
Mechanisms for Context-Informed Adaptive

Hypermedia

Alexander O’Connor BA, BAI

A dissertation submitted to the University of Dublin, Trinity College

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 2004

Declaration

I, the undersigned, declare that this work has not previously been submitted to this or

any other University, and that unless otherwise stated, it is entirely my own work.

Alexander O’Connor

Dated: September 2, 2004

Mechanisms for Context-Informed Adaptive

Hypermedia

Approved by
Supervising Committee:

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this disserta-

tion upon request.

Alexander O’Connor

Dated: September 2, 2004

Acknowledgements

This Project would not have been possible without the guidance and assistance ren-

dered by Vincent Wade, whose supervision provided a vital framework in the com-

pletion of the project. This project is based in software developed by Owen Conlan,

without which there would have been no basis for investigation. At many of the most

critical points in the course of the work, insightful comments and suggestions of a tech-

nical nature were offered by Ian O’Keeffe. The author wishes to extend his deep thanks

to all of those named, and the many others who offered thoughts and suggestions during

design and development.

Alexander O’Connor

University of Dublin, Trinity College

September 2004

v

Abstract

The Cross-fertilisation potential of the work being undertaken by both the Adaptive

Hypermedia and Context-Aware communities is considerable. In particular, the ben-

efits to Adaptive Hypermedia constitute a method for handling contextual influences

without the need to extend deep models to accommodate axes of marginal interest or

high complexity. The benefit to the field of Context-awareness lies in the opportunity

to examine application areas where Context is not the only concern within the logic of

the system, it is rather a set of influences on advanced, complex semantic structures.

This project is concerned with an initial investigation of the mechanisms for creat-

ing Context-Informed Adaptive Hypermedia, specifically in the area of influencing an

educational Adaptive Hypermedia . A definition of context is provided, along with the

design, implementation and evaluation of an example architecture.

The project was composed of three main phases: initially, a detailed survey of

Adaptive Hypermedia and Context-Aware Systems was undertaken, this was followed

by the outline of an architecture for Context-Informed Adaptive Hypermedia. Detailed

design of the mechanisms for applying Contextual Axes to Adaptive Hypermedia was

supplemented with the Prototyping and testing of these mechanisms with an extant

eLearning Adaptive Hypermedia System.

A Paper Presentation on this project was given to the Workshop on Advanced

Context Modelling Managing and Reasoning at the Sixth International Conference on

Ubiquitous Computing under the tile ‘Context-Informed Adaptive Hypermedia’ with

authors Alexander O’Connor, Owen Conlan and Vincent Wade.

vi

Contents

Acknowledgements v

Abstract v

List of Figures xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Technical Approach . 3

1.3.1 Document Outline . 3

Chapter 2 Survey of Systems and Definition of Context 4

2.1 Review of Context-Aware systems: Defining Context 4

2.1.1 General Views of Context . 5

2.1.2 3 Major Questions . 5

2.1.3 Where can Context be Used? 7

2.1.4 Where can Context be Gathered? 8

2.1.5 ActiveCampus . 11

2.1.6 Context-Aware User Authentication 13

2.1.7 MOBIlearn . 15

2.2 Review of Adaptive Hypermedia Systems 17

2.2.1 AHA! . 17

vii

2.2.2 InterBook . 21

2.2.3 KnowledgeTree . 25

2.2.4 APeLS . 27

2.3 Analysis . 30

2.3.1 Properties of Context-Aware Systems 30

2.3.2 Properties of Adaptive Hypermedia Systems 30

2.3.3 Definition for Context-Informed Adaptive Hypermedia 30

2.4 Conclusions . 31

Chapter 3 Designing Context-Informed Adaptive Hypermedia 32

3.1 Guiding Principles for Design . 32

3.2 Design Challenges . 35

3.2.1 Web Architecture . 35

3.2.2 Applying Context over the Entire System 36

3.3 Overall Design . 36

3.3.1 Context Interpreter . 36

3.3.2 Contextual Mechanisms . 37

3.3.3 User Interaction . 41

3.4 Design Decisions . 41

3.4.1 Direct Manipulation . 41

3.4.2 Query Language . 42

3.4.3 Total Automation . 42

3.4.4 Conclusions . 43

Chapter 4 Implementation 44

4.1 Implementation Description . 44

4.1.1 Overview . 44

4.1.2 Context Interpreter . 45

4.1.3 User Module . 46

4.1.4 Narrative Module . 47

viii

4.2 Main Challenges . 48

4.2.1 Data Types . 49

4.2.2 Candidacy . 49

4.3 Experiments . 50

4.3.1 Low-Context Scenario . 50

4.3.2 Mid-Context Scenario . 54

4.3.3 High-Context Scenario . 57

4.3.4 Additional Applications . 58

4.4 Conclusions . 59

Chapter 5 Evaluation 60

5.1 Evaluation with Regard to Guiding Principles 60

5.1.1 Autonomy . 60

5.1.2 Simplicity . 61

5.1.3 Expressiveness . 62

5.1.4 Shared Knowledge . 62

5.1.5 Obfuscation . 63

5.1.6 Encapsulation . 64

5.1.7 Frequency . 64

5.1.8 Range . 64

5.1.9 Importance . 65

5.1.10 User Empowerment . 65

5.1.11 Performance . 66

5.2 Analysis . 66

5.2.1 Access to Models . 66

5.2.2 Three Questions Revisited . 67

5.3 Conclusions . 68

Chapter 6 Conclusions 69

6.1 Evaluation of Objectives . 69

ix

6.1.1 Survey and Definition of Context 70

6.1.2 Designing Mechanisms for Context-Informed Adaptive Hypermedia 71

6.1.3 Prototyping and Testing . 72

6.2 Future Work . 73

6.2.1 Design and Implementation of the Context Interpreter 73

6.2.2 Generalisation . 74

6.3 Final Remarks . 75

Bibliography 76

Appendix A UML Class Diagrams for the Implementation 80

x

List of Figures

2.1 Data flow between application and context infrastructure. Source: [14] 9

2.2 Location-aware login architecture Source: [1] 14

2.3 The MOBIlearn context hierarchy. Source: [24] 16

2.4 AHA! Architecture Source: [13] . 18

2.5 Presentation of Adaptation in AHA! Source: [13] 20

2.6 Knowledge Tree Distributed Architecture Source: [4] 25

2.7 Architecture of APeLS Source: [8] . 28

3.1 The Influence of the Context Interpreter on the Adaptive Engine 37

3.2 Use Cases for the User Update Mechanism 38

3.3 Use Cases for the Narrative Decision Enhancement Mechanism 38

3.4 A ‘Broken’ Narrative, where a decision must be made to continue. . . . 39

3.5 Use Cases for the Candidate Group Manipulation Mechanism 40

3.6 Use Cases for the User Empowerment 41

4.1 Implementation architecture. Mechanisms are mapped to methods in

the Interpreter Web Service. The User Module is called from JSPs di-

rectly, while the Narrative Module is called from Jess, during adaptation.

These modules marshall, unmarshall and transport queries and responses. 46

A.1 Interpreter Class Diagram . 81

A.2 Interpreter Class Diagram . 82

xi

Chapter 1

Introduction

This chapter explains the motivation of the project, the general and specific questions

which inspired this research. This is followed by an examination of the objectives of

theu project, general and specific. Finally, a technical guide provides the reader with

insight into the structure of this document.

1.1 Motivation

Adaptive Hypermedia[2] eLearning systems constitute the evolutionary advance from

Intelligent Tutoring Systems and Hypertext. Adaptive Systems take the concept of

a navigatable, digital educational course, and supplement it with deep models of the

learner and course content. The Adaptive Engine of such a system contains business

logic which makes use of these deep models to create a tailored course.

There is considerable variation in the forms which these models may take, and as

Adaptive Hypermedia Technology evolves, additional factors supplement even more

powerful rule sets, the factors or axes of adaptivitiy increase in number and complex-

ity. This expansion of the capability of Adaptive Systems has the potential to yield

considerable advantage, but there is also a considerable cost in terms of complexity

and size of resultant systems.

Context-aware systems, on the other hand, are concerned with capturing, managing

1

and interpreting a wide variety of heterogeneous data about users and their environ-

ment from a number of sources, such as sensors and usage information. In general, this

field has provided many useful techniques, but the example applications demonstrated

are concerned with relatively simple tasks and processes. These applications are ar-

guablr not sufficiently complex to demonstrate the true potential of the mechanisms

provided.

The two categories of systems outlined above appear to show an overlap, where

complex models may be expressed and measured using context-aware techniques, and

the interaction between contextual information and deep model-based knowledge in

the Adaptive Hypermedia System.

This project is motivated by the large amount of work being undertaken separately

in both the Context-Aware and Adaptive Hypermedia Fields, and the potential for

cross-polinisation.

1.2 Objectives

In general, the objective of this project is to examine Contextual Information and its

potential for Adaptive Hypermedia. Context-informed Adaptive Hypermedia has the

advantage of being able to include information from external sources, provided as the

Context of the system.

Specifically, the objectives defined for this project are:

1. To conduct a survey of Context Aware Systems, their models and inputs. This

includes recording the mechanisms used to apply measured data to the logic of

the system, and an assessment of the characteristics of the different types of

information handled by the system. This Survey is combined with a Survey of

Educational Adaptive Hypermedia systems in order to determine a definition for

context in Adaptive Hypermedia along with a list of descriptive attributes for

effective use of Context. These attributes form part of the functional overlap

between Adaptive Hypermedia and Context Aware systems.

2

2. To research and design mechanisms for collaboration between Adaptive Hyper-

media and Context Awareness, based on requirements discovered in the surveys

described, and others developed through the design process.

3. To prototype a set of collaborative mechanisms as designed above and test them

with an example Educational Adaptive Hypermedia System.

1.3 Technical Approach

1.3.1 Document Outline

This document is structured around the objectives outlined. Initially, a survey of

Adaptive Hypermedia and Context Aware Systems is presented, with analysis of the

capabilities and attributes of these systems. This analysis gives rise to a number of

suggested properties of context, along with a possible definition for context in collab-

oration with Adaptive Hypermedia. Chapter 3 is concerned with the Design of an

integrated Context Information System for Adaptive Hypermedia. The thrust of this

chapter is related to defining the guiding principles of the design, and presenting the

challenges that these principles create. Major design decisions, and some possible al-

ternate routes, are outlined. Chapter 4 contains an account of the third Objective

of the project. This includes the relationship between the design and the concrete

examples, a presentation of these examples, and possible alternatives. The evaluation

of the system provided in Chapter 5 is derived first from the guiding principles enu-

merated, along with other technical and practical factors. Finally, the Conclusions of

Chapter 6 embody an assessment of this project, as related to its objectives, along with

suggestions for future work and overall impressions.

3

Chapter 2

Survey of Systems and Definition of

Context

This chapter is intended to provide a survey of Context-aware Systems, a definition of

Context and a survey of Adaptive Hypermedia Systems. This is supplemented with

an analysis of the degree of functional and conceptual overlap between the categories

of system, and the potential for the creation of a contextual element to an Adaptive

System. In view of this aim, a definition of context is provided, to assist in determining

the boundaries of each system.

2.1 Review of Context-Aware systems: Defining

Context

In reviewing context-aware systems, the majority of them can be characterised as

‘location-aware’ applications. Most take a relatively straightforward view of context

being largely contained as location, and attach a relatively simple business logic, such

as messaging. Three examples of systems are provided, they follow a more general

discussion on context, as seen in a number of publications over time.

4

2.1.1 General Views of Context

Context, in itself, is a difficult concept to characterise. Fundamentally, it appears re-

lated to the application domain in which the context-aware system is located. However,

certain general principles may be drawn from current experience. In particular, there

are three ways in which context can be viewed, as outlined below.

2.1.2 3 Major Questions

Three questions are defined, to provide an insight into context and its uses. These are

intended to illustrate that contextual information, uninterpreterd, is of relatively little

use. Contextual information provides a system with descriptive information, and is a

means to a richer view of the world for that system.

2.1.2.1 What is ‘Context’?

In the field of pervasive and ubiquitous computing, the definition of context is a well-

worn path. In general, it can be said that these applications derive most if not all

of their adaptivity and customisation from their axes of context. Nonetheless, these

definitions provide a useful basis for deciding what context is.

Perhaps one of the more commonly cited definitions for context is[14]:

‘Any information that can be used to characterise an entity, where an entity

can be a person, place or physical or computational object.’

This definition covers an extremely wide scope, perhaps too great to be useful. Another[5]

definition, provided as part of a survey of context-aware mobile systems, makes a useful

distinction of relevance within the body of entity properties defined above:

Context is the set of environmental states and settings that either deter-

mines an application’s behaviour or in which an application event occurs

and is interesting to the user.

5

Again, this is a very wide definition, which encompasses a great many attributes,

entities and relationships under a single heading. In fact, it can be said that the

definitions delineated above provide a reasonably clear explanation of the concept of

context, but they provide little assistance in recognising contextual properties.

In seeking to understand what context is, it is useful to examine what context is

not:

1. Context is not just Location: Contextual Information can not be considered

as simply location, nor can it be considered along any single axis of attributes or

events. Context must be considered as a data set of inter-related dimensions.

