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Summary 
 
Objectives 

 
The main objective of the research is an application of the clustering and cluster validity 
methods to estimate the number of clusters in cancer tumor datasets. A weighed voting 
technique is going to be used to improve the prediction of the number of clusters based on 
different data mining techniques. These tools may be used for the identification of new 
tumour classes using DNA microarray datasets. This estimation approach may perform a 
useful tool to support biological and biomedical knowledge discovery. 
 
Methods 
 
Three clustering and two validations algorithms were applied to two cancer tumour datasets. 
Recent studies confirm that there is no universal pattern recognition and clustering model to 
predict molecular profiles across different datasets. Thus, it is useful not to rely on one single 
clustering or validation method, but to apply a variety of approaches. Therefore, combination 
of these methods may be successfully used for the estimation of the number of clusters. 
 
Results 
 
The methods implemented in this research may contribute to the validation of clustering 
results and the estimation of the number of clusters. The results show that this estimation 
approach may represent an effective tool to support biomedical knowledge discovery and 
healthcare applications. 
 
Conclusion 
 
The methods implemented in this research may be successfully used for the estimation of the 
number of clusters. The methods implemented in this research may contribute to the 
validation of clustering results and the estimation of the number of clusters. These tools may 
be used for the identification of new tumour classes using gene expression profiles.  

 
Keywords 
Gene expression, data mining, clustering, cluster evaluation, validity indices 



 
2

Introduction 
 
DNA microarray technology is increasingly being applied in biological and biomedical 

research to address a number of critical problems including the classification of tissue 
samples, e.g. cancer tumours. Recent advances allow the monitoring of the expression levels 
of thousands of genes simultaneously under multiple experimental conditions [1]. This 
technology is having a significant impact on genomic and post-genomic studies. Disease 
diagnosis, drug discovery and toxicological research benefit from the of microarray 
technology. A principal step in the analysis of gene expression data is the detection of 
samples or gene groups with similar expression patterns. The accurate classification of 
tumours is essential for a successful diagnosis and treatment of cancer.  One of the problems 
associated with cancer tumour classification is the identification of new classes using gene 
expression profiles. There are two key aspects in this problem: 1) estimation of the number of 
clusters in the dataset; and 2) classification of unknown tumour samples based on these 
clusters [2].  

A variety of cluster algorithms have been applied to the analysis of DNA microarray data 
[3,4]. Moreover, a number of solutions to systematically evaluate the quality of the clusters 
have been presented [5,6,7]. The estimation of the number of clusters in a dataset is a 
fundamental problem in unsupervised learning. The applications of several validation 
techniques such as the Silhouette method [8], Dunn’s based index [9,10] and Davies-Bouldin 
index [11] have been previously studied [5,7,12]. 

 
 

Methods 
 
This section introduces the DNA microarray data and the data mining methods under 

consideration. Three clustering methods: K-Means, Hierarchical (complete linkage) and 
Kohonen Self-organising Maps [13,14], and two validation methods: the C-index [15] and the 
Goodman-Kruskal index [16] were applied. The data studied in this paper consisted of two 
expression datasets originating from recently published microarray studies [17,18]. 

 
Microarray data 
 
The central nervous system (CNS) dataset [17] comprise 42 tumour samples (10 

medulloblastomas, 5 CNS atypical teratoid/rhabdoid tumours, 5 renal and extrarenal 
rhabdoid, 8 supratentorial primitive neuroectodermal tumours, 10 non-embryonal brain 
tumours and 4 normal human cerebellas) described by the expression levels of 50 genes with 
suspected roles in these types of cancer. These data were obtained from a study published by 
Pomeroy and co-workers [17]. They demonstrated that medulloblastomas are molecularly 
distinct from other brain tumours.  

The leukaemia data include 38 samples (27 acute lymphoblastic leukaemia, ALL, and 11 
acute myeloid leukaemia, AML) described by the expression levels of 50 informative genes, 
which are correlated with the AML and ALL cancer types.  These data were obtained from a 
study published by Golub and co-workers [18]. They presented a model to distinguish two 
sub-classes of ALL samples, known as B-cell ALL and T-cell ALL.  

