Service*: Distributed Service Advertisement for
Multi-Service, Multi-Hop MANET Environments

A. Nedos, K. Singh, S. Clarke

Distributed Systems Group
Department of Computer Science
Trinity College Dublin
Ireland
{anedos,singhk,sclarke} @cs.tcd.ie

Contact details of the first author:

A. Nedos

Distributed Systems Group
Department of Computer Science
Trinity College Dublin

Ireland

Tel.: +353 1 608 2354
Fax.: +353 1 677 2204
Email: anedos@cs.tcd.ie

Abstract

We consider the problem of service advertisement when multiple services are available in a MANET.
We present Service*, a novel distributed service advertisement protocol that uses a push-based
mechanism to optimally place services in a dynamically selected subset of available nodes, called
brokers. Such a dynamic arrangement of broker nodes is shown to have good scalability characteristics
as the number of services and nodes increase and enables discovery queries to be satisfied with high
probability using only single-hop broadcasts. The approach reduces message overhead by eliminating
network-wide packet dissemination while maintaining a high service discovery ratio. The protocol is
distributed in that it does not require the use of any centralised infrastructure. Instead, nodes initiating
an advertising session use local rules to select a minimal subset of their 1-hop neighbours and delegate
to them the task of acting as service brokers. We describe the protocol and present simulation results
that exhibit a high discovery ratio with only a fractional overhead as compared to two other advertising
protocols that utilise a pure and an optimised flooding approach.

Keywords
MANETSs, Advertisement Protocols, Service Discovery, Localised Algorithms, Service Oriented
Applications

Service*: Distributed Service Advertisement for
Multi-Service, Multi-Hop MANET Environments

Andronikos Nedos, Kulpreet Singh, Siobhan Clarke
Distributed Systems Group
Trinity College Dublin
Ireland
Email: {anedos,singhk,sclarke} @cs.tcd.ie

Abstract— We consider the problem of service advertisement
when multiple services are available in a MANET. We present
Service*, a novel distributed service advertisement protocol that
uses a push-based mechanism to optimally place services in a
dynamically selected subset of available nodes, called brokers.
Such a dynamic arrangement of broker nodes is shown to have
good scalability characteristics as the number of services and
nodes increase and enables discovery queries to be satisfied with
high probability using only single-hop broadcasts. The approach
reduces message overhead by eliminating network-wide packet
dissemination while maintaining a high service discovery ratio.
The protocol is distributed in that it does not require the use
of any centralised infrastructure. Instead, nodes initiating an
advertising session use local rules to select a minimal subset of
their 1-hop neighbours and delegate to them the task of acting as
service brokers. We describe the protocol and present simulation
results that exhibit a high discovery ratio with only a fractional
overhead as compared to two other advertising protocols that
utilise a pure and an optimised flooding approach.

Index Terms— MANETSs, Advertisement Protocols, Service
Discovery, Localised Algorithms, Service Oriented Applications

I. INTRODUCTION

Service-oriented applications emphasise the principles of
modular design coupled with on-demand discovery and usage
of network services. Such applications are normally composed
from a set of components that can be either service produc-
ers or consumers. Developing these network-centric, service-
oriented applications in MANETS is an intrinsically difficult
task mainly due to mobility and lack of global knowledge that
contribute to a highly unpredictable network environment.

Some of the problems associated with building service-
oriented applications are neither new nor specific to MANETS.
Web Services [1], the most popular manifestation of service-
oriented applications, facilitate application interoperability
with a modular and platform-agnostic design. Though the
focus of Web Services is on modularity and XML-based
specifications, we believe that its basic tenet of advertise,
discover and use is a good model for enabling applications
to share functionality in ad hoc networks. So far, work on
supporting service oriented architectures in mobile ad hoc net-
works has either been placed at a very high layer, overlooking
and abstracting the dynamic nature of the network domain or
concentrated very closely at the protocols of the routing layer
trading generality for efficiency.

