

TInternet Worm Detection as part of a Distributed

Network Inspection System

Eamonn Linehan

A dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

2004

 ii

Declaration

I declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or

any other university.

Eamonn Linehan

13P

th
P September 2004

 iii

Permission to Lend / Copy

This dissertation may be borrowed or copied upon the request with the permission of the

Librarian, Trinity College, University of Dublin. The copyright belongs jointly to the

University of Dublin and Eamonn Linehan.

Eamonn Linehan

13P

th
P September 2004

 iv

Acknowledgements

I’d like to thank my supervisor, Dr. Ciaran Mc Goldrick, for being so easy to work with. I’d

also like to thank Merial Huggard, Arkaitz Bitorika, Mathieu Robin, Stephen Lally and

Eamonn Hughes for their help. I’d like to thank my brother, Conor, for his help with my

writing and finally the whole 2004 NDS class who made the last year so enjoyable.

Connections to Funded /Collaborative Projects

This project will extend some of the ideas and concepts that have recently been

investigated as part of an EI Basic Research project on analytical and empirical AQM

evaluation. This work will be carried out in collaboration with the researchers working on

the EI Basic Research AQM project.

In particular Arkaitz Bitorika is currently researching an extension of Active Queue

Management to handle undesired or malicious traffic. That would include controlling

(D)DoS or worm traffic while keeping to the scalability and simplicity principles of Active

Queue Management.

This dissertation will address part of this large problem, namely the identification of

malicious traffic.

 v

Abstract

The most widely publicized, and arguably most damaging, types of malicious traffic on the

Internet today include worms, spam, viruses and denial of service attacks. Internet worms

self propagate across networks exploiting flaws in operating systems and services,

spreading viruses and congesting network links. Worms constitute a significant security

and performance threat and have recently been used to facilitate distributed denial of

service (dDoS) attacks. It is the aim of this dissertation to investigate approaches for

detecting a wide range of malicious activity such as worms and (d)DoS. This dissertation

describes the design and implementation of an object orientated framework for distributed

intrusion detection. The framework features heterogeneous sensors with a configurable

event source that can adapt by dynamically composing components at run-time. The

sensors are controlled remotely by a management application that can configure, extend

and control sensors individually. The framework is extensible and allows researchers to

quickly implement and evaluated detection techniques in a live network environment. A

number of components have been implemented for the framework including a component

designed to detect internet worms. It was found that this component could successfully

detect a range of malicious activity including worms on both low utilisation dial-up links

and gateway router links.

 vi

Table of Contents

TU1UT TUIntroductionUT.. 1

TU1.1UT TUOverviewUT .. 4

TU2UT TUBackground UT... 5

TU2.1UT TUIntroductionUT ... 5
TU2.2UT TUProperties of Network TrafficUT ... 7
TU2.3UT TUNetwork Traffic Analysis TechniquesUT.. 8

TU2.3.1UT TUIntroductionUT.. 8
TU2.3.2UT TUTime Frequency AnalysisUT... 8
TU2.3.3UT TUWaveletsUT .. 8
TU2.3.4UT TUData Mining TechniquesUT .. 9
TU2.3.5UT TUEigen ValuesUT ..10

TU2.4UT TUA Taxonomy of Network AnomaliesUT ...10
TU2.4.1UT TUIntroductionUT...10
TU2.4.2UT TUNetwork Operation AnomaliesUT...11
TU2.4.3UT TUFlash CrowdsUT ...11
TU2.4.4UT TUNetwork AbuseUT ...11
TU2.4.5UT TUOtherUT ..15

TU2.5UT TUIntrusion DetectionUT ...15
TU2.5.1UT TUSignature BasedUT ...16
TU2.5.2UT TUAnomaly DetectionUT..17
TU2.5.3UT TUNeural Networks for Anomaly Detection UT ...18
TU2.5.4UT TUStatistical Anomaly DetectionUT ...18
TU2.5.5UT TUProtocol Anomaly DetectionUT..18
TU2.5.6UT TUGraph based Anomaly DetectionUT ...19
TU2.5.7UT TUPayload Based Anomaly DetectionUT ...20

TU2.6UT TUEvading detectionUT..20
TU2.6.1UT TUIntroductionUT...20
TU2.6.2UT TUFlooding UT ..20
TU2.6.3UT TUFragmentationUT..21
TU2.6.4UT TUEncryptionUT ...21
TU2.6.5UT TUObfuscation UT ...21

 vii

TU3UT TUNetwork Monitoring / Intrusion DetectionUT.............................. 22

TU3.1UT TUNetwork SniffersUT ...22
TU3.2UT TUNetwork MonitorsUT..23
TU3.3UT TUIntrusion Detection SystemsUT ...24
TU3.4UT TUDefending Against Network Abuse UT ..26

TU3.4.1UT TUIntroductionUT...26
TU3.4.2UT TUNetwork Firewalls UT ...26
TU3.4.3UT TUIP TracebackUT ..27
TU3.4.4UT TUAuthorization in IP networks UT...28
TU3.4.5UT TUEdge Router Filtering PoliciesUT..28
TU3.4.6UT TUHoneypotsUT ...29

TU3.5UT TUExperimental Systems UT...29
TU3.5.1UT TUIntroductionUT...29
TU3.5.2UT TUMULTOPSUT ..30
TU3.5.3UT TUEMERALDUT ..31
TU3.5.4UT TUHoneycombUT ...31

TU3.6UT TUSummaryUT...32

TU4UT TUDistributed Network Inspection SystemUT 34

TU4.1UT TUIntroductionUT ..34
TU4.2UT TURequirements UT..34
TU4.3UT TUDesign ChoicesUT ..37

TU4.3.1UT TUIntroductionUT...37
TU4.3.2UT TUDevelopment PlatformUT ...37
TU4.3.3UT TUOnline Capture or SimulationUT..38
TU4.3.4UT TUGateway Routers or Dial-up LinksUT ...38

TU4.4UT TUSpecificationUT ...40
TU4.4.1UT TUIntroductionUT...40
TU4.4.2UT TUOverall Approach (Distributed Sensor Network)UT.....................................40
TU4.4.3UT TUSensor ArchitectureUT ..42
TU4.4.4UT TUSensor Data FlowUT..43
TU4.4.5UT TUPluggable Component Based ArchitectureUT ...44
TU4.4.6UT TUPackage StructureUT ..46
TU4.4.7UT TUSensor AlgorithmsUT ..47
TU4.4.8UT TUEvent SourceUT ...47
TU4.4.9UT TUCommunication & ControlUT ..48

 viii

TU4.4.10UT TUSecurityUT ..50
TU4.4.11UT TUSensor ManagerUT ...52
TU4.4.12UT TUResponse to DetectionUT...52

TU5UT TUDNIS Dynamically Pluggable Components UT 53

TU5.1UT TUIntroductionUT ..53
TU5.2UT TUSignal Generation Plug-insUT ..57

TU5.2.1UT TUIntroductionUT...57
TU5.2.2UT TUPort / Address Spread Plug-in UT ...57
TU5.2.3UT TUTCP Stream Reassembly UT ..58
TU5.2.4UT TUTCP / IP Protocol Anomaly Accounting Plug-insUT......................................59

TU5.3UT TUSignal Analysis Plug-insUT ..60
TU5.3.1UT TUIntroductionUT...60
TU5.3.2UT TUWavelets Analysis Plug-inUT ..61
TU5.3.3UT TUMachine LearningUT..64
TU5.3.4UT TUPayload Pattern MatchingUT...66
TU5.3.5UT TUInternet Worm DetectionUT ...67

TU5.4UT TUWorm Detection ComponentUT..72

TU6UT TUData Gathering UT.. 77

TU6.1UT TUData Collection InfrastructureUT...77
TU6.2UT TUData SetsUT...80

TU7UT TUEvaluationUT ... 83

TU7.1UT TUIntroductionUT ..83
TU7.2UT TUDetecting Scanning BehaviorUT ..85
TU7.3UT TUProtocol Anomaly DetectionUT ..88
TU7.4UT TUComputational ComplexityUT ..90
TU7.5UT TUPattern Matching for Signature Generation UT ...91

TU8UT TUWorm Detection Results UT.. 95

TU8.1UT TUIntroductionUT ..95
TU8.1.1UT TUSignal Effectiveness WeightingUT ...95

TU8.2UT TUDARPA 1998 IDS Evaluation DatasetUT...96
TU8.2.1UT TUWednesday Week 6UT...96
TU8.2.2UT TUThursday Week 6UT..97

 ix

TU8.2.3UT TUFriday Week 6UT ..99
TU8.3UT TUHoneypot TrafficUT..100
TU8.4UT TUHoneypot & Background TrafficUT...101
TU8.5UT TUNormal Dial-up Traffic (False Positives)UT ..102
TU8.6UT TUResults SummaryUT ..103

TUConclusionUT .. 104

TU8.7UT TUSummaryUT...104
TU8.8UT TUDNIS Requirements SatisfiedUT ..105
TU8.9UT TUFuture ResearchUT ..107

TU9UT TUReferencesUT .. 110

TU10UT TUAppendix UT .. 115

TU10.1UT TUClassification of IDS SystemsUT...115

 x

List of Figures

TUFigure 1 - Research Area OverviewUT .. 6
TUFigure 2 - Distributed Denial of ServiceUT..14
TUFigure 3 - Distributed ArchitectureUT ..40
TUFigure 4 - DNIS Sensor ArchitectureUT..42
TUFigure 5 - Sensor Data Flow DiagramUT ..43
TUFigure 6 - Plug-in Architecture DiagramUT ...44
TUFigure 7 - Plug-in Interface HierarchyUT ..45
TUFigure 8 - Sensor Component InterfaceUT ...45
TUFigure 9 - DNIS Package StructureUT..46
TUFigure 10 - Component Output LoggingUT ...47
TUFigure 11 - DNIS Sensor CaptureUT..47
TUFigure 12 - DNIS Network Sensor Remote InterfaceUT ..49
TUFigure 13 - Sensor Status FieldsUT ...49
TUFigure 14 - DNIS CommunicationUT..51
TUFigure 15 - DNIS Secure CommunicationsUT ..51
TUFigure 16 - Sensor Manager User InterfaceUT ..52
TUFigure 17 - Port Spread AlgorithmUT...57
TUFigure 18 – TCP Stream reassembly. UT ..59
TUFigure 19 - IPv4 HeaderUT ..59
TUFigure 20 - DNIS Plug-in ChainingUT...61
TUFigure 21 - Wavelet Noise FilteringUT..61
TUFigure 22 - Original Signal (RMSE of Port and Address Spread)UT62
TUFigure 23 - Graph after Inverse Wavelet Transformation showing Coefficients.UT63
TUFigure 24 - Wavelet Coefficient FilteringUT...63
TUFigure 25 - Wavelet Coefficient FilteringUT...64
TUFigure 26 - Machine Learning Plug-in Class DiagramUT ..65
TUFigure 27 – Payload Size Component Output due to WormUT ...68
TUFigure 28 - Worm Activity Characterized by TFTP transfers over UDP.UT69
TUFigure 29 – The effect Host Spread and Port Spread on RMSEUT70
TUFigure 30 – Incoming / Outgoing Traffic, Ratio and Difference (Below Line)UT70
TUFigure 31 – Vulnerability Scanning Component.UT ..71
TUFigure 32 - Worm Detection AlgorithmUT...72
TUFigure 33 - Worm Detection Example SourceUT ..73

 xi

TUFigure 34 - Worm Detection Isolated SignalUT..73
TUFigure 35 - Worm Detection Filtered SignalUT ..74
TUFigure 36 - Worm Detection Sliding WindowUT ...74
TUFigure 37 - Probability of WormUT ..76
TUFigure 38 - Honeypot Data GatheringUT ..77
TUFigure 39 - Normal Usage Packet Capture SetupUT ...79
TUFigure 40 - Ports in use During Port ScanUT...85
TUFigure 41 - Unique Ports during Port ScanUT..86
TUFigure 42 - Port Spread During Port ScanUT...86
TUFigure 43 - Traffic Direction Ratio during Port ScanUT ...87
TUFigure 44 - Worm Detection on Port Scanning DataUT ...88
TUFigure 45 - Dial-up Traffic 2, IP Protocol Anomaly DetectionUT88
TUFigure 46 - Honeypot Worm Dataset 2, TCP Protocol Anomaly DetectionUT.......................90

 xii

List of Tables

TUTable 1 - Network SniffersUT ...23
TUTable 2 - Network MonitorsUT ..24
TUTable 3 - Intrusion Detection SystemsUT ...26
TUTable 4 - Worm Detection Signal FluctuationsUT ...67
TUTable 5 - Illustration of Sliding Window AnalysisUT ...75
TUTable 6 - Nmap Scan of HoneypotUT...78
TUTable 7 - Datasets used for evaluationUT...80
TUTable 8 - DARPA Dataset Attacks (Wed - Fri Week 6)UT...82
TUTable 9 - Sample Payload Pattern Match ReportUT ..94
TUTable 10 - Signal Effectiveness WeightsUT ...95
TUTable 11 - DARPA 1998 (Wednesday) ResultsUT ...96
TUTable 12 - DARPA 1998 (Thursday) ResultsUT ..97
TUTable 13 – DARPA 1998 (Friday) ResultsUT..99
TUTable 14 - Honeypot Traffic Worm DetectionUT ..100
TUTable 15 - Honeypot & Background Traffic ResultsUT...101
TUTable 16 - Background Dial-up Traffic DetectionUT..102

 1

1 Introduction

Network Operators spend a lot of time monitoring networks for anomalies such as

outages, configuration changes, flash crowds, abuse and attacks. The most damaging of

these anomalies are arguably bandwidth attacks. Both Internet wormsTP

1
PT and denial of

service attacks fall into this category and have received a lot of media attention in recent

years due to the effects that these attacks have on government and business throughout

the world, causing billions of dollars in damage and affecting the lives of millions. The

term ‘Cyber Terrorism’ is widely used to refer to these types of attacks, the most

damaging of which can cost billions of dollars. Dealing with the “LoveBug” (CERT/CC,

2000) virus cost nearly $10 billion when it struck in 2002 (Coleman, 2003). This figure

may seem extreme but if your look at the projected eCommerce transaction value for this

yearTP

2
PT, the Internet being down for just one day could disrupt nearly $6.5 billion worth of

transactions.

In a 2002 research study conducted by the Computer Crime Research Center, 90% of

respondents detected computer security breaches within the last twelve months. This

shows the extent of the problem and according to a recent survey by CERT/CC, the rate of

cyber attacks has been more than doubling every year in recent times with 137,529

incidents being reported to CERT in 2003.

Network Computing (www.networkcomputing.com) estimates the cost per single incident

of unknown buffer overflow attack to be $98,306. In 2002, financial losses due to viruses,

worms, etc were reported to average $283,000 per organization (CSI/FBI, 2003).

A recent paper presented at the Workshop on Economics and Information Security

(WEISS, 2004) predicted that a plausible worst-case worm could cause $50 billion direct

economic damage if it were to attack a widely used service in Microsoft Windows and carry

a destructive payload (Weaver & Paxson, 2004).

TP

1
PT The worms discussed in this dissertation are active worms as opposed to viruses (or

email worms) that require user interaction to assist their spread.

TP

2
PT A good overview including some useful statistics can be found in the document “The

Emerging Digital Economy”, US Dept. of Commerce, http://www.ecommerce.gov

 2

One of the reasons that these attacks are so damaging is that they cause bandwidth to

become saturated with attack traffic resulting in legitimate traffic being blocked due to

congestion and overloaded services. Recent attacks have also shown that critical

infrastructure (that one would assume would not be connected to the public internet) is

also vulnerable to attack. The Slammer worm disrupted some ATM’s and 911 operations

(Forno, 2003) and even Ohio's Davis-Besse nuclear power plants safety monitoring

systems were disabled for a number of hours (Poulsen, 2003). Likewise, Welchia

(Symantec, 2003) managed to reduce the United States Navy-Marine Corps Intranet

network capacity by three quarters, disrupting usage for about 100,000 users (Messmer,

2003) while the country was engaged in substantial military action. Malicious traffic can

also increase DNS latency by 230% and web latency by 30% even on highly over-

provisioned links (Lan Hussain & Dutta, 2003).

There is currently no way for the network itself to distinguish between attack traffic and

legitimate traffic. If it was possible for the network to classify network traffic in this way,

the network itself could counter any such attacks by blocking malicious hosts, modifying

AQM behaviour, informing upstream routers of the problem, sending packets to clients to

reset connections and terminate the attack or simply by informing network administrators

who could then deal with the problem.

We must look at which components of the network would be the most suitable candidates

to perform such detection and classification, and at what level in the hierarchical network

infrastructure it is most appropriate to place this functionality.

There are many devices present in the Internet that interact with traffic flows. The devices

that have the greatest control of, and access to traffic flows are the internet router and

firewall. The internet routers function is to correctly direct packets across the network.

Congestion can occur when the router receives incoming traffic faster that it can send

traffic on its outgoing links. In the presence of congestion, routers must make decisions

on which packets to drop. The algorithms used to do this are known as Active Queue

Management (AQM) algorithms. Current deployed AQM algorithms manage traffic in a

simplistic fashion. Many algorithms classify all User Datagram Protocol (UDP) traffic as

malicious or aggressive because of its unresponsive nature and throttle these flows in

order to protect Transmission Control Protocol (TCP) traffic flows. This classification may

have been sufficient heretofore but At present there are an increasing number of Internet

applications that rely on UDP to deliver soft real time streams. Many of these traffic flows

 3

are well behaved (some flow controlled at the application level) and should not, in

general, be aggressively penalized.

Thus, new techniques are needed to provide routers and other traffic control devices with

more accurately classified traffic flow information. This will allow AQM schemes to make

more informed and fairer decisions that may protect downstream devices and hosts from

the effects of congestion, in particular that caused by bandwidth attacks.

The majority of currently deployed schemes for protecting against such attacks work by

analyzing traffic flows at a border gateway router to an Autonomous System (AS). For

many such attacks, it is much simpler to detect that attack near the source or victim

machines. This is principally due to the complexity of current detection technology, which

is incapable of analysing high bandwidth backbone links in real-time (Das, 2000). Some

schemes (Gil & Poletto, 2001) also require that all traffic traveling in both directions be

visible to the device performing the analysis. On backbone links, the packets that

constitute a traffic flow may take different paths and so the entire flow can not be

observed at any single router interface. Backbone links are also often asymmetric,

carrying traffic in only one direction. However placing analysis and response functionality

in the network backbone may be more cost effective and could not as easily be

circumvented by attackers. An extensive literature survey identified no other work that is

looking at a low-level generic solution to this problem of traffic classification.

It is clear that identifying anomalies rapidly and accurately is critical to the efficient

operation of the network. A number of research papers which tackle the problem of

malicious traffic flows simply assume the presence of a method for differentiating

malicious or misbehaving flows from legitimate traffic (Yaar Perrig & Song, 2004).

This dissertation seeks to provide an extensible framework for making such

differentiations and makes use of real network data, to ensure that our results are reliable

and not biased by our own “unconscious assumptions” (Zanero & Savaresi, 2004).

 4

1.1 Overview

• Chapter 1. Introduction

• Chapter 2. Background

This chapter will cover all the background necessary to understand the rest of the

document. The chapter will introduce Intrusion Detection, Traffic Analysis, Evading

Detection and Network Anomalies.

• Chapter 3. Network Monitoring / Intrusion Detection

This chapter is a state of the art of network monitoring and intrusion detection

tools and approaches.

• Chapter 4. Distributed Network Inspection System

This chapter covers the intrusion detection framework proposed by this dissertation

and the implementation of a distributed sensor application.

• Chapter 5. DNIS Pluggable Components

This chapter explains how some of the detection components that were

implemented work.

• Chapter 6. Data Gathering

This chapter details how data was collected to evaluate the application..

• Chapter 7. Evaluation

TThis chapter will provide an evaluation of the distributed network inspection system

itself and several of it’s components.

• Chapter 8. Worm Detection Results

This chapter evaluates and detection of worms via the distributed network

inspection system using the test data collected.

• Chapter 7. Conclusions

This chapter summarises the work and includes sections explaining how the

distributed network inspection systems requirements were met and outlines

proposed future research.

 5

2 Background

2.1 Introduction

This dissertation deals with the concept of classifying traffic according to its desirability.

Current network traffic classification techniques are simplistic and rely on using IP packet

header data to create groups or aggregates of network traffic flows (Mahajan, Bellovin,

Floyd, Ioannidis, Paxson & Shenker, 2002). These aggregates may often be defined by

such metrics as TCP/UDP session information, topology or groups of users (protocol, IP

subnet address, VLAN), individual station applications (MAC address, 802.1D-1998,

802.1Q) or physical port. These aggregates are then used to enable Quality of Service

(QoS) profiles to be assigned to each group thereby allowing some traffic to be given

preference over other traffic. By identifying malicious or undesirable traffic on the network

these same techniques may be applied to ensure more reliable service to desirable traffic

on the network in the presence of bandwidth attacks and other malicious activity.