The original data and experimental methods for both datasets are available at 
http://www.genome.wi.mit.edu/MPR.  
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Cluster validation methods 
 
In this paper cluster validation is performed using two algorithms: the C-index [15] and 

the Goodman-Kruskal index [16]. These methods have been chosen to support the 
investigation of cluster validation techniques for genome expression data classification. For 
more information on the implementation and analysis of other validation algorithms the 
reader is referred to our previous studies [5,7,12].  

 
C-index 
 
For any partition U ↔ X: X1 ∪... Xi ∪… Xn, where Xi   represents the ith cluster of such 

partition, the C-index [15], C, is defined as: 

minmax

min

SS
SS

C
−

−
= ,   (1) 

where S, Smin, Smax are calculated as follows. Assume that p is the number of all pairs of 
samples for which both samples are located in the same cluster. Then S is the sum of distances 
between samples in those p pairs. Let P be a number of all possible pairs of samples in the 
dataset. Ordering those P pairs by distances we can select p pairs with smallest and p pairs 
with largest distances between samples. The sum of the p smallest distances is equal to Smin, 
whilst the sum of the p largest is equal to Smax. From this formula it follows that the nominator 
will be small if pairs of samples with small distances are in the same cluster. Thus, small 
values of C correspond to good clusters. The number of clusters that minimize C-index is 
taken as the optimal number of clusters, n.  

 
Goodman-Kruskal index 
 
For a given dataset, Xj (j = 1,…, k, where k is the number of samples, j, in the dataset), this 

method assigns all possible  quadruples [16]. Let d be the distance between any two samples 
(a and b, or c and d) in Xj. A quadruple is called concordant if one of the following two 
conditions is true: 

d(a,b) < d(c,d)   (2) 
a and b are in the same cluster and c and d are in different clusters.  

d(a,b) > d(c,d)   (3) 
a and b are in different clusters and c and d are in the same cluster. 

By contrast, a quadruple is called disconcordant if one of following two conditions is 
true: 

d(a,b) < d(c,d)   (4) 
a and b are in different clusters and c and d are in the same cluster. 

d(a,b) > d(c,d)   (5) 
a and b are in the same cluster and c and d are in different clusters. 

A good partition is one with many concordant and few disconcordant quadruples. Let Nc 
and Nd denote the number of concordant and disconcordant quadruples, respectively. Then 
the Goodman-Kruskal index, GK, is defined as: 

dc

dc

NN
NN

GK
+
−

= ,   (6) 

Large values of GK are associated with a good partition. Thus, the number of clusters that 
maximize the GK index is taken as the optimal number of clusters, n. 
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Results 

 
Three clustering algorithms were implemented to produce different partitions consisting 

of 2 to 10 clusters. Then, the validity indices were computed for each of the partitioning 
results. The Euclidean metric was used for all cases to calculate the distances between the 
samples. 

Tables 1 and 2 depict the C-indices and Goodman-Kruskal indices for each number of 
clusters, n, for n = 2 to n = 10, using the CNS dataset for three clustering algorithms: K-
Means, Hierarchical (complete linkage) and Self-organising Maps.  

The bold entries correspond to the optimal partitions predicted by each validation method. 
For the CNS expression dataset, n = 4 is suggested as the best partition. The CNS dataset 
includes the classes: medulloblastoma, CNS rhabdoid (with brain and renal subclasses), 
PNET, malignant glioma and normal human cerebella.  Table 3 depicts the clustering results 
for the best predicted partition for CNS data. 

An examination of this partition confirms that normal human cerebella (Nc) is 
distinguished from other types of cancer in the dataset. Subclasses (brain and renal) of CNS 
rhabdoid  (Rh) tend to locate in the same cluster, as well as medulloblastoma (MD) samples, 
which are mostly placed in the same cluster. PNET and malignant glioma (MG) are difficult 
to distinguish in this partition. 