The Service* protocol is based on the premise that appli-
cations for ad hoc networks are composed from a number of
interdependent services. A service is defined in the broadest
sense as a piece of modular, reusable code that has a light-
weight interface which is advertisable. Such a decoupling of
functionality amongst failure-prone, mobile network nodes,
makes timely and efficient discovery of services a challenging
yet salient task. This paper proposes the use of a localised,
push-based advertising scheme, that is built around the concept
of selecting and maintaining a dynamically changing subset
of available nodes as service brokers. Brokers are nodes that
are either actual service providers or were delegated the task
of responding to discovery queries by some other node that
in turn can be either a provider or a broker. The cost of
maintaining a changing subset of nodes as brokers is amortised
by the following advantages:

« Broker selection is localised. The changing set of brokers
is maintained in a distributed manner by executing a
local protocol and not by the formation of a virtual
backbone. This avoids maintenance overhead associated
with backbone mechanisms, such as multicast, while also
having the property of being less dependent on mobility
patterns.

« Ease of discovery. Discovery can be reduced to the task of
a single broadcast. Simulations indicate a high probability
that some neighbouring node will contain the wanted
service.

o Service aggregation. The protocol, through its local inter-
actions, provides the property of eventually aggregating
all available services circulating in a multi-service net-
work.

Since the protocol does not require the use of any multicast
facilities or additions to the routing layer, it can be imple-
mented at the application layer as the first tier for providing
a service middleware platform in MANETS.

Section II gives a description of related work. In Section III
we present the design of the Service* protocol which we
evaluate in section IV. We conclude in section V.

II. RELATED WORK

The concept of service discovery and service advertisement
is well established in distributed systems [2], since networked
entities need to locate available remote resources in order to

use them. The basic properties of service-oriented applications,
such as on-demand operation and loosely-coupled applica-
tion dependencies, make the service oriented model attractive
for building network-centric mobile applications. Conversely,
supporting a service-oriented model in MANETSs adds some
distinctive requirements that demand a different approach to
those taken by current platforms. Some research in MANET
services ([3], [4]) has helped qualify some of the problems
between different environments. Work on service discovery
in mobile ad hoc networks focuses on using decentralised ar-
chitectures to overcome the limitations of traditional discovery
mechanisms, such as SLP [5], Jini [6], and UPnP [7], that rely
on fixed infrastructure. Research in service architectures for
mobile environments can be classified into service protocols,
used for service discovery or advertising and service platforms
which focus on building middleware to support service ori-
ented programming models.

A. Service Protocols

Research in the area of protocols to support service architec-
tures has produced interesting results with some protocols ex-
ploiting location to achieve distributed discovery, while others
rely on the formation of a virtual backbone of nodes which can
subsequently act as service brokers. Protocols that use location
for service discovery are the Grid Location Service (GLS) [8],
the Distributed Location Management (DLM) protocol [9] and
Rendezvous Regions (RR) [10]. The Grid Location System
is a routing protocol that enables location dissemination and
performs geographic forwarding of packets, while DLM and
RR use hashing to map services to geographic regions and
geographic forwarding to direct discovery requests to specific
regions. Such protocols make strict assumptions about the
knowledge of a geographic grid that must be shared by all
operating nodes in addition to having very basic discovery
query semantics due to hashing (e.g., difficult to search for
services using attribute—value pairs or regular expressions).

The protocol described in [11], provides a distributed ser-
vice discovery mechanism by forming a virtual backbone
from selected mobile nodes. The nodes in the backbone
subsequently act as service brokers, permitting service regis-
tration and thus facilitate service discovery. In the same paper,
the authors propose applying the graph-theoretical property
of dominating sets to build a virtual backbone in ad hoc
networks. They show encouraging results when comparing
such a mechanism against anycast and multicast protocols.
However, it requires a complex network layer infrastructure
and trades efficiency for generality by specifying the protocol
at the routing layer.

B. Service Platforms

Konark [12], GSD [13], and DEAPspace [14] are projects
designed to provide a service discovery platform. Konark is
a service discovery mechanism that is based on a hierarchi-
cal classification of services. Its architecture supports both
discovery and advertising, but is limited to locally scoped

multicast. GSD uses caching and semantic matching of ser-
vices to efficiently discover services in a distributed manner.
GSD uses a predefined ontology to group similar services
and forwards service requests by exploiting this grouping. In
contrast, Service* does not rely on a predefined ontology and
makes no assumptions on the nature of the service interface.
DEAPspace has been designed for pervasive environments and
supports service discovery, but has a more narrow scope as is
directed towards personal area networks.

III. SERVICE* ARCHITECTURE AND DESIGN
A. System Model

Service* has minimal dependencies on the MAC and net-
work layers. Without loss of generality, we rely on any 802.11
compatible MAC protocol. From the network layer, we require
that every node exposes its 1-hop neighbours with some degree
of accuracy as well as basic unicast and 1-hop broadcast
facilities.