2. Context is not simply sensor data: Context-awareness does not simply mean

that a program or system simply accesses an additional sensor or data source in

the process of execution. Context data has semantic significance beyond direct

measurement.

3. Context is a Semantic ‘View’: Drawing from the two preceeding points, it is

clear that context-awareness amounts to the combination of a variety of axes of

information, which may have undergone processing before they reach the client

system.

The first aspect discussed was known relatively early[25], and has been repeated

on a number of occasions(eg:[26]). Indeed, Schmidt et. al. draw an even more useful

definition of context[26] as

‘Interrelated conditions in which something exists or occurs’

This resembles the standard definition, however the authors expand on what these

conditions constitute to include an aspect of ‘level’. The example provided is most

illustrative, and demonstrates that context can range from a direct measurement of

temperature to an abstract concept such as ‘In my Office’ or ‘At Home’.

It appears that context, as a concept, exists in a general form. Efforts to enumerate

the axes of context do not provide appear to provide sufficient information to include

6

context in any way other than a ‘hard-coded’ or pre-determined and static form. This

approach risks losing a large proportion of the potential of context-awareness.

On the other hand, the more general definitions still provide no method for iden-

tifying contextual attributes, they particularly fail to distinguish context from other

forms of input data, which may or may not fall into the contextual ‘situation’.

With regard to Adaptive Systems, which already contain a situational model of

sorts, the requirement for a clearly defined boundary becomes even more important.

Since Model-driven adaptive systems employ ‘interesting entity relationships’, the gen-

eral definitions above are not sufficient. Nor, indeed are the enumerated models, as the

axes of context and their implications alter substantially with each model/narrative

composition.

It can be seen that context may well constitute the remainder of the data available

for adaption, that which the system is capable of providing, but which the model

employed does not make primary use of. In this scenario, the designation of context

for a particular axis can be seen as being given on a case-by-case basis.

2.1.3 Where can Context be Used?

Despite the difficulties of locating a specific definition for context, it is still possible to

examine the possible uses for context and context-like attributes.

Schilit et. al. define four primary categories for applying contextual information:

• Proximate Selection defines a method for determining the elements of choice

most relevent to a user’s location. For example, the system might prioritise using

a printer that is in a location closest to the user. It can be seen that the concept

of ‘Proximity’ can be employed with metrics other than distance by location.

• Automatic Contextual Reconfiguration proposes that applications alter

their composition based on contextual boundaries. This might include loading or

un-loading modules, creating network connections or power management related

features.

7

• Contextual Information and Commands This set of functions gather many

of their parameters from context. The semantic significance of these parameters

might include keywords such as “Here”, “Now” or “This device”. The power

of these commands lies in providing the user transparency with regard to the

interface, while offering powerful functionality.

• Context-triggered Events In some sense, the reverse of the previous item,

these are actions within programs which occur independently of user interaction,

based on some set of contextual conditions. The authors suggest that these events

are suitable perhaps for implementation in a rule-based model.

These categories broadly cover not only contextual information, but also other

model-driven adaptivitiy mechanisms. Where context drives the system entirely, this

is sufficient. However, when working in concert with other models, it is necessary to

describe context in an alternate fashion.

In this case, context can be described as a set of attributes which combine together,

and with the adaptivity models, to refine the selection or presentation of an already-

relevant model.

2.1.4 Where can Context be Gathered?

The infrastructure described in [14] is now a well-known example of the method for

gathering and processing contextual data as employed in ubiquitous/pervasive appli-

cations.

The authors define the main design considerations in a context-aware system. These

include:

1. Generalisation: Requiring applications to directly handle contextual data cre-

ates excessive requirements for developers. In addition, a direct strategy engen-

ders a system which is limited in respect of expandability and dynamicity.

8

2. Separation of Concerns: Axes of context and other input measures may be-

come confused if there is no discrete separation of concerns between contextual

data and other input.

3. Onus of measurement: Dependant on applications, it may be desirable to

employ either a polling mechanism, or some form of event based context update.

Hybrid solutions may also be applicable.

It is evident from these concerns that an abstracted context layer is the only prac-

ticable method for gathering and processing contextual data. This requirement is

reinforced by the possibility that raw context data may require significant processing

before it is employable by any system.

Fig. 2.1: Data flow between application and context infrastructure. Source: [14]

The authors describe an abstract Context Widget, which is connected to a sen-

sor. This widget provides a number of useful features in the base class, including the

ability to provide data either by responding to polling or by indicating changes with

events. The widget also provides the very useful feature of potentially storing histor-

ical contextual state information via a relational database. Context Widgets can be

subclassed to permit specific features such as, for example, more intelligent caching.

Contextual data is treated and processed via Interpreters. These objects can

interface either with context widgets directly; alternatively they can be accessed by

9

applications seeking perhaps to treat contextual information combined with other pa-

rameters.

Context Servers permit designers to aggregate contextual information in a reusable

fashion. In addition, the aggregation paradigm permits the use of heterogeneous data

gathering (via Interpreters), as well as reusability and a reduced service discovery re-

quirement1.

The benefits of this model are clear, primarily the advantage is one of light-weight

integration and simplicity of use. However, the authors also acknowledge a number of

limitations of the system:

1. Quantisation: The system described has a no built-in method for dealing with

continuous data, such as GPS location information. Handling the quantisation of

this data is most important where the context correlation load is high, or where

small changes to this data are unimportant.

2. Inconsistency: Perhaps the most difficult feature of context management is

the issue of inconsistent or erroneous data. The primary guards against this

are to provide soft failure mechanisms in the abstraction, caching to permit the

retrieval of the last valid state and the aggregation of heterogeneous sensors for

redundancy.

3. Service Discovery: Only limited discovery mechanisms are provided, and de-

tails of the network address of the various entities is required. Superior trans-

parency is vital to a more portable system.

With regard to adaptive systems, the gathering of context raises a number of im-

portant issues and indeed highlights some of the potential weaknesses which are less

prevalent in context-only systems.

In general, the point of interest for contextual data is at adaptive content generali-

sation. It is here that contextual data will be combined with other model information

to select content. This favours a polling model of context gathering.

1The application must only find Server(s), not each individual widget and interpreter.

10

However, it is also true to say that contextual decisions polled at generation may

become stale over time. It is therefore desirable for a mechanism to exist to permit the

update of selection based on change in context. This favours an event-based model.

Combined, these concerns outline the requirement for a hybrid method of context

measurement.

It can also be said that adaptation is a computationally costly process, and con-

siderable inconvenience may result if the engine is forced to re-evalutate its selection

excessively. This is particularly true where the resultant adaptation does not signifi-

cantly differ from the previous iteration.

From these concerns, we can infer that context in an adaptive system should not

include information that is critical to the adaptation. This concern is derived from the

fact that a contextual abstraction is not a completely modelled entity, but rather a

measurement of an abstraction.

Furthermore, context is better suited to those entities which are either large or

highly dynamic, as they provide the Adaptive Engine a means to ignore unimportant

changes while retaining an interest in the dimension measured.

Architecturally, these arguments combine to indicate that, architecturally, context

should be considered as an abstract layer, with a variety of points of contact within

the adaptive engine.

2.1.5 ActiveCampus

2.1.5.1 Overview

The ActiveCampus suite consists primarily of two tools[22]:

1. Graffitti: a web-based location aware bulletin board system. Users are able to

‘tag’ locations with information, to be retrieved by others who are nearby.

2. Messaging: provides instant messaging between users, permitting them to send

messages in realtime.

11

2.1.5.2 What is Context?

In [21], Griswold et. al. indicate that they employ the definition of context outlined in

[14], with a number of extensions. This results in the definition of context as a set of

entities, selected and processed, in order to provide supplemental information about a

task transparently2.

The main feature of this definition is that it encompasses more or less the entire

body of state information for a user (from ‘buddy icon’ and ‘user status’ to ‘current

location’[21]).

2.1.5.3 Where can Context be used?

Contextual data is employed in this system to provide all state information. The sys-

tem employes Proximate Selection in Messaging by listing users which are nearby,

and in Grafitti by displaying only nearby tags. There is little or no support for Auto-

matic Contextual Reconfiguration. Contextual Information and Commands

do exist in the form of the Grafitti tagging process, which depends on current location.

Context-triggered Events take the form of alerts when other users enter the prox-

imity, or upon user status change as well as upon message receipt by the Messaging

system.

2.1.5.4 Where can Context be Gathered?

The ActiveCampus Architecture takes the form of a 5-layer model. The main paradigms

involved include a highly centralised client-server relationship, with context forming one

of two functions external to the server (the other being user-end data representation).

The contextual model is highly object orientated. Sensor data is marshalled into

‘Entity Objects’, which are typed to assist in determining entity relationships. Further-

more, there is a process of ‘Service Introspection’ in order to assist in discovery. This

provides a convenient pluggability and expandability. However, the developers experi-

2This definition resembles the goal of the Aura Project: ‘Distraction-Free Computing’[9]

12

enced ‘Entity Bloat’ when they attempted to expand or alter services. This arose from

their failure to distinguish entities from their representations.

An indexing model was therefore implemented, and this also permitted the use of

index-keyed caching of information.

2.1.5.5 Analysis and Comments

The ActiveCampus model appears to merge the conflicting goals of separation of con-

cerns with integration and performance quite successfully. However, the definition of

context provided has no substantive outer bound. By their definition, all state data is,

to a greater or lesser extent, contextual. In this author’s opinion, this is one of the key

reasons that the ‘Entity Bloat’ problem was felt so keenly, as non-contextual data (ie:

internal user model data) was confused with contextual information.

It is also likely that the authors’ acknowledged decision not to tackle the issue

of radically different display mechanisms may engender difficulties for certain axes of

context.

2.1.6 Context-Aware User Authentication

2.1.6.1 Overview

In a pervasive computing environment such as a hospital, there is considerable in-

convenience in attempting to maintain current ’username/password’ login methods,

particularly for the large number of embedded devices. The goal of this system[1] is to

provide secure access to devices in pervasive computational environments.

2.1.6.2 What is Context?

Primarily, context is expressed as location, which is used to verify the process of logging

in using a Radio Frequency Idendifier (RFID) smart card read on a particular device.

However, simple location is, in this case, used as a more useful concept of ’proxim-

ity’. The difference is that proximity has semantic importance to the system, and is

13

Fig. 2.2: Location-aware login architecture Source: [1]

interpreted from location information. Direct measurement of location is performed

in a number of ways, along with the use of digital schedules and diaries to produce a

confidence value of the location of the user.

2.1.6.3 Where can Context be Used?

Contextual proximity is used to verify the location of the user within a probability.

This data is then used in the decision whether or not to grant access to the user for a

particular device.

2.1.6.4 Where can Context be Gathered?

Context Monitors are sensors employing a variety of techniques including RFID, Wave-

LAN and voice detection to determine the location of a user. This data, in addition to

schedule information, is analysed in the Context Server, which sends a probability to

14

the authentication system.

2.1.6.5 Analysis and Comments

The proximity concept as outlined above yields insight into the relationship between

context and more complex systems. The two components of context, Monitors and

Server, create an interpreted response by correlating numerous factors unknown to the

business logic of authentication. In other words, the contextual factors are encapsulated

as a probability, which is the shared medium between the systems. This is a simple

but highly expressive medium for communication of contextual factors.

2.1.7 MOBIlearn

2.1.7.1 Overview

The MOBIlearn project is a ‘generic mobile learning architecture’, where context-

awareness is employed to select content based on the learner’s goals, situation and

resources[24].

2.1.7.2 What is Context?

The MOBIlearn authors do not characterise context in direct terms. Instead, context

is considered as a

set of changing relationships that may be shaped by the history of those

relationships

In order to provide a somewhat more concrete model, the following hierarchy is

defined (cf. fig:2.3).

• Context is the overall situation over a range of values (including time, space,

etc. . .)

• Context State Is the instantaneous (with respect to the above values) set of

entities relevent to the user’s task.

15

Fig. 2.3: The MOBIlearn context hierarchy. Source: [24]

• Context Substate is the set of entities that are contextually relevent to the

user focus.

• Context Features are the individual entities within the Substate set.

Contextual selection depends on constructing the Substate and analyzing the Fea-

tures therein.

2.1.7.3 Where can Context be used?

In this system, the context substate is employed to generate a meta-data model of the

current situation. This data is then matched to meta-data tagged content for retrieval.

In terms of Schilit’s[25] criteria, the context usage is therefore purely on the Prox-

imate Selection dimension, with a metric based on meta-data matching.

2.1.7.4 Where can Context be Gathered?

A variety of specific sensor solutions are discussed. In general it can be said that

expandable and abstract properties of this system are embodied by assigning a Context

Feature to a sensor (c.f. Context Widget in [14]).

16

2.1.7.5 Analysis and Comments

Once again, this context model indicates an intentionally broad set of what context

may be. However, the reference to a ‘Learner’ model (which can be compared to a

position in an educational narrative) provides a very useful insight, despite forming

part of the context implicitly.

This distinction, though partial, of Learner and Setting, points to a key property

of context: that, though inter-linked, it is separate and distinct from model data.

Furthermore, this system differs from the other examples because it demonstrates

a complex logic: that of a Mobile Learning Application. However, this project views

its models as portions of a larger ’contextual’ view. This method is perhaps derived

from the mobile nature of the application domain, but it does not differentiate deep

adaptive models from other contextual influences. In addition, context is seen to cover

all levels, from the low-level of sensor information to conceptual implications, all in one

system.

