudeEquality Range

Type

Predefined

Figure 29. Event filter expressive power.

Mobility. Another functional event service property,
which is becoming increasingly important with the
emergence of wireless communication, is support for
entity mobility. Figure 30 summaries the degree of
mobility that may be provided by an event service.

Many event services do not support mobility; all
entities in such an event system are assumed to have a
static location. However, an event system may contain
entities that may move location from one host machine
to another thereby assuming the address of the current
host machine. The mobile code category refers to
event services that support entities that can move from
one computer to another and subsequently execute at
their destination. JEDI supports this feature through its
concept of reactive objects. Loke et al. [37, 38] propose
an extension to Elvin that enables mobile code, referred
to as mobile agents, to migrate from one host to
another in order to perform computations on behalf of
mobile multi-agent applications.

The mobile device category refers to event services
that support portable computing devices, such as
notebook computers and handheld devices, which may
move location while keeping their addresses, thereby
moving the entities they host. Mobile devices may host
nomadic and collaborative entities and may be capable

of wireless networking. Nomadic entities interact
through either a fixed network infrastructure or a mobile
computing environment to which they connect via nodes
acting as access gateways. Characteristically, they may
suffer periods of disconnection while moving between
points of connectivity. For example, SIENA’s mobility
support service allows nomadic entities to connect to
proxy components using wireless connections based on
General Packet Radio Services (GPRS) [60]
technology. These proxy components run on event
servers that act as access points and transparently
manage (and synchronise) subscriptions and events on
behalf of a moving entity. Mobile Push and ToPSS
propose a similar approach to supporting nomadic
application components in which entities disconnect
from the event service infrastructure while moving.
ToPSS supports application scenarios in which nomadic
entities disconnect for substantial periods of time as
well as those where disconnection periods are very
short. The former scenario reflects the behaviour of
subscribers accessing the event service at distinct
locations with considerable commuting times from one
area of connectivity to another whereas the latter
characterises subscribers employing handover

 18
mechanisms when roaming between overlapping
connectivity areas.

Nomadic entities may access the event service
infrastructure either through fixed or wireless
connections. In contrast, collaborative entities use a
wireless network to interact with other mobile entities
that have come together at some common location.
Collaborative entities may use ad hoc networks to
support communication without the need for a separate
infrastructure, thus allowing loosely-coupled entities to
communicate and collaborate in a spontaneous
manner. STEAM exploits geographical scopes, called
proximities [61], in order to accommodate collaborative
entities. It allows entities residing in the same proximity
to dynamically establish wireless ad hoc connections to
one another and subsequently to deliver events at the
location of the proximity.

Mobile Code

Mobility

Static Entity

Collaborative
Entity

Nomadic Entity

Mobile Device

Figure 30. Mobility support.

Composite Events. Subscribers may require an
event service to recognise the occurrence of a specific
pattern of two or more particular events possibly
propagated by different producers. Services inform
subscribers of such a combination of event occurrences
by means of a notification called a composite event.
Subscribers express their interest in composite events
by defining what can be termed composite event filters,
which specify the sequences of event occurrences of
interest, typically using an application-level language.

Composite event filters can be applied analogously
to ordinary event filters. However, the location at which
composite event filters may be evaluated depends on
the locations of the set of producers potentially
propagating relevant events. Composite event filters
must be evaluated at a location included on the
propagation paths of all events of interest. For example,
composite event filters for recognising event patterns
composed of events propagated by several distributed
producers generally cannot be evaluated at the
producer side. Such composite event filters must be
evaluated at an intermediate, at the consumer side, or
at a combination of consumer and intermediate.
Furthermore, when intermediates are distributed,
composite event filters must be evaluated at an
intermediate located on all event propagation paths.

As depicted in Figure 31, an event service may omit
composite events. However, when supported, the
occurrence of composite events causes the service to

notify subscribers accordingly. Subscribers may specify
the number of the events involved, their logical
relationship, and the time window in which the events
involved must occur. Exactly two or three or more
events may be defined in a pattern that describes their
sequence of occurrence along with a time window that
may be defined implicitly by the event service or
explicitly by the subscriber application. This window
defines the time interval during which a certain number
of events must occur in a given pattern for composite
events to be detected.

As part of their work on CEA, Bacon et al. [62] have
defined an application-level language for specifying
sequences of event occurrences of interest. Monitors
then use a combination of event filters to detect
composite events that conform to these sequences.
Pietzuch et al. [63, 64] propose a general composite
event detection framework that is similar to the CEA
approach in that it also introduces a high-level
specification language for event occurrences of interest.
However, this framework has been designed
independently of specific event system and as such,
can accompany a range of existing event-based
middleware architectures. The language for composite
event specification can be used to express patterns
including sequence (event1 followed by event2),
alteration (event1 or event2), and parallelisation (event1
and event2). The interval timestamp model [65] has
been adopted for handling the clock uncertainties that
are intrinsic to distributed systems.

