
The Curio Language Specification and its

Machine-Verified Confluence Proof

Malcolm Dowse and Andrew Butterfield∗

Trinity College Dublin

July 24, 2005

Contents

1 Introduction 2

2 API Models and I/O Contexts 3
2.1 Definition . 3
2.2 Four Examples . 6
2.3 Discussion . 11

3 Curio – a Language for Reasoning About I/O 13
3.1 Language Primitives . 14
3.2 Examples . 15
3.3 Semantics . 16
3.4 Convergence/Divergence and the Implementation 19
3.5 Convergence is Recursively Enumerable 21

4 The Machine-Verified Confluence Proof 24
4.1 Introduction . 24
4.2 Preliminaries . 25
4.3 Initial results . 29
4.4 Analysing Failure . 32
4.5 Failure implies Divergence . 39
4.6 Confluence of Reduction . 45

A Sparkle Proof Sections 50

∗Supported by Enterprise Ireland Basic Research Grant SC-2002-283.

1

1 Introduction

We present the specification and a simple implementation of the language
Curio, a small monadic concurrent functional language. This language was
designed to give a semantics to concurrent I/O in pure functional languages
by way of modelling the API directly. Central to Curio is the fact that
program execution is deterministic if an I/O model obeys a pre-condition.
We give the details of the machine-verified proof of this confluence result.

All theorems and lemmas have been fully machine verified with Sparkle
[dMvEP01], a semi-automated LCF-style [Pau87] proof assistant specifically
designed for reasoning about lazy functional languages. Our metalanguage
is Core-Clean, a stripped down version of the functional language Clean
[PvE01] with no support for ad-hoc polymorphism (type classes) or I/O.
We use Haskell [PHWH03] syntax in this document since it will be more
familiar to most readers and, anyway, the differences are slight. The one
main difference is the presence of strictness annotation, but this can be
emulated in Haskell using ($) or seq and we skim over any references to it
in this document.

The proof style is denotational, so we quantify and induct over elements
of domains, not syntax. It also means that proofs tend to become cluttered
with uninteresting but unavoidable results concerning ⊥. The main conflu-
ence proof requires about 100 separate results, many of which relate solely
to how ⊥ propagates.

The semantics of a less sophisticated precursor to Curio can be found
in [DBvE05], published in the proceedings of IFL 2004.

2

2 API Models and I/O Contexts

We begin by introducing our way of modelling I/O and the notion of an I/O
contexts which is required to ensure determinism. These will both be used
to give the semantics of a real language in Section 3.

2.1 Definition

One of the goals of our research is to describe the interaction of programs
with its environment by way of modelling the behaviour of each individual
action on a “world state”.

The definition of an I/O model is as follows: in the metalanguage it is
the following 4-tuple parameterised by five types:

s :: IOModel ν α ρ ω ς
M= 〈af :: α → ω → (ω,ν)

, wa :: α → ω → Bool

, ap :: ς → α → Bool

, pf :: ρ → ς → (ς,ς)〉

The five types take the following roles, all of which will be explained in
more detail later: ν: return values from actions; α: actions; ρ: “parameters”
to the splitting of contexts; ω: world state; ς: I/O contexts. As we shall
see, these four components are enough to describe state-based I/O which
permits both a fork-like concurrency primitive and communication.

When giving general properties, we always assume the existence of some
arbitrary, implicit I/O model called s which binds the five types ν, α, ρ, ω
and ς, and the four functions af, wa, ap and pf. It is important to remember
that the five types are domains with a ⊥ element, and the four functions
can be any arbitrary computable function whose results may be undefined
(⊥)1.

The four functions are now explained in detail.

The API – af and wa

The function af :: α → ω → (ω,ν) defines the state-transformer for each
action. Elements of type α identify I/O actions which can be performed and
for any action a :: α, af a :: ω → (ω,ν) is the state-transformer for that
action. This describes how the action changes the global state of type ω,
and what return value of type ν it yields. Type ν is typically a sum-type
capable of storing Ints, Bools, Chars or any other value that an action might
need to return.

1This probably isn’t ideal, especially for the world model, but it’s not serious. Any
set-based model can be turned into a domain-based one by (1) turning the sets into “flat”
domains by adding a bottom element, (2) making the functions bottom-preserving, and
(3) showing that the functions are indeed Turing-computable.

3

|||s, allys : α → α → B

al |||s ar
M= ∀w∈ω.∀w2∈ω.wa al w = False ∧ wa ar w = False =⇒ ∀vl∈ν .∀vr∈ν .

(∃w1∈ω.af al w = (w1,vl) ∧ af ar w1 = (w2,vr))
⇐⇒
(∃w1∈ω.af ar w = (w1,vr) ∧ af al w1 = (w2,vl))

allys(al, ar)
M= ∀w∈ω.∀w1∈ω.∀v∈ν .wa al w = False ∧ af al w = (w1,v) ∧

¬(wa ar w = True) =⇒ wa ar w = wa ar w1

vs, ♦s : ς → ς → B
c1 vs c2

M= ∀a∈α.ap a c1 =⇒ ap a c2

cl ♦s cr
M= ∀al∈α.∀ar∈α.ap cl al ∧ ap cr ar =⇒

al |||s ar ∧ allys(al, ar) ∧ allys(ar, al)

Figure 1: Relations on actions and contexts

If communication is to be permitted then there must be occasions in
which an action is waiting for something to occur and cannot proceed. The
function wa :: α → ω → Bool indicates exactly this. An action a can only be
performed in world w when wa a w = False. We say an action a is stalled
(in world state w) if wa a w = True.

Figure 1 defines two relations on actions and the API.

• a1 |||s a2: for any two actions a1 and a2, if neither are stalled then the
order in which they are executed is irrelevant – both with regard to
their effect on world state and their return values. |||s is symmetric
(but not necessarily transitive or reflexive.)

• allys(a1, a2): If action a1 is not stalled then performing it cannot cause
action a2, if also not stalled, to then become stalled. The word “ally”
describes the fact that action a1 will not obstruct or hinder action a2

– they are in effect working with each other.

The a1 |||s a2 condition allows for two possibilities: either both actions
succeed for both orderings or for both orderings one action fails. For exam-
ple, if af a1 w = (w1,v1) and af w2 w = (w2,v2) then it is still possible
that af a2 w1 = ⊥ and af a1 w2 = ⊥.

I/O Contexts – ap

The functions af and wa define the API. What is now needed is some means
of reining in the power of a concurrent (sub-)program by giving it only a

4

limited set of actions which it is allowed to perform.
We call these permission sets I/O contexts. I/O contexts are elements

of the type ς and the function ap :: ς → α → Bool defines the actions
permitted by any context. A context c can be thought of as the set of
actions a such that ap c a = True. Each (sub-)program has a context
associated with it at run-time. The context determines what actions the
(sub-)program is allowed to perform, and if used in a controlled fashion it
gives a mechanism for ensuring determinism.

Figure 1 defines two important relations on contexts.

• c1 vs c2: any action permitted by context c1 is also permitted by c2.

• c1 ♦s c2: for all actions a1 and a2, permitted by contexts c1 and c2

respectively, it is true that a1 |||s a2, allys(a1, a2) and allys(a2, a1).

(♦s is symmetric and vs is a pre-order – by definition.)

Enforcing Determinism – pf

Say a process running in context c forks into two processes running in con-
texts cl and cr. To guarantee deterministic behaviour:

• The order in which actions in the two child sub-programs are per-
formed should be irrelevant. That is to say: if the run-time system
can make a choice between doing an action al permitted by cl or an
action ar permitted by cr, then neither action can impede the other
causing it to become stalled, and when both are finally executed their
order shouldn’t affect the resultant world state or the actions’ return
values: cl ♦s cr.

• No child process should be allowed to perform an action forbidden by
the parent context: cl vs c and cr vs c.

These properties are usually undecidable. This is a problem, since we
want to give describe a language implementation. Therefore we assume the
existence of a function which has been proved to obey these exact properties.
The function pf :: ρ → ς → (ς,ς) splits a context returning two new ones
for the two concurrent left and right sub-programs. Elements of the type ρ
give the programmer some flexibility with regard to how he or she wishes
the current context to be split. PREs, as defined in Figure 2, is the pre-
condition that pf must obey and we will show later that if it does, any I/O
performing program on that I/O model remains deterministic.

Sometimes we don’t need the full power of PREs, just something a lot
weaker. pres only guarantees the second of the two properties mentioned
above.

5

PREs
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c ∧ cl ♦s cr

pres
M= ∀p∈ρ.∀c∈ς .∀cl∈ς .∀cr∈ς .pf p c = (cl,cr) =⇒ cl vs c ∧ cr vs c

Figure 2: The pre-conditions PREs and pres

2.2 Four Examples

To give an idea of the flexibility of this approach, here are a few examples
of complete I/O models all of which obey PREs. (All lemmas have been
machine-verified.)

Communication buffers

I/O model bffr is a simple 1-1 communication buffer. World state is of
type [Int], and there are two actions: Send i places i at the end of the list
(returning 0, a token value); Rcve removes the first element from the list
and returns it. If the current context is SubC True one can only send, if it
is SubC False one can only receive, and if it is TopC both are permitted.
One can only split the context if it is TopC. This will give one sub-program
the right to send, and the other the right to receive.

Lemma 2.1. PREbffr.

Proof. If pfBffr splits TopC into SubC False and SubC True:

• (SubC False) ♦bffr (SubC True): Only a send and a receive can
be performed. Rcve |||bffr (Send i) holds, because if the receive
isn’t stalled, the buffer must be non-empty, and therefore the actions
must affect different parts of the buffer and be order independent.
allybffr(Rcve,Send i) is trivial because a send is always non-stalled.
allybffr(Send i,Rcve) is true because adding an element to a buffer
cannot cause a receive to become stalled.

• (SubC False) vbffr TopC and (SubC True) vbffr TopC: trivial
(TopC doesn’t forbid any actions.)

Many-to-Many Mutexes

I/O model lock allows many processes to be synchronised. World state is of
type Bool indicating whether or not the lock is set. There are three actions:
Lock sets world state to True; Unlock sets world state to False; Wait
will stall until world state is False, then proceed leaving it unchanged.

6

bffr :: IOModel νBffr αBffr ρBffr ωBffr ςBffr
M= 〈afBffr, waBffr, apBffr, pfBffr〉

νBffr
M= Int

ρBffr
M= Bool

αBffr
M= Send Int | Rcve

ςBffr
M= TopC | SubC Bool

ωBffr
M= [Int]

afBffr (Send i) is
M= (is ++[i],0)

afBffr Rcve (i : is) M= (is,i)

waBffr (Send i) is
M= False

waBffr Rcve is
M= null is

apBffr TopC a
M= True

apBffr (SubC b) (Send i) M= b

apBffr (SubC b) Rcve
M= not b

pfBffr b TopC
M= (SubC b,SubC (not b))

Figure 3: bffr – a 1-to-1 communication buffer

Contexts are either “True”, meaning all actions are permitted, or “False”,
meaning just “Unlock” and “Wait” are allowed.

Contexts can be split as many times as one likes, but the child context
will always be “False”. This means that although a program’s context can
be True at the top-level, allowing “Lock” to be performed, “Lock” can
never be performed concurrently with any other action. The world state
doesn’t keep track of how many processes are waiting for the mutex to be
released, so if it was released then locked again, a waiting process might
miss this event.

There are no (useful) return values in this I/O model.

Lemma 2.2. PRElock.

Proof. The function pfLock always splits contexts into False and False:

• Proving False ♦lock False: The combinations of actions are (1) two
unlocks, (2) two waits or (3) an unlock and a wait. Unlock |||lock

Unlock and allylock(Unlock,Unlock) hold because Unlock changes
state in the same way, and is never stalled. Wait |||lock Wait and
allylock(Wait,Wait) is true since Wait doesn’t affect world state, is
order-independent and also cannot cause any action to become stalled.
Unlock |||lock Wait and allylock(Unlock,Wait): If both unlocking
and waiting are non-stalled, then their order is irrelevant since wait
doesn’t change the world state – nothing can cause unlock to become
stalled, and no amount of unlocking can cause a wait to become stalled.

• False vlock b for all b: True by reflexivity if b = False, and if

7

lock :: IOModel νLock αLock ρLock ωLock ςLock
M= 〈afLock, waLock, apLock, pfsLock〉

νLock
M= ()

ρLock
M= ()

ωLock
M= Bool

ςLock
M= Bool

αLock
M= Lock | Unlock | Wait

afLock Lock b
M= (True,())

afLock Unlock b
M= (False,())

afLock Wait b
M= (b,())

pfLock () c
M= (False,False)

waLock a b
M=

{
b, a = Wait
False, otherwise

apLock b a
M=

{
False, a = Lock, b = False
True, otherwise

Figure 4: lock – a mutex

b = True then it is true because context “True” doesn’t forbid any
actions.

An Integer Variable

The I/O model ivar is an integer variable which can be written to and read
using the actions ReadI and WriteI. Neither of these can ever be stalled.