Tables 4 and 5 show the C-indices and Goodman-Kruskal indices for each number of 
clusters, n, for n = 2 to n = 10, using the leukaemia dataset for three clustering algorithms.  

An examination of these leukaemia data results suggests that the most appropriate 
partition includes two clusters (for K-Means and SOM clustering) and three clusters (for 
Hierarchical clustering). Table 6 depicts the clustering results for the partition predicted as 
optimal for leukaemia data. It is shown that, for each of the considered indices, the correct 
number of clusters corresponds to an optimal index value. 

This validation approach may also consist of the implementation of an aggregation 
method based on a weighed voting strategy, which is implemented in [5,12]. This voting 
strategy may also be applied to fuse the results originating from different clustering and 
validation methods. In this study, after computing all validity indices for all obtained 
clustering techniques, the average weighed vote for each partition has been calculated. Table 
7 represents the implementation of the average weighed vote strategy for the leukaemia data. 
This table was obtained from Tables 4 and 5 by replacing the index values by weighed votes, 
whose values range from 1 to 9 [5,12]. Thus, the average weighed vote for each cluster 
partition has been calculated, and n = 2 is suggested as the optimal partition.   

 
Discussion 

 
Clustering has become a fundamental data mining approach to analysing DNA microarray 

data [3,4]. It can support the identification of existing primary relationships among a set of 
variables such as biological conditions or perturbations. Clustering may represent a basic tool 
not only for the classification of known categories, but also for the discovery of relevant 
classes. The description and interpretation of its outcomes may also allow the detection of 
associations between samples or variables, the generation of rules for decision-making 
support and the evaluation of experimental models [5]. In the genome expression domain it 
has provided the basis for novel clinical diagnostic and prognostic studies [19], and other 
applications using different model organisms [20]. 



 
5

Cluster validity indices represent important tools to support unsupervised data mining.  
They are particularly useful in applications in which the definition of the number of clusters in 
the dataset is required beforehand.  

In this paper three clustering algorithms (K-Means, Hierarchical and Self-organising 
Maps) and two validation indices (C-index and Goodman-Kruskal) were applied to two 
cancer tumour datasets (CNS and leukaemia). Recent studies confirm that there is no universal 
pattern recognition and clustering model to predict molecular profiles across different datasets 
[5]. A number of clustering [4,13] and validation methods [5,7,12] have been previously 
studied. Each of these methods has their advantages and limitations.  For example, it has been 
shown that the Silhouette method [8] is suitable for estimating only the first choice or best 
partition. Nevertheless, this method has been successfully used in combination with other 
validation techniques (Dunn’s and Davies-Bouldin indices) for predicting different optimal 
clustering partitions [5]. Goodman-Kruskal index is expected to be robust against outliers 
because quadruples of patterns are used for its computation. However, its drawback is a high 
computational complexity in comparison, for example, with the C-index.  On the other hand, 
K-Means clustering is dependent on the initial seed cases and a disadvantage of the 
Hierarchical clustering is that the identification of categories and associations is left to the 
user. Furthermore, if a wrong assignment is made early in the process of hierarchal clustering, 
it cannot be corrected. Thus, it is useful not to rely on one single clustering or validation 
method, but to apply a variety of approaches. Therefore, combination of these methods may 
be successfully used for the estimation of the number of clusters. It has been shown that these 
methods may support the prediction of the optimal partition [5,7]. A weighed voting 
technique [5,12] was used to improve the prediction of the number of clusters based on 
different data mining techniques. Current and future work includes the comparison, 
combination and estimation of results obtained from different clustering algorithms, and the 
analysis of more complex datasets. 

 
Conclusion 

 
The methods implemented in this research may be successfully used for the estimation of 

the number of clusters. The methods implemented in this research may contribute to the 
validation of clustering results and the estimation of the number of clusters. These tools may 
be used for the identification of new tumour classes using gene expression profiles. The 
results show that this estimation approach may represent an effective tool to support 
biomedical knowledge discovery and healthcare applications.  
 

