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Abstract

Emergency services, and automated vehicle platoons are frequently used examples of the need

for real-time ad hoc communication, which demand that communication be time bounded

overall.

The medium access control protocol regulates access to the medium. Time division pro-

tocols give deterministic, time bounded delivery of messages. TDMA, time division multiple

access forms the basis of the time bounded medium access control protocol, TBMAC. TBMAC

provides every mobile station with predictable access to the medium with known probability

and bounded delay.

Currently TBMAC has been simulated using the NS2 simulator. This dissertation imple-

ments TBMAC using RTAI real-time Linux and IEEE 802.11b as a basis. The implementa-

tion supports a non empty cell with a static cell membership. The implementation makes use

of the broadcast tightness property to achieve tight clock synchronisation between multiple

stations. The TBMAC protocol was implemented in real-time using the TDMA MAC layer

during the dissertation.

Simulations have been relied upon in the evaluation of new MAC protocols. This dis-

sertation evaluates the TBMAC protocol in the real world and compares its performance to

that of the CSMA MAC protocol. Real world experiments give a much better and more

realistic view of the performance of the MAC protocol compared to experiments carried out

in a simulator.
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Chapter 1

Introduction

1.1 Background

Wireless networks have come of age in the last decade, widespread adoption of standards such

as GSM[33] and IEEE 802.11[22] has led to rapid wide-scale deployment. The sheer nature

of wireless networks has lead to a complete rethink about how networks are structured and

work.

Traditionally networks where infrastructure based, controlled typically from one cen-

tralised point, wireless network introduced the concept of infrastructure less networking,

ad-hoc networking. This has required extensive research in the field of ad-hoc routing proto-

cols. Wireless networks are significantly different in nature and present significant challenges

compared to wired networks[21]. While many assumptions of wired networks do not apply

in the ad hoc domain, the basic CSMA medium access control protocol has remained in use

with little alteration. CSMA is not suitable for urgent time sensitive traffic[8]. While much

work has tried to overlay quality of service facilities upon 802.11[35, 26], the underlying lack

of determinism in the medium access control (MAC) protocol has not been addressed.

This dissertation aims to implement the TBMAC protocol [15, 13]. TBMAC aims to

provide a time bounded medium access control service for IEEE 802.11 based ad-hoc net-

works. This service provides time bounded access, with well known probability to the wireless
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medium. Long discussed applications communication for emergency services at major acci-

dent sites[29] and automated vehicle platoons[14] are now realisable using TBMAC. Starting

with a time bounded medium access service paves the way for further services such as quality

of service facilities and it further opens the possibility of the use of IEEE 802.11 in safety

critical systems, where deterministic and timely message delivery are essential such as in a

automated/driverless vehicle[14].

1.2 What is Medium Access Control ?

When computers are connected together to form a network, they share access to the network.

At the physical layer the underlying network shares a transmission medium on which the bits

that make up that data being exchanged travel. There is single communication channel that

is shared by all[6]. Various technologies have been developed the most common of which rely

on the use of optical (FDDI, gigabit Ethernet) electrical (Ethernet, Token Ring) and wireless

(GSM, HIPERLAN, 802.11, Infra-red) transmission mediums. They all share one common

characteristic, in general only one station can send information at a time. Such networks

are known as broadcast networks. Many stations can potentially see packets transmitted to

stations other than themselves, 802.11 and first generation Ethernet are both examples of

broadcast networks.

To support many stations wishing to transmit concurrently, some kind of coordinating

function is required. This co-ordination function is known as the medium access protocol or

MAC. The MAC protocol is the protocol used for access to the medium (the radio link in a

wireless network) with the resulting transmission of data on that medium[27]. It defines how

and when stations may access the medium[8].

A key requirement is that to provide access to the medium within a bounded time known

a priori, this is of upmost importance. In the face of a finite resource (channel bandwidth)

an admissions control policy is also an essential feature together with bandwidth regulation

to ensure every station gets the bandwidth it requires as far as is practicable. A key issue
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is contention, contention for the medium wastes bandwidth. A time bounded deterministic

approach to contention is required. A collision is outcome of poor and inefficient use of the

medium, if collisions are eliminated using a TDMA or FDMA1 approach, represents a more

efficient use of the wireless medium.

1.3 Proposal

TBMAC is a recently developed time bounded medium access control protocol[13]. The goal

of TBMAC is to provide predictable deterministic access to the wireless medium by providing

dynamic but predictable slot allocation[15]. Access to the medium is predicable and is time

bounded with a well know probability[13]. TBMAC has been subject to extensive simulation

in the NS2[5] simulator to verify these theoretical bounds are achievable.

Unlike much previous work in the area of wireless MAC protocols this dissertation will

rely on results gathered from a real world implementation not from simulations as the vast

majority of work in this area has done so in the past[7, 12, 26, 29, 35]. While simulations are

a powerful tool they do not represent the actual performance of a MAC protocol which may

be effected adversely by interference and other effects.

The primary aim of this dissertation is to take the design of TBMAC and 802.11b and to

deploy and evaluate its performance under real world conditions using RTAI[3] real-time linux

as an experimental platform. In order to implement TBMAC tight clock synchronisation will

also be implemented. This dissertation will provide a working implementation of TBMAC.

This implementation will be evaluated and the challenges and practicalities of a real world

implemented discussed.

1.4 Scope

The scope of this dissertation is limited to the implementation of the TBMAC protocol on

the RTAI real-time linux platform. All evaluation of TBMAC and comparative analysis will
1Frequency division multiple access, each station is allocated its own frequency
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be conducted using 802.11b based devices and will use RTAI.

1.5 Aims

The aims of the dissertation are to,

• To implement and evaluate a clock synchronisation protocol of high accuracy.

• To implement static TDMA and to evaluate its performance in the real-world.

• To implement the TBMAC protocol using RTAI real-time Linux.

• To evaluate the performance of TBMAC in comparison to that of IEEE 802.11b under

real world conditions.

1.6 Dissertation Roadmap

The rest of this dissertation report is laid out as follows,

Chapter 2 State of the art, provides a review and discussion of existing wireless medium

access control protocols. The issue of clock synchronisation is also discussed owing to

the reliance of TDMA style MAC layers on tight clock synchronisation.

Chapter 3 Background, A brief overview of the TBMAC protocol and the rtcomm wireless

card driver.

Chapter 4 Design, Gives an overview of the design and structure of the proposed system.

Chapter 5 Implementation, this chapter will discuss the final design and implementation of

the components that together implement and support the TBMAC protocol.

Chapter 6 Evaluation, this chapter will discuss the experiments carried out and results.

Chapter 7 Conclusions and future work, this chapter summaries the work presented and

points to possible further extensions and improvements.
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Chapter 2

State of the Art

In this chapter I will discuss a number of approaches to the medium access control problem.

Based on this analysis it is clear that a time division multiple access (TDMA) style MAC

layer is required to satisfy both the time bounded and deterministic scheduling required

for real-time traffic. The second half of the chapter will discuss a prerequisite required to

develop and test an ad hoc TDMA MAC protocol, namely tight and high resolution clock

synchronisation.

2.1 Co-ordination & Distributed Agreement

A major challenge in the development of a efficient MAC protocol for use in wireless networks

is achieving distributed agreement, confronted with the lack of global knowledge and the high

probability of failure of both stations and individual messages. Ad hoc networks are highly

dynamic. Communication between stations cannot be assumed to be symmetric[12] nor are all

stations fully connected, ad hoc networks operate on a peer to peer basis[21]. This highlights

some significant challenges which are not present in the wired domain.
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2.1.1 What is a collision

A collision occurs when two (or more) packets are transmitted at the same time, this results

in the loss of the packets involved. The understanding and perception of a collision is key in

the development of a successful MAC protocol. Bharghavan et al in[7] provides an insight

into collisions in the wireless domain. Unlike in the wired domain collisions occur at the

receiver not the transmitter, this is a very important distinction. Neither the transmitter or

receiver actually can determine if a collision has occurred thence an explicit response packet

is desirable. A collision can be used as the generic explanation for all failures on a wireless

network. Since a station is unable to detect a collision on it’s own, a collision is in fact a

omissions failure. However the loss of a packet could mean many things,

• Could be a legitimate collision

• A station could have gone out of range

• Noise on the channel may have corrupted the signal

• A station may have failed for some reason most likely a weak battery

• The station may decide for other reasons not to reply, this can be used as a form of

admission control as used in [29]

The response to each of these failures is the same even though the causes are very much

different, for instance if the packet was lost due to excessive noise on the channel the MAC

protocol would assume a collision and the back off counter would be incremented even though

there isn’t any contention on the medium.

Hidden Terminals

A major issue in wireless networks is that of the detection of collisions. Wireless networks are

location dependent, while the medium may be idle at station A it may be active at station

B. In fig. 2.1 station B is within the transmission range of stations A and C but A cannot

hear C nor can C hear A. So stations A & C may see the medium clear and may transmit, a

collision occurs at B. A and C will time-out waiting for an acknowledgement and resend the

6



A B C

Fig. 2.1: Classic hidden terminal problem

packet. In this situation C is the hidden terminal relative to A and vice versa.

In a effort to avoid this problem some kind of co-ordination function is required, collision

avoidance. Typically for large packet sizes the re-transmission overhead is significant and the

overhead of the a small initial exchange can be justified. The solution is to ensure that all

stations in range of both the transmitter and receiver are aware of the transmission before

it occurs. A hand shake is used. The transmitter sends a ‘request to send’ (RTS) packet to

its receiver which then replies with a ‘clear to send’ (CTS) packet, these packets contain the

expected size of the imminent packet transmission. All stations in range of the RTS-CTS

exchange, which are the only stations that can collide with the transmission defer allowing the

data packet and acknowledgement to proceed with a very much reduced possibility of collision.

The overhead of sending a RTS-CTS is minimised when packet size is large. [12] presents

the results of a simulation using 802.11 technology, the results indicates that a threshold

of between 250 and 400 bytes should be used before the RTS-CTS handshake is used. If

the initiating station does not receive a CTS response it assumes a collision has occurred,

backs off and re-contends. This introduces a possible major inefficiency, what happens if the

CTS is sent and not received, all stations in range of the RTS-CTS exchange have backed off

assuming that the medium would be busy during that period.

2.2 Approaches to the MAC Problem

Current MAC approaches can be broken into a number distinct classes,

• Ad-hoc. Contention-based structures, for every packet the station contends[7, 22].
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• Contention free. These are slotted techniques, each station has a specific time or fre-

quency slot(s) in which it alone can transmit[1, 33].

• Contention free with a contention period. A combination of the two above tech-

niques, allowing flexibility while retaining the deterministic scheduling found in slotted

protocols[13, 22].

2.2.1 Ad hoc, Contention-based structures

This class of MAC protocol are based heavily on maximising fairness of access, every station

has an equal chance of successful transmission. Each station must contend for every single

packet they wish to send. Such an approach is acceptable given the potentially highly unstable

structure of a wireless network, it avoids the need to share or store information and requires

no explicit agreement between stations. Two distinct classes of MAC protocols exist, MACA

and CSMA. While they both deal with medium access in different ways they both deal with

contention and collisions in a similar fashion using a exponentially increasing back-off counter.