2.2 Review of Adaptive Hypermedia Systems

This section of the document attempts to review a number of Adaptive Hypermedia

systems in the educational sphere. The analysis is provided based first on an overview,

followed by a discussion of the models contained within the system. The method

whereby these models are combined is then described. This is followed by an examina-

tion of the mechanics of presenting the resultant adapted content. Some comment and

analysis is provided, with a particular interest in the contextual possibilities of each

system.

2.2.1 AHA!

The AHA! Project is the educational adaptive hypermedia project of the Department

of Computer Science of the University of Eindhoven. The lead researcher is Professor

17

Paul De Bra.

2.2.1.1 Overview

Originally created as a conditional link and content hiding system, the AHA! model has

evolved through three major versions to an xhtml compliant3 hypermedia adaptation

system.

2.2.1.2 Learner Model

The AHA! ‘User Model’ can be considered as a vector of concepts with attributes.

These concepts are typed either Boolean, String or integer[13]. The act of accessing

content will alter this vector, generally to increase a knowledge attribute.

2.2.1.3 Content Model

Fig. 2.4: AHA! Architecture Source: [13]

Discrete portions of content are represented as concepts. These can be linked to

any number of pages, objects or fragments. Each concept within the AHA! system

approximates a single constituent unit of the Domain. Examples given include a style

of painting or a topic to be studied[13].

3When the correct tags are employed

18

The concepts and attributes contained by the Domain Model are reflected in the

User Model. This is an example of the Overlay Model:

For each domain model concept, an individual student’s knowledge model

stores some value which is an estimation of the knowledge level of this

concept.[3]

2.2.1.4 Adaptation Mechanism

The adaptation mechanism of the AHA! model is related to the concept overlay. Upon

visiting a page, a number of concept-linked attributes within the user model are altered

according to embedded values within the concept ruleset. The two most common

associated attributes are the visited and knowledge attributes.

Each page is composed of fragments and objects which can, themselves, contain

fragments which require adaptation. This creates a mechanism for recursively creating

complex pages4.

AHA! pages can require certain attributes before a page is accessible, therefore

embedded fragments can be used to enforce requirements in pages.

2.2.1.5 Presentation

AHA! exposes two primary mechanisms of adaptive presentation(cf. fig.2.5). The first

is through link hiding/annotating, the second is via fragment inclusion/selection.

In both processes, as discussed above, the system evaluates the desirability of a

page, relative to the requirement set of the page and the user’s knowledge vector,

particularly the visited attribute.

The link annotation process colours link text based on three categories: good,

neutral and bad. In fact, ‘bad’ annotated links may be concealed entirely from the

user.

4This also permits the incautious author to create infinite loops within the system. One mechanism
for preventing this is an arbitrary resolution depth.

19

Fig. 2.5: Presentation of Adaptation in AHA! Source: [13]

Object inclusion acts on a similar basis. However, in this case the candidate content

is a selection of fragments (or objects), the most appropriate of which is embedded in

the page.

2.2.1.6 Content Authoring

Given the low-level expression of the AHA! system, authoring tools are vital to the

creation of useful content. Two principle tools are employed[13]:

• The Concept Editor: Employed to annotate content with an attribute set.

• The Graph Author: Permits the high level creation of concepts, pre-requisite

sets and knowledge propagation.

2.2.1.7 Analysis and Comment

In providing co-located rules and content, the AHA! system provides a very low-level

control for the user. However, this model does not encourage reusability, nor does it

20

readily accommodate expansion and alteration. A more modular method for content

navigation control may be useful.

The AHA! system provides significant control over its adaptation mechanisms. It is

possible for the author to control the stability of the system at an object level. There

are four levels of control: always adapted(default setting), always stable, session

stable, expression stable.

It would, perhaps, be useful to empower the user to make a similar choice with

regard to the reconfiguration rate of the system, thus placing change control at the

desire of the user, instead of enforcing potentially considerable dynamicity.

The authors of the AHA! system indicate that an ‘important idea’ would be to

examine expanding beyond ‘user behaviour’ into the area of context ‘such as device

and network characteristics’[13].

Integrating context into the AHA! system is assisted by the adaptable nature of

the attribute vector. However, the combined rules and content would compound the

difficulty of expressing context in a ‘pluggable’ manner, creating instead new axes of

adaptation.

2.2.2 InterBook

Originally intended to break the paradigm of simply transferring day-to-day course

content to the web (with an associated tangle of links), this system was designed to

assist in creating a responsive and adaptable distance learning scheme based on web

technologies.

This system is based on the metaphor of an ‘electronic textbook’. This provides a

hierarchical, ordered structure to the content to be presented.

2.2.2.1 Learner Model

Once again, the overlay model is employed to represent the knowledge state of a user.

However, in addition to the overlay model as presented in AHA!, this system permits

21

the definition of ‘learning goals’, sets of attributes it is intended the user acquire over

the course of the system’s operation.

In addition to page visits, the Learner Model in this system takes account of factors

such as quiz results and problem solving[3].

2.2.2.2 Content Model

The Interbook Domain Model is based around a set of concepts, ‘elementary pieces of

knowledge of the domain’5[3]. This concept space is arranged hierarchically within a

glossary.

Each concept constitutes a node within the glossary, and each node constitutes a

hypermedia document. Concepts are arranged within books, which are arranged within

bookshelfs, consisting of several books on the same topic.

Each book contains a spectrum, consisting of the pre-requisite data for the book,

along with its content. Thus, a book can be considered as a function with inputs (the

pre-requisites) and outputs in the form of an expression of the knowledge gained.

2.2.2.3 Adaptation Mechanism

Once again, the overlay model is employed to map the Learner model to concept

requirements. Content selection is based on the sequence of learning goals6 and their

constituents.

Two primary adaptation schemes are presented, which take some account of learning

style. The first is to provide Direct Guidance, where the system rates and arranges

nodes within the glossary. The overlaid model permits the system to rate links as ready

to be learned, not ready(pre-requisites not met) and known. In addition, the system

can track whether or not a node has been visited.

The second learning model is to present Prerequisite-based Help. This model

can perhaps be most useful in assisting a student with difficult or ill-understood topics.

5similar to the AHA! definition
6each goal consisting simply of a pre-determined set of concepts to be learned

22

In this mode, the system lists and ranks the pre-requisite links for a topic, presenting

them for the student’s perusal. A topic rank is based on the number of relevant concepts

addressed. This model lends support for a back propagated mode of learning.

2.2.2.4 Presentation

The Interbook interface is arranged around two main windows:

• The Glossary Page: The glossary relationships are designed to resemble the

semantic organisation of the concepts and this provides the primary navigation

method.

• The Textbook Window: Consisting of three frames the Navigation Bar, the

Concept Bar and the Text Window.

In the process of Direct Guidance, the Concept Bar is employed to list both the

pre-requisite and resultant concepts of a particular topic, as presented in the Text

Window. In addition, the Navigation Bar contains various standard buttons employed

to navigate the text. This includes the portion of the glossary related to the topic,

with links annotated for rating via colour (red for not ready, green for ready, white for

topics which yield no new information. A checkmark icon indicates the visited status

of the topic.

2.2.2.5 Content Authoring

Content authoring in the Interbook system is performed in a number of stages:

1. The content for a concept is written and marked up in Microsoft Word, based on

the style mechanism7 provided.

2. This annotation is augmented with conceptual relationships, which are generated

via the use of pre-defined blocks8 that provide information on pre-requisites and

resultant knowledge.

7eg the document Title marked in the Title style
8These are hidden from view in the Word document.

23

3. These Rich Text Format files are converted to HTML, and interpreted automat-

ically to create hypertext nodes and LISP rulesets.

2.2.2.6 Analysis and Comment

Though the rule specification system of Interbook is basic, this system has a number

very desirable features with regard to user interface. In particular, the explicit listing

of pre-requisites and requirements, along with a simple and direct visual representation

of the adaptation state.

There is no specific mention of user context within the Interbook system. In par-

ticular, the fact that rulesets are generated purely on the basis of input and output

concepts makes the introduction of non-conceptual factors in adaptation difficult with-

out major revision.

However, the interface within the system does provide a useful clue for a more

‘intelligent’ adaptivity: the effect of any contextual input on the system must empower

the user’s choices, rather than simply removing control. This is particularly true in

deep cognitive tasks such as learning.

2.2.2.7 ‘AHA! meets Interbook’

From inception, the AHA! system was considered an ‘assembly language’[12] for adap-

tive Hypermedia. In the course of development, it was decided that the AHA pre-

sentation system should be generalised to produce new functional possibilities. This

includes, for example, the presentation of an Interbook Electronic Textbook as an

AHA! course.

The main feature of this process was to alter the method of presentation of the

content representation scheme, to permit type classing of conceptual elements in an

arbitrary fashion. In addition, normal integrated entity relationship information was

exported to separate xml documents. The product of this research was a more gener-

alised AHA! system, with an example Interbook to AHA! compiler.

This provides a significant assistance to the introduction of context to the AHA!

24

model. By providing separate rule descriptions, it would be feasable to introduce

contextual rule sets to the descriptions, via perhaps an additional compiler.

This method points to perhaps the most important feature of context, that it does

not form core membership of the adaptation model, but instead provides supplemental

information to be employed once content has been selected.

2.2.3 KnowledgeTree

The KnowledgeTree Architecture[4] is designed to combine just in time content provi-

sion and re-usability with adaptive eLearning techniques.

2.2.3.1 Overview

Knowledge Tree is a distributed eLearning architecture, composed of one Portal per

Learner, connected to a network of Activity Servers and a Student Model Server.

Fig. 2.6: Knowledge Tree Distributed Architecture Source: [4]

2.2.3.2 Learner Model

The Learner model includes student performance and learning history over a number

of portals. Each learner model is stored in a Student Model Server, which can

25

either be located on the local Learner’s machine or centrally, for example in the case

of a University.

2.2.3.3 Content Model

Content is either backed by metadata annotations, or can be based on fuzzy text search-

ing. The content is grouped in Activity Servers, which provide static or dynamic

content as required.

The Teacher makes use of the Portal to designate learning goals for a particular

section or complete course. This is then automatically adapted.

2.2.3.4 Adaptation Mechanism

Adaptation takes place in the Portal, based on the goals laid down by the course author

and from runtime adaptive information about the content, the user’s preferences and

the user’s history from the Model Server.

2.2.3.5 Content Authoring

Content can either be metadata annotated in advance, or sourced by fuzzy text search-

ing. A simple URI (Universal Resource Indicator) based protocol is used to exchange

resource locations.

2.2.3.6 Analysis and Comment

This system employs a wide variety of advanced techniques to give reuse to the learning

objects. However, it does not address the use of ‘external’ factors which would normally

be described as contextual. In some ways, this system is quite highly centralised, the

Learning Portal holds a large portion of the functionality, and there is scope to further

distribute this architecture with the inclusion of remote contextual reasoning during

runtime adaptation.

26

2.2.4 APeLS

This system can be summarised as the application of the highly separated models of

Intelligent Tutoring Systems to the field of Adaptive Hypermedia. The project is under

way at the Knowledge and Data Enginerring group of the Department of Computer

Science, Trinity College under the leadership of Vincent Wade.

2.2.4.1 Overview

The APeLS system can perhaps best be characterised by the fact that it does not

employ the same model format as the two systems mentioned previously. Instead, this

system separates Content, Learner Model and adaptation ruleset (entitled ‘Narrative

Model’[8]).

2.2.4.2 Learner Model

The Learner model in APeLS consists of a profile of discrete assumptions about a

Learner. Of primary importance to the system are the Prior Knowledge and Learning

Goals of the Learner. These factors are populated both from within the system, and

mainly via the use of pre-determined online tests. The Learner Model is designed as

an extensible framework, which is accessed via a vocabulary of concepts.

2.2.4.3 Content Model

The content Model in APeLS is composed of Learning Objects, arranged in ‘pagelets’,

these conceptual units are annotated with an extended version of the IEEE LOM

metadata format[8]. This provides a re-usable set of content, with arbitrary granularity

and an extensible metadata annotation.

Annotations to pagelets include such features as competencies taught, competencies

required, learning style

27

2.2.4.4 Narrative Model

In separating content from information flow, the APeLS system employs the Narra-

tive Model to express those charactersitics of information to be learned not addressed

directly through the content data. In particular, this permits the Learner model’s

expression of preferred learning style to be accommodated without necessarily requir-

ing new or altered content. Instead, content expressed in a style-neutral form can be

re-ordered and presented in a more suitable format.

A particular Narrative will not refer to specific pagelets. Instead, candidate content

groups of pagelets, each referring to the same Learning Object. This permits the

introduction of runtime variables into content selection.

2.2.4.5 Adaptation Mechanism

Fig. 2.7: Architecture of APeLS Source: [8]

The APeLS adaptation model consists of the correlation of the narrative model

with the candidate content groups. Specific selection is made based on the state of the

learner at the point of adaptation.

There are two primary selections to be made. The first is to select the narrative

28

most suited to the User, and the second is to select content based on that narrative.