 
Acknowledgements 

 
This material is based upon works supported by the Science Foundation Ireland under 

Grant No. S.F.I.-02IN.1I111. 
 

References 
 

1. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-
wide expression patterns. Proc. Natl. Acad. Sci. USA 1998; 14863-8. 
2. Dudoit S, Fridlyand J. A prediction-based resampling method for estimation the number of 
cluster in a dataset. Genome Biology 2002; 1:21. 
3. Yeung KY, Haynor DR, Ruzzo WL. Validating clustering for gene expression data. 
Bioinformatics 2001; 309-318. 



 
6

4. Granzow M, Berrar D, Dubitzky W, Schuster A, Azuaje F, Eils R. Tumor identification by 
gene expression profiles: a comparison of five different clustering methods. ACM-SIGBIO 
Newsletters 2001; 16-22. 
5. Bolshakova N, Azuaje F. Cluster validation techniques for genome expression data. Signal 
Processing 2003; 825-33. 
6. Azuaje F, Bolshakova N. Clustering genome expression data: design and evaluation 
principles. A Practical Approach to Microarray Data Analysis 2003; 230-45. 
7. Azuaje F. A cluster validity framework for genome expression data. Bioinformatics 2002; 
319-20. 
8. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster 
analysis. J. Comp App. Math 1987; 53-65. 
9. Dunn J. Well separated clusters and optimal fuzzy partitions. J.Cybernetics 1974; 95-104. 
10. Bezdek JC, Pal NR. Some new indexes of cluster validity. IEEE Transactions on Systems, 
Man and Cybernetics 1998; 301-15. 
11. Davies DL, Bouldin DW. A cluster separation measure. IEEE Transactions on Pattern 
Recognition and Machine Intelligence 1979; 224-7. 
12. Bolshakova N, Azuaje F. Improving expression data mining through cluster validation. 
Proc. of the 4th Annual IEEE Conf. on Information Technology Applications in Biomedicine 
2003; 19-22. 
13. Quackenbush J. Computational analysis of microarray data. Nature Reviews Genetics 
2001; 418-27. 
14. Everitt B. Cluster Analysis 1993. 
15. Hubert L, Schultz J. Quadratic assignment as a general data-analysis strategy . British 
Journal of Mathematical and Statistical Psychologie 1976; 190-241. 
16. Goodman L, Kruskal W. Measures of associations for cross-validations. J. Am. Stat. 
Assoc. 1954;732-64. 
17 Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim 
JYH, Goumnerova LC, Black P, Lau C, Allen JC, Zagzag D, Olson JM, Curran T, Wetmore 
C, Biegel JA, Poggio T, Mukherjee S, Rifkin R, Califano A, Stolovitzky G, Louis DN, 
Mesirov JP, Lander ES, Golub TR. Gene expression-based classification and outcome 
prediction of central nervous system embryonal tumors. Nature 2002; 436-42. 
18. Golub TR, Slonim DK, Tamayo P, Huard C, Gassenbeck M, Mesirov JP, Coller H, Loh 
ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES. Molecular classification of 
cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 
531-7. 
19. Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, 
Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, 
Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, 
Alberts D, Sondak V, Hayward N, Trent J. Molecular classification of cutaneous malignant 
melanoma by gene expression profiling. Nature 2002; 536-40. 
20. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, En JK, Bumgarner R, Goodlett 
DR, Aebersol R, Hood L. Integrated genomic and proteomic analyses of a systematically 
perturbated metabolic network. Science 2001; 929-33. 



 
7

 
Table 1. C-indices for expression clusters originating from the CNS data. Bold entries 
highlight the optimal number of clusters, n, predicted by this method. 
 