Figure 1 shows the relationship between the areas of research referred to and is intended

to clarify some of the terminology that this dissertation uses. Firstly, Network Policing is a

broad area of ongoing research. The key research directions in Network Policing can

generally be sub divided into Intrusion Detection, Misuse Detection and Network Security

Management.

Intrusion Detection refers to techniques for detecting previously unseen attacks, and

itself can be divided again into host based or network based detection. Host based

intrusion detection involves using application logs to monitor user activity on a host in an

attempt to discover sequences of actions or events that may indicate malicious activity.

Network based Intrusion Detection attempts to detect the same malicious activity by

analyzing the network traffic patterns traveling to and from local hosts. Network based

Intrusion Detection incorporates research in fields such as Traffic Analysis, probing attack

detection and traffic source identification.

Misuse detection is similar to Intrusion detection and incorporates many overlapping areas

of research. One significant difference is that Misuse Detection attempts to discover a re-

occurrence of a previously seen attack. This is done by either a rule based expert system

or using temporal attack signatures that describe the characteristics of known attacks.

 6

Unsupervised machine learning techniques are sometimes applied to allow the system

generalise the attack signatures and detect attacks that are similar to known attacks. The

majority of DoS attacks fall into this category since the characteristics of the attacks are

well known.

Finally, Network Security Management refers to the area of research concerned with

attack prevention. Techniques used here to prevent attacks include Firewalls, network

address translation, ingress / egress filtering on border routers, authentication / access

control on networks, QoS, policy based network management and network pushback to

quench upstream sources of attacks.

The work in this dissertation falls into the area of network based anomaly detection.

Many sophisticated anomaly detection techniques are processor and memory intensive

and will only operate offline on historical data. There is a pressing need to find ways to

apply network based anomaly detection techniques to high bandwidth links in real time in

order to be able to detect and react to ongoing attacks.

Figure 1 - Research Area Overview

Network Monitoring

Intrusion Detection Misuse Detection Network Security

Management (Intrusion

Prevention)

Firewalls

Authentication /

Access Control

Temporal attack

signatures

Host Based IDS Network Based IDS

 7

Many approaches have been experimented with for conducting anomaly detection (2.5

Intrusion Detection), the most promising of which are the signal analysis approaches.

These techniques are generally not capable of operating in real time and are not

coordinated between multiple sources of traffic measurement. Current IDS’s also lack the

ability to correlate and analyse related security events in multiple domains (Qin Lee Lewis

& Cabrera, 2002).

The remainder of this chapter will discuss the current state of the art in intrusion

detection, including techniques for detection evasion, traffic analysis techniques that these

systems make use of, and a taxonomy of the types of malicious attack traffic that we may

want to detect.

2.2 Properties of Network Traffic

Understanding the nature of network traffic is critical in order to properly design and

implement computer networks and network services like the proposed network monitoring

service. Network traffic, in general, has three main constituents: common periodic trends,

short-lived bursts, and noise.

• Common periodic trends are changes in traffic over time. A common observation

may be that there is more traffic during office hours than at night. There may also

be some more long lived trends such as the growing popularity of a web server or

new file sharing application.

• Short-lived bursts are also a component of any data network traffic analysis. In

general data networks are bursty in nature due to the way host applications and

users behave. This results in rapidly fluctuating traffic levels with many sharp

spikes. Intuitively, the critical characteristic of this self-similar traffic is that there is

no natural length of a "burst": at every time scale ranging from a few milliseconds

to minutes and hours, similar-looking traffic bursts are evident.

• Network traffic analysis also reveals an amount of background noise. This is

configuration and management traffic that is continuously passing around the

network and is not related to any application layer service.

 8

In any network traffic analysis these types of traffic will be observed. Hidden amongst

these constituents are the anomalies caused by malicious traffic on the network. It is this

hidden traffic that this dissertation will try to detect.

2.3 Network Traffic Analysis Techniques

2.3.1 Introduction

In order to detect the anomalies hidden amongst the noise and other normal background

traffic patterns, traffic analysis techniques are applied. These techniques can include time

frequency analysis, many different types of signal analysis and a wide variety of data

mining techniques, amongst others. This section will cover a few of these techniques that

have shown the most promise and have seen the most research.

2.3.2 Time Frequency Analysis

Signal analysis techniques have been applied to network traffic in papers such as (Barford,

Kline, Plonka & Ron, 2003) in order to detect traffic flow anomalies. Network traffic is

converted to a signal by graphing activity against time (time-frequency representation).

These techniques involve using filters on this generated signal to effectively expose details

of the prevailing traffic. The ambient and predictable traffic can then be filtered out

allowing the remaining traffic to be analysed statistically. The literature (Barford et al,

2003) has shown how wavelets can be effectively used to analyse network traffic at the

flow level. This paper proposed an algorithm that the authors refer to as deviation scoring,

which consists of continuously calculating the normalised signal deviation over a sliding

time window. Thresholds were then used to generate alerts. However, this paper

illustrates some of the remaining difficulties with these techniques such as a difficulty in

drilling down to specific sources of anomalies and the inability to detect attacks in real

time. This paper also could not classify anomalies as either malicious or otherwise.

2.3.3 Wavelets

2.3.3.1 Overview

Wavelets are mathematical functions that cut up data into different frequency

components, and then study each component with a resolution matched to its scale. They

have advantages over traditional Fourier methods for analyzing physical situations where

the signal contains discontinuities and sharp spikes.

 9

Wavelets are based on the idea of superposition of functions. This is the same idea behind

Fourier methods, that consider signals as the superposition of sine and cosine waves.

Because Fourier functions are based on sine and cosine waves, they do a poor job at

approximating sharp spikes. Wavelets, however, do not have a single set of basis

functions like the Fourier transform. Instead, wavelet transforms have an infinite set of

possible basis functions. Thus, wavelet analysis provides access to information that can be

obscured by other time-frequency methods such as Fourier analysis.

2.3.3.2 History

The first mention of wavelets appeared in an appendix to the thesis of A. Haar (1909).

During the 1930’s a number of groups researched the representation of functions using

scale-varying basis functions. It was found that these functions were superior to Fourier

basis functions for studying small complicated details in waves.

Stephane Mallat in 1995 was the first to apply wavelets to digital signal processing. A

more detailed history can be found in (Graps, 2003).

2.3.3.3 Uses

Wavelets are being applied in many fields including astronomy, acoustics, nuclear

engineering, signal and image processing, music, optics, earthquake prediction and in

pure mathematics applications such as solving partial differential equations. Another

important use of wavelets is in data compression.

Because wavelets’ localize frequency components, many functions using wavelets are

“sparse” when transformed into the wavelet domain. This sparseness or smoothing makes

wavelets very useful for purposes such as data compression, detecting features in images

and removing noise from time series.

These last two applications suggest that network traffic analysis would be another

appropriate application of wavelets due to the large amount of noisy, spiky time series

data to be analysed.

2.3.4 Data Mining Techniques

Data mining based anomaly detection uses learning algorithms that are trained on sets of

data that contain malicious traffic and sets that do not. The algorithm, once trained can

 10

then ‘recognize’ malicious traffic. These methods share the same weakness as signature

based techniques since they can only detect attacks that are know and have been seen

before, since it must be trained to recognize each type of attack. “The SRI IDES Statistical

Anomaly Detector” (Javitz & Valdes, 1990) is a real-time intrusion detection expert system

that has shown the applicability of data mining techniques to discovering anomalies in

network traffic.

2.3.5 Eigen Values

The most commonly used technique to analyze high dimensional structures is the method

of Principal Component Analysis (PCA), also known as the Karhunen-Lo`eve procedure

and Singular Value Decomposition (SVD) (Shyu1, Chen, Sarinnapakorn & Chang, 2004).

Given a high dimensional object and its associated coordinate space, PCA finds a new

coordinate space which is the best one to use for dimension reduction of the given object.

Once the object is placed into this new coordinate space, projecting the object onto a

subset of the axes can be done in a way that minimizes error. This approach has

successfully been applied for the purposes of outlier detection in network traffic with a

claimed detection rate of close to 99% on a well know test dataset.

2.4 A Taxonomy of Network Anomalies

2.4.1 Introduction

Any change in network usage data could be considered an anomaly, so for the purposes of

this work only changes in network usage that correspond to an identifiable change in

network state will be considered. The following section will present and expand upon a

possible characterization of network anomalies that has been presented in Barford &

Plonk, (2002). This characterization is based on a visual analysis of traffic flow anomalies.

There are many types of anomalies but they can broadly be classed as:

• Network Operations Anomalies

• Flash Crowd Anomalies

• Network Abuse Anomalies

 11

2.4.2 Network Operation Anomalies

Network outages can result from a network device failure or temporary mis-configuration.

Other outages may also be caused by re-configurations (e.g adding new equipment or

imposing rate limits). When the network load reaches it’s maximum, then plateau

behavior is observed. Network Operations anomalies are usually identified by a sudden,

nearly instantaneous change in network load followed by a stable but different load.

Theses sources of anomaly result in previously unseen (yet legitimate) traffic patterns that

may be flagged as intrusions. It is important to know about such legitimate sources of

anomalies in order to develop a system that minimizes the likelihood of false alarms.

These anomalies should be detected but are not malicious and so are not the focus of this

work. It may however still be appropriate for the system administrator to be notified when

an occurrence of this type of anomaly is detected.

2.4.3 Flash Crowds

A flash crowd event is a sudden surge in usage of the network focused on a particular host

or subnet. These events are common in networks. For instance: Interest in a website due

to some kind of publicity or event may cause a sharp rise in the network load to the host

on which the website resides. Flash crowd behavior is distinguished by a rapid rise in

traffic flows of a particular type that drop off over time.

Another example would be company’s employees returning to their desks and checking e-

mail immediately following a company-wide meeting. The resulting spike in SMTP activity

is not normal for that time of the day or week but is not necessarily a denial of service

attempt against the mail server either, as a statistical anomaly detector might label it.

2.4.4 Network Abuse

Network Abuse Anomalies can include any type of malicious use of the network. There are

many forms of network abuse. The most common include:

• Viruses

• Worms

• Denial of Service Attacks (DoS)

 12

• Distributed DoS Attacks

• SPAM email

2.4.4.1 Viruses

Viruses generally affect hosts rather than networks so you may not expect this section to

appear here. A virus is a chunk of malicious code that will generally attach itself to an

executable file in order to have the operating system execute it. Virus’s themselves are

not a threat to the network but the way they spread certainly is. Many of the famous

viruses over the past decade were mass mailing viruses which spread via email to

contacts in your address book. These viruses clog up internet links, crash servers and in

many cases result in network operators disconnecting large portions of the internet in

order to slow the spread of these viruses.

2.4.4.2 Worms

The term `worm' is simply a shorter term for an `autonomous intrusion agent'. A

computer worm is a program that self-propagates across a network exploiting security or

policy flaws in widely-used services. Worms will have some of the following facets:

• Target discovery

• Carrier

• Activation

• Payloads

Target discovery represents the mechanism by which a worm discovers new targets to

infect. The activity of carrying out reconnaissance, or information gathering, is the

mechanism by which the system extends its view of the world around itself, determines

information about the systems and networks around it, and identifies targets. This can be

achieved through scanning (probing a set of addresses to identify vulnerable hosts) either

sequentially or randomly through addresses. Scanning is highly anomalous behavior, very

different from normal traffic and so should be relatively easy to detect. Worms could use a

pre-generated target list of victims or an external target list that is obtained by

compromising another server (such as a games server). Worms can obtain target lists

from infected machines or passively by waiting for victims to contact the worm.

The carrier is the mechanism the worm uses to transmit itself onto the target. A self-

carried worm actively transmits itself as part of the infection process. Some worms, such

as Blaster, require a secondary communication channel to complete the infection.

 13

Embedded worms send themselves along as part of a normal communication channel,

either appending to or replacing normal messages.

Activation is the mechanism by which the worm’s code begins operating on the target.

Some worms try to convince a local user to execute the worm. The Melissa email-worm

used the message “Attached is an important message for you” to trick people into

executing it. Other worms are activated when the user performs some activity or through

scheduled system processes. There are also worms that able to initiate their own

execution by exploiting vulnerabilities in services that are always on and available (e.g.,

CodeRed exploiting IIS Web servers).

Payloads are the various non-propagating routines a worm may use to accomplish the

author’s goal. These goals may be to gain control of a computer system, relay Spam,

relay HTTP requests in order to hide identity and location of websites, conduct Denial of

Service (DOS) attacks or to collect or destroy data from a target computer.

2.4.4.3 Denial of Service Attacks

DoS attacks attempt to exhaust the resources of the victim. The resources may be

network bandwidth, computing power or operating system data structures. A DoS attack

is characterized by an explicit attempt by attackers to prevent legitimate users of a

service from using that service.

Examples include:

• attempts to "flood" a network, thereby preventing legitimate network traffic

• attempts to disrupt connections between two machines, thereby preventing access

to a service

• attempts to prevent a particular individual from accessing a service

• attempts to disrupt service to a specific system or person

Today, the most common DoS attack type reported is the packet flooding attack. There

are three common packet types that are used by many DoS attack tools including TCP

floods (SYN packets), ICMP echo and UDP floods.

DoS attacks can be extremely difficult to detect because the header content of packets,

including source addresses, can be randomised by an attacker. Although headers are

easily forged, it has been shown that characteristics of attack ramp-up and attack

 14

spectrum is more difficult to spoof and can be used to classify DoS attacks (Hussain,

Heidemann & Papadopoulos, 2003).

Flooding attacks are classified as (a) single-source, (b) multi-source or (c) reflected based

on the number of attackers and their location, with respect to the observation point and

victim. The following section will discuss Distributed DoS Attacks which are multi-source.

2.4.4.4 Distributed DoS Attacks

In order to perform a distributed denial-of-service attack, the attacker needs to recruit

multiple agent (slave) machines. This process is usually performed automatically through

scanning of remote machines, seeking security holes that would enable subversion.

Vulnerable machines are then exploited using the discovered vulnerability, and they are

infected with the attack code. Agent machines perform the attack against the victim.

Attackers usually hide the identity of the agent machines during the attack through

spoofing in order to use those machines again.

Figure 2 - Distributed Denial of Service

Attacker

Victim

Slaves / ‘Zombies’

 15

2.4.4.5 SPAM email

Spam is the name given to unsolicited email that internet users receive every day. It is

normally sent as advertising. The reason these people choose spam as their

advertisement medium is because it’s so cheap. It costs practically nothing to send spam

compared with traditional advertising mediums such as television and radio. In recent

year Spam has become a major problem as networks become clogged with unwanted

Spam email traffic. It has been estimated that 80% of all e-mail is actually Spam

(ePrivacy, 2003).

2.4.5 Other

Other sources of anomaly may include Measurement failures. Measurement failures may

be the result of hardware failures or the loss of data due to in-band transmission of

measurement results across the network. This is a particularly serious problem where

sensors may be distributed across a network and each sensor is capturing network traffic

information and periodically reporting to some central service.

2.5 Intrusion Detection

 “Intrusion Detection Systems aim to strengthen the perimeter surrounding the computer

system. They are intended to complement existing security measures such as firewalls to

provide a defense in depth.” (Bace & Mell, 2001)

There are two basic types of intrusion detection: host based and network based. Host

based systems (of which application based IDS’s are a subset) usually consist of a

program or series of programs that review operating system audit trails, and system logs

to detect that an intrusion has taken place.

Host-based IDSs, with their ability to monitor events local to a host, can detect attacks

that cannot be seen by a network-based IDS. They can also operate in an environment in

which network traffic is encrypted. However, at the same time they have the disadvantage

of being harder to manage and vulnerable to attack themselves.

Network based systems monitor traffic on a network segment or switch in an attempt to

detect an intrusion. The advantage of Network-Based IDS's are that a few well-placed

 16

network-based IDS’s can monitor a large network and protect a large number of hosts.

Network-based IDS’s are also usually passive devices that listen without interfering with

the normal operation of a network allowing the deployment of network-based IDS’s to

have little impact upon existing networks.

However a network based approach may have difficulty processing all packets in a large or

busy network. Network based IDS’s also cannot analyze encrypted information. This

problem is increasing as more organizations (and attackers) use virtual private networks

(VPN).

There are two basic methods of detection, anomaly based (also known as Profile-based)

and signature basedTP

3
PT. Anomaly based systems attempt to map events to the point where

they "learn" what is normal and then detect an anomaly that might indicate an intrusion.

Simple pattern matching is also sometimes used to scan for byte signatures in packets

that may indicate an attack. This pattern matching is often stateful so that it can match

patterns spread across a number of packets belonging to a single stream. These pattern

matching techniques are another form of signature based system. This dissertation will

focus on anomaly based network intrusion detection only.

2.5.1 Signature Based

Most intrusion detection systems (IDS) are what is known as signature-based or misuse

based. This means that they operate in much the same way as a virus scanner, by

searching for a known identity or signature for each specific intrusion event.

Misuse detectors are very effective at detecting attacks without generating an

overwhelming number of false alarms. However they can only detect those attacks they

know about. It can also be all too easy to fool signature-based solutions by changing and

obfuscating the ways in which an attack is made (2.6 Evading detection).

TP

3
PT Signature based detection is often referred to in literature as misuse detection. The two

descriptions are interchangeable.

 17

2.5.2 Anomaly Detection

Anomaly detection techniques for intrusion detection have been an active area of research

since they were first proposed by Denning in 1987 (Denning, 1987). Anomaly detection

techniques directly address the problem of detecting novel attacks against systems. This

is possible because anomaly detection techniques do not scan for specific patterns, but

instead compare current activities against statistical models of past behavior. Any activity

sufficiently deviant from the model will be flagged as anomalous, and hence considered as

a possible attack. Anomaly detection’s main use today is in the detection of the presence

of network attacks as part of an intrusion detection system.

Organisations generally rely on ad-hoc methods for anomaly detection. It is common

practice for many large organizations to rely on manual inspection and expert knowledge.

For this reason that network engineers often have several monitors on their desk showing

real-time graphs of network load from particular network devices. This method is

inaccurate and prone to error. It relies in a network engineer to be experienced enough to

recognize unwanted traffic patterns and then be able to track down the source of the

problem and take measures to counteract the effects of the unwanted traffic.

This method does not scale to large networks and it is not cost effective to have network

engineers employed to monitor network conditions 24 hours a day. For these reasons

researchers have looked at algorithms that can automatically analyse the same network

traffic graphs that network engineers currently analyse, and recognize anomalous traffic

amongst all the noise of legitimate network traffic.

Tools developed to help in the process of anomaly detection rely on either;

1. Pre-defined thresholds for particular network traffic properties, which when

exceeded, trigger an alarm.

2. Sets of rules or policies based on known anomalies, which are aimed at preventing

a re-occurrence of such an anomaly. This is the most widely deployed method for

detecting attacks and protecting against cyber terrorism.

3. Detecting deviations from forecasted behaviors using data mining techniques,

which use machine learning algorithms to build a model of normal traffic and then

classify incoming traffic as normal or anomalous.

 18

Signature-based IDS really only scratches the surface of what most organisations need to

protect against because they rely on spotting a duplication of events or types of attack

that have happened before.

2.5.3 Neural Networks for Anomaly Detection

Neural NetworksTP

4
PT have been proposed as a means of performing anomaly detection

(Ghosh & Schwartzbard, 1999).

Two types of architecture for Neural Networks can be distinguished:

• Supervised training algorithms, where in the learning phase, the network learns

the desired output for a given input or pattern.

• Unsupervised training algorithms, where in the learning phase, the network learns

without specifying the desired output.

There is some research into applying the pattern recognition abilities of neural networks to

anomaly detection, but no commercial applications have emerged from this research as of

yet.

2.5.4 Statistical Anomaly Detection

Statistical anomaly detection works by observing behaviour and forming a profile of

normal activity. The profile is a collection of statistics that are generated from observed

traffic. It is then statistically determined whether behaviour is anomalous. An example of

a Statistical Anomaly detector is SRI International’s real-time intrusion-detection expert

system (Javitz & Valdes, 1990).

2.5.5 Protocol Anomaly Detection

Protocol anomaly detection uses the specification of Internet protocols to detect abnormal

use of the protocols. The Internets Request For Comment (RFC) documents define the

proper use of the communication protocols. It is an easy task to check that the actual

traffic on a network conforms to this specification. Protocol anomaly detection has become

TP

4
PT A good introduction to Neural Networks is available in “An introduction to Neural

Networks” (Anderson 1995)

 19

popular because of its ease of use. It has proven to be much simpler to model the correct

use of a network via the RFCs than it is to model malicious usage, because they do not

require updated signatures for new attacks. They only need to be updated when a new

protocol becomes popular which is relatively infrequently. For these reasons protocol

anomaly detectors have been integrated into most commercial IDS software. Because of

the small rule set that they have to check they do not consume as much resources as

other methods and so can be run on higher bandwidth links.

The Nimda worm spread using a directory traversal exploit in Microsoft’s IIS software. The

exploit allowed a specially crafted URL passed to the server in a HTTP GET request to

cause the execution of “cmd.exe” on the machine giving an attacker access to a shell. A

protocol anomaly detector would have a model of the HTTP protocol and would detect the

presence of illegal charactersTP

5
PT in the HTTP headers. In fact many protocol anomaly

detectors did detect Nimda and allowed their organisations to defend against it even

before the rest of the community had discovered it and generated signatures (Das, 2001).