The context is either NoneC (no actions are permitted), ReadC (only
reading is allowed) or WriteC (reading and writing are both allowed.)
When splitting a context, if the context is NoneC or ReadC then the
parameter is ignored and the left and right context remain the same as that
of the parent. When splitting context “WriteC”, however, depending on
which of “LeftWr”, “RightWr” or “BothRd” is given as parameter,
either one side can be allowed to do everything leaving nothing for the other
side, or both sides can be allowed to only read the integer.

Lemma 2.3. PREivar.

Proof. Since no action can be stalled, the allyivar property holds automati-
cally for any pair of actions.

• Proving ♦ivar : the function pfIVar can split contexts in three dif-
ferent ways. NoneC ♦ivar NoneC and WriteC ♦ivar NoneC are
trivially true, since no actions are permitted by NoneC. When prov-
ing ReadC ♦ivar ReadC, only “ReadI” is allowed, and ReadI |||ivar

ReadI is true since it doesn’t change the world state.

8

ivar :: IOModel νIVar αIVar ρIVar ωIVar ςIVar
M= 〈afIVar, waIVar, apIVar, pfIVar〉

νIVar
M= Int

ωIVar
M= Int

ρIVar
M= LeftWr | RightWr | BothRd

ςIVar
M= NoneC | ReadC | WriteC

αIVar
M= ReadI | WriteI Int

afIVar ReadI i
M= (i,i)

afIVar (WriteI i1) i
M= (i1,0)

waIVar a i
M= False

apIVar NoneC a
M= False

apIVar ReadC WriteI
M= False

apIVar ReadC ReadI
M= True

apIVar WriteC a
M= True

pfIVar p NoneC
M= (NoneC,NoneC)

pfIVar p ReadC
M= (ReadC,ReadC)

pfIVar LeftWr WriteC
M= (WriteC,NoneC)

pfIVar RightWr WriteC
M= (NoneC,WriteC)

pfIVar BothRd WriteC
M= (ReadC,ReadC)

Figure 5: ivar – a shared integer variable

• c1 vivar c2 for all c1, c2 as split by pfIVar: It is clear that NoneC vivar

ReadC and ReadC vivar WriteC, so it can be seen directly from
the definition of pfIVar that when contexts are split this property is
always obeyed.

Terminal I/O

As a small real-world I/O example, consider the model of terminal I/O given
in Figure 6.

There are two actions: (PutC c) writes character c, and GetC reads a
character. The model is not perfect, since it does not capture any interest-
ing temporal properties of stdin/stdout. There is no notion of absolute
time – each outputted Char gives rise to 0 or more inputted characters in-
stantaneously. It is adequate, nonetheless, and obeys the simple property
that if characters are available for input then outputting characters cannot
change that. The model also lets us exploit the fact that stdin and stdout

9

term :: IOModel νTerm αTerm ρTerm ωTerm ςTerm
M= 〈afTerm, waTerm, apTerm, pfTerm〉

νTerm
M= Char

ωTerm
M= ([Char],TermIO)

αTerm
M= PutC Char | GetC

ρTerm, ςTerm
M= IOcxt Bool Bool

TermIO
M= TermIO (Char → ([Char],TermIO))

waTerm (PutC c) (cs,t)
M= False

afTerm (PutC c) (cs,TermIO f)
M= ((cs ++fst (f c),snd (f c)),’ ’)

waTerm GetC (cs,t)
M= null cs

afTerm GetC ((c : cs),t) M= ((cs,t),c)

apTerm (IOcxt b) (PutC c) M= b

apTerm (IOcxt b) GetC
M= b

pfTerm (IOcxt bpp bgp) (IOcxt bp bg) M=
(IOcxt (bp && bpp) (bg && bgp),IOcxt (bp && not bpp) (bg && not bgp))

Figure 6: term – a model for Terminal I/O

are usually two separate handles, and we may want a process to wait for
input on one whilst another outputs data on the other. (This is probably
only useful for filtering programs such as grep. Interactive programs would
usually require a lock-step synchronisation of input and output).

The proof of PREterm is not difficult. It permits the same degree of
concurrency as the bffr model. Reading may take place in parallel with
writing in this semantics since (1) if a Char is ready for input then writing
a character will not change that and (2) if a character is not available for
input then the read will stall until one is. The function pfTerm guarantees
that if many processes are running concurrently then at most one can call
PutC and at most one can perform GetC.

The term model may be seen, in one sense, as just a generalisation of
bffr. Consider the type TermIO once again. One possible instance of it is
loopBack, defined as follows:

loopBack :: TermIO

loopBack = TermIO (\c -> ([c],loopBack))

This really just models the “semantics” of a user who re-inputs every
character outputted to him/her. Therefore it is no different to a communi-
cation buffer between the sending and receiving processes.

10

2.3 Discussion

The small examples give a flavour of what is possible. One of the most sur-
prising and unusual aspects of this system, we believe, is that we don’t need
to explicitly mention communication channels at all. By permitting actions
to be temporarily stalled, one then has enough machinery to synchronise
processes and safely transfer information via the world state.

The key to guaranteeing determinism is making sure that when a context
c is split into cl and cr to allow concurrency, an action in one context cannot
influence the behaviour of an action in the other context. This means that an
action permitted by cl cannot block an action permitted by cr (or vice versa)
and the order in which they are executed must be irrelevant. This rules
out competition for a limited resource. Some typically non-deterministic
constructs are multiple-writer streams, multiple-reader streams and shared,
mutable variables.

Actions can become stalled, however, like “Rcve” in the buffer example.
Roughly speaking, an action a1 can only cause a (not necessarily different)
action a2 to become stalled if they can under no circumstances be executed
concurrently. Also, if an action a1 can successfully predict whether another
action a2 is going to stall then a1 cannot be run concurrently with any action
which changes whether or not a2 is stalled. For example, in the bffr model
neither of the sub-contexts, which allow just sending or just receiving, could
be modified to permit an action which returns whether or not the buffer
is empty. However, the receiving context could allow one to wait until the
buffer is non-empty and the sending context could allow one to wait until
the buffer is empty, and neither would admit non-determinism.

There are a few interesting sub-classes of actions.

• Observer actions, which never change world state (like “Wait” and
“ReadI”.) If a1 is an observer action, then for any a0, allys(a1, a0) and
for any two observer actions a1 and a2, a1 |||s a2 holds.

• Actions which always return the same value (like “Lock”, “WriteI 7”,
or an action which, say, increments a counter without indicating it’s
value.) If action a1 is of this form then a1 |||s a1.

• Actions which can never be stalled, like “Send i” and “WriteI i”. If
action a1 is never stalled then for any action a0, allys(a0, a1).

• Commutative contexts: if it is true that c ♦s c for some c, (which will
be true if there is some p such that pf p c = (c,c), as is the case
with ReadC in the ivar example) then the actions permitted by c in
a monadic setting form a commutative monad. In other words, there
are absolutely no constraints on the ordering of actions.

It should also be noted that many “reasonable” properties of I/O models
are not always present. These include: a context which permits all actions;

11

a context which permits no actions; a way of splitting a context such that
all permissions are given to one side only; a way splitting contexts in a
symmetric way (if a context can be split into (cl,cr) can it also be split into
(cr,cl)?). These weren’t necessary for the confluence proof, so we didn’t
bother to include them, but their existence would probably make things
somewhat tidier.

12

3 Curio – a Language for Reasoning About I/O

In this section we introduce the Curio language. This is a small functional
language with concurrency, interprocess communication and monadic con-
structs which together let the user write expressive programs which perform
I/O. This expressivity is due to our ability to enforce determinism.

In reality, Curio is less a full language specification than a rigorous
semantics for a collection of powerful I/O primitives which can be wrapped
around a pure functional language using solely its denotational semantics.
This overall approach is not new. In fact, at the outset it bears many
similarities to that taken by the Haskell community:

“Our semantics is stratified in two levels: an inner denotational
semantics which describes the behaviour of pure terms, while an
outer monadic semantics describes the behaviour of IO compu-
tations.” [Pey01]

The Concurrent Haskell language [PGF96] is probably the lazy func-
tional language with the most fully-fledged semantics for I/O. What makes
Curio different to the semantics of Concurrent Haskell is the nature of this
outer operational semantics.

Concurrent Haskell’s semantics for I/O is in effect a co-inductive one.
I/O actions represent labelled transitions in a CCS-style process calculus.
Each action is a distinct observable event, and the meaning of a program is
solely determined by the (possibly non-terminating) order in which actions
occur.

Curio’s semantics is inductive rather than co-inductive. There exists
a “world-state” which the program interacts with and modifies when doing
I/O, and the observable effect of a program is its resultant world-state.
Whereas with Concurrent Haskell all actions are observable, with Curio it
is only the cumulative effect of a finite number of actions over a program’s
lifetime that is observable.

Naturally there are pros and cons to both approaches. The most im-
mediate advantage to the CCS-style semantics is that by using it one can
distinguish two infinite programs (for example, a program which loops con-
tinuously and, say, an internet server designed never to terminate). It is also
highly elegant.

What makes the semantics of Curio somewhat more expressive (if less
elegant) is that it ascribes to each action a precise effect on world state,
and therefore allows us to distinguish actions which do and do not interfere
with one another. Insofar as a language semantics is a vehicle for compiler
optimisations and formal proofs, this would appear to make it better – but
we cannot tell at this early stage.

13

3.1 Language Primitives

A program in Curio is any element of the type Progναρ β and the five I/O
primitives are as follows: (unless otherwise specified it is assumed that the
types ν, α and ρ are all bound by some I/O model).

(>>=) :: Progναρ β → (β → Progναρ γ) → Progναρ γ

return :: β → Progναρ β

action :: α → Progναρ ν

test :: α → Progναρ β → Progναρ β → Progναρ β

par :: ρ → Progναρ β → Progναρ γ → (β → γ → ε) → Progναρ ε

Central to these language primitives is the notion of an I/O context.
Each (sub-)program is executed within a context c ∈ ς, and that context
dictates which actions that (sub-)program can perform, and therefore affects
the programs outcome.

The full semantics is given further on, but very briefly: the first two
are the familiar monadic >>= and return; action performs a primitive
action; test performs one of two programs depending on whether an action
is allowed by the current context; par runs two programs concurrently.

A program is said to be a value (or evaluated) if it is of the form
return v, for some v. A program is said to be an action if it is of the
form action a, for some a. Programs of the form par p ml mr (∗) are
abbreviated using an infix notation as ml |||

p
∗ mr.

Of the five original types, α and ρ end up being part of the language’s
syntax, ς is best understood as an internal run-time data-structure in the
language implementation, and ω is part of the world model (i.e. part of the
language’s semantics).

Curio is a non-strict language. None of the five primitives evaluate
their arguments. Therefore programs can be partial or infinite, as would be
expected in a real lazy language. Consider the following example program:
if the current context allows a read then an infinite number of reads are
performed concurrently, otherwise −1 is returned.

let reads = par BothRd (action ReadI) reads f
in test ReadI reads (return (−1))

The above example serves to demonstrate why our style of operational
semantics will have to be a bit unusual. We don’t have lists, or “let” con-
structs in our language yet we are using them freely when writing programs.
Since programs like the above are permitted, our operational semantics can’t
just manipulate a program as normal syntax. Instead we must use the deno-
tational semantics of the metalanguage and build an operational semantics
which acts on and modifies elements of domains – we reason about, induct

14

over and manipulate the domain of type Progναρ β, not the syntax of pro-
grams of type Progναρ β. This has some immediate consequences. Since all
our language constructs are lazy, and since there are terms of type Progναρ β
which don’t have an outermost constructor, we must also describe the pro-
gram’s behaviour when sub-programs are undefined, or ⊥.

3.2 Examples

We now give example programs making use of Haskell’s do-notation.
These examples are specific to certain I/O models, so the types ν, α

and ρ will differ. Given some I/O model, say bffr, to avoid clutter we use
Progbffr β as a convenient shorthand for ProgνBffr αBffr ρBffr β.

Communication Buffer Examples

The following program attempts to send a list of integers along a commu-
nication buffer. The Boolean return value indicates whether the current
context permitted the Send action.
sendInts :: [Int] → Progbffr Bool
sendInts [] = return True
sendInts (i:is) =
test (Send i)
(action (Send i) >>= _ -> sendInts is)
(return False)

The program rcveInts c attempts to retrieve c integers from the com-
munication buffer. If receiving is not permitted by the program’s context
then it returns [], the empty list.
rcveInts :: Int → Progbffr [Int]
rcveInts c = test Rcve (rcveInts’ c) (return [])
where rcveInts’ | c<=0 = return []

| otherwise = do
i <- action Rcve
is <- rcveInts (c-1)
return (i:is)

Mutex Examples

The program lockPar runs two lock programs in parallel combining the two
resultant return values into a tuple. This is completely general since in the
lock model the ρ type has just one element anyway, ().
lockPar :: Proglock β → Proglock γ → Proglock (β,γ)
lockPar pl pr = par () pl pr (\vl vr -> (vl,vr))

15

Integer Variable Examples

The following program applies a function f to the integer variable returning
True if the context permitted reading and writing.
applyFn :: (Int → Int) → Progivar Bool
applyFn f = do
b <- test (WriteI 0) (return True) (return False)
if b then do
i <- action ReadI
action (WriteI (f i))

return b

Terminal I/O Examples

The function putStr writes a string to stdout (or fails if that is not allowed).
putStr :: String → Progterm ()
putStr [] = return ()
putStr (c:cs) = action (PutC c) >>= _ -> putStr cs

stdPermissions returns a string which indicates which actions the cur-
rent context permits.
stdPermissions :: Progterm String
stdPermissions = do
in <- test GetC (return "stdin") (return "no stdin")
out <- test (PutC ’x’) (return "stdout") (return "no stdout")
return (in ++ ", " ++ out)

The program getPutC c outputs character c whilst concurrently re-
questing a character from input. The entire program returns the character
that was read.
getPutC :: Char → Progterm Char
getPutC c = par
(IOcxt True False) (action (PutC c)) (action GetC) (_ c1 -> c1)

3.3 Semantics

The non-deterministic single-step semantics can be found in Figure 7. We
use an SOS-style notation [Plo81].