CSMA, Carrier Sense Medium Access

In this class of MAC protocol the medium is sensed for a small amount of time, the slot

time. This is known as physical medium sensing. If there are no other stations heard to be

transmitting over one full slot time, the medium is deemed to be idle and the packet may

be sent. A positive acknowledgement scheme is required, since it is possible for two stations

to view the medium idle and begin to transmit at the same time. The slot time is longer

than that of the gap between a data packet and acknowledgement packet so that ongoing

transmissions are not disrupted. Other stations intending to transmit will not see the medium

idle for a sufficient length of time to permit transmission. In its basic form CSMA suffers

from the hidden terminal problem.
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MACA, Medium Access Collision Avoidance

Karn[28] proposes the MACA protocol in an effort to avoid the hidden terminal problem that

effects CSMA. MACA relies on prior knowledge of other traffic to determine if a station can

transmit. When a station wishes to transmit it first checks to see if it knows of any stations

transmitting at this time, this is referred to as virtual carrier sensing. First a ‘request to

send’ (RTS) packet is sent, this packet contains the length of time the medium will be in

use. All stations in range of the RTS packet freeze their back-off counters for this period

contained within the RTS packet. The destination responds with a ‘clear to send’ (CTS)

packet. The CTS serves a dual purpose. It indicates to the transmitter that the RTS was

received and indicates the length of the data packet. All stations in range of the receiver may

back-off to avoid a collision. This dialog prevents a hidden terminal problem as discussed in

section 2.1.1. Since the RTS-CTS exchange is used it is assumed that there will not be a

collision as all stations in range of the RTS-CTS exchange know the medium is in use, so no

acknowledgement is sent since it is deemed unnecessary.

MACAW

MACAW[7] is an extension of the MACA protocol. Bharghavan et al proposes number of

extensions to improve the performance of the MACA protocol in terms of throughput and

fairness. Standard MACA does not use an acknowledgement packets relying entirely on the

RTS-CTS handshake to protect the data packet. MACAW adds an acknowledgement packet,

while this reduces the maximum throughput, it provides a much superior throughput under

poor channel conditions. MACAW proposes a solution to the exposed terminal problem,

since collisions occur only at the receiver an additional packet is sent between the receipt of

the CTS packet and the transmission of data packet any station in range of this data-sending

(DS) packet know the RTS-CTS was successful and defer until the acknowledgement (ACK)

packet passes.

The use of the RTS-CTS-DS-DATA-ACK handshake, once again leads to a minor re-

duction in throughput but leads to a far fairer distribution of bandwidth among contending
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A DB C

Fig. 2.2: The exposed terminal problem

stations.

CSMA/CA, Carrier Sense Medium Access with Collision Avoidance

CSMA/CA combines the MACA approach with that of CSMA. Both CSMA style physical

and MACA style virtual medium sensing are used. If the medium is known to be busy it is

not sensed otherwise, CSMA is used to check if the medium is in fact not in use. Optionally

then a MACA style RTS-CTS exchange may take place. Collisions are minimised, though

given the random nature of medium access it is still possible for two stations to transmit a

RTS packet at the same time. Unlike MACA acknowledgement packets are used. This is

MAC protocol used in the popular IEEE 802.11 standard[22].

2.2.2 Contention-free, slotted techniques

These are high performance contention free MAC protocols. This class of MAC protocol are

typified by there master slave behavour[1, 33]. There is typically a controlling station known

as the base station which manages bandwidth allocation as well as performing admission

control. Time is divided into a discreet number of pieces known as slots, all slots are of equal

length. Only one station may transmit in a slot at a time. Such a MAC protocol is known

as time division multiple access, TDMA. Allocation of slots is typically handled out of band,

a dedicated communication channel is used over which slots are requested.

In all slotted structures there is a need for precise co-ordination between stations to ensure

the slots align correctly a small space know as the guard space is left between slots to allow

for a small misalignments in synchronisation and also to allow for propagation delays caused

by stations being a variable distance apart. Synchronisation in TDMA is one of logical time,
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all that is required is a reference to the start of the next cycle. A slotted structure showing

the guard space is shown in fig. 2.3.

Time
Slot 1 Slot 2 Slot 3

Guard
SpaceSlot Time

Fig. 2.3: Interslot gaps in TDMA

A heartbeat signal provided out of band is typically used to gain the necessary synchroni-

sation. For example in the GSM mobile system the base station broadcasts a clocking signal

on a dedicated frequency channel[33], known as the synchronisation channel (SCH) which all

devices in it’s coverage can receive and use to synchronise. While these networks are dynamic

in the sense that station may join and leave at any time they do not support ad hoc, peer to

peer behavour. Failure of the base station or loss of contact with the base station results in

disconnection and failure of the client station.

2.2.3 Contention-free with a contention period

In common with slotted techniques these are connection oriented protocols designed to offer

the performance of a fixed slotted network but still allowing significant flexibility in dynamic

allocation of slots. Dynamic techniques attempt to merge the flexibility of the contention

based approach with the performance of true TDMA. All transmission occurs on the same

channel.

A number of papers have proposed various approaches [29, 34, 35] to the need to support

real-time traffic. Some are application dependant and rely on feature of a specific traffic

type, such as MPEG video’s ability to tolerate lost packets[37]. Gerla et al[29], proposes a

multi-hop network providing support for real-time traffic. The approach retains a MACA

MAC protocol and overlays a windowed structure, an initial RTS-CTS exchange is used to
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allocate a transmission window, if no slots are available the receiving station ignores the RTS

and does not reply with a CTS, such an approach provides effective admission control. In

addition slots are deallocated if they go unused.

While the use of an RTS-CTS exchange minimises the possible impact of the hidden

terminal problem, the RTS-CTS exchange is only used to set up the reservation, under normal

conditions only a DATA-ACK dialog takes place. In addition each station only allocates

windows it hears about in the RTS-CTS exchange so if a station moves all of a sudden it

may find that its windows now conflict with others, [29] further proposes that the reservation

table be propagated periodically, however how to deal with conflicting slot allocations is not

discussed, this concern is particularly important if there are frequent updates in the topology

of the network.

Many proposals to support real-time traffic rely on the stations on the network finding

a stable state [8, 26, 34]. Following an initial disturbance the system will, subject to a

number of initial conditions related to the minimum packet size and the number of stations

on the network, since there is no admissions control no upper limit is placed on the number

of stations so the time bound is proportional to the number of stations which may not be

known in advance nor may it even be known are runtime. With a TDMA based structure

the maximum number of stations is known and fixed and forms a significant design decision

when the system is built.

In a TDMA environment the maximum number of slots that can be allocated is related

to the expected number of stations, the data rate each station will generate and the speed of

the transmission medium. A major issue is that the bulk of research in the area is based on

adapting the MAC protocol (CSMA) to cope with continuous bit rate traffic such as voice

and or video. Another approach is to use the standard MAC protocol and reserve a slot some

time in the future[35, 29]. Both still rely on the underlying MAC protocol which remains

non deterministic in the face of contention or collisions.
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2.3 An Overview of IEEE 802.11

The 802.11 standard comprises two parts. A number of physical layer specifications, 11a, 11b,

11g and a single CSMA/CA MAC protocol. 802.11 was designed as a direct replacement for

ethernet and is sometimes referred to as wireless ethernet. This section will discuss both

802.11 layers.

2.3.1 Physical Layer

The current set of 802.11 standards[22] define both a radio physical layer as well as infra

red. There are currently four approved 802.11 physical layers. The initial 802.11 standard

(1997), commonly known as wavelan described a 1 Mbps, optionally 2 Mbps wireless physical

layer, this standard evolved in 1999 into 802.11a[23] and 802.11b[24]. 802.11a runs in the

unlicensed 5 Ghz band using a frequency hopping spread spectrum transmission technology

to achieve a potential throughput of 54 Mbps, however due to the higher frequency used

transmission range is shorter than that of the other standards. 802.11b which runs in the

2.4 Ghz ISM1 band using a direct-sequence spread spectrum transmission technology. Its

throughput is limited to a potential maximum of 11 Mbps. 802.11b was the most successful

standard due to its ease of deployment plus its much superior range over that of 802.11a.

Notably 802.11b retained backwards compatibility with the earlier 802.11 (1997) wavelan

standard. 802.11g evolved from 802.11b but uses a more efficient coding scheme to obtain a

potential throughput of 54 Mbps thus matching that of 802.11a while retaining compatibility

with 802.11b.

This dissertation will concentrate on the more popular 802.11b standard. While the

MAC layer is separate from the physical layer, the design of the MAC protocol may need to

acknowledge certain traits of the underlying physical layer, in particular the supported data

rate(s) and inter-frame spaces. It should be noted that regardless of the data rate used in

802.11b (& 802.11g) a portion of the packet header is still sent at the base rate of 1 Mbps to
1ISM, Industrial Scientific and Medical band, a license free piece of radio spectrum
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ensure compatibility with all stations regardless of which transmission rate(s) they support.

A station may choose to use a lower rate when channel conditions are poor.

2.3.2 Medium Access Control Layer

Regardless of the physical layer used the same MAC protocol is used. The 802.11 standard

defines two MAC protocols, one for use in ad-hoc networks and one for use in infrastructure

networks. The infrastructure MAC protocol is built upon the ad-hoc MAC protocol. The

802.11 standard defines three inter-frame spaces, it should be noted that regardless of the

transmission speed these inter frame gaps remain the same.

• The Short IFS or SIFS, 10µsec

• The Point co-ordination IFS or PIFS for short, 30µsec

• The Distributed co-ordination IFS or DIFS, 50µsec

These are used to prioritise media access, acknowledgement packets have the highest priority

and use the shortest inter frame space, the SIFS interval. In ad-hoc mode the longest interval,

the DIFS interval is used. A station must see the medium as idle for a DIFS interval before

it may transmit.

2.3.3 Ad-hoc Mode

The 802.11 standard prescribes the distributed co-ordination function, or DCF for short. Two

types of carrier sensing are employed, physical and virtual. Physical is employed when directly

listening to the medium, the medium must be idle for a minimum of a DIFS interval before

the station can transmit. Virtual carrier sensing is employed when the station has prior

knowledge of an upcoming transmission. The RTS and CTS packets contain information

about how long the next packet will be. All receiving stations update the network allocation

vector, NAV and cease contending for the time indicated in the RTS and CTS packets.

Stations only start to re-contend once the length of time indicated in the NAV has elapsed.
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2.3.4 Infrastructure Mode

The base station maintains a list of stations which are associated with it, it periodically polls

each of the stations in turn. This polling period is further broken down in to a contention free

period (CFP) and a contention period (CP). The CFP starts with the access point sending

a beacon frame. The length of the CFP is flexible and is decided upon by the access point

depending on the current level of traffic it sees. The length of the CFP is carried in each

beacon frame. Stations update there NAV to the length of the CFP. During the CFP a

station may only transmit if it has been polled by the access point.

The access point polls each station in turn, while in theory this gives a slotted structure,

the access point is in control and regulates access. Such a protocol has a single point of failure

and is of no use in an ad hoc environment, however the CFP and CP idea is used in TDMA

style systems such as [29] to allocate slots without effecting existing traffic flows.

2.4 Adapting 802.11 through the inter-frame spacing to sup-

port real-time traffic

[26] Sobrino et al proposed an interesting approach, which retains compatibility with current

802.11 devices. A two stage approach is proposed, firstly how to prioritise access and secondly

how to introduce determinism in resolving collisions.

The 802.11 standard as discussed earlier, defines three inter-frame spaces, of which only

two (SIFS & DIFS) are used when running in ad hoc mode. Sobrino proposes that the unused

inter-frame space (PIFS) could be used to prioritise traffic. If urgent traffic used a shorter

interface spacing, that traffic could gain priority access to the medium. Such a solution

allows two distinct traffic types real-time and non real-time. Real-time traffic contends for

the medium using the shorter inter frame space and in doing so prevents any non real-time

traffic from gaining the medium since it (the non real-time traffic) must observe the medium

to be idle for longer than the real-time stations.

Contention is still non deterministic, so in addition a black-burst contention protocol is
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used to achieve agreement. The contention protocol relies on stations transmitting a jamming

signal. The length of this jamming signal known as a black burst is proportional to the length

of time the station has been waiting to transmit. By sending a longer burst than any other

station contending at the same time a station may acquire the medium.

