
RUN-TIME DISCOVERY, SELECTION,
COMPOSITION & INVOCATION OF WEB

SERVICES USING SEMANTIC
DESCRIPTIONS

By

Colm Brady

A dissertation submitted to the University of Dublin,
Trinity College in partial fulfilment of the requirements

for the degree of

Master of Science in Computer Science.

Trinity College Dublin

September 13, 2004

DECLARATION

I declare that the work described in this dissertation is, except where otherwise stated, entirely

my own work and has not been submitted as an exercise for a degree at this or any other

university.

Signed: ____________________

Date: September 13, 2004

 i

PERMISSION TO LEND AND/OR COPY

I agree that Trinity College Library may lend or copy this dissertation upon request.

Signed: ____________________

Date: September 13, 2004

 ii

ACKNOWLEDGMENTS

The author wishes to thank the following people for contributing to this research:

Declan O’Sullivan and Dave Lewis for their guidance and tireless work on my behalf. It would

not have been possible for me to complete this work with out their support. Thank You.

Owen Conlon and Ian O’ Keeffe for their assistance while I evaluated APeLS.

Andrew Jackson who reviewed this dissertation and provided invaluable critique.

Fellow NDS class mates for their help and opinion through out the year.

And last but most importantly, to my family for their love, support and tolerance during all my

education years.

 iii

TRINITY COLLEGE DUBLIN

ABSTRACT

RUN-TIME DISCOVERY, SELECTION,
COMPOSITION & INVOCATION OF WEB

SERVICES USING SEMANTIC
DESCRIPTIONS

By Colm Brady

Web Service computing is enabled by using an architecture that provides interoperability between

disparate and diverse applications. One goal of Web Services is to facilitate inter-organisational

distributed computing using traditional protocols such as the Hyper Text Transfer Protocol (HTTP)

and the Simple Mail Transfer Protocol (SMTP). However, these web service technologies do not

provide standards for dynamically discovering, selecting candidates, composing and invoking Web

Services based on their capabilities. In effect, a human must interpret the functionality or applicability

of a web service and write some software capable of using the service or configure a generic client to

invoke the service.

Industry is currently proposing several standards which allow for software Agents to automate the

process of composing Web Services, by annotating Web Services capabilities in machine readable form

and using reasoners to reason over this information.

OWL-S is an emerging XML based mark-up language that can be used to describe the non-functional

and functional attributes of a Web Service. OWL-S provides a well defined framework for expressing

the capability of Web Services, in a platform and technology neutral representation.

This Dissertation is concerned specifically with researching the OWL-S specification for semantic

mark-up of Web Services. Of specific interest are methods and techniques to use OWL-S descriptions

for semantic discovery incorporating non-functional service attributes, candidate selection, service

composition and semantic service invocation.

 iv

TABLE OF CONTENTS

1 Introduction...1
1.1 Web Service Computing ..1
1.2 The Semantic Web..1
1.3 Semantic Web Services...2

1.3.1 E-Commerce Enrichment..2
1.4 Research Objectives..2

1.4.1 Enabling Semantic Discovery using UDDI ..3
1.4.2 Candidate Selection using Semantic Reasoning ..3
1.4.3 Enabling Service Composition ..3
1.4.4 Automating Semantic Service Invocation..4

1.5 Dissertation Road Map...4

2 Background ...6

2.1 Semantic Web ..6
2.1.1 Concepts ...7

 2.1.2 Resource Description Framework (RDF) ...8
2.1.3 Web Ontology Language (OWL)..8
2.1.4 Intentional and Extensional Knowledge..9
2.1.5 OWL Example...10
2.1.6 Enforcing Semantic Relationships ..12

2.2 Web Services..14
2.2.1 Universal Description, Discovery and Integration (UDDI)14
2.2.2 Web Service Definition Language (WSDL) ..15
2.2.3 Simple Object Access Protocol (SOAP)..15

2.3 OWL-Services (OWL-S) ..15
2.3.1 Introducing OWL-S 1.0..16
2.3.2 Service Profile Ontology ..17
2.3.3 Process Model Ontology..19
2.3.4 Service Grounding Ontology...22
2.3.5 OWL-S complementing WSDL standards ..23
2.3.6 Service Description Ontology ...23

3 State of the Art...24

3.1 Semantic Service Discovery...24
3.1.1 E-Speak ...24
3.1.2 DAML-S Matchmaker ..24
3.1.3 UDDI Enhancement ..25
3.1.4 Evaluation of Semantic Service Discovery Research ...25

3.2 Candidate Selection...25
3.2.1 DAML Dining ...25
3.2.2 Evaluation of Candidate Selection..26

3.3 Semantic Service Composition..26
3.3.1 BPEL4WS...26
3.3.2 Semi-Automatic Service Composer Tool ..26
3.3.3 Pizza and a Movie Selection and Composition...27

 v

3.3.4 Evaluation of Service Composition..27
3.4 Semantic Service Invocation..28

3.4.1 OWL-S API..28
3.4.2 Web Service Description Framework..28
3.4.3 Evaluation of Service Invocation..28

3.5 Conclusion ...29

4 Design ...30

4.1 Framework Overview...30
4.1.1 UDDI Integration for Semantic Discovery...30
4.1.2 Candidate Selection using Semantic Reasoning ..31
4.1.3 Service Composition using Capability Reasoning...31
4.1.4 Semantic Service Invocation..32

4.2 Application Description and Use Cases ..32
4.2.1 Non-Functional Service Attributes...32
4.2.2 Domain Description ...34
4.2.3 Domain Issues ...35
4.2.4 Actors & Goals ..35
4.2.5 Use Case UML...36
4.2.6 Ontologies and Semantic Descriptions ..36
4.2.7 Scenario Steps ..39
4.2.8 Use Case Deployment Architecture ...40

5 Framework Implementation ...41

5.1 Overview ..41
5.2 Assisting Technologies ...42
5.3 Custom XML Schema ..45
5.4 Capability Advertisement and Service Discovery...45

5.4.1 Publishing OWL-S Semantically in JUDDI ..45
5.4.2 UDDI Discovery ...46
5.4.3 Discovery Sequence ..46

5.5 Candidate Selection...48
5.5.1 Semantic Reasoner ..48
5.5.2 Inference Functionality...48
5.5.3 Reasoner Component Overview...50
5.5.4 Reasoner Functionality ...51
5.5.5 Reasoner Inference Thread..53
5.5.6 Candidate Priority Ordering ..53
5.5.7 Reasoner Sequence..55

5.6 Service Composition Functionality ..57
5.6.1 OWL-S Functionality..58
5.6.2 Executing a Service Composition ...59

 5.7 Automated Invocation Functionality ...60
5.8 Universal Functionality...62

6 Framework Evaluation ...64

6.1 Implementation Evaluation ...64

 vi

6.1.1 UDDI Discovery Portal ...64
6.1.2 Candidate Service Selection ...65
6.1.3 Service Composition ...65
6.1.4 Automated Service Invocation ..66
6.1.5 Discovery using Non-Functional Service Attributes ...67

6.2 Performance Tests ..68
6.2.1 Inference Overhead..68
 6.2.1.1 Inference Methods ..68
 6.2.1.2 Jena API Approach...68
 6.2.1.3 XSL Approach...69
 6.2.1.4 Inference Performance Tests ..69
 6.2.1.5 Jena Vs XSL ...69
 6.2.1.6 Jena Conclusion...70
 6.2.1.7 XSL Conclusion ..71

6.2.2 Reasoner Implementations ..72
6.2.3 Ontology Persistence Storage Tests..74

6.3 Adaptive Personalised E-Learning Service Evaluation ...75
6.3.1 XML Database constraint ..75
6.3.2 Pre-Run-time Configuration ..76
6.3.3 Scalability issues ...76
6.3.4 APeLS Builds New Knowledge ..76

7 Conclusion ...78

7.1 Research Review..78
7.1.1 Semantic Service Discovery ...78
7.1.2 Service Selection ..78
7.1.3 Semantic Service Composition..79
7.1.4 Semantic Service Invocation..79

7.2 OWL-S..79
7.3 The Bigger Picture ..80

7.3.1 Inference Overhead ..80
7.3.2 Internet Scalability ...81

 7.3.3 Semantic Tools...82
7.4 Final Remarks ..82

8 Appendix ..84

8.1 Model – View – Controller..84
8.1.1 Web Layer...84
8.1.2 Agent Control Layer ...84

8.2 HTTP Framework Control Parameters...85
8.2.1 HTTP Redirect Parameter ...86
8.2.2 HTTP Action Parameter ..86

8.3 E-Commerce System ..86

Bibliography ...87

Abbreviations ..91

 vii

LIST OF FIGURES

Number Page

Figure 2.1.1: simplistic graph representation detailing a Wine hierarchy.....................................7
Figure 2.1.2: simplistic concept for Wine. ..8
Figure 2.1.3: OWL class definition for White Wine. ..9
Figure 2.1.4: individual (instance) of the class Wine. ..10
Figure 2.1.5: OWL representation for the concept of Wine. ..11
Figure 2.1.6: how to link a concept defined in an ontology to another equivalent concept. ..12
Figure 2.1.7: how one instance of a concept can be the same as another.13
Figure 2.1.8: how to specify the “is a” relationship. ...13
Figure 2.1.9: how to group a set of different concepts that are of the same class.14
Figure 2.3.1: OWL-S service ontology model relationships. ...16
Figure 2.3.2: segment of mark-up from an example OWL-S Profile Model.............................19
Figure 2.3.3: WSDL mark-up which only describes functional parameters.20
Figure 2.3.4: Atomic Process definition containing an output and effect.21
Figure 2.3.5: definition of a Purchase Confirmation concept. ..21
Figure 2.3.6: grounding mark-up for the Atomic Process “Purchase Item”.............................23
Figure 4.1.1: component overview of the semantic framework..30
Figure 4.2.1: Use Case UML definition. ...36
Figure 4.2.2: concept ontologies relationships express in UML notation.37
Figure 4.2.3: UML representation of the Portal Ontology. ...38
Figure 4.2.4: OWL definition to denote different Quality Rating concepts..............................38
Figure 4.2.4: OWL definition to denote different Quality Rating concepts..............................38
Figure 4.2.5: high level component architecture for Portal.. ...40
Figure 5.1.1: main deployments involved in the demo application. ...41
Figure 5.2.1: OWL-S Profile Model classes..42
Figure 5.3.1: XML document segment detailing the custom format..44
Figure 5.4.1: service parameter mark-up segment from a Profile Model.46
Figure 5.4.2: class diagram showing discovery functionality. ..46
Figure 5.4.3: sequence of method calls in the discovery process. ...47
Figure 5.5.1: class diagram showing the reasoner and inference packages.48
Figure 5.5.2: details the Java code for the matching algorithm. ..49
Figure 5.5.3: class diagram showing the inference functionality. ..50
Figure 5.5.4: reasoner component overview and interaction...51
Figure 5.5.5: reasoner interface signature. ..52
Figure 5.5.6: details the Java code that controls inference execution...52
Figure 5.5.7: details the Java code for handling inference thread notification.53
Figure 5.5.8: class diagram showing a subset of the reasoner classes...54
Figure 5.5.9: class diagram showing the reasoner and inference relationship...........................55
Figure 5.5.10: sequence of messages involved in the reasoner implementation.......................56
Figure 5.5.11: sequence of message sent during the inference process......................................57
Figure 5.6.1: OWL-S functionality is realised by the OWL-S package.59
Figure 5.6.2: sequence for how the Agent invokes a composition of processes.60
Figure 5.7.1: details the Java code showing the parameter reconciliation algorithm.61
Figure 5.7.2: sequence for executing an OWL-S Process. ...62

 viii

Figure 5.8.1: class diagram showing the generic utility classes. ...63
Figure 6.2.1: Jena test results in graph format. ..70
Figure 6.6.2: XSL test results in graph format. ..71
Figure 8.1.1: class diagram sowing the Agents relationship to the client Servlet and sub

system. ..84

 ix

LIST OF TABLES

Number Page

Table 6.2.1: results for inference implementations tests ..70
Table 6.2.2: results of the second reasoner implementations tests ...72
Table 6.2.3: results of the first reasoner implementations tests ..73
Table 6.2.4: results of the persistence tests using the Jena API ..74

 x

 xi

Chapter 1

INTRODUCTION

1 Introduction

1.1 Web Service Computing

Web Service computing is enabled by using an architecture that provides interoperability between

disparate and diverse applications. Web Services are self-contained, self-describing modular applications

that can be published, located and invoked in a dynamic fashion over the Internet [5]. Web Services are

enabled by using a set of industry standard, platform neutral specifications such as Universal

Description, Discovery, and Integration (UDDI) [1], Simple Object Access Protocol (SOAP) [3] and

Web Service Description Language (WSDL) [4].

One goal of Web Services is to facilitate inter-organisational distributed computing using traditional

protocols such as the Hyper Text Transfer Protocol (HTTP) [27] and the Simple Mail Transfer

Protocol (SMTP) [28] [5]. However, these web service technologies do not provide standards for

dynamically discovering, selecting candidates, composing and invoking Web Services based on their

capabilities. In effect, a human must interpret the functionality or applicability of a web service and

write some software capable of using the service or configure a generic client to invoke the service.

This scenario is one factor in limiting interoperable and global scale distributed applications. Industry is

currently proposing several standards which allow for software Agents to automate the process of

composing Web Services, by annotating Web Services capabilities in machine readable form and using

reasoners to reason over this information.

1.2 The Semantic Web

The Semantic Web is a grand and ambitious vision for how World Wide Web content should be

structured, stored, managed and used. The Semantic Web is not a separate Web but an extension of the

current one, in which information is given well-defined meaning, better enabling computers and people

to work in cooperation. [8]. These capabilities for information expression will usher in significant new

functionality as machines become much better able to process and "understand" the data that they

merely display at present [8].

 1

1.3 Semantic Web Services

OWL-S [6] is an emerging XML [2] based mark-up language that can be used to describe the non-

functional and functional attributes of a Web Service. OWL-S provides a well defined framework for

expressing the capability of Web Services, in a platform and technology neutral representation.

This Dissertation is concerned specifically with researching the OWL-S specification for semantic

mark-up of Web Services. Of specific interest are methods and techniques to use OWL-S descriptions

for semantic discovery incorporating non-functional service attributes, candidate selection, service

composition and semantic service invocation.

1.3.1 E-Commerce Enrichment

It is also a goal to provide knowledge and feedback relating to development of an E-Commerce

semantic application, as there are still limited examples of semantically enabled Agent applications

available on the Internet. There is a requirement to promote practical applications that casual users can

benefit from and develop these applications immediately [11].

These requirements will be factored in to an experimental framework which will examine methods for

achieving this semantic functionality. The framework will be applied to an E-Commerce portal

application to showcase possible use cases for the Semantic Web.

1.4 Research Objectives

From this research, we wanted to address techniques and methods to realise an enriched E-Commerce

environment. To achieve this goal we needed to investigate the following research questions:

» How to enable semantic discovery using UDDI.
» How to undertake candidate selection using Semantic Reasoning.
» How to enable Service Composition.
» How to automate Semantic Service Invocation

Before we can discuss the research questions, we must firstly indicate the differences that exist between

functional and non-functional Web Service attributes.

Functional is this context means, attributes that are directly bound to the operation and invocation of a

Web Service. For example, an input parameter is a functional attribute, because the service needs this

value in order to function correctly.

Non-functional in this context of Web Service attributes means, characteristics of a Web Services that

are not related to its invocation and usage, but are related conceptually. An example of a non-functional

 2

attribute is a geographical location for a specific service. A user may have a requirement to invoke a

service that is located in Ireland, for example.

1.4.1 Enabling Semantic Discovery using UDDI

Current Web Service models facilitate automated discovery of services. This mechanism is purely

syntactic and does not enable capability based discovery. On delivery of query results, a human needs to

review the discovered services and evaluate the services suitability. This is a limiting factor in

automating the discovery process.

Discovery in a semantic context means finding the location of Web Services on the basis of the

capabilities that they provide [9]. Essentially, the discovery process needs to be able to find semantically

annotated Web Services that will satisfy known user requirements. These requirements will most likely

be expressed as semantic concepts.

It is an objective to formulate a method to enable semantic capability based discovery of Web Services

using an industry standard called UDDI1. We believe that Semantic Web Services will need to leverage

current Web Service standards in order for their adoption to be widespread.

1.4.2 Candidate Selection using Semantic Reasoning

A critical element to the discovery process is the ability to evaluate, rank and prioritise the discovered

services based on user requirements. Without accurate candidate selection, automation of the discovery

process is highly restricted. A method to select services based in non-functional service attributes is of

specific interest for this research.

The candidate selection process involves identifying Web Services in some priority ordering that best

satisfy a set of user preferences. This process is typically done at discovery and/or composition time. A

candidate service is classed as any service that matches any of the capabilities sought. A candidate that

meets all the users’ requirements will be ranked as the most suited candidate.

It is an objective to examine methods for providing semantic inference functionality. We believe that

performance and speed are critical factors in evaluating inference techniques.

1.4.3 Enabling Service Composition

It is conceivable that users will require multiple services to achieve their goals. There are several

emerging models for Service Composition. To date, these models have failed to address dynamic

1 Section 2.2.1

 3

composition of services at run-time. Dynamic service composition at run-time is important because the

number of compositions possible is greatly increased over and above the current static models.

Composing existing services to obtain new functionality will prove to be essential for both business-to-

business and business-to-consumer applications [10]. The service composition process selects two or

more Web Services and amalgamates them to provide new functionality. For example, a typical

composition scenario is composing an air reservation service with a hotel reservation service, to

produce a new outcome, not possible by using the services individually. In this case, an airline booking

and a hotel booking.

It is also a research objective to enable the invocation of a composition of services. This requires using

candidate service selection methods to formulate an execution plan that achieves a known semantic

encoded plan.

1.4.4 Automating Semantic Service Invocation

The final piece of the problem is that currently, it is impossible to dynamically invoke a series of Web

Services at run-time due to a lack of encoded semantic information about the functional attributes of a

service. Without this encoded knowledge the semantics of inputs and outputs can not be determined.

Semantic service invocation involves executing concrete Web Services dynamically, using the encoded

semantic metadata as an instruction set. This process involves selecting an appropriate operation to

achieve a known outcome and also dynamic reconciliation of input parameters and interpretation of

message return types.

Our final objective is to provide a service execution engine that is capable of automating the invocation

of Web Services using semantic descriptions.

1.5 Dissertation Road Map

Following this chapter, Chapter Two provides the background information relating to Web Services

and Semantic Web technologies. Chapter Three analyses the current state of the art in the discovery,

candidate selection, service composition and semantic invocation of Web Services domain. Recent

research that is related to our work is reviewed and analysed in this chapter. Chapter Four describes the

design and solution and also defines an E-Commerce use case that demonstrates the need for such

research. Chapter Five discusses the semantic OWL-S framework that is the basis for this Dissertation,

including the design rationale and implementation decisions and reasons for these decisions. Chapter

 4

Six evaluates the framework, and details our experiences. Chapter Seven concludes the findings of our

research.