Other specification languages for the detection of
composite events have been proposed by Mansouri-
Samani and Sloman [66] as well as by Chakravarthy
and Mishra [67]. GEM [66] is a generalised event
monitoring language that is based on rules. It proposes
a tree-based approach for composite event detection
and supports temporal constraints. Snoop [67] is an
expressive event specification language designed to
accommodate the requirements of a wide range of
applications. It is event-model independent and focuses
on supporting powerful temporal constraints.

Supported

Time

Explicit Implicit

Number

Three or
More Two

Composite Events

Omitted

Relationship

Figure 31. Composite events.

 19

Real Time

Soft Best
Effort

Quality of Service (QoS)

Hard

Priority

Alarm No Multiple

Store Occupancy

Implicit Configurable

Reliability

Reliable
Connection

Persistent Best
Effort

Figure 32. Quality of service.

2.2.3.2 Non-functional Features
Quality of Service. The QoS of an event service may
be configured according to the requirements of a
particular application. Figure 32 shows that we divide
the QoS supported by an event service into four
categories describing the behaviour of an event service
when propagating and delivering events.

The real-time category explores the guarantees
provided by an event service regarding the timely
delivery of events. Real-time guarantees can be either
best-effort, soft or hard. In the best-effort case, no
deadlines can be associated with events. An event
service supporting soft real-time provides guarantees
with a probability that is sufficient to be used for soft
real-time deadlines and a hard real-time service
provides guarantees with a probability that is sufficiently
high to be used for hard real-time deadlines. Hard real-
time guarantees must meet their temporal specification
in all anticipated load and fault scenarios [68]. The
CORBA notification service allows deadlines defining
earliest and latest delivery time to be assigned to events
that are enforced with a probability that is sufficient to
be used for soft real-time deadlines. Generally, hard
real-time guarantees are difficult to provide as they
require a predictable communication pattern, usually
only available in a small-scale environment. This is
particularly true for distributed event systems.
Distributed event systems are traditionally based on
anonymous one-to-many communication patterns that
tend to be unpredictable and are likely used in systems
consisting of a large number of loosely-coupled entities.
However, the TAO RT event service, an extension to
the CORBA event service that was developed for
avionics applications, supports hard real-time
guarantees. COSMIC uses event channels as an
abstraction for network resources and allows
applications to assign timeliness properties to channels.
It supports best-effort guarantees in the form of non
real-time event channels as well as soft and hard real-
time guarantees through soft real-time channels and
hard real-time channels respectively.

In order to influence the sequence in which events
are delivered, a priority may be assigned to an
individual event. Usually, no priority can be assigned

and therefore all events have identical priority. An event
service that supports alarm events allows a single
priority to be assigned to certain events. The CORBA
notification service provides multiple priorities.

Store occupancy describes the maximum size of
memory required by an event service to operate at any
point during its lifetime. This size can be either implicit
or it may be configurable according to the
requirements of a particular application. Implicit store
occupancy either imposes a fixed maximum memory
size or allocates the required memory dynamically
whereas configurable store occupancy typically
depends on a number of parameters. These
parameters may describe the maximum size of the
queues that buffer events as well as the maximum
number of producers, consumers, and mediators that
may be supported by an event service.

The reliability category investigates the guarantees
provided by an event service regarding the delivery of
events in the presence of failure. An event service is
said to provide best-effort reliability if no specific
delivery guarantees are made. Events may or may not
be delivered to subscribers in the presence of failure.
An event service that supports reliable connections
guarantees events being delivered to all correctly
functioning subscribers. Upon restart from a failure,
connections between producers and subscribers are re-
established without re-subscription and event delivery
resumes. A persistent event service guarantees events
being delivered to all subscribers. Upon restart from a
failure, connections between producers and subscribers
are re-established without re-subscription and
persistently buffered events are retransmitted. The
CORBA notification service may support any of these
three delivery policies.

Ordering. An event service delivers events
according to a certain ordering semantic. Figure 33
shows that an event service may deliver events in a
certain order in a subset of the system or system
wide, i.e., throughout the system. Event services with a
system wide ordering strategy employ exactly one
delivery order whereas event systems with subset
orders associate different ordering strategies with
various parts of the system.

 20

Subset

Ordering

FIFOAny Total Causal Priority Deadline

System Wide

Fifo Any Total Causal Priority Deadline

Figure 33. Ordering.

Events may be delivered in any order. Such
unordered events may be received by any subscriber in
any order. FIFO order refers to a strategy where two
events that are raised by the same producer are
delivered by consumers with matching subscriptions in
the order in which they were raised. Causally-ordered
events are delivered in the order they were published as
determined by the well-known happens-before
relationship [69] while totally-ordered events are
delivered in the same order by all subscribers but not
necessarily in the order they were raised [70].
Mechanisms for providing unordered and FIFO order
semantics are generally relatively straightforward since
they do not require distributed coordination. In contrast,
enforcing causal and total order semantics requires
cooperation between all producers and consumers
involved.