While a promising solution a number of areas are not addressed, since the black burst is

proportional in duration to the time waiting a significant amount of bandwidth may be wasted

in the contention phase. Packet exchange is connection-less but the traffic is connection

oriented. Each packet must explicitly contend for the medium each time. The outcome of

the contention process is now deterministic, the delay before the packet is actually sent is

not. An important question, is what happens if two real-time stations decide to transmit at

the same time, since the protocol is deterministic the longest waiting station must win, but

what if two or more stations have been waiting the same length of time, following there black

bursts they will both see the medium as being free, assume they have won and attempt to

transmit which will result in a collision.

In an effort to maximise data throughput no acknowledgements are sent, the use of neg-

ative acknowledgement scheme is not suited to the high packet loss often seen on wire-

less networks especially since the network is dynamic and more failure prone there wired

equivalent[21]. If a packet fails to arrive a data packet is sent requesting re-transmission.

Data packets can only be sent if there isn’t any real-time traffic. In this scenario what would

be assumed to be an urgent request to retransmit a possibly critical packet is given the lowest

possible priority.

Stability is a key requirement in a real-time environment, [26] contains an exhaustive

proof of stability. Stability is a function of several variables, packet size, number of stations

and the expected data rate. There is an upper bound on the number of stations for a given

level of traffic, for which the medium access will remain stable. There is no distributed co-

ordination nor is there any admission control. It is conceivable that the upper bound on the

number of stations could be breached quite easily.
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2.5 Hyperlan2

Both Hyperlan2[1] and IEEE 802.11a share a very similar physical layer, but have very

different MAC layers. Hyperlan was developed in part by ETSI, the European body for

telecoms standards, there influence can clearly be seen in the design and functionality of

the Hyperlan platform. The goal behind Hyperlan was to provide next generation (beyond

802.11) high speed local area wireless networking while retaining the structure of a cellular

network.

Hyperlan is a connection oriented protocol, every connection can be assigned a specific

level of quality of service in terms of bandwidth, delay, jitter, bit error rate[27]. This is a key

difference from 802.11. To provide such guarantees Hyperlan uses a TDM based structure[27].

Unlike 802.11 which provides support for only ethernet. Hyperlan provides support for the

4 ATM2 traffic classes namely constant, variable, available and unspecified bit rate. The

convergence layer is key to power of Hyperlan, it is a generic architecture which allows

services to be added. Support is provided for Ethernet, IP, ATM and UMTS3 traffic. The

convergence layer supports both cell and packet based communication.

Unfortunately Hyperlan was launched following 802.11 which already had significant de-

ployment. Results published in [17] clearly show the benefits of its time division structure.

Efficiency remains constant at all transmission speeds while a comparable 802.11a device

quickly falls off as throughput increases.

2.6 Techniques from Sensor Networks

Carley et al in [8] describes a wireless network consisting of small low powered sensor devices.

This network uses TDMA scheduler to schedule transmissions. While no comment is made on

actual performance, the paper provides significant insight into the challenges of storing and

maintaining the TDMA table. Up to 50% reduction in throughput over the actual bandwidth
2Asynchronous Transfer Mode, a virtual circuit switched technique used extensively in the telecoms industry
3Universal Mobile Telecommunications System, the latest evolution in mobile telephone systems, also

known as 3G
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is quoted. The main reason for this overhead is to do with clock synchronisation, the inability

to achieve extremely tight synchronisation. In addition all TDMA style implementations

require a guard space a small gap in time between transmissions to avoid any potential

overlap caused by propagation effects and poor synchronisation. 50% is quoted as the upper

bound, in a time bounded system it must be assumed to be true at all times and the system

designed accordingly. Pure TDMA type approaches also suffer from this problem, however

owing to the typically centralised controlling station synchronisation is somewhat easier to

achieve. Experiments concentrate on the TDMA technique used.

However no discussion is made of how the approach copes with the dynamic addition or

removal of sensors. A critical issue it that it must be possible to actually generate a schedule.

While in a sensor based environment, data rates for each device is likely to be known in

advance. Such a restriction is extremely important when considering a dynamic multi hop

ad-hoc typology.

2.7 Overview of Features in a Selection of Wireless Technolo-

gies

This section will present a feature comparison of a selection of current wireless technologies

which have been discussed in this chapter. They are all evaluated under 7 conditions,

Distributed Is the protocol distributed ?

Technology The underlying MAC protocol, MACA, CSMA or TDMA

Dynamic A key criteria does the protocol allow the dynamic addition and removal of stations

Efficiency What portion of the available bandwidth is available for actual useful data traffic

Hidden terminal Does the protocol adequately deal with the hidden terminal problem

Coordination Is contention for the medium coordinated
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Hyperlan2 802.11 DCF 802.11 PCF MACAW B Bursts TBMAC Sensors

Distributed NO YES NO YES YES YES YES

Technology TDM CSMA/CA CSMA/CA MACA CSMA/CA TDMA CSMA

Dynamic YES YES YES YES YES YES NO

Efficiency 78% ? ? ? ? ? 50%

Capture YES NO NO NO ? NO NO

Hidden Terminal NO NO NO NO NO NO NO

Co-ordination YES NO YES YES NO YES YES

Deterministic YES NO YES ? NO YES YES YES

Table 2.1: Comparison of a number of current wireless technologies

Deterministic Is media access deterministic

Table. 2.1 shows the results of this comparison. It is clear to note that support for

deterministic MAC behavour in the ad hoc environment is poor.

2.8 Clock Synchronisation

Clock synchronisation consists of three separate requirements, how is the clock represented

and stored on the device? How is agreement achieved to what the actual time is? How the

time is altered on the device? Time is monotonically increasing, this statement encompasses

two issues inherent in time, it can never go backwards nor can it stop, it may however slow

down[11].

2.8.1 Support in Current PCs

Support for high resolution clocks in current off-the-shelf desktop Intel IA32 hardware4 is poor

and has seen no improvement since 1984. Prior to 1984 desktop PCs did not have hardware

clocks and required the clock to be reset at every start-up. In 1984 a hardware/BIOS clock

was added, the clock is driven by a Motorola 146818 or compatible chip which maintains a
4This refers to all computers using 32-bit processors from the Intel x86 family or compatible
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32-bit counter, storing time to a resolution of 1sec since the epoch date of 1/1/1970. During

the very early phase of initialisation the value of this clock is copied and is used as the starting

point for the software clock.

Software Support

The software clock is fully independent from the hardware clock. On uniprocessor PC hard-

ware it is supported by an Intel 8254 (or compatible) programmable interrupt timer (PIT),

which issues a well known interrupt, typically every 10ms. The host OS uses this as the

basis for its software clock. This approach is clearly subject to significant variation owing to

variable delays in processing this interrupt.

Hardware Support

Pentium class, and other modern processors families, contain a special read-only 64-bit hard-

ware register accessible through the rdtsc instruction[25]. The processor increments the

contents of this register on every clock cycle, providing an extremely fine grained clock, e.g.

for a processor speed of 1Ghz this provides 1ns resolution.

Recent versions of /arch/i386/kernel/time.c file, the code which implements the soft-

ware clock retains the use of the interrupt timer (PIT) to maintain the software clock but

uses the tsc instruction to correct for variances that occur while using the PIT, owing to both

inaccuracies in the PIT and variable delays caused by interrupt processing.

2.9 Synchronisation Protocols

Many synchronisation protocols have been proposed, which typically involve devices exchang-

ing messages, while in some way trying to determine the round trip time between stations.

The round trip time provides an estimate of the time that will pass from a message leaving

one station and receipt on the other. This is a critical requirement. More recent work has

tried to exploit the tightness property of broadcast networks where a message sent from one
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station is received at the exact same instant at all stations.

2.9.1 NTP, The Network Time Protocol

NTP, the network time protocol[2] by Mills et al is the most widely used clock synchronisation

protocol on the Internet. Its hierarchical structure scales well and its ability to detect rogue

clocks and deal with clock drift are welcome and useful features. However NTP is typically

implemented as a user-level application, and thus messages it sends and receives are subject

to higher delays than an implementation at kernel level. NTP uses a 64-bit value for the

clock, this offers 233 pico second (10−12sec) resolution. Primary level, level 1 devices are

synchronised to a precise external clock, GPS or a caesium clock for example. The key to

NTP’s accuracy is its advanced adaptive hybrid phase-lock/frequency lock loop algorithm

with nearly 20 years of evolution. While accuracy to the order of a few micro seconds is

quoted [30]. To obtain these levels of accuracy requires that NTP be tightly integrated into

the kernel with an external stable oscillator to provide a stable source of clocking information.

2.9.2 GPS, The Global Positioning System

In addition to providing location services, GPS also provides a synchronised clock GPS ser-

vice. GPS suffers from one major restriction, GPS requires that the receiver be in the range

of several satellites. Use in urban areas where buildings may obstruct the line of sight to

the satellites may not be possible, GPS is unusable indoors. High end receivers offer accu-

racy better than 200nsec. While such receivers may be expensive, the key concern is that

of the GPS device itself. In a sensor network for example adding such a device will increase

the device size and power consumption both of which are key restricting factors in portable

devices.

2.9.3 Physical Layer Broadcast

A number of recent papers [18, 32] had discussed the potential of the broadcast functionality

found in many network technologies such as Ethernet and 802.11 in the development of clock
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synchronisation protocols. The time to send a message on a CSMA or MACA network is not

deterministic but its reception at the destination is subject to much less variability because

the propagation delay is ignored. A message from one station will be received at all other

stations5 at what effectively will be the same instant. Stations may then exchange messages

concerning the clock synchronisation packet was received. Based on this the clocks may

synchronise. By removing the send process from the protocol a huge amount of possibly

variable delay is removed from the critical path of the protocol. In addition the packet sent

does not actually contain any clock information, all that is required is a sequence number

and a flag to indicate that the packet is to be used in the synchronisation process. Such

information can be easily piggybacked on normal traffic, and is small enough to fit inside the

packet header.

Clearly to make effective use of a slotted or windowed MAC layer there needs to be

tight co-ordination between all stations as to the exact starting time and length of each slot,

achieving such tight co-ordination is particularly difficult in an ad-hoc network. Infrastructure

based networks have the benefit of a single coordinating station to whom all stations can

synchronise themselves, thus clock synchronisation is relative to that base station only. Often

an out of band signal is used, such as the SCH used in GSM[33] where a specific frequency

channel is allocated for this sole purpose. In this case clock synchronisation is not strictly

required, all the stations need to know when the start of next cycle is. Recent work presented

in [32] shows that tight clock synchronisation is possible in multi-hop ad-hoc network even

under significant packet loss.

The removal of the send delay from the critical path brings a key advantage over NTP

style systems, under heavy load CSMA and MACA type networks suffer from significant

delays this variability adds greatly to error. While the traditional approach is transmitter

centric, with physical layer broadcast the time of arrival at the receiver is key.
5It is important to note that a station cannot transmit and listen on the same channel at the same time
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2.10 Conclusions

It is quite clear that current MAC protocols cannot cope with the demands of time critical

data. A significant body of work has been done in the area of MAC protocols in the recent

past, however there are two major areas where work is lacking. The vast majority of work

published in this area relies in its entirely on simulations[7, 12, 26, 29, 35], typically using

NS2[5] or similar. While simulators are a powerful tool, they work based on a simplified set of

rules describing the environment in which they communication take place. This work while

valuable does not address the root cause of the problem, the CSMA based medium access

approach.

TDMA comes at a price, as outlined in [8] just storing the TDMA table can be a significant

burden on resources. While in CSMA there is no hard limit on the number of stations, the

number of slots available in a TDMA solution is fixed and known in advance. So while

CSMA gives flexibility in both the number of stations and in the packet sizes they can use,

performance drops off rapidly as the number of active stations increase, while in the case

of TDMA the performance remains constant regardless of the offered load[17]. TDMA is

deterministic and is recognised as being suitable for supporting real-time communication [31,

ch 16]. Hyperlan was an extremely promising technology, its time division based structure,

connection oriented nature and extensive support for quality of service parameters. It is let

down by only one weakness its need for a dedicated (master) base station.