Throughout the system, there is a correlative vocabulary of terms to relate entities

within each model, particularly in regard of the Learner, Narrative and Content Models.

Certain external factors may be brought to bear on the selection of content/narrative.

For example, content presentation and selection will be affected when the student is

interested in a revision course rather than a long course of instruction [8].

2.2.4.6 Content Authoring

An additional substantial bonus of this architecture is that different authors can create

the detailed content, based on their knowledge of the domain and narratives, based on

their knowledge of paedagogical and information theory.

The standards-formed basis for expressing much of the metadata within the system

also assists in interoperation and importation of content[8].

2.2.4.7 Analysis and Comment

The separation of the Narrative Model from the Content in the APeLs system provides

a very useful, dynamic method for the introduction of Contextual Semantics. In par-

ticular, this is true due to the fact that the Narrative makes reference only indirectly to

content, permitting an ‘external factor’ such as the capacity of the client terminal[11].

The complexity and possibly considerable load of model integration also opens

the opportunity to ‘lighten the load’ on the Adaptive Engine by removing the need

to model directly non-core concerns. This retains the separation of concerns within

different models9 while providing significant enrichment to the axes of adaptivity of

the system.

9For example, it cannot be truly stated that a Learner has Bandwidth , but rather that their client
system does. It is therefore desirable to avoid modellig this within the domain of the Learner Model,
but to relegate it to a contextual framework.

29

2.3 Analysis

The separate domains of Context-Aware and Adaptive Hypermedia Systems appear

to contain an overlap. In comparing their properties below, this overlap will become

visible, as a clear need to supplement conventional adaptive models with context.

2.3.1 Properties of Context-Aware Systems

Context-aware models can be viewed as two primary components: the context-gathering

and interpretation module, and the business logic module. Context-gathering and in-

terpretation is concerned with measuring contextual information (such as location, but

also time, terminal type and many other factors) and providing it in a relevant form to

the business logic module, which communicate with an agreed degree of shared knowl-

edge. The state of the overall system is composed of input from both modules, the

initiative for change coming from both the context and the business information.

2.3.2 Properties of Adaptive Hypermedia Systems

Adaptive Hypermedia systems are centered around direct, deep modelling of entities

such as the Learner and their requirements, and the Content and its attributes. These

models are correlated on the basis of potentially complex learning style routines, with

many factors in each decision point. The addition of further factors for consieration

requires further explicit modelling, and integration into the overall ruleset.

2.3.3 Definition for Context-Informed Adaptive Hypermedia

Based on these properties, it can be seen that the area of potential for context lies

in the provision of additional factors to the adaptation which are not central to the

domain process10, but which provide value-added service to the overall system. The

goal of the integration is to permit a variable number of extra factors to be accounted,

10Otherwise, they would need to be included in the core models

30

without the need to model them explicitly, or integrate them into carefully-defined

models. Therefore, there must be a relatively simple method for influence of context

to be permitted into the various aspects of the system, while remaining sufficiently

expressive. In addition, there may be some more important factors to the adaptation

which are simply impractical or undesirable to model directly in-system.

2.4 Conclusions

In summary, Context-informed Adaptive Hypermedia benefits from the simple, expres-

sive sharing of dynamic or extraneous data to permit value-added improvements to an

adaptation. Context is:

The axes of knowledge which, though not defined a-priori, provide useful

additional input to the core models of adaptation.

These systems often attempt to provide complete ’vertical-market’ coverage, by mod-

elling a specific domain completely, within their own idiom. By combining the proper-

ties of the ’deep’ adaptive models and the ’dynamic’ contextual models, it is intended

that a more hoizontal, broader system be developed.

31

Chapter 3

Designing Context-Informed

Adaptive Hypermedia

This chapter relates the factors affecting the design of the mechanisms for Context-

Informed Adaptive Hypermedia. The overall design is of a separated model: where

Contextual axes are managed by a separate element of the system to the Adaptive

Engine, which is concerned with it s core models. There were a number of factors

which governed the process of design, and these are enumerated and outlined. Specific

Design choices are then Examined, with a discussion of some alternate possibilities, and

the reasons for not choosing them. While the design presented is aimed at with the

APeLS Adaptive Engine, the analysis portion of this chapter will include a discussion

of some of the over-riding principles, which would lead to a generalised system.

3.1 Guiding Principles for Design

The design of Context-Informed Adaptive Hypermedia was undertaken with the APeLS[8]

architecture in mind. However, the basis for the design, its fundamental characteristics,

are applicable to many other domain and systems.

Certain guiding principles were identified in the process of the Survey(cf. 2). Oth-

ers were defined during the process of analysis, where the behaviour of the system

32

was considered in detail. The resultant principles of design can be viewed under the

following headings:

1. Autonomy: The degree to which the Context Interpreter and the Adaptive

Engine can make decisions and change the state of information on their own

initiative. This is desirable as contextual parameters are likely to change over

time in a potentially unpredictable pattern, while the process of adaption requires

the ability to make considerable changes based on its axes. This principle is

concerned with minimising interference during changes effected by each system.

2. Simplicity: Fundamentally, the addition of contextual sensitivity to the system

is aimed to reduce complexity and increase the power of the system by value-

added means. It is therefore required that the contextual mechanisms not create

a significant overhead in the specification of narratives, or the design of the course.

3. Expressiveness: Exchanges between the Contextual Elements and the Adaptive

Engine must be representative of the information being exchanged. The degree

of expressiveness of any dialogue must be sufficient to permit a useful transfer

of information for a range of contextual influences, from a small alteration to a

concept list to a key decision in the path of the narrative.

4. Shared Knowledge: It is vital that both portions of the system operate on

agreed terms. There must be the minimum risk of a miscommunication between

the Adaptive Engine and Context, that would produce an error. For example, in

reference to the term ‘golf club’ both systems must be in agreement that they refer

to the instruiment of play, not the organisation. However, this shared knowledge

should also not place excessive restriction on the Context Module in particular,

where a more complete model of an area might require more detailed knowledge.

5. Obfuscation: The Adaptive Engine should ideally be unaware of the method

by which the Contextual information is gathered, and the contextual decisions

are made. Similarly, the Context Elements of the system should not attempt to

33

supplant the deep models of the Adaptive Engine. This is a key principle of the

separated model of design: it is vital that one side not attempt to ’second guess’

the other.

6. Encapsulation: The encapsulation of a large variety of different information as

a functional interface to the Adaptive Engine is dependent on obfuscation, and

on transparency. There should be identical methods for exchange, no matter the

contextual capabilities of the Context Elements.

7. Range: One of the reasons to preclude an axis from core adaptation is that it

evolves an extremely large range of values, the specific variation of which has

little importance. For example, location has a large variance, which for most

educational courses the specific value is irrelevant. However, the inference of, for

example, proximity to a particular entity is a useful application of location.

8. Frequency: The process of adaptation is a complex one, and rapid changes

in input which would not engender significantly useful alterations to the result

should be minimised. Contextual Elements should be capaple of converting rapid

changing (and, combined with the previous item highly variable) inputs to sub-

stantive changes for the Adaptive Engine where necessary and ignoring changes

where the input change is marginal.

9. Importance: The involvement of Context as a ‘peripheral’ set of information

should not be taken to mean trivial information. The Context Element may

supply core and may add key points to the overall state of the system. However,

without these additions, it must still be possible for the Adaptive Engine to create

a useful result. The contextual information adds to this default result, enriching

the adaptive process.

10. User Empowerment: In principle, there is no reason why contextual axes could

not be employed to supply all the model parameters for an adaptation. This

Zero-Knowledge Adaptivity suggests that the models within the Adaptive

34

Engine are effectively empty, and that all information is supplied by the Adaptive

Engine. While, in theory, this is something of a breach of the concept of context as

peripheral entities, it is a practical and perhaps even useful method for performing

adaptation where the Adaptive Engine is critically short of information.

However, while this and other forms of adaption are valuable, it is important

that the Learner remain involved and empowered. In particular, the educa-

tional domain is dependent on considerable attention and concentration from the

user, depending on the requirements of the task. Bloom’s Taxonomy of Learning

defines a number of categories of skill and types of learning[6]. In particular,

Cognitive Learning (the main category of learning supplied by the Adaptive En-

gines, divided into six types of learning, some of which are passive and some of

which are active. In the case of higher cognitive tasks, greater active involvement

is required. While this is primarily reflected in the course as managed by the

Adaptive Engine, it is also desirable for the Context Interpreter to respond to

the active input of the Learner1.

3.2 Design Challenges

In addition to the principles outlined above, there were a number of functional and

non-functional requirements for the design of the Context Elements.

3.2.1 Web Architecture

The standards-driven approach visible throughout the design of APeLS is a strong

encouragement to continuing a cohesive architecture. In addition, the wide potential

of the separated architecture necessitates transparent location and interaction with

Context Elements. These requirements lead to the implementation of the system using

web-services and xml-oriented transport.

1A Similar requirement can be observed[7] in the theory of Andragogy[23], where adults in educa-
tion prefer to take significant control of their learning

35

3.2.2 Applying Context over the Entire System

The principle of Encapsulation and Obfuscation, as well as the drive to simplicity,

encourages the design to give maximum access to the Contextual Elements. In the

case of APeLS, the main models are the Learner Model, the Content Model and

the Narrative. These models each contain different aspects of the adaptation process,

all of which may be subject to contextual alteration.

3.2.2.1 Accommodating Narrative Style

Narratives in APeLS are specified in Jess2[20], a Java-based implementation of a LISP-

style Rule Chaining System. Narratives can therefore either be structured in many

ways, including as procedural or as a rule-chain. It is important, for simplicity, that

narrative-related contextual mechanisms support a wide variety of styles.

3.3 Overall Design

This section presents an overall architecture for Context-Informed Adaptive Hyperme-

dia. Later chapters will explain in more detail the Prototyping and Implementation of

this design, as well as its evaluation.

3.3.1 Context Interpreter

The Context Interpreter greatly simplifies the architecture and use of Context by encap-

sulating all Contextual Elements, and managing shared knowledge and expressiveness

by translating information from Context into terms usable by the Adaptive Engine

directly. The Context Interpreter is the endpoint for the Adaptive Engine for all Con-

textual Mechanisms. It is important to note that, under the principles outlined above

the Context Interpreter is not itself an adaptive Engine, but rather an aggregator and

broker of contextual information.

2Jess is a trademark of Sandia National Laboratories

36

Fig. 3.1: The Influence of the Context Interpreter on the Adaptive Engine

3.3.2 Contextual Mechanisms

One of the primary goals of this project is to define a set of Mechanics for the exchange

of contextual information with the Adaptive Engine. The mechanisms outlined below

reflect the design phase of this objective.

3.3.2.1 User Model Enrichment

This form of contextual input is initiated by the Context Interpreter as and when

changes to the context arise. In principle, the User Model can be considered as the set

of knowledge open to the Adaptive Engine for reasoning. The intention of this form

of update is to permit Context to enrich the relevant user details by reasoning over

data not accessible to the core adaptivity. An example of this form of input might be

for the Context Interpreter to discover that the user has undertaken a project involved

in a particular subject. This information might have bearing on the learning goals of

the user, and so this fact (expressed in terms relevant to the adaptive engine) may be

taken into account by the adaptive engine in selecting content such as examples. In

37

Fig. 3.2: Use Cases for the User Update Mechanism

this example, the user model is enriched with the Learning Context of the User, that

is, the process of making connections between topics for users.

3.3.2.2 Narrative Decision Enhancement

Fig. 3.3: Use Cases for the Narrative Decision Enhancement Mechanism

This form of context pertains to enriching the decision process of the adaptive en-

gine. This decision process can be considered as the navigation of the concept space

38

as described by the narrative. This can be used to supplement choices during adap-

tation with concerns not available to the Adaptive Engine. This mechanism can be

considered as a ’handover’ or ’hook’ for black-box contextual input, and permits the

narrative to include the option of improved, context-enriched information, in a way

which is transparent to the description of the narrative. In addition, this manipulation

of the concept space (e.g.: learning goals) and the content space (e.g.: candidate group

selection) can be controlled in some fashion, at a minimum by permitting the author

of the narrative to decide when the hooks are activated. In view of the open nature

of narratives, support must exist for a variety of choices, such as either/or choices and

aggregated choices, which may reflect on several items in the narrative.

3.3.2.3 Narrative Decision Enhancement

Fig. 3.4: A ‘Broken’ Narrative, where a decision must be made to continue.

This mechanism permits the creation of ’broken’ narratives, where a contextual

choice is required to decide the path of the narrative. These do not breach the extrinsic

nature of context, as they are intended for use where a random selection would be

39

identical from the perspective of the Adaptive Engine.

3.3.2.4 Candidate Group Manipulation

Fig. 3.5: Use Cases for the Candidate Group Manipulation Mechanism

Candidate Groups support the principle of Candidacy[10], whereby they are ele-

ments of the course which do not refer directly to content, but rather to a set of similar

pagelets of content. These Candidate groups are themselves grouped with concepts to

form portions of the course, and the manipulation of this list yields a high-gain method

for introducing unknown context to the Adaptive Process.

3.3.2.5 Sub-Concept Content Selection

Similarly, it may be useful to support the candidacy process by permitting the list of

pagelets derived from a Candidate Group to be manipulated by the Context Interpreter.