Clustering K-Means Hierarchical SOM 

n = 2 0.249 0.132 0.334 

n = 3 0.04 0.016 0.21 

n = 4 0.036 0.014 0.135 

n = 5 0.082 0.086 0.157 

n = 6 0.075 0.052 0.151 

n = 7 0.082 0.044 0.139 

n = 8 0.084 0.031 0.141 

n = 9 0.047 0.028 0.145 

n = 10 0.054 0.028 0.143 
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Table 2. Goodman-Kruskal indices for expression clusters originating from the CNS data. 
Bold entries highlight the optimal number of clusters, n, predicted by this method. 
 

Clustering K-Means Hierarchical SOM 

n = 2 0.543 0.781 0.325 

n = 3 0.901 0.968 0.512 

n = 4 0.908 0.971 0.679 

n = 5 0.788 0.777 0.622 

n = 6 0.806 0.852 0.632 

n = 7 0.787 0.889 0.65 

n = 8 0.782 0.927 0.66 

n = 9 0.885 0.935 0.632 

n = 10 0.87 0.938 0.634 
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Table 3. Clustering for CNS data. Partition predicted as the optimal choice in Tables 1 and 2. 
 

Cluster K-Means Hierarchical SOM 

1 9MD, 10 Rh, 8 

PNET, 1 MG 

9 MD, 10 Rh, 8 PNET, 

5 MG 

1 MD, 10 Rh, 4 

PNET, 1 MG 

2 9 MG 5 MG 9 MD, 1 

PNET 

3 1 MD 1 MD 3 PNET, 9 

MG 

4 4 Nc 4 Nc 4 Nc 

MD – medulloblastoma; Rh - CNS atypical teratoid/rhabdoid tumours; PNET –  primitive 
neuroectodermal tumours; MG - malignant glioma; Nc - normal human cerebella. 
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Table 4. C-indices for expression clusters originating from leukaemia data. Bold entries 
highlight the optimal number of clusters, n, predicted by this method 
 

Clustering K-Means Hierarchical SOM 

n = 2 0.042 0.038 0.113 

n = 3 0.05 0.023 0.165 

n = 4 0.094 0.096 0.149 

n = 5 0.044 0.09 0.233 

n = 6 0.064 0.058 0.173 

n = 7 0.056 0.054 0.195 

n = 8 0.054 0.049 0.158 

n = 9 0.051 0.047 0.186 

n = 10 0.048 0.042 0.183 
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Table 5. Goodman-Kruskal indices for expression clusters originating from leukaemia data. 
Bold entries highlight the optimal number of clusters, n, predicted by this method 
 

Clustering K-Means Hierarchical SOM 

n = 2 0.932 0.942 0.762 

n = 3 0.886 0.96 0.587 

n = 4 0.76 0.727 0.594 

n = 5 0.884 0.743 0.355 

n = 6 0.812 0.825 0.491 

n = 7 0.827 0.836 0.419 

n = 8 0.832 0.85 0.525 

n = 9 0.843 0.856 0.436 

n = 10 0.851 0.861 0.45 
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Table 6. Clustering for leukaemia data. Partition predicted as the optimal choice in Tables 4 
and 5. 
 

Cluster K-Means Hierarchical SOM 

1 1 AML, 27 

ALL 

27 ALL, 2 AML 25 ALL 

2 10 AML 4 AML 11 AML, 

2ALL 

3 - 5 AML - 

AML – acute myeloid leukaemia; ALL -  acute lymphoblastic leukaemia 
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Table 7. Predicting the correct number of clusters for leukaemia data by aggregation of clustering and 
validation methods. Bold entries highlight the optimal number of clusters, n, predicted by the 
methods. 

 

Clustering Validation n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 

K-Means C-index 9 6 1 8 2 3 4 5 7 

 GK index 9 8 1 7 2 3 4 5 6 

Hierarchical C-index 8 9 1 2 3 4 5 6 7 

 GK index 8 9 1 2 3 4 5 6 7 

SOM C-index 9 6 8 1 5 2 7 3 4 

 GK index 9 7 8 1 5 2 6 3 4 

Average  8.7 7.5 3.3 3.5 3.3 3.0 5.2 4.7 5.8 