Alternatively, events may be delivered according to
an associated priority or deadline. These semantics
imply that the delivery of some event can be pre-
empted in order to deliver an event that has a higher
priority or to deliver an event that has a deadline that is
close to expiring. Ordering in real-time systems may
also be determined by deadlines.

The CORBA notification service supports various
semantics for defining event delivery order for a specific
event channel, including any, FIFO, priority, and
deadline order. This approach allows applications with a
single event channel to define a system wide order and
applications comprising multiple channels to associate a
specific order with each channel. CONCHA and TAO
RT are other CORBA-based event services that support
delivery order semantics. CONCHA features totally-
ordered event delivery and TAO RT CORBA provides a
dispatching mechanism for priority-based event
delivery.

Security. As discussed below, event services can
support a number of mechanisms to alleviate the
security concerns that may arise in applications that
disseminate events among a population of distributed
producers and consumers. However, the event model
that is exploited for such applications can have an
impact on security concerns as some models are more
secure than others. Peer to peer models, in which
explicitly named entities interact directly, can be
considered more secure than mediator-based models

where interaction requires a trusted mediator (or group
of mediators) or indeed implicit models where the
middleware as a whole must be trusted.

Event services may omit mechanisms that address
security concerns or may support security properties by
providing techniques for event message confidentiality
and for authentication.

Supported

Authentication

Set of Events

Confidentiality

Individual Event

Security

Omitted

Figure 34. Security.

Event messages that contain sensitive content may
be transmitted over a network in an encrypted and
therefore confidential form rather than as plain text. This
enables producers and consumers to keep event
messages secret from third parties. For example, Elvin
supports a security framework that exploits the Secure
Socket Layer (SSL) protocol for managing the security
of its message transmissions over the Internet.

Essentially, authentication establishes the identity of
specific events and serves as the basis for a
mechanism that polices access to certain operations.
Such an access control mechanism may regulate
access privileges for event dissemination, forwarding,
and delivery. Access may be granted to an individual
event or to a set of events. Such a set of events may
be defined by various means. Access may be granted
to events of a specific type, to the events disseminated
by a specific producer or a group of producers, to the

 21
events described by a subscription or by the
subscriptions issued by a certain consumer, or to the
events handled by a particular mediator. For example,
Elvin’s security framework enables servers to authorise
access to events using keys, which may be associated
with either a connection to a specific entity or an
individual event.

Wang et al. [71] outline security issues in event
services without attempting to present an actual security
model. Their work specially focuses on Internet-scale
event systems and discusses security paradoxes, such
as anonymity vs. authentication, that arise due to the
nature of event systems.

Failure Mode. The failure mode describes the
behaviour of an event service in the presence of a
single component failing silently. A fail-silent component
is a self-checking component that either functions
correctly or stops functioning after an internal failure is
detected [72]. As outlined in Figure 35, the failure mode
category explores support for the failed component
being an entity, a middleware component, or a part of
the network.

A failed entity may be either a consumer or a
producer. A failed consumer does not cause the
remainder of the system to suffer. A failed producer
causes a partial or a total system failure. A partial
system failure affects the communication related to
some event types that may result in fewer events being
propagated. No event communication can take place in
case of a total system failure. A system consisting of a
single producer and a number of consumers fails totally
if the sole producer fails silently.

A middleware component failing silently causes a
partial or a total system failure similar to the effect of a
failed producer. A partial system failure affects either
a geographical or a functional part of the system. The

former disconnects a part of the system from the rest of
the system. Event communication may take place within
the partitions, but no event communication takes place
between the partitions. A geographical partial system
failure may be caused by a failing SIENA event server
that is part of a hierarchical or an acyclic non-
hierarchical server topology. The latter stops
communication related to a particular event type
throughout the system. However, communication
related to other event types does not suffer. A functional
partial system failure may be caused by a failed event
channel in a CORBA event service utilising multiple
channels, each managing a specific event type. A failing
centralised JEDI event dispatcher causes a total system
failure.

A part of the network failing silently may be
redundant or may cause partial or total system failure. A
redundant part of the network failing in SIENA utilising
a general non-hierarchical server topology may not
cause the remainder of the system to suffer. Similarly,
Hermes’ overlay routing layer enables a system to
overcome failures in redundant parts of the network by
using an adaptive routing strategy.

A partial system failure disconnects a part of the
system from the rest of the system. Event
communication may take place within the partitions, but
no event communication takes place between the
partitions. SIENA utilising an acyclic non-hierarchical
server topology and Rebeca, which assumes an acyclic
non-hierarchical network topology, behave in this
manner. A system in which all producers are connected
through a single network is susceptible to total system
failure where no event communication can take place.

Entity

Failure Mode

Middleware Network

Producer

Partial System
Failure

Total System
Failure

Partial System
Failure

Functional Geographical

Total System
Failure

Consumer Redundant Partial System
Failure

Total System
Failure

Figure 35. Failure mode.