The emphasis in many papers[37] is on support for multimedia, many solutions leverage

the fact that the traffic is tolerant of packet loss. Changing inter-frame spacing and contention

windows may improve performance under specific conditions but do nothing to address the

fundamental lack of determinism in the MAC layer. A lot of work is top down in it approach

overlaying quality of service over a weak MAC layer instead of the bottom up approach, which

starts by providing a time bounded MAC service upon which higher layers may implement

time bounded services. In a situation where performance is the key driver this approach is

to be favoured.
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Chapter 3

Background

This chapter will provide the background to recent and current work that this dissertation

will make use of during the implementation and evaluation stage. Two elements are discussed.

TBMAC is the medium access protocol that will be implemented later in this dissertation.

Real time access to a wireless card is essential in the implementation of TBMAC which will

be provided by the rtcomm driver.

3.1 TBMAC, The Time Bounded Medium Access Control

Protocol

TBMAC is a new medium access protocol for ad hoc wireless networks[13, 15]. It is generic in

design and does not specify a underlying physical layer. TBMAC is based on the TDMA MAC

protocol offering a contention free environment with deterministic packet transmission delays.

TBMAC implements a TDMA like MAC protocol in an ad hoc wireless network structured

in a cellular fashion. The TDMA MAC protocol is adapted by dividing the TDMA cycle

into two pieces, the contention free period (CFP) and the contention period (CP). Stations

determine there location through the use of GPS and set there wireless interface to listen on

the appropriate frequency for the cell they are in.

The TBMAC protocol provides every mobile station with predictable access to the medium
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with known probability and bounded delay[13]. TBMAC is an enabling technology, it can

be configured to application specific requirements in terms of time bounds and probability

in achieving them. Currently there is no proven time bounded MAC layers for infrastruc-

ture less, ad hoc networks. TBMAC provides an ad hoc wireless network with deterministic

behaviour without requiring a master station.

3.1.1 Contention Free Period

In the contention period, TDMA MAC protocol rules are apply. Each slot is allocated to one

and one station only. Stations which already have at least one slot allocated to them may

piggyback further slot management requests on data packets.

3.1.2 Contention Period

This portion of the cycle is used only when a station is joining a cell. The contention period

is divided into a number of slots. A station wishing to join an already active cell selects

a random a number of these slots and transmits its request. Selecting a number of slots at

random maximises the possibility that at least one of the requests will be successfully received

by the other stations in the cell.

3.1.3 Hidden & Exposed Terminals

TBMAC relies on a cellular structure, the size of these cells is set such that all stations

within a cell have full connectivity. This eliminates both the hidden and exposed terminal

problems that hinder CSMA MAC protocols. By eliminating hidden and exposed terminals

the provisions made to prevent or minimised there effects such as the RTS-CTS exchange

are no longer necessary which in turn increases the portion of channel capacity available to

useful traffic.
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3.1.4 Slot Management

It is important to note front he outset TBMAC does not define an admissions control policy,

slots are allocated on a first come, first served approach. Provision is made to allow an

admissions control policy to be added later. All slot management functions, allocating,

deallocating slots, notification of a stations intent to leave the cell are handled using Cristain’s

atomic broadcast protocol[10].

Bootstrapping

There are three possible scenarios in which a station may join a cell,

• Empty cell, only one station

• N stations enter an empty cell at the same time

• Station enters an already active cell

The TBMAC bootstrapping protocol has two distinct phases. A listening phase in which

the station determines the current state of the cell and from which it selects the approximate

bootstrapping procedure to follow. A full description is provided in [16].

3.2 Rtcomm, The Wireless Card Driver

The rtcomm wireless card driver is ongoing work. The driver is based on the open source

driver for the Orinoco family of 802.11b wireless cards1. The wireless driver supports a range

of wireless cards based on the Lucent Orinoco chip set.

RTAI real-time Linux[3] is used by the driver to provide a real-time deterministic interface

to the wireless card. The deterministic behavour of this driver extends only to the software

interface into the card. The packet queue between the Linux kernel and card is managed in

real-time. The actual event of transferring the packet from the queue held in the linux kernel
1Source code available at http://www.hpl.hp.com/personal/Jean Tourrilhes/Linux/Orinoco.html
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to the wireless card remains non deterministic and may be effected by other ongoing events

in the computer since the system bus in the computer only allows one data exchange at a

time.
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Chapter 4

Design

Implementing TBMAC requires a number of components which are, clock synchronisation,

slot management and finally a TDMA MAC layer. Clock synchronisation is key. TDMA relies

on tight clock synchronisation to function. The success of the clock synchronisation protocol

will heavily influence the efficiency of the TDMA MAC layer. Once clock synchronisation is

in place TDMA using a static set of slot allocations can be deployed. Following from static

TDMA, TDMA with dynamic slot allocation can be provided by providing a slot manager

that implements the TBMAC protocol. There are clearly three separate design concerns,

• Clock synchronisation

• TBMAC slot manager

• TDMA MAC layer

The key need is to separate concerns such that each component is separate and independent.

This chapter will encompass the following, a section relating to each of the significant compo-

nents, a section to discuss additions to the TBMAC packet header, a section showing how the

individual components will link together to provide a working implementation of TBMAC.

Finally an example is presented of how packets will be sent as well as how slot management

is performed.
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4.1 Clock Synchronisation

A prerequisite for TDMA is clock synchronisation. The performance and efficiency of the

TDMA system is in part limited by the accuracy of the achieved clock synchronisation. Other

factors such as interference may also impact efficiency. Accuracy to below 50µsec is desirable

since the shortest permissible gap between 2 packets in 802.11b in ad hoc mode is the DIFS

interval of 50µsec. By providing synchronisation to this accuracy the guard space between

packets will be of the same order as is currently used by 802.11 in ad hoc mode. Exact

synchronisation between clocks is not realistically possible owing to external factors such

as physical propagation delays, stations are mobile, every 30cm distance between stations

adds approximately 1 nsec to the propagation delay for example. Other factors such as non

deterministic execution time when sending and receiving packets are also beyond our control.

While the wireless driver (rtcomm) runs in real time and offers deterministic delays while

interacting with the packet queue, there is still a possibility of delays while data is copied

from the wireless card itself to or from these packet queues.

The rtcomm wireless card driver relies on RTAI real-time Linux to provide its real-time

and deterministic guarantees in accessing the wireless interface. To provide a clock syn-

chronisation service clearly two elements are required, a light weight and low impact way

of altering the source of time information RTAI uses and a clock synchronisation service to

provide agreement on the current clock value. During the design of these elements a key

decision was to maintain as far as was practical full and total compatibility with all pre ex-

isting RTAI code, with the ultimate goal to provide clock synchronisation transparently to

running real-time tasks such that existing code could take advantage of the benefits these

new services provide without modification or even recompilation.

The decision to keep the clock manipulation functions separate from RTAI was twofold.

Firstly by providing the bulk of the functionality in a separate module, significant modifica-

tions to the RTAI source code can be minimised and in particular introducing this class of

functions into RTAI somewhat removes the transparency of the provided service. In addition
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the clock manipulation module is independent of RTAI and as such could conceivably be

used with other real-time Linux implementations or even as a replacement for the current

combination of the operating system software clock and NTP as used in Linux.

Packet received
from time sync

master

Difference 
less then

secondary
 bound ?

Difference
less than primary

bound ?

Apply difference fully
to local clock

Apply difference up to
the primary bound 

No

Ignore and
Exit

No

Exit

Fig. 4.1: Flow chart detailing the operation of the clock synchronisation algorithm

The key challenge is to provide a clock synchronisation service which is both flexible and

lightweight. As outlined in chapter 2 the commonly used NTP protocol assumes that the

client will have access to at least one peer or number of peers to synchronise with and that.

This approach allows the local machine to learn and adapt and determine accurately the rate

of clock drift and compensate accordingly.

A single station is defined as the clock synchronisation master. Other stations receiving

packets from this station will determine, from an entry in the packet header, that the packet

was sent by a clock synchronisation station. Stations synchronise to the clock value contained

in these packets. The clock synchronisation station will be same station as the master station

30



if TDMA is implemented using a centralised slot management approach or where one station

is involved in bootstrapping the other stations. Fully ad hoc synchronisation is not supported.

A clock synchronisation master will always be required.

The proposed algorithm is stateless and consists of a two stage algorithm. If the difference

between the local clock and the time stamp presented in a packet from a clock synchronisation

master is within a defined bound the local clock is updated by that amount. If the difference is

outside this primary bound but within a further larger secondary bound, the clock is adjusted

by only the amount of the primary bound. If the difference is greater the secondary bound

the clock is not adjusted. This approach ensures that the clock can drift to track the clock

synchronisation station, but also ensures that rougue updates, updates contained in packets

that where delayed due to contention on the medium are ignored. A detailed description of

the algorithm are presented in fig. 4.1.

Clients of the clock synchronisation service bootstrap there clock values by listening for a

packet from a clock synchronisation master and directly setting there local clock to the same

value. Once synchronisation is achieved, periodic tasks may be started. From this point clock

synchronisation continues as outlined in fig. 4.1

4.2 TBMAC slot management

This is the core of the system. The module provides a slot management solution which relies

on a time bounded atomic broadcast protocol to achieve agreement. The key requirement of

this module is to ensure that all slot management functions are carried out within the time

bounds specified by the TBMAC protocol. The slot manager will execute the core TBMAC

system consisting of the contention free period.

A design choice was to use an array to store this queue as to avoid the overhead of mem-

ory allocation and deallocation during processing of queued requests. All atomic broadcast

messages are to be delivered at the beginning of the slot time before the packet (if there is

one) is sent. This greatly simplifies the interactions within the system, in particular it avoids
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a possible race condition between slot management functions and the TDMA system. This

approach eliminates any possibility that some stations could run the slot management func-

tion and packet sending task in a different order, thus avoiding the creation of inconsistent

views of slot allocation.

An additional requirement which is not addressed in the TBMAC protocol has been

included in this implementation, to allow a station to request a specific global slot if for

example it has specific timing requirements. This feature was added through the use of the

number allocation entry in the TBMAC packet header. The number allocation entry will

store the requested slot number.

4.3 TDMA MAC layer

TDMA encompasses the fundamental requirements of a time bounded deterministic MAC

service. Clock synchronisation services will be provided transparently so the TDMA system

can assume clock synchronisation is in place. Since clock synchronisation will be deployed at

a level beneath RTAI the levels above will not be aware that there is clock synchronisation

in place. However since the TDMA module through the rtcomm wireless driver copies the

packets into the wireless card it is the last level before the wireless interface. The TDMA

layer inserts the current time in nano seconds into the packet header immediately before it

is sent to the wireless interface to be sent.

A key concern is to ensure that the TDMA system is not tightly coupled to the MAC

protocol is the layer above, there is a need for communication which will take to form of three

separate callbacks which simulate interrupts, one to notify the slot manager of the start of

a slot, another to notify the slot manager that the TDMA system intends to transmit in a

slot and finally a callback to notify the slot manager. The slot manager may choose to ignore

some of these callbacks depending on the MAC layer that is in use.

All other interactions will use shared data through the services provided by the shared

data module (sec. 4.5). While a packet is being transmitted the specific slot will be locked
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to prevent the atomic broadcast queue or slot allocation state from being altered.

The MAC layer will be implemented in software above 802.11b, using RTAI real-time

Linux to provide the necessary real time guarantees.

A array of pointers is maintained which represents each slot in the TDMA. If the contents

of a slot are equal to the null literal the slot is not allocated to this station. This lack of

distinction between ownership of a slot and implicit permission to transit in a slot ensures

that the overhead in determining if a slot is allocated to the station is minimal and requires

no more than a single comparison.