2.5.6 Graph based Anomaly Detection

It has been proposed that network anomalies can be detected by following the graph of

network connections. In this graph the nodes are network hosts and the edges are

connections between these hosts. By following these graphs and observing how they

change over time, anomalous usage can be detected. Anomalies such as, a particular host

that does not usually connect to many machines suddenly connecting to many hosts it has

never contacted before, may indicate that a machine has been compromised. Similarly

activity such as a machine that only ever connects to email and web servers starts

connecting to database servers would also be detected. Internet worms can be detected

because of the way they spread. It would be unusual for a host to contact another host

and shortly later that hosts start contact many other hosts and so on. This tree shaped

graph could be used to identify worm traffic. GrIDS (Cheung, Crawford, et al, 1999) is a

system that has successfully implemented graph based anomaly detection. Other papers

such as “Connection History Based Anomaly Detection” (Toth, Krugel, 2002) show how

this method can successfully be used to detect worms.

TP

5
PT The URI specification allows the use of escaped characters when interpreting URIs.

However, as noted in the Unicode Standard, applications should only interpret “shortest

from” Unicode strings.

 20

2.5.7 Payload Based Anomaly Detection

Payload based anomaly detection is a technique that has recently emerged. It works by

analyzing the bytes that are being transferred in the payloads of packets and looks for

anomalies. This works because the payloads of packets will have some inherent structure.

Generally each application layer protocol will have its own structure that is unique and can

be used to identify the protocol (Ghosh & Schwartzbard, 1999). By analyzing all the traffic

going to a particular port, say 80 it can be detected if there is anything other than HTTP

traffic traveling on that port. This is a necessary security precaution as firewalls generally

admit all traffic on port 80 without any inspection of the packets contents. Since any

service can be configured to run on any port this is a potential vulnerability. It is not

believed that any of the existing IDS systems implement such a detection method but

they have been documented in numerous papers which look at using methods ranging

from neural networks(Ghosh & Schwartzbard, 1999) to byte frequency distributions (Wang

& Stolfo, 2004) to recognise protocols and anomalies in those protocols.

2.6 Evading detection

2.6.1 Introduction

Most attackers are aware of IDSs and use evasive techniques to dodge them. These

evasive techniques include flooding, fragmentation, encryption, and obfuscation. The

following section will discuss the ease with which these techniques can be applied.

2.6.2 Flooding

By flooding a network with noise traffic (2.2 Properties of Network Traffic), an attacker

can cause the IDS to exhaust its resources examining harmless traffic. In the meantime,

while the IDS is occupied by the volume of noise traffic, the attacker can target its system

with little or no intervention from the IDS. MULTOPS (Gil & Poletto, 2001) is an anomaly

detection system that was designed with this particular evasion technique in mind and

carefully manages its memory so as to not be distracted by flooding.

 21

2.6.3 Fragmentation

Because different network media allow variable maximum transmission units (MTUs), TCP

provides for the fragmentation of these transmission units into differently sized packets or

cells. This can be use to hide an attack by using different sizes and different numbers of

packets from different attackers. To combat this technique, anomaly detection systems

perform a stateful inspection of the streams, reconstructing data from fragments wherever

necessary. Essentially the systems must work at the transport layer rather than the

network or data-link layers TP

6
PT.

2.6.4 Encryption

Network-based intrusion detection relies on the analysis of traffic that is captured as it

traverses the network from a source to its destination. If a hacker can establish an

encrypted session with its target the IDS cannot analyze the packets and the malicious

traffic will be allowed to pass. Because the IDS cannot see the contents of the packets it

cannot directly respond and must rely on other information.

2.6.5 Obfuscation

Fragmentation and encryption provide a means of obfuscation but there are many other

more subtle ways to hide the content of a packet. An increasingly popular evasive

technique, involves concealing an attack with special characters or characters may be

represented in hex or Unicode formats. Padding packets and randomizing headers can also

obfuscate the presence of the malicious payload.

These techniques are difficult to combat. Flooding encryption and other general

obfuscation are a big problem for traditional IDS systems that work on a subnet and

analyse individual packets.

TP

6
PT Layers refer to seven layers of the Open System Interconnection (OSI) model for

network protocols.

 22

3 Network Monitoring / Intrusion Detection

This section will introduce some of the existing network monitoring and intrusion detection

systems that are available. Both of these applications share a good deal of overlapping

functionality and are often described using a variety of names including Attack Mitigation

Systems, Network Intrusion Prevention System (NIPS), Network Intrusion Detection

System (NIDS) and Network Security Auditing Systems amongst others.

The section has been divided into four sub classes of tools with each consecutive class

being an extension to the features and abilities of the previous:

• Network Sniffers

• Network Monitoring Systems

• Intrusion Detection Systems

• Experimental Systems

3.1 Network Sniffers

Network Sniffers are tools that simply collect data from a live network. They generally

include a means of storing the information in a particular format on disk and a means of

viewing or browsing the captured network packets.

Product License Description

tcpdump Open Source Tcpdump is a tool to print out the headers of

packets on a network interface that match a

boolean expression. It can also save the packet

data to a file for later analysis, and/or read from

a saved packet file.

Ethereal Open Source Ethereal is a multi platform network protocol

analyser that allows users to browse captured

traffic. Etherreal includes sophisticated filters

and can dissect many protocols.

Cflowd

Caida.org

Open Source Cflowd is a traffic flow analysis tool to collect

data from Cisco's netflow export feature. The

product guide lists its uses as trends analysis,

 23

characterization of workloads, usage tracking,

accounting and billing, network planning and

analysis and network monitoring.

WinPcap Open Source WinPcap is a tool for packet capture and

network analysis for the Win32 platforms.

WinPcap adds to Windows the ability to capture

and send raw data from a network card, with

the possibility to filter and buffer the captured

packets. WinPcap provides an API that exports a

set of high level capture primitives that are

compatible with libpcap, the popular Unix

capture library.

Table 1 - Network Sniffers

3.2 Network Monitors

Network monitors are a class of tools that cover flow monitors, SNMP tools, topology /

traceroute based tools, fingerprinting tools. These tools still perform the sniffing, often

using one of the tools listed above but then will perform some sort of analysis on the

captured data to produce reports or statistics about network usage. Network Monitors are

still passive tools in that they collect information and present it to the user but do not take

any action based on the observed data. It is up to the user to interpret the data and take

any corrective action if the data indicates a problem.

Product License Description

Observer

Network

Instruments

Commercial Observer decodes packets to perform protocol

analysis. From this analysis graphs, charts and

statistics are produced and displayed. Observer

also has the capability of multi segment

monitoring and comes bundled with network

management tools.

HP OpenView

Hewlett Packard

Commercial OpenView is a management platform which

includes support for network services

management including infrastructure

 24

management and report generation. OpenView

has support for plug-ins to analyse different

services.

IBM Tivoli

NetView

IBM Software

Commercial NetView displays network topologies, correlates

and manages events and SNMP traps, monitors

network health, and gathers performance data.

Round Robin

Database tool

(RRDTool)

Open Source RRDTool is an application to store and display

time-series data. This tool is typically used to

store and present network information by

coupling the database with an information

gathering tool such as a network sniffer or more

commonly a SNMP polling front end.

Multi Router

Traffic Grapher

(MRTG)

 MRTG monitors traffic levels on specific network

links by pulling data from routers and switches

and automatically producing graphs and HTML

pages to present the graphs.

Table 2 - Network Monitors

A more complete list of Network Monitoring Tools is maintained at

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html

3.3 Intrusion Detection Systems

Intrusion detection systems are similar to network monitors in that they capture the

network traffic and anaylse it but IDS systems also look for additional information. Rather

than just performing accounting of different statistics, an intrusion detection system

performs a more involved analysis in an attempt to recognise network abuse or malicious

activity.

Product License Description

Bro

Vern Paxson

Open Source Bro passively monitors traffic on a network link.

It pieces network packets into events that

reflect different types of activity. Some events

are quite low-level, such as the monitor seeing a

 25

connection attempt; some are specific to a

particular network protocol. Bro then runs the

events produced by the event engine through a

policy script which detects the intrusions.

Manhunt

Symantec

Corporation

Commercial Manhunt performs protocol anomaly detection,

signature-based intrusion detection and traffic

rate limiting.

SHADOW

US Navy

Open Source SHADOW monitors only which hosts are

communicating and does not examine the actual

content of the communication at all. Detection is

based on a simple rule base.

SourceFire

Sourcefire Inc

Commercial SourceFire was founded by the original creators

of award-winning Snort. The program enhances

the Snort system by adding an interface,

optimized hardware and a management console,

which provides centralized management of

remote, distributed sensors.

Cisco Secure

IDS (formerly

NetRanger)

Cisco Systems

Commercial Cisco Secure IDS uses a rule based engine to

distill large volumes of IP network traffic into

security events, which it forwards to a

centralised ‘Director’.

Cyclops

e-Cop.net Pte Ltd

Commercial Cyclops is another Snort based IDS. It provides

the ability to launch automatic preventative

measures.

Snort

www.snort.org/

Open Source Snort can performs protocol analysis and

content searching/matching using its own rules

language to describe traffic that it should collect

or pass. Snort also features a detection engine

that utilizes a modular plug-in architecture.

Tamandua NID

Tamandua

Laboratories

Open Source Tamandua uses distributed sensors and a

centralized console. It’s analysis is plug-in

based. Detection is done using signatures and

rules. To ease the burden of creating all the

 26

rules, Tamandua can import SNORT rule sets.

Graph-based

Intrusion

Detection

System (GRIDS)

Open Source GrIDS is a prototype intrusion detection system

that performs aggregation of hosts and activity

in a network to detect malicious activity such as

DOS and worms through connection patterns.

Table 3 - Intrusion Detection Systems

More information in Intrusion Detection Systems is maintained at

HTUhttp://www.networkintrusion.co.uk/UTH

3.4 Defending Against Network Abuse

3.4.1 Introduction

This section will cover the techniques that network administrators have at their disposal to

protect their networks from malicious traffic. Intrusion detection systems are one

technique but there are many other ways in which a network administrator can protect a

network from attack. These additional techniques can include firewalls, authentication,

encryption, and forms of gateway address filtering.

3.4.2 Network Firewalls

A firewall is just another name for a network filter. The filter is usually a simple rule based

filter that drops packets according to a rule set. There are several types of firewall

including combinations of personal firewalls, gateway firewalls, packet filters, application

level gateways, stateful firewalls, route filters and circuit-level gateways. There are many

books written (Pohlmann & Tim Crothers, 2002) on the subject of firewalls so these

technologies will not be explained here. It is sufficient to note that almost all networks

provide some form of firewall that performs packet filtering based on classes of traffic

(often determined by port number). Firewalls provide some security but they are only

successful if the services to which traffic is permitted do not have any vulnerabilities in

them, which is rarely the case. In essence firewalls provide security at the network layer

but not at higher layers so they are only an effective security strategy when used in

combination with other defenses that monitor application layer activity.

 27

3.4.3 IP Traceback

IP Traceback is a very active area of research. Traceback is an attempt to solve the

problem of determining the ‘real’ source of traffic on your network. It seems a simple task

to trace an IP connection since each packet contains a source address. The problem is that

it is possible for the sending computer to put in any sending IP address it wishes.

These difficulties are made worse by the fact that hackers will launder their connections

through other machines often changing the source address many times. Currently the best

way to trace such a connection remains by hand. CERT can provide contacts for many

sites who will often already know they have a problem and can supply more information.

Obviously this is not a satisfactory way to trace attackers as it takes a long time and, even

if it can be done, legal issues surrounding crimes across political borders mean that there

is usually little that can be done.

There have been many schemes proposed for traceback, some of the more well known

including:

• Node Append Append each node’s address to the end of the packet as it travels

through the network from attacker to victim. Thus, every packet received by the

victim arrives with a complete ordered list of the routers it traversed.

• Node Sampling A single static “node” field is reserved in the packet header large

enough to hold a single router address. Upon receiving a packet, a router may

choose to write its address in the node field. Eventually the destination builds a

complete route.

• Edge Sampling Works the same as Node Sampling but explicitly encodes edges

(source, destination pairs) in the attack path rather than simply individual nodes.

• Probabilistic packet marking (PPM) This scheme is based on the idea that

routers mark packets that pass through them with their addresses or a part of their

address. Packets are selected at random with some fixed probability of being

selected. As the victim gets the marked packets, it can reconstruct the full path.

• Deterministic Packet Marking (DPM) This scheme is an improved version of

PPM where interfaces rather than routers are treated as atomic units of Traceback.

• ICMP Traceback (iTrace) Every router on the network is configured to pick a

packet statistically and generate an ICMP trace message or iTrace directed to the

same destination as the selected packet. The iTrace message itself consists of the

next and previous hop information, and a timestamp.

 28

• Hash-based IP Traceback In a hash-based Traceback, every router captures

partial packet information of every packet that passes through the router, to be

able in the future to determine if that packet passed through it.

Traceback allows network administrators to verify the source of traffic arriving at the

network. If traffic is suspected of being malicious or from a spoofed address, Traceback

allows this to be investigated. When used in this manner Traceback can provide protection

against attacks involving IP address spoofing.

3.4.4 Authorization in IP networks

It has been argued that control of resource usage should be given to the owner of the

limited resource (Anderson Roscoe Wetherall, 2004). This would be achieved by requiring

sources of traffic to first get authorization from the destination as part of connection setup

to send a certain number of bytes or packets across the network. The authorization itself

uses techniques borrowed from the field of micropayments where hash-chaining and other

lightweight cryptographic techniques are used with the principal requirement being that

the cryptography must be secure but very fast. The Anderson, Roscoe, Wetherall paper

suggests the incremental deployment of ‘Request-to-send’ servers and ‘Verification-Points’

to augment the existing network. The proposed solution however requires modification of

the IP networking stack on each host and does not protect the network from bandwidth

attacks. If the proposed solution were successfully deployed it would protect individual

hosts but attackers would still be able to attack network links, for example, by flooding all

hosts on a subnet with traffic.

3.4.5 Edge Router Filtering Policies

Another proposed solution to the DoS problem is to introduce distributed Firewall-like

behaviour into network edge routers (Lakshminarayanan Adkins, Perrig & Stoica, 2004).

In this solution, the hosts on the network are given the ability to respond to packet floods.

This is achieved by having the edge routers maintain filters for each host and having the

hosts themselves dynamically modify their own filters. The filters can do things like tell

the router to reject packets destined to ports that the host does not have any services

running on. This could prevent port scanning. Other filters such as the ability to throttle

connection setup or discriminate and divide bandwidth between different services running

on the same host could be deployed. This solution could protect hosts and the link

between the host and edge router from attack but offers no protection for the backbone

 29

network. This would leave ISP’s with the requirement to vastly over-provision their

networks in an attempt to mitigate the effects of bandwidth attacks.

3.4.6 Honeypots

Like most other solutions, Honeypots can not provide any real security when used in

isolation but in conjunction with firewalls and NIDS systems Honeypots can help in the

detection of network intrusions. Honeypots are generally used to gather information on

intrusion attempts and scanning in order to improve defenses at another location such as

a firewall.

A Honeypot is essentially a network decoy or trap that is set for any possible intruders. All

traffic coming in and out of a honeypot is closely monitored and because the Honeypots

are not running any real services any interaction with the Honeypots is treated as

suspicious.

Honeypots can be implemented as a physical collection of machines but more often a

virtual honeypot is used. A virtual honeypot allows a single host to behave as if it were a

number of hosts of different types and even simulate an entire subnet including the

routing and switching equipment. Modern virtual Honeypots such as honeyd (Provos,

2004) can take on the ‘personality’ of different operating systems allowing scanning or

fingerprinting tools like Xprobe (xprobe.sourceforge.net) or Nmap

(www.insecure.org/nmap/) to be fooled into believing they are in fact communicating with

an actual host running a particular operating system.

Honeypots are implemented as high-interaction or low-interaction. A high interaction

honeypot simulates all aspects of an operating system whereas a low-interacgtion

honeypot only simulates part of the operating system (often the operating systems

network stack (Provos, 2004)).

3.5 Experimental Systems

3.5.1 Introduction

This section covers some of the applications that have been implemented as research but

have not been deployed or made publicly available. These applications are generally only

 30

proof of concept implementations and are often buggy and have poor performance. They

are included here to give the reader an idea of what direction network analysis tools may

take in the future.

3.5.2 MULTOPS

MULTOPS (Gil & Poletto, 2001) is a system developed at M.I.T., Cambridge to detect

bandwidth attacks (DOS). MULTOPS is based on the assumption that traffic flows should

be approximately symmetric. This assumption is based on observations that on the

internet the packet rate of packet traffic going in one direction is proportional to the

packet rate of traffic going in the opposite direction. MULTOPS is able to detect bandwidth

attacks by looking for attackers who are sending packets to a victim without any or

disproportionately fewer packets coming back. MULTOPS achieves this by using a tree

based data structure that records the ‘packets to’ rate and ‘packets from’ rate for

networks on the internet. The tree data structure adapts to the prevailing traffic by

expanding down to individual subnets or hosts on networks where malicious behaviour is

suspected. The data structure will also contract when traffic patterns return to normal to

preserve memory. MULTOPS is capable of determining the IP address’s under attack and

reacting to this by dropping packets destined to that IP address in order to protect the

host(s) from the effects of the on-going attack. MULTOPS can also be used to detect

attackers but can not be used to detect both the sources and endpoints of attacks at the

same time. In some cases where an attack is widely distributed or is randomizing its

source IP addresses MULTOPS may fail to detect the attack or may drop legitimate

packets. MULTOPS also bases its expected proportion of return traffic on the internet on

the acknowledgement policy of TCP implementations. This means that attackers who use

protocols that do not require acknowledgements, such as UDP or ICMP may be

undetectable by MULTOPS. MULTOPS also performs best at a point in the core network

where it can observe traffic in both directions. However the majority of links in the core of

the network are asymmetric and so traffic would have to be aggregated from several

routers for the MULTOPS algorithm to function correctly. Another weakness of MULTOPS is

its vulnerability to IP spoofing.

 31

3.5.3 EMERALD

EMERALD (Porras & Valdes, 1998) stands for “Event monitoring enabling responses to

anomalous live disturbances” and is a follow on application from SRI InternationalTP

7
PT who

had previously produced the Intrusion Detection Expert System (Javitz & Valdes, 1990).

EMERALD extends IDES’s intrusion-detection methods to the analysis of network activity,

and is intended as a framework for scalable, distributed, inter-operable computer and

network intrusion detection. EMERALD consists of independently controllable monitors that

are distributed at various points in large networks. The monitors perform both signature

analysis and statistical profiling of network traffic. EMERALD uses a message passing

communication system both internally in the EMERALD monitor and externally between

monitors in the distributed EMERALD system.

3.5.4 Honeycomb

Honeycomb (Kreibich & Crowcroft, 2004) is a tool created by Christian Kreibich at the

University of Cambridge. It essentially integrates a payload anomaly detection system

with a honeypot (3.4.6 Honeypots). It is the aim of Honeycomb to identify previously

unseen malicious network traffic using it’s payload signature and to use this information to

automatically generate a signature that can be read by a NIDSTP

8
PT to protect a network from

subsequent attacks.

The system integrates with the open source honeyd tool using a plug-in that gives

honeycomb access to all the state information that honeyd maintains on every connection

to every simulated host. The packet payload analysis uses string comparison algorithms to

discover matching packet payloads.

The longest common substring algorithm is used by honeycomb but unfortunately

matches all protocol-inherent information (i.e. stuff that is *always* contained in packets)

as well as possible worms. The effects of this behaviour are mitigated because all the

traffic to the honeypot can be considered malicious.

When blocks of data are found to match across many streams then a signature is

generated that can be used to filter out packets containing that block of data.

TP

7
PT Formerly Stanford Research Institute

TP

8
PT Honeycomb exports signatures in Bro or SNORT format files.

 32

This research is a novel approach to anomaly detection since it makes use of a honeypot

to reduce the volume of data to be analysed and also reduce the false positive rate.

Honeycomb could not work without a honeypot because of the complexity of it’s

algorithms and resulting low throughput of the application. Honeycomb, however is

successful at generating signatures for day zero worm attacks.

Since Honeycomb only detects a worm after it has seen it try to connect to the honeypot

several times there is a chance that the worm will still enter the network simply by not

connecting to the honeypot. There is also a time delay while honeycomb builds the

signature after it has seen it a number of times and distributes the signature to the NIDS.

It is not clear from any current research how long this delay might be or how likely it is

that a worm connects to a honeypot during the infection of a network. In fact there is

work being done by hackers to create tools that can recognize a honeypot using the same

fingerprintingTP

9
PT techniques that the honeypot uses to trick the scanners into believing they

are operating systems.

3.6 Summary

From the above sections the reader can see that many of these applications share

common approaches and architectures. Although the Intrusion Detection Systems virtually

all rely on their own algorithm for performing intrusion detection, they use similar

methods of collecting the information they analyse. Many IDS and network monitors are

distributed in some fashion with sensors or monitors that communicate to a central

management and coordination component.

