
Component and System-Wide Self-* Properties in

Decentralised Distributed Systems

Jim Dowling, Raymond Cunningham, Eoin Curran and Vinny Cahill

Distributed Systems Group, Trinity College Dublin

{jpdowlin,rcnnnghm,vjcahill@cs.tcd.ie, currane@maths.tcd.ie}

Abstract

This paper introduces a two-layered approach to
building autonomic distributed systems, with self-*
properties supported at both the component and system-
wide levels. K-Components is presented as a self-
adaptive component model that supports the separate
specification of a component’s self-* behaviour us-
ing declarative contracts. Distributed Reinforcement
Learning (DRL) is introduced as a system-wide opti-
misation technique that supports the establishment and
maintenance of system-wide properties in distributed
systems where there is no support for global state.

1 Introduction

In the future, many distributed systems will con-
sist of interacting, autonomous components that or-
ganise, regulate and optimise themselves without hu-
man intervention. However, with increasing system
size and complexity our ability to build self-managed
distributed systems using existing programming lan-
guages, top-down design techniques and management
infrastructures is reaching its limits [1], as solutions
they produce require too much global knowledge.

Massive autonomic distributed computer systems,
on a scale comparable with biological autonomic sys-
tems, require a decentralised, bottom-up approach to
their construction. Such systems can be modelled as
a collection of components or agents where decisions
are totally or partially taken by these components, in-
teraction between components is based only on local
information and system-wide self-* properties emerge
from the interactions between components [2]. The
benefits of such an approach include improved robust-
ness and scalability, the possibility of self-regulation,
self-configuration and self-organisation, the lack of cen-
tralised points of failure or attack, as well as possible

evolution of the system by evolving the local interac-
tion rules of the components.

The construction of decentralised distributed sys-
tems with system-wide properties presents a number
of challenges. These include designing a component
model that can support self-* behaviours, designing de-
centralised models of interaction between components
that establish and maintain emergent self-* properties
over collections of components and determining the
functionality required at the component-level to pro-
duce emergent properties at the system-level.

2 Self-* Behaviour in K-Components

Many self-* behaviours, such as self-healing and
self-optimisation, can be engineered using self-adaptive
components. Self-adaptive components have the abil-
ity to change their behaviour or structure at run-time
in order to accomplish specified goals [3], such as adapt
to discovered faults or sub-optimal performance. Self-*
behaviour for components requires the active monitor-
ing of component states and external dependencies for
events that cause adaptation actions, such as reconfig-
uring dependencies on faulty components.

K-Components is a component framework for build-
ing self-adaptive components [3]. A K-Component con-
tains modularised self-adaptive behaviour. Program-
mers specify a component’s self-adaptive behaviour
using a declarative programming language called the
Contract Description Language (CDL). The CDL
allows programmers to declaratively associate feed-
back events (regarding component or connector states)
with adaptation actions, e.g. self-healing or self-
optimising actions, using the event-condition-action
(ECA) paradigm.

Self-adaptive behaviour specified in the CDL is en-
capsulated at run-time in a set of reflective agent pro-
grams that can monitor feedback events and execute
adaptation actions, see Figure 1. The agent programs

K-Component

Self-* Behaviour

Encapsulated in

Reflective Agents

Internal and External

Feedback Events

Provided

Interface

Uses

Interfaces

Adaptation

Actions

Middleware

Figure 1. Self-* Behaviour in K-Components

are threads that are interleaved with component ex-
ecution and operate on both feedback events and an
architecture meta-model of the component.

One problem with the ECA approach to specifying
self-adaptive behaviour is that it becomes infeasible
as the space of possible feedback events and adapta-
tion actions increases. For complex, instrumented dis-
tributed systems, programmers cannot be expected to
know about and handle all possible internal component
and external environmental states or be able to accu-
rately predict the outcome of executing some adapta-
tion action in a dynamic environment.

For this reason, in K-Components self-adaptive be-
haviour can also be learnt by components using an un-
supervised technique called distributed reinforcement
learning (DRL). DRL also enables the decentralised co-
ordination of groups of connected components for the
purpose of establishing system-wide properties. The
next section introduces system-wide properties for dis-
tributed systems and shows how system-wide self-*
properties of a distributed system can emerge from the
interaction of its components (or agents as they are
called in the next section).