4.4 The TBMAC Packet

The current TBMAC packet does not make provision for the need for clock synchronisation

services since it is assumed that synchronisation will be provided independently using GPS

technology. In this implementation clock synchronisation is provided in a master slave fashion,

thus provision was added to the TBMAC header to support these additional requirements.

Four additional entries are added, two 64 bit time stamps, 8 bit message type entry and finally

an 8 bit magic number entry is added at the head of the header to ensure quick detection of

a valid packet. The modified TBMAC header is shown in fig. 4.2.

4.5 The Components

The system will be made of a number of individual modules each with a single specific role.

A diagram detailing the relationships is provided in fig. 4.3. Each module is discussed in

turn below,

Shared Data Module

This module is a central point for all data structures which are shared with other modules.

The TDMA table and slot bitmap will be stored here. This modules will also provide services

to manage concurrent access to these data structures to ensure consistency is maintained.

33



typedef struct{

unsigned magic_id : 8;

unsigned long long source_address : 48;

unsigned long long dest_address : 48;

unsigned int slot_bitmap; : 32

unsigned seq : 16;

unsigned slot_number : 4;

unsigned message_type : 1;

unsigned msg_type : 8;

AdditionalInfo additional_info[2];

unsigned long long snd_time;

unsigned long long rcv_time;

unsigned char contents[512];

}cfp_message_hdr;

Fig. 4.2: Modified TBMAC Packet

Dynamic TDMA Module

This module handles all incoming and out going data which passes through the wireless

interface. The module tightly integrates with the rtcomm driver module. The dynamic

TDMA module is oblivious to the other modules and transmits in any slot in which it has

data to transmit. It performs no management of the TDMA slot table and is independent of

slot management protocol that is in use. It will however notify the slot manager through the

use of callbacks of events such as receipt of a data packet and the imminent transmission of

a packet in the current slot.
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Fig. 4.3: High level view of module relationships

TBMAC Slot Manager

This is the slot manager module which manages the allocation and deallocation of slots in

addition to admission control. The module handles all requests from the higher level to

perform allocation, deallocation and leave services as defined by the TBMAC protocol. It

interacts with the TDMA system through protected shared data structures provided by the

shared data module.

Higher Level Module

This a simplified implementation of the higher layer that is using the time bounded service

provided by the combination of the TBMAC slot manager and the dynamic TDMA module.

It will provide an interface into user space allowing bidirectional interaction through the use

of FIFOs. This higher level module will form a significant part of the evaluation of the system
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since it will maintain the current state and result of slot allocation and deallocation requests.

Clock Synchronisation Services

This modules provides an interface into the rdtsc instruction used by RTAI to maintain its

internal clock. Functions are provided to manipulate and modify this so that all stations see

the same time. Relative time is used only.

4.5.1 Inter Module Relationships

This section will detail the precise relationships and interactions between the various modules

that make up the system. Fig 4.3 shows the relationships numbered below.

1. A callback to notify of the successful or unsuccessful allocation or deallocation of a slot

following a request.

2. Interface into the slot management system, functions such as allocate slot, deallocate

slot, leave, allocate specific slot, allocated slot count. A function is also provided to

initialize the callbacks discussed above.

3. Provides 3 functions, the ability to send a packet and to send a packet repeatedly, in

addition it allows the higher level to register a callback for the notification of receipt of

packet.

4. Using the callback registered above the TDMA module may notify the higher level of

a received data packet.

5. The slot manager may manipulate data in the shared module.

6. The TDMA module notifies the slot manager of the arrival of a packet, or the imminent

transmission of one

7. The dynamic TDMA module may manipulate data in the shared module.
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8. Each packet contains a time stamp, the difference between this time stamp and the

current local time is passed to the clock synchronisation module.

4.6 Sending A Packet

There is clear need to provide separation between the TDMA system and the higher levels.

Fig. 4.4 shows the steps required to send a packet. On the right is the interaction between

the user application and the slot management service. The left side shows the TDMA system

running in parallel. Consistency is maintained through the shared data module which ensures

the TDMA table is locked while it is in use.

4.6.1 Real Time Task

This is the core of the TDMA system. It is invoked by RTAI at each slot time. It first carries

out slot management tasks such as slot allocation and deallocation and the management of

the atomic broadcast queue, referred to as ATB in the figure.

If the slot is allocated to this station the slot manager is notified. If the slot manager is

TBMAC this notification is used to set the delivery time on all new pending atomic broadcast

requests. Using the reference in the TDMA table as a pointer to a packet that packet passed

to the rtcomm driver which copies the packet to the wireless card.

4.6.2 Send Packet

An api call to allow a user application to send a packet will be made available in the form

of send pkt(int slot number,struct message *msg);. To send a packet a pointer to the

packet must be placed in the TDMA table. First the local slot number is converted into a

global slot number and if the slot is currently allocated this station an entry is made in the

TDMA table pointing to the packet.
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Fig. 4.4: Flow chart detailing how packets are sent
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4.7 Slot Management

Again there is a clear separation between the receipt of slot management requests and there

application to the current slot allocation state.

Real Time Send
Task Runs

Deliver 
Next ATB

message ?

Remove ATB request
from queue 
and process

Return to wait
state

No

Check and Process
ATB queue

Notify the level above
the slot manager if
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made by this station

Allocate Slot

Is there 
space in the

request queue ?

Insert request into
local request queue

Return ErrorNo

Exit, Return
Sucess

Check admission
control policy

Fig. 4.5: Flow chart detailing how slots are allocated

39



4.7.1 Slot Management

Slot management is carried out at the start of every slot time, before a packet is sent. Slot

management is performed regardless of whether the slot is allocated to that specific station

or not. The current atomic broadcast queue is checked for any requests whose delivery time

has arrived. Slots are allocated and deallocated where possible as dictated by these requests.

If the request was made by this station the level above the slot manager is notified of the

outcome of that request. If the slot is allocated to this station any slot management requests

currently queued are time stamped for delivery and are added to the atomic broadcast list.

This list is copied into the headers of all packets sent.

4.7.2 Allocate Slot

An api call to allow a user application to send packets will be made available in the form of int

allocate slot(void);. Functions will be provided to allocate a specific global slot as well as

matching functions to deallocate one specific slot or to deallocate all slots currently allocated.

To request a slot the level above the slot manager invokes either the allocate slot or

allocate specific slot(int global slot number) functions. The request is then queued.

To allocate a slot, the admissions policy is queried first then the request is queued with all

new slot management requests which in due course will be time stamped and sent.

4.8 Summary

The design of the system is highly modular and all the important concerns are separated into

individual modules. The critical slot management service is fully independent of the TDMA

module and is fully interchangeable thus allowing different TDMA MAC layers to be used.

This flexibility is key to the development and testing of the finished system. The design of

TBMAC has been slightly modified to allow for the allocate specific slot function.

A critical design decision was to provide clock synchronisation externally to RTAI thus

maintaining transparency. A further decision was the adoption of the processor cycle clock,
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the tsc as the basis for time keeping in the system, this ensured low level compatibility with

RTAI and also provides a source of high resolution clock information. The chosen approach

to integrating clock synchronisation relies on the hardware abstraction layer used by RTAI

and as such can be deployed on all platforms RTAI currently support that provide tsc like

functionality.
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Chapter 5

Implementation

This chapter will discuss the finer details of the solution. In particular each of the components

of the proposed system are discussed. An overview of the layout of the full system is presented

in fig. 5.1.

User Space

rtcomm
Wireless Card

Driver

Linux Kernel

RTAI / ADEOS HAL

Hardware

TBMAC

Fig. 5.1: High level view of component relationships
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5.1 Real Time

Developing code to operate in a real-time environment is extremely challenging particularly

when the code is interacting with external events such as the receipt or transmission of pack-

ets through a wireless card. Debugging in real-time under these conditions is not realistically

possible, since external events occur at such frequency. While the core elements of logic can

be extensively tested outside real-time, the interaction between system elements and in par-

ticular between the code and the underlying physical hardware cannot leading to significant

challenges in testing and debugging.

A failure or error of any kind typically leads to a kernel panic which means tracing the

root cause of an error is an extremely arduous process. These concerns lead to the use of the

incremental implementation approach. Each component is tested and proven before moving

on, by refactoring known good code the system evolves into the next phase of development.

As shown in fig. 5.1, the solution is implemented entirely in kernel space and in real-time.

The RTAI/ADEOS layer sits directly between linux and the hardware, its primary purpose is

to intercept and manage interrupts such that real-time tasks can meet there timing deadlines.

The lowest priority real-time task will always have priority over all linux processes including

the kernel.

This solution has been deployed only for Pentium processors but can be applied to other

modern processors families such as the PowerPC frequently used in embedded systems. Many

modern processors contain a CPU clock consisting of a simple counter which increments on

every clock cycle. This is commonly known as the time stamp clock, or tsc. This counter is

typically represented as a 64 bit wide register and is directly accessible via a special assembly

language instruction. There is no software or operating system interference, a 1Ghz clock

speed gives a resolution of 1ns.

Following analysis of the source code of RTAI and a review of the capability of the Pentium

family of processors the following key observations where made,
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• There is no reasonable possibility of the tsc counter wrapping around1.

• The rdtsc instruction is read only.

• The rdtsc instruction is executed entirely in hardware, it is not effected by interrupts.

• In RTAI all accesses to the tsc or equivalent are made through exactly one (well known)

function.

• When running in one shot mode all timing in RTAI relies on the result of the rdtsc

function.

5.2 RTAI clock manipulation

Currently there is no provision in RTAI to support distributed time coordinated applica-

tions. Additions to RTAI such as RTnet[4] provide high level services to support limited

co-ordination across broadcast type networks, specifically ethernet. A master slave relation-

ship is used and all devices must be registered with the master before data exchange can take

place. While a TDMA structure is used it is neither dynamic nor is it fault tolerant, making

it unsuitable for this application.

To address this lack of functionality a RTAI clock manipulation module was devised. It

introduces a small amount of extra functionality into RTAI, when running in one shot mode2

RTAI relies entirely on the rdtsc instruction (or simulation of) to determine timing. In one

shot mode a task is rescheduled on each execution in doing so it uses the clock value at

that time. RTAI uses a hardware abstraction layer so that it can run on different hardware

platforms this isolates all architecture specific code into its own group of header files.

All calls to the CPU time stamp counter are made through the function rdtsc() which

is contained in the rtai hal.h header file. This header file is always included in all modules

using RTAI functionality, thus by modifying this function alone it possible to effect the view of

time seen by all parts of RTAI, and in doing so to effect the scheduling and timing decisions
1At 1Ghz it would take 548 years before the counter reaches its maximum value
2This is the recommended mode of operation and offers the highest level of precision in the timing of the

execution of tasks
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made by RTAI. Clearly extreme caution must be exercised, any sudden large changes in

perceived value of the rdtsc function may lead to unpredictable behavour, and in particular

failure to execute tasks, multiple execution or worse still a crash.

5.2.1 Alterations to RTAI

Clearly the source code of RTAI needs modifications to expose the necessary functions and

variables to allow for clock synchronisation. Only three simple modifications are required to

insert support for clock synchronisation in RTAI. The aim is to make the absolute minimum

changes.

The rtai hal.h header file requires 2 modifications. The rdtsc function returns directly

the 64 bit value of the tsc register on the processor, this solution simply adds or subtracts as

appropriate a 64-bit value from the tsc value before the function returns, in doing so at this

low level RTAI is completely unaware of the alteration. Since this function is the basis of all

time keeping in RTAI adjusting the value within by adding or subtracting from the tsc value

effects the scheduling of all tasks in RTAI. A shared variable named TSC OFFSET defined as

extern type is also required so that all RTAI modules see the same offset and that the same

offset is applied to all RTAI modules. The modified rdtsc function is presented in fig. 5.2

An additional kernel module is required to provide functions to manipulate the value of

the shared variable TSC OFFSET. This module also creates and initialises TSC OFFSET. This

module must load prior to RTAI, configuring linux such that the module is loaded during

system startup avoids difficulties later on.