All the reduction rules describe the behaviour of what we call a world/program
pair, written w ° m, where w is the world and m is the program. This allows
one to describe how a program and world-state interact over time. The con-
text c ∈ ς in which a program is run also affects how the program behaves,
so reduction rules are also annotated with the current context.

16

w ° m ↑c

w ° m >>= f ↑c

w ° m ↓c

w ° m >>= f ↓c
(m not a value)

w ° return v >>= f −→c w ° f v
w ° m −→c w1 ° m1

w ° m >>= f −→c w1 ° m1 >>= f

ap c a wa a w af a w Behaviour of action a

⊥ w ° action a ↑c

False w ° action a ↑c

True ⊥ w ° action a ↑c

True False ⊥ w ° action a ↑c

True False (w1,v) w ° action a −→c w1 ° return v
True True w ° action a ↓c

ap c a Behaviour of test a m1 m2

⊥ w ° test a m1 m2 −→c w ° ⊥
False w ° test a m1 m2 −→c w ° m2

True w ° test a m1 m2 −→c w ° m1

w ° return v ↓c

w ° ⊥ ↑c

pf p c = ⊥
w ° ml |||

p
∗ mr ↑c

pf p c = (cl,cr)





w ° ml ↑cl

w ° ml |||
p
∗ mr ↑c

w ° mr ↑cr

w ° ml |||
p
∗ mr ↑c

w ° return vl |||
p
∗ return vr −→c w ° return vl ∗ vr

w ° ml −→cl w′ ° m′
l

w ° ml |||
p
∗ mr −→c w′ ° m′

l |||
p
∗ mr

(mr 6= ⊥)

w ° mr −→cr w′ ° m′
r

w ° ml |||
p
∗ mr −→c w′ ° ml |||

p
∗ m′

r

(ml 6= ⊥)

w ° ml ↓cl w ° mr ↓cr

w ° ml |||
p
∗ mr ↓c

(ml, mr not both values)

Figure 7: Non-deterministic Single-Step Semantics for Curio

17

There are three reduction relations, −→c, ↑c and ↓c.

w ° m −→c w′ ° m′ M= “w ° m can reduce to w′ ° m′ in context c”
w ° m ↑c M= “w ° m can fail in context c”

w ° m ↓c M= “w ° m is in normal form in context c”

We say a world/program pair is in normal form (rather than can be
in normal form) because, as Lemma 4.13 in Section 4 shows, despite non-
determinism, if a program has converged to normal form then it cannot
either fail or reduce. Similarly, if a world/program pair can fail or reduce,
then it cannot be in normal form. Failure may seem a slightly curious thing
to include, but, as the implementation in the next subsection will show,
it is necessary. A single reduction step in Curio can correspond to many
individual steps in the operational semantics of the metalanguage. Equiva-
lently, a failed single-step reduction may denote a never-ending sequence of
reduction steps in the metalanguage.

Values (programs of the form return v) on their own are in normal form.
If a world/program pair is in normal form but not a value, then we say it is
stalled. If this occurs, the convergence to normal form is caused by stalled
actions within the program.

action a attempts to perform action a. If it isn’t permitted by the
context, action a always fails. If it is permitted, it may fail, be stalled or
reduce to the action’s return value all depending on the API. If it reduces,
it will modify the world state. test a mt mf allows a program to query
the context in which it is being run. If action a is permitted in the current
context then test a mt mf executes mt, otherwise it executes mf . Usually
mf would be a sort of exception handler, returning a value indicating that
certain actions were locked out by the current context. Programs of the
form m >>= f behave in the normal monadic style: m is reduced continually
until it is a value return v for some v, then f v is reduced. If m at any
stage fails or becomes stalled, the same will happen to m >>= f . A program
⊥ always fails.

A base program refers to any program of the form return v, ⊥,
return v >>= f , action a, test a mt mf or return vl |||

p
∗ return vr.

The behaviour of these programs is always entirely deterministic for a given
context and world. It is concurrency on its own which introduces nonde-
terminism. ml |||

p
∗ mr, executed in context c, runs ml and mr in parallel

in contexts cl and cr respectively, where pf p c = (cl,cr). If two concur-
rent sub-programs can either reduce or fail, then either side may be chosen
arbitrarily. This continues until

• one side fails, causing both programs in parallel to fail.

• ml and mr become values return vl and return vr respectively,

18

in which case the parallel execution terminates, becoming the value
return vl ∗ vr.

• one side becomes stalled and the other side converges to normal form
(that is: it is either a value or also stalled), causing the concurrent
execution of both programs to be stalled.

This non-deterministic single-step form of semantics is the most “ob-
viously correct” way of describing concurrency. The side-condition on the
parallel reduction rules that ml 6= ⊥ and mr 6= ⊥ is undesirable but hard to
avoid. If we check at the outset whether both the left and right sub-programs
are values it makes the implementation much simpler. Unfortunately this
means forcing both ml and mr to an outermost constructor.

3.4 Convergence/Divergence and the Implementation

Figure 8 contains information about how the language is implemented in
the metalanguage.

Programs in Curio are elements of a higher-order algebraic type. The
use of an algebraic type is necessary since we need to be precise about how
there are exactly five ways of constructing a program. This means that for
our machine-verified proofs the types of >>= and par become monomorphic.
This isn’t a serious problem. The property of having only five constructors
can be informally guaranteed in a real language using class and module
interfaces, and it is not necessary for a program to be able to query another
program’s outermost constructor, which is something that algebraic types
specifically allow.

The function nexts implements single-step reduction, and non-determinism
is implemented by supplying it with an additional parameter of type Guess.
This is, roughly, a stream of Boolean values and it guides the reduction al-
gorithm’s search for a redex in the presence of concurrency. We existentially
quantify over its values to show that reducing to a particular reduct is pos-
sible. If a world/program pair is in normal form in some context then nexts

returns Converged. Otherwise it returns Reduct (w1,m1), for some
w1, m1, or fails (⊥). These three possibilities define the three single-step
reduction relations, ↓, −→ and ↑.

To make the move from a single-step (or reduction) semantics to a
big-step (or evaluation) semantics we must investigate the repeated single-
step reduction of a world/program pair. The single-step semantics is non-
deterministic, so non-determinism must also have some presence in a big-step
semantics. First off, one must define a non-deterministic evaluation relation.
w ° m ²²²²

c w′ ° m′ means “w ° m can, after zero or more single-step reduc-
tions in context c yield w′ ° m′, which is in normal form.”

This is a rather weak property. It would be nice if we knew that w ° m
would always reduce to a normal form w′ ° m′ in some context c. This

19

Prog ν α ρ
M= Bind (Prog ν α ρ) (ν → Prog ν α ρ)
| Ret ν

| Action α

| Test (Prog ν α ρ) (Prog ν α ρ)
| Par ρ (Prog ν α ρ) (Prog ν α ρ) (ν → ν → ν)

Reduction β
M= Reduct β | Converged

nexts :: Guess → ς → (ω,Prog ν α ρ)→ Reduction (ω,Prog ν α ρ)

rdces :: Nat → [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)

rdces (i + 1) [g:gs] c (w,m) = (w′′,m′′)
⇐⇒(

∃w′∈ω.∃m′∈Prog ν α ρ.
nexts g c (w,m) = Reduct (w′,m′) ∧

rdces i gs c (w′,m′) = (w′′,m′′)

)

rdces 0 gs c (w,m) = (w,m)

w ° m −→c w′ ° m′ M= ∃g∈Guess.nexts g c (w,m) = Reduct (w′,m′)

w ° m ↓c M= ∃g∈Guess.nexts g c (w,m) = Converged

w ° m ↑c M= ∃g∈Guess.nexts g c (w,m) = ⊥
w ° m i // // c w′ ° m′ M= ∃gs∈[Guess].rdces i gs c (w,m) = (w′,m′)

w ° m // // c w′ ° m′ M= ∃i∈N.w ° m i // // c w′ ° m′

w ° m i
²²²²
c w′ ° m′ M= w ° m i // // c w′ ° m′ ∧ w′ ° m′ ↓c

w ° m ²²²²
c w′ ° m′ M= ∃i∈N.w ° m i

²²²²
c w′ ° m′

w ° m i⇓c w′ ° m′ M= ∀gs∈[Guess].rdces i gs c (w,m) = (w′,m′)
∧ w′ ° m′ ↓c

w ° m ⇓c w′ ° m′ M= ∃i∈N.w ° m i⇓c w′ ° m′

w ° m ⇑c M= ¬∃w′∈ω.∃m′∈Prog ν α ρ.w ° m ²²²²
c w′ ° m′

Figure 8: Implementation Details

20

is expressed as w ° m ⇓c w′ ° m′. Divergence in Curio, expressed as
w ° m ⇑c, means that a program can under no circumstances reduce to
some normal form in context c. The relationship between ↑ and ⇑ is subtle.
The former is failure in the denotational semantics of the metalanguage, the
latter is failure in the operational semantics of our language. Theorem 4.2
in Section4 states that if PREs, then w ° m ↑c implies w ° m ⇑c.

The relation ²²²² is implemented with rdces and expresses the repeated
single-step reduction of a world/program pair until it is in normal form. It
requires a list, or stream of Guesses, one for each single-step reduction (we
don’t mention any boundary or definedness conditions, but they do exist.)
Convergence,⇓, differs to ²²²² in that it universally quantifies over the guesses.
It is trivially true that w ° m ⇓c w′ ° m′ implies w ° m ²²²²

c w′ ° m′ and
the confluence proof shows that if PREs holds, w ° m ²²²²

c w′ ° m′ implies
w ° m ⇓c w′ ° m′. Sometimes ²²²² and⇓ are annotated with a number which
denotes how many reduction steps took place.

Proposition 3.1. If w ° m ²²²²
c w1 ° m1 then it is not the case that w ° m ⇑c.

Proof. Direct from the definition of ⇑.

Proposition 3.2. Each of the following statements imply those below it:

1. w ° m ⇓c w1 ° m1

2. w ° m ²²²²
c w1 ° m1

3. w ° m // // c w1 ° m1

Proof. (1) implies (2) since if a property holds for all Guesses it must hold for
some Guess. (2) implies (3) because the only extra condition on the former
is that w1 ° m1 ↓c is in normal form.

It should also be noted that although it’s an implementation in a real
language, we have no interest at the moment in its efficiency.

3.5 Convergence is Recursively Enumerable

It is reassuring to note that although reduction etc. are defined in the
form of an existential quantification over reduction steps, this is just for
convenience.

We now prove separately that ²²²² is recursively enumerable. This is a
(machine-verified) proof that there exists a function

runs :: [Guess] → ς → (ω,Prog ν α ρ)→ (ω,Prog ν α ρ)

21

such that

runs gs c (w,m) = (w1,m1)

⇐⇒
∃i∈N.rdces i gs c (w,m) = (w1,m1) ∧ w1 ° m1 ↓c

Once this is proved, convergence and divergence can be expressed in a
more intuitive manner as follows:

w ° m ²²²²
c w1 ° m1 ⇐⇒ ∃gs∈[Guess].runs gs c (w,m) = (w1,m1)

w ° m ⇓c w1 ° m1 ⇐⇒ ∀gs∈[Guess].runs gs c (w,m) = (w1,m1)

w ° m ⇑c ⇐⇒ ∀gs∈[Guess].runs gs c (w,m) = ⊥

Showing that this holds is a non-trivial task. If one writes an implemen-
tation which just repeatedly applies nexts, perhaps an infinite number of
times, then there is no structure to induct over. We must build an imple-
mentation which internally constructs an intermediate list.

The proof relies on a more general (and quite powerful) lemma. Consider
the following two functions:

iterate :: (β → β) → β → [β]

iterate f x
M= x : iterate f (f x)

dountil :: (β → β) → (β → Bool) → β → [β]

dountil f p x
M= x : if (p x) then [] else (dountil f p (f x))

iterate is a standard Haskell library function. The term iterate f x
creates an infinite list, each successive element of which contains the next
iteration of function f to an initial value x. dountil is somewhat similar
except there is an extra computable predicate p :: β → Bool which indicates
whether the iteration of f should stop. Therefore dountil may or may not
return an infinite list.