 22

3. CLASSIFICATION OF EVENT SYSTEMS
Table 2 illustrates how a taxonomy user may apply the
taxonomy to existing event systems. It presents a
number of selected event services that have been
summarised using the terminology of the taxonomy
presented in this paper. These event services have
been selected to cover various properties and because
sufficiently detailed documentation is available to
describe them. The CORBA notification service has
been chosen due to its widespread use and due to its
support of a wide range of non-functional features.
SIENA, SECO, and Hermes, which have been designed
in academia, have been chosen because of their
organisational and interaction models as well as their
exploitation (or lack) of event server topologies.

Table 2 demonstrates that using a common
vocabulary for describing event services facilitates
comparison of service properties. For example, Table 2
shows that both, the CORBA notification service and
SIENA are based on an event model that includes

either a single event server or a topology of multiple
event servers and that the SECO event model excludes
the use of such mediators altogether. It also shows that
Hermes’ fault tolerance mechanisms alleviate the
effects of failed middleware components once its
overlay routing layer has adapted. The implementation
of Hermes’ client-side programming model is
application-specific since Hermes defines the set of
Extensible Markup Language (XML) [73] messages
to be exchanged across brokers and clients but not the
bindings between client programming language and
these XML messages. The programming model
properties shown are based upon the Java version of a
client implementation proposed in [43]. Moreover,
Pietzuch [43] proposes a set of higher-level middleware
services for composite event detection, security, and
congestion control that can be built on top of Hermes.
However, these services are not intrinsic to Hermes and
as a result, were not considered in Table 2.

Table 2. Categorisation of event systems.

 CORBA
Notification Service SIENA SECO Hermes

Event Model

Single mediator or
multiple, non-

functionally equivalent
mediators

Single or multiple
mediators Implicit Multiple mediators

Event Service
Organisation

Single or multiple
distributed, separated

middleware

Single or multiple
distributed, separated

middleware

Distributed, collocated
middleware

Multiple distributed,
separated middleware

Event Service
Interaction Model

Centralised
intermediate or

partitioned, distributed
intermediate

Centralised
intermediate or

cooperative, distributed
intermediate

No Intermediate,
named (uSECO) or
implicit (mSECO)

Cooperative,
distributed

intermediate

Functional Event Service Features

 Event Propagation
 Model Sporadic push and pull Sporadic push Sporadic push Sporadic push

 Event Type Typed Typed Typed Typed

 Expressive
 Power

Application specific
attributes

Application specific
attributes

Application specific
object

Application specific
object

 Type
 Hierarchies Omitted Omitted Omitted Supported

 Event Filter

 Location Producer, consumer,
and intermediate Intermediate Producer and

consumer Intermediate

 Definition Constraint language Constraint language Programming
language

Programming
language

 Implementation String String Object Object

 Evaluation

 Mechanism Implicit interpreted Implicit interpreted Implicit compiled Implicit interpreted

 Time Propagation Propagation Propagation Propagation

 Expressive Power

 Type Predefined Predefined Predefined Predefined

 Operator Range Range Range Range

 Combinator Arbitrary Arbitrary Arbitrary Arbitrary

 23

 CORBA
Notification Service SIENA SECO Hermes

 Mobility Static Static and nomadic
entity Static Static

 Composite Events Omitted Omitted Omitted Omitted

Non-Functional Event Service Features

 Quality of Service

 Real-time Soft Best effort Best effort Best effort

 Priority Multiple No No No

 Store Occupancy Configurable Implicit Implicit Implicit

 Reliability
Best effort, reliable

connection or
persistent

Best effort
Best effort (uSECO) or

reliable connection
(mSECO)

Reliable connection
(temporarily) and then

best effort

 Ordering Any, FIFO, priority or
deadline Any Any Any

 Security Omitted Omitted Omitted Omitted

 Failure Mode

 Entity Partial system failure Partial system failure Partial system failure Partial system failure

 Middleware
Functional partial

system failure or total
system failure

Geographical partial
system failure or total

system failure
Results in failed entity

Geographical or
functional partial
system failure
(temporarily)

 Network Partial system failure Redundant or partial
system failure Partial system failure Redundant or partial

system failure

4. CONCLUSION
This paper presented a taxonomy of distributed event-
based programming systems. The taxonomy identifies a
set of fundamental properties of event-based
programming systems and categorises them according
to their event model and the structure of their event
service. The event service is further classified according
to its organisation and interaction model, as well as
other functional and non-functional features. These
properties are then arranged in a hierarchical manner
starting from the root of the taxonomy, which defines
the relationships between an event system, an event
service and an event model. Each of these properties is
described in detail and a range of event systems are
used as examples.

We have demonstrated how a taxonomy user may
apply the taxonomy to existing event systems by
categorising a number of selected event services, which
have been chosen to cover various properties,
according to the taxonomy.