The majority of IDS systems rely on rules or signatures to perform detection. This

approach is similar to the method of detecting virus’s on computer systems. It has

become the accepted method of also finding malicious activity on networks but has many

disadvantages. The main disadvantage is the time required to manage a rule base or

signature database and keep it up to date with the most recent attack signatures.

Experience with signature based anti-virus has shown the investment in infrastructure

that is necessary to make this approach work can be prohibitive for small networks. Other

TP

9
PT Fingerprinting is used by hacker tools such as Xprobe and Nmap to determine the

operating system of a host based on the behaviour of its network stack.

 33

commonalities are that a number of systems use plug-ins to separate the framework of

the system from its analysis components. This may indicate a general lack of confidence

by the community in general in the current state of the art in intrusion detection methods.

Another interesting fact is that one system, SNORT, seems to dominate the entire field

with many IDS systems being commercialisations of this open source system. It is worth

pointing out that SNORT is a signature based system.

This work will differ from the majority of these systems in that it will not rely on

signatures or rules for detection. The system will be designed as a framework with open

interfaces to which new detection components or even other IDS systems can be linked.

The source of analysis data will not be configurable so that different types of data can be

analysed by different components. The problems of security and protection against attack

will be addresses with security, a feature that is missing from all current IDS systems.

 34

4 Distributed Network Inspection System

4.1 Introduction

Distributed Network Inspection System (DNIS)TP

10
PT is a heterogeneous network inspection

framework developed as part of this work. DNIS has a configurable event source and

dynamically composable instrumentation components. A management application

remotely controls dynamic scheduling of component execution across a distributed set of

network monitoring sensors. This flexible framework allows the configuration of multiple

sensors to be changed in response to previously unknown attacks, changes in network

administration policy or different levels of concern or suspicion. The configurable event

sources make the framework extendable in that new event sources can be added at a

later date. The implementation presented here uses network packets as its sole event

source.

The following sections explain in detail the implementation of DNIS. Firstly (4.2

Requirements) will outline a set of requirements for the system. Next the key design

choices will be justified and the system itself will be explained in the (4.4 Specification)

section.

4.2 Requirements

Most intrusion detection systems are developed for particular types of environments, and

the fact that they are difficult to configure and extend is a severe limitation (Kemmerer &

Vigna, 2004). Today’s intrusion detection systems (2.5 Intrusion Detection) are generally

focused on signature based methods and are deployed with the sole purpose of protecting

a corporate intranet from external attack. It has been proposed that a worst-case worm

(Weaver & Paxson, 2004) will infect most machines through internal connections. For this

reason, Distributed Network Inspection System (DNIS) should be capable of being

deployed on any internal or external link in a network in order to provide better

protection.

One of the biggest problems in the field of intrusion detection is the constant need for up-

to-date signature definitions of the attacks. This follows from the use of a “misuse

TP

10
PT Pronounced “Denis”

 35

detection" approach. While this kind of approach has been widely successful and is

implemented in almost all intrusion detection tools. Misuse-based systems perform very

poorly when faced with an unknown attack. For this reason DNIS will not use misuse

detection but will rely on anomaly detection techniques.

DNIS is required to work in real timeTP

11
PT. “An open question is whether a group of

communicating backbone sensors, by using coordination and statistical inference, can

detect the presence of a worm early enough to provide for a response.” (Weaver Paxson

Staniford & Cunningham, 2002). To address this question DNIS will be required to work

on high bandwidth links and be capable of processing data and detecting malicious activity

before the activity has ceased.

DNIS is required to allow for coordinated detection among distributed sensors that are

executing at different physical points in the network (Kemmerer & Vigna, 2004). The

reason for this is that certain traffic features are only apparent on particular links on the

network. For example, if you wanted to keep track of the volume of traffic exiting your

network, then the system would need a component keeping track of this statistic on the

network’s gateway, whereas if you wanted to monitor which hosts are communicating with

which other hosts on your network then you would need to instrument internal links within

your network. Another reason for this requirement is the benefit of distributing the task of

processing large amounts of data. By examining a smaller quantity of relevant data at

different points in the network it may not be necessary to capture and examine every

packet traversing a backbone link (which may be computationally unfeasible). Distributed

in-situ sampling at key locations in the network infrastructure is a better option for

comprehensive research than relying on the fairness of a statistical sampling algorithm

(Phaal & Panchen, 2002) that only samples parts of the traffic.

When detecting malicious activity DNIS should have as low a false positive rate as

possible. It has been shown (Newman, Kristina & Tittel, 2004) that false positives have

long been a problem of anomaly detection schemes. Since DNIS will use a anomaly

detection to identify malicious activity it may be prone to the same problems.

TP

11
PT “Real-Time” does not refer to hard real time but instead means the ability to detect

attacks in progress.

 36

DNIS should not simply alert the user to the presence of malicious activity but should be

able to drill down to its sourceTP

12
PT and the hosts or subnet currently being affected.

DNIS should be designed in a way to make it difficult to be evaded by obfuscating an

attack (2.6 Evading Detection), (Handley, Paxson & Kreibich, 2000).

DNIS must not be vulnerable to attack itself. To achieve this, the components of DNIS

must communicate in a secure manner so that no attacker can observe or alter the data

that is communicated between components. DNIS must be able to defeat attacks that may

try to exhaust the memory of the system.

DNIS will be designed with existing IP network infrastructure and protocols in mind. Some

papers (Anderson Roscoe Wetherall, 2004) have suggested solutions based on changing

the way the network functions. The extremely slow deployment of egress packet filtering

and IPv6 have shown how difficult it is to make even the smallest change to the way the

internet works, therefore any proposed solution must work on existing hardware and with

existing protocols.

DNIS is to be tested and proven on real network data. Many research papers rely on

simulation to achieve their goals. A number of successful simulation tools have been

developed recently REAL (Keshav, 1998) or NS (McCanne & Floyd 2000). However the

outcomes of simulation approaches are not adequate in many cases since they eliminate

the impacts of different network mechanisms.

In Summary, the specific requirements will be:

• DNIS should be capable of being deployed on any internal or external link in a

network.

• DNIS will not use misuse detection but will rely on anomaly detection techniques.

• DNIS is required to work in real time.

• DNIS is required to provide for coordinated detection among distributed sensors.

• DNIS should have as low a false positive rate as possible.

• DNIS should be able to drill down to the source and the hosts or subnet currently

being affected by malicious activity.

TP

12
PT DNIS is not required to tackle the problem of IP address spoofing. The source address in

this context is the advertised source address of the traffic.

 37

• DNIS should be designed in a way to make it difficult to be evaded by obfuscating

an attack.

• DNIS must not be vulnerable to attack itself.

• DNIS is to be tested and proven on real network data.

4.3 Design Choices

4.3.1 Introduction

This section will justify some of the main choices made with the design and development

of DNIS. Choices such as the development platform, programming language, whether to

use real network traffic or use simulation and what type of links to test on are all covered.

4.3.2 Development Platform

Java was chosen as the development language. It is unusual for network analysis

application to be implemented in an interpreted language such as Java because of the

extra interpretation overhead. This disadvantage is mitigated by the many benefits of

Java. The most important of these are Java’s cross platform portability which allows

components to be installed on almost any platform and operating system.

Java is an object orientated language and as such is well suited to framework

development in which encapsulation, decomposition and extendibility are key concerns.

The DNIS framework is component based and as such an object orientated

implementation is an intuitive approach. Also, because Java is a high level language it is

suitable for fast prototyping and allows for a quicker implementation. Java also is also

widely used and has many open source libraries and applications. Network and remote

application connectivity are built into Java’s default libraries.

Java has also had many recent improvements, in some cases java can produce

performance comparable to, or in some cases better than, the corresponding C-code

(Mangione, 1998). Faster CPU speeds and increases in memory have also made Java

much more appealing than it has been up until now.

Linux was chosen as the platform to do the development and testing. The reason for this

was that Linux comes with a packet capture library built in. The library, libpcap, does not

 38

come with Windows machines although there is a WinPCAP package available which can

be installed and provides similar functionality.

4.3.3 Online Capture or Simulation

One of the main methods of proving the effectiveness of an approach to network anomaly

detection in literature has been to use tools such as NS2 to simulate the network

environment. There are a number of disadvantages to this approach. Firstly to simulate

the network environment, researchers must have a very good understanding of the

networks important properties. From these properties the researcher builds a model that

he/she believes is an accurate representation of the real network environment. The

problem is that there is a lack of good measurements and analyses of network

environments from which a researcher may draw accurate conclusions on what the

important properties that must be modeled and duplicated in a simulated environment are

(Floyd & Kohler, 2002). Inaccuracies in the models of network behaviour can lead to false

conclusions.

Papers such as “How ‘Real’ Can Synthetic Network Traffic Be?”, (Hernández-Campos

Jeffay & Smith, 2004) illustrate the difficulty in generating synthetic traffic that is realistic.

In order to avoid unrealistic simulation scenarios it has been decided to use a real network

environment to evaluate DNIS. It was for these reasons that the DNIS system is designed

to work on-line by capturing real network traffic. To facilitate this, a large component of

the sensors is the ability to capture packets. To tackle the problem of having to have

repeatable experiments, packet logging and trace file replaying functionality was added to

the system. More about these features can be found (4.4.3.1 Layer 1 – The Event

Source).

4.3.4 Gateway Routers or Dial-up Links

Another design choice was whether the sensors should be designed to work at gateway

routers or on dial-up links. This decision will lead to several implementation decisions. If

the sensors are designed with dial-up links in mind they will process much lower levels of

traffic so sampling periods will have to be longer. Traffic will also all originate from a

single address so measures of spread will be relatively meaningless.

 39

These problems were solved using the plug-in based architecture for components and

keeping everything else generalized so that it can run efficiently in both environments.

Some of the plug-ins are more appropriate on gateway routers and others work better on

dial-up links. To take this into account a weighting can be applied to plug-in output

depending on what type of link the sensor is running on. More about the DNIS plug-ins

can be found in section (5.3 Signal Analysis Plug-ins) and information on signal weighting

can be found in the evaluation section (8.1.1 Signal Effectiveness Weighting).

 40

4.4 Specification

4.4.1 Introduction

The following section describes the Distributed Network Inspection System (DNIS) that

was developed to meet the requirements set out (4.2 Requirements). DNIS is designed to

be an extensible framework that is easily extended to address a range of network

research issues. To allow for this DNIS is decomposed into separate functional packages,

which expose intuitive interfaces to allow researchers to easily add new functionality to

the system. At the core of the application are its pluggable component support and

effective communication and control mechanisms. DNIS is designed with as much

generalization as possible in regard to the interfaces to components in order to allow for a

wide range of network analysis applications to be implemented and incorporated.

4.4.2 Overall Approach (Distributed Sensor Network)

Figure 3 - Distributed Architecture

Due to the switched nature of modern Ethernet networks it is not always possible to place

a sensor at a point in the network where it can observe all the traffic on that network. To

Sensor Manager

 41

solve this problem a distributed approach has been taken where a collection of sensors are

physically distributed across a network where they each can observe a particular segment

of the network. They can then work co-operatively with a management application which

can facilitate decision making and remotely control all the sensors.

The advantages of this approach are that the sampling load can be distributed across

multiple CPU’s and thus allow the results of sensing to be discovered more quickly.

Communication allows the sensing activity to move to where it is needed. This mobility

allows sensors to change the data that they are gathering at different points in the

network based on observations made by neighboring sensors.

The sensors themselves are assumed to run on standard PC’s. The one important

constraint that the sensors have is that they cannot generate a disproportionate amount

of traffic themselves. This requirement results in a number of design decisions. Firstly a

‘fully connected’ network of sensors will not be possible because of the communication

and routing overhead. Interesting sensor routing algorithms have been proposed for low

power radio networks in (Braginsky, Estrin, 2001), (Intanagonwiwat, Govindan & Estrin,

2000).

It was decided not to implement any of these sophisticated routing algorithms and to

instead rely on a hierarchical message passing scheme similar to the Hierarchy of sensors

Distributed Dispatcher Manager (DDM) proposed in (Yadgar, Kraus & Ortiz, 2003), with a

Sensor Manager application at the root of the hierarchy. The reason for this decision was

mainly because of the scalability of hierarchical communication.

Another result of the requirement for low bandwidth utilization was that the majority of

the processing from gathering data to generating a signal and analyzing it is done on the

sensors, so only the results need to be communicated between sensors and the manager.

Virtually all the processing is done in this distributed manner leaving the manager

application, the only centralized component, free to start and stop sensors on different

hosts and change what feature of the network traffic each sensor should be looking at.

The reason the decision making is done centrally is that the sensor manager is at the root

of the sensor hierarchy and has the most complete picture of the network traffic.

Distributed processing also resolves many of the security concerns with such an

application. Because network users are concerned with privacy many people would not be

 42

happy with the idea of their traffic being captured by a sensor and shipped off somewhere

else for analysis. By doing the processing at the sensors themselves no private

information need ever leave the host on which the sensor is running.

4.4.3 Sensor Architecture

4.4.3.1 Layer 1 – The Event Source

The sensor itself is organised into three functional blocks. It is the first components job to

gather information from various sources and present it to the layers above in a uniform

manner.

4.4.3.2 Layer 2 – Signal Generation Components

The second step is to implement a signal generation system which can take the events

presented to it from the lower layers and perform some computation in order to output

time series data.

The plug-in architecture of the network sensors themselves have allowed each of these

algorithms to be implemented quickly and simply integrated with the rest of the

application. A discussion of the various algorithms implemented by the plug-ins follows

this section.

Figure 4 - DNIS Sensor Architecture

Signal

Generation

Event Source

Analysis

 43

4.4.3.3 Layer 3 – Analysis Components

Once the signals or collection of signals that may be of use have been identified, it is

necessary to analyse the signals to try and detect anomalies. There have been many

techniques proposed for analyzing network traffic for anomalies. A small subset of these

have been implemented for the purpose of evaluation and assessment.

4.4.4 Sensor Data Flow

Figure 5 - Sensor Data Flow Diagram

The diagram above shows how data flows through and is processed by the network

sensor. Data enters the application through an event source. Network sensors can work

on different event streams. A sensor could be router exported flow data, or application

PCAP Simulator Packet Capture Library

Buffering Filtering

Time Series Analysis

Logging

Machine Learning Signal Analysis

TCP Plug-in IP Plug-in ICMP Plug-in

Graphing

Filesystem (tcpdump formatted trace files) NIC

Plug-in Interface

 44

logs, or system events. This implementation however understands two event sources, a

network interface or network trace files. From these sources events are passed to a

component that performs the buffering, filtering and distribution of data to the

components input queues. The pluggable signal generation components compose layer

two of the processing chain and they generate signals that are analysed by components

on layer three. After this stage the data is presented to the user through graphing or

logging to a file on disk.

4.4.5 Pluggable Component Based Architecture

Figure 6 - Plug-in Architecture Diagram

The DNIS sensor has a pluggable component based architecture which means that it is

designed to be able to execute interchangeable blocks of code. Java allows objects to be

interchangeable by having classesTP

13
PT implement the same interface. The diagram below

shows the interfaces that a legal component must implement. It’s not shown but the

“Network Sensor Plug-in” interface extends the Runnable interface which allows all

pluggable components to be executed in their own thread.

TP

13
PT Classes are the base descriptions of objects used in object-orientated programming.

Technically, classes describe attributes and methods.

TSensor
TPlug-in

TPlug-in

TPlug-in

TPlug-in

 45

Figure 7 - Plug-in Interface Hierarchy

The interfaces can be considered contracts that a component must fulfill. They form a

hierarchy with the “Network Sensor Plug-in” at the root. All components will implement

the methods defined by this interface. This interface is shown below.

Figure 8 - Sensor Component Interface

The two interfaces add more methods specific to the function of the particular type of

plug-in. For example the Signal Generation Plug-in adds methods that allow the input and

output of the plug-in to be set. All Signal Generation Plug-ins must implement these

interfaces because the sensor will try to call them when a new component is loaded.

Network Sensor

Plug-in

Signal Generation

Plug-in

Signal Analysis

Plug-in

String getPluginName();

void setPluginName(String name);

String getPluginDescription();

void stopPlugin();

boolean startPlugin();

NetworkSensorPlugin

 46

4.4.6 Package Structure

The following diagram shows how the components of the DNIS system are decomposed

into packages that separate the individual concerns of the application. The root of the

hierarchy is ie.tcd.cs.nds.linehane. Note that the fully qualified name is not shown in

the diagram for conciseness. The system adopts the de facto standard for package naming

in Java, which is to use the DNS name for your organisation in reverse and your name.

log_processing packet_capturepluginstimeseries util

linehane

Network
Sensor

Sensor
Manager

analysis

machine_learni
ng

wavelets worm_detection

Figure 9 - DNIS Package Structure

The main packages of the application are shown. There are a number of sub packages

within the plug-ins package which are not shown. The sensor makes use of all of the

packages but the manager can be packaged and deployed without any of the other

packages.

 47

4.4.7 Sensor Algorithms

4.4.7.1 Component Output Logging

In order to separate the huge amount of captured data into manageable amounts it was

decided to implement a custom method of storing the packets component outputs on disk.

This method uses a simple algorithm described below.

4.4.8 Event Source

As already stated, (4.4.4 Sensor Data Flow) there are two event sources that can provide

data for the sensors to process. The first is to capture data on-line directly from the wire.

This is the normal mode of operation. Alternatively, data can be supplied from a network

trace file for off-line processing. All data is provided to the sensor using a common

PacketSource interface which allows the offline file parsers and online native interfaces to

be interchangeable and keep the underlying implementation details hidden from the

sensor.

Figure 10 - Component Output Logging

Figure 11 - DNIS Sensor Capture

 Online pcap

library

tcpdump Byte dump

Event Source

No

Yes

After an

Hour

Component

Output Queue

Dump to trace

File

Remove (backup

/ compress) 24

hour old trace

 48

On-line Capture:

In this mode the sensor uses JINI to interface with a native wrapper, which allows the

sensor to access the underlying operating systems packet capture libraries. These packet

capture libraries allow whole unprocessed packets to be exported directly from the

network interface hardware and presented to the application layer. On arrival at the

Network Interface Card (NIC) a timestamp is appended to the packet that is generated by

the NIC. In this way inaccuracy due to latency between packet arrival and processing is

eliminated. This is particularly important since the sensor is implemented in an interpreted

language.

Off-line file input:

In this mode of operation the sensor can be instructed, on initialisation, to read packets

from a file rather than the network. The sensor can read two different trace file formats

and has been designed with the option to extend this to other trace file formats.

The two, currently implemented, off-line processing file format readers can read tcpdump-

format trace files and a simple byte dump log file that is specific to the DNIS application.

The tcpdump format was chosen because it is a common format that data sets are

available in, it can be interpreted by many commercial analysis tools such as ethereal and

the operating system’s packet capture library already provides a means to replay this

format of trace file using the open_offline() call.

This facility was provided primarily as a development and testing tool. This was developed

mainly because of early difficulties in obtaining access to live network traffic from a

working network and the need for repeatable experiments during testing.

4.4.9 Communication & Control

Communication between the DNIS sensor and the sensor manager is achieved via Java

RMI. The components are connected in a client server manner with the manager having a

connection to each sensorTP

14
PT. The manager controls the sensors using only three

operations. These operations are shown in the UML class diagram below.

TP

14
PT Connections between sensors and manager can be intermittent. A permanent TCP

connection does not need to be held open between the two components.

 49

Figure 12 - DNIS Network Sensor Remote Interface

The sensor manager can request the sensor to load a new plug-in. On receiving such a

request the sensor will look for the code that implements that plug-in on disk. Once found

the sensor uses Java’s reflection API to load the class, create an object instance from the

class definition, and invoke the plug-ins run() method in a new Thread. The manager can

also instruct the sensor to start, stop or stop a currently executing plug-in.

In order for the sensor manager to know what the sensor is doing it uses a trap directed

pooling model based on the Simple Network Monitoring Protocol (SNMP). The manager will

poll each of the sensors in a round robin manner at regular intervals. If the manager sees

activity on one of the sensors or receives alerts from a sensor it can increase the

frequency of polling. The unit of data exchanged is a SensorStatus object. Figure 13

shows the data that is encapsulated in this object.

Figure 13 - Sensor Status Fields

SensorStatus

long maxMemory;

long freeMemory;

String OSArch;

String OSName;

String[] activePlugins;

Date timestamp;

boolean isAlive;

double CPULoad;

long packetsProcessed;

String sensorIPAddress;

long upTime;

 50

The status messages contain the following information:

Memory: The current memory state of the JVM allows the manager to make

decisions in context of the remaining memory available to new plug-ins. The

manager can also see if a plug-in is overloaded and some of the processing should

be moved to another sensor.

Platform: Information on the hardware platform and operating system for the

benefit of the user.

CPU: The CPU usage is included in each messageTP

15
PT and is used to load balance the

sensors.

Active Plug-ins: The message contains all the plug-ins that are currently running.

This is important to the manager because it tells the manager if a plug-in was

successfully loaded or if a plug-in has died or crashed.