The following lemma gives a useful relationship between the two. It
shows that given side-conditions relating p and f , some i applications of f
to x0 yields an x1 such that p x1 if and only if last (dountil f p x0) = x1

and x1 is defined.

Lemma 3.1.

∀f∈β→β.∀p∈β→Bool.p ⊥ = ⊥ ∧ f ⊥ = ⊥ ∧ (∀x′∈β.p x′ 6= False =⇒ f x′ = ⊥)
=⇒ ∀x0∈β.∀x1∈β.

(∃i∈N.x1 = iterate f x0 !! i ∧ p x1)
⇐⇒

(x1 = last (dountil f p x0) ∧ x1 6= ⊥)

22

Proof. The proof needs quite a few extra lemmas, and on the whole requires
an extremely careful treatment of non-termination. In particular, with the
given side-conditions

• If f x = ⊥ then iterate f x = [x,⊥,⊥,⊥, · · ·].
• If p x = ⊥ then dountil f p x = x : ⊥ and iterate f x =

[x,⊥,⊥,⊥, · · ·].
• If p x = True then dountil f p x = [x] and iterate f x =

[x,⊥,⊥,⊥, · · ·].
• If p x = False and f x = ⊥ then dountil f p x = x : (⊥ : ⊥).

To prove the =⇒ direction we induct over i, the number of iterations
required. We must show that if an iteration results in ⊥ then it cannot
revert back to a non-⊥ term and also prove that if p x = False then
last (dountil f p x) = last (dountil f p (f x)).

To prove the ⇐= direction we must prove first that

• if l = length (dountil f p x) and l 6= ⊥ then p (iterate f x !! (l −
1)).

• if for all i, 0 ≤ i < k, p (iterate f x !! i) = False then dountil f p x !! k =
iterate f x !! k.

• various other results to do with last, iterate and infinite lists.

We can show that if (dountil f p x) is infinite then last (dountil f p x)
will be ⊥ (thus proving a contradiction) and if (dountil f p x) is a specific
finite length then i will be that length minus one.

To prove the final result we construct the function nextWraps which
treats the state of the programs evolution as a 4-tuple containing (1) the
world state, (2) the program, (3) the current fresh list of Guess and (4)
a Boolean value indicating whether the previous iteration resulted in a
world/program pair in normal form.

nextWraps :: ς → (ω,Prog ν α ρ,[Guess],Bool)→ (ω,Prog ν α ρ,[Guess],Bool)

Now, with a suitable wrapper, the function

last (dountil (nextWraps c) fth4 (w,m,gs,False))

forms the implementation of runs gs c (w,m), where fth4 returns the
fourth element from a 4-tuple.

Proposition 3.3. If w ° m ⇓c w1 ° m1 and w ° m ⇓c w2 ° m2 then it
is true that m1 = m2 and w1 = w2

Proof. Obvious, since we have shown that reduction to some normal form
defines a function, not just a relation.

23

4 The Machine-Verified Confluence Proof

4.1 Introduction

A non-deterministic reduction system is said to be confluent if for a given
term all possible reduction sequences eventually yield the same normal form,
or no normal form at all. In this section we prove that reduction in Curio
is confluent when PREs holds – that ²²²² is equivalent to ⇓. This powerful
property means that although our definition of concurrency is a natural, non-
deterministic one involving arbitrary choices, this arbitrariness is contained
and has no effect on the overall outcome. For us, this means that, for
all reduction orders, a program will either always terminate with the same
resultant world/program pair or always diverge.

That the confluence proof has been machine-verified is also, on its own,
a relatively notable result. Confluence proofs for the λ-calculus have been
machine-verified before (in Coq [Hue94], and Isabelle/HOL [Nip96]) but we
have yet to see one in an LCF style. Perhaps there is a good reason for this
– confluence proofs usually wouldn’t require one to prove properties about
a program. This, however, is the approach we took. We prove that a simple
implementation of Curio is confluent.

Instructions on the actual implementation and how the machine-readable
form of the proofs can be obtained is available in Appendix A.

Terminology

Confluence is also known as the “Church-Rosser” property after the authors
of the original proof in 1935 for the λ-calculus [CR36]. Formal definitions
of confluence tend to differ slightly depending on which texts are read.

Barendregt, in the standard reference text on the λ-calculus [Bar84], de-
fines a reduction system to be confluent if it obeys the “diamond property”.
This means that if A // // B and A // // C then there is some D such that
B // // D and C // // D, where // // is the reflexive, transitive closure of the
reduction relation ‘−→’. In Term Rewriting Systems [Ter03], however, the
diamond property (and confluence) is defined to be the property “A −→ B
and A −→ C implies there is some D such that B −→ D and C −→ D”.
It is the latter definition of confluence and the diamond property which is
closest to what we use, but because our operational semantics also has a
notion of failure this muddies the water somewhat.

There is also a certain amount of confusion concerning the differences
between (finite) reduction sequences and reduction strategies. The pure λ-
calculus is confluent, yet certain reduction strategies may, for a given term,
not result in a normal form when others do. In particular, given the term
(λx.λy.y)Ω, call-by-name reduction will find the normal form (λy.y) but
call-by-value reduction will not terminate.

24

Our confluence proof is stronger. All reduction strategies will have the
same effect. The intuitive reason why this is true is that unlike function
application in the λ-calculus, our par construct is highly symmetric.

Overview

The full machine-verified proof of confluence is long and full of complicated
details. Many of these relate to the propagation of ⊥ and the fact that
induction over lazy structures must be admissible [Iga74]. We adopt a hybrid
approach to describing the proof. We try to explain all the nitty-gritty
technical problems encountered, while still never losing sight of the overall
picture.

To try to give some structure to the proof, three important subsections
of the proof each culminate with the proof of a key theorem:

• Theorem 4.1: If cl ♦s cr and pres then reduction of programs in context
cl and cr, if possible in both contexts, is order-independent.

• Theorem 4.2: If PREs, then w ° m ↑c implies w ° m ⇑c.

• Theorem 4.3 (Confluence): If PREs, then w ° m ²²²²
c w′ ° m′ implies

w ° m ⇓c w′ ° m′.

4.2 Preliminaries

Non-deterministic single-step reduction “−→” is a fine high-level notation
for expressing how a world/program pair can change within a given context.
Its downside, however, is that it hides some internal details of the reduction
and its implementation, and these details are central to the machine-verified
proof.

They include:

• The initial Guess which guides the search for a redex.

• The actions that were performed, if any.

• The whereabouts of the redex if one is eventually found.

The initial Guess is usually “hidden” by an existential quantification, but
it is still explicit in the implementation. The other two are truly internal,
however, and for this reason the implementation nexts had to be rewritten
as the interaction of three different functions. (Admissibility states that to
obtain information about a lazy structure one must do so constructively and
write a function which computes it. One is not able to just prove that it
exists.)

25

nextRs :: Guess → ς → ω → Prog ν α ρ → Redex (Route,RxType α)

advSs :: ς → Route → Prog ν α ρ → Prog ν α ρ

advA :: ν → Route → Prog ν α ρ → Prog ν α ρ

next′s g c (w,m)
M= case (nextRs(g, c, w, m)) of

NoRedex → Converged
Redex (r,Silent) → Reduct (w,advSs(c, r,m))
Redex (r,Action a) → case (af a w) of

(w1,v)→ Reduct (w1,advA(v, r,m))

Figure 9: Definition of next′s

Deconstructing nexts

The new definition of nexts and the types of the three new functions are in
Figure 9.

The function nextRs searches for a redex. If it finds one it indicates the
Route to that redex and the action it will perform, if any. A Route is just
a finite list of L/R values. When searching for a redex, each time a par is
encountered the next element of the Route indicates whether to look to the
left- or right-hand side.

If a redex doesn’t perform an action we call it a silent redex. The func-
tion advA(v, r,m) modifies the action at route r in program m by replacing
it with the program return v. The program advSs(c, r,m) modifies the
silent redex at route r in program m. The context information c is required
so that a program of the form test a m1 m2 can determine which of the
two programs must be executed.

We now prove that the two definitions of nexts are equivalent, thus
allowing us to pick whichever is the more appropriate when proving a lemma.

Lemma 4.1. nexts = next′s

Proof. A long but straightforward induction on program structure. We omit
the details, but it is a proof that the three individual functions add up to
the single original one. nextRs does all the searching for a redex but never
modifies either the world state or the program. The only reason it needs
w at all is to check if an action is stalled. The four stages of the reduction
of an action redex action a are (1) checking if the action is permitted
(ap c a = True), (2) checking if the action is stalled, (wa a w = False) (3)
performing the action (evaluating af a w to some (w1,v)) and (4) updating
the program with the value v. Of these, the first two are performed by
nextRs, the third takes place in the “wiring” and the fourth is performed

26

w ° m
g 7→r−−→ c

a w1 ° m1
M= nextRs(g, c, w, m) = Redex (r,Action a) ∧

af a w = (w1,v) ∧ m1 = advA(v, r,m)

w ° m
g 7→r−−→ c• w1 ° m1

M= nextRs(g, c, w, m) = Redex (r,Silent) ∧
m1 = advSs(c, r,m) ∧ w = w1

w ° m g 7→r ↑c
a

M= nextRs(g, c, w, m) = Redex (r,Action a) ∧
af a w = ⊥

w ° m g 7→⊥ ↑c M= nextRs(g, c, w, m) = ⊥
w ° m ↓c M= nextRs(g, c, w, m) = NoRedex

Figure 10: Annotating single-step reduction

by advA. With any silent redex, nextRs just finds the redex returning the
route, and advSs modifies the program itself.

Annotating single-step reduction

Redexes are inherently slippery things to reason about since there is no
obvious type or set which is isomorphic to them in any useful way. We
therefore use Guesses to quantify over redexes when we’re looking for one
and Routes to identify a redex when we have found one. The function from
Guesses to redexes is onto; the function from redexes to Routes is one-to-one.

Guesses and Routes can be confusingly similar, at times. Although they
are both implemented as lists of Bool, they are conceptually somewhat dif-
ferent. A Guess is best understood as always being infinite, and Routes as
always being finite. So we can always successfully retrieve the head and tail
of a Guess, whereas there is the possibility that a Route is empty. Also, we
sometimes implicitly “cast” a Route to a Guess by padding the finite list to
make it infinite.

The new annotated single-step reduction can be found in Figure 10.
It should be clear that the new notation covers all possible cases and is
a consistent extension to the old notation. If the guess, route or redex
type is omitted this means there is an implicit existential quantification.
w ° m −→c

a w′ ° m′ means there exists some Guess g and a route Route

r such that w ° m
g 7→r−−→ c

a w′ ° m′. If an action a or • is omitted from a
reduction then we just don’t specify whether it was silent or performed an
action.

Corollary 4.2. If w ° m −→c• w1 ° m1 then w = w1.

Proof. Immediate.

27

Corollary 4.3. If w ° m −→c
a w1 ° m1 then af a w = (w1,v), for some

v.

Proof. Immediate.

Corollary 4.4. If w ° m g 7→r ↑c
a then af a w = ⊥.

Proof. Immediate.

A template for inductive proofs

A great many lemmas are proved by inducting over the recursive structure
of Prog ν α ρ. They are all, of course, different, but we can give a general
shape to many of the proofs, and this will serve as a basic template.

Base programs (those of the form return v, ⊥, return v >>= f , action a,
test a mt mf or return vl |||

p
∗ return vr) are always entirely determinis-

tic for a given context and world, and never requires any “deeper” knowl-
edge, such as an inductive hypothesis. When inducting over Prog ν α ρ, it
is usually relatively easy to prove properties for these programs.

The behaviour of a program m >>= f , where m isn’t a value return v, is
solely determined by the behaviour of m. This is importance because when
inducting over Prog ν α ρ no inductive hypothesis can be given for f . If m
fails, diverges or is in normal form then the same will be true of m >>= f .

Programs of the form ml |||
p
∗ mr are usually the most troublesome to

prove properties about. If ml and mr are both values then it is a base term.
It always fails if pf p c = ⊥, ml = ⊥ or mr = ⊥, so we often just omit
this simple case altogether. If neither of the above are true an inductive
hypothesis will be needed for ml or mr (and occasionally both) and how
they behave in their respective contexts. Proving lemmas inductively for
programs like this is made easier if we can perform a simple case analysis
on whether the left- or right-hand side was reduced. The three following
lemmas show how by examining the resultant Route we can learn whether
a redex lied on the left or right hand side. Doing case analysis on the Guess
would not give this sort of information. This is our standard procedure for
determining the side in which a reduction took place.

Lemma 4.5. If w ° ml |||
p
∗ mr

g 7→[]
−−→ c w1 ° m1 then pf p c = (cl,cr) for

some cl,cr and for some vl,vr, ml = return vl, mr = return vr, w1 = w
and m1 = return vl ∗ vr.

Proof. Since the route is [] the redex cannot be within either ml or mr.
Therefore ml and mr must be values.

Lemma 4.6. If m is not a value, nextRs(g, c, w, m >>= f) = nextRs(g, c, w, m).

Proof. Immediate from implementation.

28

Lemma 4.7. If m is not a value, then w ° m >>= f
g 7→r−−→ c w′ ° m′ >>= f

if and only if w ° m
g 7→r−−→ c w′ ° m′.