Our taxonomy differs from related work in that it
identifies an extensive set of generic event system
properties describing various systems dimensions in
detail. The taxonomy considers functional and non-
functional properties, including mobility, security, and
quality of service, and describes the possible options for
these properties. As a result, it can be used to classify
virtually any distributed event-based programming
system regardless of system scale or application
domain whereas existing work focuses on providing a
framework designed for a specific application area or
based on a particular high-level model.

Event systems may evolve together with future
advancements in the information technology industry.
Such next-generation event systems may support
additional, novel properties in order to accommodate
new application requirements that may result from these
advances. For example, a means for consumers to
electronically pay producers for the information they
disseminate may arise as an important feature in future
event-based systems. Consequently, the taxonomy may
need to be extended to support such novel properties.
The hierarchical structure on which our taxonomy is
based may easily cope with such potential
enhancements. Adding novel properties or refining
existing properties is straightforward as such changes
affect a specific part of the taxonomy only and do not
require a reorganisation of the existing hierarchy.

5. ACKNOWLEDGMENTS
The work described in this paper was partly supported
by the Irish Higher Education Authority's Programme for
Research in Third Level Institutions cycle 0 (1998-2001)
and by the FET programme of the Commission of the
European Union under research contract IST-2000-
26031 (CORTEX).

6. REFERENCES
[1] Chambers, D., Lyons, G., and Duggan, J. (2000)

Design of Virtual Store using Distributed Object
Technology. Proceedings of the 5th International
Symposium on Software Engineering for Parallel
and Distributed Systems (PDSE/ICSE 2000),

 24
Limerick, Ireland, pp. 66-75. IEEE Computer
Society.

[2] Addlesee, M., Curwen, R., Hodges, S., Newman,
J., Steggles, P., Ward, A., and Hopper, A. (2001)
Implementing a Sentient Computing System. IEEE
Computer, 34, 50-56.

[3] Muller, H. and Randell, C. (2000) An Event-Driven
Sensor Architecture for Low Power Wearables.
Proceedings of the Workshop on Software
Engineering for Wearable and Pervasive
Computing (SEWPC/ICSE2000), Limerick, Ireland,
pp. 39-41. IEEE Computer Society.

[4] Orvalho, J., Figueiredo, L., and Boavida, F. (1999)
Evaluating Light-weight Reliable Multicast Protocol
Extensions to the CORBA Event Service.
Proceedings of the 3rd International Conference
on Enterprise Distributed Object Computing
(EDOC'99), Mannheim, Germany, pp. 255-261.

[5] Haahr, M., Meier, R., Nixon, P., Cahill, V., and Jul,
E. (2000) Filtering and Scalability in the ECO
Distributed Event Model. Proceedings of the 5th
IEEE International Symposium on Software
Engineering for Parallel and Distributed Systems
(ICSE/PDSE 2000), Limerick, Ireland, pp. 83-95.
IEEE Computer Society.

[6] Banavar, G., Chandra, T., Mukherjee, B.,
Nagarajarao, J., Strom, R., and Sturman, D.
(1999) An Efficient Multicast Protocol for Content-
Based Publish-Subscribe Systems. Proceedings of
the 19th International Conference on Distributed
Computing Systems (ICDCS'99), Austin, TX, USA,
pp. 262-272.

[7] Opyrchal, L., Astley, M., Auerbach, J., Banavar,
G., Strom, R., and Sturman, D. (2000) Exploiting
IP Multicast in Content-Based Publish-Subscribe
Systems. Proceedings of IFIP/ACM International
Conference on Distributed Processing (Middleware
2000), New York, USA, pp. 185-207. Springer-
Verlag.

[8] Coulouris, G., Dollimore, J., and Kindberg, T.
(2001) Distributed Systems, Concepts and Design.
Pearson Education Limited.

[9] Bacon, J., Moody, K., Bates, J., Hayton, R., Ma,
C., McNeil, A., Seidel, O., and Spiteri, M. (2000)
Generic Support for Distributed Applications. IEEE
Computer, 33, 68-76.

[10] Ph.D. Thesis (2003) Event-Based Middleware for
Collaborative Ad Hoc Applications. Department of
Computer Science, University of Dublin, Trinity
College, Ireland.

[11] White Paper (1999) Every Dad Needs a Mom -
Message-Oriented Middleware. SoftWired AG,
Zurich, Switzerland.

[12] White Paper (1999) Developing Publish/Subscribe
Applications with iBus. SoftWired AG, Zurich,
Switzerland.

[13] Ma, C. and Bacon, J. (1998) COBEA: A CORBA-
Based Event Architecture. Proceedings of the 4th
USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), Santa Fe,
New Mexico, USA, pp. 117-131.

[14] Hopper, A., Harter, A., and Blackie, T. (1993) The
Active Badge System. Proceedings of the
Conference on Human Factors in Computing
Systems (INTERCHI'93), Amsterdam, The
Netherlands.