It is important to note that these modification in no way effect the performance or func-

tionality of the RTAI distribution. Other than adding an offset no further work is done within

RTAI, any modules complied against the unmodified version of the header files will continue

to function normally even if the clock manipulation functions are used. There is only one

cause for concern, if a module directly calls rdtsc, rdtsc() is not a documented function,

and is known by different names on different hardware platforms. Programmers should use

the rt get count() instead which gives the same result but using a function exported by
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static inline unsigned long long arti_rdtsc (void) {

unsigned long long t;

__asm__ __volatile__( "rdtsc" : "=A" (t));

return t + TSC_OFFSET;

}

Fig. 5.2: Adjustment to RTAI code

RTAI in the kernel. Using rdtsc will lead to a disparity in the rdtsc values seen leading to

failure. Logically it is important to remember that the tsc cannot be negative, it will always

be possible to add or subtract a value from the tsc such that it will remain positive as it is

synchronised with another processors tsc.

Clearly if there are no currently running periodic tasks it is conceivable to make sudden

large alterations to the apparent tsc value the fact that time is monotonically increasing thus

time can never go backwards may be ignored safely. The tsc is read only and is accessed

frequently from within RTAI itself thus embedding logic inside these requests to perform

synchronisation would lead to unacceptable overhead.

5.3 Clock Synchronisation Service

Traditional clock synchronisation protocols, NTP[2], Cristian[9] and Berkeley[19] require mul-

tiple message exchanges between at least two stations, multiple messages are required to get

an estimate of the round trip time, this introduces what I will refer to as the chicken and egg

scenario.

To implement TDMA tight clock synchronisation is required, but to transmit a packet (to

perform clock synchronisation) using a TDMA type MAC layer requires that a TDMA sched-

ule be in place, that there already exists sufficient synchronisation to use TDMA. Multiple

message exchanges are not acceptable since they are in addition to the agreement requirement
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of the TBMAC protocol thus further increase the time bound to sending the first data packet.

It must therefore be possible for a station to gain clock synchronisation without transmitting

itself, this makes current protocols unsuitable.

Clock synchronisation was implemented in a separate module. The module is lightweight

and can be loaded into the kernel without having to load RTAI first. Two functions are

exported. One int adjust tsc(signed long long delta) is the primary function used

which implements the protocol as shown in fig. 4.1 earlier. A second function fast adjust tsc

is provided which allows an unrestricted alteration of the value of the return value of the rdtsc

function. This function is used only during the bootstrapping phase to eliminate the need

for time spent awaiting convergence. This approach ensures that the clock synchronisation

protocol in no way extends the current bound TBMAC defines for

5.4 Shared Data Module

RTAI provides extensive synchronisation support through the use of semaphores. In order to

maximise performance and minimise the delays caused by waiting for locks, locking is applied

at the global slot level, thus only the slot currently in use is locked. This provision eliminates

a possible race condition between the TDMA module sending a packet and the higher level

passing a packet to be sent. A second semaphore is provided to secure access to the atomic

broadcast queue.

The shared data module is the home of all key data structure used in the system. The

TDMA slot table consists of an array of pointers to packets. In order to support the

send packet repeated() function call, an additional integer array is required to log the

status of a packet, is it to be retained for retransmission or should it be removed from the

TDMA table when it is sent. The global atomic broadcast queue is also stored here.
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5.5 The slot manager

The slot management module implements the TBMAC protocol itself and is independent of

the TDMA module, all interaction taking place via the shared data module.

The slot manager maintains the slot bitmap. This stores in two bits the current state of

each slot, AVAILABLE, COLLISION, OTHER or OWNER. Though not used in this implementation

in a fully dynamic implementation the slot bitmap is the corner stone in enabling the joining

station to learn about the current slot allocation state. The slot bitmap is stored as a 32bit

integer allowing the system to be configured for up to 16 slots. It is possible to support up

to 32 slots through the use of a 64bit integer.

Slots are allocated on a basis of the lowest available slot number available first, while

simple this is the most effective approach, however this approach is overridden if the allocate

specific slot function is use at which point the value of the number alloction entry in the

TBMAC packet header is used as the slot number.

5.6 The TDMA module

Owing to the dynamic allocation of slots the implementation of the TDMA module is not as

straight forward as could be expected. There are three distinct approaches to the management

of the periodic packet sending task within the TDMA module.

• Reschedule the task following each execution so that it will execute again to transmit

in the next currently allocated slot.

• Have an individual task for each slot and enable/disable as required.

• Have one task which executes regardless of the allocation state of a slot, the task

confirms the slot ownership and if favorable transmits.

While the first option presents the most resource efficient implementation it presents

some significant difficulties in implementation. The act of rescheduling and the overhead in

calculating the next execution time is significant. A major issue is that the scheduling decision
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is made based on the state of slot allocations at a time before the next (expected) slot, in due

course a slot may be allocated or deallocated before this expected next slot leading again to

further rescheduling. Since this system is intended to be hard real-time this approach would

lead to significant variances in the length of time a task takes to execute.

The second approach avoids the rescheduling issue of the first approach but is resource

hungry with a requirement for one task per slot. The act of starting and stopping tasks

in accordance with slot allocation and deallocation events may lead to timing failures. The

message must be first placed into the slot in question and the task restarted.

Both of these approaches suffer from the overhead of managing the task, the third ap-

proach allows for a single task executing in every single TDMA transmission slot. In doing

so there is no overhead. The task checks to see if the slot is allocated or not, this can be

implemented simply by checking if an entry points to a memory address or is equal to NULL.

Implemented in this form, allocating and deallocating a slot becomes an atomic process from

the perspective of the TDMA process. The act of placing a pointer to a piece of memory

implies permission to transmit the contents of that piece of memory in that slot. In addition

since RTAI will be operating in one shot mode by the task executing in every slot it will be

rescheduled following each execution, its next execution time will reflect the current clock i.e.

the most recently synchronised value, the other two approaches suffer from up to a full cycle

latency before they reflect the most up to date clock value.

There are no conflicts since clocks are synchronised across all stations, once the task

has determined that it has not got permission to transmit, in parallel the station which has

permission to transmit has just determined that it has permission and begins copying the

packet into the cards buffers so there is no possibility under normal operation that the higher

priority send task would be running when a packet arrives3. While from a resource utilisation

this approach may seem greedy, the station would have been idle in face of not owning the

slot, in addition under the worst case load hypothesis one station could possibly own all slots.
3The read task runs at a lower priority
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A key requirement is to keep the atomic broadcasts ordered by time. since a broadcast

message may be sorted using three criteria, its delivery time, the requesting stations MAC

address and the requests sequence number. Instead of explicitly sorting the queue upon each

addition or group of additions, such an approach is extremely time consuming and would

require three passes to ensure the queue is in correct order, one to sort by time, a further one

to ensure if two or more requests have the same delivery time and to resort them appropriately

and a final pass to ensure that duplicates are removed and any requests with the same delivery

time and requesting mac address are ordered by request sequence number.

Instead each request is inserted in the correct location in the queue when it is added thus

ensuring the queue always remains in correct order without the need for an explicit recourse

to a sort algorithm. A constrained linked list is provided thus allowing rapid addition and

removal of entries without the need to allocate or deallocate memory. When updating the

order following addition or removal only the pointers need to be updated, there is no need to

copy entries.

Fig. 5.3 shows an example scenario of slot allocations and shows the relationship between

the local slot table and the global slot table as well as how the NULL and data packets relate

to the TDMA slot table. A three level system is used, the local slot table provides a level

of indirection into the global slot table. If an entry (in the local slot table) is equal to -1

the entry is unused and does not point to a valid global slot. This structure is designed such

that there is minimal overhead in determining the state of a slot, if the global slot entry is

NULL4, the slot is not allocated to this station, otherwise the entry is a pointer to a piece of

memory. There are three types of entry in the global slot table,

• A pointer to a normal data packet

• A pointer to a special NULL packet

• The NULL pointer

The NULL pointer signifies that the slot is not allocated to this station and data may

not be transmitted in the slot it refers to.
4The NULL literal is represented by 0 in the diagram
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Fig. 5.3: Send Packet

The special NULL packet is used whenever a slot is allocated to a station but in which

there is no data to transmit, this NULL packet can potentially be shared amongst many slots

and carries no data apart from the TBMAC header. When a data packet is sent a slot enters

this state, thus an allocated slot will always transmit a packet, this is a key requirement of

the atomic broadcast protocol used by TBMAC.

Otherwise the entry in the global slot table is a pointer to a packet which is copied to the

wireless card. A packet may be marked as periodic such that when transmitted the pointer

is not replaced by the NULL packet instead it is left in place this facilitates periodic traffic.

This approach fully de couples the slot management functionality from the actual TDMA

system. There is no need to query ownership of a slot, the presence of data to transmit in

a slot implies ownership and permission to transmit in that slot. The slot manager ensures
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that consistency is maintained so the TDMA system does not need to have any knowledge

of the slot management procedure in place.

The key thing to note is that they are all pointers which means the packets themselves

are not copied, this leads to the ability to efficiently support periodic traffic for instance

telemetry or periodic sensor data. Since the process that created the packet still retains a

reference to the packet it may alter its contents.

5.7 Summary

Clock synchronisation has been implemented with extremely encouraging results. The ap-

proach taken to clock synchronisation has ensured that a consistent clock is seen by all

elements of the TBMAC system as well as the underlying real time linux system.

The implementation is fully modular and allows the slot manager to be interchanged with

few if any modifications to the TDMA system.
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Chapter 6

Evaluation

This chapter will outline the experiments carried out, there goals, results and conclusions

that can be drawn from them, firstly the equipment used and configuration is outlined.

6.1 Test Setup

All experiments where conducted using identical equipment with the same configuration,

• 3 Dell Latitude C400 laptops, 730MHz Pentium 3 Processor, 256 Mb RAM

• Redhat 7.3 and RTAI 3.0

• All laptops ran a 2.4.20 kernel patched by RTAI

• All power management functionality was disabled in both the kernel and system BIOS

• Lucent Orinoco Gold 802.11b PCMICA wireless cards

The laptops where arranged in a circular formation, antennas where positioned such that

there where all an equal distance apart. All experiments where conducted at 2Mbit/sec

to ensure the effects of local interference was minimised, 802.11 channel 2 was used, this

frequency was not in use by any other 802.11 devices in the locality. All machines where

allowed to warm up for a short while before commencement of experiments. Two very

different environments where chosen to conduct the experiments, these environments where
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chosen to show two extremes in which an 802.11 device may be used.

Location 1

In a first floor room in the O’Reilly Institute, Trinity College Dublin, home of the Dept of

Computer Science. This represents a extremely aggressive wireless environment with many

other 802.11 sources, from both infrastructure based and ad hoc networks. Significant other

possible sources of interference are from electrical systems, mobile phones, computer systems

and bluetooth devices. An electric railway also passes within 20m of the location1. This

environment represents in the authors opinion the worst practical scenario that an 802.11

device may operate in.

Location 2

In the authors garden, this represents the best practically achievable environment, with no

other active 802.11 devices, mobile phones or electrical systems in close proximity of the 802.11

cards used to perform the test. This is not a clinically clean environment but represents the

best case that is practically achievable, a perfect interference free environment is not in the

authors opinion of any use when presenting work evaluating the real world performance of

802.l1.

6.2 Experiments

A series of experiments where carried out to evaluate the various components that make up

the TBMAC implementation. The experiments where broken down into 4 separate areas.