 5

Chapter 2

BACKGROUND

2 Background

This chapter provides background information relating to Web Services and Semantic Web

technologies. Section 2.1 discusses the history and motivation for the Semantic Web, as well as

explaining relevant Semantic Web technologies. Section 2.2 reviews current Web Service standards and

Section 2.3 presents an overview of the main concepts of OWL-S 1.0.

2.1 Semantic Web

There has been extensive research in the area of intelligent systems that can represent human

knowledge. These systems are characterised as knowledge-based system. Description Logics are a

family of knowledge representation languages that have been studied extensively in Artificial

Intelligence over the last two decades. They are embodied in several knowledge-based systems and are

used to develop various real-life applications [24]. Description Logics is a method for representing and

ordering human knowledge in knowledge based systems [24]. Description Logics were developed out

of semantic network and frame systems. These systems arranged data in network graphs. This

arrangement allowed computer programs to traverse the graphs in different ways, using different

algorithms.

As with most network structures, a link can be characterised as a bridge from one point to another.

Each link normally connects two nodes together. Nodes are normally characterised as concepts in

Description Logics. A connecting link defines the “is a” relationship between two nodes.

 6

Figure 2.1.1: simplistic graph representation detailing a Wine hierarchy.

One of the important features of Description Logic that is evident in the Semantic Web is that

unambiguous conclusions can be ascertained from a description logic graph hierarchy. In Figure 2.1.1

we can infer that White Wine is a Wine, and Red Wine is a Wine also. This kind of relationship is

known as a subsumption relationship. The subsumption relationship is discussed in Section 2.1.5.3.

The concepts behind the Semantic Web can also be traced back to work done on Conceptual

Dependencies [40]. Conceptual Dependencies, like Description Logic express human knowledge in an

unambiguous form and was also applied to traditional models of Artificial Intelligence computing.

Conceptual Dependencies are abstract hierarchies of human concepts encoded into a computer

readable form [40]. The definition could also be applied to ontologies. Ontologies are used in the

Semantic Web framework to encode human concepts into a human readable form that can be

interpreted by a machine or Agent.

Ontologies are a specification of a conceptualization [12]. They are a description (like a formal

specification of a program) of the concepts and relationships that can exist for an Agent or a

community of Agents [12].

2.1.1 Concepts

The World Wide Web consortium2 (W3C) is an Internet task force with the goal of standardising

protocols and rules for Internet technologies. W3C standardises the majority of Semantic Web

technologies and specifications. This Section, 2.1; presents an overview of some of the W3C

specifications.

2 http://www.w3.org/ - World Wide Web Consortium Home Page

W
 the
hip ine

Red Wine White Wine

Link identifies
“is a” relations

Node defines t
pt “Wine

he
” conce

 7

2.1.2 Resource Description Framework (RDF)

The Resource Description Framework (RDF) [13] is a general ontology language in which syntax

conforms to well-formed XML. XML provides a surface syntax for structured documents, but imposes

no semantic constraints on the meaning of these documents. RDF expands XML’s Schema to allow for

this type of expression.

RDF was developed by the W3C for expressing semi-structured metadata in order to enable

knowledge-management applications. An RDF document contains its knowledge in the form of data

constructs called triples. Triples identify relationships between abstract concepts. RDF allows for the

notion of Classes and Properties. A Class is a definition of some “Thing”, where as a Property is an

attribute of a “Thing”. Uniform Resource Identifiers (URI) [26] is the glue that allows Agents to

traverse the Semantic Web. URI’s are strings that identify resources in the web [25]. Ontologies use

URI’s to reference other concepts that exist in perhaps other ontologies on some other endpoint on the

Internet. The mark-up in Figure 2.1.2 shows a simple RDF triple. It is possible to deduce from the

triple that there exists a concept called Drink, and Wine “is a” Drink.

…
<Class ID="Wine">

ource="#Drink"/> <subClassOf res
</Class>
…

Figure 2.1.2: simplistic concept for Wine.

A shortcoming of RDF, with r nability to express sophisticated

constructs, such as data-typing of properties, characteristics of properties, enumerations and usage

gy Language (OWL) is an ontology mark-up language that enables the creation of

tion of these ontologies for the description of specific Web

egards the Semantic Web is the i

constraints on concepts. These constructs allows ontology providers to encode how a concept should

be used and how a computer should represent it in memory. OWL [8] is an extension to RDF. It

addresses the RDF short comings and introduces the necessary syntax to express these kinds of

constraints.

2.1.3 Web Ontology Language (OWL)

Web Ontolo

ontologies for any domain and the instantia

Resources [6]. It extends the concepts defined in the RDF schema. OWL was initially developed by the

 8

Defense Advanced Research Projects Agency (DARPA) Group3 under the guise of DAML+OIL.

DARPA is an organisation linked to the US Department of Defence with the aim of investigating

Agent technologies, among other things. Ontology Inference Layer (OIL) was initially a European

initiative, which was merged with the DARPA Agent Mark-up Language (DAML) to form DAML-

OIL mark-up. W3C renamed DAML+OIL to OWL and standardised the OWL language in 2003.

2.1.4 Intentional and Extensional Knowledge

Within an ontologies knowledge base, there is a clear distinction between intentional knowledge and

extensible knowledge. Intentional knowledge is general terminology built using OWL declarations

about the knowledge domain. It expresses general concepts and properties. For example, in a Wine

ontology, properties like hasColour, hasFlavour and hasBody are intentional properties. The OWL

mark-up in Figure 2.1.3 shows intentional knowledge about White Wine. It states that White Wine

must have the colour White.

l:Class rdf:ID="WhiteWine">
e="Collection">

asColor" />
rce="#White" />

…
<ow
 <owl:intersectionOf rdf:parseTyp
 <owl:Class rdf:about="#Wine" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#h
 <owl:hasValue rdf:resou
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>
…

Figure 2.1.3: OWL class definition for White Wine.

Extensional knowledge oduces the notion of instances of concepts. An instance of a concept is

known as an individual Individuals assert properties and facts about an instance of a concept. The

mark-up in Figure 2.1.4 iden assigns values to the general

properties of Wine.

 intr

.

tifies St Genevieve Texas white wine, and

3 http://www.darpa.mil/ - DARPA Group Home Page

 9

hiteWine rdf:ID="StGenevieveTexasWhite">
 />

…
<W
 <locatedIn rdf:resource="#CentralTexasRegion"
 <hasMaker rdf:resource="#StGenevieve" />
 <hasSugar rdf:resource="#Dry" />
 <hasFlavor rdf:resource="#Moderate" />
 </WhiteWine>
 …

Figure 2.1.4: individual (instance) of the class Wine.

In Description Logics, intentional and extensional knowledge are referred to as TBox and ABox logic

respectively. This is analogo bject Oriented (OO) [41]

development. A class defines the semantics of a thing, almost like a blueprint. An object assigns values

The mark-up expresses a concept for “Wine”. It is not a complete definition of what Wine is and some

ut Wine have been omitted for clarity.

us to the terms Class and Object in O

to the class and is a real representation of a class type.

2.1.5 OWL Example

To help readers understand OWL syntax and mark-up, a simple example is presented in Figure 2.1.5.

important concepts abo

 10

…
<owl:Class rdf:ID="Wine">
 <rdfs:subClas k" />
 <rdfs:subClas
 <owl:Restri
 <owl:onP sFlavour" />
 <owl:car sd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restr
 </rdfs:subClas
 <rdfs:subClassOf>
 <owl:Restri
 <owl:on
 <owl:car sd;nonNegativeInteger">1</owl:cardinality>
 </owl:Restrictio
 </rdfs:subClas
 <rdfs:label xm
 <rdfs:label xml: el>
 </owl:Class>

<owl:ObjectPrope
 <rdfs:domain
 <rdfs:range rd
 </owl:ObjectPro

<!--some propert
<owl:ObjectProp
 <rdf:type rdf:res
 <rdfs:subProp
 <rdfs:range rd ineBody" />
 </owl:ObjectPro

 <owl:ObjectProp
 <rdf:type rdf:r
 <rdfs:subProp />
 <rdfs:range rd
 </owl:ObjectPro
…

sOf rdf:resource="&drink;Drin
sOf>
ction>
roperty rdf:resource="#ha

dinality rdf:datatype="&x
iction>
sOf>

ction>
Property rdf:resource="#hasBody" />
dinality rdf:datatype="&x

n>
sOf>
l:lang="en">wine</rdfs:label>

lang="fr">vin</rdfs:lab

rty rdf:ID="hasWineDescriptor">
rdf:resource="#Wine" />
f:resource="#WineDescriptor" />

perty>

ies of Wine-->
erty rdf:ID="hasBody">

ource="&owl;FunctionalProperty" />
ertyOf rdf:resource="#hasWineDescriptor" />
f:resource="#W
perty>

erty rdf:ID="hasFlavour">
esource="&owl;FunctionalProperty" />
ertyOf rdf:resource="#hasWineDescriptor"
f:resource="#WineFlavour" />
perty>

can be extracted from the mark-up is as follows. The mark

“is a” sub class of Drink. Wine has two functional4 pr

erty is similar to a realisation of the “has a” re

 the hasWineDescriptor

ou

4 Functional Property: for each instance of the property there is at most one value for the property

Figure 2.1.5: OWL representation for the concept of Wine.

The information that -up defines an OWL

class called “Wine”. Wine operties, hasFlavour

and hasBody. A prop lationship used in OO development.

The properties extend property which is in the “domain” of Wine; therefore we

can infer that hasFlav r and hasBody are also in the domain of Wine. hasFlavour must have a value of

 11

type WineFlavour an Wine is constrained

to only have one valu

It is possible for the of Wine to be replicated all over the Semantic Web. Each class of Wine can

be made distinct and separate due to a namespace typing mechanism using URI’s. Agents can decide

that the OWL class loc t the same concept as

http://nowhere/other#Wine. The Semantic Web is an attempt to share knowledge and unify concepts

guages. The concepts of both can be linked by using the <owl: equivalentClass> mark-up

perties of class Wine can also be made equivalent to properties in class Vino. Figure 2.1.6

="Wine">
lentClass rdf:resource="http://somewhere#Vino" />

</owl:Class>

d hasBody must have a type of WineBody. Each instance of

e for hasBody and one value for hasFlavour.

class

ated at http://somewhere/concept#Wine is no

for things. It is more beneficial to have only a few concepts for Wine, rather then several conflicting

definitions.

2.1.6 Enforcing Semantic Relationships

OWL allows ontology providers to link two different ontologies together through well defined

relationships. Some of the most common constructs allowing this are “equivalency”, “same as”, “sub

class of” and “all different”.

2.1.6.1 OWL Equivalency
Equivalency allows ontology providers express that two concepts are equal by intent. It allows Agents

to infer that both concepts refer to the same human concept. For example, if two ontologies exist at

different URI, one has a class “Wine” and the other has a class “Vino”. Let’s assume that these classes

are similar by nature and express the same concepts but use different naming convention, perhaps

different lan

tag. The pro

shows OWL mark-up for “equivalency”.

…
<owl:Class rdf:ID
 <owl:equiva

…

Figure 2.1.6: how to link a concept defined in an ontology to another equivalent concept.

2.1.6.2 OWL Same Individual As
An OWL instance document can be enhanced with an OWL property to indicate that it is the same as

another instance. Using the “same as” relationship allows ontology providers to bind one individual to

another individual. An individual is the term used to describe an instance of an ontology concept. This

construct would allow two individuals to be substituted for each other with out any conceptual

 difference. Figure 2.1.7 shows OWL mark-up for a “same individual as” concept.

 12

…
<WhiteWine rdf:ID="StGenevieveTexasWhite">
 <locatedIn rdf:resource="#CentralTexasRegion" />
 <h ker rdf:resource="#StGenevieve" />
 <h Sugar rdf:resource="#Dry" />
 <hasFlavor rdf:resource="#Moderate" />

s rdf:resource="http://somewhere#StGenTexW"/>

asMa
as

 <owl:sameIndividualA
 </WhiteWine>
 …

Figure 2.1.7: how one instance of a concept can be the same as another.

2.1.6.3 OWL Sub Class Of
A “sub class of” used to build

 sub class relationship is also classed under a subsumption

…
<owl:Class rdf:ID="Wine">
 fs:subClassOf rdf:resource="http://somewhere#Drink" />
</o
…

relationship is an expression of classic inheritance. This construct can be

hierarchies of human concepts. A

relationship. Subsumption can be seen as the determination of sub concept and super concept

relationships between concepts of a given terminology [24]. An example of a sub class relationship is

the notion that Wine “is a” Drink. Figure 2.1.8 shows some example mark-up for an OWL

subsumption relationship.

 <rd
wl:Class>

Figure 2.1.8: how to specify the “is a” relationship.

2.1.6.4 OWL Al
Using the OWL fferent. This

is useful for enfo t that an individual may be of the same type, but the concept it refers

to is totally diffe to the any other concept of the same type. The example in Figure 2.1.9 enforces

that real world fact that Wine has distinct colours which are not the same conceptually.

l Different
“All Different” construct one can assert that a group of individuals are di

rcing the concep

rent

 13

…
<owl:AllDifferent>
 <owl:distinctMembers rdf:parseType="Collection">
 <wine: ineColor rdf:about="#Red" />
 ine:WineColor rdf:about="#White" />
 "#Rose" />
 </
 <
…

W
 <w
 <wine:WineColor rdf:about=

owl:distinctMembers>
/owl:AllDifferent>

Figure 2.1.9: how to group a set of different concepts that are of the same class.

2.2 Web Services

Web Services are self-contained, self-describing modular applications that can be published, located and

n over the Internet. Web Services can be local, distributed or Web-based.

g traditional

protocols such as HTTP and SMTP. By using such protocols, company firewalls can be negated

through the use well known open ports. This allows services that are initially unaware of each others

existence; invoke remote messages on each other.

Typically, Web Services are end points to business services and advertise their functionality using

WSDL5 mark-up [5].

2.2.1 Universal Description, Discovery and Integration (UDDI)

Universal Description, Discovery, and Integration, (UDDI) is a specification that defines a service

registry of available Web Services, serving as a global electronic “yellow pages” for business services.

It is intended to allow companies to advertise and publish a description of their business/service to a

directory. Businesses that register with a UDDI server are known as service providers. Service

requesters use the service registry to discover a service provider for obtaining arbitrary goods or

services. UDDI defines data-types that abstract the concept of a business and a service. It is therefore

possible for any class of service to register their business and provide a way for electronic clients to

connect to and use the advertised services.

invoked in a dynamic fashio

They interact with and/or invoke each other, fulfilling specific tasks and requests that, in turn, carry out

specific parts of complex transactions or workflows [5].

One goal of Web Services is to facilitate inter-organisational distributed computing usin

5 Defined in Section 2.2.2

 14

Classification systems exist in UDDI registries to allow business to be associated with classes of

organizations. UDDI sed as a method for publishing and finding service descriptions [5]. As with

most new w echnologies, a custom XML schema is used to communicate with a UDDI registry.

This means t I is technology neutral, and can be implemented in any programming

language. Most d can therefore leverage the open

architecture n

2.2.2 Web S

WSDL is an chema for describing the operational information of a Web

Service such as i points. WSDL defines XML grammar for describing contracts

between a se endpoints exchanging messages. Contracts provide documentation for distributed

systems and serve munication [5].

WSDL is somewhat comparable to IDL [36] [42] in its description of methods; argument types and

return values, in that it describes the implementation details for clients who want to talk to the service.

crosoft, IBM, Sun, Oracle and BEA have

incorporated WSDL into their tool sets and technology standards, as well as a healthy proportion of

ransport technology, Simple Object Access Protocol

(SOAP). SOAP is a model of using simple request and response messages written in XML as the basic

mechanism, but it can be used for the exchange of any kind of XML information

s concepts that can be used to describe a Web Service such that humans and

 is u

eb t

hat like SOAP, UDD

 UDDI servers are exposed as Web Services an

ature of SOAP Services.

ervice Definition Language (WSDL)

 XML-based specification s

nterface and end

t of

as a recipe for automating the details involved in applications com

Using WSDL, Web Services can be enabled to access and invoke remote applications and databases [5].

WSDL has recently become wide spread in its use. There are several tools that can automate the

creation of WSDL documents, and it has proven to be a very robust and descriptive deployment

mechanism. Major vendors of technologies like Mi

open source vendors.

2.2.3 Simple Object Access Protocol (SOAP)

The glue that makes Web Services a reality it the t

protocol for electronic communication. SOAP messaging is often modelled as a platform-neutral

remote procedure call

[5].

Any server or client can theoretically interpret the XML message and process a SOAP messages

payload. SOAP messages can also be transported across networks using standard protocols like HTTP

and SMTP, so no object level transport mechanisms like RMI [37] or CORBA [36] need to be used.

2.3 OWL-Services (OWL-S)

OWL-Services (OWL-S) [6] is an ontology defined specifically for marking up Web-Services

semantically. It define

 15

computers can reason over the description. It is a DARPA inspired mark-up language built using OWL

syntax.

2.3.1 Introducing OWL-S 1.0

per also discusses the motivation for developing OWL-S and

what areas of the specification are yet to be defined. There are three main ontologies defined in OWL-S

 process model and the service grounding.

2.3.2, 2.3.3 and 2.3.4.

ce abstraction has a ServiceProfile element as an attribute. Figure 2.3.1 shows a

diagrammatic overview of the OWL-S ontology hierarchy and how they inter-relate.

During the time period this Dissertation was being researched, OWL-S 1.0 was the latest release of the

OWL-S specification [6]. The specification6 is a good starting point in understanding what the

motivation for OWL-S is. This specification document was formulated by the OWL Services coalition

(formulary the DAML Services coalition). The coalition’s publications detail the current state of

development for the OWL-S specification. It is currently at version 1.1, but 1.1 features were not

examined during this research. The pa

specification [6]. They are called the service profile, the

OWL-S simply provides a mechanism and mark-up language for expressing human knowledge about a

Web Service. This knowledge describes non-functional and functional attributes about a Web Service.

An organisation or developer that adopts OWL-S to mark-up Web Services is obliged to provide four

OWL ontologies to complete an OWL-S service. These ontologies are normally located at separate

URI’s but can also be defined in the same ontology. Three of the user defined ontologies expand on

concepts defined in the core OWL-S specification. These core ontologies are defined in the Sections

The OWL-S specification will be the basis for designing any beta OWL-S API because it defines the

main elements in the OWL-S specification and what the concerns should be. It also blueprints the

relationships between them, for example; it states that a Service “presents” a ServiceProfile which

indicates that the Servi

6 Available to download at http://www.daml.org/service

 16

Figure 2.3.1: OWL-S service ontology model relationships.

2.3.2 Service Profile Ontology

The service profile ontology defines the core concepts for advertising and classifying an OWL-S service

[6]. An OWL-S service provider typically defines custom profile ontologies, specific to a Web Services

domain. The service provider’s ontology uses and expands the concepts defined in the DARPA service

profile ontology to ensure it type conforms to the specification.

The profile ontology is consulted primarily to establish what type of services a particular OWL-S

ontology offers and under what industrial classification it is classed under. The profile ontology answers

the question “What does this service offer me?” Essentially, a Web Services functional and non-

functional attributes are advertised in the profile model. The service profile model also advertises its

functional inputs, outputs, preconditions and effects (IOPE) that an Agent needs to know about.