[15] Kang, S. J., Park, S. H., and Park, J. H. (2001)
ROOM-BRIDGE: A Vertically Configurable
Network Architecture and Real-Time Middleware
for Interoperability between Ubiquitous Consumer
Devices in Home. Proceedings of the IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware 2001), Heidelberg,
Germany, pp. 232-251. Springer-Verlag.

[16] Harrison, T., Levine, D., and Schmidt, D. (1997)
The Design and Performance of a Real-Time
CORBA Event Service. Proceedings of the 1997
Conference on Object-Oriented Programming
Systems, Languages and Applications
(OOPSLA'97), Atlanta, Georgia, USA, pp. 184-
200. ACM Press.

[17] Bacon, J., Moody, K., and Yao, W. (2001) Access
Control and Trust in the use of Widely Distributed
Services. Proceedings of the IFIP/ACM
International Conference on Distributed Systems
Platforms (Middleware2001), Heidelberg,
Germany, pp. 295-310. Springer-Verlag.

[18] O'Connell, K., Cahill, V., Condon, A., McGerty, S.,
Starovic, G., and Tangney, B. (1995) The VOID
Shell: A Toolkit for The Development of Distributed
Video Games and Virtual Worlds. Proceedings of
the Workshop on Simulation and Interaction in
Virtual Environments, University of Iowa, Iowa City,
USA, pp. 172-177.

[19] Meier, R. and Cahill, V. (2002) Taxonomy of
Distributed Event-Based Programming Systems.
Proceedings of the International Workshop on
Distributed Event-Based Systems (IEEE
ICDCS/DEBS'02), Vienna, Austria, pp. 585-588.
IEEE Computer Society.

[20] Sun Microsystems Inc. (1997) Java AWT:
Delegation Event Model. Sun Microsystems Inc.

[21] Microsoft Corporation (2001) C# Language
Specification, Version 0.28. Microsoft Corporation.

[22] Martin, B. E., Pedersen, C. H., and Bedford-
Roberts, J. (1991) An Object-Based Taxonomy for
Distributed Computing Systems. IEEE Computer,
24, 17-27.

[23] Meier, R. and Cahill, V. (2003) Exploiting Proximity
in Event-Based Middleware for Collaborative
Mobile Applications. Proceedings of the 4th IFIP
International Conference on Distributed

 25
Applications and Interoperable Systems (DAIS'03),
Paris, France, pp. 285-296. Springer-Verlag.

[24] Barrett, D. J., Clarke, L. A., Tarr, P. L., and Wise,
A. E. (1996) A Framework for Event-based
Software Integration. ACM Transactions on
Software Engineering and Methodology (TOSEM),
5, 378 - 421.

[25] Rosenblum, D. S. and Wolf, A. L. (1997) A Design
Framework for Internet-Scale Event Observation
and Notification. Proceedings of the The Fifth
Symposium on the Foundations of Software
Engineering (FSE5) and The Sixth European
Software Engineering Conference (ACM SIGSOFT
ESEC97), Zurich, Switzerland, pp. 344-360.

[26] Eugster, P. T., Felber, P. A., Guerraoui, R., and
Kermarrec, A.-M. (2003) The Many Faces of
Publish/Subscribe. ACM Computing Surveys, 35,
114-131.

[27] Object Management Group (2000)
CORBAservices: Common Object Services
Specification - Notification Service Specification,
Version 1.0. Object Management Group.

[28] White Paper (2003) Orbix 6.1 Technical Overview.
Iona Technologies, Dublin, Ireland.

[29] White Paper (2004) Real-Time CORBA with TAO
(The ACE ORB).
http://www.cs.wustl.edu/~schmidt/TAO.html.

[30] Bacon, J., Bates, J., Hayton, R., and Moody, K.
(1995) Using Events to Build Distributed
Applications. Proceedings of the Second
International Workshop on Services in Distributed
and Networked Environments (SDNE'95), Whistler,
British Columbia, Canada, pp. 148-155. IEEE
Computer Society.

[31] Object Management Group (1995)
CORBAservices: Common Object Services
Specification - Event Service Specification. Object
Management Group.

[32] Kaiser, J., Brudna, C., Mitidieri, C., and Pereira, C.
(2003) COSMIC: A Middleware for Event-Based
Interaction on CAN. Proceedings of the 9th IEEE
International Conference on Emerging
Technologies and Factory Automation
(ETFA2003), Lisbon, Portugal, pp. 669-676.

[33] Kaiser, J., Brudna, C., and Mitidieri, C. (2003) A
Real-Time Event Channel Model for the CAN Bus.
Proceedings of the Eleventh International
Workshop on Parallel and Distributed Real-Time
Systems (WPDRTS 2003), Nice, France, pp.
120.2. IEEE Computer Society.

[34] O'Connell, K., Dinneen, T., Collins, S., Tangney,
B., Harris, N., and Cahill, V. (1996) Techniques for
Handling Scale and Distribution in Virtual Worlds.
Proceedings of the Seventh ACM SIGOPS
European Workshop, Connemara, Ireland, pp. 17-
24. ACM Press.