• Determination of the propagation delay

• CSMA performance
1Recent work presented in [36] shows significant issues with relation to modern, inverter (GTO/IGBT)

driven trains, which are present at this location. Unfortunately the work concentrated on frequencies below
1Ghz (802.11b operates at 2.4Ghz), frequencies above 1GHz are not covered by relevant European rail industry
standard, EN 50121
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• TDMA performance

• Timebounds in TBMAC

6.3 Determination of the propagation delay

Clock synchronisation relies on the fact that in a TDMA environment collisions are rare, so

the propagation time of a packet from sender to receiver should be constant, however the

propagation delay will vary dependant on the packet size. Before clock synchronisation could

be deployed it was necessary to estimate actual propagation time in order to correct the

received time stamp for the expected arrival on the remote station.

The propagation delay was calculated by a periodic task on one station sending a packet

padded to the appropriate length containing the estimated delivery time on the remote sta-

tion, the remote station updates its clock to this value using the clock synchronisation protocol

detailed earlier in chapter 4.1. From the rate and size of clock updates the accuracy of the

propagation estimate can be determined.

The estimated delay was adjusted until the median average adjustment to the local clock

required to maintain clock synchronisation is close to 0, further minor adjustments are made

to reduce the variance in updates. Owing to the variability in the rate of clock drift an exact

value of the propagation cannot be calculated, and indeed is undesirable since it would over

fit the value making it inflexible.

An estimate sufficiently accurate to maintain clock synchronisation within the required

bounds is sufficient. As shown in fig. 6.1 on the following page the relationship between

propagation delay and packet size is not a perfectly linear. This may be attributed to the

flexibility in the choice of the propagation delay and also the fact memory on the wireless

card during packet transmission is allocated in discrete blocks, the time to allocate a single

block remains constant regardless of whether a single byte of a allocate block is used or the

entire space, this could explain the three clear steps in the graph shown in fig. 6.1.

A sample plot of the updates applied to the clock on station 2 may be found in fig.

55



Propagation Delay Between Stations Vs Packet Size
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Fig. 6.1: Plot of the calculated propagation delays over a range of packet sizes

6.2. There is clearly oscillation between the upper and lower bounds, this is unavoidable.

It is impossible to decern between an update that was slightly delayed due to actual clock

drift or due to the variance in the execution of a real time task or equally due to minor

variances in processing delays. In order to cope with the fact processor speeds are not identical

across stations the tsc value is converted to nano seconds by dividing by the processor speed

measured in Ghz, each time stamp must be converted to nano seconds on the transmitting

station and converted to local tsc units on the receiving station. Processor speed is calculated

only to the nearest KHz at boot time, processor speed varies slightly in due course leading

again to further errors.

A brief analysis of the updates to the clock on one station is presented in table 6.1.
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Clock Synchronisation Updates
For Station 3, one update every 26.4ms
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Fig. 6.2: Plot of the updates made to the local clock.

All clock synchronisation information presented here was gathered while the full TDMA

system was running, transmitting and receiving data and thus provides accurate data of the

performance of the clock synchronisation protocol under the exact conditions it would operate

under. These results show that the average update to the clock is on average less than 1µsec.

RTnet[4] an extension of RTAI to provide real-time ethernet support also implements

a clock synchronisation protocol with similar requirements to those detailed in chapter 3.

They share a number of similarities in there use of broadcast packets. Compared to similar

work detailed in[20], this protocol offers significant benefits, for example in[20] convergence

requires several minutes and is subject to occasional spikes in excess of 100µsec, using the

protocol implemented here convergence is virtually instant, this an essential requirement to
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Update Frequency Median adjustment Average adjustment RMS error

28.0ms -79.4ns 4.7ns 12895ns

27.2ms -28.8ns -58.3ns 16439ns

26.8ms -619.2ns -122ns 11695ns

26.4ms -223.3ns -17.8ns 11531ns

26.0ms -606.8ns -107.3ns 10987ns

Table 6.1: Analysis of updates to the clock on station 2

enable a station to gain access to the medium within a bounded time. The performance from

the clock synchronisation protocol as detailed in table. 6.1 shows improved stability and a

tighter level of synchronisation. The average update is approximately zero, the RMS value

shows a more accurate indication of the stability of the clock synchronisation protocol, since

positive and negative updates don’t cancel each other out. The RMS value varies between

10 and 16µsec.

6.4 CSMA experiments

The aims of this set of experiments was to evaluate the performance of 802.11 in the face

of collisions and contention. These results in the form of round trip times are compared to

results of the same experiments but using a TDMA MAC layer in chapter 6.5. The overall

aim of these experiments is to show that TDMA offers stable time bounded contention free

delivery even when the medium is heavily loaded.

All experiments consisted of a packet containing a 512byte payload as well as containing

source and destination addresses as well as time stamps and sequence numbers required to

record the experiments results. The CSMA packet is a total of 548 bytes in length, its

contents are shown in fig. 6.3

Each experiment consisted of the master sending 1000 packets to N stations. These

stations will upon receipt of a packet (from the master) reply to the master thus producing a
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typedef struct{

unsigned magic_id : 8;

unsigned long long source_address : 48;

unsigned long long dest_address : 48;

unsigned seq : 16;

unsigned msg_type : 8;

unsigned long long snd_time;

unsigned long long rcv_time;

unsigned char contents[512];

}message_hdr_csma;

Fig. 6.3: CSMA packet contents

total of 1000 * (N + 1) packets. All transmission took place using standard 802.11 broadcast

packets, no RTS/CTS or ACK packets where sent. Under the CSMA MAC protocol all

stations should attempt to reply instantly. In a simple two station scenario, one master one

slave contention is entirely a function of the slave contenting with the master to transmit,

that occurs only when the master transmits packets at a faster rate than the slave can reply.

For more than 1 slave contention is primarily between the slaves and to a lesser extend with

the master.

The round trip times presented indicated a best case time of approximately 6.9ms from

the time the request to send the packet is made, until the packet is fully retrieved from the

card following the round trip. All time stamps are generated using the Pentium processors

time stamping clock (tsc) which offers a resolution of approximately 1.2nsec.

In CSMA mode all packets where generated and sent from a periodic task at set intervals,

the slave station upon receipt of a packet changed the originators address and instantly sent

the packet back, other the changing the originators address the slave carries out no other

processing. All the slave stations should attempt to reply at the same time.
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6.4.1 CSMA Round Trip Results

Fig 6.5 & fig 6.4 show clearly the non deterministic and random behavour of the CSMA MAC

protocol, the minimum round trip time is between 6.9 msec and 7.0 msec.

CSMA round trip times, location 1
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Fig. 6.4: Plot of heavy contention using CSMA at location 1

As detailed in table. 6.2 there is an extremely high level of packet loss. Clearly in these

experiments station 3 has some advantage over station 2. Since the station are all equidistant

from each other during all experiments propagation effects have been eliminated. Further

investigation of the kernel logs over many experiments on both laptops revealed that the

estimated clock speed of station 3 varied relative to station 2 by up to 11,000Hz in favour

of station 3. This advantage is fractional but is more than sufficient to give station 3 an
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CSMA round trip times, location 2
20ms interval between requests
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Fig. 6.5: Plot of heavy contention using CSMA at location 2

advantage. While these results clearly show that station 3 has some form of advantage, on

occasion station 2 takes the leading role, as shown in fig. 6.6. There is no difference between

the configuration of either station merely that the experiment was carried out on a different

day.

It is also interesting to note that in the heavy interference environment the advantage

station 3 has is noticeably reduced by approximately 10% owing to interference on the medium

which gave the slower responding machine a chance when the faster machine (station 3) saw

the medium as busy due to interference.
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Location Period Station 2 Station 3 % loss overall % bias in favour

Office 20ms 107/1000 948/1000 36% Station 3 89.9%

Garden 20ms 29/1000 870/1000 29.9% Station 3 96.8%

Office 10ms 156/1000 875/1000 34.4% Station 3 84.9%

Garden 10ms 32/1000 847/1000 30.2% Station 3 96.5%

Table 6.2: Analysis of CSMA contention

CSMA round trip times, location 1
20ms interval between requests
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Fig. 6.6: Station 2 occasionally wins
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6.5 TDMA experiments

TDMA experiments where conducted in a very similar fashion to those of the CSMA ex-

periments discussed above. The experiments consisted of an 8 slot TDMA table, slot 0 was

allocated to station 1 the master station, station 2 was allocated slot 1 and similarly station 3

was allocated slot 2. A slot time significantly more than the estimated propagation time was

selected and was gradually reduced until performance started to degrade. As in the CSMA

experiments detailed above, the master station sends one packet per cycle and the slaves

respond to this request in there respective allocated slots.

In TDMA mode the packets are again sent as part of a periodic task, upon receipt the

slave as in the CSMA case changes the originator identity. The packet is then queued, an

independent periodic send task then sends the queued packet back to the master using the

TDMA slot which has been assigned to it. In this scenario a station is designated as the

leader or requestor, this station may or may not be the time synchronisation master. As

shown in fig. 6.7, for a slot time of 3.5ms there is little or no contention.

As shown in fig. 6.8 as the slot time approaches the propagation time of 3.07ms perfor-

mance begins to seriously degrade. In this case the degradation follows from a failure of the

clock synchronisation protocol owing to excessive contention on the medium. The clock on

station 2 clearly begins to diverge. By packet sequence number 900 the clock on station 2 has

drifted so severely that its packets are still on the medium while station 3 tries to transmit

leading to a high concentration of medium contention from this point onwards.

6.5.1 TDMA Round Trip Results

TDMA results where very much as expected, overall only one packet was lost during the

experiments, fig. 6.7 clearly shows the slotted structure of the TDMA MAC. Each station

responds in its allocated slot. Table 6.3 details the number of contention events in the TDMA

environment over 1000 packet transmissions. Station 3 suffers more contention that station 2

since contention delays packets being sent by station 2, that delay leads to contention when
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station 3 tries to transmit.

Round Trip Times 
Static TDMA 8 Slots, 3 stations, 3.5ms slot time
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Fig. 6.7: TDMA in a steady state with a small amount of contention

The TDMA experiments highlighted an important practical concern. If a request is made

in slot 1 to a station which has slot 2 allocated to it for example, it is not possible to guarantee

the station would have sufficient time to compute a response thus the maximum response

time is equal to, in the worst case of (CYCLE TIME + SLOT TIME) assuming that the

processing delay to generate a response is less than one slot time, this bound will increase by

one SLOT TIME for a corresponding increase in processing delay.

The TDMA performance is restricted heavily by the presence of the underlying 802.11

MAC layer. As is clear to see in experiments performed at location 1, the high interference

location a substantial number of packets are delayed by interference (figs. 6.7 & 6.8). Since
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Fig. 6.8: Effect of excessive contention leads to clock drift

it is not possible to manipulate the operation of the CSMA MAC layer the level of back

off calculated is beyond our control. Ideally in the presence of contention the assumption

would be that it is localised interference and to transmit regardless. The distinction between

a system failure and the result of interference can be seen in fig. 6.9 which was recorded at

location 1, the interference free environment.