Inputs are conceptual definitions for parameters that a concrete service needs as input in order to be

invoked. Outputs are return data values that are returned from Web Services. Effects are conceptual

As well as IOPE, the service profile can also be consulted to look up contact information for human

beings or physical locations that have some relevance to the service. A name and also a human readable

description of the service are normally provided in the profile model also.

Advertising services in this context of a profile model means, expressing the real world functionality of

implistically, semantic concepts. For example, a profile

concepts that relate to real-world things. Outputs values may trigger an effect in the real world; this

effect can be conceptualised using OWL constructs. Preconditions have only being sufficiently defined

in OWL 1.1 [43] and therefore will not be in scope of this Dissertation. These functional attributes are

defined in the process model, a description of which follows in Section 2.3.3. Collectively, they are

normally referred to as IOPE.

a Web Service with OWL concepts; or more s

 17

model defined in an OWL-S service may contain information that it outputs weather forecasts, o

rhaps that it is a currency converter service. The concepts for what weather is or what currency

may exist in some other ontology repository. But, using this embedded knowledge; software Agents can

cide whether or not a service is suitable for achieving their goals.

The process of classifying a service in relation to the profile model is, binding a service to a specif

third party service category. Again, Agents can determine if the service uses an industrial classificati

mechanism. Typically, a separate ontology will define the semantics of the Web Services domai

fining what the domain is or industry category

r

pe is

de

ic

on

n,

de s.

Figure 2.3.2 shows a mark-up segment from an OWL-S Profile Model used to annotate an E-

 inferred from this mark-up that the service is categorised under the

ine these concepts and upon further

7 it operates in and other useful concept

Commerce Web Service. It can be

NAICS classification schema as a Business to Consumer (B2C) E-Commerce trader. The service

advertises that it is an E-Commerce Service and also that its currency type is Euro. The service also

exhibits the real world effects of “Browsing a product inventory” and “Confirmation of Purchase”, two

concepts associated with B2C E-Commerce. An Agent can exam

reasoning, it is possible to deduce that this Web Service is a B2C E-Commerce Web Service that

supports browsing and purchasing of items.

7 Perhaps NASIC or UNSPSC Classification Schemes

 18

…
<profile:serviceCategory>
 <profile:NAICS rdf:ID="NAICS-category">
 <profile:name>E-Commerce</profile:name>
 <profile:value>Business to Consumer retail sales Internet sites</profile:value>

 <profile:serviceParameterName>E-

<profile:hasEffect rdf:resource="&pm_file;#PurchaseItems"/>
<profile:hasEffect rdf:resource="&pm_file;#BrowseInventoryOfProducts"/>
…

 <profile:code>454111</profile:code>
 <profile:taxonomy>NAICS</profile:taxonomy>
 </profile:NAICS>
</profile:serviceCategory>

<profile:serviceParameter>
 <concepts:E-CommerceService rdf:ID="E-CommerceService">

CommerceService</profile:serviceParameterName>
 <concepts:taxonomy
rdf:resource="&concepts;#http://someplace/ont/Wine.xml#Wine"/>
 </concepts:E-CommerceService>
</profile:serviceParameter>

<profile:serviceParameter>
 <concepts:Currency rdf:ID="EStore-currencyType">
 <profile:serviceParameterName>Currency Type</profile:serviceParameterName>
 <concepts:currency rdf:resource="&concepts;#EuroCurrency"/>
 </concepts:Currency>
</profile:serviceParameter>

Figure 2.3.2: segment of mark-up from an example OWL-S Profile Model.

2.3.3 Process Model Ontology

The process model ontology defines the concepts that abstract how a service is intended to be used.

Service Providers mark-up custom process model ontologies that give Agents rules and instructions for

using the services advertised in the profile model. The process model answers the question “How can I

use this service in the correct, prescribed manner?”

The Service Process Model is concerned with how the service can and should be processed, specifically

in what order. The class ProcessModel defined by DARPA [6] provides generic constructs and

structures that aid in the composition of services. For example, an Agent can understand (by consulting

a process model) what inputs a collection of services needs and in what order or sequence a service is

meant to be processed to ensure it is operated correctly.

 19

There are three types of processes that can be included in a process model description. These are

Atomic processes, which have no sub-processes and operate in a single step [6], Composite processes

which are decomposab to sub-processes whose operations are controlled via control structures [6]

and finally Simple Pro ocable, but intended to act as an abstraction or

specialisation of some o

The process model gen service. The

process model is entitl gies to represent web service

parameters. These conc SDL, parameters can

only be defined using X limits the typing of parameters to such primitive values

as Booleans, Strings, In WL concepts, data types can be represented in

richer, more descriptive ways. Figure 2.3.3 shows WSDL mark-up for a “purchase item” operation,

compare this to Figure e operation marked up using OWL-S but with the

functional parameters re

…
<wsdl:message na
 <wsdl:part nam oolean"/>
 </wsdl:message>

<wsdl:message name="purchaseItemRequest">
 <wsdl:part name="itemId" type="xsd:int"/>
 <wsdl:part n "/>
 </wsdl:message>

<wsdl:operation n ount">
 <wsdl:input m chaseItemRequest"/>
 <wsdl:output m e"/>

 </wsdl:operation>
…

le in

cesses, which are not inv

ther process.

erally provides semantic descriptions for the input parameters of a

ed to use OWL constructs defined in ontolo

epts can be as simplistic or complex as desired. Using W

SD [44] data types. This

tegers and others. By using O

 2.3.4 which shows the sam

presented as concepts rather then XSD data types.

me="purchaseItemResponse">
e="purchaseItemReturn" type="xsd:b

ame="amount" type="xsd:int

ame="purchaseItem" parameterOrder="itemId am
essage="impl:purchaseItemRequest" name="pur
essage="impl:purchaseItemResponse" name="purchaseItemRespons

ure 2.3.3: WSDL mark-up which o

 an OWL-S Atomic process, which outputs a

” which is defined in some other ontology and is show

Fig nly describes functional parameters.

Figure 2.3.3 defines semantic type,

“PurchaseConfirmation n in Figure 2.3.4. The

functional attributes of the operation is given some semantic meaning.

 20

…
<process:UnConditionalOutput rdf:ID="purchaseItem_Output">
 <process:parameterType rdf:resource="&
</process:UnConditionalOutput>

my_concepts;#PurchaseConfirmation" />

<process:Input rdf:ID="purchaseItem_itemId_IN">

urce="# ShippingID_Effect "/>
</process:AtomicProcess>
…

<process:UnConditionalEffect rdf:ID="ShippingID_Effect">
 <process:ceEffect rdf:resource="&my_concepts;#ShippingID"/>
</process:UnConditionalEffect>

<process:Input rdf:ID="purchaseItem_ammount_IN">
 <process:parameterType rdf:resource="&my_concepts;#ItemAmount" />
</process:Input>

 <process:parameterType rdf:resource="&product;#UniqueId" />
</process:Input>

<process:AtomicProcess rdf:ID="Operation_purchaseItem">
 <process:hasInput rdf:resource="# purchaseItem_ammount_IN"/>
 <process:hasInput rdf:resource="# purchaseItem_itemId_IN"/>
 <process:hasOutput rdf:resource="# purchaseItem _Output"/>
 <process:hasEffect rdf:reso

Figure 2.3.4: Atomic Process definition containing an output and effect.

Figure 2.3.5 details the OWL class for PurchaseConfirmation. It also defines a data type property

associated with the class and constrained to the XSD type Boolean.

…
<owl:Class rdf:ID="PurchaseConfirmation"/>

 <owl:DatatypeProperty rdf:ID="hasConfirmation">
 <rdfs:range rdf:resource="&xsd;boolean"/>
 <rdfs:domain rdf:resource="#PurchaseConfirmation"/>
 <rdfs:comment>has true if confirmation exists</rdfs:comment>

 </owl:DatatypeProperty>
…

ent can evaluate and reason over what a “Purch

xists in its run-time environment coupled with th

 an Agent to infer that this service is perhaps appr

Figure 2.3.5: definition of a Purchase Confirmation concept.

An Ag aseConfirmation” concept is, by using knowledge

that e e OWL concept defined in some ontology. This

allows opriate to meet its objectives.

 21

A goo nderstanding the motivation for the process model is to think of it as well

struct ed instructions for some arbitrary item, maybe a car owner’s manual. The “item” represents the

web s process, and are “well

struct

2.3.4 Service Groun

The cl ServiceGrounding defines concepts that can be used to map an OWL-S abstraction of a

service to a concrete alisation of a service. The OWL-S specification defines a grounding ontology as

one which specifies at message formats

to use and what protocols are expected. A grounding ontology can answer the question “Where and in

urchaseItem” defined in Figure

2.3.4.

d metaphor for u

ur

ervice. The “instructions” are analogous to the rules for operating a

ured”, because there is almost always a finite way to use a certain item.

ding Ontology

ass

re

the details of how to access a service [6]. The details include wh

what way (protocol) do I communicate with this service”. The class ServiceGrounding allows OWL-S

to remain technology independent and concentrate on generic concepts rather then concrete guidelines.

Figure 2.3.6 shows the grounding mark-up for the Atomic Process “p

 22

…
<grounding:WsdlAtomicProcessGrounding rdf:ID="WSDL_purchaseItem">
 grounding:owlsProcess rdf:resource="&pm_file;#purchaseItem"/>
 grounding:wsdlDocument>&wsdl;</grounding:wsdlDocument>

 wsdl; #purchaseItem</grounding:operation>

 </grounding:wsdlOperation>
 :wsdlInputMessage>&wsdl;#purchaseItemRequest</grounding:wsdlInputMessage>
<

 mount_IN"/>
 >&wsdl;#ammount</grounding:wsdlMessagePart>

 purchaseItem_itemId_IN"/>

< tMessageParts>

<grounding:wsdlOutputMessage>&wsdl;#purchaseItemResponse</grounding:wsdlOutputMessage>
 ollection">

 _OUT"/>

 ding:wsdlMessagePart>
 </grounding:WsdlMessageMap>
 </grounding:wsdlOutputMessageParts>

 wsdl-20010315

</grounding:Ws
…

 <
 <
 <grounding:wsdlOperation>

 <grounding:WsdlOperationRef>
 <grounding:portType>&wsdl;#EStore</grounding:portType>
 <grounding:operation>&

 </grounding:WsdlOperationRef>

 <grounding
grounding:wsdlInputMessageParts rdf:parseType="Collection">
 <grounding:WsdlMessageMap>
 <grounding:owlsParameter rdf:resource="&pm_file;#purchaseItem_am
 <grounding:wsdlMessagePart
 </grounding:WsdlMessageMap>

 <grounding:WsdlMessageMap>
 <grounding:owlsParameter rdf:resource="&pm_file;#
 <grounding:wsdlMessagePart>&wsdl;#itemId</grounding:wsdlMessagePart>
 </grounding:WsdlMessageMap>
/grounding:wsdlInpu

 <grounding:wsdlOutputMessageParts rdf:parseType="C
 <grounding:WsdlMessageMap>
 <grounding:owlsParameter rdf:resource="&pm_file;#purchaseItem
 <grounding:wsdlMessagePart>&wsdl;#purchaseItemReturn
 </groun

 <grounding:wsdlReference>http://www.w3.org/TR/2001/NOTE-
 </grounding:wsdlReference>

dlAtomicProcessGrounding>

Figure 2.3.6: grounding mark-up for the Atomic Process “Purchase Item”.

2.3.5 OWL-S complementing WSDL standards

Another key strength o WL-S is that it can utilise industry standards, namely WSDL [6]. This is an

important link to allo gies, while allowing

legacy systems to be integrated. Other XML based standards could also be incorporated due to the fact

The final ontol gy necessary to compose an OWL-S service is a Service Description. The service

description is ess lly an entry point into a specific OWL-S ontologies collection. A Service

Description can h ually provide URI locations for where

the profile, process and grounding models exist for the service.

f O

w OWL-S conform to existing industry standards and technolo

that the Service Grounding class is not constrained by any particular technology.

2.3.6 Service Description Ontology

o

entia

ave one or many services defined, that individ

 23

Chapter 3

3 State of the Ar

Currently the most e areas of research in the Semantic Web Service domain8 are service invocation,

planning and re ponse interpretation using process descriptions, protocol interpretation and execution,

semantic translation and mediation between processes, candidate service identification and selection,

automated process composition, process status tracking, failure semantics, ontology creation,

bjectives of our research it

ring in its current state. There is currently no support for Semantic Matching of keywords in E-

speak [18].

3.1.2 DAML-S Matchmaker

The DAML-S Matchmaker is a semantically enhanced UDDI registry [22]. It extends the UDDI

specification to facilitate its goals [9]. The matchmaker allows service providers to publish OWL-S

ontologies semantically into the registry by using the OWL-S ontologies Profile Model to express its

STATE OF THE ART

t

 activ

s

management and access; trusted reputation services, inter-service negotiation and possibly the most

important ambiguity, security, including identification, authentication, and policy based authorization

[15].

The state of the art is focused on reviewing research efforts underway elsewhere which partially address

our research objectives defined in Section 1.4, but not all of them in entirety. The format of each sub-

section is as follows; firstly we will provide an overview of each research efforts aims. We will conclude

each sub-section by evaluating what the merits of the research are and what o

does not address.

3.1 Semantic Service Discovery

3.1.1 E-Speak

The E-speak model was one of the first service architectures proposed. It was developed by Hewlett-

Packard [18]. E-speak and UDDI both have complimentary goals, as they both allow the advertisement

and discovery of services. E-speck acts as a portal for discovering E-speak services using keywords

searches. E-speak concepts are not as inter-operable as UDDI, because it needs an E-speak engine to

be running on all client machines. Moreover the E-speak model does not facilitate execution

monito

8 Listed in no particular order

 24

capabilities [9]. The matchmaker aims to improve the service discovery process by allowing location of

services based on thei capabilities [10]. Inference is used to select UDDI entries that have a

subsumption relationship a certain request parameter.

3.1.3 UDDI Enhanceme

Akkiraju et al. [48] [49] hav enhance UDDI to support capability searches.

This work aolucci et al [9]. They propose an extension to the UDDI

inquiry API specificatio Secondly,

the service discovery c performing semantic matching and

automatic ser Finally, it is proposed that these service

compositions should be presen ection 3.3.1.

3.1.4 Evaluation of Se

E-Speak currently does capability based queries and thus, fails to enable our research

objectives for semantic installing proprietary software in order for an

E-Speak engine to be u a limitation for examining semantic discovery

mechanisms.

The DAML-S Matchm osed solutions to enable semantic discovery

through the extension o UDDI specification. Both efforts do provide a mechanism to semantically

discover Web Services nology we decided to use. Because of this

research’s maturity, we anch of research that did not seek to extend

UDDI, thus maintaining the op ethos of the Semantic Web.

3.2 Candidate Selectio

3.2.1 DAML Dining

DAML dining [23] is a semantically enabled web tool that allows users to search a DAML ontology

repository. This reposito is tool

is analogous to a seman sers to interact

and select attributes for formation that exists in OWL/DAML

ontologies.

This application is also n service, or

sell any tangible goods. I ontologies could benefit from

such an application by a incorporated in the dining application.

This could extend the application to facilitate on-line bookings and perhaps take-away services. There

r

 to

nt

e also proposed models to

 extends the findings proposed by P

n to enable requesters to specify the required capabilities of a service.

apabilities of UDDI are enhanced by

g algorithms [48].vice composition using plannin

ted in BPEL4WS, described in S

mantic Service Discovery Research

 not facilitate

discovery. E-Speak also involves

sed effectively; We regard this as

aker and Akkiraju et al. have prop

f the

and are based on UDDI, a tech

wished to follow an alternative br

en

n

ry contains ontologies that describe the characteristics of restaurants. Th

tic search portal. It is of interest to this research, as it allows u

 search criteria that are compared to in

in the domain of E-Commerce, but does not offer any reservatio

t is obvious from this scenario how OWL-S

llowing Web Service technologies to be

 25

are no details on the im o be seen as

a showcase technology de

3.2.2 Evaluation of Candidate Selection

DAML Dining is not rvice orientated; this research however does address the area of candidate

selection using know g, it is not related to

the Web Service domain and thus fails to fully satisfy our research objectives described in Section 1.4.

ng the interactions of

ion of workflow modelling [17]. Workflow in BPEL4WS is

ts to choreograph the planning and

protocol interpretations in the Web Services domain.

BPEL4WS focuses on representing composit ll of the process and the bindings between

services are known a priori. A more challenging problem is to compose services dynamically, on

demand [6]. OWL-S intent is to use ents with the semantic knowledge

necessary to dynamically discover and evaluate Web Services, BPEL4WS is more aligned to deployment

er it is clear that BPEL4WS and OWL-S have broad and similar objectives

emi-Automatic Service Composer Tool

Siren et al. have developed a semi-automatic web service composer [10]. This tool allows a user to

control the selection of OWL-S annotated services and provides WSDL invocation capabilities. The

figured and it is not the goal of the tool to discover services. The composer is

plementation of this tool, or its accuracy or success. It is intended t

mo.

se

ledge encoded in ontologies. Although the research is promisin

3.3 Semantic Service Composition

3.3.1 BPEL4WS

The Business Process Execution Language for Web Services (BPEL4WS) [16] specification was co-

authored by IBM, Microsoft and BEA. It supersedes work done by Microsoft on XLANG and also

IBM’s Web Service Flow Language (WSFL). It provides a notation for describi

Web Services, following in the tradit

directed by traditional control structures like if, then, else; and while-loop. Services are integrated by

treating them as partners that fill roles in a BPEL4WS process model. WSDL is used to notate the

functional attributes of a web service. A process model, in BPEL4WS describes a workflow that

orchestrates the interaction of the service partners. It attemp

ions where a

 ontologies to provide Ag

time composition. Howev

[10].

Essentially BPEL4WS provides a language for the formal specification of business processes and

business interaction protocols. BPEL4WS defines an interoperable integration model that should

facilitate the expansion of automated process integration both in the intra-corporate and the business-

to-business spaces. [16]

3.3.2 S

services used are pre-con

 26

capable of reading DAML-S descriptions and presents the service attributes to a user as a list. This

allows the user to filter this list using the ontological information encoded in service descriptions,

effectively to select a candidate service. The user can create a composition by choosing a service to

supply the input of another service [10].

3.3.3 Pizza and a Movie Selection and Composition

s to help enrich applications in the E-Commerce domain [10] [46].

poses an evening organisation service, whose design is presented together with its

nctional requirements. It presents the potential of advanced Web Services through the case

study [20]. In this case, the user wants to find a pizza restaurant in the San Francisco area and also a

terwards, including the relevant transport to and from the locations.

inal confirmation to proceed. The services

theoretically, will be invoked depending on the users signal and the outcome of this process is once

 any service fails to complete the user can be asked for further input or

eb Services using OWL-S but is not

One future use case for OWL-S i

Dale et al. pro

reasoning flow [20]. This service is actually a collection of smaller programs, which are Web accessible

and composed together to form the evening organizer. [20]. DAML-S is used to annotate how this

composition should work.