Service* also assumes that the service interface is
lightweight so that both storing in resource-constrained devices
and transmitting in bandwidth-constrained channels is not
expensive. In the simulated protocol version we assume that
multiple service interfaces can fit in a single packet.

Throughout the paper we use the following terms and
definitions:

o Service Interface—SI: A generic interface to a service can
contain a name, a set of attribute-value pairs and a set of
callable methods or a Uniform Resource Identifier (URI).
The service interface is the datum that is advertised. For
the purposes of this paper we assume that the interface
simply consists of a name, an expiration timestamp
and an incarnation number. The incarnation number is
updated every time the service provider initiates an
advertisement. We use the service incarnation number
to characterise the latency between advertisement and
discovery.

o Service Provider—SP: Any node that implements a ser-
vice interface. Service providers are responsible for peri-
odically initiating advertisement sessions.

e Service Broker—SB: Any node that is not a provider, but
has registered a set of service interfaces in its repository.
Broker nodes are delegated the same task as SP nodes
(i.e., initiating advertising sessions) but are selected and
deselected dynamically based on local rules.

o Initiator: A node that is either an SP or an SB and has
initiated an advertising session.

e k-Neighbourhood—NF: The set of nodes that is within
k—hops from node <.

e Registry—R;: The set of service interfaces registered at
node 7.

B. Overview of the Distributed Advertising Protocol

The goal of Service* is to facilitate distributed advertising
and eventual aggregation of services. To this aim, providers
and brokers independently invoke advertising sessions. Each
session consists of a 3-round exchange of service and node

Protocol 1 Advertising Session

1: SrvcReqr #Service Request packet at Initiator node I

SrvcRply; #Service Reply packet at node j

SrvcBrokerSelectr #Broker Select packet at Initiator node 1

I broadcasts SrvcReqr to N}

for all j € Ni such that j received SrvcReqr do

SrvcRply; < le #Append 1-Neighbourhood to SrvcRply
packet

7. if j is SP or j is SB then

8: SrveRply; <= R; #Append list of SI to SrvcReply packet

9: end if

10: j unicasts SrvcRply; to I

11: end for

12: for all SrvcRply; received in I do

132 I« le #Aggregate j’s 1-Neighbourhood in I

14: I < R; if j is SP or SB #Aggregate j’s list of SI in [

15: end for

16: I runs the Broker Selection Algorithm (Algorithm 2) to identify
Brokers

17: SrveBrokerSelectr <= List of Brokers #Append list of Brokers
to SrvcBrokerSelect packet

18: SrvcBrokerSelect; <= Ry #Append list of SI to SrvcBrokerS-
elect packet

19: I broadcasts SrvcBrokerSelecty to N}

A

Algorithm 2 Broker Selection Algorithm

1: D; #Degree of a node j € N7j is the size of N}, excluding all
the members of N7 and excluding node T

2: BSet; = {} #broker set variable at Initiator node

for all j € N} such that T has NOT received packet SrvcRply;

do

w

4: Remove node j from N}
5: end for

6: for all j € N} do

7. Calculate D;

8: if j is SP then

9: BSet; « J

10: end if

11: end for

12: Add to BSet; those nodes in N} that are the only nodes to
provide coverage to only a single node in N?

13: Remove nodes from N7 that are now covered by nodes in BSet;

14: while k3N7? such that k is not covered by any node in BSet;
do

15: for all j € N} do

16: BSet; < j such that j covers most nodes in N7

17: Remove nodes from N? that are now covered by nodes in
BSetr

18: end for

19: end while

information between the initiator and its 1-neighbourhood.
Protocol 1 describes the core steps undertaken when a session
is initiated. Line 4 shows the initial phase of the protocol,
where a node broadcasts a service request packet. Lines 5—
11 outline the actions of nodes receiving such a broadcast.
Each receiving node appends its own list of 1-neighbourhood
to a reply packet. Nodes that are service providers or were
delegated the task of acting as brokers also append the list
of service interfaces stored in their registry. Consequently,
nodes send their replies back to the initiator. After the initiator

receives the replies, it runs the broker selection algorithm listed
in Algorithm 2. We discuss the issues arising with the request—
reply nature of the protocol at the end of this section.