Fig. 6.9 shows a periodic event every 128 packets (3.072 msec) resulting in a delay. The

underlying RTAI task executes at the appropriate time but the packet is delayed en route

to the destination station. There could have been interference on the medium or more likely

a processing delay copying the packet into the wireless card or a delay in the generation an

processing of the packet received interrupt on the receiving station. Taking all these factors
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Slot Time Station 1 Station 2 Overall % Contention

3.5ms 23 89 11.2%

3.4ms 46 57 10.3%

3.35ms 57 75 13.2%

3.3ms 57 73 13.0%

3.25ms 70 286 35.6%

3.2ms 20 36 5.6%

3.15ms 82 93 17.5%

Table 6.3: Analysis of TDMA contention at location 1

into account the likely cause is periodic delay on one of the stations caused by a higher

priority event having taking control, e.g. the hard disk buffers flushing the experiential data

to disk will prevent access to the wireless card until the operation completes since it locks the

main system bus of the computer while the operation is underway. There are a vast number

of possible issues which could cause a delay,

• Delay on sender caused by another event on the system bus

• Interference on the medium

• Another packet on the medium

• Delay raising the packet received interrupt on the receiving station

• Delay on receiver caused by another event on the system bus

6.6 Comparision of CSMA & TDMA performance

Packet loss in CSMA was extremely high, up to 36% (table. 6.2) of all packets transmit-

ted where lost. TDMA lost only 1 packet over the entire set of experiments leading to a

exceptional level of reliability. A heavy bias was shown in favour of station 3 in the results

presented here this was unexpected. Clearly bias in favour of a particular station is unac-
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Round Trip Times (location 1)
Static TDMA 8 Slots, 3 stations, 3.5ms slot time
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Fig. 6.9: In a interference free environment some packets are still delayed

ceptable in a network where each station is of equal importance. In evaluating the respective

performance of CSMA and TDMA, it is important to remember that CSMA and TDMA

have very different design goals.

TDMA showed a limited amount of contention, this was unexpected. While at first glance

it may appear to be a failure of the clock synchronisation protocol the delays experienced

where an order of magnitude greater than the clock synchronisation bound of ±28µsec. Since

the 802.11 CSMA MAC layer is still present and active in the TDMA implementation, any

interference on the medium will lead the CSMA MAC protocol generating a random back off

counter. This leads to further contention in the next slot time. Under these conditions two

options exist if the CSMA back off procedure can be disabled. Ignore the fact the medium
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is seen as busy and assume that it is local interference and transmit the packet or secondly

assume there actually is a packet currently on the medium and to drop this packet. Neither

approach is available using the current wireless card driver.

In lightly loaded conditions CSMA will offer a much faster round trip time, however

as the network load increases so will contention and packet loss will increase rapidly to an

unacceptable level. In the TDMA environment packet loss in not an issue as shown above

over 6 experiments in which a total of 18,000 packets where sent only a single packet was

lost. In 4 CSMA experiments a total of 4,136 packets from a total of 12,000 where lost, an

average loss of 34.5%.

Every packet sent under the CSMA protocol lead to contention for the slower station

leading to a contention rate of 50%. TDMA offered a substantial improvement with contention

generally less than 15% on average. 0% was expected but performance of the TDMA protocol

was hampered due to the practical difficulties encountered in the implementation and in

particular the retention of the underlying CSMA MAC protocol.

TDMA trades off response time in favour of reliability and deterministic behavour, a late

packet is equally as bad if not worse than a lost packet. So while the response time to a request

is a function of the current slot allocation state it is bounded and known in advance. In short

in applications such as vehicle platoons[14] where timely delivery of messages is required and

where high levels of message loss are unacceptable cannot be supported by a CSMA MAC

layer. While on average TDMA has a slower response time owing to its slotted structure,

it is bounded, the time is known in advance and importantly packet loss is effectively zero.

Performance remains constant regardless of the presented load.

6.7 Timebounds in TBMAC

This set of experiments involved evaluating the time bounds of slot management functions.

The TBMAC protocol[13] specifies that the time required to request a slot and to transmit

in the subsequently allocated slot is no more than 5 * CYCLE PERIOD, where the CYCLE
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PERIOD is equal to the sum of the CP and CFP if a CP is provided or the CFP alone if the

CP is not implemented. In order to tolerate one failure of the atomic broadcast protocol the

delay between the CFP slot the request is first transmitted in and its final delivery time is

2 * CYCLE TIME. To allow for the fact a request to allocate a slot may have to wait up to

one CYCLE PERIOD before it can be sent in a CFP, a further CYCLE PERIOD will pass

before the higher level that requested the slot allocation can actually transmit its request.

Similarly for a slot deallocation the time bound is 3 * CYCLE PERIOD.

The time to allocate the slot was measured from the actual time the request to allocate a

slot was received by the slot manager and the time the slot manager notified the level above

it that the request has been successful or unsuccessful. This time was recorded for a series

of 20 slot management requests. The worst delay occurs when a station has only one slot

currently allocated to it and a request for an additional slot occurs a faction after the slot

time of the currently allocated slot begins, this forces a wait of one full CYCLE PERIOD

before the request can be broadcast.

This set of experiments concentrated on proving the time bounds detailed by the TBMAC

protocol where practically achievable. While the time bounds are achievable the probability

that they can be achieved is dependant on the configuration of the system and in particular

the expected rate of slot management requests. This is the deciding factor in the number

of atomic broadcast entries the packet header will contain. These factors are application

specific and depend in part on the level of mobility a station is likely to experience. Based on

practical experience and real world factors the upper time bound till a slot allocation should

be 3 * CYCLE PERIOD + 1 CFP SLOT TIME, this is to allow for the fact it takes a finite

amount of time to perform the slot allocation/deallocation once the request is delivered. The

overall bound of 4 * CYCLE PERIOD remains valid.

6.7.1 Results

A total of 20 requests where made, each allocation request was followed by a deallocation

request, all requests where successful and all where completed within 3 * CYCLE PERIOD.
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All stations had a consistent view of slot allocations at the end of the experiments. These

are simple experiments, the probabilities in achieving a slot allocation within the defined

bounds is application specific and is heavily influenced by the expected rate of slot man-

agement requests which is linked to the degree of mobility stations enjoy which effects the

expected rate of arrival and departure from a cell. Since this implementation supports only

a static membership this element could not be evaluated This expected rate combined with

the required probability in achieving the request begin carried out is heavily influenced by

the number of atomic broadcast requests that can be carried in the TBMAC header.

6.8 Environmental Effects

It is very difficult to classify the effect of the environment. Packet loss was not an issue in

either the office or garden location in the TDMA environment. Packet loss sees a significant

increase as contention for the medium increases in both cases, this was expected. Interestingly

packet loss reduces in CSMA as external interference increases. Due to the random nature

of the back off timer and interaction between the stations it is not possible to duplicate any

experiments.

There is a noticeable difference in the distribution of round trip times with the garden

environment showing significantly fewer outliers. The office environment as described in

6.1 has many potential sources of interference, they are of course potential and it is very

impossible to determine which are present at any one time, but clearly they have substantial

negative effect on performance. Fig 6.7 & fig 6.9 clearly show the difference in terms of

interference induced contention between the two locations.

6.9 Summary

Results are very similar to those expected, the results for CSMA where very extremely poor.

TDMA results where impressive and show the clear benefits in terms of both stable delivery

delays and virtually 0% packet loss. There is however a price to pay in terms of efficiency,
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since the underlying MAC layer is still CSMA adjustments to various parameters such as the

DIFS interval and contention windows are not possible, in a ideal situation a packet would

be dropped instantly if the medium was found active at the scheduled transmission time. By

allowing back off a domino like effect is created possibly leading to contention in the next

slot and so on.
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Chapter 7

Conculsions

An innovative approach has provided the ability to provide tight clock synchronisation in

an ad hoc environment. With only a single modification to the source code of RTAI it

was possible to provide the ability to synchronise the clocks of a number of stations to a

single designated master. Through the deployment of this clock synchronisation protocol it

was possible to deploy a TDMA MAC layer. Using this TDMA MAC layer a subset of the

TBMAC protocol was implemented.

7.1 Summary

A core element of the TBMAC protocol the contention free period, the CFP has been imple-

mented. Cristian’s atomic broadcast protocol[10] has also been implemented thus allowing

distributed agreement on slot management functions. The current implementation allows for

a static membership with one station designated as a master during the bootstrapping phase.

The other stations designated as slaves are required to preset their slot allocation tables such

that the master station is allocated global TDMA slot 0. When started slaves allocate the

master its slot and enter a listening phase. This listening phase serves a dual purpose, firstly

to await reception of slot management messages transmitted using the atomic broadcast pro-

tocol and secondly to gain clock synchronisation to the clock of the master station. After
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two full cycle periods the messages from the master are delivered on the slaves and those

slaves which have been allocated slots during the bootstrapping phase may transmit. From

this point onwards slot management becomes fully distributed and stations may request slot

allocations and deallocations as determined by the application layer above the slot manager.

Membership is static however stations may choose to leave either by deallocating all there

allocated slots through the DEALLOCATE SLOT slot management message, or by explicitly by

sending a LEAVE slot management message. Once a station has deallocated all its slots it

cannot rejoin the cell since it does not have a slot to send a request in. All slot management

requests are piggybacked on a data packet, if no data is available an empty packet known as

the NULL packet will be transmitted. There is no loss of efficiency or channel capacity doing

so since the slot is not available to any other station.

7.2 Contribution

This dissertation takes the up until now only simulated TBMAC protocol and implements it

in the real world in real-time, thus allowing the TBMAC protocol to be evaluated under real

world conditions. This is a significant departure from current and past work on MAC layers

which has almost universally relied on the results of simulations alone in evaluation[7, 12, 26,

29, 35]. True TDMA in real time in an ad hoc environment with dynamic and distributed

agreement on slot allocations has been implemented and evaluated.

TBMAC offers a contention free MAC protocol, message delivery is time bounded as are

all slot management request. There are few if any collisions, the small number of collisions

are attributable to environmental effects which are exacerbated due to the fact the TDMA

MAC protocol is implemented above the standard 802.11 CSMA MAC protocol.

7.3 Completed Work

A clock synchronisation protocol has been devised, implemented and evaluated with very

encouraging results. Master slave based TDMA was then deployed. Based on the master slave
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implementation of slot allocation a subset of the TBMAC protocol has been implemented and

evaluated. TBMAC’s performance in the real world reinforces the results of the evaluation

of the NS2 implementation presented in [13].

7.4 Future Work

Only a subset of the TBMAC protocol has been presented here, the next step would be to

implement the contention period, the CP thus allowing fully dynamic membership, once the

contention period and contention free period have been implemented inter cell communication

could be implemented, as is discussed below implementation of intercell communication has

significant technical challenges.

The current clock synchronisation protocol is simplistic yet effective it however could be

significantly improved by including some of the techniques used by NTP which smooth out

oscillations in the updates to the clock.

The primary restriction in performance is the fact that the TDMA structure is overlaid

over the CSMA/CA scheme of 802.11, in particular the inability to control or manipulate the

internal timing used by the 802.11 MAC, a frequent approach used in some recent work[29,

35, 26] is not available to us.

It was not possible to disable the CSMA exponential backoff procedure used in face

of contention this lead to a domino effect if one packet encountered what it thought to be

contention it would back off for up to 625µsec this would lead to a further contention since the

packet would still be on the medium during the next slot time. This combined with the fact

the MAC layer is implemented in software there are significant latencies and inefficiencies.

The act of transferring an outgoing packet to the wireless cards buffer memory is quite a

significant event during which the card can do no other work.

These problems could be overcome if a way was found to implement a portion is not all

of the MAC protocol in the hardware of the wireless card. Such an approach would allow the

critical elements of the TBMAC protocol such as the TDMA slot table to be implemented

74



in hardware thus virtually eliminating the majority of the latencies and non deterministic

behavour that currently exists during interaction between the wireless card and the host

computer.

A major recurring issue through this work is that of clock synchronisation and in particular

the practical difficulties in doing so in a TDMA environment as outlined in chapter 5.3. Inter

cell communication is not dealt with in the current implementation due in part to clock

synchronisation but also due to major difficulties at the physical level of the wireless card.

To act as a bridge between cells a station needs to be effectively on two networks at once. This

requires rapid alteration of the frequency channel the card uses, the current real time driver

for the card does not have an API to directly alter or query the frequency channel setting. In

addition 802.11 devices cards are not specifically designed to rapidly change frequencies. The

effect of changing frequency and in particular the latency in doing so is currently unknown.
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