The motivation for this example was to demonstrate how a user (customer) could benefit from having

an intelligent Agent compose and invoke Web Services on the customer’s behalf that meet the

customer fu

showing of a Sci-Fi movie for af

The scenario starts by asking the customer to fill out a template form which guides the user to a

Restaurant and Shows template. The answers supplied to these questions are used to formulate a user

profile; which the Agent will analyze when deciding which service to select for invocation. An event

organiser component then returns a completed itinerary to the Agent [20]. The Agent, in turn will

present the itinerary back to the user, asking for a f

again presented to the user. If

perhaps the reasoning engine can suggest an alternative. This process will continue until the user is

satisfied with the Agents work.

3.3.4 Evaluation of Service Composition

BPEL4WS is an elegant solution to Web Service composition, but fails to address our research

objective of achieving composition at run-time.

Siren et al. research supports composition and invocation of W

intended to facilitate discovery, and as such does not answer our research objectives in entirety. The

research identifies the need for Agents to be aware of what is needed as input into services and to

 27

dynamically compose several services together to achieve a goal. It uses simplistic planning techniques

to formalise a composition.

osition. It does not use profile model

attributes to aid service selection. This means that non-functional service attributes are not used in the

ese are intended to be defined in the a Profile Model instance. It provides no

e identification and selection is achieved.

 to enable the invocation of OWL-S annotated Web Services using the SOAP protocol.

The API can be used to parse an OWL-S ontology into memory and provides interfaces to access the

ient to invoke a service based solely on a shared ontology, i.e. without

prior knowledge on a specific API. WSDF requires client and server to provide a mapping from the

tology at design-time. This research states that OWL-S

3.4.3 Evaluation of Service Invocation

mated invocation, as a programmer must write some client code

 and reconcile data-types.

The Pizza and a Movie research does not incorporate semantic discovery methods for Web Services,

and as such does not answer our research objectives in entirety. However, the research is a good E-

Commerce composition scenario. It focuses purely on enabling composition using semantic concepts

defined in Process Model instances. This composition is partly achieved by employing static

composition methods, but using OWL-S to describe a comp

composition process, as th

details on how candidat

3.4 Semantic Service Invocation

3.4.1 OWL-S API

Currently, the most comprehensive OWL-S API has been released by Mindswap9. This API provides

functionality

OWL-S data structures defined in the OWL-S specification.

3.4.2 Web Service Description Framework

Eberhart proposes using the Web Service Description Framework (WSDF) to provide both a

representation mechanism and run-time system architecture for semantically enriched Web Services

[63]. The approach allows a cl

local structures to some common domain on

does not currently address such issues as relationships between parameters, result processing and

shared data-type mediation [63].

The OWL-S API does not enable auto

to load parameters

While some of Eberhart’s critique has merit, OWL-S is still an emerging standard and deficiencies with

the invocation processes will likely be resolved in later OWL-S versions, by introducing a technique to

9 http://www.mindswap.org/ - Mindswap Home Page

 28

express a more elaborate representation of knowledge, perhaps using an OWL based rule language.

Eberhart’s research does not incorporate OWL-S and will not be evaluated further in this research.

3.5 Conclusion

In this chapter, we have profiled a selection of research efforts that in its entirety, encompasses our

research objectives. We have shown that for every research effort profiled, no single one completely

addresses all of our research objectives outlined in Section 1.4 completely. We believe however, that the

research contained in this dissertation has merit in aiding the semantic discovery, candidate selection,

semantic composition and invocation of Web Services domain.

 29

Chapter 4

DESIGN

4 Design

To facilitate the research objectives defined in Section 1.4 a framework providing semantic discovery,

candidate selection, service composition and invocation is proposed. Our framework can be used as the

building block for semantically enabled applications. Our framework’s capabilities are described in

Section 4.1. An E-Commerce use case is proposed in Section 4.2 which demonstrates the need for this

kind of semantic framework.

4.1 Framework Overview

Figure 4.1.1 shows a component overview of the semantic framework. The main components are a

semantic discovery service, candidate selection service, composition service and an invocation service.

re 4.1.1: component overview of the semantic framework.

gistry.

The solution used in this framework was to register the Access Point10 of a UDDI Service entry to map

to the URI of the OWL-S Service ontology. Identifying names for OWL concepts were extracted from

Figu

4.1.1 UDDI Integration for Semantic Discovery

Current Web Services technology based on UDDI and WSDL does not make any use of semantic

information and therefore fails to address the problem of matching between capabilities of services and

allowing service location on the basis of what functionalities are sought, failing therefore to address the

problem of locating web services [9]. Using descriptive keywords and business names are the only

means of currently searching a UDDI registry. To facilitate a capability search on a UDDI registry, the

semantics of an OWL-S service need to be mapped to a UDDI re

10 Abstract data type used to provide a method for a client to contact to a Business Service.

 30

the Service Profile model and used as keyword descriptions for the Service. For example, if an OWL-S

ogy is classified under an “E-Commerce” ontological concept, “E-Commerce” will

r the service is validated to check whether

or not it is an OWL-S Ontology. If it is an ontology, then its capabilities are examined to check whether

e user’s requirements is returned first. This process allows an Agent to

identify Web Services and processes that best match the user’s goal.

ds to be able to dynamically assemble an execution plan

capable of achieving a user’s goal. This kind of assembly and orchestration of services is commonly

ion functionality is reliant also on automated invocation of services described in

akes it possible to plan an order for

service invocation.

The framework facilitates a simplistic model of composition. No consideration for service monitoring,

transactional characteristics or security has been factored into this solution.

Service Profile ontol

be extracted and used as a descriptive keyword.

Using a pre-defined keyword search, businesses entries will be returned that have matching descriptive

keywords. For each service returned, the Access Point URI fo

it conforms to the Agents requirements.

4.1.2 Candidate Selection using Semantic Reasoning

To provide service identification based on capabilities, a reasoner component was developed to

facilitate semantic inference of OWL concepts. The reasoner is used in this context to match a set of

non-functional or functional user requirements against the discovered OWL-S services. The output of

the reasoning process is a candidate priority queue of OWL-S services. The service which registers the

most semantic matches against th

4.1.3 Service Composition using Capability Reasoning

To achieve service composition an Agent nee

known as choreographing services. To achieve this functionality, an Agent must identify services whose

capabilities match the user’s goals to some degree. This can be achieved at run-time by using the

candidate service selection functionality described in Section 4.1.2. Effectively, an Agent needs to

assemble a collection of services that are capable of fulfilling user requirements.

Service Composit

Section 4.1.4. An Agent cannot compose a set of services if it does not have the required information

and logic to use them. By examining the IOPE’s of the composed service prior to execution, it is

possible to predict whether an Agent can supply the required data to successfully invoke the services. It

is possible to identify this fact by consulting an OWL-S Process Model. Outputs from one service may

be suitable inputs to another service. This kind of deduction m

 31

4.1.4 Semantic Service Invocation

The framework automates service invocation the services OWL-S Process Model. Using

the Process Model, Web Service functionality can be dynamically invoked by matching a user’s goal to

the IOPE as expressed in the Profile Model. F n, the OWL-S process that best provides the

user’s goal is selected and invoked. Input parameter types are dynamically reconciled, based on

user input values and attributes to semantic concepts. These semantic concepts are

4.2 Application Description and Use Cases

ramework can be applied, an E-Commerce application was built. This

The portal was built using the functionality provided by the framework components described in

ounded into a UDDI registry and the discovery

to identify candidate services.

Section 4.2.1 identifies these non-functional service attributes.

The importance of any non-functional attribute will depend on what the user deems as important for

their means ant to them then the

by consulting

or invocatio

converting

compared to the selected processes inputs to try and find a suitable candidate. If all parameters can be

set, the OWL-S Grounding is used to invoke a SOAP message on the Web Service.

If the Web Service returns an output the Agent will interpret the appropriate response. This may

involve further user input, or perhaps further invocation.

To demonstrate how the f

application demonstrates the benefits that semantic applications could realise for Internet users. The

application domain was an E-Commerce Portal B2C Website.

The portal scenario revolves around a web site that enables users locate, search and purchase fictional

products from different virtual E-Stores. An assumption made by this example is that vendors have

subscribed to the portals notion of the world, and are a satisfied with their semantic representation. It is

possible to link in other ontologies, but some semantic bridge would need to be defined between the

new and old ontologies to render them compatible.

Section 4.1. Fictional E-Commerce Services were gr

component was used to dynamically discover these entries. The candidate selection component was

used to identify suitable candidate services. It was also used as a generic OWL reasoner for inference.

Finally, the invocation service provided functionality to allow automated invocation of the Portals Web

Services.

As stated in Section 1.4, non-functional service attributes were used

4.2.1 Non-Functional Service Attributes

. Some users may perceive service availability to be more import

 32

geographical location of a service. The concepts ontology explained in Section 4.2.6 defines the non-

functional service concepts that Portal users can choose from.

4.2.1.1 Quality of Service

 be inferred that the service is of a reputable nature.

A user may prefer to access services where the brick depots are located in a specific geographical area.

lassify their service in

relation to others. NASIC and UUNISPC are two such classification services. An OWL-S service can

products in Sterling and Dollar prices. A user may only have access to Euro

Currency; this means that the British service is not suitable for the user.

Service Reputation is a research area that is beyond the scope of this Dissertation. It is proposed that in

the future, Service Providers will be able to rate their service, via trusted reputation monitors [19]. This

scenario can be simplified by defining a “ServiceQuality” concept and assigning a rating to each service.

If a service exhibits “High Quality”, it can

4.2.1.2 Reliability
If a service is down or inaccessible frequently, it is an unreliable service. A service that is available 24/7

is a desirable service to use. To model reliability, an ontological concept can be defined to model

reliable services and unreliable services. For example, a reliable service has a “Constant” availability,

where as an unreliable service has an “Infrequent” availability. As with Service Quality, monitoring the

reliability of services by third parties is out of scope of this research.

4.2.1.3 Geographical Constraints

For example a Cork based customer may have source a service provided by an E-Shop in Belfast but

wants instead to source the service in the Republic of Ireland and therefore deal in Euro. This ability

can be incorporated into the geo-coding requirement. Location concepts provide a method for adding

location aware information into OWL-S Service descriptions.

4.2.1.4 Service Classification
Industrial classification services have been formulated to allow companies to c

be classified in some domain to help express its capabilities. For example, if a service is classified under

some E-Commerce B2C classification, it is a plausible assumption that the service participates in some

sort of consumer orientated E-Commerce.

4.2.1.5 Currency Classification
A particular service may want to constrain the types of currency it deals in. For example, a British based

company may offer its

 33

4.2.1.6 Temporal Classification
If a service is not performing satisfactorily or not as “advertised” then this will impact negatively on the

probability that a client will use the service. If a service is perceived to be slow, this will make it less

desirable than a quick and effective service. A client should be interested in services that are timely and

responsive. The compulsion to advertise truthfully on this matter is beyond the scope of this research.

4.2.1.7 Geo-coding
Geo-coding is the process of taking an address that exists in the “real world” and adding longitude and

latitude coordinates to the data. It would be interesting to factor this data into OWL-S Profile Model

d way.

 input parameters). Version 1.1 of the OWL-S

specification details more comprehensive rules regarding Post-conditions. Post-conditions have not

n use-case for this Dissertation is a portal web site for selling fictitious products. The chosen

products groups are Wine, Cheese and Cameras. Ontologies representing the concepts were already

These products are also very diverse with their own individual semantics and character. This implies

lement every subset of cheese, and obviously camera

instances, so as location aware decisions can be made by the composition framework. This Dissertation

has not factored in Geo-coding data.

4.2.1.8 Pre-conditions
Pre-conditions are evaluations that must hold prior to a service being invoked. A Pre-condition can

involve evaluating an expression, which may even involve invoking a process. A Pre-condition is used

to ensure that a client is capable of using a service in its intende

For example, a minimum of 12 bottles of wine must be ordered to avail of the delivery service; in this

case the client must give direction to the Agent on how to handle such situations.

4.2.1.9 Post-conditions
Post-conditions are concerned with whether or not the overall result of the service meets the

expectations of the user was expecting (based on

been examined further in this research due to the limitations of the OWL-S 1.0 specification.

4.2.2 Domain Description

…Internet user wants to buy a product from an online store…

The chose

defined and incorporated in to the research to demonstrate the flexibility of the framework.

that one variety of cheese may not comp

specifications will vary resulting in different classes of quality and reliability. Wine and Cameras are

 34

sufficiently different in their semantics to prove that the framework can be used for diverse use-cases,

concepts and ontologies.

4.2.3 Domain Issues

Currently, a common model for E-Commerce B2C shopping involves a user manually searching

through on-line catalogues of products until a satisfactory product is located. The user then has to

submit some credentials to electronically pay for the product. This kind of model is used by such E-

Commerce companies as Buy 4 Now11, E-Bay12 and Amazon13. It is noted that E-Bay’s payment model

is an auction based consumer to consumer model, but the discovery of products revolves around

Using semantic technologies, we have shown it is possible to automate this entire process. Agent

» Identify Candidate Products (Goal)
iscover Services (Goal)

keyword searches and browsing product categories.

The process described above involves human intelligence to realise the objective of purchasing a

desirable E-Commerce product. A human user is obliged to control the discovery, selection and

instigating of purchase operations for products.

technology and Web Services will enable E-Commerce services participate in global scale portal

networks. Of course, even with semantics, this kind of automated transaction is not currently possible

due to the limitations that exist in current security, trust and reputation authorities [19].

4.2.4 Actors & Goals

» Customer (Actor)

» D
» Purchase Product (Goal)
» Select Products (Goal)

11 http://www.buy4now.ie/

12 http://www.ebay.com/

13 http://www.amazon.com/

 35

4.2.5 Use Case UML

Figure 4.2.1: Use Case UML definition.

cation that describe the E-

 semantics.

 ontology among other things, defines meta-data about the characteristics of

The concepts ontology defines OWL classes that inherit the OWL-S Profile Model concept,

s reasoners to infer what Service Attributes a Profile Model advertises.

This enables an Agent to

ic concept,

purchase confirmation can be understood to be the result of buying an item from an E-Commerce

4.2.6 Ontologies and Semantic Descriptions

There are some domain specific ontologies defined for use by the appli

Commerce world. These ontologies are used to encode knowledge about the application domain. In the

following sub-sections, we will discuss the core ontologies used to describe the Portals

Concepts: The concepts

Web Services that have subscribed to the Portal. The concepts ontology is used by the portals OWL-S

instances to advertise their respective services capabilities. General domain knowledge such as Money,

what it is to browse products and the concepts of purchasing a product are also defined.

ServiceParameter14. This allow

 match a Profile Model to non-functional user goals.

The concepts ontology is by no means a comprehensive domain description, but provides enough

realism for use by this demo application. For example, “Confirmation” is an ontological concept

defined in the concepts ontology. Using inference techniques and consultation of the semant

vendor. Figure 4.2.2 shows a UML class diagram which shows the concepts ontologies semantic

relationships.

14 http://www.daml.org/services/owl-s/1.0/Profile.owl#ServiceParameter – definition of OWL concept

 36

Figu 2 elationships express in UML notation.

Customer: The custome haracteristic of a human customer. It defines

properties such as a custo r name. The customer’s ontology is the basis

for the in-memory representation of the frameworks user. This user profile provides the Agent with

state. The instantiation of a customer is referred to as the user profile in this Dissertation from now on.

Portal: The portal ontology abstracts the concepts of an E-Commerce portal and groups together non-

functional service properties for use in candidate service identification.

re 2. .2: concept ontologies r

r ontology represents the main c

me balance and a customer’s user

 37

Figure 4.2.3: UML representation of the Portal Ontology.

The OWL <owl: AllDifferent> construct allows non-functional service attributes to have several

possible values. This mechanism de-couples the definition of the concepts from the concepts usage.

The AllDifferent mark-up can be seen in Figure 4.2.4.

 <concepts:QualityRating rdf:about="Average"/>

…
<owl:AllDifferent>
 <owl:distinctMembers rdf:parseType="Collection">
 <concepts:QualityRating rdf:about="Excellent"/>
 <concepts:QualityRating rdf:about="Good"/>

 <concepts:QualityRating rdf:about="Poor"/>
 </owl:distinctMembers>
</owl:AllDifferent>
…

Figure 4.2.4: OWL definition to denote different Quality Rating concepts.

Products: There are three product ontologies that represent the E-Portals product range; these are a

Wine, a Cheese and Camera ontology. All three ontologies contain semantic knowledge about the make

or example, the up of the individual products and also define individual instances of the products. F

 38

wine ontology defines a class Wine, with properties such as hasColour, hasBody, hasTaste and other

wine characteristics. The ontology also defines individuals of wines such as Pinot Noir and Cotturi

Zinfandel. Ontology management is not in the scope of this framework. This means that the product

instances defined in the products ontologies represent all the possible product types that this portal is

aware of. Section 7.3.1 discusses some possible improvements to this scenario by introducing ontology

management techniques.

4.2.7 Scenario Steps

1. A user identifies themself by selecting a user profile. Once a profile is selected, the portal

initialises the user’s details by consulting a database and the customer ontology.

2. A user selects non-functional service attributes from a finite set. A user can assign a priority to

their selection – High Priority, Medium Priority or Low Priority.

3. After submission, the selected attributes are added to the in-memory representation of the

user’s profile.

4. A UDDI keyword query is executed in order to find a selection of appropriate Web Services.

The access points for the services are validated to ensure they are valid OWL-S service

ontologies. Each ontology returned is examined to see whether or not they have the capability

to fulfil the portals use cases that is to browse an inventory of products and purchase an item.

5. The identified ontologies are reasoned over to assemble a list of candidate services that best

product that the e-store sells. For example, a wine service will ask a user to select the functional

selected to demonstrate service

composition.

7. The “find all products operation” is invoked on the chosen Web Service. This returns an array

of product instances stored in the e-store’s database. These product instances are matched to

their equivalent product defined in the ontology and merged with there ontological properties.

match the users’ preferences.

6. To proceed, the user must select a candidate service recommended by the discovery process.

Once a service is selected, the user is asked to select functional properties that relate to the

properties of wine, such as colour and smell. A priority can be assigned to each property also,

as in step 1. To extend this scenario, several services could be

 39

The infe ts that match the

user

8. If a us then the purchase

operation ents a successful

purchase

4.2.8 Use Case Deployme

A high level ar Figure 4.2.5. It

shows the Porta very, Candidate

Selection, Comp oyment.

rence engine is invoked again to find a candidate group of produc

’s preferences.

er decides to purchase a product recommended by the portal,

 is invoked and the scenario ends. A Boolean value of true repres

 transaction.

nt Architecture

chitecture, showing the main application components is presented in

l abstraction which contains components that are capable of Disco

osition and Invocation. The Agent also operates inside the Portal depl

igure 4.2.5: high level component architecture for Portal. F

 40

Chapter 5

FRAMEWORK IMPLEMENTATION

5 Framework Implementation

This chapter presents a technical description of the frameworks implementation. A high level overview

of the framework is presented in Section 5.1, followed by a detailed description of the discovery,

candidate selection, service composition and invocation functionality in Sections 5.4, 5.5, 5.6 and 5.7

respectively.