During broker selection, the initiator node decides the
optimal placement of its service interfaces in a subset of
its 1-hop neighbouring nodes. The subset is selected so that
every node in the initiator’s 2-neighbourhood has access to
the aggregated services via a single broadcast. The selected
subset constitute the new broker nodes and is subsequently
broadcasted along with the aggregated services (line 19 of
protocol 1). Any node that receives this final broadcast, checks
its own address against the set of included addresses in the
SrvcBrokerSelect packet. A positive match from a standard
node results in such a node registering the services found in
the same packet and thus becoming a broker. Any node that
is already a broker or a provider and is included in the list of
new broker nodes updates its repository accordingly. A broker
node not selected as an SB node, becomes a standard node
again (i.e., clears its repository and stops advertising).

The broker selection algorithm runs at the initiator node
and is similar' to the heuristic to compute Multi Point Re-
lays (MPR) as discussed in section 8.3.1 of [15], but with
some important differences. Firstly, it does not result in the
formation of a dominating set between the selected MPRs
as does the algorithm in [15]. Secondly, the actual selection
algorithm is changed to cater for the concept of service
coverage rather than that of wireless coverage. Although the
two concepts are similar (e.g., in MANETSs you can’t have
single hop service coverage unless you have wireless coverage)
there are important differences to fit the domain of service
discovery. One such difference is the fact that providers are
prioritised over other nodes during the selection round (line
8 of algorithm 2). This results in selecting broker nodes
only after removing a subset of nodes from the initiator’s 2-
neighbourhood since they are covered by existing providers
(line 13 of algorithm 2). Such a rule is aimed at delegating
advertising responsibilities to nodes that are already providers,
avoiding in this way the unnecessary expansion of broker
nodes.

More importantly, while the process of selecting MPRs is
a continuous and reactive process (i.e., execution of the al-
gorithm takes place every time the 1-neighbourhood changes)
which is carried out by all participating nodes in the network,
Service* executes the broker selection algorithm after discrete
time-out periods. Since service discovery does not share the
same strict requirements as communication (i.e., maintaining
up to date routes, etc.), we chose to relax reactive behaviour
for the benefit of reducing overhead. Doing so allows node
communication to realise the maximum channel throughput.

After broadcasting the SrvcBrokerSelect; packet, the
initiator node can decide to deregister all services from its
repository, thus becoming a standard node. This avoids an
infinitely expanding broker set. Deregistration is subject to cer-

'Lines 12—19 of algorithm 2 describe an abbreviated version of the
heuristic in section 8.3.1 of the OLSR IETF RFC.

Algorithm 3 Deregistration Algorithm

Require: N} contains the newly selected brokers
1: BSet; = {} #aux variable holding broker node ids at /

2: SSet; = {} #aux variable holding standard node ids at I
3: for all j € N} do

4. if 5 is SP or j is SB then

5: BSet; < j

6: else

7: SSet; < j

8 end if

9: end for

10: for all x € BSet; do
11: for all y € SSet; such that SSet; N N; # () do

12: Remove y from SSet;
13: end for
14: end for

15: if SSets is empty and I is SB then
16: Deregister
17: end if

tain service coverage conditions and is decided by algorithm 3.
In short, an initiator node deregisters if it is a broker node and
all providers and brokers in its 1-neighbourhood cover every
other node in its 1-neighbourhood. It is easy to see that the
initiator node is then a redundant broker node, since by virtue
of the broker selection algorithm we cover all 2-neighbourhood
nodes while a positive result by algorithm 3 guarantees service
coverage for all 1-neighbourhood nodes. Thus, any discovery
broadcast by any node in the initiator’s 2-neighbourhood can
be given a positive response without the initiator acting as a
broker.

Node initiating

advertising

. Original Service Broker Node

New Service Broker Node

Fig. 1. Broker Registration and Deregistration in Service*

Figure 1 displays the broker selection concept graphically.
In part (a), a provider, after executing the Service* protocol,
has selected four broker nodes which now contain a set of
service interfaces in their repositories. Part (b) illustrates a po-
tential network state, after a time interval has passed and some
nodes have initiated a new advertising round. New brokers
have formed thereby expanding the service coverage, while
the nodes that initiated the advertising sessions have reasoned
that there is sufficient coverage for all their neighbouring nodes

Parameters

1000 x 1000 m.