Workload: The number of packets processed is sent with each status message.

From this and the timestamp that accompanies each status message the manager

can calculate the packet’s per second that the sensor is processing.

4.4.10 Security

Figure 14 shows the communication between components within the system. The critical

communication is the passing of status messages from the sensors back to the manager.

If these messages are corrupted, or altered during transmission the manager will have a

false impression of the state of the sensor network and the activity on the network being

monitored.

TP

15
PT CPU usage is only available when the sensor is running on a Linux platform. Under

Linux this value is available by parsing the /proc/loadavg file. The same information can

be obtained under Windows using an API call.

 51

The communication of sensor status messages from the sensor back to the manager can

be secured in a very simple manner. A digital signature based on secret key cryptography

is used to compute a new field that guarantees that the message has not been altered and

is from the sensor and not a malicious user. The algorithm assumes that the sensor and

manager share a secret key with each other. Shared secret keys could be established at

runtime via a key exchange that can be accomplished using Public Key Infrastructure

(PKI). The addition of this feature is left as further work.

Figure 14 - DNIS Communication

Figure 15 - DNIS Secure Communications

Sensor Manager

Commands:

 start(), stop(), load(), unload()

Sensor Status

Sensor Status

SHA-1 Digital

Signature

 52

4.4.11 Sensor Manager

The sensor manager has at its disposal, a cached up to date status object for each sensor.

The screenshot below (Figure 16) shows the manager controlling just two sensors, but the

manager application is not restricted to only two. Any number of sensors can be controlled

from a single manager interface with the user interface and screen real estate being the

limiting factors. The sensor manager does not currently make any decisions on which

plug-ins to load on which sensors. The manager instead presents all the status information

to the user who can select a particular sensor (identified by the address of the host on

which it is running) and carry out management actions on that sensor.

Figure 16 - Sensor Manager User Interface

4.4.12 Response to Detection

Once a problem is detected, the next challenge is to formulate an effective response.

Fundamental to effective response handling is the accurate identification of the source

responsible for the problem. Packet forgery is straightforward, and one must take care to

avoid allowing attackers to manipulate response logic to harm legitimate user connectivity

or cause service denials throughout the network. Traceback techniques can help track

network activity to the source. Once the source is verified, countermeasures can range

from very passive responses, such as informing an administrator, to highly aggressive

actions, such as severing a communication channel.

 53

5 DNIS Dynamically Pluggable Components

5.1 Introduction

DNIS provides a simple and extensible framework which allows for the addition of

instrumentation components (plug-ins) to perform two different types of functions. The

two classes of DNIS plug-ins are, Signal Generation plug-ins and Analysis plug-ins.

The following section will briefly introduce the plug-ins that are currently implemented.

Some of the more interesting plug-ins are explained in more detail in the following

sections.

1. BytesPerPacketPlug-in

Description Reason Implemented

This plug-in calculates

the average and

variation in packet size.

A change in the randomness of average packet sizes may

indicate an attack by showing that there are large

amounts of similar sized packets or that packet sizes are

being deliberately randomized to fool an IDS.

2. BytesPerPortPlug-in

Description Reason Implemented

This plug-in calculates

the amount of traffic

destined for different

ports.

This indicates which ports are receiving what percentage

of traffic. A change may indicate an anomaly. Blaster and

other worms resulted in large volumes of traffic to ports

that are not normally used. Volumes of traffic to well

known privileged ports, registered ports and dynamic /

private ports are also collected.

3. BytesPerProtocol

Description Reason Implemented

Calculates the

percentage of traffic that

is TCP, UDP, ICMP or

another protocol.

A rise in traffic due to an unknown protocol may indicate

an anomaly. Scanning behaviour can also result in large

increases in ICMP traffic. TFTP, which is a common

service that worms and attackers use to transfer

executables, uses UDP as a transport protocol.

 54

4. ByteTraceDiskWriter

Description Reason Implemented

This plug-in dumps

packets to a log file on

disk.

This plug-in was implemented to make development

easier because it allows everything to be dumped to disk

in a format that can later be replayed. The packets are

serialized to a hex representation of their bytes.

5. ICMPPlug-in

Description Reason Implemented

This plug-in keeps a

count of the number of

different ICMP messages

on the link.

Large amounts of ‘Destination Unreachable’ messages

may indicate scanning behaviour that is common to

many internet worms.

6. PortAddressSpreadPlug-in

Description Reason Implemented

This plug-in generates a

signal by performing a

statistical analysis of the

spread of ports and hosts

currently communicating.

This plug-in was implemented to assist in the detection

of worms and (d)DoS by highlighting the change in

spread of active hosts and ports during and attack.

7. IPProtocolPlug-in

Description Reason Implemented

This plug-in is a protocol

anomaly detector for the

IP protocol.

IP headers with fields whose values do not conform to

the RFC, whose checksums fail, or have addresses that

we suspect are spoofed often indicate malicious activity.

8. TCPProtocolPlug-in

Description Reason Implemented

TCP protocol anomaly

detector.

Illegal combinations of TCP flags, a checksum that fails,

data in packets that shouldn’t carry a payload or a

misreported length may indicate tampering or other

malicious activity.

 55

9. TCPStatePlug-in

Description Reason Implemented

This plug-in analyses the

state of all ongoing TCP

connections.

The number of connections in each state can be used to

detect anomalies. A common DoS attack involves

opening large numbers of TCP connections and leaving

them in the SYN or SYN-ACK states (DARPA, 1981).

10. ThroughputPlug-in

Description Reason Implemented

This does a simple byte

count.

This plug-in was implemented to add context to the

results coming from other plug-ins.

11. TrafficDirectionPlug-in

Description Reason Implemented

Compares outgoing and

incoming traffic volumes.

This plug-in is intended to run on a gateway link. The

presence of incoming or outgoing DoS attacks can be

detected by looking for a change in the ratio between

incoming and outgoing traffic as proposed in (Gil &

Poletto, 2001)

12. VulnerabilityScanningPlug-in

Description Reason Implemented

This plug-in looks for

activity consistent with

vulnerability scanning.

Vulnerability scanning is the scanning of a large number

of hosts on the same port. The majority of scanning is

usually concentrated on the local network to increase the

infection rate.

13. WaveletAnalyserPlug-in

Description Reason Implemented

This plug-in uses

wavelets to perform

signal analysis.

This plug-in was implemented to help filter noise, high

frequency oscillations and outliers from the output of

other plug-ins.

 56

14. TCPStreamReassemblyPlug-in

Description Reason Implemented

This plug-in reassembles

TCP streams.

This plug-in keeps track of the number of segments per

message and the number of messages exchanged per

connection. The plug-in was implemented to allow for

payloads to be reconstructed and analysed by other plug-

ins.

15. PayloadAnalysisPlug-in

Description Reason Implemented

This plug-in analyses the

packet payloads.

This plug-in uses string matching algorithms and TCP

context to perform pattern matching on packet payloads

for the purpose of signature detection, in a manner

similar to HONEYCOMB, (Kreibich & Crowcroft, 2004).

16. MLProfileAnalyserPlug-in

Description Reason Implemented

This plug-in uses

unsupervised machine

learning to detect

deviations from normal.

This plug-in is designed to be chained with other plug-ins

in order to use their output as an input to an

unsupervised learning process. It builds profiles of

network usage and can then detect deviations from the

learned profile.

17. IPActivityPlug-in

Description Reason Implemented

This plug-in keeps track

of currently

communicating hosts and

ports.

This plug-in measures the number of active ports and

active local or remote hosts. A ratio between the number

of active ports and number of active hosts may make it

possible to detect anomalies caused by the introduction

of new network applications. Also port or host scanning

will have an effect on this ratio. It is hoped that this

plug-in will show worms that use DNS searches or spider

websites to find new hosts to infect.

 57

5.2 Signal Generation Plug-ins

5.2.1 Introduction

These plug-ins draw data directly from the event source and output statistics in a time

series format. This data later becomes the input for the analysis part of the application.

This section will describe a small number of the signal generation plug-ins.

5.2.2 Port / Address Spread Plug-in

This plug-in generates a graph showing three things, the spread of ports in use, the

spread of active hosts and values that are a combination of the two measures of spread.

The method of determining the value for spread for a time period is shown below.

The diagram above shows how the spread of active ports is calculated. There are a

number of bins that cover the whole port range (0 to 65,535). When a TCP or UDP packet

arrives the port number and number of bytes in the payload is extracted. The number of

Figure 17 - Port Spread Algorithm

10Mb

100 - 150 50 - 100 0 - 50

Packet Arrived on

port 143

0Mb 40Mb

Standard Deviation

 58

bytes is then added to the bin into which that port number falls. After a short periodTP

16
PT

collecting this data the standard deviation of the byte counts from each bin is calculated.

This value is then used as a measure of spread.

The same algorithm is run simultaneously for host addresses. In this case the 32bit IPv4

addresses are converted to a number before being added to the bins. The two standard

deviations are combined to give a root mean square value which is also output by this

plug-in.

2
21 SDSD +

Equation 1 - RMSE Calculation

5.2.3 TCP Stream Reassembly

In order to perform payload analysis it is necessary to first re-construct the data stream.

A TCP stream is a set of IP packets traveling in both directions between two hosts using a

pair of port numbers. Within the IP packets there are TCP segments. A sequence of

segments flowing in any single direction constitutes a message. For example a typical

HTTP request and reply would require the TCP connection setup packets to be first

exchanged followed by one or more TCP segments containing the HTTP GET request. A

sequence of segments flowing in the opposite direction follow and contain the HTTP

response. Finally the connection is closed.

For the purpose of signal generation we may want to look at the numbers of segments per

message or messages per connection. In order to evaluate the pattern matching

techniques proposed in (Kreibich & Crowcroft, 2004), we also need to be able to index to a

particular message depth in a connection.

Figure 18 shows more clearly how the messages are re-constructed from the packet data.

TP

16
PT Running this part of the algorithm for more than a couple seconds on a high bandwidth

link could cause the number representations in the programming language to overflow

and corrupt the calculation.

 59

Figure 18 – TCP Stream reassembly. TP

17
PT

5.2.4 TCP / IP Protocol Anomaly Accounting Plug-ins

There are two plug-ins, one for IP and one for TCP, that perform protocol anomaly

detection. Protocol anomaly detection is essentially checking the protocols against their

specifications to see if there are any deviations.

Anomaly checks came from both the RFC’s that specify allowable values for fields in the

protocol headers and from papers such as (Handley, Paxson & Kreibich, 2000) which deal

with ‘Traffic Normalisation’ which is the process of finding and removing such anomalies.

Figure 19 - IPv4 Header

TP

17
PT Illustration reproduced from (Kreibich & Crowcroft, 2004)

 60

The diagram above shows the IPv4 header. There are a number of anomalies which may

occur in this protocol that the IP protocol anomaly signal generator detects. Firstly the

version field is checked to make sure it is always IPv4TP

18
PT. Next the length of the header is

checked. From the diagram above it can be seen that the shortest legal IPv4 header is 20

bytes. Anything shorter than that and the header is incomplete. Next the total length of

the packet is compared against the advertised total length in the header. The bit between

‘IP Identifier’ and ‘DF’ field is required to be set to zero by the IPv4 specification so the

plug-in checks it is zero. The TTL field is checked for unusually low TTL values. These TTL

values are suspicious because they are too low for packets to reach their destination. The

checksum is re-calculated and verified. Finally the addresses are checked that they are

not invalid in some way. Examples of invalid addresses are 127.0.0.1 (loopback) or

0.0.0.0 (broadcast).

5.3 Signal Analysis Plug-ins

5.3.1 Introduction

Having generated a signal it must be then analysed for anomalies. The signal can be the

output from any of the plug-ins previously discussed. To make this possible signal analysis

plug-ins can be chained with the previously discussed signal generation plug-ins so that

data can flow from one plug-in to the other. Alternatively, the signal analysis can be

performed offline and, to facilitate this, the signal analysis plug-ins can also read the time

series output from other plug-ins and from the log files on disk.

The signal analysis is performed in a distributed fashion at the network sensors. The

different methods of analysis are again implemented as plug-ins. When loaded the signal

analysis plug-ins query the sensor to see what signal generation plug-ins are running and

they then intercept the output of these plug-ins for analysis.

TP

18
PT This assumes DNIS is run on an IPv4 network.

 61

5.3.2 Wavelets Analysis Plug-in

Wavelets, as explained in (2.3.3 Wavelets), can be used to filter signals in order to

remove high frequency oscillations that are common in network traffic observations.

Figure 21 illustrates how a signal can be divided into its constituent wavelets and then by

removing a number of these constituents or coefficients before reconstructing, the signal

is transformed.

Figure 20 - DNIS Plug-in Chaining

Figure 21 - Wavelet Noise Filtering

Haar-Wavelet

Transform {12.23243542; 3.45435345,

6.34234324; 7.93278215,

23.93748759 }

{12.23243542; 3.45435345,

6.34234324; 0.0, 0.0, 0.0

}

Inverse Haar-Wavelet

Transform

Filter wavelet coefficients

to remove parts of the

frequency spectrum.

Analysis Plug-in

Signal Generation Plug-ins

Network

Sensor

 62

The above algorithm is perhaps better illustrated by example. In this case a DNIS Network

Sensor is using a wavelet transformation to noise filter the output from the

PortAddressSpread signal generation plug-in. The signal being used is the RMSE value for

active port and active host address spread.

Figure 22 - Original Signal (RMSE of Port and Address Spread)

The graph below is the data from Figure 22 after a wavelet transformation has been

carried out and the inverse transformation used to re-create the graph from the

coefficients. The coefficients used to create the graph are printed below the graph. The

reader should notice that the graph has not been distorted, even though it has been

reduced to only the coefficients shown and then reproduced from those values.

 63

Figure 23 - Graph after Inverse Wavelet Transformation showing Coefficients.

Figure 24 - Wavelet Coefficient Filtering

Time Series

Data

Wavelet

Coefficients

Wavelet

Coefficients

Wavelet Coefficients

{0; 0, 0;6, 5, 4, 8;

9, 8, 7, 9, 4, 3, 2,

7,}

Wavelet

Transformation

Time Series

Data

Wavelet

Transformation

Inverse Transform Transform Filter Coefficients

 64

To filter out parts of the spectrum that occur at different frequencies, some of the

coefficients are set to zero as is illustrated in Figure 24. In general the ‘noise’ is in the

higher frequencies so the coefficients filtered in this example are the highest frequency

coefficients. The number of coefficients to filter was arbitrarily chosen to be 30% of the

total number of coefficients. The graph below shows the same signal after all the

coefficients have been removed except one. It can be seen that a smoothed graph has

resulted with all the high frequencies removed.

Figure 25 - Wavelet Coefficient Filtering

5.3.3 Machine Learning

Machine learning has been defined as “any computer program that improves its

performance P at some task T through experience E” (Mitchell 1997). In this specific

instance, the computer program is the Machine Learning Plug-in, the performance is the

accuracy of its predictions, and the task is to identify anomalous traffic patterns. The

experience is a training data set that contains ‘normal’ traffic. Normal traffic in this case is

considered to be any traffic not containing any worms, DoS or scanning behaviour.

 65

Machine learning allows the plug-in to solve the complex task of determining what is an

anomaly without having to hard code any detailed knowledge about how to recognise an

anomaly.

There are many flavors of machine learning including decision tree learning, Bayesian

learning and clustering. This plug-in uses clustering, which is an unsupervised learning

process. Unsupervised learning has been applied by others to similar problems such as in

“Unsupervised Learning Techniques for an Intrusion Detection System” (Zanero &

Savaresi, 2004). That paper listed the main advantages of this approach as:

• Outlier detection: unsupervised learning techniques are capable of identifying

strange observations in a wide range of phenomena; this is a characteristic we

definitely need in an anomaly based IDS;

• Generalization: unsupervised learning techniques are also quite robust and gave

us the hope of being able to resist to polymorphic attacks;

• Adaptation: a learning algorithm can be tuned totally to the specific network it

operates in, which is also an important feature to reduce the number of false

positives and optimize the detection rate.

This plug-in uses a variation on K-NN, an unsupervised classification technique. In this

instance I have constructed a single class learner that learns ‘profiles’. The profiles are

simply a single cluster of data samples representing normal network behaviour. Like the

other signal analysis plug-ins, this plug-in can be chained to any of the signal generation

Figure 26 - Machine Learning Plug-in Class Diagram

ProfileLearner

Profile

Train(Sample)

Test(Sample)
SampleDistance

Distance(Sample,

Sample)

Profile

Point centre

Int radius

MLAnalysisPlug-in

Int state (Training | Testing)

If (Training)

Read all previously

generated signals and

learn profile.

Else if (Testing)

Intercept current

signal generation

output and test

against learned

profile.

 66

plug-ins with the exception that the plug-in must be told whether it is to learn from the

data or test the data against it’s profile.

5.3.4 Payload Pattern Matching

Payload analysis is becoming increasingly important as a means of anomaly detection.

This is because of the relative ease with which packet headers can be forged and altered

to obfuscate an attack. There are a number of approaches to payload analysis, all of which

rely on the fact that the payload of packets are not random. In fact the content of the

payload has been shown to be dependant on the application that generated it (Wang et al,

2004).

This feature is important because an intrusion detection system no longer needs to rely on

port numbers to determine the application generating the traffic.TP

19
PT This allows a network

monitoring application to recognise, for example, if someone is using port 80TP

20
PT to transmit

or receive anything other than HTTP traffic. One of the common ways to recognise the

application from the packet payloads is using machine learning techniques like those

discussed in the previous section (5.3.3). This approach was adopted in papers such as

(Zanero & Savaresi, 2004). Other papers rely on statistical methods to determine the

application using only a byte frequency distribution based profile and standard deviation

(Wang et al, 2004). Yet another paper uses simple string matching algorithms to find

matching content in packet payloads (Kreibich & Crowcroft, 2004). Simply matching the

strings is useful but will ultimately match all the application protocol inherent structure

that will be common to many packets.

The payload pattern matching plug-in in this application implements the final approach to

payload based detection. The reason that this approach was chosen was because of its

clever payload scanning techniques that allow it to uncover structure that has been

fragmented over many packets and the advantage it takes of the context of the data, such

as its location in a stream, to improve the ability to find byte patterns.

TP

19
PT It is only a convention that services such as SMTP run on their ICANN registered port

numbers (25). Any service can be run on any port number.

TP

20
PT Port 80 is registered for use by World Wide Web Hypertext Transport Protocol by Tim

Berners-Lee.

 67

The plug-in uses Longest Common Substring (LCS) as a string matching algorithm but

other algorithms such as Edit Distance would also be suitable. This approach was taken

because not only can this type of matching determine if there is a particular byte pattern

being passed around the network but it can actually isolate the bytes and generate a

report that can be used as a signature for the malicious traffic.

This plug-in was also implemented in this way because of the possible benefits of chaining

this plug-in to the machine learning plug-in which may be able to distinguish between the

signatures of malicious traffic and the signatures generated due to application layer

structure embedded in the packet payloads. This could give the benefits of automatic

NIDS signature generation from unclassified traffic, allowing networks to almost instantly

protect themselves from day zero attacks.

5.3.5 Internet Worm Detection

From running the Network Sensors signal generation plug-ins on traffic containing worm

activity and studying the generated graphs, it is proposed that the following signal

fluctuations may be used to indicate worm-like activity on the network.

No. Signal Fluctuation

1 Number of packets with the same size payload Increase

2 Average Packet Size Change

3 Packet Size Variation Decrease

4 UDP and ICMP Traffic rates in relation to Total throughput Increase

5 Active Port : Active Host Ratio Decrease

6
Root Mean Standard Error of Active Host and Active Port

Spread
Increase

7 Ratio of Incoming to Outgoing Traffic Change

8 Number of single packet exchanges Increase

9 Vulnerability Scanning Behavior Increase

Table 4 - Worm Detection Signal Fluctuations

 68

The rationale behind the chosen signal variations to be used as indicators of worm activity

are:

1. Number of packets with the same size payload

Worms will often use the same packet while scanning, compromising and during

the transport phase of infection in order to speed up their execution, increase

spread rate and reduce the effort required to build the worms. During a worm

attack it has been noticed that the number of packets with the same size increases

dramatically.

2. Average Packet Size

The previous metric may be defeated by worms that add random amounts of

padding to their payloads in order to help obfuscate their activity. Since packet

sizes on the network are not random the injection of a large number of randomly

sized packets will have a measurable effect on the average packet size.

3. Packet Size Variation

Because worms will generally flood the network with similarly sized traffic the

variation in packet sizes over time will usually decrease. Conversely should a worm

try to defeat a NIDS by randomizing its payload size then the packet size variation

will increase. Such sudden changes in packet size variation have been observed in

all worm infected traffic.

Figure 27 – Payload Size Component Output due to Worm

 69

4. UDP and ICMP Traffic rates in relation to Total throughput

The most commonly exploited current vulnerabilities utilize UDP rather than TCP as

a transport. Most scanning is also conducted by sending a single UDP packet to a

port. ICMP messages are used to relay messages such as host or port unreachable.