5.1

The fram ated Agent

controlled by some other application, perhaps a Rule Based planner engine. For this Dissertation’s

dem

controll

Overview

ework can ultimately be used in the context of a user controlled Agent or an autom

o application, the framework is instantiated and executed inside an Application Server and

ed by a user via a JSP [29] Web Application.

Figure 5.1.1: main deployments involved in the demo application.

Figure 5

an Onto

Comme

servers.

deploye er. The E-Store Web Services and UDDI registry can reside in some other

server(s).

.1.1 shows deployment architecture for the semantic framework. The deployment consists of

logy Repository, storing the OWL-S ontologies, domain concepts and the WSDL for the E-

rce services. This is logically grouped together, but in reality could be located across multiple

The E-Commerce Portal is hosted on one server. The Agent and semantic framework is

d on this serv

 41

5.2 i

This Sec

JDOM:

Docum hich is a tree-like representation of the parsed XML document. From this

DOM the XML document can be evaluated and traversed by browsing its tree structure.

JDOM

extende

nabling Semantic Web applications. Jena is open source

The API was sourced from the Mindswap15 organisation. The API lacked the functionality to parse and

extract OWL-S Effects and Preconditions from process models. It also did not implement data

structures for Profile Mod d Service Categories. The

API did not include any implementation for the ChoiceOf OWL-S Process execution.

The ChoiceOf construct allows for Atomic or Composite processes to be grouped together and

invoked separately. ChoiceOf facilitates an Agent choosing a process based on its IOPE’s. The

ChoiceOf construct is one method to allow Agents to assemble a sequence of Processes from

different ChoiceOf constructs in different OWL-S ontologies. ChoiceOf is used in the E-Store

Ass sting Technologies

tion details some of the third party software used or extended for this implementation.

 JDOM [56] is an XML parser for Java. The JDOM parser parses an XML file into the

ent Object Model, w

was used to parse and manipulate XML documents in memory. It’s functionality was not

d or modified.

Jena: Jena [to do] is a Java framework for e

software and was developed at the HP Semantic Labs. It provides a programmatic environment for

RDF and OWL.

Jena converts RDF documents into a memory resident RDF model using subject-verb-object triples. It

supports information retrieval through an iteration mechanism and the RDQL [57] query language. It

also provides interfaces to allow semantic relationships be inferred between types.

Jena was used in this framework as an underlying Ontology API. Jena functionality enabled the

initialisation of ontologies into memory, and provided software interfaces that allowed for semantic

relationships to be tested and inferred between OWL semantic concepts.

OWL-S: OWL-S is an API providing OWL-S functionality for version 1.0. The underlying API

provides implementation for much of the data types used in OWL-S, including the core ontology

abstractions, Profile, Process and Grounding models.

el concepts such as Actors, Service Parameters an

15 http://www.mindswap.org/ - Mindswap Home Page

 42

application to allow Web Services offer a choi . In the sample scenario described in Section

4.2, the choice is between browsing a product inventory and purchasing an item.

To provide these features, the ngine component used for

invoking OWL-S services needed an operation to support “Choice” Processes. The functionality

rocess, based on what IOPE was desired. The existing execution

Figure 5.2.1 is a class diagram showing the extension to the Profile Model interface of the OWLS API.

del interfaces were changed to support accessing Lists of Actors, Service Parameters

ce of services

 OWL-S API was extended. The execution e

allowed for a client to choose a p

engine was extended to support ChoiceOf invocations. This process will be largely un-documented

as is not a core part of the framework. It is also recognised that subsequent releases of the API will

solve these shortcomings and can be reintegrated into the framework at a later date.

The Profile Mo

and Service Categories. It is currently legal to have several of these types defined in a single Profile

Model, so a List structure is used to hold potentially several attributes.

 43

Figure 5.2.1: OWL-S Profile Model classes.

XML vocabulary was also added to the API which allowed the IO Parser extract the Profile Model

ces (BE4WS)

[51] is an open source API provided by IBM which facilitates searching multiple UDDI registries

attributes. This vocabulary was added to the relevant OWL classes in the vocabulary package of the

OWL-S API. The IO parser capability was also extended to facilitate reading these new features.

Business Exploration for Web Services (BE4WS): Business Exploration for Web Servi

simultaneously using a preconfigured set of key words.

BE4WS was incorporated into this framework and exposed as a Web Service to enable UDDI keyword

queries.

 44

5.3 Custom XML Schema

The framework uses a custom XML schema to transport semantically encoded data. The reasons for

using a custom format, as opposed to transporting entire ontologies are detailed in Section 7.3.2.

-up in Figure 5.3.1

shows an example of the XML custom format.

<attrib type=”http://somelocation/ontologies/profileModel.owl#CurrencyType”>EUR</attrib>
<attrib type=”http://somelocation/ontologies/profileModel.owl#PaymentType”>Visa</attrib>
…
</item>

During the inference process described in Section 5.5.2, OWL classes or properties are compared to

other classes or properties to check whether they are the same resource, equivalent, or related via

subsumption. The important information to encode is the semantic type of the resource and the value

of the resource. The reasoner component described in Section 5.5 expects input data to be structured in

this custom format. This means that the User Profile document containing user preferences, subscribes

to this format; as does the list of potential candidates to be reasoned over. The mark

<?xml version="1.0"?>
<item>
…

Figure 5.3.1: XML document segment detailing the custom format.

5.4 Capability Advertisement and Service Discovery

The advertisement and discovery functionality is documented in this Section. Capability Advertisement

is achieved by publishing the semantics of an OWL-S Profile Model into a UDDI registry. Service

Discovery is provided by facilitating a keyword search on UDDI registries and using the reasoner

component to examine the discovered services capabilities.

5.4.1 Publishing OWL-S Semantically in JUDDI

For the example scenario, the JUDDI [32] UDDI registry was used to store the fictional E-Businesses.

JUDDI is a Java based open source UDDI registry that supports version 2.0 of the UDDI

specification. The fictional services are published into the UDDI registry by linking extracted keywords

that describe the Service to the UDDI entry. The class UDDI2OWLSTranslator provides this

functionality. In Figure 5.4.1, the text EuroCurrency would be extracted from the example Profile

Model, and mapped as a descriptive keyword for describing this service in the UDDI registry.

 45

…
<profile:serviceParameter>
 <concepts:Currency rdf:ID="EStore-currencyType">
 <profile:serviceParameterName>Currency
Type</profile:serviceParameterName>
 <concepts:currency rdf:resource="&concepts;#EuroCurrency"/>
 </concepts:Currency>
 </profile:serviceParameter>
…

Figure 5.4.1: service parameter mark-up segment from a Profile Model.

5.4.2 UDDI Discovery

For discovery, a Web Service enabling a collection of UDDI registries to be queried was developed.

This search abstraction de-couples the Agent from the underlying OWL-S discovery mechanism. This

will allow a semantic discovery API to be integrated into the framework at a later time, when work in

this area has matured. The current discovery implementation uses the IBM UDDI query component

BE4WS [51]. The implementation is configured by an XML document which defines what UDDI

registries to search and what keywords are to be used.

After the discovery process, a list of URI’s are returned which point to the Services Access Points. This

implementation can easily be substituted for the capability based approach at a later time by substituting

new functionality for the Class UDDISearchImpl. Figure 5.4.2 details the main classes used for

discovery and publication.

Figure 5.4.2: class diagram showing discovery functionality.

5.4.3 Discovery Sequence

he configuration for the search process is stored in an XML document on the server which is

read into memory prior to searching. This document tells the search engine what UDDI servers to

query and what predicate and keywords to use. The framework caches this for future use. The service

The discovery process involves invoking the UDDI search component which is deployed as a Web

Service. T

 46

discovery operation is only invoked when the user has selected non-functional service requirements. A

s global ontologies collection, and are then returned to

the Servlet client as a cloned collection. Figure 5.4.3 details the sequence of methods involved in the

discovery process. Th sequence only details the Servlet and Agent interaction, some components are

left out for clarity.

Servlet handling HTTP web request invokes the invokeDiscovery method.

The next phase of the process instantiates an Agent object and requests it to invoke the UDDI search

module. The Agent uses the generic Web Service invoker ServiceInvoker16 to send a SOAP call

to the UDDI module. The results returned are validated by the Agent to check whether the Access

Points of each UDDI result are valid OWL-S documents. The services capabilities are then examined

to ensure they meet the frameworks requirements.

The valid ontologies are added to the framework

e

Figure 5.4.3: sequence of method calls in the discovery process.

16 See Section 5.8

 47

Once Services are discovered, the Agent then extracts the non-functional service attributes from all the

Profile Models of the OWL-S ontologies, and returns them as a collection of XML documents

compliant to the frameworks XML schema. This custom schema is explained in Section 5.3. A reasoner

component is instantiated and used to select candidate services that match the user’s non-functional

preferences. The candid rvices are returned to the user for further selection. Section 5.4 explains

the workings of the can oner component in more detail.

5.5 Candidate Selectio

To provide candidate s semantic reasoner component was developed.

The selection process in the individual elements details and

comparing them to a co ded knowledge.

5.5.1 Semantic Reason

The “Reasoner” packag and sub packages contain the Reasoner interface and implementations and a

Reasoner Event Mo an analyse semantic

relationships between OWL classes. The reasoner package also contains a Web Service Parameter

n resolve what input parameters an OWL Process requires and resolves and

ate se

didate selection and the reas

n

election functionality, a custom

volves examining a user’s profile, extracting

llection of semantically enco

er

e

del. There are also two inference implementations that c

broker component that ca

extracts them from the clients XML Profile. This process assumes that a client has the required inputs

stored in their profile. This aids with automated invocation of services. Figure 5.5.1 shows an overview

of the reasoner and inference classes.

Figure 5.5.1: class diagram showing the reasoner and inference packages.

5.5.2 Inference Functionality

The inference functionality is used during candidate selection, service composition and automated

service invocation. Figure 5.5.2 shows the main classes providing inference functionality. The inference

 48

classes are called JENAIn NAInferenceUtil is

implemented using the Jena API [54] and XSLInferenceUtil is implemented by using Extensible

ract the semantic properties. Jena and other third party components used

 } else if (isSamePropertyAs (comparator)) {

 return true;

ferenceUtil and XSLInferenceUtil. JE

Style Sheets (XSL) [35] to ext

or extended during this research are details in Section 5.2. XSL is explained fully in Section 6.2.1.3. The

inference algorithm used is shown in Figure 5.5.2.

 public boolean hasSemanticMatch (URI comparator)
 throws Exception {

 if (isSameClassAs (comparator)) {
 return true;

 return true;
 }

 this.resourceModel = createOntModel (comparator);
 if (hasEquivalentClass (resourceModel, comparator)) {
 return true;
 } else if (hasSuperClass (resourceModel, comparator)) {
 return true;
 } else if (hasSubClass (resourceModel, comparator)) {
 return true;
 } else if (hasEquivalentProperty (resourceModel, comparator)) {

 } else if (hasSubProperty (resourceModel, comparator)) {
 return true;
 } else if (hasSuperProperty (resourceModel, comparator)) {
 return true;
 } else {
 return false;
 }
 }

Figure 5.5.2: details the Java code for the matching algorithm.

Both inference classes have the same public interface by implementing the OWLInference

interface. The framework uses a factory capable of producing either object type at run-time. Figure

5.5.3 shows a more detailed class diagram of the classes involved in inference.

 49

The reasoner will

use this profile as the knowledge base to assert during inference execution. The XML documents that

re also loaded in as input into the Reasoner.

cuments that are relevant to the

user’s preferences, sorted by the highest number of matches first. This list is the selected candidates in

Figure 5.5.3: class diagram showing the inference functionality.

5.5.3 Reasoner Component Overview

The Reasoner component is used by the framework to automate candidate selection. Figure 5.5.4

shows an overview of the elements used in the reasoning process. The Reasoner requires a set of user

preferences, in the form of a semantic user profile to be loaded into the component.

encode the semantic data a

The Reasoner calls out to the inference component to evaluate potential candidates that match the

user’s preferences. The output of the Reasoner is a list of XML do

priority ordering.

 50

Figure 5.5.4: reasoner component overview and interaction.

5.5.4 Reasoner Functionality

There are two Reasoner implementations included in the framework. One implementation is multi-

threaded and the other is a single thread model. Both reasoners extend the abstract class

ReasonerBase which defines operations and functionality that are common to both

implementations.

The inference functionality is provided by the class ReasonerThread. ReasonerThread uses

stantiate an inference engine at run-time.

 inference cycle. ReasonerBase implements the

ReasonerResponseListener interface so as it can receive the event notifications.

Reaso ines three lifecycle methods.

Reaso t allows potentially other reasoners to be plugged into the

framewo ethods signatures are detailed in Figure 5.5.5.

the InferenceFactory to in

An event model [31] is used to facilitate notification when an inference cycle terminates. The event

model is similar to events models defined in the Java Beans [55] component architecture.

ReasonerResponseListener is an interface that allows implementing classes be notified when

the inference cycle ends. It defines one method for implementation. The ReasonerEvent class is

used as an event object and stores the results of an

nerBase also implements the Reasoner interface, which def

ner is the frameworks interface tha

rk. The m

 51

to add a XML user profile as a knowledge base.

r cycle against a set of candidates.
soner(List candidates);

wer();

// method interface
public void addUserProfile(String profile);

// start the reasone
public void startRea

// returns the result of the reasoner (XML document).
public String getAns

Figure 5.5.5: reasoner interface signature.

The ad llows state to be added to a reasoner prior to execution in the

form of c and when

the call an access the candidate results in XML format, using the getAnswer

method

The Jav oning logic is shown in Figure 5.5.6. This code is shared by both the single

and multi threaded reasoner as it is defined in their super class. The method

startReasonerInst d is an abstract method

and requires implementation in a subclass before the reasoner can be instantiated. This mechanism

public void startReasoner (List ontologies) {
 … start omitted for clarity

 // atribIterator is an iterator containing users profile
 // XML elements
 while (attribIterator.hasNext ()) {
 Element element = (Element) attribIterator.next ();
 Hashtable cache = new Hashtable();
 startReasonerInstance (
 element,
 ontologies.toArray (),
 cache);
 }

 // Loop to halt execution while multithreads are running.
 // This will not infinite loop in single thread model,
 // because execution will already be finished when it
 // arrives here.
 while (!executionStatus) {
 ;
 }
 // sort list
 prioritiseCandidates (
 map,
 results);

 … end omitted for clarity
 }

dUserProfile interface a

 a XML based user profile. The startReasoner method runs the reasoning logi

returns, the client c

.

a code for the reas

ance called inside the startReasoner metho

allows the single thread model to provide different functionality then the multi thread model.

Figure 5.5.6: details the Java code that controls inference execution.

 52

5.5.5 Reasoner Inference Thread

ReasonerThread is a class concerned with executing an inference cycle against a set of potential

candidates. The ReasonerThread allows its execution to be monitored via the reasoner event

model. This allows the class ReasonerBase to be notified of the inference cycles results. On

successful execution of an inference cycle or an application error, an event is fired to all objects

monitoring the execution of the inference.

The listener interface ReasonerResponseListener defines an event call back method

reasonerResponse. ReasonerBase implements functionality for this method. By using status

codes the application can interpret the events response. Figure 5.5.7 shows the code from the

ReasonerBase class that provides event handling.

public synchronized void reasonerResponse (ReasonerEvent e) {
 if (e.getCode () == ReasonerThread.DONE) {
 this.map.putAll (e.getMap ());
 this.finishedThreads++;
 this.threads.remove (e.getSource ());
 } else if (e.getCode () == ReasonerThread.ERROR) {
 this.finishedThreads++;
 this.threads.remove (e.getSource ());
 }

 if (this.finishedThreads == this.threadNumber) {
 executionStatus = true;
 }

 }

Figure 5.5.7: details the Java code for handling inference thread notification.

with the greatest number of

semantic matches will be returned at the top of the queue.

rence results. It orders the candidates based on a “most matches” count. The object

encapsulates a document and an integer value which is incremented every time a match is evaluated to

If the status code signals DONE, the encapsulated candidates are added to the global candidate

matches. When every inference cycle has signalled that it has completed execution, an execution flag is

set to true. This flag signals to the reasoner to continue execution and merge all the candidates into a

prioritised list. The priority ordering is dependent on the amount of matches a candidate XML

document registered with the user’s preferences elements. The documents

5.5.6 Candidate Priority Ordering

This priority ordering of candidate’s is achieved by the class CandidatePriorityUtil. It is used

in ranking the infe

 53

true on the document. The interface java.util.Comparator is implemented by

CandidatePriorityUtil in order to allow candidates to be sorted against each other.

Figure 5.5.8 is a class diagram showing a subset of the reasoner classes. Detailed are the

ReasonerFactory for Reasoner instantiation and the Reasoner interface. The abstract

ReasonerBase class, the CandidatePriorityUtil helper class and the event model classes

are also shown.

Figure 5.5.8: class diagram showing a subset of the reasoner classes.

Figure 5.5.9 shows the rest of the classes involved in reasoning; they are omitted from Figure 5.5.8 for

clarity. The two reasoner implementations extend the abstract ReasonerBase class.

ReasonerThread is used by the reasoner implementations to carry out inference. It is bound to the

OWLInference interface for inference functionality. Note also how ReasonerThread is only

bound to the OWL inference interface and not the Jena and XSL implementations. This allows

substitution of inference implementations at run-time.

 54

Figu hip.

5.5.7 Reasoner Seque

The sequence diagram ecution of the XML reasoner currently in use.

The execution begins which takes one

parameter, a list of XM document objects, using

JDOM. It is assumed t stom XML schema.

The users profile, provi object, and for each element in

the user profile, a new collection of XML objects

in the candidate group.

re 5.5.9: class diagram showing the reasoner and inference relations

nce

in Figure 5.5.10 explains the ex

when a client invokes the startReasoner method,

L strings. These XML strings are parsed into XML

hat the XML strings were formed using the frameworks cu

ded by the Agent is also converted to a JDOM

ReasonerThread to iterate over the is initialised

 55

Figure 5.5.10 ges involved in the “startReasonerInstance” implementation.

The parent th d (current root thread) adds itself as a listener to the child thread by using the

ReasonerRespons parent thread suspends

its execution until the threads call back by starting a while loop on a flag that will only become true

when all threads return status notifications.

: sequence of messa

rea

eListener interface provided by the framework. The

The ReasonerThread uses the OWLInference interface to test whether the URI in each

element of the user profile XML nodes17, is a semantic equal, equivalent or subsumption of the

comparator. If the result of that operation is true, the XML comparator document is added to the

candidate list. And as mentioned earlier this queue is prioritised. Figure 5.5.11 shows the sequence of

calls during inference.

17 that defines the elements semantic type

 56

Figure 5.5.11: sequence of message sent during the inference process

5.6 Service Composition Functionality

This section provides a description of how service composition is achieved. Section 5.6.1 explains how

OWL-S functionality was incorporated into the framework. Section 5.6.2 details the composition

capabilities.