Network Area

of Nodes 40/60/80
Node Tx Range 150 m.
Simulation Time 400 sec.

of Trials 10
Mobility Model Random Waypoint
Min-Max Speed Uniform Distr. 1-12 m/sec
Advertise Timeout | Uniform Distr. 1.6875-2.8125 sec.
TABLE I

SIMULATION DETAILS

and have ceased acting as brokers.

The aim of such a dynamic approach of registration and
deregistration of brokers is to provide a mechanism where
service advertisement does not require the use of network-wide
transmission of messages but achieves the desired property
of single hop discovery through local interactions. Achieving
global behaviour through local interactions has important
ramifications. When service dissemination is performed by
single-hop broadcasts, the overall control packet overhead
is reduced. Additionally, aggregation and redistribution of
service interfaces provides the property of eventual network-
wide availability of all provided services. However, contrary to
approaches that use multicast or anycast for service discovery,
this approach does not guarantee 100% service discovery even
when a service exists in an accessible node. Evaluation of the
Service* protocol though, shows that very high discoverability
(i.e., over 89%) is possible with only a fraction of the cost
of advertising through flooding. Moreover, the protocol scales
gracefully and increases the ratio of successful discoveries as
the number of providers and node density is increased.

Certain protocol states in the Service* protocol require
termination conditions that rely on up to date knowledge of
the initiator’s 1-neighbourhood. Such a condition is displayed
in line 12 of Protocol 1. In this waiting state, the initiator
has sent the service request packet and is waiting for a reply
packet from its surrounding nodes. How the set of 1-hop
neighbours is provided to each node is an orthogonal issue,
but an accurate and complete view of 1-neighbourhood can
result in a more optimal broker placement. It also enables the
initiator node to take more responsive actions (i.e. no timeouts
when waiting for replies) and avoid spurious reply packets
from nodes not appearing in the initiator’s 1-neighbourhood.
However, such an accurate view of a node’s neighbours is
not always available. A rigid approach to providing both
an accurate and complete view would require a membership
service like the one developed in [16], which would demand
an extra protocol adding to channel saturation. Currently, we
take a best effort approach and rely on the 1-neighbourhood
view given by routing protocols such as AODV and OLSR.
Because of inherent view inaccuracies, we also rely on the use
of timeouts for terminating waiting states.

Nodes | SP | SP + SB | SB as % of all nodes
4 14.3 25.67%
40 8 T7.1 22.69%
16 22.5 16.35%
6 22.0 26.73%
60 12 26.3 23.778%
24 34.6 17.69%
8 29.6 26.97%
80 16 353 24.13%
32 46.6 18.22%
TABLE II

AVERAGE BROKER NUMBERS

IV. EVALUATION

We evaluated the Service* protocol against other push-
based advertising schemes as opposed to discovery protocols
based on multicast or other backbone formation mechanisms.
Evaluation against the latter type would necessitate comparing
dissimilar mechanisms and would require specific infrastruc-
tural requirements from the routing layer. Instead, we have
evaluated the Service* protocol against a pure flooding and an
optimised flooding advertising mechanism. We implemented
the Service* protocol in the ns-2 simulator and used the set
of parameters in table I for all experiments. All simulations
were run over 10 different mobility scenarios with different
experiments executed by varying the total number of nodes
and the percentage of nodes acting as providers. Each mobility
scenario was further simulated 10 times, such that the different
parameter permutations are averaged over 100 simulations.
Nodes selected as providers are randomly chosen in each run
and start advertising after 10 seconds of simulation time.

The evaluation criteria we used are discoverability and over-
head relative to the number of total and provider nodes. With
these criteria we try to capture how the protocol scales when
more services are added to an ever increasing network size.
We define discoverability as the ratio of discovery queries with
positive replies over the total number of discovery queries.
Overhead is simply the number of control packets transmitted
during the advertising phase, excluding discovery.

Discoverability is measured by selecting a random node
every 0.5 seconds and issuing a discovery query for a randomly
selected service. Discovery starts after 30 seconds of simula-
tion time. A discovery query in this case entails searching the
node’s cache in addition to broadcasting a single hop query to
neighbouring nodes. In a successful discovery, the node either
has the requested service in its cache, resulting in a cache hit
or receives a positive reply from a neighbouring node. For
the flooding and optimised flooding approaches we assume
discoverability of 100%, since services would be pushed into
every available node. Discoverability results for the Service*
protocol are shown in figure 2. We run experiments varying
the number of provider nodes between 10%, 20% and 40% of
available nodes. The actual number of provider nodes appears
at the top of every bar.