Conceptually, this is extremely similar to Candidate Group Manipulation, from the

viewpoint of exchange mechanics.

40

3.3.3 User Interaction

Fig. 3.6: Use Cases for the User Empowerment

The process of contextual influence of adaptation could benefit greatly from user

support in the form of feedback and correction of decisions. Through this means, a user

preference profile can be developed. This mechanism takes the form of the presentation

of questions, sourced from the Context Interpreter and displayed on adapted pages.

3.4 Design Decisions

There were a great many choices to be made in the process of design. Some of the

most important ideas are outlined below, with reasons for the choice made.

3.4.1 Direct Manipulation

One possibility was to view the system as a number of co-operating agents, altering

the state of a conceptual information space. This could perhaps be viewed as a system

where the Context Interpreter makes direct changes to the stored metadata of the

Adaptive engine, as required.

The advantage to this model is that there is unrestricted access from the Context

Interpreter to the Adaptive Engine. There is no need to define specific mechanisms,

41

all changes can be made as required by the decision logic of the Context Interpreter.

However, this is a fundamental breach of separation, and has a number of disad-

vantages relating to this. First and foremost, the timing of such alterations may risk

being haphazard. With no co-ordinating entity, concurrent access to the database may

result in partial updates, unless great care is taken. Secondly, the process of directly

manipulating the database blurs significantly the line of separation between the Adap-

tive Engine and the Context Interpreter. As they both manipulate the structures as

they see fit, their functionality merges, and the system becomes one, large Context-

aware Adaptive Engine. This is not as simple, nor does it permit Encapsulation or

Obfuscation, finally the separation advantages with regards to Importance, Amplitude

and Frequency are potentially lost.

3.4.2 Query Language

A more complex query language, with greater shared knowledge, would permit each

system to interrogate the other in detail, and permit gains in complex contextual and

adaptive scenarios. However, on the other hand, such queries are by their very nature

defined in advance, and requiring of very considerable degree of agreed knowledge.

This risks the simplicity of the system, as it also potentially affects the expressiveness

of the system, by reducing the Context Interpreter to a sensor interaction layer. It

is preferable to make use of agreed conceptual and sub-conceptual terms in order to

exchange data, as this further eliminates the need for the Adaptive Engine to expend

significant resources to marshall and integrate contextual inputs.

3.4.3 Total Automation

In keeping with the principle of User Empowerment, it is important to permit the

system to notify the user of their actions, and permit the learner to alter decisions

made by the system. While it is not desirable or practicable to let the learner alter

every decision, a web-oriented explanation of selection and presentation of options is

42

helpful in maintaining interest.

3.4.4 Conclusions

This chapter has presented the Design of Context-Informed Adaptive Hypermedia. The

separated architecture, composed of an Adaptive Engine and a Context Interpreter was

defined, along with the mechanisms by which the Adaptive Engine and Context Inter-

preter may exchange information, as well as the principles on which these exchanges

take place. The general principle of a Context Interpreter is apllicable to many other do-

mains, where a system can include extra input axes without prior specification through

permitting a Context Interpreter to access the models involved. The use of the ’vernac-

ular’ by the Context Interpreter in exchanges permits a highly pluggable model, where

translation between different domain systems might occur in the realm of contextual

enrichment.

43

Chapter 4

Implementation

This chapter covers the third Objective of the project, the prototyping and testing

of the mechanisms outlined previously for applying contextual axes to the Adaptive

Engine.

The initial sections of this chapter are concerned with a description of the general

implementation, followed by a presentation of the creation of test examples for different

applications of the mechanisms to courses.

4.1 Implementation Description

The objective of this implementation was to examine the process of enabling the input

of the Context Interpreter to be accounted for by an existing Adaptive Engine. The

system in question was the APeLS system outlined previously.

4.1.1 Overview

The mechanisms described in the Design chapter of this document had to be applied to

the architecture of APeLS. The APeLS system is based on Apache Tomcat[16], where

it is composed of a set of Java Server Pages, which provide a framework to receive

adaptive content from the Engine, written as a java library. The content and user

44

metadata is sourced from an XML Database1; this data is composed based on rules

specified in the LISP-like language of Jess. The creation of this system was therefore

divided into three main subdivisions: the Context Interpreter, the User Module and

the Narrative Module.

In order to provide and open, standards-compliant transport method, it was decided

that the Contextual mechanisms should be implemented as methods for a Context

Interpreter Web Service. SOAP[15] was chosen as the protocol, for remote invocation

of a Java-based service. The Apache Axis[17] package was employed for automatic

marshalling and transport.

Each mechanism was mapped to a method exposed in the web service, the specific

processing was done by a class implementing the appropriate interface2.

The other advantage to this implementation method, apart from its

simplicity and standards-compliance, was that it permitted the use of JSPs on the

Context Interpreter side, to provide for user feedback confirmation.

4.1.2 Context Interpreter

A simple framework for test scenarios was needed in order to permit queries to be

evaluated. The structure of the Interpreter was arranged to provide easy alteration in

the event of revised test cases.

The principle class of the system selects and instantiates specific implementations

of the abstract Interpreter Interface. This interface reflects the exposed methods of the

overall service.

All methods in the system have a space to provide the endpoint, the URI of the

target Context Interpretation Webservice. In the event of none being specified, a

default value is chosen.

1Apache Xindice[19]
2See the appendix for UML information

45

Fig. 4.1: Implementation architecture. Mechanisms are mapped to methods in the

Interpreter Web Service. The User Module is called from JSPs directly, while the

Narrative Module is called from Jess, during adaptation. These modules marshall,

unmarshall and transport queries and responses.

4.1.3 User Module

Written as a Java Class, this Module provides the interface between the JSP controlled

sections of Adaptivity and Context. In particular, this Module is responsible for mar-

shalling and exchanging User Model Learner Objects with the Context Interpreter.

Invocation of the Adaptive Engine is controlled in JSPs, and so it is desirable to be

able to manipulate the User model before the Narrative is executed. This is reflected

as the updateUser method of the InterpreterService Object.

The code to update a User therefore depends on passing an intitial User Model

to the Context Interpreter, which processes and updates the adaptivity matrix of the

User. This is expressed in the Object as a Hashtable of Vectors, each associated with

an adaptivity type. For example, a Learner might have several competencies.learned

to reflect their previous learning experience.

46

JSP file

1 //Initialise the interface, with default endpoint.

2 UserSOAPInterface soapIf =

3 new SOAPInterface("http://target.server/InterpreterService.jws")

4 //call the Context Interpreter

5 //learnerObject is the Learner Model before Context is applied

6 learnerObject =

7 soapIf.updateUser(learnerObject, "identifier","narrative", null);

This module also provides methods for retrieving the XML document expressing the

Context Interpreter’s Feedback. The contextQuestions method of the InterpreterSer-

vice returns a matrix of questions as raw xml, which can then be transformed by the

system. It is left to the Adaptive Engine to perform any transforms to create the

resultant xhtml.

4.1.4 Narrative Module

Most narratives in APeLS are implemented as a function for adding nodes to a doc-

ument tree, which forms the resultant course, by comparing certain attributes of the

Learner to certain attributes of the Candidate Group in question. The Narrative is

also responsible for specifying candidate selection from candidate groups. The Narra-

tive Module is therefore concerned with providing functionality for Jess instructions,

to permit access to the Context Interpreter.

Three Mechanisms, User Update, Narrative Choice and Content Group Manipula-

tion are implemented within the call-context Jess UserFunction. This is a wrapper

object, provided by the Jess libraries to permit the embedding of Java code within

Jess. These functions process the ValueVector of parameters from the system to select

the correct call to the Web service and pass the converted data. It should be noted

that the preferred usage for the User Update mechanism is with the use of the JSP

based interface. In the example code below, which rule is asserted is determined by

47

the value of the first string returned from the list passed to the endpoint.
course.clp

1 (assert-string

2 (nth$ 1

3 (query-context "narrativeChoice"

4 (create$ "(userKnowsjava)" "(userKnowsperl)")

5 "http://localhost:8080/axis/InterpreterService.jws" "narrative")

6)))

The results of all the Narrative Module function calls are String-typed and valid for use

througout Jess. In particular, Lists are returned for all but the UserUpdate function,

which does not return information as the Narrative does not directly interface with

that model.

Examples of usage for some of the other mechanisms are provided later in the

chapter.

4.2 Main Challenges

There were a number of significant challenges in the implementation of the system. Of

prime importance was handling the apparently variable initiative between the Context

Interpreter and the Adaptive Engine. During design, it was deemed important that

the Context Interpreter be able to make changes to the models in response to changes

in Context.

However, as implemented, the system is dependent on the Adaptive Engine to call

the Context Interpreter Web Service. This is consistent with the Web Architecture, in

responding to the User input for updates and changes. Responsive changes can in fact

be implemented relatively simply: each adaptation includes its Contextual features

and so all changes are taken into account with each new update. More detail on this

factor will be provided during the evaluation of the system in the next chapter.

48

4.2.1 Data Types

There is a great range of data employed in the process of adaptation, from the features

of the Learner and the Attributes of Content to the Concept Space manipulated during

the progress of the Narrative.

4.2.1.1 Transporting Information

Both Jess and SOAP place constraints on what types of data can be used for their

functions. In particular, it is desirable that lists3 be employed, where possible in data.

SOAP requires that data take the form of Java primitives, or arrays thereof, so

that they may be marshalled into exchangeable formats. In the interests of portability,

it was decided to be preferable for the Table of Vectors in the Learner Object to be

converted to a 2-Dimensional Array. This required the addition of two methods to the

Learner Class, one to retrieve and one to set the adaptivity table.

4.2.2 Candidacy

In principle, the Narrative is concerned with the manipulation and arrangement of Con-

cepts and their associated Content Groups. The manipulation of the sub-conceptual

content model is not a prime role. However, in practice, it is desirable to use the power

of Jess to select content.

This presented a challenge to the design of the context mechanisms regarding the

desirability of separate methods for manipulating content groups, and content group

membership. In the end, it was found that, from the perspective of transport and

marshalling, the difference was functionally nil. Both can be considered as simply lists

of entities to be manipulated and returned by the Context Interpreter.

3or multi-fields

49

4.3 Experiments

A number of usage scenarios were outlined in order to test the interaction of the

mechanisms with the Adaptive Engine. The scenarios are all based around two adaptive

courses, one concerning SQL, the other concerning an introductory mathematics course.

The use of two courses provided some useful benefits, as they each treat the data

and engine in a distinct fashion. The Mathematics course, for example, rebuilds the

course each time the user has viewed a topic. On the other hand, the SQL course has

a more developed sense of candidacy, but is less frequently rebuilt.

The Scenarios are divided into three categories, Low-, Mid- and High-Context. This

delineation is based on the importance of the contextual decision, ie. the input it has

on the state of the adaptive models. In all cases, the Adaptive Engine can produce a

course without the decision, or with a trivial (random) choice and from the perspective

of the core models, all requirements are fulfilled.

In order to demonstrate the capabilities of the mechanisms, certain scenarios are

presented in different forms, with different implementations. This provides an insight

into the mechanisms, and their effectiveness.

4.3.1 Low-Context Scenario

Terminal Adaptation[11] is a key feature in mLearning applications such as [24]. How-

ever, in the APeLS architecture, it is a value-added service and not central to the learn-

ing process, which is primarily envisioned as happening on Desktop-style PCs. This

makes the scenario and ideal example of a low-importance contextual requirement.

The choice of one piece of content (or one candidate group) over another because of

terminal capabilities is one that the Adaptive Engine is oblivious to.

4.3.1.1 Terminal Adaptation by Content Selection

This scenario employs the Content Group Manipulation mechanism to pass a list of

candidate groups for each section of the course to the the Context Interpreter. In each

50

case, the Context Interpreter returned the most appropriate group, depending on the

terminal properties of the Learner.

This scenario was implemented in the Mathematics Course, by means of the Content

Group Update mechanism. This course has single-member candidate groups, sharing

the names of their content.

In each case where there is a choice of candidates, the list is simply passed to

the Context Interpreter, which selects one, based on the context of the User. This is

then associated with a concept and compared with the Learner Model as normal (the

add-unit function)
base.clp

1 (dom "add-to-parent" "section")

2 (dom "add-to-parent" "name" "Numbers, Functions and Graphs")

3 (add-unit "unit_nfg1"

4 (nth$ 1

5 (query-context "cgManipulation"

6 (create$ "nfg1.html" "pda_nfg1.html")

7 "http://localhost:8080/axis/InterpreterService.jws" "aeapp")))

The author of the narrative can therefore select which parts of the course can be

selected for terminal adaptation, and which cannot. This is done by deciding whether

or not to call the relevant function with a list of choices, or simply to add the unit.

4.3.1.2 Terminal Adaption by User Model Enrichment

This implementation of the Low-Context scenario makes use of the User Update mecha-

nism to enrich the Learner model with Terminal information. An additional adaptivity

type called terminal.info is added to the Learner model. The narrative then takes ac-

count of this attribute in selecting pagelets from the content group, the candidate

groups having been selected based on (core) educational attributes of the learner.