 57

5.6.1 OWL-S Functionality

The OWL-S package contains classes that can carry out functionality specific to OWL-S operations.

Functionality for IO operations, validation of services, process selection and invocation of OWL-S

enabled services, as well as ontology management are provided. The package provides an abstraction to

an underlying OWL-S API described in Section 5.2 [50].

This API has been adapted into the framework, but is not exposed directly. The framework class

OWLSOntology provides interfaces to allow clients invoke OWL-S services dynamically ascertain

whether a service has desired IOPE’s and a method of returning a Services Profile Model description in

XML format. It also allows for loading and validating OWL-S ontologies. This class uses the API to

achieve its functionality, but encapsulates the inner-workings of the API. This enables substitution of

APIs at a later time if necessary.

The valid OWL-S ontologies that are discovered during the discovery process are stored in memory by

using the OWLSOntologies singleton instance. Figure 5.6.1 shows the main classes in the

frameworks owl-s package.

 58

Figure 5.6.1: the OWL-S functionality is realised by the OWL-S package.

5.6.2 Executing a Service Composition

The framework facilitates assembling and executing a service composition plan. However, automation

of service composition at runtime involves introducing a planning component capable of determining

what actions are ne is out of scope of

this research. Service composition is only supported by formulising a semantic plan a priori to

lan is represented by expressing desired semantic concepts in some order.

cessary to achieve a desired outcome. This planning functionality

framework deployment. A p

The framework is able to discover and arrange a set of services that best match each of the goals, and

invoke them sequentially using the execution engine described in Section 5.7. Figure 5.6.2 shows the

sequence of calls in the service composition process.

 59

Figure 5.6.2: sequence for how the Agent invokes a composition of processes.

5.7 Automated Invocation Functionality

The framework is capable of dynamically invoking a Web Service using semantic descriptions supplied

in the Process Model. The OWL-S functionality described in 5.6.1 allows for OWL-S Processes to be

identified which exhibits some known IOPE’s. Prior to execution, the user’s semantic profile is passed

into the execution engine. The parameter broker attempts to reconcile each input parameter required

against some value in the OWL-S Process Model ontology. This process involves using the inference

funct examine whether each attribute in the user profile is the same ionality explained in Section 5.5.2 to

 60

as, equivalent to or a sub class of the inputs semantic type. Figure 5.7.1 provides the Java code that

enables this reconciliation. It is assumed that the user profile will contain all the domain knowledge

required to invoke a service. This knowledge may be ascertained via asking users for input.

public void reconcileParams (HashMap possibleParams,
 Process process,
 ValueMap map)
 throws Exception {
 InputList inputs = process.getInputs ();
 Iterator i = inputs.iterator ();

 while (i.hasNext ()) {
 Input input = (Input) i.next ();
 Iterator p = possibleParams.keySet ().iterator ();
 while (p.hasNext ()) {
 String param = (String) p.next ();
 try {
 URI paramURI = new URI (param);

 OWLInference util =
 InferenceFactory.createInferenceImpl
 (InferenceFactory.JENA_INFERENCE);
 util.setURI(paramURI);

 StmtIterator it =
 input.getJenaResource ().listProperties ();

 while (it.hasNext ()) {
 Statement statement = it.nextStatement ();
 try {
 String objURI = statement.getObject ().toString();
 URI uri = new URI(objURI);

 if (util.hasSemanticMatch (new URI(objURI))) {
 URI name = input.getURI ();
 map.put (inputs.getParameter (name),
 possibleParams.get (paramURI.toString ()));
 }

 }
 catch (Exception e) { }
 }
 }
 catch (Exception e){ }
 }
 }
 }

Figure 5.7.1: details the Java code showing the parameter reconciliation algorithm.

The output of an invo veloper is required to

use the output, perhaps by rendering it to a user interface for a user to interpret, or perhaps using the

antic reasoner for further inference. The result of this

.

cation is encapsulated in an Object array. An application de

invocation output as input into the sem

invocation is added to the user profile, so as subsequent invocations can use the data outputted as

possible input for the next operation. The sequence diagram shown in Figure 5.7.2 shows the message

calls involved

 61

Figure 5.7.2: sequence for executing an OWL-S Process.

5.8 Universal Functionality

The utility package contains classes that are generic to the entire framework. These classes include

XMLConstants which defines the XML schema strings used in the custom XML format. It is

advised that all classes reference the String variables in this class to allow the syntax to be changed with

out breaking the entire application.

There is also a class called OntologyUtil that can parse, merge and discover semantic knowledge

from inspecting ontologies. There is also a generic Web Service invoker that is used to invoke Web

Services that are not marked up in OWL-S, for example the UDDI Discovery component. The service

invoker examines a WSDL file and constructs a SOAP message using parameters supplied by a calling

client.

The UserProfile class enables an XML user profile document become an object in memory. It can

be instantiates by passing it a valid XML document that adheres to the frameworks schema. Figure

5.8.1 is a class diagram showing the utility classes the sub system shares.

 62

e generic utility classes. Figure 5.8.1: class diagram showing th

 63

Chapter 6

FRAMEWORK EVALUTION

6 Framework Evaluation

This research has proposed and demonstrated a method for applying Semantic Web concepts to

automate and facilitate the discovery, selection, composition and invocation of Web Services. It has

used a specification called OWL-S to achieve this, as well as leveraging current Web Service

technologies such as UDDI, WSDL and SOAP and incorporating them into a semantic framework.

Section 6.1.1 discusses the discovery portal, Section 6.1.2 discusses the candidate selection

implementation, Section 6.1.3 discusses the service composition functionality and Section 6.1.4

discusses the automated invocation functionality. Section 6.2.1 details the performance of the inference

engine used in this implementation. Section 6.2.2 evaluates the performance of the reasoner engine

used in this implementation. Section 6.2.3 analyses the trade offs between storing an ontology in flat file

format and a relational database. Section 6.3 presents an evaluation of the APeLS reasoner component

developed by KDEG, which was considered for usage to provide reasoning functionality during design

phase of the framework, but not incorporated in this implementation.

6.1 Implementation Evaluation

The following sub-sections of Section 6.1 takes an identical format. The evaluation begins with

referring back to Sections 1.4 where we describe the problems that we sought to address. We continue

by briefly describing the solutions we have developed to address these problems. A more detailed

description of our approach is contained in Chapter 5. We conclude by evaluating the approach taken,

considering the design decisions made and the consequences of those decisions.

6.1.1 UDDI Discovery Portal

The discovery process required allowing semantically annotated Web Services to be found which could

ents were expressed as semantic concepts. UDDI was satisfy known requirements. These requirem

chosen as the technology for discovery due to its industry backing and apparent adoption by

technology vendors.

The solution implemented was to extract the details and relevant keywords from an OWL-S Profile

Model and map these to a UDDI Business Entry. The Access Point of the UDDI Business Entry was

mapped to the OWL-S Service URI being published. A subset of these keywords was then used as

 64

search keys in a UDDI discovery query. This method facilitated a targeted keyword search on a UDDI

registry. The results returned were validated to check whether the Access Points of each result were

valid OWL-S ontologies. The services capabilities were then examined to ensure they meet the portals

requirements.

This solution has a num rvices was done

after the services were s possible that the query

will return services that inefficient. A more elegant

approach would be to ference and capability

matching to be perform I protocol to facilitate semantic

capability searches. This approach has been adopted by the DAML-S Matchmaker project. It is

proposed that such an a amework.

6.1.2 Candidate Service Selection

The candidate selection rity ordering that

best satisfy a set of use s is typically done at discovery and/or composition

time. A candidate servi ilities sought. A

candidate that meets all t suited candidate.

To provide candidate s easoner component was developed.

The selection process i e individual elements semantic

details and comparing t e.

The reasoner relies on om XML schema. One limitation

to this approach is that encoded in this

XML format prior to r oning. This requires extra processing time. Section 7.3.1 details methods for

optimising and enhanci thods negate the need to

examine entire ontologi ly the

relevant data for a partic take.

6.1.3 Service Compos

The service compositio re Web Services and performing a union

to provide new functio ed by the

service invocation modu nd this list

can be passed to the inv e used

to identify the most app t is formulated, the

ber of drawbacks. Notably, the capability assessment of the se

returned from the UDDI registry. This means that it i

 do not meet the portals requirements, which can be

 extend a UDDI registries capabilities to allow for in

ed on the UDDI server and extending the UDD

pproach could be integrated into this fr

 requirement involved identifying Web Services in some prio

r preferences. This proces

ce is classed as any service that matches any of the capab

 the users’ requirements will be ranked as the mos

election functionality, a custom semantic r

nvolves examining a user’s profile, extracting th

hem to a collection of semantically encoded knowledg

XML documents that are formed using a cust

 semantic data stored in ontologies must be stripped out and

eas

ng the speed of semantic inference. Optimisation me

es when only concerned with specific data. This implies that extracting on

ular concept is an acceptable step to

ition

n process requires selecting two or mo

nality. The framework allows a service composition plan to be execut

le. A list of services that match a set of capabilities can be identified a

ocation engine for invocation. The candidate selection component can b

ropriate service(s) to achieve a plan. When this candidate lis

 65

list can be passed to th tial execution. The output of each invocation is

added to the user’s prof vocations.

The framework currentl low a plan to be formulated and execution to be

monitored; it currently nctionality could be

included by using the e invocation components to demo a trial run of the

composition a priori to ce whether or not a composition

can be realised, or whe s to provide more input or perhaps the services need to be

ordered in a different pr

6.1.4 Automated Service

The service invocation requirement involved executing Web Services dynamically, using the encoded

semantic metadata as an instruction set. This process involved selecting the appropriate operation to

ilitating parameter reconciliation at run-time. A user’s semantic representation is stored

e execution engine for sequen

ile, for possible use in subsequent in

y lacks the sophistication to al

expects a plan to have been formulated previously. This fu

 reasoner and servic

 execution. It would then be possible to dedu

ther a user need

iority.

Invocation

achieve a known outcome and also dynamic reconciliation of input parameters and interpretation of

message return types.

The framework supports semantic service invocation by allowing OWL-S Processes to be identified

and selected based on user’s preferences and the processes capabilities. Dynamic invocation is made

possible by fac

in memory, which is used by the invocation engine to extract appropriate input for a particular service

at run-time. All semantic knowledge that is generated by the framework is stored in the users profile to

expand the user’s representation of the domains world. The invocation engine supports the invocation

of different types of composite processes, and uses the OWL-S Process Model to formulate an

execution plan.

The solution is dependent on the information encoded in a user’s profile. An application developer,

using the framework must ensure that the user profile has all the required domain knowledge available

in their run-time state. This information can be accumulated by prompting for user input, which can

then be converted to the appropriate semantic concept. Using the OWL same as, equivalent, and

subsumption relationship it is possible to determine what user profile concept is needed for an input

parameter.

For example, in the E-Portal demo application developed using the framework, a user is asked to

specify the quantity of a product they wish to purchase prior to invoking the purchase operation. This

inputted value is converted to the semantic concept for quantity, defined in the product ontology and

 66

then stored in the user’s profile. The profile will then have this meta-data encoded when the execution

tion to examine methods for incorporating functional and non-

functional service requirements into the candidate service selection process. Non-Functional attribute

g together different functional properties and allowing a user select combinations of these

properties. A candidate group was then identified containing items that exhibited the user’s preferences.

ing services that best match a

user’s goals, but there is no guarantee that these services have advertised their attributes truthfully.

Regulation and reputation management is not enforced and there is no Internet scale enforcement

protocol yet standardised. Ontology providers can advertise there services in what ever way they see fit,

even if this means providing false information.

Assured Reputation Information Exchanged Securely (ARIES) is a protocol developed by IBM to

provide consumers with reliable reputation information and per-transaction assurances when selecting

new service providers [19]. It gives web service providers the opportunity to compete on objective

qualitative and quantitative metrics such as price and availability rather than subjective and opinionative

criteria [19]. ARIES secure reputation and assurance services are intended to be incorporated into

existing service acquisition18 models for both manually and automatically initiated transactions.

It is possible, in the context of the Semantic Web that reputation authorities could be incorporated and

used to publish ratings for arbitrary services as an ontology hierarchy. Agents can reason over such

ontologies when selecting candidate services and report their experiences of using the service back to

the reputation authority. It is argued in [19] that service requestors have been slow to exploit the

benefits of a global e-marketplace due to very real concerns about their authenticity.

engine attempts to reconcile the quantity parameter.

6.1.5 Discovery using Non-Functional Service Attributes

It was also an aim of this Disserta

selection was achieved by defining semantic concepts in a global ontology, and referencing these

concepts from OWL-S Profile Models as custom Service Parameters. Section 4.2.1 identified these

parameters. The OWL-S Profile Models are consulted during the service identification and selection

phase to find services that best suited user’s preferences. Functional attribute selection was achieved by

groupin

This method for incorporation of non-functional services properties used is not a realistic model for

use in an enterprise setting. It does provide a mechanism for identify

18 For example UDDI

 67

6.2 Performance Tests

To access the practical run-time performance of this framework, tests were performed to find out what

software configurations and implementations exhibited the best performance. The tests detailed in

Section 6.2.1 focused on different methods for performing semantic inference. Tests in Section 6.2.2

examine and contrast different reasoner implementations. Tests in Section 6.2.3 compare methods for

persisting ontologies.

All tests were carried out using the following Hardware and Software specifications:

Operating System: Window XP Professional
Memory: 256 Ram
Processor: Pentium M 1300MHZ
Ontology Server: Tomcat 5.1 Web Server running on “localhost”.
Java Software: Java version 1.4.1-4

6.2.1 Inference Overhead

One of the major drawbacks with evaluating semantic relationships between OWL Resources is the

overhead involved in IO operations and building object representations of ontologies. When large

numbers of inferences are evaluated the requirements on network resources and processor power is

intense leading to degradation of performance.

6.2.1.1 Inference Methods

Inference in this semantic frameworks context is the process of testing whether an OWL Resource is

the same as, equivalent to, or subsumes another Resource. There are two inference implementations

contained in this framework.

This framework uses the two inference implementations for parsing and extracting knowledge from

OWL ontologies. An interface is defined to allow different implementations to be plugged in to the

framework and a factory is used to instantiate the implementations. The two implementations are

discussed in Sections 6.2.1.2 and 6.2.1.3.

6.2.1.2 Jena API Approach

The Jena API developed at Hewlett-Packard labs is a toolkit for building semantic applications. The

Jena API provides an implementation of an OWL parser to allow OWL documents and resources to be

loaded into an in-memory graph structure. Once loaded, methods providing inference capabilities can

be called on the in memory object to allow semantic relationships to be inferred.

 68

6.2.1.3 XSL Approach

As mentioned in chapter two, OWL documents conform to well formed XML syntax. The Extensible

Style sheet Language (XSL) famil ion for defining XML document

transformation and presentation [35]. It consists of three parts, XSL Transformation (XSLT), XML

Path Language (XPATH) and XSL Formatting Objects (XSL-FO).

By defining a style sheet that can identify specific OWL mark-up such as equivalent relations and sub

by this framework will involve

testing a collection of candidate resources against a single resource, in a continuous, exhaustive process.

al times during one inference session on different resources.

ine” from the sample

applications Wine ontology. The Wine ontology is a reasonably large file in ontology terms. This OWL

 “Product”, also from the E-Commerce demo application. The class

ut three times and the results were averaged to get the results. The list below is a

formal definition of the test cases.

y is a W3C standardised specificat

XSLT defines a method for extracting XML statements and values from an XML document. An XSLT

style sheet specifies the presentation of a class of XML documents by describing how an instance of the

class is transformed into an XML document that uses a formatting vocabulary [35].

class relations, relationships can be inferred between different OWL concepts. Using this style sheet, an

XSL transform engine can load the ontology into memory and apply the XSL file to the ontology.

Once applied, data can be extracted from the ontology using an XSL transform API.

6.2.1.4 Inference Performance Tests

As mentioned in Section 6.1.3 and 6.1.4, one inference implementation uses the Jena API and the other

uses an XSL implementation to extract desired relationships from an ontologies Document Object

Model (DOM) [38]. The majority of the inference cycles carried out

This process may be repeated sever

6.2.1.5 Jena Vs XSL

There were three test cases identified to compare the performance of the two inference

implementations. All tests used the same OWL ontologies as input. Each inference model was

initialised with a URI to an OWL Class resource. The OWL Class used was “W

class was tested against the class

Wine is a sub class of Product, so the result of the inference will be true each time. The inference was

carried out 200 times, using a control loop. We choose this figure as we believed that for any

instantiation of the reasoner component in a real application would incur an inference threshold of 200.

All tests were carried o

 69

1. When the test case starts, an inference object is instantiated. For all iterations of the control

loop, the same inference object is used. This test showed the overhead involved in evaluating a

semantic relationship. The result is shown under the Cached Instance heading in table 6.2.1.

2. This test loaded a new instance of the Jena and XSL implementations for all iterations of the

conds and milliseconds.

control loop. This tests the initialisation overhead for each implementation. The result is

shown under the New Instance heading in table 6.2.1.

3. Finally, a third test carried out two inferences for each loop iteration to see if there is any effect

on carrying out multiple inferences. The same inference object was used for all iterations as in

test case 1. The result is shown under the Two Inferences on Cached Instance heading in table 6.2.1.

The results are compiled in the table 6.2.1 below. Data is represented in se

 Cached Instance New Instance Two Inferences on Cached Instance
Jena 3.68 31.45 4.03
XSL 15.99 16.25 30.01

Figure 6.2.1: results for inference implementations tests.

6.2.1.6 Jena Conclusion

The results show that Jena performance is degraded when it is forced to load a new ontology into

memory for each inference cycle19. The initialisation time is directly affected by the size and complexity

of the ontology. Once loaded, Jena can carry out repeated inferences quickly (3.68 for 200 inferences,

4.03 for 400 inferences).

Jena’s implementation builds up an object graph of an ontology into memory, and uses an iterator [31]

to traverse the object model. The main overhead in this process is not the iteration mechanism but the

initialisation process.

19 Test Case 2

 70

Figure 6.2.1: Jena test results in graph format.

0
10

0 5 10 15 20 25 30 35
Seconds

Jena Results

Cached Instance, 3.68, 200
200 New Instance, 31.65, 200

40

180
190

50
60
70
80
90

100
110
120
130
140
150
160
170

Inferences
Cache instance
New Instance

20
30

6.2.1.7 XSL Conclusion

g power to perform CPU-intensive tasks such as transformation [34].

The XSL implementation exhibits more predictable performance. If requires a fixed amount of time to

carry out an inference and this appears to grows steadily relative to inferences (15.99 for 200 inferences,

30.01 for 400 inferences). By doubling the amount of inferences, an inference cycle takes almost twice

as long to complete.

The XSL results are symptomatic of the overhead involved with XSL processing. XML's flexibility

places significant demands on network and hardware infrastructure, consuming as much as 80% of

server processin

The XSLT engine will be unaware of the semantic links and relationships between OWL resources in

any given ontology, therefore does not need to build a complex object graph like the Jena API. This can

lead to a performance improvement on initialisation, but because there is no in memory state of

relationships in the ontology, each inference requires more computation then simply testing a variable

value, as in Jena.