3 Self-* Distributed Systems using Dis-
tributed Reinforcement Learning

Self-* distributed systems establish and maintain
system-wide properties, e.g. properties such as being
deadlock-free, fault tolerant or load-balanced. Exist-
ing techniques that can engineer system-wide proper-
ties into distributed systems, such as dynamic software
architectures, communicating sequential processes and
group communication protocols, do so in a top-down
manner, decomposing system behaviour and making it
amenable to formal analysis [1]. These approaches are
not suitable for dynamic environments or environments
that have no support for global state, such as wireless

Agent
Agent

advertise(Solution
) | transfer_control

Environment

action a
i
(t)

reward r
i
(t)

state s
i
(t)

r
j
(t+1)

s
j
(t+1)

reward r
j
(t)

state s
j
(t)

action a
j
(t)

s
i
(t+1)

r
i
(t+1)

Figure 2. DRL Agent Model

ad-hoc networks or peer-to-peer systems.

DRL is a decentralised approach to establishing and
maintaining system-wide properties in distributed sys-
tems. DRL is an extension to Reinforcement Learning
[4] (RL) for decentralised multi-agent systems. DRL
does not make use of system-wide knowledge and in-
dividual agents (or components) only know about and
interact with their neighbours.

In RL, an agent associates actions with system
states in a trial-and-error manner and the outcome of
an action is observed as a reinforcement that, in turn,
causes an update to the agent’s action-value policy us-
ing a reinforcement learning strategy [4]. The goal of
reinforcement learning is to maximise the total reward
(reinforcements) an agent receives over a time horizon
by selecting optimal actions. Agents may take actions
that give a poor payoff in the short-term in the antici-
pation of higher payoff in the longer term. In general,
actions may be any decisions that an agent wants to
learn how to make, while states can be anything that
may be useful in making those decisions. As action
selection is probabilistic, there is some trial-and-error
in the selection of actions and RL is not a suitable
technique for learning self-* behaviour for the classes
of distributed system that are intolerant to suboptimal
action selection, such as real-time systems.

DRL is based on a variant of the coordination model
found technique in swarm intelligence algorithms where
agents learn from the successes of their neighbours.
DRL solves system-wide optimisation problems by
specifying how individual agents solve discrete optimi-
sation problems (DOP) using RL, share their results
with neighbours and transfer control to neighbours by
initiating the start of a new DOP on a neighbouring
agent, see Figure 2. In terms of RL, DRL is a model-
based learning strategy for problems that can be dis-
tributed across a partially connected set of hosts and

9

10

12

12 (2)

13 (4)

0
5

E

F

A

C

D

B

15

14

G

Eliminated by

Greedy Heuristic

Route (link) Cost

Advertised

Route Cost

Destination

Source

Figure 3. Routing Decision in SAMPLE

each DOP can be modelled as an absorbing Markov De-
cision Process. In DRL, system-wide self-* properties
emerge from the interaction of the solution of discrete
optimisation problems.

3.1 Specifying Optimisation Problems

In DRL, system-wide optimisation problems are de-
composed into a set of DOPs, the solution of which
should be performed by the set of agents that result in
a near-optimal system-wide use of resources. System-
wide optimisation problems are initiated at some agent
that can either solve the DOP itself or delegate its so-
lution to a neighbouring agent that in turn may handle
the DOP or delegate it further. As a result the solution
to the problem is parallelised amongst the agents in the
system. It is our belief that many self-* properties in
decentralised distributed systems can be represented as
optimisation problems and can be solved using DRL.

3.2 SAMPLE: Ad-hoc Routing using DRL

SAMPLE is a probabilistic on-demand ad hoc rout-
ing protocol based on DRL [5] that contains system-
wide self-optimising properties, such as the adaptation
of network traffic patterns around areas of congestion
and wireless interference and the exploitaton of sta-
ble routes. Standard ad hoc routing protocols such as
(AODV) and Dynamic Source Routing (DSR) use dis-
crete models of links in the network. In SAMPLE, we
use a statistical model of links based on RL and routing
agents share their link information with neighbours us-
ing DRL. Hence, routing decisions are based both on
locally acquired experience and information acquired
from neighbours using DRL, see Figure 3.