These messages are common when a worm is guessing random IP addresses which

may not exist. The worm traffic that these observations were based on shows a

significant increase in UDP and ICMP traffic during attacks.

Figure 28 - Worm Activity Characterized by TFTP transfers over UDP.

5. Active Port : Active Host Ratio

The ratio of active hosts to active ports over a time period appears to be a good

indicator of host or port scanning since this ratio will change if there are large

number of packets traveling to many hosts on only a few ports or conversely if

there are large numbers of packets traveling to many ports on only a few hosts.

This signal should indicate the presence of either worm type vulnerability scanning

and often malicious, port scanning.

6. Root Mean Standard Error of Active Host and Active Port Spread

This signal is based on the distribution of communication hosts and the distribution

of active port numbers. These two distributions are then used to measure spread

by calculating the standard deviation for each. The two standard deviations are

then combined to give the root mean square error which is a combination of port

spread and host spread. Sharp increases in this signal have been observed during

the infection and transport phase of a worms activity.

 70

Figure 29 – The effect Host Spread and Port Spread on RMSE

7. Ratio of Incoming to Outgoing Traffic

This signal reflects a change in the ratio between incoming and outgoing traffic on

a subnet or a single host. It has been shown in previous work (Gil & Poletto, 2001)

that there is a relationship between the incoming and outgoing throughput.

Incoming or outgoing worms or dos activity will alter this ratio and by doing so

alert us to possible malicious activity.

Figure 30 – Incoming / Outgoing Traffic, Ratio and Difference (Below Line)

8. Number of single packet exchanges

 71

The number of times two hosts communicate with only a single packet has been

seen to be an indication of scanning behaviour. Most internet protocols require

acknowledgements and so it is normal for each communication to involve several

packets flowing in both directions between the two communicating hosts. The

presence of a large number of packets traveling one direction and un

acknowledged may indicate a worm scanning non-existent host addresses.

9. Vulnerability Scanning Behaviour

During the scanning phase of a worms lifecycle it is common for the worm to spend

the majority of it’s time scanning hosts on the current subnet. This is an

optimization that is present in many modern worms that allow them to spread

faster by taking advantage of the increased capacity of local link in a network. This

signal is an indication of such activity by showing the maximum number of packets

sent to the same port on different hosts on the same subnet.

Figure 31 – Vulnerability Scanning Component.

Figure 31 shows the effectiveness of counting single packet exchanges and vulnerability

scanning behavior. The worm that the graph is based on was sending large numbers of

single packets to the same port to hosts on the same subnet. The dropping outbound

scanning variance is decreasing as the outbound scanning rate remains steady. The

variance is a measure of the change in scanning behaviour an so sustained scanning will

always be shown by a decreasing variance.

 72

5.4 Worm Detection Component

The diagram above shows how worm detection is achieved. Note that the component does

not perform a binary classification into the categories “attack” or “not attack” but rather

outputs a probability indicating the likelihood of an attack being present.

Figure 32 - Worm Detection Algorithm

Receive Time Series Data for

Signal Generation Components

Isolate Signals of Interest

Remove Noise from Signals

UBegin Scanning

For each scan window {

For each signal {

If signal is moving in direction

consistent with worm traffic

increase the probability of a worm

being present

Else decrease the probability

 }

}

Record the Signal movements and

probabilities in a Time Series file.

 73

Figure 33 - Worm Detection Example Source

In order to illustrate how the algorithm works to detect a worm it will be shown how a

single one of the 10 different signal fluctuations is analysed. The graph above is the

output from one of the network sensor plug-ins. It is this data that will be used to attempt

to distinguish worm like traffic patterns from normal traffic patterns. The field showing the

maximum number of same size packets for a time period is first isolated from the above

graph.

Figure 34 - Worm Detection Isolated Signal

This graph shows only the “Max Number of Same Size Packets” which is barely visible on

the previous graph. It can be seen that there are a lot of sharp high frequency oscillations

in the graph data. In order to make it easier to decide if the graph data is increasing to

decreasing a wavelet noise filter is applied to the data resulting in the Figure 35.

 74

Figure 35 - Worm Detection Filtered Signal

This graph is created by passing the data from the previous graph through a noise filter

that removes the two highest frequency wavelet coefficients leaving a smoothed graph.

Trends in the data over a longer time period can now be more accurately measured. The

final stage of the algorithm takes advantage of this.

Figure 36 - Worm Detection Sliding Window

In the final analysis, each of the signals is examined using a sliding window algorithm.

This algorithm passes over the signal and decides at which points the signal is increasing

or decreasing significantly. It achieves this by first calculating the range of values of the

entire signal and then the change in value during the windowed period is expresses as a

percentage of this value. This percentage is also used to indicate by how much the signal

is increasing or decreasing.

 75

1.

2.

3.

4.

Table 5 - Illustration of Sliding Window Analysis

Table 5 shows how overlapping samples of the filtered time series (right) are analysed and

the trend is determined (Shown below each graph on left). By querying each of the signals

 76

to see if they are moving in the direction that they would during a worm attack we can

decide whether or not there is a worm at work on the network. Even if every signal does

not change in the way predicted during an attack, a probability of there being worm

present can still be calculated from the few agreeing signals.

Our hypothesis promulgates that, when a worm attacks, the number of similar sized

packets may rise. In the example shown above it can be seen that the number of similar

sized packets per second is increasing between 17:29 and 17:41. If the reader refers to

Figure 34, showing the unfiltered signal it can be seen that there is a sharp change in the

traffic pattern during this same period. It was at this time during the capture of the data

that an infected host started trying to spread by scanning other hosts. It can be seen that

the analysis of this single signal has contributed to the detection of a worm. When

combined with the nine other signals that change during an attack the ability to

successfully detect an attack is improved.

Since there are ten ways that a worm can be recognised, the algorithm adds 0.1 to the

probability of a worm being present for each signal that agrees with the assumptions.

There is some weighting applied to this value, which is discussed later (8.1.1 Signal

Effectiveness Weighting). The probabilities for each period are then collected and graphed

as shown below.

Figure 37 - Probability of Worm

During this scan the size of the window was set to six minutes and the window moved by

half that amount for each analysis. This resulted in a point on the graph every three

minutes. As already stated the worm started its run at 17:40 and the graph shows the

highest probability of a worm being present at the same time.

 77

6 Data Gathering

6.1 Data Collection Infrastructure

Figure 38 - Honeypot Data Gathering

In order to capture Internet worms, a Honeypot machine was set-up and connected

directly to the internet. A virtual Honeypot was not used as open source versions of these

systems do not allow for services to be realistically simulated on the hosts. In order to

capture the whole lifecycle of the worm from infection to scanning, spreading and any

other effects such as DoS attacks it will be necessary to have a Honeypot that can actually

be infected and execute the worm code.

The Honeypot machine that was used was a Windows 2000 Advanced Server (No service

packs or patches installed)TP

21
PT running on a 600Mhz Intel PIII machine with 256Mb RAM. A

second operating system was also installed on a separate partition to allow the Honeypot

to be cleaned of infections and repaired after each capture session. A server operating

system was chosen because it runs more services that may be exploitable by worms. The

system was configured not to protect itself in any way from attacks. Table 6 (below)

shows the services that were running on the machine during the capture sessions. The

data was collected using a popular port scanner.

>nmap -P0 -v -T Aggressive 194.165.162.242

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2004-09-02 15:26 IST

Host dialup242.ts521.cwt.esat.net (194.165.162.242) appears to be up ... good.

Initiating Connect() Scan against dialup242.ts521.cwt.esat.net

TP

21
PT Over 101 known vulnerabilities in this operating system were found by searching CERT’s

vulnerability notes database.

 78

(194.165.162.242) at 15:26

The Connect() Scan took 20 seconds to scan 1657 ports.

Interesting ports on dialup242.ts521.cwt.esat.net (194.165.162.242):

(The 1635 ports scanned but not shown below are in state: closed)

PORT STATE SERVICE

21/tcp open ftp

25/tcp open smtp

69/tcp filtered tftp

80/tcp open http

111/tcp filtered rpcbind

119/tcp open nntp

135/tcp filtered msrpc

136/tcp filtered profile

137/tcp filtered netbios-ns

138/tcp filtered netbios-dgm

139/tcp filtered netbios-ssn

443/tcp open https

445/tcp filtered microsoft-ds

515/tcp filtered printer

563/tcp open snews

1025/tcp open NFS-or-IIS

1026/tcp open LSA-or-nterm

1027/tcp open IIS

1434/tcp filtered ms-sql-m

2049/tcp filtered nfs

3372/tcp open msdtc

4444/tcp filtered krb524

Nmap run completed -- 1 IP address (1 host up) scanned in 21.003 seconds

Table 6 - Nmap Scan of Honeypot

 79

In order to contrast the infected traffic with normal traffic from a non-infected machine,

and in order to verify the false positive rate of any detection algorithms, it was decided to

capture and record typical internet usage.

To do so, two machines were used (both running Windows XP). One machine was a

dedicated capture device and ran a software firewall. The second machine was the

machine that generated the traffic via a user surfing the internet. The machines were

connected via Microsoft’s Internet Connection Sharing (ICS) capabilities. This requires

Machine B to have a static IP address and run a DHCP service. Machine A is assigned a

dynamic IP address and computer B is set as its default gateway. Machine B then runs the

internet connection sharing serviceTP

22
PT and a DNS proxy service.

Machine B ran Microsoft’s Internet Connection Firewall, which is a stateful host based

firewall. All connections that originate on the local computer are allowed but unsolicited

traffic arriving from the internet is dropped unless the firewall is configured to allow traffic

on a particular port. During capture sessions all external ports were closed to unsolicited

incoming traffic from the internet except for ports 15849 (UDP) and 51192 (TCP) which

are used by Microsoft’s Instant Messaging (IM) software.

Before a capture session the operating system had all the most up-to-date patches

installed which close all published vulnerabilities in the operating system services. The

Anti- virus software was also updated with a new virus definition file and it was checked

TP

22
PT This service performs port based Network Address Translation (NAT) which will alter the

packets source port.

Figure 39 - Normal Usage Packet Capture Setup

Modem

Internet

 Packet Capture /

Internet Connection Sharing

User

 A B

 80

that the antivirus was scanning incoming email and all opened, executed or copied files on

the hard disk.

Packets are captured directly from the Windows XP dial-up connection using a dial-up

adapter add on to a commercial network sniffing application. This adapter allows IP traffic

to be decoded from the Point-to-Point Protocol (PPP) and copied to the application layer

for logging. Packets were then logged in tcpdump formatted log files.

During the capture sessions the following applications were used:

• IMAP

• POP

• HTTP

• HTTPS

• SSH

• FTP

As well as this traffic generated by the user the machine also generated DNS and ICMP

traffic in support of the above applications.

6.2 Data Sets

1 Internet Worm Traffic (Single Host)

2 Normal Internet Traffic (Single Host)

3 Worm within Normal Traffic

4 Internet Traffic for Subnet

5 Internet Traffic for Subnet with Worm Activity

6 DARPA IDS Evaluation dataset (Week 6 Thurs & Fri)

Table 7 - Datasets used for evaluation

Six datasets were assembled for evaluation of the DNIS system. Firstly a dataset

containing only malicious traffic was collected from a Honeypot as described above (6.1

Data Collection Infrastructure). This data was collected to select which signals could be

used to characterize malicious traffic. The second data set contains recorded ‘normal’

internet usage for a single user over a dial-up link. This dataset was created to allow any

detection algorithm to be tested for false positives and to train machine learning based

algorithms. The third dataset shows malicious traffic from the Honeypot with background

 81

traffic. To collect this traffic the Honeypot machine was used to surf the internet while it

was being infected. This dataset should show traffic typical of a individual infected

machine that is connected to the internet. The fourth database is a large collection (one

week) of captured data from an entire IP subnet containing roughly 150 PC’s.

The next dataset is from the same subnet for a day in which we know there was worm

activity. A variant of the W32.Randex worm was found to be spreading in the monitored

subnet that day by support staff. These worms spread by scanning the local network for

shared folders that are writable and dropping infected files into the folder. It also scans

the network for machines that have weak Administrator passwords.

The final dataset is a dataset that is used by many IDS developers to evaluate their

products. By using this dataset it can be demonstrated how the ideas presented in this

dissertation compare with other IDS implementations. The dataset was created by the

Lincoln Laboratoy at M.I.T., and is known as “DARPA IDS Evaluation dataset". Portions of

this dataset are commented and described in accompanying documentation and

importantly the dataset contains full packet captures with payload.

It is important to note, however, that this dataset has been artificially generated

specifically for IDS evaluation. In fact, in “The Challenges in Traffic and Application

Modeling for Intrusion Detection System Benchmarking,” (Kayacik, 2003) there is a

detailed analysis of the shortcomings of this data set.

This dataset is accompanied by detailed list files explaining the traffic at each time period.

The table below shows some of the attacks featured in the 1998 dataset on the days that

we are analyzing. This data was extracted from the list files.

Day Attack Time Source

Wed Surveillance sweep performing ping on

multiple host addresses

08:29:08 209.30.70.14

Wed SYN flood DoS on one or more ports 10:41:42 135.13.216.191

Wed DoS attack against apache webserver where

a client requests a URL containing many

backslashes.

14:11:52 135.8.60.182

Thurs Surveillance sweep performing either a port 08:27:03 205.231.28.163

 82

sweep or ping on multiple host addresses

Thurs Surveillance sweep performing either a port

sweep or ping on multiple host addresses

08:28:43 196.37.75.158

Thurs DoS ping of death 10:11:06 135.13.216.191

Thurs DoS ping of death 10:20:11 209.30.71.165

Thurs DoS ping of death 10:27:24 207.103.80.104

Thurs Surveillance sweep performing either a port

sweep or ping on multiple host addresses

10:37:42 202.72.1.77

Thurs SYN flood DoS on one or more ports 11:32:23 230.1.10.20

Thurs Surveillance sweep through many ports 12:03:45 202.247.224.89

Thurs Surveillance sweep through many ports 12:29:51 207.103.80.104

Thurs DoS ICMP echo reply flood 12:48:13 *

Thurs DoS where a remote host is sent a UDP

packet with the same source and

destination

13:31:05 *

Thurs SYN flood DoS on one or more ports 13:31:08 10.20.30.40

Thurs Network probing tool which looks for well-

known weaknesses

13:57:45 195.115.218.108

Thurs Surveillance sweep performing either a port

sweep or ping on multiple host addresses

14:10:09 197.218.177.69

Thurs Surveillance sweep through many ports 14:41:47 206.48.44.18

Thurs Surveillance sweep performing either a port

sweep or ping on multiple host addresses

15:08:20 209.1.12.46

Thurs DoS where a remote host is sent a UDP

packet with the same source and

destination

15:08:42 *

Thurs DoS ping of death 16:15:20 207.75.239.115

Thurs DoS ping of death 16:35:20 197.182.91.233

Thurs Network probing tool which looks for well-

known weaknesses

16:57:23 128.223.199.68

Thurs DoS ICMP echo reply flood 17:53:26 *

Fri SYN flood DoS on one or more ports 09:31:52 10.20.30.40

Table 8 - DARPA Dataset Attacks (Wed - Fri Week 6)

 83

7 Evaluation

7.1 Introduction

In order to introduce this section, the key features of DNIS will be presented according to

a taxonomy of IDS system characteristics presented in “Intrusion Detection Systems: A

Survey and Taxonomy” (Axelsson, 2000). This will allow the reader to make comparisons

between characteristics of this framework and other IDS systems. The reader is

encouraged to look at the classification of surveyed systems presented in this paper as it

gives a quick state of the art of the area and shows clearly where DNIS fits in. For the

readers convenience this table has been reproduced in the appendix (10.1 Classification of

IDS Systems).

Time of Detection: DNIS is a near real-time detection system. DNIS can however also be

run offline on historical audit data.

Granularity of Data-Processing: DNIS processes data continuously and does not

require processing in batches. Some of the analysis components do however use a sliding

window algorithm to detect changes. This window is configurable in size and can move

continuously as new data arrives resulting in a minimal effect on the time of detection.

Source of Audit Data: The main source of audit data is network traffic but DNIS’s

configurable event source allows alternative event sources to be used at different sensors

allowing kernel, application or network equipment logs to be used.

Response to Detected Intrusions: DNIS does not have any active response to detected

intrusions. This is to prevent DNIS being used to facilitate DoS attacks by causing

incorrect termination of traffic flows. Research into an appropriate response is left as

further work (8.9 Future Research).

Locus of Data Processing: Data processing happens in a distributed fashion.

Locus of Data Collection: Data collection is also distributed.

Security: Unlike any of the systems surveyed in the paper (Axelsson, 2000), DNIS does

make some provision for security. However, the security in DNIS could not be considered

high as it uses simple, symmetric cryptography that could be easily compromised.

Degree of inter-operability: DNIS can receive events from other event sources or even

include another IDS system as an instrumentation component in a sensor, giving DNIS a

high degree of inter-operability.

 84

The following sections will provide an evaluation and results, where appropriate, for the

DNIS framework itself and some of the components implemented for this framework. The

worm detection component, as the main aim of this work, is given its own chapter (8

 85

Worm Detection Results).

7.2 Detecting Scanning Behavior

The following section will briefly discuss how DNIS can detect and recognise scanning

behaviour. The data used to carry out this evaluation was recorded during the scanning of

the honeypot for the purpose of gathering information on running services. The output

from this scan is displayed (Table 6 - Nmap Scan of Honeypot). A TCP scan was carried

out using Nmap on all open ports on the honeypot. The scan started at 16:50:30 and was

finished by 16:52:30. Further scanning was carried out after 16:55.

Figure 40 - Ports in use During Port Scan

The BytesPerPort plug-in, predictably, shows traffic on all the ports as shown above. The

traffic levels on the well known ports are concealed by the volume of traffic sent to the

other privileged ports. This volume of traffic to privileged ports, other than the monitored

ones, is unusual and does not appear in the normal traffic dataset.

 86

Figure 41 - Unique Ports during Port Scan

The IPActivity plug-in shows a very high volume of active ports and a corresponding spike

in the ratio between active ports and active hosts.

Figure 42 - Port Spread During Port Scan

The PortAddressSpread plug-in shows a steady spread of hosts during the scan but a spike

in the spread of active ports. The RMSE value also reflects the anomalous scanning

activity with a spike slightly earlier than the port spread value reacted.

The BytesPerPacket plug-in reports a change in the average packet payload size. This is

because the link was idle for a period before the scan began. When the scan begins, the

packet size steadies at a new level for the duration of the scan. At the same time, the

packet size variation shows a spike as the scanning begins and then oscillates slowly as

 87

the variation in packet size steadies. Finally, the BytesPerPacket plug-in shows a large

amount of same size packets during the scanTP

23
PT.

The TrafficDirection plug-in shows that the incoming and outgoing traffic rates almost

match. This results in an almost 1:1 ratio. This would be unusual for normal traffic. This is

because for each probe packet that the scanner sends, the victim responds with another

packet. This can be seen in the graph below.

Figure 43 - Traffic Direction Ratio during Port Scan

Finally, the VulnerabilityScanning plug-in did detect a spike in the number of single packet

exchangesTP

24
PT. However the inbound scanning signal did not show a spike. This is because

this signal is designed to detect multiple host scanning i.e. worms scan many hosts on a

single port looking for vulnerabilities. The port scan in this dataset was targeted at a

single host and so, correctly, was not reflected in this signal.

Since scanning is a characteristic of worms, the worm detection algorithm should

hopefully react to this behavior also. The graph below shows the filtered source signals for

worm detection and it can clearly be seen that scanning will be detected using our worm

TP

23
PT Note that the data in the graph was normalised so that signals would be of the same

scale. The actual number of same size packets is 1 thousandth of the value shown.

TP

24
PT The VulnerabilityScanning plug-in actually considers any connection with less than three

packets a single packet exchange.

 88

detection heuristics, however, the confidence will be low as not all signals have reacted to

scanning in the way they react to worms.

Figure 44 - Worm Detection on Port Scanning Data

7.3 Protocol Anomaly Detection

As discussed previously (5.2 Signal Generation Plug-ins) there are several protocol

analysis components implemented for the DNIS framework. This section will show and

explain some sample results from running protocol anomaly detection components on

some of the datasets gathered.

Figure 45 - Dial-up Traffic 2, IP Protocol Anomaly Detection

 89

The Y axis on the graph above shows the number of packets per second. The graph shows

a spike of around 5 packets per second just before 1000hrs. Looking at the key it can be

seen that the anomaly was packets with a very low (< 5) TTL. This may indicate the use

of a program (such as traceroute) that modifies the TTL of packets to discover the

distance (in hops) to a particular host address. The graph also shows a steady number of

packets with invalid addresses. This means that one of the addresses in the IP packet

appears incorrect. Analysing the packets in the trace file it was found that there were

packets with the source and destination address on the same subnet. This is part of the

anomaly detection code, because the IP protocol anomaly detector component was written

with the ability to run on a gateway router in mind. In this case it might indicate packets

with spoofed addresses arriving that are pretending to come from your own address

space. In this particular instance the packets were TCP SYN packets arriving at port 445

(microsoft-ds). This port hosts the Server Message Block protocol that allows files and

printers to be shared across networks. This service is also the source of a number of

vulnerabilities. It is not known for what reason these packets would continue to arrive at a

steady rate without ever setting-up a connection but it may be part of a packet flooding

attack.