Service* exhibits high discoverability, over 89%, in every
scenario. The cache hit ratio varies from about 35% to 55%.

Discovery Ratio including discovery latency and cache hit ratio
100

o fair

90

85

80

75

70

65

60

55

50

45

40

Successful Discovery Ratio %

35

30

25

20

40 60 80
Nodes

oP 2
% of Cache Hits
% of Hits with Latest Incarnation No. ------

Fig. 2. Successful discovery ratio

Brokers+Providers over Time

40 -

i
30 [

Total number of Brokers+Providers

20 Nodes 4 Pro
/ 40 Nodes 8 Pr¢

10 7 40 Nodes 16 Prc
3 60 Nodes 6 Pr¢

60 Nodes 12 Pr
60 Nodes 24 Pr

80 Nodes 8 Pr
80 Nodes 16 Pr
80 Nodes 32 Pre

0
10 25 40 55 70 85 100 115 130 145 160 175 190 205 220 235 250 265 280 295 310 325 340 355 370 385
Time

Fig. 3. Broker fluctuation over time

This variation depends mainly on the node density and the
absolute number of provider and broker nodes. The cache hit
ratio helps characterise the degree to which cached service
interfaces aid the discovery procedure. While a high cache hit
ratio reduces discovery overhead, it can also result in stale
service interfaces when provider nodes disconnect or fail. We
plan to further investigate the effects of cache utilisation on
the Service* protocol.

Continuing with figure 2, the dotted line in every bar
represents discovery latency, i.e., the property of discovery
to obtain the service interface with the most up to date
incarnation number. In a dynamic environment with frequent

node failures and network partitions, it is important that
most recent advertisements propagate quickly throughout the
network. In Service*, this is even more challenging because of
the nonreactive nature of the protocol. In addition, discovery
latency is also dependent on the frequency of advertisement
and network coverage characteristics making such measure-
ment a complex issue. Despite that, in some cases over 50
percent of successful discovery queries correspond to the most
recent service incarnation.

Figure 3 shows that after an initial period during which
service brokers propagate through the network, the overall
number of providers and brokers eventually reach dynamic
stability. While nodes become brokers and brokers deregister,
the total number remains stable. The average number of SP
and SB nodes throughout all the simulations is presented in
column 3 of table II. More importantly, column 4 indicates
that the protocol converges to a ratio of broker nodes that is
independent of available nodes and mobility patterns. Instead,
it depends on the percentage of provider nodes. As the
percentage of provider nodes increases, we see the percentage
of broker nodes dropping. This explains the good scalability
characteristics of Service*.

Advertisement Overhead between Service*, Flooding and BCAST (400 sec)
180000

10% S™ Providers —&—

20% S* Providers --&-- i

40% S* Providers -:-E-- /
10% Flood Providers ~—&— !
20% Flood Providers /--4--
40% Flood Providers’ ---A--
10% Bcast Providers —*—
20% Bcast Providers ----
40% Bcast Providers ---%--

160000 [

140000

120000

100000

80000

Total Number of Control Packets

60000

40000

20000 <5

40 60 80
Nodes

Fig. 4. Control message overhead between Service*, Flood and Bcast

Figure 4 compares the number of packets generated between
Service* and two other advertising mechanisms, namely Flood
and Bcast [17]. All three mechanisms use the same simulation
parameters and are averaged over the different simulation
executions. Flood is a pure flooding advertising mechanism,
implemented as a network-wide broadcast from provider nodes

to every other node in the network. As expected this is the most
inefficient scheme, with the number of advertising control
packets quickly saturating the majority of available channel
capacity. Bcast is an aggressive broadcast optimisation scheme
first introduced in [18]. We use the ns-2 implementation of this
protocol as described in [17]. While both of the advertising
flooding schemes do not require extra discovery broadcasts
as service interfaces get stored in each node’s registry, they
do however incur a significant cost in the network, demon-
strating poor scalability as the number of nodes and providers
increases.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented Service*, a distributed, push-
based service advertisement protocol for ad hoc networks. We
provided the rationale behind distributed service advertisement
as being the first step towards a service architecture for
MANETs. We implemented and evaluated Service* against
two other advertising mechanisms based on flooding. Results
indicate that Service* offers over 89% discoverability with a
single-hop discovery broadcast, while demonstrating excellent
scalability properties as the number of nodes and the number
of service providers in the network increases. As future work,
we want to continue evaluation of Service*, specifically in
the areas of discovery latency and the handling of a large
number of services. We also plan to move towards specifying
a lightweight service architecture for mobile ad hoc networks
that relies on the properties of the protocol presented in this

paper.
REFERENCES

[11 W. S. A. W. Group, “Web services architecture,” February 2004,
http://www.w3.org/TR/ws-arch/.