We have implemented the SAMPLE routing proto-
col in the NS-2 network simulator and performance re-
sults show better performance in the face of adverse
network conditions than AODV and DSR [5]. In our

experimental setup and simulations, there are 33 fixed
nodes, 50 mobile nodes and 3 server nodes are the fixed
nodes at the centre of the simulation arena. The fixed
nodes in the simulation provide stable links in the net-
work that the routing protocols could exploit. Fig-
ure 4 shows the variation in performance of SAMPLE,
AODV and DSR as the number of clients in the net-
work is increased. For these figures the packet size sent
by clients was kept fixed at 64 bytes, sent 3 times a
second. Figure 5 shows the same experiment, this time
with 512 byte packets. Offered Throughput is used in
both figures to enable comparison of the results. As the
number of clients in the network is increased, the of-
fered throughput to the routing protocols is increased.
This in turn increases the level of network congestion
and the amount of contention that the MAC protocol
must deal with. This increased congestion increases
the number of failed MAC unicasts in the network.

SAMPLE performs better than existing ad-hoc pro-
tocols in the presence of failed unicasts due to the abil-
ity of routing agents to learn that a link failed to some
transient factor (and hence retrying the link may suc-
ceed) or some more serious factor such as link failure,
and retrying the link is unlikely to succeed. Exist-
ing protocols assume the link has failed and perform
poorly when packet error rates increase. As routing
agents share their experience about links it collectively
improves their rate of learning and convergence on
more optimal system-wide routing behaviour. SAM-
PLE displays the system-wide property of routing traf-
fic around areas of congestion or wireless interference.
This property optimises throughput available in the
network and emerges from the solution to and inter-
action of the individual routing DOPs at nodes. An
important lesson from SAMPLE is the need for exper-
imentation, as the emergence of more optimal routing
properties is sensitive to tuneable parameters in DRL
and the RL system model in SAMPLE.

4 Conclusions and Future Work

In this paper, we describe self-* properties of dis-
tributed systems at the component level with K-
Components and at the system-wide level using DRL.
We believe that many self-* properties can be engi-
neered at the component level using a self-adaptive
component model and that self-* properties at the sys-
tem level can be established and maintained by solv-
ing system-wide optimisation problems using interact-
ing agents that solve discrete optimisation problems,
such as in DRL. Future work will investigate the con-
struction of self-* systems using K-Components that
co-ordinate their self-adaptive behaviour using DRL.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 15 20 25 30 35 40 45 50

D
el

iv
er

y
R

at
io

Offered Kbps

Delivery Ratio vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(a) Delivery Ratio

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 15 20 25 30 35 40 45 50

T
ra

ns
m

is
si

on
s

pe
r

P
ac

ke
t S

en
t

Offered Kbps

Transmissions per Packet Sent vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(b) Throughput

Figure 4. Performance with Varying Load. 64 byte packets

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 50 100 150 200 250 300 350 400

D
el

iv
er

y
R

at
io

Offered Kbps

Delivery Ratio vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(a) Delivery Ratio

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400

T
ra

ns
m

is
si

on
s

pe
r

P
ac

ke
t S

en
t

Offered Kbps

Transmissions per Packet Sent vs Offered Kbps

Routing Protocol
AODV

DSR
SWARM

(b) Throughput

Figure 5. Performance with Varying Load. 512 byte packets

References

[1] A. Montresor, H. Meling, and O. Babaoglu, “To-
wards self-organizing, self-repairing and resilient
distributed systems,” Future Directions in Dis-
tributed Computing, LNCS 2584, 2003.

[2] J. Dowling, “Coordinating self-adaptive compo-
nents for emergent distributed system behaviour
and structure,” 8th Cabernet Radicals Workshop,
2003.

[3] J. Dowling and V. Cahill, “The k-component archi-
tecture meta-model for self-adaptive software,” 3rd
Conference on Reflection, LNCS 2192, 2001.

[4] R. Sutton and A. Barto, Reinforcement Learning.
MIT Press, 1998.

[5] E. Curran and J. Dowling, “Sample: An on-demand
probabilistic routing protocol for ad-hoc networks,”
Technical Report: Department of Computer Sci-
ence, Trinity College Dublin, 2004.