[35] Segall, B., Arnold, D., Boot, J., Henderson, M., and
Phelps, T. (2000) Content Based Routing with
Elvin4. Proceedings of AUUG2K, Canberra,
Australia.

[36] Sutton, P., Arkins, R., and Segall, B. (2001)
Supporting Disconnectedness – Transparent
Information Delivery for Mobile and Invisible
Computing. Proceedings of the IEEE International
Symposium on Cluster Computing and the Grid
(CCGrid 2001), Brisbane, Australia, pp. 277-285.
IEEE CS Press.

[37] Padovitz, A., Loke, S. W., and Zaslavsky, A. B.
(2003) Using the Publish-Subscribe
Communication Genre for Mobile Agents.
Proceedings of the First German Conference on
Multiagent System Technologies (MATES'03),
Erfurt, Germany, pp. 180-191. Springer-Verlag
Heidelberg, Germany.

[38] Loke, S. W., Padovitz, A., and Zaslavsky:, A. B.
(2003) Context-Based Addressing: The Concept
and an Implementation for Large-Scale Mobile
Agent Systems. Proceedings of the 4th IFIP
International Conference on Distributed
Applications and Interoperable Systems (DAIS'03),
Paris, France, pp. 274-284. Springer-Verlag
Heidelberg, Germany.

[39] Aguilera, M., Strom, R., Sturman, D., Astley, M.,
and Chandra, T. (1999) Matching Events in a
Content-based Subscription System. Proceedings
of the 18th ACM Symposium on Principles of
Distributed Computing (PODC'99), Atlanta, GA,
USA, pp. 53-61.

[40] Bhola, S., Strom, R. E., Bagchi, S., Zhao, Y., and
Auerbach, J. S. (2002) Exactly-once Delivery in a
Content-based Publish-Subscribe System.
Proceedings of the International Conference on
Dependable Systems and Networks (DSN 2002),
Bethesda, MD, USA, pp. 7-16.

[41] Pietzuch, P. R. and Bacon, J. (2002) Hermes: A
Distributed Event-Based Middleware Architecture.
Proceedings of the International Workshop on
Distributed Event-Based Systems
(ICDCS/DEBS'02), Vienna, Austria, pp. 611-618.
IEEE Computer Society.

[42] Pietzuch, P. R. and Bacon, J. (2003) Peer-to-Peer
Overlay Broker Networks in an Event-Based
Middleware. Proceedings of the 2nd International
Workshop on Distributed Event-Based Systems
(ACM SIGMOD/PODS/DEBS'03), San Diego,
California, USA, pp. 1-8. ACM Press.

[43] Ph.D. Thesis (2004) Hermes: A Scalable Event-
Based Middleware. Queens' College, University of
Cambridge, UK.

[44] Sun Microsystems Inc. (1998) Java Distributed
Event Specification. Sun Microsystems Inc.

 26
[45] Cugola, G., Nitto, E. D., and Fuggetta, A. (2001)

The JEDI Event-Based Infrastructure and its
Application to the Development of the OPSS
WFMS. IEEE Transactions on Software
Engineering (TSE), 27, 827-850.

[46] Podnar, I., Hauswirth, M., and Jazayeri, M. (2002)
Mobile Push: Delivering Content to Mobile Users.
Proceedings of the International Workshop on
Distributed Event-Based Systems
(ICDCS/DEBS'02), Vienna, Austria, pp. 563-570.
IEEE Computer Society.

[47] Eugster, P. T., Guerraoui, R., and Damm, C. H.
(2001) On Objects and Events. Proceedings of the
16th ACM Conference on Object-Oriented
Programming Systems, Languages and
Applications (OOPSLA 2001), Tampa, Florida,
USA, pp. 131-146.

[48] PhD Thesis (2001) Type-Based Publish/Subscribe.
Swiss Federal Institute of Technology (EPFL),
Lausanne, Switzerland.

[49] Fiege, L., Mezini, M., Mühl, G., and Buchmann, A.
P. (2002) Engineering Event-Based Systems with
Scopes. Proceedings of the 16th European
Conference on Object-Oriented Programming
(ECOOP 2002), Málaga, Spain, pp. 309-333.
Springer-Verlag.

[50] Fiege, L., Gartner, F. C., Kasten, O., and Zeidler,
A. (2003) Supporting Mobility in Content-Based
Publish/Subscribe Middleware. Proceedings of the
ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003), Rio de Janeiro,
Brazil, pp. 103-122.

[51] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L.
(2001) Design and Evaluation of a Wide-Area
Event Notification Service. ACM Transactions on
Computer Systems, 19, 283 - 331.

[52] Meier, R. and Cahill, V. (2002) STEAM: Event-
Based Middleware for Wireless Ad Hoc Networks.
Proceedings of the International Workshop on
Distributed Event-Based Systems (IEEE
ICDCS/DEBS'02), Vienna, Austria, pp. 639-644.
IEEE Computer Society.