 71

XSL Results

200
New Instance, 16.25, 200Cached Instance, 15.99, 200

180

190

Seconds

160

170

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

-1 1 3 5 7 9 11 13 15 17

In
fe

re
nc

es

Cache instance
New Instance

There are four separate implementations to choose from when selecting a reasoner engine at run-time.

0 candidate XML

documents with 5 elements each and a user profile with 5 elements. This will result in a total of 5

inference cycles totalling 1000 inferences altogether.

Figure 6.6.2: XSL test results in graph format.

6.2.2 Reasoner Implementations

As described in Section 5.5.1, there are two different inference implementations. A reasoner in this

framework is a component responsible for controlling the execution of an inference cycle.

The options are a single thread model with Jena inference, single thread model with XSL inference,

multi threaded model with Jena inference and multi threaded model with XSL inference.

6.2.2.1 Multi Threaded Vs Single Threaded Implementation
The Reasoner starts a new inference cycle for every XML element in a user profile. The multi-thread

reasoner implementation spawns a new thread of execution for every inference cycle. This

implementation allows several inference cycles to run simultaneously and independently.

The single-thread reasoner executes all inference cycles sequentially. This means that only one XML

element in a users profile can be in execution at any particular instance. When one inference cycle

returns a new cycle can begin.

The tests involve instantiating a Reasoner component and initialising it with 5

 72

There were two sample user profiles used as input for the reasoner to provide variation. One user

ved running two inference cycles using the multi thread reasoner

implementation. One inference cycle used the Jena inference engine, while the other used the

2. cycles using the single thread reasoner

Jena inference engine, while the other used the

the two tables below. Data is represented in seconds and milliseconds.

lug in XSL Inference Plug in

profile included several concepts found in the demo applications Wine ontology, the other profile

contained elements from the Product ontology, which is a considerably smaller file size. By using both

sample sets it can be ensured that all the inferences will result in true.

1. This test invol

XSL implementation.

This test involved running two inference

implementation. One inference cycle used the

XSL implementation.

The results are compiled in

Table 6.6.2 shows the reasoner execution using the Wine based XML profile, while table 6.2.3 shows

the execution based on the Product ontology concepts.

 Jena Inference P
Multi-Threaded 252.863 78.68
Single-Threaded 116.34 34.49

Table 6.2.2: results of the first reasoner implementations tests.

 Jena Inference Plug in XSL Inference Plug in
Multi-Threaded 25.019 70.85
Single-Threaded 9.02 32.31

Table 6.2.3: results of the second reasoner implementations tests.

6.2.2.2 Conclusion
The results show that the sequential single thread model executed faster then the multi thread model

for all implementation combinations. The Jena and XSL based single thread implementations execute at

ti thread counterparts. One possible reason for this performance

We can be inferred from the results that the Jena implementation performs poorly when the Reasoner

is invoked against a set of large ontologies. Table 6.2.2 shows the results of the reasoning cycle using

least twice as fast as their mul

difference is that the test computers RAM limitations hindered the processing capabilities of several

threads executing simultaneously. Another possible conclusion is that the cost of passivating and

activating a thread is expensive, and not proportionate to the level of processing that needs to be done.

 73

concepts from the Wine ontology only. The multi thread model took on average 4 seconds for each

’s multi and single thread model by

at least a factor of 10.

 had no significant

relevance to performance. It appears that processing an XSL file in memory is the main performance

framework. One

method involved storing the ontology data in a database as relational data. The other model involved

 files.

Two test cases were identified to compare the cost of initialisation of an ontology into memory using

methods. The applications Wine ontology was loaded into memory for both

inference. The single thread model took on average 1 second. Compare these figures to the test results

in table 6.2.3, which used the smaller Product ontologies concepts. It is apparent that Jena’s

performance is reliant on the size of the ontologies used in a candidate set. Table 6.2.3 confirms that

using the concepts from the smaller Product ontology improves Jena

The XSL implementations performance was almost identical for the two tests. The single thread model

performed nearly twice as fast of the multi thread model. The size of the ontology

overhead using this model, and not initialisation of the ontology XML resources.

6.2.3 Ontology Persistence Storage Tests

There were two methods evaluated for storing and accessing ontologies in this

storing the ontologies on a Web Server as

The two models were implemented using the Jena API. Jena supports reading in ontologies into

memory by providing a URI to a Web Server address or a URI to a database server instance.

6.2.3.1 Jena DB Vs Jena HTTP

flat files and database

methods. Prior to the test, the Wine ontology was stored into a MySQL [58] database, using Jena’s

Database API. The tests cases are defined below.

1. The Wine ontology was loaded into memory twenty five times from the database model and

also twenty five times from a flat file. The total time taken was recorded and can be seen in

column 1. HTTP Server represents the flat file method and RDBMS is the database method.

2. The Wine ontology was loaded into memory two hundred and twenty five times from the

database model and also twenty five times from a flat file. The total time taken was recorded

and can be seen in column 2. HTTP Server represents the flat file method and RDBMS is the

database method.

 74

 25 times 250 Times

9.02 32.31
S 25.019 70.85

HTTP Server
RDBM

Table 6.2.4: results of the persistence tests using the Jena API.

6.2.3.2 Concl
It is co ind of persistent database, and by using

data e

that the

loaded as n r

validation of ontologies every time they are accessed. Also, by employing optimisation techniques

ance

inference performance. It would also reduce the level of XML string processing. Validation of

ntologies has been identified as a performance bottle neck in Section 7.2.

show th Jena database implem does not pe aster then the flat file model.

Storing ontologies in flat fi his can be attributed to its

implementation and the overhead of storing ontologies in a relational form.

DOM models and X-Path queries. The component has been applied to the field of E-Learning. The

OWL based ontologies for use in this framework. The APeLS component is capable of producing a

candidate result(s) from a set of ontologies, due to its support of X-Path queries. After evaluating the

APeLS component, it was not deemed as a suitable inference engine for the composition framework

for several reasons.

6.3.1 XML Database constraint

APeLS is constrained to use an XML database implementation. This means that for every instance of

APeLS used in the semantic framework, an XML database would need to be pre-populated with the

L documents as well as the current user’s profile. This data would also need to be deleted

usion
nceivable that by storing ontology data in some k

bas indexes and keys, databases could perform quicker then flat file access, due to the assumption

data has been stored in a valid data format that ensures ontologies are valid. Concepts could be

eeded, thus avoiding loading redundant concepts. This lazy loading negates the need fo

which target specific RDF triples that are only relevant to a certain query could further enh

o

The tests at the entation rform f

les allows for faster in-memory initialisation. T

6.3 Adaptive Personalised E-Learning Service Evaluation

The KDEG group in Trinity College has developed a rule based inference component built on top of

JESS [53]. The component is called Adaptive Personalised E-Learning Service (APeLS) [52]. APeLS

was designed to allow XML documents to be reasoned over using custom JESS functions specific to

current implementation of APeLS is built on top of an XML database [33].

It was proposed that the APeLS component would be incorporated / extended to allow it to infer over

candidate XM

 75

af a

re or he inference cycle is done dynamically h different

datasets th ave no relevance after the inference cycle.

6.3.2 Pre-Run-time Configuration

APeLS is red for use by a Resource Bundle20. This Resource Bundle specifies the location of the

XML data e in use and other global properties like the location of the JESS narr e. This

Resource B dle is configured prior to deployment of the application.

The semanti framework does not know the make-up of a user’s profile prior to execution, and is not

aware of w andidate ontologies are. It is therefore impossible to efficiently pre-configure a

specific database.

A knowledge base used during y a user while selectin non-

functional and functional requirements. It is not possible to pre-compose a narrative because the

re.

k. There

is currently no interface that allows a developer to hook in a custom “Learner” model. The current

ing domain and genericity and re-use was not a primary requirement.

6.3.4 APeLS Builds New Knowledge

The result of APELS run-time execution is to build a new XML document from the results of an

inference process, using knowledge encoded into narratives by domain experts. The semantic

framework has no need to build a new document or encode any more knowledge that does not already

ter execution. The nature of using any database is for persistent storage of data. This is not

quirement f the composer as t at run-time wit

at h

 configu

bas ative in us

un

c

hat the c

 the reasoning process will be built b g

process is dynamic by natu

It is accepted that it is possible to programmatically interact with the JESS shell, at run-time and load

into memory a narrative, but the benefit of this was not deemed sufficient for incorporation of APeLS

into the framework.

6.3.3 Scalability issues

The framework must support concurrent user requests. Performing write and read operations on one

database (preconfigured in the Resource Bundle) by multiple users will pose a concurrency ris

Learner model is specific to an E-Learning context, which is not generic enough for general use.

One proposal is that a more abstract interface is provided in future releases, so as developers can plug-

in other user models for use in different domains. However, it is accepted that APeLS was designed for

use in the E-Learn

20 A configuration file for use in Java applications.

 76

exist in xist

and us

 the applications ontologies. It merely needs to select from a collection of documents that e

e this sub collection to output as a result.

 77

Chapter 7

CONCLUSION

7 C

In accor

discover ection, service composition and automated service invocation. During

this r e

expressing the

limitations e case was devised that showed how an Internet user could benefit

from semantic automation of E-Commerce processes. We developed an application using the semantic

This Section, 7.1; summarises our research output with regards to our initial objective detailed in

ction 1.4 and compares and ch prof

ice Disc

We identified and implem of Web Services using

UDDI as a discovery mechanism and incorporating non-functional service parameters. The method we

roposed does not extend th mething Paolucci et al.

A limitation to our approach is that it is still keyword based, and requires the publication component to

t can be used to discover services. Semantics are only introduced after a UDDI

by no means a perfect model for inference. The overhead involved in inference is concluded in Section

onclusion

dance with the goals of this work, a semantic framework has been developed to support

y, candidate service sel

es arch, we first explored the limitations of current Web Service technologies with regards to

ir semantics. We identified OWL-S as an emerging technology that could address these

. An E-Commerce us

framework which demonstrated this claim.

7.1 Research Review

Se contrasts it to other resear iled in Chapter 3.

7.1.1 Semantic Serv overy

ented a method to enable capability based discovery

p e UDDI specification, so that Akkiraju et al. and

propose.

identify keywords tha

inquiry has been processed. This solution is acceptable in a closed world scenario, such as the E-

Commerce use case, but is unlikely to scale well when discovery or varied services is required.

7.1.2 Service Selection

We implemented several reasoner implementations to identify suitable technologies that could be used

for semantic inference. The implementations showed that Jena is a more suited approach to XSL, but is

7.3.

 78

Our reasoner did not operate inside an expert system shell, which is the approach taken by Siren et al.

Semi-Automatic Composer tool described in Section 3.3.2. Expert system shells normally require some

domain specific narrative or rule set to be loaded into the shell. This narrative is often encoded by a

domain expert prior to application usage. Our research identified that inference techniques need to be

configurable at runtime, meaning reasoners that require static configuration or pre defined narratives

are not as suitable as our robust model, which is configurable to any semantic domain.

t domain knowledge

and resources.

 which will enable dynamic composition of services.

ons based

on the capabilities they offer, and allowed the dynamic construction of SOAP messages used to invoke

ices. This implementation used a user profile knowledge base as a

S composition construct and also extended

the engine to support the interpretation of Array XSD data types in response and request operations.

One im

modelle r

example, our execution engine can determine that an OWL concept may be mapped to an XSD array

type

7.2 OW

During L-S 1.1 beta superseded OWL-S 1.0. OWL-S 1.1 includes more detailed

guidelines for expressing semantic rules and semantic conditions. Using the new standard, it would be

7.1.3 Semantic Service Composition

We identified that service composition is only feasible by incorporating A.I. planning techniques. This

is because it is necessary to understand the outcome of a composition in advance to infer whether or

not a collection of services are possible to be composed together, using the curren

Service composition frameworks like SHOP2 [62] and Sirens et al. Semi-Automatic Composer tool use

A.I planning to identify viable compositions. It is future work to evaluate these approaches and

incorporate such techniques into our framework

7.1.4 Semantic Service Invocation

We extended an execution engine to facilitate a method for identifying Web Service operati

operations on concrete Web Serv

means for reconciling input parameters.

We extended Siren et al. work on developing an execution API using the beta OWL-S API. We

implemented functionality to support the ChoiceOf OWL-

portant merit of our approach to semantic invocation is that complex OWL concepts are

d and used to describe outputs and effects rather then using primitive XSD data types. Fo

 without explicit instructions, by consulting the OWL concept.

L-S

this research, OW

 79

possible to extend the frameworks support for evaluating pre and post conditions, as well as other

mposition rules and te

7.3 ture

Section 7.3 concludes by outlining some limitations that were identified with this research approach to

objectives. Section 7.3.1 proposes some future work needed to improve inference

verely hampered due to this

me they are initialised in

low developers load and use ontologies

WL concepts that

onnect to large databases and/or ontologies, it will not be feasible to load the

nto working memory. Performance tests in Chapter 6 support this

co chniques.

The Bigger Pic

solving the research

performance and Section 7.3.2 highlights the necessary extension to the framework in order for it to

scale to enterprise computing demands. Section 7.3.3 identifies some current shortcomings with

ontology creation and versioning, and proposes a necessary course of action by the Semantic Web

community to remedy these issues.

7.3.1 Inference Overhead

It has been identified in 6.2.1 that semantic inference comes with a severe performance overhead due to

the processing requirements of XML, as well as the need to validate ontologies to ensure the concepts

they represent are complete and legal. The scalability of the framework is se

factor.

One measure that would improve performance is to introduce some optimisation of OWL queries to

minimise the processing required. Firstly, validation of ontologies every ti

memory needs to be irradiated. It is not an ideal situation to al

that are not known to be legal, because it is one guaranteed way to introduce application bugs into a

system. However, if performance is critical, this trade off may be practical.

To ensure ontologies are legal, a publishing and versioning component could be introduced into this

framework. This step would ensure that the integrity of a knowledge base is legal and correct at all

times. Data can be kept consistent by enforcing cardinality restrictions and other O

enforce usage constraints. This can be done by employing object wrappers or database constraints

techniques. We proposed that databases are an ideal method for storing ontologies due to their inherent

support for transactions, security, indexing optimisation and proven ability to scale to enterprise

requirements.

For applications that c

entire set of available information i

theory. Although extra RAM, processing power and bandwidth may improve performance, this

solution is flawed as it does not address the core reasons for poor performance, which is XML string

processing and semantic evaluation on ontologies at initialisation time. Due to the level of XML string

 80

processing involved with XSLT methods for inference it is unlikely that this method can be used in

large scale semantic applications.

It is necessary to target a query specifically to the source for appropriate information as it is needed. In

er is to not only to optimise the retrieval of information from

es for storing meta-information

is the lack of support in the currently available middle-ware stacks used in business applications [39].

This is interesting with regards to OWL individuals. OWL individuals can be thought of as instances of

 be updated. For example, after a purchase operation, the amount of a

 scales to enterprise computing demands.

e

ent architecture

plement a semantic framework such as the one described in

addition, the task of any query optimis

ontology sources, but also coordinate queries that span multiple sources [39]. SNOBASE [39] by IBM

is one initiative to address the problem of integrating and scaling ontologies into enterprise applications.

IBM claim that the greatest barrier to more wide spread use of ontologi

SNOBASE is an API that provides optimisation techniques to rapidly enhance the speed of semantic

inferences.

OWL classes. Individuals contain values and data that represent real instances of OWL concepts. Using

the E-Commerce scenario in this Dissertation, it is easy to imagine a case where instance data relating

to an OWL individual needs to

particular instance of Wine may need to be decremented. A flat file structure is not an ideal way to

manage this kind of operation, due to potential problems with concurrency and random access of files.

Databases, on the other hand provide locking mechanisms to ensure data integrity. Databases are a

proven technology that

7.3.2 Internet Scalability

This solution proposed in this research to address our objectives should be regarded as a technology

showcase, rather than an Internet scale application. There are some notable issues that would limit its

usage in an enterprise scale. For example, ontologies are stored in flat file format. This approach is

suitable when the ontologies data is being modified iteratively during development but flat files lack th

ability to support usage by several clients concurrently. Using an enterprise grade database would

improve this issue.

To improve performance and scalability, it is recommended that a distributed compon

such as the J2EE standard be used to im

this research. The Agent components used in this scenario could be migrated to EJB Session Beans,

where as Ontology access and persistence could be mapped to EJB Entity Beans. Integration with

database back-ends could be achieved to allow for query optimisation.

 81

7.3.3 Semantic Tools

We used the Jena API to enable in-memory initialisation and manipulation of OWL ontologies at

runtime. Jena is a comprehensive and mature API for developing semantic applications, but we believe

that it is not suitable for use inside a reasoner component, unless it’s functionality is extended to allow

for query optimisation, outlined in Section 7.3.1.

The OWL-S API used during this research will, when completed provide developers with a suitable,

robust API for use with OWL-S applications. The API provides functionality to allow parsing and

invocation of OWL-S processes.

During Ontology creation, we identified a short-coming in current ontology mark up tools like Protégé

[59] and OILED [60]. This limitation is being addressed with OWL-S plug-in development for these

ontology creation environments. Also, tools like WSDL2OWLS [61] which can create OWL-S ontology

skeletons from WSDL files will ease the burden on ontology providers. We propose that Protégé

should incorporate a WSDL2OWLS tool to aid ontology providers with expressing Profile Model

concepts and also with incorporating complex ontological descriptions in to OWL-S instances.

7.4 Final Remarks

OWL-S offers a rich and expressive framework for adding semantics to Web Services. Its full potential

has not yet been realised. As OWL-S matures, semantic frameworks will be easier to design and

implement, due to improvements in development tools, advances in Web Service computing and

alignment of current research domains referenced in Section 3.1. We believe traditional methods of

software development will eventually incorporate methods to semantically annotate software at

development time to reduce human involvement in the annotation of ontologies and semantics.

When the Internet exploded at the turn of the nineties, it was impossible to imagine the impact and

benefits it brought to society. We believe that this will also be true for the Semantic Web. Our research

has shown that enriched applications21 can be built using semantic technologies and specifically OWL-

S, but it is obvious that there is still more work to be done22.

Our research also identified performance issues relating to semantic inference23. We have proposed

employing query optimisation techniques using databases to remedy inference performance24. We have

21 Discussed in Section 4.2

22 Discussed in Section 7.3

23 Discussed in Section 6.2.1

24 Discussed in Section 7.3.1

 82

also demonstrated how OWL-S can be use Agents infer and understand the semantic

similarities between disparate Web Services and how reasoners can be used to automate this.

With regards to our research effort, furthe estigating A.I. planning techniques to aid

in service composition. With A.I. planning, our framework can be run inside a planning engine, perhaps

ll or developing custom JESS functions to extend the API’s functionality, similar to the

d to enable

r work includes inv

using a JESS she

APeLS reasoner profiled in Section 6.3.

We believe that with research into OWL-S based service composition planning, security and transaction

monitoring, coupled with more powerful reasoning capabilities incorporating OWL rule based mark-up

languages, semantic frameworks will enable new and improved models for Ad-hoc E-Commerce

transactions and underpin the next generation of Internet based E-Commerce B2C Applications.