The function for adding concepts to the Document tree of the SQL course is outlined

below:

51

course model.clp

1 (deffunction add-subsection (?sectionname ?require ?list)

2 ;; Declare varible to count page numbers in section

3 ;; variable is set to zero initially

4 (bind ?pageCounter 0)

5 ;; if learner contains a match to the contents of ?require

6 ;; then add section to DOM

7 ;; else do nothing

8 (if (eq (search-learner ?require "competencies.required") "TRUE")

9 then

10 (dom "add-to-parent" "subsection")

11 (dom "add-to-parent" "name" ?sectionname)

12 (dom "add-to-parent" "id" ?sectionname)

13 ;gather the terminal type

14 (if (eq (search-learner "desktop" "terminal.info") "TRUE")

15 then

16 ;desktop content is first in candidate list

17 (bind ?contentindex 1)

18 else

19 ;pda content is second

20 (bind ?contentindex 2)

21)

22 (foreach ?var ?list

23 ;get the content numbered by the index above

24 (bind ?module

25 (nth$?contentindex

26 (get-content-list "subcollection3" ?var

27 "//childrengroup/children")

28)

52

29)

30 ;add the content

31 (dom "add-to-parent" "card")

32 (dom "add-to-parent" "cg" ?module)

33 (dom "set-parent" "..")

34)

35 (dom "set-parent" "..")

36 else

37 (return 1)))

This function is adapted from the original SQL Course function to add Context-

Awareness. In line 14, the system queries the user model for the terminal adaptivity of

the User. This is contained in the terminal.info adaptivity category of the User, which

is added by the Context Interpreter when the course is rebuilt.

This adaptivity category is added to the system in the JSP responsible for building

the course:
test.jsp

1 learnerObject = Run.getLearner(learnerName);

2 // update the learnerObject with the context information,

3 // this is added to the competency matrix

4 // created above.

5 UserSOAPInterface soapIf =

6 new UserSOAPInterface

7 ("http://localhost:8080/axis/InterpreterService.jws");

8 //call the CI

9 // "sql2.1" is used where the updated user model includes

10 // preferred programming language

11 // "sql3.1" is used where terminal adaptation is employed

12 learnerObject =

13 soapIf.updateUser(learnerObject, learnerObject.getIdentifier(),

53

14 "sql3.1", null);

15 // Store learner object as session attribute

16 session.setAttribute("learner", learnerObject);

After constructing the Learner Model and storing it within the XML database, the

JSP adds the additional, temporary contextual adaptivity to the Learner model. The

loss of this temporary attribute in between builds is not a problem, as the candidate

selection only occurs on rebuild, when the Context Interpreter will be called once more.

4.3.2 Mid-Context Scenario

This is an example of a ‘broken’ narrative; one where the flow of content requires a

decision to continue. In this case, the choice of one language over another is the same

(in terms of the Adaptive Models), and the Context Interpreter is simply required

to make ‘a’ decision. This scenario also includes an implementation of the context

feedback mechanism, in the form of the storage of the language choice, and presenting

the user with the option to change it.

This scenario is implemented with the use of the Narrative Choice mechanism,

which provides the Context Interpreter with two possible answers to choose from,

‘db.applications.programming.java’ or ‘db.applications.programming.perl’. Each con-

cept is associated with a set of Candidate Groups, and reuse is demonstrated by the fact

that the cgprog1-000 candidate group can be used in both choices. Each of these choices

fulfills the same educational role: to introduce database programming. However, from

the user’s perspective4 the choice of languages is potentially highly important.

4.3.2.1 Language Selection by Narrative Choice

The Narrative Author defines a decision point by calling the Narrative choice user

function with a list of options. The Context Interpreter receives this list and returns a

list of its own, with one or more of the options contained in the question. A variable is

4but not that of the Adaptive Engine

54

used to store the resultant choice from the context-query. This is then used to select

between Perl and Java.
course model.clp

1 ;select perl or java

2 (bind ?testquestion

3 (query-context "narrativeChoice"

4 (create$ "db.applications.programming.java"

5 "db.applications.programming.perl")

6 "http://localhost:8080/axis/InterpreterService.jws" "sql"))

7 ;print the response

8 (printout t ?testquestion)

9 ;extract the first element

10 (if (eq (nth$ 1 ?testquestion) "db.applications.programming.java")

11 then

12 (add-subsection

13 "Programming with SQL in Java" "db.applications.programming"

14 (create$ cgprog1-000 cgjava1-000 cgjava1-001 cgjava1-002))

15 else

16 (if (eq (nth$ 1 ?testquestion) "db.applications.programming.perl")

17 then

18 (add-subsection "Programming with SQL in Perl"

19 "db.applications.programming"

20 (create$ cgprog1-000 cgperl1-000 cgperl1-001 cgperl1-002))))

4.3.2.2 Language Selection by User Model Enrichment

In the User Update model, the concept space is expanded to

include both the db.applications.programming.java and

db.applications.programming.perl concepts, each associated with their particular

content groups. The adaptation is then performed as normal. However, the Learner

55

Model Concept Space has also been expanded, by enrichment through the User Update

mechanism, to include one of the options.

4.3.2.3 Feedback on Content

In both experiments, the decision of the Context Server is recorded in a profile for the

user in an XML database. This is then cached for the next use. In addition, a question

is appended to the page display of the course, with the option to alter the decision

made by the Context Interpreter. This decision is then recorded. The raw XML for a

question is as follows:
Example Question (XML)

1 <question>

2 <returnaddress>http://path.to.CI/answer.jsp</returnaddress>

3 <query>You have Selected: db.applications.programming.java,

4 options are:

5 </query>

6 <choices>

7 <choice if="db.applications.programming.java">

8 Java

9 </choice>

10 <choice id="db.applications.programming.perl">

11 Perl

12 </choice>

13 </choices>

14 </question>

The contextQuestions method of the User Module is employed to gather the raw

xml of the question, which it then translates based on a local stylesheet into xhtml,

and appends to the page. A JSP implemented on the Context Interpreter is contacted

via an xhtml form to update the status of the parameter in question. This update is

performed via an XUpdate[18] to the Context Interpreter’s database.

56

4.3.3 High-Context Scenario

One particular advantage of Context is the concept of the Learner’s ‘Learning Context’,

their history of learning through other adaptive courses, or through other means. This

may mean that they, in fact, have a history of learning which should ideally be expressed

in the Learner Model.

Traditionally, this has been acheived through the use of JSP-based tests, with

questions and answers associated with tests. This is an extremely powerful method for

determining the requirements and aptitude of the Learner, and it is not the intention

of this scenario to replace that technique. Instead, it is intended that this scenario

represent a situation where a test has already been performed, perhaps in another

specific course, and that profile is translated by the Contxt Interpreter to the current

Adaptive Engine.

4.3.3.1 Profile Discovery for Unknown User by User Model Update

The Adaptive Engine stores profiles of Learners who have used a particular course.

In the event that a new Learner accesses the Maths course, the Context-Informed

Adaptive Engine can query the Context Interpreter to discover if it has any information

on the new Learner. This is performed by means of the User Update mechanism,

which is used to pass the known information (perhaps as little as their username) to

the Context Interpreter as a Learner Model. In the event that the Context Interpreter

can determine information about the Learner, it returns a new Learner Model, with

more descriptive attributes, perhaps discovered from other courses undertaken by the

Learner. These new attributes are then employed to present a more relevant course to

the Learner.

The portion of code responsible for locating the User profile is outlined below. In

the event that newLearner is null, the Context Interpreter was not able to locate a

profile.
login.jsp

1 String identifier = request.getParameter("learner");

57

2 Learner learner = null;

3 //if The Learner is *not* found, a NullPointerException occurs

4 try

5 {

6 learner = Run.getLearner(identifier);

7 }

8 //if the learner object is not located, request one from the CI

9 catch(NullPointerException e)

10 {

11 UserSOAPInterface soapIf =

12 new UserSOAPInterface

13 ("http://localhost:8080/axis/InterpreterService.jws");

14 Learner newLearner = new Learner();

15 //call the CI

16 newLearner =

17 soapIf.updateUser(newLearner, identifier, "aeapp", null);

18 }

4.3.4 Additional Applications

There are a great many other ways of implementing these scenarios, as well as a broad

range of other applications for context-information. For example it would have been

possible to implement a more complex descriptor for content based on desired termi-

nal. Rules-based narratives might have been designed, with the assertions directly or

indirectly made via different methods.

As regards other domains, the selection of different media based on bandwith,

for example text rather than video or animation on low bandwidth connections, or

the selection of content based on licensing requirements could all be relatively easily

modelled with these mechanisms.

58

4.4 Conclusions

This chapter has presented the Prototyping and Testing of Context-Informed Adaptive

Hypermedia. While the responses from the Context Interpreter were pre-determined,

the process of experimental testing provided significant insight into the many ways in

which the different mechanisms can be employed.

In particular, it can be seen that the choice of mechanism reflects directly upon the

burden of knowledge for the Adaptive Models —

• In the case of the User Update mechanism, the Adaptive Engine must model

whatever adaptivities result from the contextual update for their effect to be

seen. In particular, this can be seen in the requirement to represent the class of

terminal within the narrative, in the terminal emulation experiment(cf.4.3.1.1).

• The Narrative Choice function permits the system to reason on the results

of a choice5 and supports complex decision processes. However, to be useful it

also requires that the narrative be capable of handling whatever response returns

usefully.

• Candidate (Group) Manipulation places no requirement on the system for

models, it simply acts on the results of a decision, without necessarily being aware

a decision has been made6.

It is likely that any desired feature could probably be implemented with combi-

nations of the others, in some form or another. The next chapter is concerned with

analysing the effectiveness of this design and implementation vis-a-vis the guiding re-

quirements outlined in the previous chapter.

5but not on the reasons for that choice
6In the sense that if the narrative passes all groups and does not descriminate the results, it has

no burden to know if, or whether, there was a change

59

Chapter 5

Evaluation

The evaluation of this project will be based primarily on determining whether its guid-

ing principles are reflected in both the design and implementation of the system. These

principles, laid down in the initial phases of design, permit a quantitative evaluation

of the performance of the resultant implementation.

5.1 Evaluation with Regard to Guiding Principles

Each of the principles outlined reflects either a property of Context Information, either

in itself or in its applications. The determination of how these properties are realised

within the system provides significant insight into the suitability of the architecture as

designed, and additionally indicates future paths for development.

5.1.1 Autonomy

As implemented, there is no direct co-ordination between the systems as to the changes

made in the state of the Adaptive Engine and the Context Interpreter. Each set of

models can be viewed as being separated and autonomous. The Context Interpreter

is free to alter its internal view at will, and synchronisation occurs whrn the Adaptive

Engine runs the Narrative.

60

This lack of co-ordination does create one potential issue, which relates to the

inability of the Context Interpreter, as written, to force the Adaptive Engine to rebuild

its course. This can be resolved by arranging to poll the context server, in some fashion,

perhaps via the ContextQuestions fed back to the system. In the event of a rebuild

being recommended, the Context Interpreter can alert the Learner, or perform the task

automatically.

It is likely that the preferred method for timing synchronisations will depend heavily

on the application domain. Therefore, the system presented maximises autonomy, while

permitting co-ordination to be implemented.

5.1.2 Simplicity

There is a considerable range of complexity open to Narrative authors using the con-

textual mechanisms. In principle, they can create a context-informed course simply by

passing each candidate group list to the Context Interpreter, and adding the remain-

der. Otherwise a similar effect could be created by devising a fully expressive concept

space where the Learner model is completed by the Context Interpreter.

Great care has been taken to provide seamless integration of narrative functions,

particularly in Jess. The mechanisms act very much like the methods provided in the

core Adaptive Engine, provided for searching the models supplied. This method of im-

plementation also provides for a variety of styles without alteration to the mechanism.

There is a requirement for considerably more content to be provided in the case of

a responsive, adaptive system. However, this requirement is not significantly greater

than that imposed by providing similar support without context. In fact, contextual

factors may reduce the requirement, by aiding in recognising opportunities for reuse

through candidacy.

61

5.1.3 Expressiveness

There are two important factors for consideration in the principle of Expressiveness.

The first is to evaluate the expressiveness of the functions provided. As discussed pre-

viously, there are many ways to use the functions and methods of the implementation

to acheive the same goal. In addition, each mechanism can be used in many ways to

accomplish many tasks. They are differentiated by the level of support required on the

Adaptive Engine’s part, and the model ownership of the representational logic1.

The Second factor governs the expressiveness of the payloads themselves. It is evi-

dent from the course of the implementation that a number of extra possible categories

of data are being expressed. The identifier of the user, and one for the narrative, pro-

vide the Context Interpreter with metadata to identify the respository of expressive

content: the concept list.

The Addition of a sub-conceptual payload to the system significantly widens the

scope of possible interactions between Context Interpreter and Adaptive Engine. This

is an example of the use of and exchange vocabulary on the part of the Narrative also,

and can also be represented by the use of aggregate or generalised concepts for the

purposes of more complex reasoning.

5.1.4 Shared Knowledge

The degree of shared knowledge has been increased from the original design with the

possibilities outlined such as alternate vocabularies and sub-conceptual listings. In the

design of the Context Interpreter itself, it will be vital that these alternate possibilities

are correctly recognised.