Proof. Immediate from Lemma 4.6.

Lemma 4.8. If nextRs([b:g], c, w, ml |||p
∗ mr) = Redex ([L:r],x) then

pf p c = (cl,cr) for some cl,cr and nextRs(g, cl, w, ml) = Redex (r,x).

Proof. Regardless of the initial direction b of the Guess, if the resultant Route
was L then the left-hand side will have been reduced.

Lemma 4.9. If nextRs([b:g], c, w, ml |||p
∗ mr) = Redex ([R:r],x) then

pf p c = (cl,cr) for some cl,cr and nextRs(g, cr, w, mr) = Redex (r,x).

Proof. Symmetric to proof of Lemma 4.9.

Lemma 4.10. If w ° ml |||
p
∗ mr

[b:g]7→[L:r]
−−→ c w1 ° m1 then pf p c = (cl,cr)

for some cl,cr and there is a m′
l such that w ° ml

g 7→r−−→ cl w1 ° m′
l and m1 =

m′
l |||

p
∗ mr.

Proof. Immediate from Lemma 4.9.

Lemma 4.11. If w ° ml |||
p
∗ mr

[b:g]7→[R:r]
−−→ c w1 ° m1 then pf p c = (cl,cr)

for some cl,cr and there is a m′
r such that w ° mr

g 7→r−−→ cr w1 ° m′
r and

m1 = ml |||
p
∗ m′

r.

Proof. Immediate from Lemma 4.9.

4.3 Initial results

Having established some new notation, in this subsection we are now ready
to begin the confluence proof. We prove some important lemmas relating
to how single-step reduction affects world state and what actions single-step
reduction can perform.

Lemma 4.12. If nextRs(g, c, w, m) = NoRedex then for all g1, it is true
that nextRs(g1, c, w, m) = NoRedex.

Proof. Induction on m. It is trivial that return v is always in normal form,
and if w ° action a is in normal form it always will be. ml |||

p
∗ mr is only

in normal form if ml and mr are both in normal form and it’s not the case
that both are values. g1 can be either [L:g′1] or [R:g′1], for some g′1, but in
each case ml and mr will both be in normal form, regardless of g′1’s value
(IH), so the same will be true of ml |||

p
∗ mr.

29

Lemma 4.13. If w ° m ↓c then it is not the case that w ° m −→c w′ ° m′

for some w′,m′ or that w ° m ↑c. (This is a proof of confluence for programs
which require no reduction steps.)

Proof. Immediate from Lemma 4.12.

Lemma 4.14. If nextRs(g, c, w, m) = Redex (r,Action a) then wa a w =
False.

Proof. Induction on m. The only base redex which isn’t silent is action a,
and if this reduces then wa a w = False. This is true, by induction, for any
reduction which performs an action.

Lemma 4.15. If w ° m −→c
a w′ ° m′ then wa a w = False.

Proof. Immediate from Lemma 4.14.

Lemma 4.16. If pres and nextRs(g, c, w, m) = Redex (r,Action a) then
ap c a = True.

Proof. Induction on m. Trivial for action a, and true by contradiction for
silent base redexes. If m = m1 >>= f (m not a value), it is trivial from
Lemma 4.6. If m is ml |||

p
∗ mr then do case analysis on the resultant route.

If it is true that nextRs([b:g], c, w, ml |||
p
∗ mr) = Redex ([L:r],x), then

pf p c = (cl,cr) for some cl,cr, and from Lemma 4.8, nextRs(g, cl, w, ml) =
Redex (r,x). From IH, conclude ap cl a = True, and by pres, cl vs

c, and therefore ap c a = True. The proof for the right-hand side is
symmetric.

Lemma 4.17. If pres and w ° m −→c
a w′ ° m′ then ap c a = True.

Proof. Immediate from Lemma 4.16.

The following lemmas relate successful single-step reduction of m on
world w to reduction in a completely unrelated world w′. The key is that
after reducing successfully we will have the correct route to that redex. The
second time around this route is used as the new guess to guarantee that the
same redex is actually found – some actions in m which were stalled in w
(and therefore ignored) may have become unstalled in w′, and it necessary to
supply the exact route to make sure that we never encounter these unstalled
actions, or any other redex.

Lemma 4.18. If nextRs(g, c, w, m) = Redex (r,Silent) then for all w′,
nextRs(g, c, w′,m) = Redex (r,Silent).

30

Proof. Induction on m. Trivially true for any silent base redex, since they
are deterministic. If m = ml |||

p
∗ mr and g = [b:g′], then do case analy-

sis on the route r. If r = [], it is a base redex. If r = [L:r′] then we
can derive nextRs(g′, cl, w, ml) = Redex (r′,Silent) with Lemma 4.8.
With IH, prove nextRs(r′, cl, w

′,ml) = Redex (r′,Silent), and therefore
nextRs(r, c, w′,ml |||

p
∗ mr) = Redex (r,Silent). If the right-hand side

is reduced, the proof is similar. Programs of the form m1 >>= f are proved
easily with induction.

Lemma 4.19. If w ° m
g 7→r−−→ c• w ° m′ then for all w′, w′ ° m

r 7→r−−→ c• w′ ° m′.

Proof. Immediate, from Lemma 4.18.

Lemma 4.20. If nextRs(g, c, w, m) = Redex (r,Action a) then for all
w1, if wa a w1 = False then nextRs(r, c, w1,m) = Redex (r,Action a).

Proof. Induction on m. Similar to the proof of Lemma 4.18 except the only
valid base program is action a – all the others reduce silently. Since the
action was already performed successfully in the action’s local context c1

which won’t have changed, we know that ap c1 a = True, and because we
know wa a w1 = False that action will definitely be returned as a legitimate,
unstalled redex.

Lemma 4.21. If w ° m
g 7→r−−→ c

a w′ ° m′, where af a w = (w′,v), then for
all w1, if wa a w1 = False and af a w1 = (w′1,v), then w1 ° m

r 7→r−−→ c
a w′1 ° m′.

Proof. Immediate, using Lemma 4.20.

Lemma 4.22. If w ° m
g 7→r−−→ c

a w′ ° m′, then for all w1, if wa a w1 = False
and af a w1 = ⊥, then w1 ° m r 7→r ↑c

a.

Proof. Immediate, using Lemma 4.20.

Lemma 4.23. If w ° m
g 7→r−−→ c w′ ° m′, then w ° m

r 7→r−−→ c w′ ° m′.

Proof. If the reduction is silent, apply Lemma 4.19. If it performs an action
a, apply Lemma 4.21 – we know from Lemma 4.15 that wa a w = False.

Lemma 4.24. If w ° m g 7→r ↑c
a, then w ° m r 7→r ↑c

a.

Proof. Apply Lemma 4.22 – we know from Lemma 4.14 that wa a w =
False.

We can now prove that reduction in disjoint contexts is order indepen-
dent.

Theorem 4.1. Assuming pres and cl ♦s cr, then if both w ° ml

gl 7→rl−−→ cl wl ° m′
l

and w ° mr

gr 7→rr−−→ cr wr ° m′
r, then either

31

• there exists some w2 such that both

wr ° ml

rl 7→rl−−→ cl w2 ° m′
l

and
wl ° mr

rr 7→rr−−→ cr w2 ° m′
r

• or it is the case that both wr ° ml
rl 7→rl ↑cl and wl ° mr

rr 7→rr ↑cr .

Proof. Case analysis on whether a reduction is silent.

• One is silent, say that of cl: wl = w, from Corollary 4.2, and both
succeed. Let w2 = wr. Use Lemma 4.19 to prove that ml still reduces
to m′

l with world state wr, and use Lemma 4.23 to prove that mr will
behave the same on world w with rr as its guess instead of gr. (The
proof is symmetric if cr’s redex is silent.)

• Both are actions, say al and ar: This means (Corollory 4.3) that
af al w = (wl,vl) and af ar w = (wr,vr). From Lemma 4.17 we
know ap cl al = True and ap cr ar = True, and from Lemma 4.15,
we also know that wa al w = False and wa ar w = False. Now,
since cl ♦s cr holds this means al |||s ar, allys(al, ar) and allys(ar, al)
are true. Using allys(al, ar) prove wa ar wl = False, using allys(ar, al)
prove wa al wr = False, and because cl |||s cr, either:

– There exists a w2 such that af al wr = (w2,vl) and af ar wl =
(w2,vr). Apply Lemma 4.21 to both sides to prove that they
both will succeed.

– af al wr = ⊥ and af ar wl = ⊥. Apply Lemma 4.22 to show
they both fail.

4.4 Analysing Failure

The next important theorem is that given PREs, if w ° m ↑c then w ° m ⇑c.
This is effectively a proof that denotational failure in the metalanguage
always causes divergence in our language – if a single-step reduction can
possibly fail then despite nondeterminism it is impossible that the program
will ever converge to a normal form.

In previous subsections we defined two distinct types of failure:

• w ° m g 7→r ↑c
a. A redex is found, action a, but the action a fails.

• w ° m g 7→⊥ ↑c. The search for a redex fails outright.

32

Tree β = Branch (Tree β) (Tree β) | Leaf β

redexTrees :: ς → Prog ν α ρ → Tree (Redex (Route,(ς,RxType α)))
redexLists :: Guess → ς → Prog ν α ρ → [(Redex (Route,(ς,RxType α)))]

checks :: ω → Redex (Route,(ς,RxType α))→ Redex (Route,RxType α)

shuffle :: Guess → Tree β → Tree β

preorder :: Tree β → [β]
mapTree :: (β → γ) → Tree β → Tree γ

firstRx :: Redex β → Redex β → Redex β

addL, addR :: Redex (Route,β)→ Redex (Route,β)

nextR′s(g, c, w, m) M= firstRxWs w (redexLists g c m)

firstRxWs w
M= foldl firstRx NoRedex ◦ map (checks w)

redexLists g c m
M= preorder $ shuffle g $ redexTrees c m

Figure 11: Definition of nextRs

If a program fails in the first way, then proving it will diverge is rel-
atively easy (Lemma 4.38). The second, however, is much more difficult
since it forces us, like with nexts, to rewrite nextRs, breaking the process
of searching for a redex into more manageable chunks. This is required to
find out exactly how and why searching for a redex might fail.

Deconstructing nextRs

There are obvious tensions at play when trying to re-implement nextRs. A
tree structure perfectly describes the structure of redexes: a leaf node repre-
sents a definite redex or lack thereof, and a Branch indicates two concurrent
programs, each of which may have their own redexes. Furthermore, the
Guess used to coordinate the search for a redex is most “naturally” applied
to a tree structure. On the other hand, we must search for a redex sequen-
tially. A list is ideal for this, since each element in a list is indexed uniquely
and sequentially by integers in a way that elements of a tree cannot be.

Our solution involved the construction of two temporary structures, a
tree and a list, before the final redex is returned. By doing this we can then
make use of existing theorems on lists and trees. An outline of the new
function nextR′s is given in Figure 11.

The first half is the function redexLists. This constructs a lazy list
of potential redexes and has three parts. redexTrees c m first builds a
tree in which each leaf-node represents either NoRedex, indicating that no

33

reduction can take place, or Redex (r,(c1,x)), indicating that there is
a potential redex at Route r, where c1 is the local context for that redex.
x can be either Silent or Action a for some a. There are are only two
situations where NoRedex will occur in the tree: (1) if m is a value at the
top-level, and (2) if a sub-program of m is of the form return vl |||

p
∗ mr or

ml |||
p
∗ return vr and mr/ml aren’t values. The function shuffle g then

rearranges the tree according to Guess g so that the left-to-right ordering
of leaves respects the order in which nextRs originally would have scanned
for redexes. Pre-ordering this tree with preorder then results in a list of
potential redexes in the correct order.

firstRxWs is the second half and finds the first legitimate redex in this
list. It has two parts. Mapping checks w across the list of potential redexes
throws out any action redexes which (1) aren’t permitted by their local
context or (2) are permitted but are stalled in the current world w. Actions
which aren’t allowed result in ⊥ (nextRs should only return valid actions
– Lemma 4.16) but permitted actions which are currently stalled become
NoRedex. Having eliminated all spurious redexes from the list, we can
simply scan the list looking for the first element which isn’t NoRedex.
Folding firstRx across the list does exactly that.

The types of a few other internal functions are given in Figure 11. The
function mapTree modifies each element of a tree with a given function and
addL and addR prepend either a L or a R to the route contained within a
redex.

It is useful to note that this re-implementation manages to separate the
four arguments of nextR′s into three different sequential transformations.
The context c and program m are supplied to redexTrees, the tree is shuffled
with the Guess g, and the world value w is only needed by checks to see if
actions are stalled.

Unlike nextRs, nextR′s is not defined directly in a recursive manner.
We therefore need to prove that a direct recursive relationship exists. The
following lemmas are all required to show that the behaviour of nextR′s for
some program can be understood in terms of its behaviour for the sub-
programs of that program.

Lemma 4.25.