 83

Chapter 8

APPENDIX

8 Appendix

This chapter documents how the Java web application was built using the framework. It also details a

ations using HTTP parameters, which is used in the demo

-Controller pattern [47] is applied to the Web Application. This pattern allows for the

clean separation of the user interface and the underlying sub-system. The View in this application

e

Web Pages are the View component.

ts Lifecycle methods.

r,

Composition and Invocation functionality. The Agent decouples clients (in this case the Servlet) from

method for controlling the Agent oper

application.

8.1 Model – View – Controller

The Model-View

relates to the user interface that a user interacts with. The Controller is a business logic component that

controls the process flow of the application and the Model is the underlying data representation of the

application. The framework is analogous to the Model, the Agent is analogous to the Controller and th

8.1.1 Web Layer

The JSP pages render the content produced by the Agent component. The JSP is the View component

in this architecture. A HTTP Servlet [30] is used to allow a user to interact with the Agent via the JSP

Web Pages. The Servlet invokes the Agen

8.1.2 Agent Control Layer

Figure 8.1.1 is a class diagram detailing the relationship between the Servlet Web Layer and the Agent

subsystem. The Agent acts as a Mediator [31] to the Discovery, Candidate Selection, Reasone

knowing the specifics of the subcomponents and abstracts the underlying technologies the Agent uses

to achieve its goals. The Agent is stateless and when state is needed, this is passed into the Agent after

initialisation in the form of the XML user profile, stored in this case inside the Servlet HTTP Session.

 84

Figure 8.1.1: class diagram sowing the Agents relationship to the client Servlet and sub system.

Figure 8.1.1 shows the Invoker Servlet class is dependent on the Agents interface but is not aware of

the subsystems specifics. The Agent mediates object communication between client and sub system.

8.2 HTTP Framework Control Parameters

The Servlet exposes the generic “service” method defined in the

javax.servlet.GenericServlet super class. The implementation of the service method

 85

examines the HTTP Request object for a “page” and “action” HTTP parameter. These parameters

should be passed into the Servlet as “hidden” input parameters.

PI is used to invoke the named method on the Servlet. This operation will typically carry

out some sort of processing, resulting in an XML document which can be rendered by the JSP page

ouse by invoking SOAP messages on

the service. There is no financial transactions taking place as this is only a demonstration, therefore

8.2.1 HTTP Redirect Parameter

The “page” parameter tells the Dispatcher Servlet which JSP page is responsible for processing the

output of this request. The Servlet uses the Request Dispatcher controller provided by the Java Web

Container to redirect requests.

8.2.2 HTTP Action Parameter

The “action” parameter tells the Dispatcher Servlet what Servlet operation to invoke. The Java

reflection A

specified by the “page” parameter. It is assumed that the operation exists otherwise a

java.lang.NoSuchMethod Exception is raised.

8.3 E-Commerce System

The E-Store System stores a collection of product items (wine, cheese or cameras) in a relational

database, and maps fictional vendors to certain items. The resulting data model is basically a set of

virtual e-sellers with warehouses of tangible products, but of course fictional stock levels. A client

program to this Web Service can purchase goods from the Wareh

security is not a concern.

 86

Bibliography

[1] UDDI. The UDDI Technical White Paper. http://www.uddi.org/, 2000.

[2] W3C. Extensible mark-up language (xml) 1.0 (second edition). http://www.w3.org/TR/2000/REC-

xml-20001006, 2000.

[3] W3C. Soap version 1.2, w3c working draft 17 December 2001. http://www.w3.org/TR/2001/WD-

soap12-part0-20011217/, 2001.

[4] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services

[7] W3C. The Semantic Web, http://www.w3.org/2001/sw/.

[10] Erven Sirin, James Hendler and Bijan Parsia. Semi-automatic Composition of Web Services using

ption of a Semantic Web, In Proceedings

of the First International Semantic Web Conference on The Semantic Web, Pages 419 – 422, 2002.

1993.

 Syntax Specification, http://www.w3.org/TR/rdf-syntax-grammar/

logy Language Overview, http://www.w3.org/TR/owl-features/

Description Language (WSDL) 1.1.

[5] IBM Corporation. Web Services Introduction. Published with IEEK Technology Toolkit. 2003

[6] The OWL Services Coalition. OWL-S, Semantic Mark-up for Web Services, Version 1.0,

http://www.daml.org/services/owl-s/

[8] T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientic American, 284(5):34{43,

May 2001.

[9] Massimo Paolucci et al. Importing the Semantic Web in UDDI, In Proceedings of E-Services and

the Semantic Web Workshop, 2002

Semantic Descriptions, In Web Services: Modelling, Architecture, and Infrastructure workshop in

ICEIS 2003, Angers, France, April 2003.

[11] Brian McBride. Four Steps Towards the Widespread Ado

[12] T. R. Gruber. A translation approach to portable ontologies. Knowledge Acquisition, 5(2):199-220,

[13] W3C. RDF/XML

[14] W3C. OWL Web Onto

 87

[15] Semantic Web Services Initiative Architecture Committee (SWSA). SWSA Roadmap

http://www.daml.org/services/swsa/

[16] F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer- awarana. Business

Process Execution Language for Web Services, Version 1.0, July 2001. http://www-

106.ibm.com/developerworks/webservices/library/ws-bpel/

[17] W.M.P van der Aalst et al. Advanced Workflow Patterns, In Cooperative Information Systems

[19] Christopher Gibson and Chris Sharp. ARIES: Assured Reputation Information Exchanged

Securely, IBM UK Laboratories. 2003

[20] Jonathan Dale and Luigi Ceccaroni. Pizza and a Movie: A Case Study in Advanced Web Services,

In Agencities: Challenges in Open Agent Environments Workshop, Autonomous Agents and Multi-

Agents Systems Conference 2002, Bologna, Italy, July 2002.

[21] Dan Wu et al. Automating DAML-S Web Services Composition Using SHOP2, In Proceedings of

2nd International Semantic Web Conference (ISWC2003), Sanbiel Island, Florida, October 2003.

[22] Naveen Srinivasan. Matchmaker DAML-S UDDI Client,

http://www.daml.ri.cmu.edu/matchmaker/.

[23] Darpa Organisation, Daml Dining Demo, http://orl04.drc.com/damldining/find.asp.

[24] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, Peter Patel-Schneider. The

Description Logic Handbook, Theory, Implementation and Applications, January 2003.

[25] W3C. Naming and Addressing: URIs, URLs, http://www.w3.org/Addressing/

[26] W3C. Uniform Resource Identifiers (URI): Generic Syntax, http://www.ietf.org/rfc/rfc2396.txt

[27] W3C. Hypertext Transfer Protocol -- HTTP/1.1,

http://www.w3.org/Protocols/HTTP/1.1/rfc2616.pdf.

(CoopIS) , Edinburgh, 2000

[18] Alan H. Karp. E-Speak E-xplained, Hewlett-Packard Laboratories, Palo Alto, California

 88

[28] Jonathan B. Postel. Simple Mail Transfer iversity of Southern California, 4676

Admiralty Way, Marina del Rey, California 90291, August 1982.

[29] Sun Microsystems. Java Server Pages Te ava.sun.com/products/jsp/.

osystems. Java Servlet Technology, http://java.sun.com/products/servlet/.

000.

I registry, http://ws.apache.org/juddi/.

anguage Family (XSL), http://www.w3.org/Style/XSL/.

on Object Request Broker Architecture: Core Specification,

MI),

http://java.sun.com/products/jdk/rmi/.

http://www.cc.gatech.edu/computing/classes/cs3361_96_spring/Fall95/Notes/cd.html.

[41] Bertrand Meyer, Object-oriented software construction (2nd ed.), Prentice-Hall, Inc., Upper Saddle

River, NJ, 1997

[42] OMG. OMG IDL: Details, http://www.omg.org/gettingstarted/omg_idl.htm.

Protocol, Un

chnology, http://j

[30] Sun Micr

[31] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns, 21st Printing,

November 2

[32] Apache Group. JUDDI UDD

[33] Apache Group. Xindice XML database, http://xml.apache.org/xindice/.

[34] Network World Fusion. XML appliances speed Web services,

http://www.nwfusion.com/news/tech/2003/1208techupdate.html.

[35] W3C. The Extensible Stylesheet L

[36] OMG. Comm

http://www.omg.org/docs/formal/04-03-01.pdf.

[37] Sun Microsystems. Java Remote Method Invocation (Java R

[38] W3C. Document Object Model (DOM), http://www.w3.org/DOM/.

[39] Juhnyoung Lee, Richard Goodwin, Yiming Ye, Rama Akkiraju. Towards Enterprise-Scale

Ontology Management, IBM T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532,

Yet To Be Published.

[40] Conceptual Dependency. A Pocket Guide To Conceptual Dependency,

 89

[43] DAML Services Coalition. OWL-S 1.1 Beta Release, http://www.daml.org/services/owl-s/1.1B/.

[44] W3C. XML Schema, http://www.w3.org/XML/Schema.

[45] Naveen Srinivasan. Matchmaker OWL-S 1.0 2 UDDI,

http://projects.semwebcentral.org/frs/?group_id=31&release_id=49.

[46] Darpa Organisation. SWSA Use Cases, http://www.daml.org/services/use-cases/architecture/.

[47] Glenn E. Krasner and Stephen T. Pope. A cookbook for using the model-view-controller user

interface paradigm in small talk-80. Journal of Object Orientated Programming. 1(3):26-49,

August/September 1988.

[48] Rama Akkiraju, Richard Goodwin, Prashant Doshi, Sascha Roeder. A Method for Semantically

Enhancing the Service Discovery Capabilities of UDDI, IBM T. J. Watson Research Center, 19 Skyline

Drive, Hawthorne, NY 10532, 2004. Yet To Be Published

[49] Prashant Doshi, Richard Goodwin, Rama Akkiraju and Sascha Roeder. Extending Semantic

Matching for Application in Business Process Integration, Dept. of Computer Science, Univ. of Illinois,

851 S. Morgan St, Chicago, IL 60607, 2004.

[50] Mindswap Java API, http://www.mindswap.org/2004/owl-s/index.shtml.

[51] Liang-Jie Zhang & Qun Zhou.Aggregate UDDI Searches with Business Explorer for Web

Services, IBM Developer Works, March 2002

[52] Declan Dagger, Owen Conlan, Vincent P. Wade. An Architecture for Candidacy in Adaptive

eLearning Systems to Facilitate the Reuse of Learning Resources, Trinity College Dublin.

[53] JESS, http://herzberg.ca.sandia.gov/jess/.

[54] Hewlett-Packard Development Company. Jena, http://jena.sourceforge.net/.

[55] Sun Microsystems. Java Beans, http://java.sun.com/products/javabeans/.

[56] JDOM. JDOM API, http://www.jdom.org/.

 90

[57] W3C. RDQL – A query language for RDF, http://www.w3.org/Submission/2004/SUBM-

RDQL-20040109/.

[58] MySQL Database. http://dev.mysql.com/

[60] OilEd Ontology Editor. http://oiled.man.ac.uk.

eb Services, In Proceedings of the IEEE

International Conference on Web Services (ICWS’04) – Volume 00, June 2004.

[59] Protégé Ontology Editor. Stanford Medical Informatics, http://protege.stanford.edu/.

[61] Massimo Paolucci & Naveen Srinivasan.WSDL2OWL,

http://projects.semwebcentral.org/projects/wsdl2owl-s/.

[62] University of Maryland. SHOP2, http://www.cs.umd.edu/projects/shop/.

[63] Andreas Eberhart. Ad-hoc Invocation of Semantic W

 91

Abbreviations

APeLS Adaptive Personalised E-Learning Service

ured Reputation Information Exchanged Securely

nguage for Web Services

ark-up Language

DAML-S DARPA Agent Mark-up Language for Services

DOM Document Object Model

Protocol

Java Expert System Shell

Java 2 Enterprise Edition

KDEG Knowledge & Data Engineering Group

condition Effect

OIL Ontology Inference Layer

ge for Services

RAM Random Access Memory

 Universal, Description, Discovery and Integration

UML Unified Modelling Language

WSDF Web Service Description Framework

A.I. Artificial Intelligence

API Application Programming Interface

ARIES Ass

B2C Business to Consumer

BE4WS Business Exploration for Web Service

BPEL4WS Business Process Execution La

CPU Central Processing Unit

DAML DARPA Agent m

DARPA Defense Advanced Research Projects Agency

EJB Enterprise Java Beans

HTTP Hyper Text Transfer

JESS

JDOM Java Document Object Model

JSP Java Server Pages

J2EE

IBM International Business Machines

IOPE Input Output Pre

OO Object Orientated

OWL Web Ontology Language

OWL-S Web Ontology Langua

RDF Resource Description Framework

RDQL Resource Description Query Language

SMTP Simple Mail Transfer Protocol

UDDI

URI Uniform Resource Identifier

 92

WSDL Web Service Description Language

WSFL Web Service Flow Language

W3C World Wide Web Consortium

XML Extensible Mark-up Language

XPATH Extensible Mark-up Path Language

XSL Extensible Style Sheet Language

XSLT Extensible Style Sheet Language for Transformation

XSL-FO XSL Formatting Objects

 93

	1 Introduction
	1.1 Web Service Computing
	1.2 The Semantic Web
	1.3 Semantic Web Services
	1.3.1 E-Commerce Enrichment

	1.4 Research Objectives
	1.4.1 Enabling Semantic Discovery using UDDI
	1.4.2 Candidate Selection using Semantic Reasoning
	1.4.3 Enabling Service Composition
	1.4.4 Automating Semantic Service Invocation

	1.5 Dissertation Road Map

	2 Background
	2.1 Semantic Web
	2.1.1 Concepts

	2.1.2 Resource Description Framework (RDF)
	2.1.3 Web Ontology Language (OWL)
	2.1.4 Intentional and Extensional Knowledge
	2.1.5 OWL Example
	2.1.6 Enforcing Semantic Relationships
	2.1.6.1 OWL Equivalency
	2.1.6.2 OWL Same Individual As
	2.1.6.3 OWL Sub Class Of
	2.1.6.4 OWL All Different

	2.2 Web Services
	2.2.1 Universal Description, Discovery and Integration (UDDI
	2.2.2 Web Service Definition Language (WSDL)
	2.2.3 Simple Object Access Protocol (SOAP)

	2.3 OWL-Services (OWL-S)
	2.3.1 Introducing OWL-S 1.0
	2.3.2 Service Profile Ontology
	2.3.3 Process Model Ontology
	2.3.4 Service Grounding Ontology
	2.3.5 OWL-S complementing WSDL standards
	2.3.6 Service Description Ontology

	3 State of the Art
	3.1 Semantic Service Discovery
	3.1.1 E-Speak
	3.1.2 DAML-S Matchmaker
	3.1.3 UDDI Enhancement
	3.1.4 Evaluation of Semantic Service Discovery Research

	3.2 Candidate Selection
	3.2.1 DAML Dining
	3.2.2 Evaluation of Candidate Selection

	3.3 Semantic Service Composition
	3.3.1 BPEL4WS
	3.3.2 Semi-Automatic Service Composer Tool
	3.3.3 Pizza and a Movie Selection and Composition
	3.3.4 Evaluation of Service Composition

	3.4 Semantic Service Invocation
	3.4.1 OWL-S API
	3.4.2 Web Service Description Framework
	3.4.3 Evaluation of Service Invocation

	3.5 Conclusion

	4 Design
	4.1 Framework Overview
	4.1.1 UDDI Integration for Semantic Discovery
	4.1.2 Candidate Selection using Semantic Reasoning
	4.1.3 Service Composition using Capability Reasoning
	4.1.4 Semantic Service Invocation

	4.2 Application Description and Use Cases
	4.2.1 Non-Functional Service Attributes
	4.2.1.1 Quality of Service
	4.2.1.2 Reliability
	4.2.1.3 Geographical Constraints
	4.2.1.4 Service Classification
	4.2.1.5 Currency Classification
	4.2.1.6 Temporal Classification
	4.2.1.7 Geo-coding
	4.2.1.8 Pre-conditions
	4.2.1.9 Post-conditions

	4.2.2 Domain Description
	4.2.3 Domain Issues
	4.2.4 Actors & Goals
	4.2.5 Use Case UML
	4.2.6 Ontologies and Semantic Descriptions
	4.2.7 Scenario Steps
	4.2.8 Use Case Deployment Architecture

	5 Framework Implementation
	5.1 Overview
	5.2 Assisting Technologies
	5.3 Custom XML Schema
	5.4 Capability Advertisement and Service Discovery
	5.4.1 Publishing OWL-S Semantically in JUDDI
	5.4.2 UDDI Discovery
	5.4.3 Discovery Sequence

	5.5 Candidate Selection
	5.5.1 Semantic Reasoner
	5.5.2 Inference Functionality
	5.5.3 Reasoner Component Overview
	5.5.4 Reasoner Functionality
	5.5.5 Reasoner Inference Thread
	5.5.6 Candidate Priority Ordering
	5.5.7 Reasoner Sequence

	5.6 Service Composition Functionality
	5.6.1 OWL-S Functionality
	5.6.2 Executing a Service Composition

	5.7 Automated Invocation Functionality
	5.8 Universal Functionality

	6 Framework Evaluation
	6.1 Implementation Evaluation
	6.1.1 UDDI Discovery Portal
	6.1.2 Candidate Service Selection
	6.1.3 Service Composition
	6.1.4 Automated Service Invocation
	6.1.5 Discovery using Non-Functional Service Attributes

	6.2 Performance Tests
	6.2.1 Inference Overhead
	6.2.1.1 Inference Methods
	6.2.1.2 Jena API Approach
	6.2.1.3 XSL Approach
	6.2.1.4 Inference Performance Tests
	6.2.1.5 Jena Vs XSL
	6.2.1.6 Jena Conclusion
	6.2.1.7 XSL Conclusion
	6.2.2 Reasoner Implementations
	6.2.2.1 Multi Threaded Vs Single Threaded Implementation
	6.2.2.2 Conclusion

	6.2.3 Ontology Persistence Storage Tests
	6.2.3.1 Jena DB Vs Jena HTTP
	6.2.3.2 Conclusion

	6.3 Adaptive Personalised E-Learning Service Evaluation
	6.3.1 XML Database constraint
	6.3.2 Pre-Run-time Configuration
	6.3.3 Scalability issues
	6.3.4 APeLS Builds New Knowledge

	7 Conclusion
	7.1 Research Review
	7.1.1 Semantic Service Discovery
	7.1.2 Service Selection
	7.1.3 Semantic Service Composition
	7.1.4 Semantic Service Invocation

	7.2 OWL-S
	7.3 The Bigger Picture
	7.3.1 Inference Overhead
	7.3.2 Internet Scalability

	7.3.3 Semantic Tools
	7.4 Final Remarks

	8 Appendix
	8.1 Model – View – Controller
	8.1.1 Web Layer
	8.1.2 Agent Control Layer

	8.2 HTTP Framework Control Parameters
	8.2.1 HTTP Redirect Parameter
	8.2.2 HTTP Action Parameter

	8.3 E-Commerce System

	Bibliography
	Abbreviations