The matter of the identifier is also relevant. Identifiers are guaranteed unique within

a particular instance of a course, however, there is a distinct likelihood of collision be-

tween courses and instances of courses. This is an example of the requirement for a

full Context Interpreter to be able to accurately aggregate content from heterogeneous

1for example, representing the results of a contextual query as a variable within the Narrative, or
as a category of adaptivity within the Learner Model.

62

sources, including different courses and different instances of the same course. Such a

requirement may prompt the development of more complex transport metadata; rather

than a simple identifier/narrativeName pair, a more descriptive complete characterisa-

tion of the context query may be required. In any case, the content or scheme of the

descriptor is unimportant, from the perspective of the Transport mechanism unless the

type and number of parameters change.

Early investigations suggest that Ontology-style schemes may provide a mechanism

for describing the interchange between the internal Contextual Terms, and the language

of the Adaptive Engine in question. Further, these ontologies may yield other advan-

tages, such as the possibility of performing profile translation of the sort demonstrated

in the experiments automatically or near-automatically. It is important to note that

one key ontology within the Context Interpreter will be that of the course it interfaces

with.

5.1.5 Obfuscation

Based on the architecture presented, there is little merit in creating an Adaptive En-

gine which directly accesses sensors and other contextual sources. The merit of the

architecture presented is that the contextual concerns are largely prepared for direct

use by the Adaptive Engine.

The obfuscation of raw contextual data means that Adaptive Engines cannot deter-

mine the reasons for a certain decision, merely that a decision has been made. Similarly,

the reduction to concept lists of the question (with, possibly, descriptive metadata of

some sort) prevents the Context Interpreter from over-stepping the boundary between

the systems. This is a useful feature, as it provides a clear frontier between the systems,

and reduces the chance for contention to invalidate the compound model.

Designing a scalable, transparent model for providing context is not a trivial un-

dertaking. However, the architecture described does point to the fact that a relatively

small number of key mechanisms have considerable potential to express the results of

complex contextual reasoning.

63

5.1.6 Encapsulation

Encapsulation is synergistic with the Obfuscation principle. In addition to providing

a boundary between the responsibilities and influences of the systems, the use of an

agreed, limited vocabulary permits the Context Interface to gather its data from a vast

array of different sources, and marshall them as conceptual decisions for the Adaptive

Engine.

Encapsulation is the key to reducing the size of the Adaptive Engine’s models, by

providing identical interfaces to any Context Interpreter equipped with the appropriate

vocabulary. Despite nearly any change to the features of the Contextual Environment

of the Learner, the interface to the Context Interpreter remains unperturbed.

5.1.7 Frequency

This principle readily integrated into the separated architecture. The partition of

the state of the system, so that a time-sensitive contextual view of the Learner and

their environment is maintained by the Context Interpreter, which is then periodically

updated as required by the Adaptive Engine.

This, combined with the translation into an agreed vocabulary, means that rapid,

small changes in contextual axes will not create instability in the system, while methods

have been outlined to permit the Context Interpreter to notify the user of an updated

state.

5.1.8 Range

The injective mapping of broad-domain contextual values to discrete concepts greatly

simplifies the potential size of Adaptive Models. The maximum range of the basis for

exchange is that of the list variables presented by the Adaptive Engine for Contextual

Decision.

Thus, a wide variety of axes, and wide variety within those axes can be represented

easily as changing concepts, and only substantive changes are transmitted, where the

64

concepts in question change.

5.1.9 Importance

As demonstrated by the different categories of Experiment, the categories of importance

for contextual axes are well-supported by the mechanisms. In fact, it is true to say that

the mechanisms do not differentiate the importance of the influence for the purposes

of transport.

The key principle underlying this architecture is that, ideally, the Adaptive Engine

should not rely on the Context Interpreter to produce answers for central decisions

in the Narrative. Influcences of that sort are better modelled directly, and experience

with other systems shows that this form of deep modelling is highly effective. However,

it does come with a penalty of size and complexity

5.1.10 User Empowerment

Empowering the Learner avoids the significant risk inherent with all automatically

reconfiguring systems, namely that the Learner loses their sense of control, becomes

jaded and loses interest. This is particularly important where deep learning tasks are

being undertaken. The current implemenation provides for user control and feedback,

it is thought that a full implementation of the Context Interpreter will be capable of

providing options for many of the decisions made, and descriptions for the others.

There are a number of uses for this apart from helping the Learner feel included in

the process. Of prime use amongst these is encouraging a dialogue between the Learner

and the Context Interpreter, to permit the Interpreter to ask for answers to questions

it cannot deduce itself, and to allow for preferences to be set.

Many of these features are readily implementable with the mechanisms provided,

particularly because control of the display and translation of the queries from the

Context Interpreter lies with the Adaptive Engine. This supports refreshing query

windows and layout sensitive to the course content presented.

65

5.1.11 Performance

The use of a web service format introduces the question of performance under scale in

a fully featured system. An evaluation of these factors will require the development of

a feature-rich Context Interpreter. However, initial examinations of current schemes

show that the payload size of each mechanism is relatively small, and that speed penal-

ties are negligible with regard to the time to rebuild a course. The Narrative author

is in full control of the size and frequrncy of these messages, they can determine what

mechanisms are called with what data. The only complete model sent at once is that of

the Learner, and this has not been found to be of size sufficient to overload the system.

This is primarily due to the use of core SOAP data types such as, for example,

multi-dimensional arrays to represent adaptivity arrays, greatly lowers the overhead

for transmitting information, and the fact that the data exchanged is in the form of

Strings, which are easily translated between SOAP, Jess and Java.

5.2 Analysis

By conforming to the principles laid down, the separated architecture described pro-

vides a highly customisable compound system, automatically responsive to a wide

variety of influences.

5.2.1 Access to Models

The access granted by the mechanisms provided is indirect. In fact, the mechanisms

provide no guarantee that Contextual decisions will be accounted for by the system.

This permits the Adaptive Engine to maintain control over the ‘shared model’, which

becomes a conceptual, rather than actual entity. The ’Double Blind’ architecture

created through the guiding principles is intended to enhance the modularisation of

the system, creating a component-like relationship rather than an overly integrated

one. Thus, the architecture presented, that of a separate high level interpreter, can be

66

viewed not just in terms of the example Adaptive System, but as a general architecture

for applying context to applications.

5.2.2 Three Questions Revisited

Having classified a number of Context-Aware systems during the Survey(cf. Chapter

2), it is useful to apply the same ‘3 Questions’ to the combined Context-Informed

Adaptive Hypermedia System presented.

5.2.2.1 What is Context?

Defined during the survey, Context in the case of this system can be viewed as the set

of useful influences relevant to the adaptation, which could not be specified in advance,

or which are too complex to model deeply within the Adaptive Engine’s core models.

The values of these influences are translated into an agreed vocabulary by the

Context Interpreter, which then transmits them to the Adaptive Engine.

5.2.2.2 Where can Context be Used?

The principles of Obfuscation and Encapsulation govern the use of Context in the

system presented. In effect, context can be used ‘anywhere’ and ‘nowhere’, Contextual

hooks are defined by the Adaptive Engine, which are filled by the Context Interpreter

purely on the basis of the Contextual Axes at the time.

Context influences the entire system, any element involved in adaptation can po-

tentially be affected, if the Adaptive Engine permits it. This influence is specified by

the Adaptive Engine, which can control its granularity through the use of different

methods, and by defining different option lists for the Context Interpreter.

In summary, Context can be used anywhere where the Adaptive Engine allows it

and the Context Interpreter recognises a translatable alteration to the state of the

models.

67

5.2.2.3 Where can Context be Gathered?

The substantial feature of gathering context in this architecture is that it is done from

an extremely wide variety of sources, at different levels and for different purposes.

There are a number of levels at which the Context Interpreter may gather data. There

is the commonly-used sensor data view, where raw data is gathered and mapped to

concepts or choices within concepts.

Of perhaps greater value is the higher level translation function which the Context

Interpreter serves. The gathering of Context from other applications and domains,

such as for example other Adaptive Engines, yields real potential for tailored content

to be provided to the Learner.

5.3 Conclusions

This chapter has analysed the Design and Implementation of Context-Informed Adap-

tive Hypermedia in terms of the founding principles of the project. In doing so, a

number of features of the system are highlighted, including the nature of the shared

vocabulary and ‘shared model’ as well as the pattern of usage for the system.

In addition to these valuable insights, a number of requirements for a fully-featured

Context Interpreter have been revealed. These include the ability to translate between

vocabularies and the maintenance of the state of Contextual axes, a state which is not

visible to the Adaptive Engine in between synchronisations.

Overall, the principles delineated have been followed and this has resulted in a set of

mechanisms which will encourage the design of an effective Context Interpreter under

the same principles.

68

Chapter 6

Conclusions

In summarising the project as a whole, this chapter presents the body of work and

the numerous insights gained through the research process. Initially, the project is

evaluated with regard to the Objectives outlined in the Introduction (cf. 1.2). This

evaluation is followed by some possible avenues for future investigation, including the

areas of future development towards creating a fully operational system. Finally, a

number of closing remarks summarise the project’s achievements.

6.1 Evaluation of Objectives

The first step in examining Context-Informed Adaptive Hypermedia has been com-

pleted, by forming an initial view of what Context is in terms of this domain, and

how it might be used to enrich the eLearning experience and empower learners with a

broader, more adaptive and responsive system.

There appears to be considerable promise in the possibility of adding Context Inter-

preters to Adaptive Hypermedia systems, as the technology infrastructure for Pervasive

Computing advances, the seamless integration of the information available from Con-

text with Core adaptive models will permit system designers the freedom to create a

wide variety of content without worrying about the sources of Contextual data, or an

ever-growing list of marginally useful inputs.

69

6.1.1 Survey and Definition of Context

The survey undertaken reviewed a number of Context-Aware and Adaptive Hypermedia

systems. In examining the area of Context-Awareness, a characteristic simplicity was

recognised in most systems described. Many of the systems presented were relatively

simple in their logic, and did not contain complex internal logic. They were, despite

their obvious qualities, too simple to reveal the true power of Context. The process

of examining Context-aware systems, and a review of the literature concerned with

Context, revealed that there were many definitions. This document presented its own

definition of context, which has numerous advantages:

1. It provides a method for delineating between ’system’ and ’context’ concerns.

This is particularly important in applications such as Adaptive Hypermedia,

which contain their own representational logic. This delineation was charac-

teristic, rather than specific, and demonstrated that Context is a mutable entity

based on the specific concerns of an application1.

2. The Definition provided yields an indication of the point at which Interpretation

should end with Context. Instead of simply being collected sensor data, Context

is expressed in terms of the system itself, necessitating the high-level Context

Interpreter described.

The second portion of the Survey included an analysis of Adaptive Hypermedia systems

from a number of sources, and identified their models and methods for content creation

and sequencing. This, combined with the Context-aware survey, provided the evidence

of a clear opportunity to bridge the divide between the two areas, supplying Adaptive

Hypermedia with a simpler way of taking unknown concerns into account, while giving

Context-awareness a forum for development and experimentation with semantically

complex systems.

1For example, the case of Location which is a relatively peripheral concern in eLearning, but is a
central concern in mLearning

70

6.1.2 Designing Mechanisms for Context-Informed Adaptive

Hypermedia

The design presented is based around a separated architecture, in which a high-level

Context Interpreter gathered heterogeneous contextual inputs and translated them

transparently into decisions relevant to the Adaptive Engine. The architecture is based

around ten guiding principles, including encapsulation and simplicity. The overall aim

of the design was to provide access to the wide variety of Contextual axes to an Adap-

tive Engine in a transparent fashion. The design presented is highly modularised, and

demonstrates a number of mechanisms for providing the Context Interpreter access

to the state of the Adaptive Engine and its models, depending on the preference of

the Course Designer. The ’double-blind’ quality of the design, intended to encour-

age transparency and pluggability requires that the Context Interpreter be capable of

translating a variety of information into operations on a list of entities meaningful to

the Adaptive Engine, the shared knowledge of the compound system. This format for

exchange enables the architecture to support a wide range of contextual axes of varying

importance, with potentially rapidly changing and highly variable value ranges. The

Context Interpreter effectively guarantees that only substantive changes to the Context

of the Learner will be propagated to the Adaptive Engine, since less important vari-

ations will have no impact in the translated concept space. The specific mechanisms

defined to support these exchanges allow different levels of expressiveness, requiring

different model support within the Adaptive Engine. These are supplemented with a

mechanism for empowering the Learner to interact with and be notified of the decisions

taken on their behalf. These mechanisms combine to describe the interaction between

the Context Interpreter and the Adaptive Engine and the Learner and the Context

Intepreter. The mechanisms provided are open-ended and relatively un-restricted, cre-

ating few pre-conditions on the payload of their exchanges.