(i) length ◦ preorder = length ◦ preorder ◦ shuffle g
(ii) shuffle g ◦ shuffle g = id

(iii) shuffle g1 ◦ shuffle g2 = shuffle g2 ◦ shuffle g1

(iv) shuffle [L, L, ...] = id

(v) shuffle g ◦ mapTree f = mapTree f ◦ shuffle g
(vi) map f ◦ preorder = preorder ◦ mapTree f

(vii) (r1 ‘firstRx‘ r2) ‘firstRx‘ r3 = r1 ‘firstRx‘ (r2 ‘firstRx‘ r3)

(viii) firstRxWs w (r1++r2) = firstRx (firstRxWs w r1) (firstRxWs w r2)

34

(ix) r = r ‘firstRx‘ NoRedex
(x) r = NoRedex ‘firstRx‘ r
(xi) checks ω ◦ addL = addL ◦ checks ω
(xii) checks ω ◦ addR = addR ◦ checks ω
(xiii) firstRxWs w ◦ map addL = addL ◦ firstRxWs w
(xiv) firstRxWs w ◦ map addR = addR ◦ firstRxWs w

Proof. All by straightforward induction or case analysis.

Result (i) in Lemma 4.25 is a proof that shuffling a redex tree does not
change the number of elements in that tree.

The results (ii)-(iv) in Lemma 4.25 show that shuffle g, for all g, forms
the elements of an Abelian (or commutative) group under the ◦ operator.
Function composition is always associative, the identity is shuffle [L, L, ...]
and each element is its own inverse.

Results (vii), (ix) and (x) show that firstRx is a monoidal operator
with identity NoRedex. The final four results show that firstRxWs and
check do not query the route at which a redex exists. Instead it is passed
through these functions unchanged.

Lemma 4.26. If m is not a value then redexLists g c (m >>= f) =
redexLists g c m.

Proof. Immediate.

Lemma 4.27. If ml, mr are not both values and pf p c = (cl,cr) then

redexLists [L:g] c (ml |||
p
∗ mr) =

map addL (redexLists g cl ml) ++map addR (redexLists g cr mr)

Proof. Equational.
redexLists [L:g] c ml |||

p
∗ mr

= (redexLists, defn.)
preorder $ shuffle [L:g] $ redexTrees c (ml |||

p
∗ mr)

= (redexTrees defn.)
preorder $ shuffle [L:g] $ Branch (mapTree addL $ redexTrees cl ml) (· · ·)

= (shuffle defn.)
preorder $ Branch (shuffle g $ mapTree addL $ redexTrees cl ml) (· · ·)

= (preorder defn.)
(preorder $ shuffle g $ mapTree addL $ redexTrees cl ml) ++ (· · ·)

= (Lemma 4.25, (v))
(preorder $ mapTree addL $ shuffle g $ redexTrees cl ml) ++ (· · ·)

= (Lemma 4.25, (vi))
(map addL $ preorder $ shuffle g $ redexTrees cl ml) ++ (· · ·)

= (redexLists, defn.)
map addL (redexLists g cl ml) ++map addR (redexLists g cr mr)

35

Lemma 4.28. If ml, mr are not both values and pf p c = (cl,cr) then

redexLists [R:g] c (ml |||
p
∗ mr) =

map addR (redexLists g cr mr) ++map addL (redexLists g cl ml)

Proof. Symmetric to that of Lemma 4.27.

Lemma 4.29. If m is not a value then nextR′s(g, c, w, m >>= f) = nextR′s(g, c, w, m)

Proof. Immediate from Lemma 4.26

Lemma 4.30. If pf p c = (cl,cr) and ml,mr are not both values then

nextR′s([L:g], c, w, ml |||
p
∗ mr) =

firstRx (addL (nextR′s(g, cl, w, ml))) (addR (nextR′s(g, cr, w,mr)))

This states that if the the initial Guess says to look on the left-hand side
first, then do

Proof. Equational.
nextR′s([L:g], c, w, ml |||

p
∗ mr)

= (nextR′s defn.)
firstRxWs w (redexLists [L:g] c (ml |||

p
∗ mr))

= (Lemma 4.27)
firstRxWs w (map addL (redexLists g cl ml) ++map addR (redexLists g cr mr))

= (Lemma firstRxWs w (rs1 ++rs2))
firstRx (firstRxWs w (map addL (redexLists g cl ml))) (· · ·)

= (Lemma 4.25, (xiii) and (xiv))
firstRx (addL (firstRxWs w (redexLists g cl ml))) (addR (· · ·))

= (nextR′s defn.)
firstRx (addL (nextR′s(g, cl, w, ml))) (addR (nextR′s(g, cr, w, mr)))

Lemma 4.31. If pf p c = (cl,cr) and ml,mr are not both values then

nextR′s([R:g], c, w, ml |||
p
∗ mr) =

firstRx (addR (nextR′s(g, cr, w, mr))) (addL (nextR′s(g, cl, w, ml)))

Proof. Similar to proof of Lemma 4.30.

Lemma 4.32. nextRs = nextR′s.

Proof. Induction on program structure. All base terms are deterministic, so
the Guess is irrelevant and it is a simple matter of showing that checks and
redexTrees together behave the same as nextRs. If the program is of the
form m >>= f , m not a value, then Lemma 4.6 and Lemma 4.26 together
convert nextRs and nextR′s respectively to the form of the IH. If the program

36

wfs : ς → (Prog ν α ρ) → B

wfs(c,m) M= length (preorder (redexTrees c m)) 6= ⊥

wfs(c, return v) wfs(c, action a) wfs(c, test a mt mf) ¬wfs(c,⊥)

wfs(c,m >>= f) ⇐⇒ wfs(c,m)

if pf p c = ⊥, then ¬wfs(c,ml |||
p
∗ mr)

if pf p c = (cl,cr), then wfs(c,ml |||
p
∗ mr) ⇐⇒ (wfs(cl,ml) ∧ wfs(cr,mr))

Figure 12: Well-Formedness of Programs

is ml |||
p
∗ mr, ml and mr not both values, then depending on whether the

Guess is of the form [L:g] or [R:g] use Lemma 4.27 or Lemma 4.28. With
the IH for ml and mr one can then show that nextR′s preserves (1) the order
in which the implementation of nextRs searches for redexes and (2) how the
resultant route, if there is one, has either L or R prepended to it depending
on the location of the redex.

Well-formedness of Programs

For the divergence proof we found it necessary to define a notion of a well-
formed program with respect to some context. The purpose of this is to
distinguish programs which fail as a result of their structure (programs which
aren’t well-formed) and those that fail because of actions and how they
interact with world state (programs that are well-formed.) The key to the
introduction of well-formedness is the proof that if a program is not well-
formed then it will always diverge, even though it’s possible that it may never
fail after a finite number of steps. (Failure, as always, means immediate
failure, ↑.)

If a program m is well-formed with respect to context c then this is writ-
ten as wfs(c,m). The definition and some basic properties of well-formedness
is given in Figure 12 – a program is well-formed if the list of potential redexes
returned by redexTrees is of defined length. If ¬wfs(c,m) then we know m
is partial (contains ⊥s), infinite or the context c was not split successfully
in m. The properties are all simple consequences of the implementation,
requiring just a few basic results such as

length (xs ++ys) = ⊥ ⇐⇒ (length xs = ⊥ ∨ length ys = ⊥)

To explain why we need this new terminology one needs to under-
stand why an attempt to prove the theorem relating failure to divergence

37

would fail without it. Divergence, ⇑, expresses the property that for a
given world/program pair no reduction sequence of finite length can re-
sult in convergence to some normal form. The way that one proves that
a world/program pair diverges is to prove, by inducting over i, that if it
converged to normal form after i steps one can show a contradiction.

It was originally thought that the following lemma would suffice: If PREs

and w ° m −→c w′ ° m′, then w ° m ↑c implies w′ ° m′ ↑c. In other words,
if a program can possibly fail, then it cannot escape from that possibility by
reducing to a different world/program pair. But this proof strategy doesn’t
hold for some programs which are badly-formed, and the following counter-
example shows why: (to be run in model lock with any context; world state
should be True (the mutex is locked); f is irrelevant.)

let waits = par () (action Wait) waits f
in par () (action Unlock) waits f

The program waits attempts to create an infinite number of processes
each of which performs a single Wait action. The entire program above
places an Unlock in parallel with waits. If the mutex is locked and we
first look for a redex on the right-hand side then it will always fail (↑) –
there are an infinite number of stalled actions within waits and the search
for a redex simply won’t terminate. After executing (action Unlock),
however, each of the infinite number of Waits are released, and there will
always be a redex, and thus no (immediate) failure can occur2. By proving
that badly-formed programs always diverge, we solve the problem with the
waits counter-example. Since it always diverges, it is obviously true that if
it can fail it will diverge.

It is worth noting that some partial or infinite programs are well-formed.
Take the reads example in Section 3: reads itself isn’t well-formed, but
the program (test ReadI reads (return (−1))), although “syntactically”
infinite, is well-formed. It is also worth noting that well-formedness is a
property of programs for a given context, not world/program pairs.

2One may ask, though, that if the single-step reduction function is given a Guess which
tells it always to first try the right-hand side of a parallel reduction, it would also fail
immediately, never observing an action. That might solve it for this example, but the
problem runs much deeper. What’s of real interest is that when we said it made the
theorem unprovable, we didn’t mean it made it false! The issue is that our denotational,
domain theoretic model of computable programs contains denotations of non-existent
programs - which is an example of the famous full abstraction problem [Ong95]. In the
above example, to cause it to fail, the right-hand side must be constantly traversed. But
what if the side with an infinite number of actions alternates from left to right? The
domain of Prog ν α ρ admits any infinite sequence of left/right, but, since an infinite list
of Bool can encode any real number, and it’s well known that certain real numbers are
uncomputable, one cannot always compute a guess which would always pick the correct
reduction path to guarantee failure. And the guess must be computable, because of the
admissibility constraints mentioned.

38

4.5 Failure implies Divergence

We are now in a position to begin proving the following key theorem.

Theorem 4.2. If PREs, then w ° m ↑c implies w ° m ⇑c.

Proof. If ¬wfs(c, m), use Lemma 4.35. If w ° m g 7→r ↑c
a, use Lemma 4.38.

Otherwise it must be true that wfs(c,m) and w ° m g 7→⊥ ↑c, so use Lemma
4.51.

It’s proof is effectively the merging of three separate lemmas, and these
three lemmas are proved in the following three respective sub-subsections.

Badly-Formed Programs

We prove that badly-formed programs diverge by showing that a program
cannot reduce out of a badly-formed state, and that no badly-formed pro-
gram is in normal form.

Lemma 4.33. If w ° m ↓c then wfs(c,m).

Proof. Induction on m. A value is well-formed, as is a stalled action (or any
action, for that matter). The other base terms are not in normal form, so
don’t apply. This is easily proved by induction if m = m′ >>= f . When
m = ml |||

p
∗ mr is in normal form, ml and mr must be as well. Therefore,

by IH, wfs(cl,ml) and wfs(cr,mr) and since the concatenation of two finite
lists is a finite list, wfs(c,m).

Lemma 4.34. If ¬wfs(c,m) and w ° m −→c w′ ° m′, then ¬wfs(c,m′).

Proof. Induction on m.

• Base terms. The only base program which isn’t well-formed is ⊥, and
it cannot reduce successfully, so doesn’t apply.

• m = m1 >>= f : It must be true that ¬wfs(c,m1) and w ° m1 −→c

w′1 ° w′ so, by IH, ¬wfs(c,m′
1). Therefore m′

1 cannot be a value, and
¬wfs(c, m1 >>= f).

• m = ml |||
p
∗ mr: Since ¬wfs(c, ml |||

p
∗ mr), that means at least one

of the following is true: ¬wfs(cl,ml) or ¬wfs(cr,mr). Now, say ml

contains the reduced redex. This means w ° ml −→cl w′l ° m′ and
m′ = m′

l |||
p
∗ mr, for some m′

l. If it was mr which was badly-formed
then the resultant program will still be badly-formed. If it was ml that
was badly formed then, by IH, ¬wfs(cl, m

′
l) and the resultant program

remains badly-formed. (The proof is symmetric if mr was reduced,
not ml.)

39

Lemma 4.35. If ¬wfs(c,m), then for all w, w ° m ⇑c.

Proof. Induction on the number of reduction steps it might take to reduce
to normal form. Base case (0): from Lemma 4.33, since m is badly-formed
it can’t be in normal form. Inductive case: It can’t converge to normal form
after i+1 steps because after one step it is still badly-formed (Lemma 4.34)
and it can’t converge after i steps (IH).

Failure of Actions

We prove that the failure of an action implies w ° m ⇑c by showing that
even if w ° m can also reduce successfully then it can never “escape” from
the action that originally failed. This is the property we originally wanted
to prove for all programs, before we showed a counter-example. That it is
true for actions which fail is the result of the definition of |||s. It preserves
the fact that af a w = ⊥ after the world state is modified by another action.

Lemma 4.36. Given pres, cl ♦s cr, then if w ° mr
gr 7→rr ↑cr

ar
and w ° ml −→cl

wl ° m′
l, then wl ° mr

rr 7→rr ↑cr
ar

.