[53] Meier, R. and Cahill, V. (2003) Location-Aware
Event-Based Middleware: A paradigm for
Collaborative Mobile Applications? Presented at
the 8th CaberNet Radicals Workshop, Ajaccio,
Corsica, France.

[54] Meier, R., Hughes, B., Cunningham, R., and Cahill,
V. (2005) Towards Real-Time Middleware for
Applications of Vehicular Ad Hoc Networks.
Proceedings of the 5th IFIP International
Conference on Distributed Applications and
Interoperable Systems (DAIS'05), Athens, Greece,
pp. 1-13. Springer-Verlag.

[55] Meier, R., Cahill, V., Nedos, A., and Clarke, S.
(2005) Proximity-Based Service Discovery in

Mobile Ad Hoc Networks. Proceedings of the 5th
IFIP International Conference on Distributed
Applications and Interoperable Systems (DAIS'05),
Athens, Greece, pp. 115-129. Springer-Verlag.

[56] Cugola, G. and Jacobsen, H.-A. (2002) Using
Publish/Subscribe Middleware for Mobile Systems.
ACM SIGMOBILE Mobile Computing and
Communications Review (MC2R), 6, 25-33.

[57] Burcea, I., Jacobsen, H.-A., Lara, E. d.,
Muthusamy, V., and Petrovic, M. (2004)
Disconnected Operation in Publish/Subscribe
Middleware. Proceedings of the IEEE International
Conference on Mobile Data Management (MDM
2004), Berkeley, California, USA, pp. 39-50. IEEE
Computer Society.

[58] Xu, Z. and Jacobsen, H.-A. (2005) Efficient
Constraint Processing for Location-aware
Computing. Proceedings of the 6th International
Conference on Mobile Data Management (MDM
2005), Ayia Napa, Cyprus, pp. 3-12.

[59] Sommerville, I. (1995) Software Engineering.
Addison Wesley.

[60] Bettstetter, C., Vögel, H.-J., and Eberspächer, J.
(1999) GSM Phase 2+ General Packet Radio
Service GPRS: Architecture, Protocols, and Air
Interface. IEEE Communications Surveys and
Tutorials, 2.

[61] Meier, R. (2002) Communication Paradigms for
Mobile Computing. ACM SIGMOBILE Mobile
Computing and Communications Review (MC2R),
6, 56-58.

[62] Bacon, J., Bates, J., Hayton, R., and Moody, K.
(1996) Using Events to Build Distributed
Applications. Proceedings of the Seventh ACM
SIGOPS European Workshop, Connemara,
Ireland, pp. 9-16.

[63] Pietzuch, P. R., Shand, B., and Bacon, J. (2003) A
Framework for Event Composition in Distributed
Systems. Proceedings of the 4th
ACM/IFIP/USENIX International Conference on
Middleware (Middleware 2003), Rio de Janeiro,
Brazil, pp. 62-82. Springer.

[64] Pietzuch, P. R., Shand, B., and Bacon, J. (2004)
Composite Event Detection as a Generic
Middleware Extension. IEEE Network Magazine,
Special Issue on Middleware Technologies for
Future Communication Networks, 44-55.

[65] Liebig, C., Cilia, M., and Buchmann, A. (1999)
Event Composition in Time-Dependent Distributed
Systems. Proceedings of the Fourth IECIS
International Conference on Cooperative
Information Systems, Edinburgh, Scotland, pp. 70-
78.

[66] Mansouri-Samani, M. and Sloman, M. (1997)
GEM: A Generalized Event Monitoring Language

 27
for Distributed Systems. IEE/IOP/BCS Distributed
Systems Engineering Journal, 4, 96-108.

[67] Chakravarthy, S. and Mishra, D. (1994) Snoop: An
Expressive Event Specification Language For
Active Databases. Data & Knowledge Engineering,
14, 1-26.

[68] Kopetz, H. (1997) Real-Time Systems. Kluwer
Academic Publishers.

[69] Lamport, L. (1978) Time, Clocks, and the Ordering
of Events in a Distributed System.
Communications of the ACM, 21, 558-565.

[70] Birman, K. (1996) Building Secure and Reliable
Network Applications. Manning Publishing Co.

[71] Wang, C., Carzaniga, A., Evans, D., and Wolf, A.
L. (2002) Security Issues and Requirements for
Internet-scale Publish-Subscribe Systems.
Proceedings of the 35th Hawaii International
Conference on System Sciences (HICSS), Big
Island, Hawaii, USA, pp. 303. IEEE Computer
Society.

[72] Cristian, F. (1991) Understanding Fault-Tolerant
Distributed Systems. Communications of the ACM,
34, 56-78.

[73] W3C Recommendations (2004) Extensible Markup
Language (XML) 1.0 (Third Edition).
http://www.w3.org/TR/2004/REC-xml-20040204.