Other reasons for a packet to be marked as having an invalid IP address could include:

• The source and destination address are the same

• The packets source is 255.255.255.255

• The top byte of the packets source or destination address is 223 or 127, indicating

address ranges that are not globally routable.

• The source or destination is an address that is reserved and should not be routed

i.e. 10.0.0.0 through 10.255.255.255, 172.16.0.0 through 172.31.0.0,

192.168.0.0 through 192.168.255.255

Interestingly the packets reporting the incorrect length also increased at the same time.

Further analysis showed that it was not the same packets the misreported their length, as

showed invalid addresses, indicating this to be a coincidence. A very small number of

packets also had bad checksums. This was determined by recalculating the checksum of

the packet and comparing it to the checksum stored in the packet. The extremely low rate

of protocol anomalies should be noted. The dataset contains 18,572 packets of which only

59 contained anomalies (0.32% of the total traffic).

 90

Another anomaly detector component has been written for the TCP protocol. This

component looks for other deviations in packets from the protocol specification. The graph

below is from data gathered by the honeypot. The graph shows that there were large

numbers of packets with their reserved bits not set to zero as the TCP specification

requires. The increase in this activity from 17:40 was due to a worm starting to scan and

spread to other hosts. Further analysis showed the same one or two bits had become set

in all these packets. It is not known for what purpose these bits may be set (Rowland,

1996). The graph also shows that infrequently packets arrive with an invalid data offset.

An invalid offset is one which indicates the data begins beyond the end of the packet or

indicates the data begins before the end of the header.

Figure 46 - Honeypot Worm Dataset 2, TCP Protocol Anomaly Detection

7.4 Computational Complexity

This section is intended to give a brief indication of the processing ability of the DNIS

framework. The test bed was a single 2.4 GHz Intel Xeon based PC with 1Gb of memory

running Red Hat Linux version 2.4.20-8. The machine had two 100Mbps NIC interfaces.

One was connected to the management port of a gateway router for a subnet and the

other was connected to a second machine which acted as a manager for the sensor.

Two experiments were conducted. The first test involved running a DNIS sensor on the

high bandwidth gateway link and measuring its system utilization, while not executing any

components. The volume of traffic being communicated from sensor to manager is also

measured.

 91

The sensor was measured for 10 minutes and it was found that it was processing 530

packets per second with an average throughput of 62Kbps. No packets were dropped by

the kernel. During this time the CPU usage never rose above 0.4%. The manager

continued to poll the sensor every five seconds. Port 1300 was used for this

communication. Upon isolating this traffic from the capture it was found that each request

by the manager for the sensors status was a TCP conversation in which the manager sent

a 95 byte request and the sensor replied with a 237 byte status message. This gives an

overall communication overhead of 0.07Mbps per sensor. The throughput for the sensor

for the same period was 49.1Mbps.

A similar experiment was run but this time the sensor was running two signal generation

components that were generating and outputting data to the machines disk. The following

results were found.

Again the experiment was run for ten minutes over which the sensor processed an

average of 411 packets per second, with an average throughput of 57Kbps. No packets

were dropped by the kernel. CPU usage averaged at 0.8%. The buffers between the event

source (sniffer) and components were set to 25Mb and remained between 70% and 80%

full. The components were set to output signal information every 5 seconds and wrote a

total of 8,278bytes to disk between them. The communication statistics between the

sensor and manager remained the same and so will not be included again. The only

change was a slight increase in the size of the status message sent back to the manager.

These results show that the sensor itself has little or no effect on the network because of

it’s maximum polling interval of five seconds and small status messages. It also

demonstrates the sensors ability to run multiple independent components without having

a major effect on the speed of the sensor at processing the incoming data.

7.5 Pattern Matching for Signature Generation

The Honeycomb paper (Kreibich & Crowcroft, 2004) proposed the automatic generation of

worm signatures using simple pattern matching. In the paper their evaluation

demonstrates successfully captured signatures for two well known worms.

The evaluation in that paper was weak because it was only tested on a dial-up connection.

It was also suggested, that there may be problems with large numbers of false signatures

 92

being generated. For this reason it was decided to implement the techniques described by

the Honeycomb system as a DNIS component and see if their results could be reproduced.

The Honeycomb system as previously described (3.5.4 Honeycomb) is a string based

pattern detection algorithm, layered upon a honeypot that performs TCP stream

reassembly. The same TCP stream reassembly algorithms have already been implemented

in DNIS so it was only a minor effort to implement the detection algorithm described by

Honeycomb.

Honeycomb performs protocol analysis on incoming data. This functionality was not

implemented as DNIS already has components to perform protocol analysis. Secondly,

Honeycomb performs pattern detection in the flow content. DNIS uses a TCP Stream

Reassembly component to reconstruct flows. Flows are represented as a linked list of

messages, each message containing a number of TCP segments and each message having

a direction.

To perform the detection Honeycomb scans the flows in two directions performing the

Longest Common Substring (LCS) string matching algorithm. The two detection methods

were Horizontal Detection and Vertical Detection. The detection methods refer to the way

the flows are traversed. Horizontal Detection is when the nP

th
P messages in all connections

are compared. In contrast Vertical detection compares the messages within each

connection.

In order to try and reproduce the results of Honeycomb their algorithms were applied to

the collection of datasets gathered for this work. Each of the datasets showed similar

results and so only one will be presented here. The dataset with honeypot malicious traffic

and background traffic from a user (Table 7 - Datasets used for evaluation) was used to

perform pattern matching on using the payload pattern matching component for DNIS.

This dataset consists of a mass mailing worm and normal background internet usage

(mostly HTTP). This dataset was chosen for illustrative purposes because it is short and

contains a lot of TCP connections.

The dataset contains the W32.NetSky.B worm. There are 28 individual occurrences of that

worm opening a SMTP session with a remote mail exchanger and attempting to deliver a

copy of itself to an email address found on the infected host. The dataset contained

26,510 packets totaling 11,389,91 bytes. 98.57% of the traffic was TCP traffic of which

 93

12% was SMTP. 60.84% was HTTP. The pattern matching component when executed on

this capture file matched 258 individual byte patterns of between 150 and 585 bytes

long TP

25
PT.

Before executing the algorithm, the file was manually examined and a byte signature for

the worm was extracted. A partial byte signature is shown below and was obtained by

using the TCP stream reconstruction features of ethereal. The pattern matching algorithm

successfully located eight byte patterns using horizontal detection on the reassembled

dataTP

26
PT. However, the other matches were almost all protocol inherent information as is

shown in the sample pattern match pool dump below. Note that the byte sequences have

been truncated to make the text more readable.

Pattern Match Found (223 bytes):

PATTERN A:
HEX "48 54 54 50 2f 31 2e 30 20 32 30 30 20 4f 4b 0d 0a 44 61 74 65 3a 20 46 72 69 2c
30 33 29 0d 0a 48 6f 73 74 3a 20 77 77 77 2e 6c 6f 6e 65 6c 79 70 6c 61 70 2d 41 6c
ASCII: "HTTP/1.0 200 OK
Date:Fri,27Aug200416:56:05GMT
Server:Apache/1.3.27(Unix)(Red-Hat/Linux)JRun/4.0mod_ssl/2.8.12OpenSSL/0.9.6b
Last-Modified:Fri,14Jun200202:44:45GMTETag:"97c02-138-3d09589d"
Accept-Ranges:bytes
Content-Length:312
Connection:close
Content-Type:image/gif
GIF89a#0@0pP`!,#0$dihlp,tmx|pH,)shI(4"h@$xlxZ$#L"L`Jll%`IunUUQ$azc$gS^gF!"

PATTERN B:
HEX "47 45 54 20 2f 32 2e 6a 70 67 20 48 54 54 50 2f 31 2e 31 0d 0a 41 63 63 65 70 74
61 64 64 72 65 73 73 3e 0a 3c 2f 62 6f 64 79 3e 3c 2f 68 74 6d 6c 3e 0a"
ASCII: "HTTP/1.1
Accept:*/*
Accept-Encoding:gzip,deflate
User-Agent:Mozilla/4.0(compatible;MSIE5.01;WindowsNT5.0;utvi160403)
Host:www.porta.de
Connection:Keep-Alive
HTTP/1.1 302 Found
Date:Fri,27Aug200415:59:07GMT
Server:Apache/2.0.50(Unix)PHP/4.3.8mod_ssl/2.0.50OpenSSL/0.9.6b
Location:http://www.heise.de/security/dienste/browsercheck/demos/ie/e6crash1a.html
Content-Length:375
Connection:close
Content-Type:text/html;charset=iso-8859-1
<!DOCTYPEHTMLPUBLIC"-//IETF//DTDHTML2.0//EN"><html><head><title>302Found</title></head>
<body><h1>Found</h1><p>Thedocumenthasmoved<ahref="http://www.heise.de/security/dienste/

TP

25
PT Patterns of less than 150 bytes were ignored. This was to reduce the volume of matches

and is justified because recent worms have sizes of several kilobytes (Symantec, 2003).

TP

26
PT The other instances of the worm were not detected due to bad TCP stream reassembly

possible due to dropped packets.

 94

browsercheck/demos/ie/e6crash1a.html">here.</p><hr/><address>Apache/2.0.50(Unix)PHP/
4.3.8mod_ssl/2.0.50OpenSSL/0.9.6bServeratwww.porta.dePort80</address></body></html>"

Pattern Occurred in Connections:
Connection A: 83.70.16.2:4816 -> -126.94.5.31:80
Connection B: 83.70.16.2:3337 -> -39.14.-94.3:80

Table 9 - Sample Payload Pattern Match Report

The table above shows that what has actually been matched is HTTP protocol headers and

structure. An ASCII decoded version of the bytes is provided along with a hex

representation of the bytes for illustrative purposes. The pattern matching is performed on

the byte values themselves and not the ASCII decoded bytes as the translation to ASCII

results in bytes being dropped if they to don’t represent an ASCII character value.

These problems show that automatic signature generation, as proposed by Honeycomb, is

largely useless unless the malicious flows are first detected and isolated from the rest of

the traffic. For this reason, string-based pattern detection methods are not suitable for

online processing of network data but may be useful as a response to detected malicious

activity.

 95

8 Worm Detection Results

8.1 Introduction

This chapter will present the results of applying the worm detection algorithm described in

(5.4 Worm Detection Component) to the datasets presented in (6.2 Data Sets). Analysis

of the final two datasets that were collected from a subnet in Trinity College was not

completed because of the difficulty in determining if there was malicious activity present.

This dataset is still available and the analysis of it is left as further work. This chapter will

end with a summary of its findings.

8.1.1 Signal Effectiveness Weighting

The worm detection algorithm works by deciding if certain signals are changing as they

would if a worm attacked. In order to allow worm detection to work on any sensor the

signals that were chosen were not specific to any network location.

For example, one of the signals used was the ratio of incoming to outgoing traffic. On a

gateway router this signal will normally have a relatively steady value but if the same

signal is generated from a dial-up connection the signal will vary so wildly as to be

virtually impossible to extract any meaningful information. Similarly the signals that are

based on spread are effected by the fact that one end of the connection is a single host

rather than both ends having multiple hosts.

To take this into account and improve accuracy on both dial-up and backbone links, it was

decided that the signal inputs should be weighted before the probability of a worm being

present is calculated. The weights for dial-up links were chosen by based on experience

with the honeypot datasets. The signals that reacted most to worm activity in these

datasets were weighted heavier than the others. The weights for gateway router links

were calculated in a similar fashion using the DARPA 1998 dataset.

Signal 1 2 3 4 5 6 7 8 9 10

Gateway Router 1.3 1.1 0.7 1.2 0.6 0.8 1.0 1.0 1.0 1.3

Dial-up Link 1.3 0.9 0.7 1.2 0.7 0.7 1.0 1.0 1.2 1.3

Table 10 - Signal Effectiveness Weights

 96

The table above shows the two sets of weight that were used in the following

experiments. The weights are chosen so as to average to one. This is so that when each

signal is multiplied by its weight and combined with all the other signals the probability

does not increase or decrease overall. The weights only have the effect of changing which

signals contribute more to the overall worm probability.

8.2 DARPA 1998 IDS Evaluation Dataset

This dataset contains a lot of malicious activity. It should be noted however that the data

was generated through simulation and there are no worms in the dataset. This is because

at the time this dataset was created worms were not the problem; they are today and the

main focus of IDS technology was in stopping individual hackers. Many of the attacks,

however, share similar characteristics with worms and so it was decided that it would be

appropriate to run the worm detection algorithm over a sample of this dataset.

The DARPA 1998 IDS Evaluation dataset is several weeks of recorded traffic. A subset of

this traffic was chosen for analysis. This particular traffic was chosen because it contained

many of the types of attacks that the worm detection algorithm may be able to detect.

Table 8 lists some of the, possibly detectable, attacks present in this dataset over the

three days in week six that were used. Note that the time in the Table 8 differs to the time

attacks are reported in the graphs because the graphs are in GMT. To align the times

subtract 6 hours.

8.2.1 Wednesday Week 6

Graph 1 - Original Signals

Graph 2 - Worm Probability

Table 11 - DARPA 1998 (Wednesday) Results

 97

Wednesday’s network trace file from the DARPA dataset contained only three attacks, two

DoS attacks and one scanning attack. Of these three attacks two were detected by the

worm detection component. These two attacks were a surveillance sweep, which involved

pinging multiple hosts at 08:29 (13:29 GMT) and a DoS attack against a web server at

14:11 (19:11 GMT).

The graph on the right shows that there were seven false positives, where the component

indicated a worm was present when in fact there was no malicious activity reported, and

two correct detections. The component showed high accuracy in detecting the two attacks

at the right time. Both of the spikes on the graph were within seconds of the reported

start time of the attacks.

The high rate of false positives was an expected problem. It is believed that many these

false results can be removed by varying the size of the sliding window that is used by the

detection algorithm and the size of the overlaps between windows. The weight’s discussed

above may also not be the best weights for this particular dataset as the network capture

was not done on a gateway link or single host link.

8.2.2 Thursday Week 6

Graph 3 - Original Signals

Graph 4 - Worm Probability

Table 12 - DARPA 1998 (Thursday) Results

 98

Out of the three days, Thursday had the most malicious activity. A significant proportion

of that activity was surveillance sweeps and DoS activity. From examining the output from

the several signal generation components, it can immediately be seen that there are

several times during the day at which a number of the signals change suddenly. The

detection probability graph on the right reflects these changes by indicating malicious

activity at the same time as a number of these fluctuations.

Comparing our analysis of this part of the dataset with the published material, it was

found that six different attacks have been correctly identified within a minute of their

reported initiation. This is 28% of all the detectable attacks for that day. Further

encouragement is gained from the fact that there were only two false positives. Both of

these were at the beginning of the dataset and so could be attributed to a settling down

period that is a feature of some of the source signals.

The attacks detected were a surveillance sweep at 10:37 (16:37 GMT), a SYN flood at

11:32 (17:32 GMT), surveillance sweep at 12:29 (18:29 GMT), ICMP echo reply flood at

12:48 (18:48 GMT), UDP DoS at 13:31 (19:31 GMT) and finally an ICMP ping DoS attack

at 16:15 (22:15 GMT). All these attacks are either flooding attacks or scanning attacks.

The worm detection algorithm detects these attacks because it has been written to detect

scanning behavior that shows up in the signals almost identical to port sweeps and

network probing. Similarly, flooding a particular host with traffic, triggers the worm

detection algorithm because of the change in the spread of hosts and ports that are

receiving the most traffic. Also the signals based on packet size will react due to large

numbers of similar, if not identical packets on the network.

It is worth noting that many of the attacks that were not detected do actually have a

corresponding spike on the graph. This may not be apparent in the day long graph shown

above but in the hourly breakdown of this same data it can clearly be seen. They were not

marked with a line because the spike was not above the surrounding probabilities. This

does show that the attacks are reflected in the graphs but there is need for further

refinement to remove some of the noise.

It is also interesting that none of the attacks were worms and yet the algorithm was able

to detect them. This suggests that this type of analysis could be applied to the more

general problem of detecting a wider range of unusual changes in traffic patterns.

 99

8.2.3 Friday Week 6

Only one attack was reported in the data for Friday. This attack was a TCP SYN flood on

multiple ports at 09:31 (14:31 GMT). As can be seen from the probability on the right,

this attack was not detected. Although the attack is not reported by the probabilities on

the right, if you examine the source signals that were used to generate the probability you

can see that there is an unusual change in some of the signals at 14:31. Most notably, the

scanning and single packet exchange counts spike and then settle down again after five or

ten minutes. This attack may not have been detected because of other signals that had

not yet stabilized and contributed negatively to the overall probability.

Graph 5 - Original Signals

Graph 6 - Worm Probability

Table 13 – DARPA 1998 (Friday) Results

 100

8.3 Honeypot Traffic

Capture 1 (W32.BugBear,

W32.Sasser)

Capture 2 (W32.NetSky.B@mm)

Table 14 - Honeypot Traffic Worm Detection

The data above is from two different captures of malicious activity on our Honeypot. On

the left we have the data gathered from, an otherwise, idle link during an attack by both

BugBear and Sasser worms and on the right we have the data from a similarly idle link

while the Honeypot was infected with NetSky.

On the left, it can be seen that the worm was detected as it first started to execute on the

Honeypot at 01:08. At 01:15 the second of the two worms struck and started its

spreading routines. The repeated indications of worm activity are because the signals that

indicated the worm continue to change as the worm possibly ramps up its infection rate.

 101

It is interesting how the two worms exhibit different patterns and have different effects on

the source signals. This suggests that it could be possible to distinguish between worms

based on the effect they have on these signals. This also shows that the algorithm

remains able to detect further infections even after one worm or other attack has started.

The data on the right shows more clearly how the signals change when the worm attacks.

The beginning of the attack can be easily discerned from the source signals and the worm

detection component does successfully detect this change in the signals. It can be seen

that some of the signals react before others leading to two separate worm detections a

number of minutes apart. It is not known if this first detection was a false alert or if this

pattern is a feature of this worms behavior.

8.4 Honeypot & Background Traffic

Table 15 - Honeypot & Background Traffic Results

When the Honeypot traffic also contains background user traffic, the malicious activity

becomes harder to detect. It can be seen by comparing the source signals on the left with

similar source signal graphs from the Honeypot dataset that background traffic causes the

signals to change much more frequently. A smaller percentage of the traffic is due to the

worm so the effect is not as easily distinguished as before. Despite this the worm

detection component successfully detected the spreading of the W32.NetSky worm. The

detection at 18:58 is a false positive.

Graph 7 - Original Signals

Graph 8 - Worm Probability

 102

8.5 Normal Dial-up Traffic (False Positives)

Day 1 Day 2 Day 3

Table 16 - Background Dial-up Traffic Detection

The data presented above is gathered from three different internet usage sessions. The

data was recorded from a dial-up 56k link to the internet. The host was a well protected

home PC and was not infected during any of these captures. All the traffic patterns shown

are due to normal use of common internet applications such as email, WWW, FTP and

SSH.

Both the data from days one and three show false worm detections. This is due to the

nature of traffic on dial-up links. Because there was only a single host with a single user

generating the traffic, the signals tend to vary a lot. At higher bandwidths and on links

with more active hosts the problem of high frequency fluctuations in all the signals is less

of a problem as there is generally a sustained level of background traffic.

 103

8.6 Results Summary

In summary the DARPA dataset showed that the detection of different types of malicious

activity is possible by monitoring changes in a number of key signals. The worm detection

component currently detects a variety of attacks that use scanning and flooding. The

Honeypot dataset showed that worms could be successfully detected and that different

worms cause different traffic patterns to be observed. The Honeypot dataset with

background traffic showed how it can be difficult to detect worms on low bandwidth links.

The normal internet traffic dataset highlighted the problem of low utilisation giving rise to

false worm detections. Links where there is no sustained traffic level causes the source

signals to change rapidly from one extreme to another as intermittent traffic starts and

stops. It appears that the techniques used by the worm detection component are not

appropriate on such links. It has also been mentioned that the component was run with

the same configuration on all the datasets. The only change was to modify the weights for

the DARPA dataset. It may be possible to improve the results presented here through

further tuning of the application and through experimentation with different parameters. It

has been shown that worms can be detected to within seconds of their attack. The actual

delay in detection is dependent on the size of the window of traffic that is analysed at a

time. For these experiments it was set to one minute. Also all of the probability graphs

show that there is a very small range in the probabilities. The range of probabilities

appears to remain centered at 0.3. The algorithm could be modified to give a wider range

of probabilities which would be easier to read but it is not believed that this would have

any effect on accuracy.

 104

Conclusion

8.7 Summary

Bandwidth attacks such as Internet worms and DoS are a global problem that can have

serious economic effects. It is clear that identifying anomalies rapidly and accurately is

critical to the efficient operation of any network. Intrusion Detection systems have been

developed in an effort to protect private networks from such attacks. This defense in

depth approach incorporating firewalls, authentication, anti-virus and intrusion detection is

widely accepted as the most comprehensive approach to network security. Intrusion

Detection Systems are a new addition to this defense in depth and remain an immature

technology.