71

6.1.3 Prototyping and Testing

Prototyping and testing was performed on the APeLS Adaptive Hypermedia System,

two courses, provided with the system were used as a basis for modification to include

Context. Content was added in both cases, and narratives and JSP code was altered

to accommodate a variety of tests. The Contextual Mechanisms were defined as Jess

functions and as an interface for JSPs, and the resultant parameters were translated

over SOAP to the Context Interpreter, implemented as a Web Service. A database

back-end was included in the Context Interpreter, to perform Learner Feedback, but

the system overall was developed only to provide specific test-case responses to the

Adaptive Engine. This was a useful method to develop this early design, as the focus

of investigation lay with the Mechanisms themselves. Three Scenarios for testing were

examined. These were divided based on the level of involvement of context in the

adaptation process. The Low-level Scenario was concerned with providing Terminal

Emulation information to the Adaptive Engine. This scenario was implemented in a

number of ways, using different mechanisms to express the need either implicitly or

explicitly. The Mid-Context scenarios were based on the concept of a broken narrative,

with contextual decision points. In this case, multiple distinct paths were open to the

Adaptive Engine each of which was identical from the perspective of the core concept

space. The Context Interpreter was able to provide a broader conceptual view and

determine the most appropriate path. This scenario also included an investigation into

User Empowerment, by permitting the Learner to verify and alter the choice made by

the Context Interpreter. In the High-Context Scenario, the Context Interpreter pro-

vided the complete state of one of the models in the system. The Context Interpreter

held a record of a profile for a Learner previously unknown to the Adaptive Engine.

While it would be quite possible to determine the profile of the Learner through testing,

it is more convenient for the Learner to be automatically recognised. Furthermore, it

is possible that Context Interpreters will be capable of aggregating the experience of

Learners over a variety of courses and systems, so that each new course they undertake

72

accounts for this experience. The examples implemented to demonstrate and test the

capabilities of the Mechanisms defined reveal only the first portion of a large number

of possibilities. Variations in structure and interaction between mechanisms, as well as

increasingly complex narratives will reveal the true potential of the mechanisms. How-

ever, the examples presented do grant significant insight into their effectiveness, and

this combined with the evaluation performed in this document offer valuable insights

into the design of the Context Interpreter itself.

6.2 Future Work

The work presented represents the initial investigation of an area with considerable

potential. The choice of the mechanisms of interaction for investigation was motivated

by the considerable body of work in Adaptive Hypermedia and Context-Awareness,

the synergy between the two areas has yielded a useful structure for the design of the

Context Interpreter.

6.2.1 Design and Implementation of the Context Interpreter

There are a number of tasks which must be performed by the Context Interpreter.

The most important of these is to translate whatever contextual inputs it may have

(including User input) into substantive changes expressable through the mechanisms

provided. The High-level of operation of the Context Interpreter permits enormous

internal variation and an almost unlimited scope for input, the range of which is entirely

invisible to the Adaptive Engine. However, these changes are intended to be highly

visible to the User, who will have the opportunity to interact with such decisions.

6.2.1.1 Gathering Context

Context can be gathered at all levels by an Interpreter fitting the architecture de-

scribed. One potential source of context with considerable merit is in the translation

of concepts and profiles from one application to another. At its simplest, and perhaps

73

most powerful, this is expressed in the High-Context Experiment demonstrated. How-

ever, other associations might be made between differing application domains, where

adaptive learning profiles could help in tasks such as service composition or informa-

tion searching. Sensor-oriented contextual information must be translated into changes

in concept choices. It is likely that an intermediate contextual model will be created

within the Context Interpreter, which will then be sub-selected and translated to use

in the Adaptive Engine.

6.2.1.2 From Context to Concept

The automatic correlation of inputs with the Adaptive Concept Space is a vital compo-

nent of the eventual complete system, there is considerable work in this area, through

the use of Ontologies or Topic Maps, vocabularies can be translated and transliterated

as required, over multiple steps if necessary. This process is, however, not trivial, there

are numerous considerations including the issue of partial or conflicting translations,

incomplete expressions and the question of aligning elements so that they do indeed

agree. One possible solution would entail the generation of a profile over time, gath-

ering the usage history of the User, and employing it to support decisions. It is likely

that there will be a need for case-specific structures to be associated with the Context

Interpreter in different domains and instances; it is hoped that the level of automation

can be increased, however.

6.2.2 Generalisation

There is no conceptual bar to this architecture being applied to other systems and

application domains. There are numerous application domains which would benefit

from the ability to transparently include Contextual axes. In each case, the list of axes

which belong to Context may vary, but they can all be recognised as supplementary

enrichments to the core semantic view of the system. As software move in the direction

of service oriented architectures, the ability to refer to an encapsulated source for

74

additional information will improve User experience in most applications with relatively

little overhead at the application level. This is due to the fact that the extra information

is supplied in a useful vocabulary automatically. The prevalence of opportunities to

aggregate Context over numerous applications will likely depend on the facility for

translating meaningfully between them, and relating the implications of one decision

to another.

6.3 Final Remarks

The Mechanisms presented in this document are reflective of a potentially extremely

powerful tool in future design of software. The opportunity to link applications via

Context, with the ultimate goal of all applications using all informationa available

to them is highly compatible with the vision of ubiquitous computing systems and

service oriented applications. While this work represents only the earliest stages of

development, it has demonstrated some of the promise of a later, more powerful sys-

tem which draws its capabilities by bridging and incorporating valuable results from

multiple research areas.

75

Bibliography

[1] Bardram, J. E., Kjær, R. E., and Pedersen, M. Ø. Context-aware user

authentication - supporting proximity-based login in pervasive computing. In Ubi-

Comp 2003, the Fifth International Conference on Ubiquitous Computing (Seattle,

Washington, USA, 2003).

[2] Brusilovsky, P. Methods and techniques of adaptive hypermedia. User Mod-

eling and User-Adapted Interaction 6, 2-3 (1996), 87–129.

[3] Brusilovsky, P., Eklund, J., and Schwarz, E. Web-based education for

all: a tool for development adaptive courseware. Computer Networks and ISDN

Systems 30, 1–7 (1998), 291–300.

[4] Brusilovsky, P., and Nijhavan, H. A framework for adaptive e-learning based

on distributed re-usable learning activities. In Proceedings of World Conference

on E-Learning, E-Learn 2002 (Montreal, Canada, 2002), AACE, pp. 154–161.

[5] Chen, G., and Kotz, D. A Survey of Context-Aware Mobile Computing Re-

search. Tech. Rep. TR2000-381, Dartmouth College, Computer Science, Hanover,

NH, November 2000.

[6] Clarke, D. Learning domains or bloom’s taxonomy. http://www.nwlink.com/

~donclark/hrd/bloom.html, 1995.

[7] Clarke, L. Adult learning through adaptive systems. Master’s thesis, University

of Dublin, Trinity College, Dept. of Computer Science, 2003.

76

http://www.nwlink.com/~donclark/hrd/bloom.html
http://www.nwlink.com/~donclark/hrd/bloom.html

[8] Conlan, O., Wade, V., Bruen, C., and Gargan, M. Multi-model, meta-

data driven approach to adaptive hypermedia services for personalized elearning.

In Second International Conference on Adaptive Hypermedia and Adaptive Web-

Based Systems (Malaga, Spain, 2002).

[9] Consortium, A. Project aura web page. http://www-2.cs.cmu.edu/~aura/.

[10] Dagger, D., Conlan, O., and Wade, V. An architecture for candidacy in

adaptive elearning systems to facilitate the reuse of learning resources. In World

Conference on E-Learning in Corporate, Government, Healthcare and Higher Ed-

ucation (eLearn 2003) (2003), pp. 112–116.

[11] Dagger, D., Conlan, O., and Wade, V. Towards anytime, anywhere learn-

ing: The role and realization of dynamic terminal personalization in adaptive

elearning. In Ed-Media 2003, World Conference on Educational Multimedia, Hy-

permedia and Telecommunications (Hawaii, USA, 2003).

[12] De Bra P., S. T., and P., B. Aha! meets interbook and more... In AACE

ELearn 2003 Conference (Phoenix, Arizona, 2003).

[13] DeBra, P., Aerts, A., Berden, B., deLange, B., Rousseau, B., Santic,

T., Smits, D., and Stash, N. Aha! the adaptive hypermedia architecture.

In Proceedings of the fourteenth ACM conference on Hypertext and hypermedia

(2003), ACM Press, pp. 81–84.

[14] Dey, A., Abowd, G., and Salber, D. A context-based infrastructure for

smart environments, 1999.

[15] Don Box, DevelopMentor and David Ehnebuske, IBM and Gopal

Kakivaya, Microsoft and Andrew Layman, Microsoft and Noah

Mendelsohn, Lotus Development Corp. and Henrik Frystyk Nielsen,

Microsoft and Satish Thatte, Microsoft and Dave Winer, UserLand

77

http://www-2.cs.cmu.edu/~aura/

Software, Inc. . Simple Object Access Protocol (SOAP) 1.1. Note 08, W3C,

May 2000.

[16] Foundation, A. Tomcat home page. http://jakarta.apache.org/tomcat/.

[17] Foundation, A. S. Axis home page. http://ws.apache.org/axis/.

[18] Foundation, A. S. Xindice developer guide. http://xml.apache.org/

xindice/guide-developer.html.

[19] Foundation, A. S. Xindice home page. http://xml.apache.org/xindice/.

[20] Friedman-Hill, E. Jess home page. http://herzberg.ca.sandia.gov/jess/.

[21] Griswold, W. G., Boyer, R., Brown, S. W., and Truong, T. M. A com-

ponent architecture for an extensible, highly integrated context-aware computing

infrastructure.

[22] Griswold, W. G., Boyer, R., Brown, S. W., Truong, T. M., Bhasker,

E., Jay, G. R., and Shapiro, R. B. ActiveCampus - Sustaining Educational

Communities through Mobile Technology. UCSD CSE technical report CS2002-

0714, Department of Computer Science and Engineering University of California,

San Diego, July 2002.

[23] Knowles, M. The Modern Practice of Adult Education: From Pedagogy to

Andragogy. Cambridge/Prentice Hall Regents, New Jersey, 1980.

[24] Lonsdale, P., Baber, C., and Sharples, M. A context awareness archi-

tecture for facilitating mobile learning. In MLEARN 2003: Learning with Mobile

Devices (London, UK, 2003).

[25] Schilit, B., Adams, N., and Want, R. Context-aware computing applica-

tions. In IEEE Workshop on Mobile Computing Systems and Applications (Santa

Cruz, CA, US, 1994).

78

http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/
http://xml.apache.org/xindice/guide-developer.html
http://xml.apache.org/xindice/guide-developer.html
http://xml.apache.org/xindice/
http://herzberg.ca.sandia.gov/jess/

[26] Schmidt, A., and Beigl, M. There is more to context than location: Environ-

ment sensing technologies for adaptive mobile user interfaces, 1998.

79

Appendix A

UML Class Diagrams for the

Implementation

This Appendix contains the UML Class diagrams employed to describe the imple-

mentation of the Contextual Mechanisms described in the Project. The first Dia-

gram is of the Interpreter structure, the Interpreter interface included a number of

implementations, concerned with different experiments, all are members of package

ie.tcd.cs.kdeg.ae.contextInterpreter:

• LanguageSelector: provided the responses for Narrative Choice based language

selection.

• AnonymousUserLocator: provided a profile, if one was available for an unknown

user.

• CandidateGroupSelector: manipulated content group lists or content lists.

• SQLQuestion: provided the raw query XML for user feedback.

• UserLanguageUpdate: processed the Learner Model to add a language preference.

The second diagram (A.2) aggregates the designs of the different modules, and the

alterations to the LearnerObject class.

80

Fig. A.1: Interpreter Class Diagram

81

Fig. A.2: Interpreter Class Diagram

82

	Acknowledgements
	Abstract
	List of Figures
	Chapter Introduction
	Motivation
	Objectives
	Technical Approach
	Document Outline

	Chapter Survey of Systems and Definition of Context
	Review of Context-Aware systems: Defining Context
	General Views of Context
	3 Major Questions
	Where can Context be Used?
	Where can Context be Gathered?
	ActiveCampus
	Context-Aware User Authentication
	MOBIlearn

	Review of Adaptive Hypermedia Systems
	AHA!
	InterBook
	KnowledgeTree
	APeLS

	Analysis
	Properties of Context-Aware Systems
	Properties of Adaptive Hypermedia Systems
	Definition for Context-Informed Adaptive Hypermedia

	Conclusions

	Chapter Designing Context-Informed Adaptive Hypermedia
	Guiding Principles for Design
	Design Challenges
	Web Architecture
	Applying Context over the Entire System

	Overall Design
	Context Interpreter
	Contextual Mechanisms
	User Interaction

	Design Decisions
	Direct Manipulation
	Query Language
	Total Automation
	Conclusions

	Chapter Implementation
	Implementation Description
	Overview
	Context Interpreter
	User Module
	Narrative Module

	Main Challenges
	Data Types
	Candidacy

	Experiments
	Low-Context Scenario
	Mid-Context Scenario
	High-Context Scenario
	Additional Applications

	Conclusions

	Chapter Evaluation
	Evaluation with Regard to Guiding Principles
	Autonomy
	Simplicity
	Expressiveness
	Shared Knowledge
	Obfuscation
	Encapsulation
	Frequency
	Range
	Importance
	User Empowerment
	Performance

	Analysis
	Access to Models
	Three Questions Revisited

	Conclusions

	Chapter Conclusions
	Evaluation of Objectives
	Survey and Definition of Context
	Designing Mechanisms for Context-Informed Adaptive Hypermedia
	Prototyping and Testing

	Future Work
	Design and Implementation of the Context Interpreter
	Generalisation

	Final Remarks

	Bibliography
	Appendix UML Class Diagrams for the Implementation