Proof. We know that the action ar failed: af ar w = ⊥. If ml reduces
silently then wl = w, and Lemma 4.24 can be used. If ml performs some
action al then, from Lemma 4.15, wa al w = False, from Lemma 4.17,
ap cl a = True, and from the definition, af al w = (wl,vl), for some vl.
With cl ♦s cr, then derive al |||s ar and allys(al, ar). Using these two facts
we can prove af ar wl = ⊥ and wa ar wl = False respectively. Apply
Lemma 4.22 to show that ar will fail when executed in world wl.

Lemma 4.37. If PREs, w ° m g 7→r ↑c
a and w ° m −→c w′ ° m′, then

w′ ° m′ g 7→r ↑c
a.

Proof. Induction on m. True by contradiction for all base programs – they
are deterministic, and therefore cannot fail and successfully reduce. For
m1 >>= f (where m1 isn’t a value) apply IH. If m is of the form ml |||

p
∗ mr

(and ml and mr aren’t both values) then do case analysis on whether the
failure and the reduction were on the same side or different sides. If both
failure and success are on the same side, apply the IH. If failure and success
are on opposite sides, apply Lemma 4.36 to prove that the side that fails will
still fail after a successful reduction on the opposite side. (Since reduction
can succeed, pf p c = (cl,cr) for some cl, cr, and from PREs this means
pres and cl ♦s cr).

Lemma 4.38. If PREs, then if w ° m g 7→r ↑c
a, then w ° m ⇑c.

40

Proof. Induction on the number of reduction steps it might take to reach
normal form. Base case (0): Since w ° m ↑c, by Lemma 4.13 it can’t be in
normal form. Inductive case: It can’t reach normal form after i + 1 steps
because, by Lemma 4.37, after one step it can still fail, and by IH it can’t
converge to normal form after i steps.

Well-formed failure of nextRs

Finally, we must prove that, assuming PREs and wfs(c,m), if w ° m g 7→⊥ ↑c

then w ° m ⇑c. The structure to the proof is rather similar to our proof
of Lemma 4.38 at a high level but there are considerably more technical
details.

The well-formedness of m has a direct consequence: it means that there
are a finite list of potential redexes, and we can therefore induct over the
length of the list without admissibility constraints. One can therefore prove
existential properties by induction, namely that if nextRs results in ⊥ then
it failed for some specific potential redex identified by an integer. Once
we have an identifer for problematic redexes we can then prove admissible
properties about a lazy structure like Prog ν α ρ.

This subsection of the proof is not pretty and requires us to get our
hands dirty manipulating the elements of lists of redexes. (Our approach
was influenced very much by the existence of other pre-proved theorems
relating to lists.) Also, for the amount of effort required, its relevance is
disappointingly small. As we show below, if a program fails in the above
manner it is for one of two rather uninteresting reasons. We include the proof
for absolute completeness and as a testament to the rigour a proof-assistant
imposes on its user.

We begin by proving three lemmas relating lists of potential redexes of
programs of the form ml |||

p
∗ mr to that of ml and mr.

Lemma 4.39. If pf p c = (cl,cr), wfs(c,ml |||
p
∗ mr) and it is true that

redexLists [b:g] c (ml |||
p
∗ mr) !! i = Redex ([L:r],x) then for some il

redexLists g cl ml !! il = Redex (r,x).

Proof. First, ml and mr cannot both be values since this would means
redexLists [b:g] c (ml |||

p
∗ mr) = [Redex ([],(c,Silent))], and [L:r] 6=

[]. Cases analysis on b:

• b = L: Apply Lemma 4.27. Because wfs(c, ml |||
p
∗ mr), there are a

finite, defined number of potential redexes for both ml and mr. If i <
length (redexLists g cl ml) then map addL $ redexLists g cl ml !! i =
Redex ([L:r],x) and therefore redexLists g cl ml !! i = Redex (r,x),
so let il = i. If i ≥ length (redexLists g cl ml) then it is true that
map addR $ redexLists g cr mr !! i = Redex ([L:r],x), and this
is a contradiction since addR cannot modify the resultant route so it
becomes [L:r].

41

• b = R: Apply Lemma 4.28. Similar to the above except mr is
searched first. If i < length (redexLists g cr mr) then contra-
diction. Otherwise i ≥ length (redexLists g cr mr), so let il =
i− length (redexLists g cr mr).

Lemma 4.40. If pf p c = (cl,cr), wfs(c,ml |||
p
∗ mr) and

redexLists [b:g] c (ml |||
p
∗ mr) !! i = Redex ([R:r],x)

then for some ir redexLists g cr mr !! ir = Redex (r,x).

Proof. Similar to the proof of Lemma 4.39.

Lemma 4.41. If pf p c = (cl,cr) and wfs(c, ml |||
p
∗ mr) then

redexLists g c (ml |||
p
∗ mr) !! i = Redex ([],x)

for some i if and only if ml and mr are both values.

Proof. If: By contradiction. If ml and mr were not both values then, de-
pending on whether g is [L:g′] or [R:g′] for some g′, use either Lemma 4.27
or Lemma 4.28 to show that the resultant route must be either [L:r′] or
[R:r′] for some r′. A route of value [] is impossible.

Only if: both ml and mr are values, so by the implementation there is
just one silent reduction at route [].

The next step is to identify how and why w ° m g 7→⊥ ↑c. The following
three lemmas together show that if w ° m g 7→⊥ ↑c then for some action a
either

• ap c a 6= True, or

• ap c a = True and wa a w = ⊥
Lemma 4.42. If a list rxs is finite and firstRxWs w rxs = ⊥ then there
exists some i, i ≥ 0, i < length rxs such that checks w (rxs !! i) = ⊥.

Proof. Induction on the length of rxs. If rxs = [], firstRxWs w rxs 6=
⊥. If rxs = [rx : rxs′] then either checks w rx = ⊥ (let i = 0), or
firstRxWs w rxs′ = ⊥, in which case let i = i′ + 1, where i′ is the index
from the IH.

Lemma 4.43. If wfs(c, m) and w ° m g 7→⊥ ↑c then there exists an integer
i such that (redexLists g c m) !! i = Redex (r,(c1,Action a)) and
checks w (Redex (r,(c1,Action a))) = ⊥.

42

Proof. w ° m g 7→⊥ ↑c is defined as nextRs(g, c, w, m) = ⊥, which is equiv-
alent to firstRxWs w (redexLists g c m) = ⊥. Since wfs(c,m) there are
only a finite number of potential redexes, so apply Lemma 4.42 to prove
that there is some i and such that checks w (redexLists g c m !! i) = ⊥.
redexLists g c m !! i must be of the form Redex (r,(c1,Action a))
because checks never fails for silent redexes or NoRedex. (There is also a
separate and entirely uninteresting proof that redexLists cannot return a
list with ⊥ as an element. We omit this entirely).

Lemma 4.44. checks w (Redex (r,(c,Action a))) = ⊥ if and only if
either ap c a 6= True or ap c a = True ∧ wa a w = ⊥.

Proof. Immediate.

We temporarily replace any reference to divergence with properties of
checks and redexLists and continue the proof in the style of previous
subsections. Lemma 4.46, Lemma 4.47 and Lemma 4.48 are really just
re-workings of Lemma 4.17, Lemma 4.36 and Lemma 4.37 respectively.

Lemma 4.45. If checks w (Redex (r,x)) = ⊥ then for all r1 it is true
that checks w (Redex (r1,x)) = ⊥.

Proof. A direct consequence of the implementation. checks never examines
the route r.

Lemma 4.46. If wfs(c,m) and pres, then if redexLists g c m !! i =
Redex (r,(c1,Action a)) then ap c1 a = True implies ap c a = True.

Proof. Induction on m. For base terms, only action a meets the pre-
condition and ap c a = True implies ap c a = True. If m = m1 >>= f then
apply Lemma 4.26 and IH. If m = ml |||

p
∗ mr then apply either Lemma 4.39

or Lemma 4.40 depending on the route r. If r = [L:r′] we can prove that
redexTrees g′ cl ml !! il = Redex (r′,(c1,Action a)) for some il. With
IH, prove ap c1 a = True implies ap cl a = True and with pres prove that
cl vs c and therefore ap c a = True. The proof for the right-hand side is
similar.

Lemma 4.47. If pres, cl ♦s cr, wfs(cr,mr), redexTrees gr cr mr !! i =
Redex (rr,(cr1,Action ar)), checks w (Redex (rr,(cr1,Action ar))) =
⊥ and w ° ml −→cl wl ° m′

l, then checks wl (Redex (rr,(cr1,Action ar))) =
⊥ .

Proof. From Lemma 4.44, either ap cr1 ar 6= True or ap cr1 ar = True ∧
wa ar w = ⊥. If it is the former then this will be unaffected by a reduced
action, so regardless of wl, checks will still fail. If ap cr1 ar = True and
wa ar w = ⊥, then apply Lemma 4.46 to prove ap c ar = True. Next
examine the reduction of ml. If it’s silent, then wl = w, so mr can fail in

43

the same way. If reducing ml performs an action al then apply Lemma 4.15
to prove wa al w = False and, from Lemma 4.17, ap cl a = True. With
cl ♦s cr derive allys(al, ar), which guarantees that wa ar wl = ⊥. This, by
Lemma 4.44, proves that checks will also fail with world wl.

Lemma 4.48. If wfs(c,m) and PREs then

redexTrees g1 c m !! i = Redex (r1,(c1,Action a))

checks w (Redex (r1,(c1,Action a))) = ⊥

and w ° m
g2 7→r2−−→ c w′ ° m′ implies

checks w′ (Redex (r1,(c1,Action a))) = ⊥
Proof. Induction on m.

• True by contradiction for all base redexes, since, being deterministic,
they cannot both reduce and fail to reduce.

• For m = m1 >>= f (m1 not a value), from Lemma 4.26

redexTrees g1 c (m1 >>= f) = redexTrees g1 c m1

and from the language semantics we can derive w ° m1

g2 7→r2−−→ c w′ ° m′
1

and m′ = m′
1 >>= f from w ° m1 >>= f

g2 7→r2−−→ c w′ ° m′. Apply IH.

• When m = ml |||
p
∗ mr, where ml and mr are not both values, perform

case analysis on the routes r1 and r2. Neither can be [] (Lemma 4.41,
Lemma 4.5).

– If both redexes are on the same side, say the left-hand side,
making r1 = [L:r′1] and r2 = [L:r′2], apply Lemma 4.39 and
Lemma 4.10. With IH one can now prove that

checks w′ (Redex (r′1,(c1,Action a))) = ⊥
Apply Lemma 4.45 to prove the same is true with route [L:r′1].

– If the redexes are on opposite sides then from pf p c = (cl,cr)
and PREs we can prove pres and cl ♦s cr (and cr ♦s cl by symme-
try). Apply Lemma 4.47.

We are finally in a position to “repackage” divergence. Lemma 4.49
shows that re-using a previous route as a Guess will mean the redex at
that route will be the first to be chosen (a re-working of the proof of both
Lemma 4.18 and Lemma 4.20). Lemma 4.50 uses this to tidy up Lemma 4.48,
and Lemma 4.51 follows exactly the same procedure as Lemma 4.38 to prove
failure implies divergence.

44

Lemma 4.49. If wfs(c,m) and redexLists g c m !! i = Redex (r,x) then
redexLists r c m !! 0 = Redex (r,x).

Proof. Induction on m. For base terms, ⊥ is not well-formed and otherwise
there is just one potential redex, the Guess is ignored and i must be 0 al-
ready. If m = m1 >>= f where m1 is not a value, use Lemma 4.26 and IH.
If m = ml |||

p
∗ mr, where ml and mr are not both values, then do case

analysis on r. If r = [L:r′], apply Lemma 4.39 to prove that for some il,
redexLists g′ cl ml !! il = Redex (r′,x), where g = [b:g′]. By IH, this
implies redexLists r′ cl ml !! 0 = Redex (r′,x), and by Lemma 4.27
this can be shown to imply redexLists [L:r′] c (ml |||p

∗ mr) !! 0 =
Redex ([L:r′],x). That is: if x is the first potential redex in ml with
guess r′ then it will be the first potential redex in ml |||

p
∗ mr with guess

[L:r′], since it will be ml that is searched first. If r = [R:r′] then the proof
is similar.

Lemma 4.50. If PREs, wfs(c, m), w ° m g 7→⊥ ↑c and w ° m −→c w′ ° m′,
then for some g1 w′ ° m′ g1 7→⊥ ↑c.

Proof. Apply Lemma 4.43 to prove that some i redexLists g c m !! i =
Redex (r,(c1,Action a)) and checks w Redex (r,(c1,Action a)) =
⊥. Use Lemma 4.48 to prove checks w′ Redex (r,(c1,Action a)) = ⊥ (a
can still cause failure in world w′). Apply 4.49 to prove redexLists r c m !! 0 =
Redex (r,(c1,Action a)) – if we chose Guess r the second time then the
first redex to be chosen will be action a. It can be shown easily that this
means nextRs(r, c, w′, m′) = ⊥, and therefore, letting g1 = r, w′ ° m′ g1 7→⊥ ↑c.

Lemma 4.51. If PREs, then if wfs(c,m) and w ° m g 7→⊥ ↑c, then w ° m ⇑c.