It has been shown that the majority of IDS systems rely on rules or signatures to perform

detection in a manner similar to anti-virus products. This approach requires an extensive

database of attack signatures to be maintained and distributed worldwide. This approach

is labor intensive, does not detect new attacks and often can not keep pace with the

increasingly rapid deployment of attacks facilitated by the distribution of malicious source

code and tool kits for developing attacks within the cracker communityTP

27
PT.

For this reason there is a need for software that can generalize such attacks and detect

them without any prior knowledge of a specific attack. Tools that attempt to perform such

detection are commonly referred to as anomaly detection techniques.

This dissertation has presented a heterogeneous network inspection framework for the

development and deployment of an enterprise wide anomaly detection system. The

framework features a configurable event source, dynamically composable instrumentation

components and a remote management application. The DNIS framework combines the

TP

27
PT The author takes care to distinguish the often misused term ‘hacker’ from ‘cracker’ who

is a person who breaks into systems with malicious intent. Hackers are people with

technical adeptness and a delight in solving problems and overcoming limits. For a better

description see Eric S. Raymond, 2001, "How To Become A Hacker"

http://catb.org/~esr/faqs/hacker-howto.html

 105

best features of the currently available IDS systems with new ideas from the research

community.

Several components have been implemented for the framework that perform different

types of data gathering and anomaly detection. It is intended that the currently

implemented components serve as a base for future development. It has been

demonstrated that a component can be quickly implemented to verify the results of other

researchers work and similarly new techniques can be quickly implemented and evaluated.

Finally, a component designed to detect Internet worms was implemented and found to

successfully recognise internet worms, as well as scanning and flooding activity on both

dial-up and high-bandwidth network links.

This dissertation contributes in several areas. Firstly the framework itself is well described

and gives researchers the ability to develop components that can be directly compared to

other work. It is the author’s intention, with the kind permission of Trinity College Dublin

to release the source code for the framework implementation and components to the

community. The work has also shown that it is possible to detect internet worms using

time series techniques. The application of wavelet signal analysis to network traffic

statistics has also been shown to be very successful. This dissertation has also shown that

different worms have discernable effects on the network which could allow for worms to

be distinguished by their traffic patterns. Finally, a comprehensive state of the art of

intrusion detection systems and related technologies is provided. To the authors

knowledge there has been no other effort to provide such a taxonomy of the tools and

techniques available and it is hoped that this will provide to future researcher a good

foundation in the field.

8.8 DNIS Requirements Satisfied

This section will show how successful the final implementation was measured against the

requirements set out in (4.2 Requirements). The first requirement was that DNIS should

be capable of being deployed on any internal or external network link. This requirement

was fulfilled through the choice of a cross platform programming language and was

demonstrated successfully through the collection and analysis of data from both a dial-up

connection and high bandwidth internet gateway.

 106

The second requirement was to avoid misuse detection, which was successfully achieved.

DNIS does not have any hard coded knowledge of any specific attack. Malicious activity is

detected through statistical means or through machine learning.

The requirement to run in real-time was achieved through the ability to dynamically chain

signal generation and analysis components allowing live data arriving at the event source

to be processed by different components on separate threads, without stopping collecting

and buffering further data.

The requirement to allow for coordinated detection among distributed sensors was

successfully achieved through the sensor manager application. The sensor manager

communicates with and controls all the sensors. The manager collects data from each

sensor to enable the sensor configuration to be modified in reaction to the current state of

the network. The automation of the coordination functions is left as future work.

The requirement to have a low false positive rate was a challenging one to meet, and in

fact, the analysis components implemented do suffer from false positives. It is however

believed that through tuning the sensors to their network environment the false positive

rate can be further reduced. The extent of the false positive problem also needs to be

assessed on a larger dataset so as to determine if the effect was due to the dataset

generated by the Honeypot used for data gathering.

The requirement to drill down to the particular source of an anomaly was not met. This

was due to time constraints and not the difficulty of the problem. The sensors have the

ability to keep rolling records of all traffic they see allowing the source of anomalies to be

determined offline by studying these logs in finer detail.

The analysis components were designed to be as general as possible and not to rely on

any packet headers that can be forged. Many of the features of network traffic that the

components expose are vulnerable to being altered significantly by malicious activity.

It is not believed that DNIS is vulnerable to attack itself. Security precautions ensure that

communications are not altered in any way. Careful monitoring of buffer levels, CPU usage

and available memory and the reporting of this information to the manager ensure the

system has protection against DoS attacks. As a further precaution against bandwidth

 107

attacks the application does not flood the network with it’s own traffic but uses a proven

polling method with variable intervals and the ability to push events to the manager.

The requirement to avoid evaluating the system on artificially generated data was met and

has been demonstrated (6.2 Data Sets).

8.9 Future Research

There are a number of ways in which this work could be continued. The sensor manager

application that was implemented as part of the framework was rudimentary. A more

advanced implementation of the management application would increase the automation

of communication and control of the sensors. Logging could be centrally managed and

that responsibility could be taken away from individual sensors. An important

improvement would be to add a module storage facility to the manager. Currently

knowledge about available components is hard coded. A more extendable approach would

be to utilize a module storage database such as is proposed by Kemmerer, 1998. This

could allow the manager to perform queries on this database for modules that match

properties such as operating system, name, protocol, description, memory usage, etc.

These modules could then be sent to a sensor and executed there, with the output fed

back to the manager.

The power of the DNIS implementation is based on the capabilities of the analysis

components. While analyzing malicious traffic it became obvious that address or port

scanning is not random in nature. In fact port scans are often conducted sequentially

through the port range. An interesting additional component for the system would

measure the likelihood of a sequence existing in host or port accesses which would

indicate some sort of automated scan since it is extremely unlikely a user will access

machines or ports in a regular ordered manner. Other systems have shown this approach

to be promising for some types of attack.

Additional observations of malicious traffic indicate that it may be worth while analyzing

the entropy or randomness of some features. A generalized entropy model for internet

traffic would greatly benefit research in this area. Again, this could be implemented

quickly as another component and evaluated on the existing data sets.

 108

Gathering good data in order to evaluate IDS systems was found to be very difficult. The

dissertation attempted (as much as possible) to use recent traffic captures, reflecting the

types of malicious activity and attacks currently widespread on the Internet. However,

because IDS systems generally require access to packet payloads, the majority of publicly

available research trace files can not be used. There is a need to gather more up-to-date

capture data from real networks showing realistic levels of background user traffic and

with malicious activity documented. This is obviously a tedious task but a distributed

(perhaps open) effort could quickly produce evaluation data that could be used to test and

compare IDS systems.

There has been some work done in using graphs to detect malicious activity. GrIDS

(Cheung, Crawford, Dilger, Hoagland, Levitt, Rowe, Staniford-Chen, Yip & Zerkle, 1996) is

a well known intrusion detection system that attempts to detect worms by building so

called 'activity graphs' that represent network connections between hosts. These graphs

are then searched for predefined patternsTP

28
PT. The patterns do not need to be specific to a

particular attack as many attack types will exhibit similar connection graphs. Such a

detection method could augment others to improve the systems performance. A graph

based algorithm would be particularly suitable for the DNIS framework as the sensors are

already distributed and communicating. This would aid in the construction of graphs.

As previously discussed (5.3.4 Payload Pattern Matching) the string based payload pattern

matching techniques from Kreibich et al, (2004) suffer from overfitting. The string

matching algorithms will match all patterns that appear in the payloads. The majority of

these patterns arise from the structure that application layer software adds to the data

before it is passed to the network stack for transmission. The paper concluded that

without a database of signatures for all application layer protocols it would be impossible

to isolate the truly malicious payloads from the legitimate data. This dissertation proposes

that rather than having to provide knowledge of common pattern in all existing protocols,

that machine learning could be used. By training a machine learning algorithm to

recognise all the common protocols the application could then eliminate those pattern

matches from the set of patterns that the string matching algorithm finds. This approach

would also have the benefit of the generalization that machine learning provides and could

allow slight variations on patterns to be correctly marked as belonging to a legitimate

protocol.

TP

28
PT Worms often exhibit a tree shaped connection graph

 109

There also remains a need for further work in evaluating different responses to detected

malicious activity. There have been many types of response proposed, which include

actively terminating connections, changing firewall rules, adding signatures to an ID or

simply alerting the administrator. It has not been shown which of these responses provide

the best protection.

The DNIS system was developed to work as an online network analysis system. During

development there was a lot of need to run components over captured data and it was

found that the DNIS framework is not well suited to bulk offline data processing. It is

proposed that a second complementary application be developed that would allows

researchers to load DNIS components into an offline analysis or simulation environment in

order to evaluate them before deployment to a live network.

 110

9 References
Anderson Roscoe Wetherall, 2004, “Preventing Internet Denial-of-Service with

Capabilities”, ACM SIGCOMM Computer Communications Review Volume 34, Number 1:

January 2004.

Anderson, 1995, “An Introduction to Neural Networks”, MIT Press. Boston 1995, ISBN 0-

262-01144-1.

Axelsson, 2000, “Intrusion Detection Systems: A Survey and Taxonomy”, Technical

report, Department of Computer Engineering, Chalmers University of Technology,

Goteborg, Sweden, 2000.

Barford & Plonk, 2002, “Characteristics of Network Traffic Flow Anomalies”, In Proceedings

of the ACM SIGCOMM Internet Measurement Workshop, Nov. 2001.

Barford Kline Plonka & Ron, 2002, “A Signal Analysis of Network Traffic Anomalies”, In

Proceedings of the ACM SIGCOMM Internet Measurement Workshop, Marseilles, France.

Braginsky, Estrin, 2001, “Rumor Routing Algorithm For Sensor Networks”, Under

submission to International Conference on Distributed Computing Systems (ICDCS-22),

November 2001.

Brox, 2002, “Signature Based or Anomaly Based Intrusion Detection – The Practice and

Pitfalls”, http://www.itsecurity.com/papers/proseq1.htm.

CERT/CC, 2000, “Love Letter Worm “, Advisory CA-2000-04

http://www.cert.org/advisories/CA-2000-04.html.

CERT® Coordination Center, 2001, “Denial of Service Attacks”,

www.cert.org/tech_tips/denial_of_service.html.

Cheung, Crawford, Dilger, Hoagland, Levitt, Rowe, Staniford-Chen, Yip & Zerkle, 1996,

“The Design of GrIDS: A Graph-Based Intrusion Detection System”, In Proceedings of the

 111

19th National Information Systems Security Conference, volume 1, pages 361--370,

October 1996.

DARPA, 1981, “TRANSMISSION CONTROL PROTOCOL”, RFC: 793, Defense Advanced

Research Projects Agency.

Das, 2000, “Attack Development for Intrusion Detection Evaluation”, Thesis,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

Das, 2001, “Protocol Anomaly Detection for Network-based Intrusion Detection”,

www.sans.org/rr/papers/30/349.pdf.

Denning, 1987, “An Intrusion-Detection Model”, IEEE Transactions on Software

Engineering, VOL. SE-13, NO. 2.

ePrivacy, 2003, “Spam by Numbers”, ePrivacy Group, a Philadelphia-based trust

technology company.

Floyd & Kohler, 2002, “Internet Research Needs Better Models”, ACM SIGCOMM Computer

Communication Review archive, Volume 33 , Issue 1 (January 2003), Pages: 29 - 34.

Forno, 2003, “Lessons From the Slammer”, SecurityFocus.com,

http://www.securityfocus.com/columnists/140.

Ghosh & Schwartzbard, 1999, “A Study in Using Neural Networks for Anomaly and Misuse

Detection”, Proceedings of the USENIX Security Symposium 1999.

Gil & Poletto, 2001, “MULTOPS: a data-structure for bandwidth attack detection”, In

Proceedings of the 10th USENIX Security Symposium.

Graps, 2003, “An introduction to Wavelets”,

www.amara.com/IEEEwave/IEEEwavelet.html.

Handley, Paxson & Kreibich, 2000, “Network Intrusion Detection: Evasion, Traffic

Normalisation, and end-to end protocol semantics “, www.sans.org/rr/papers/70/1128.pdf.

 112

Hernández-Campos Jeffay & Smith, 2004, “How ‘Real’ Can Synthetic Network Traffic

Be?”, A colloquium given at the Uiversity of Virginia, Charlottesville, VA, March, 2004.

Hussain Heidemann & Papadopoulos, 2003, “A Framework for Classifying Denial of Service

Attacks”, In Proceedings of ACM SIGCOMM 2003.

Hussain, Heidemann & Papadopoulos, 2003, “A Framework for Classifying Denial of

Service Attacks”, USC/Information Sciences Institute, SIGCOMM’03, August 25–29, 2003,

Karlsruhe, Germany.

Intanagonwiwat, Govindan & Estrin, 2000, “Directed Diffusion: A Scalable and Robust

Communication Paradigm for Sensor Networks”, Proceedings of the sixth annual

international conference on Mobile computing and networking. Pages 56-67 August 6 -

11, 2000, Boston, MA USA.

Javitz & Valdes, 1990, “The SRI IDES Statistical Anomaly Detector”, IEEE Symposium on

Security and Privacy May 20 - 22, 1991 Oakland, CA.

Kemmerer, 1998, “NSTAT: A Model-based Real-time Network Intrusion Detection

System”, Technical Report TRCS-97-18, Department of Computer Science, UC Santa

Barbara.

Keshav, 1998, “REAL: A Network Simulator”, Technical Report 88/472, Dept. of computer

Science, UC Berkeley.

Kim Reddy & Vannucci, 2003, “Detecting Traffic Anomalies at the Source through

aggregate analysis of packet header data”, Texas A&M University,

citeseer.ist.psu.edu/578408.html.

Kreibich & Crowcroft, 2004, “Honeycomb – Creating Intrusion Detection Signatures Using

Honeypots”, ACM SIGCOMM Computer Communications Review Volume 34, Number 1:

January 2004.

Lakshminarayanan Adkins, Perrig & Stoica, 2004, “Taming IP Packet Flooding Attacks”,

ACM SIGCOMM Computer Communications Review Volume 34, Number 1: January 2004.

 113

Lan Hussain & Dutta, 2003, “Effect of Malicious Traffic on the Network”, In the

Proceedings of PAM 2003.

Lazarevic Ertoz Kumar Ozgur Srivastava, 2001, “A Comparative Study of Anomaly

Detection Schemes in Network Intrusion Detection”, University of Minnesota.

McCanne & Floyd 2000, “ns Network Simulator”, http://www.isi.edu/nsnam/ns/

Messmer, 2003, “Navy Marine Corps Intranet hit by Welchia worm”, NetworkWorldFusion,

http://www.nwfusion.com/news/2003/0819navy.html

Mirkovic Martin & Reiher, 2001, “A Taxonomy of DDoS Attacks and DDoS Defense

Mechanisms”, ACM SIGCOMM Computer Communication Review archive, Volume 34 ,

Issue 2, (April 2004), Pages: 39 – 53.

Paxson, 1999, “Bro: A System for Detecting Network Intruders in Real-Time”, In 7th

Annual USENIX Security Symposium, January 1998.

Phaal & Panchen, 2002, “Packet Sampling Basics”,

http://www.sflow.org/packetSamplingBasics/index.htm.

Pohlmann & Tim Crothers, 2002, "Firewall Systems", John Wiley & Sons Inc, ISBN:

076454926X.

Porras & Valdes, 1998, “Live Traffic Analysis of TCP/IP Gateways”, Internet Society's

Networks and Distributed Systems Security Symposium, March 1998.

Poulsen, 2003, “Slammer worm crashed Ohio nuke plant network”, SECURITYFOCUS

NEWS, http://www.securityfocus.com/news/6767.

Provos, 2003, “honeyd - A Virtual Honeypot Framework”, 13th USENIX Security

Symosium, San Diego, CA.

Provos, 2004, “A Virtual Honeypot Framework”, 13th USENIX Security Symosium, San

Diego.

 114

Shyu1, Chen, Sarinnapakorn & Chang, 2004, “A Novel Anomaly Detection Scheme Based

on Principal Component Classifier”, Proceedings of ICDM Foundation and New

Direction of Data Mining workshop, pp 172-179.

Smith Hernández-Campos & Jeffay, 2001, “What TCP/IP Protocol Headers Can Tell Us

About the Web”, In proeedings. ACM SIGMETRICS 2001.

Symantec, 2003, “W32.Welchia.Worm”,

http://securityresponse.symantec.com/avcenter/venc/data/w32.welchia.worm.html.

Toth, Krugel, 2002, “Connection History Based Anomaly Detection”, Proceedings of the

2002 IEEE Workshop on Information Assurance and Security.

Wang & Stolfo, 2004, “Anomalous Payload-based Network Intrusion Detection”, CU Tech

Reports Mar. 31, 2004.

Weaver & Paxson, 2004, “A Worst-Case Worm”, citeseer.ist.psu.edu/669954.html.

Weaver Paxson Staniford & Cunningham, 2002, “Large Scale Malicious Code: A Research

Agenda”, citeseer.ist.psu.edu/644435.html.

Yaar Perrig & Song, 2004, “SIFF: A Stateless Internet Flow Filter to Mitigate DDoS

Flooding Attacks”, citeseer.ist.psu.edu/689335.html.

Yadgar, Kraus & Ortiz, 2003, “SCALING-UP DISTRIBUTED SENSOR NETWORKS”, Chapter

9 in "Distributed Sensor Networks: A Multiagent Perspective", Kluwer Academic Publisher,

ISBN: 1402074999.

Yadgar, Kraus & Ortiz, 2004, “SCALING-UP DISTRIBUTED SENSOR NETWORKS:

COOPERATIVE LARGE-SCALE MOBILE-AGENT ORGANIZATIONS”, Managing Cyber Threats:

Issues, Approaches and Challenges, Chapter 9, Kluwer Academic Publishers.

Zanero & Savaresi, 2004, “Unsupervised Learning Techniques For an Intrusion Detection

System”, citeseer.ist.psu.edu/692871.html.

 115

10 Appendix

10.1 Classification of IDS Systems

	Introduction
	Overview

	Background
	Introduction
	Properties of Network Traffic
	Network Traffic Analysis Techniques
	Introduction
	Time Frequency Analysis
	Wavelets
	Overview
	History
	Uses

	Data Mining Techniques
	Eigen Values

	A Taxonomy of Network Anomalies
	Introduction
	Network Operation Anomalies
	Flash Crowds
	Network Abuse
	Viruses
	Worms
	Denial of Service Attacks
	Distributed DoS Attacks
	SPAM email

	Other

	Intrusion Detection
	Signature Based
	Anomaly Detection
	Neural Networks for Anomaly Detection
	Statistical Anomaly Detection
	Protocol Anomaly Detection
	Graph based Anomaly Detection
	Payload Based Anomaly Detection

	Evading detection
	Introduction
	Flooding
	Fragmentation
	Encryption
	Obfuscation

	Network Monitoring / Intrusion Detection
	Network Sniffers
	Network Monitors
	Intrusion Detection Systems
	Defending Against Network Abuse
	Introduction
	Network Firewalls
	IP Traceback
	Authorization in IP networks
	Edge Router Filtering Policies
	Honeypots

	Experimental Systems
	Introduction
	MULTOPS
	EMERALD
	Honeycomb

	Summary

	Distributed Network Inspection System
	Introduction
	Requirements
	Design Choices
	Introduction
	Development Platform
	Online Capture or Simulation
	Gateway Routers or Dial-up Links

	Specification
	Introduction
	Overall Approach (Distributed Sensor Network)
	Sensor Architecture
	Layer 1 – The Event Source
	Layer 2 – Signal Generation Components
	Layer 3 – Analysis Components

	Sensor Data Flow
	Pluggable Component Based Architecture
	Package Structure
	Sensor Algorithms
	Component Output Logging

	Event Source
	Communication & Control
	Security
	Sensor Manager
	Response to Detection

	DNIS Dynamically Pluggable Components
	Introduction
	Signal Generation Plug-ins
	Introduction
	Port / Address Spread Plug-in
	TCP Stream Reassembly
	TCP / IP Protocol Anomaly Accounting Plug-ins

	Signal Analysis Plug-ins
	Introduction
	Wavelets Analysis Plug-in
	Machine Learning
	Payload Pattern Matching
	Internet Worm Detection

	Worm Detection Component

	Data Gathering
	Data Collection Infrastructure
	Data Sets

	Evaluation
	Introduction
	Detecting Scanning Behavior
	Protocol Anomaly Detection
	Computational Complexity
	Pattern Matching for Signature Generation

	Worm Detection Results
	Introduction
	Signal Effectiveness Weighting

	DARPA 1998 IDS Evaluation Dataset
	Wednesday Week 6
	Thursday Week 6
	Friday Week 6

	Honeypot Traffic
	Honeypot & Background Traffic
	Normal Dial-up Traffic (False Positives)
	Results Summary

	Conclusion
	Summary
	DNIS Requirements Satisfied
	Future Research

	References
	Appendix
	Classification of IDS Systems