[2] S. J. Mullender and P. M. B. Vitdnyi, “Distributed match-making for
processes in computer networks,” in Proceedings of the 4th annual ACM
Symposium on Principles of Distributed Computing. ACM Press, 1985,
pp. 261-271.

[3] R. Sent, R. Handorean, and G.-C. Roman, “Service oriented computing
imperatives in ad hoc wireless settings,” Washington University, Depart-
ment of Computer Science, St. Louis, Missouri, Tech. Rep. WU-CSE-
2004-05, 2004.

[4] R. Handorean, R. Sen, G. Hackmann, and G.-C. Roman, “A component
deployment mechanism supporting service oriented computing in ad hoc
networks,” Washington University, Department of Computer Science, St.
Louis, Missouri, Tech. Rep. WUCSE-04-02, 2004.

[5] E. Guttman, C. Perkins, J.Veizades, and M.Day, Service Location
Protocol, Version 2, IETF, 1999, http://www.rfceditor.org/rfc/rfc2608.txt.

[6] K. Arnold, R. Scheifler, J. Waldo, B. O’Sullivan, A. Wollrath,
B. O’Sullivan, and A. Wollrath, Jini Specification. ~ Addison-Wesley
Longman Publishing Co., Inc., 1999.

[71 M. Corporation, “Universal plug and play: Background,” 1999.

[8] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A
scalable location service for geographic ad hoc routing,” in Proceedings
of the 6th annual international conference on Mobile computing and
networking. ACM Press, 2000, pp. 120-130.

[91 Y. Xue, B. Li, and K. Nahrstedt, “A scalable location management

scheme in mobile ad-hoc networks,” in Proceedings of the 26th Annual

IEEE Conference on Local Computer Networks. IEEE Computer

Society, 2001, pp. 102-112.

K. Seada and A. Helmy, “Rendezvous regions: A scalable architecture

for service location and data-centric storage in large-scale wireless

networks,” in I8th International Parallel and Distributed Processing

Symposium (IPDPS’04) - Workshop 12, 1EEE. IEEE Computer

Societyr, April 2004, p. 218.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

U. C. Kozat and L. Tassiulas, “Network layer support for service
discovery in mobile ad hoc networks,” in I[EEE INFOCOM, vol. 22,
March 2003, pp. 1965 — 1975.

S. Helal, N. Desai, V. Verma, and C. Lee, “Konark — a service discovery
and delivery protocol for ad-hoc networks,” in Proceedings of the Third
IEEE Conference on Wireless Communication Networks (WCNC). 1EEE
Computer Society, March 2002.

D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Gsd:a novel
group based service discovery protocol for manets,” in 4th IEEE
Conference on Mobile and Wireless Communications Networks (MWCN
2002). 1EEE Computer Society, September 2002. [Online]. Available:
gunther.smeal.psu.edu/13044.html

R. Hermann, D. Husemann, M. Moser, M. Nidd, C. Rohner, and
A. Schade, “Deapspace: Transient ad-doc networking of pervasive
devices,” in Proceedings of the 1st ACM international symposium on
Mobile ad hoc networking & computing. IEEE Computer Society,
2000, pp. 133-134.

T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum,
and L. Viennot, “Optimized Link State Routing Protocol, Internet Draft
(draft-ietf-manet-olsr-06.txt),” September 1 2001, work in Progress.

L. Briesemeister, “Group membership and communication in highly
mobile ad hoc networks,” Ph.D. dissertation, School of Electrical Engi-
neering and Computer Science, Technical University of Berlin, Germany,
Nov. 2001.

T. Kunz, “Multicasting in mobile ad-hoc networks: achieving high
packet delivery ratios,” in CASCON ’03: Proceedings of the 2003 con-
ference of the Centre for Advanced Studies on Collaborative research.
IBM Press, 2003, pp. 156-170.

W. Lou and J. Wu, “On reducing broadcast redundancy in ad hoc
wireless networks,” IEEE Transactions on Mobile Computing, vol. 1,
no. 2, April-June 2002.