Proof. Induction on the number of reduction steps it might take to reach
normal form. Base case (0): Since w ° m ↑c, by Lemma 4.13 it can’t be in
normal form. Inductive case: It can’t converge to normal form after i + 1
steps because, by Lemma 4.50, after one step it can still fail, and by IH it
can’t converge to normal form after i steps.

4.6 Confluence of Reduction

The confluence result is finally proved in this subsection. As is standard for
confluence proofs, this is achieved by proving a so-called “diamond prop-
erty”. This is a proof that if two different non-deterministic reductions are
possible, then there exists a common reduct to which both sides can then
reduce.

We assume for all of this sub-subsection that PREs holds.

45

Lemma 4.52. If w ° m 1 ²²²²
c w′ ° m′ (i.e. w ° m −→c w′ ° m′ and

w′ ° m′ ↓c), then w ° m 1 ⇓c w′ ° m′. (This is a proof of confluence
for programs which require one reduction step.)

Proof. Induction on m.

• All the base programs either can’t reduce or reduce deterministically.

• With m1 >>= f (m1 not a value), we know that w ° m1 −→c w′ ° m′
1,

w′ ° m′
1 ↓c and m′ = m′

1 >>= f . Because m′ is stalled, m′
1 can’t be a

value, so apply IH.

• With ml |||p
∗ mr first prove that neither side can fail (if one side

did fail, then the whole program could fail, and, by Theorem 4.2, the
whole program could never reduce to a normal form – but it does,
after one step.) Next, prove that it’s impossible for both sides to be
successfully reduced (if both were, then by Theorem 4.1, after single-
step reducing one particular side the program couldn’t be in normal
form – the opposite side could still either be reduced or fail.) So any
two reductions must be both in ml or both in mr. Apply IH to prove
that both reductions on that side will have the same outcome.

Lemma 4.53. Diamond Property. This is the proof that if we know that

w ° m
g′ 7→r′−−→ c w′ ° m′ and w ° m

g′′ 7→r′′−−→ c w′′ ° m′′ then either

• The same redex was reduced: w′ = w′′ and m′ = m′′.

• There is a common reduct: For some w′′′ and m′′′, w′ ° m′ r′′ 7→r′′−−→ c w′′′ ° c′′′

and w′′ ° m′′ r′ 7→r′−−→ c w′′′ ° c′′′.

• Both sides will diverge: w′ ° m′ ⇑c and w′′ ° m′′ ⇑c.

Actually, in the last case we prove something slightly more specific which
always implies divergence. This because divergence is inadmissable, requir-
ing existential quantification and negation. We prove instead that they
either fail or reduce to a badly-formed program. Both of these imply diver-
gence, and it is easy to prove that if a >>= or a par diverge in this special
way, the whole program will also diverge in this way.

Proof. Induction on m.

• All base reduction rules either can’t reduce at all (contradiction), or
deterministically reduce to the same redex.

46

• w ° m1 >>= f −→c w′ ° m′
1 >>= f and w ° m1 >>= f −→c w′′ ° m′′

1 >>= f .
If m′

1 or m′′
1 are stalled, then by Lemma 4.52, w′ = w′′ and m′

1 = m′′
1.

This case rules out either m′
1 or m′′

1 being values, so the next reduction
must be within m′

1 and m′′
1, and not the application of f to something.

Apply IH.

• Both
w ° ml |||

p
∗ mr −→c w′ ° m′

l |||
p
∗ m′

r

and
w ° ml |||

p
∗ mr −→c w′′ ° m′′

l |||p
∗ m′′

r

The two reductions may have reduced different sides, or the same side.

– If the same side was reduced, say that of ml, use Lemma 4.52
to account for the possibility of m′

l or m′′
l being stalled or values

(which would cause reduction to flip to the other side the second
time around.) If either side was, then both reductions would have
been the same. Apply IH.

– If one reduction was in ml and the other was in mr, then apply
Theorem 4.1. Either both reduction orders can then fail (which
entails failure for the whole program and therefore divergence by
Theorem 4.2), or both reduction orders can reduce once more
to get the same result by reducing the opposite side to that ini-
tially reduced. However, if one side reduces to a program which
is ⊥ (which is still a successful reduction), then depending on
the ordering, the parallel execution may accidentally force the
program’s evaluation.
This is why we need divergence at all, and is a consequence of
the side condition that ml 6= ⊥ and mr 6= ⊥ in the single-step
semantics. As an example, consider the program

par LeftWr (action (WriteI 6)) (return 2 >>= λ .⊥) f

The left-hand side reduces to (return 0) and the right-hand side
reduces to ⊥. Reducing the left side then the right side yields
par LeftWr (return 0) ⊥ f, a badly-formed program (which
diverges), but reducing the right side and then the left will fail
outright (which causes divergence.)

Theorem 4.3. Confluence. If w ° m i ²²²²
c w1 ° m1 then w ° m i ⇓c

w1 ° m1.

47

(i) w ° m w1 ° m1

++ ++

33 33

(ii) w ° m

w2 ° m2

w1 ° m1

77oooo))))

33 33

(iii) w ° m

w2 ° m2

w3 ° m3

w1 ° m1

77oooo

''OOOO

))))

55 55

(iv) w ° m

w2 ° m2

w3 ° m3

w4 ° m4 w1 ° m1

77oooo

''OOOO

''OOO

77ooo

// //
55 55

(v) w ° m

w2 ° m2

w3 ° m3

w1 ° m1

77oooo

''OOOO 55 55

Figure 13: Proving Confluence using the Diamond Property

48

Proof. Induction on i. If i = 0, then apply Lemma 4.13. In the induc-
tive case (i = k + 1), first prove for k = 0 using Lemma 4.52. Figure 13
demonstrates the sequence of steps required to prove the full inductive case.
Diagram (i) is the initial proof obligation.

Assuming k ≥ 1 (and i > 1), extract the first of the k + 1 reduction
steps to yield w ° m −→c w2 ° m2 and w2 ° m2

k ²²²²
c w1 ° m1, for some

w2, m2 (diagram (ii)). To prove confluence, we must show that for any
arbitrary reduction of w ° m, it will eventually reduce to w1 ° m1. First
prove that despite the nondeterminism, w ° m cannot fail or be in normal
form. (It can’t be in normal form because it can reduce – Lemma 4.13; it
can’t fail because it does eventually converge to normal form – Theorem
4.2.) Therefore, the only alternative to reducing to w2 ° m2 is that there
is some other w3 ° m3 such that w ° m −→c w3 ° m3 (diagram (iii)). We
must now show that w3 ° m3

k⇓c w1 ° m1. Apply IH twice in a row: first
in a forwards style to prove that we know w2 ° m2

k⇓c w1 ° m1; second in
a backwards style to show that we need only prove w3 ° m3

k ²²²²
c w1 ° m1.

From the diamond property (Lemma 4.53), one of the following is true:

• w2 = w3 and m2 = m3: Trivial.

• There is a common reduct w4 ° m4 (diagram (iv) in Figure 13) such
that w2 ° m2 −→c w4 ° m4 and w3 ° m3 −→c w4 ° m4: From the
confluence of reduction of w2 ° m2, prove that w4 ° m4

k−1 ²²²²
c w1 ° m1.

Thus w3 ° m3
k ²²²²

c w1 ° m1.

• w2 ° m2 ⇑c and w3 ° m3 ⇑c: Proof by contradiction (we know w2 ° m2

can converge to normal form.)

Corollary 4.54. Either w ° m ⇑c or there exists a w′,m′ such that w ° m ⇓c

w′ ° m′ (and not both.)

Proof. The definition w ° m ⇑c is that it’s not the case that w ° m ²²²²
c w′ ° m′,

and w ° m ²²²²
c w′ ° m′, by confluence, is equivalent to w ° m ⇓c w′ ° m′.

49

A Sparkle Proof Sections

The machine-readable form of the proofs may be obtained from the following
URL:

http://www.cs.tcd.ie/research groups/fmg/archive/CURIO-Proofs.html

It isn’t always straightforward to simply list the Sparkle theorem which
corresponds to each individual lemma. Almost all proofs which required
induction over program structure needed to be proved in such a way that
Sparkle could show it was admissible. These results – most of which have
the letters _adms appended to their name – contain the guts of the proof.
Usually a theorem was then proved (without the “adms”) which expressed
the result in a more natural style. Also, many definedness results were
omitted entirely in this document. These are uninteresting but still affect
what was actually proved and our ability to form a direct link between
presented lemmas and the Sparkle theorems.

Below is a select list of results in this document for which there are
equivalent Sparkle theorems.

Result Sparkle Section Theorem Name
Lemma 2.1 curio_examples PRE_Buffer
Lemma 2.2 curio_examples PRE_Lock
Lemma 2.3 curio_examples PRE_IVar
Lemma 3.1 dountil dountil_main_theorem
R.E. Proof curio_rdce rdce_run
Lemma 4.1 curio_prelude next_separated
Lemma 4.8 curio_prelude nextRedex_Par_False
Lemma 4.9 curio_prelude nextRedex_Par_True
Lemma 4.12 curio_reduction nextRedex_stalled_any_guess
Lemma 4.14 curio_reduction nextRedex_wa
Lemma 4.16 curio_reduction nextRedex_ap
Lemma 4.18 curio_reduction nextRedex_interfere_Silent
Lemma 4.20 curio_reduction nextRedex_interfere_Action
Theorem 4.1 curio_reduction next_disjoint_with_nextRedex
Lemma 4.25 (i) curio_failure_internals length_preorder_shuffle
Lemma 4.25 (v) curio_failure_internals shuffle_mapTree
Lemma 4.25 (vi) curio_failure_internals preorder_mapTree
Lemma 4.25 (viii) curio_failure_internals firstRedex_++
Lemma 4.32 curio_failure nextRedex_separated
Theorem 4.2 curio_failure next_failure_divergence
Lemma 4.34 curio_failure next_badlyformed_failure
Lemma 4.35 curio_failure next_badlyformed_divergence
Lemma 4.52 curio_confluence next_final_step
Lemma 4.53 curio_confluence tidy_diamond
Theorem 4.3 curio_confluence rdce_CONFLUENCE

50

References

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics, volume 103 of Studies in Logic and the Foundations
of Mathematics. North-Holland, Amsterdam, The Netherlands,
Revised Edition, 1984.

[CR36] A. Church and J. B. Rosser. Some properties of conversion.
Transactions of the American Mathematical Society, 39:472–
482, 1936.

[DBvE05] Malcolm Dowse, Andrew Butterfield, and Marko van Eekelen.
Reasoning about deterministic concurrent functional I/O. In
Clemens Grelck and Frank Huch, editors, Proceedings of IFL
2004, volume LNCS3474, pages 177–194. Springer-Verlag, 2005.

[dMvEP01] Maarten de Mol, Marko van Eekelen, and Rinus Plasmeijer.
Theorem proving for functional programmers. In Thomas Arts
and Markus Mohnen, editors, Proceedings of the 13th Interna-
tional Workshop, IFL2001, number 2312 in LNCS, pages 55–71.
Springer-Verlag, 2001.

[Hue94] Gérard Huet. Residual theory in λ-calculus: A formal develop-
ment. Journal of Functional Programming, 4(3):371–394, July
1994. Preliminary version available as INRIA Technical Report
2009, August 1993.

[Iga74] Shigeru Igarashi. Admissibility of fixed-point induction in first-
order logic of typed theories. In Proceedings of the International
Symposium on Theoretical Programming, pages 344–383, Lon-
don, UK, 1974. Springer-Verlag.

[Nip96] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL).
In M. McRobbie and J.K. Slaney, editors, Automated Deduction
— CADE-13, volume 1104 of LNCS, pages 733–747. Springer,
1996.

[Ong95] C.-H. L. Ong. Correspondence between operational and denota-
tional semantics: the full abstraction problem for PCF. Hand-
book of logic in computer science (vol. 4): semantic modelling,
pages 269–356, 1995.

[Pau87] Lawrence C. Paulson. Logic and computation: interactive proof
with Cambridge LCF. Cambridge University Press, New York,
NY, USA, 1987.

51

[Pey01] Simon Peyton Jones. Tackling the awkward squad – monadic in-
put/output, concurrency, exceptions, and foreign language calls
in Haskell. In CAR Hoare, M Broy, and R Stein-brueggen, edi-
tors, Engineering theories of software construction, Marktober-
dorf Summer School 2000, pages 47–96. IOS Press, 2001.

[PGF96] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne.
Concurrent Haskell. In ACM, editor, POPL ’96: Florida, 21–
24 January 1996, pages 295–308, New York, NY, USA, 1996.
ACM Press.

[PHWH03] Simon Peyton Jones, Paul Hudak, Philip Wadler, and John
Hughes, editors. Haskell 98 Language and Libraries, the Revised
Report. CUP, April 2003.

[Plo81] Gordon Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science De-
partment, Aarhus University, Aarhus, Denmark, September
1981.

[PvE01] Rinus Plasmeijer and Marko van Eekelen. Concurrent Clean
version 2.0 language report. http://www.cs.kun.nl/∼clean/,
December 2001.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University
Press, 2003.

52

